diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 5 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 4 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 4 | ||||
-rw-r--r-- | src/algebra/any.spad.pamphlet | 20 | ||||
-rw-r--r-- | src/boot/ast.boot | 8 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 1432 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 2893 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1358 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9860 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32403 |
10 files changed, 24011 insertions, 23976 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 555b23b3..35b83293 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,8 @@ +2009-05-14 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/any.spad.pamphlet (RuntimeValue): New domain. + * algebra/Makefile.pamphlet ($(OUT)/RTVALUE.$(FASLEXT)): New rule. + 2009-05-14 Michael Becker <Michael.Becker@coconet.de> Fix SF/2790725 (take 2) diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 2d28c0e7..b0fb0954 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -318,6 +318,7 @@ $(OUT)/IOMODE.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/REF.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/IDENT.$(FASLEXT) $(OUT)/PRINT.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/RTVALUE.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ @@ -343,7 +344,8 @@ axiom_algebra_layer_0 = \ TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \ DIOPS DIOPS- STRING STRICAT ISTRING ILIST \ LIST \ - LINEXP PATMAB REAL CHARZ LOGIC LOGIC- + LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ + RTVALUE axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 32cf09ed..2d4d39d6 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -272,6 +272,7 @@ $(OUT)/IOMODE.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/REF.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/IDENT.$(FASLEXT) $(OUT)/PRINT.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/RTVALUE.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ @@ -297,7 +298,8 @@ axiom_algebra_layer_0 = \ TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \ DIOPS DIOPS- STRING STRICAT ISTRING ILIST \ LIST \ - LINEXP PATMAB REAL CHARZ LOGIC LOGIC- + LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ + RTVALUE axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) diff --git a/src/algebra/any.spad.pamphlet b/src/algebra/any.spad.pamphlet index 7305b809..2039f38c 100644 --- a/src/algebra/any.spad.pamphlet +++ b/src/algebra/any.spad.pamphlet @@ -38,6 +38,25 @@ None():SetCategory == add @ +\section{domain RTVALUE RuntimeValue} + +<<domain RTVALUE RuntimeValue>>= +)abbrev domain RTVALUE RuntimeValue +++ Author: Gabriel Dos Reis +++ Date Created: May 14, 2009 +++ Date Last Changed: May 14, 2009 +++ Description: +++ This is the datatype of OpenAxiom runtime values. It exists +++ solely for internal purposes. +RuntimeValue(): Type with + eq: (%,%) -> Boolean + ++ \spad{eq(x,y)} holds if both values \spad{x} and \spad{y} + ++ resides at the same address in memory. + == add + eq(x,y) == EQ(x,y)$Foreign(Builtin) +@ + + \section{The Maybe domain} <<domain MAYBE Maybe>>= @@ -556,6 +575,7 @@ Environment(): Public == Private where -- may be Any. <<domain NONE None>> +<<domain RTVALUE RuntimeValue>> <<domain MAYBE Maybe>> <<package NONE1 NoneFunctions1>> <<domain ANY Any>> diff --git a/src/boot/ast.boot b/src/boot/ast.boot index b49f149f..95d7cbc5 100644 --- a/src/boot/ast.boot +++ b/src/boot/ast.boot @@ -1615,16 +1615,20 @@ genSBCLnativeTranslation(op,s,t,op') == newArgs := [coerceToNativeType(a,x), :newArgs] if needsStableReference? x then unstableArgs := [a,:unstableArgs] + + op' := + %hasFeature KEYWORD::WIN32 => strconc('"__",SYMBOL_-NAME op') + SYMBOL_-NAME op' null unstableArgs => [["DEFUN",op,args, [INTERN('"ALIEN-FUNCALL",'"SB-ALIEN"), - [INTERN('"EXTERN-ALIEN",'"SB-ALIEN"),SYMBOL_-NAME op', + [INTERN('"EXTERN-ALIEN",'"SB-ALIEN"), op', ["FUNCTION",rettype,:argtypes]], :args]]] [["DEFUN",op,args, [bfColonColon("SB-SYS","WITH-PINNED-OBJECTS"), nreverse unstableArgs, [INTERN('"ALIEN-FUNCALL",'"SB-ALIEN"), - [INTERN('"EXTERN-ALIEN",'"SB-ALIEN"),SYMBOL_-NAME op', + [INTERN('"EXTERN-ALIEN",'"SB-ALIEN"), op', ["FUNCTION",rettype,:argtypes]], :nreverse newArgs]]]] diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 6f57ae39..78192ed0 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2283123 . 3451054383) +(2283254 . 3451299467) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -56,10 +56,10 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3629) +(-32 R -2286) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -88,14 +88,14 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3629 UP UPUP -1691) +(-40 -2286 UP UPUP -1487) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4399 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) (-4398 |has| (-407 |#2|) (-363)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4078 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4078 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4078 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4078 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-41 R -3629) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2789 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2789 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2789 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2789 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-41 R -2286) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4406 . T) (-4407 . T)) -((-4078 (-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|))))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|))))))) +((-2789 (-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|))))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -123,7 +123,7 @@ NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3629) +(-54 |Base| R -2286) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -167,64 +167,64 @@ NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-61 -1316) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) +(-61 -2420) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -1316) +(-62 -2420) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -1316) +(-63 -2420) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -1316) +(-64 -2420) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -1316) +(-65 -2420) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -1316) +(-66 -2420) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -1316) +(-67 -2420) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -1316) +(-68 -2420) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -1316) +(-69 -2420) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -1316) +(-70 -2420) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -1316) +(-71 -2420) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -1316) +(-72 -2420) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -1316) +(-73 -2420) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -1316) +(-74 -2420) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -1316) +(-77 -2420) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -1316) +(-78 -2420) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -1316) +(-79 -2420) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -1316) +(-80 -2420) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -1316) +(-81 -2420) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -1316) +(-82 -2420) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -1316) +(-83 -2420) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -1316) +(-84 -2420) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1316) +(-85 -2420) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -1316) +(-86 -2420) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -1316) +(-87 -2420) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -1316) +(-88 -2420) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -1316) +(-89 -2420) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4078 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2789 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -371,7 +371,7 @@ NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-858))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) ((-4401 . T) (-4400 . T)) @@ -383,12 +383,12 @@ NIL (-113 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-847)))) +((|HasCategory| |#1| (QUOTE (-846)))) (-114) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad}op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-115 -3629 UP) +(-115 -2286 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -399,7 +399,7 @@ NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1019))) (|HasCategory| (-116 |#1|) (QUOTE (-817))) (-4078 (|HasCategory| (-116 |#1|) (QUOTE (-817))) (|HasCategory| (-116 |#1|) (QUOTE (-847)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-2789 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -415,7 +415,7 @@ NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL @@ -435,15 +435,15 @@ NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4078 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) +((-2789 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-2789 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -468,11 +468,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) (((-4408 "*") . T)) NIL -(-135 |minix| -1727 S T$) +(-135 |minix| -2268 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -1727 R) +(-136 |minix| -2268 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -495,7 +495,7 @@ NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4406 . T) (-4396 . T) (-4407 . T)) -((-4078 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-2789 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -520,7 +520,7 @@ NIL ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4403 . T)) NIL -(-148 -3629 UP UPUP) +(-148 -2286 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -3629) +(-158 R -2286) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -591,10 +591,10 @@ NIL (-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4402)) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-847)))) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4402)) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-846)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4399 -4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4402 |has| |#1| (-6 -4402)) (-4405 |has| |#1| (-6 -4405)) (-2522 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-4399 -2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4402 |has| |#1| (-6 -4402)) (-4405 |has| |#1| (-6 -4405)) (-3570 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -606,8 +606,8 @@ NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4399 -4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4402 |has| |#1| (-6 -4402)) (-4405 |has| |#1| (-6 -4405)) (-2522 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4402)) (|HasAttribute| |#1| (QUOTE -4405)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-349))))) +((-4399 -2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4402 |has| |#1| (-6 -4402)) (-4405 |has| |#1| (-6 -4405)) (-3570 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4402)) (|HasAttribute| |#1| (QUOTE -4405)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -643,7 +643,7 @@ NIL (-178 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-949 |#2|) (LIST (QUOTE -883) (|devaluate| |#1|)))) +((|HasCategory| (-948 |#2|) (LIST (QUOTE -882) (|devaluate| |#1|)))) (-179 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -680,7 +680,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-188 R -3629) +(-188 R -2286) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -788,23 +788,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -3629 UP UPUP R) +(-215 -2286 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -3629 FP) +(-216 -2286 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4078 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2789 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -3629) +(-219 R -2286) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -819,18 +819,18 @@ NIL (-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4403 . T)) NIL -(-224 R -3629) +(-224 R -2286) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2508 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-3564 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -839,7 +839,7 @@ NIL (-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4408 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4408 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -851,7 +851,7 @@ NIL (-230 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (-231 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) ((-4403 . T)) @@ -876,22 +876,22 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -1727 R) +(-237 S -2268 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasAttribute| |#3| (QUOTE -4403)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) -(-238 -1727 R) +((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4403)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1094)))) +(-238 -2268 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4400 |has| |#2| (-1046)) (-4401 |has| |#2| (-1046)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) +((-4400 |has| |#2| (-1045)) (-4401 |has| |#2| (-1045)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) NIL -(-239 -1727 A B) +(-239 -2268 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -1727 R) +(-240 -2268 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4400 |has| |#2| (-1046)) (-4401 |has| |#2| (-1046)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4078 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4078 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-4400 |has| |#2| (-1045)) (-4401 |has| |#2| (-1045)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) +((-2789 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2789 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2789 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -911,7 +911,7 @@ NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -919,7 +919,7 @@ NIL (-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4408 "*") |has| |#2| (-172)) (-4399 |has| |#2| (-556)) (-4404 |has| |#2| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-905))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -930,12 +930,12 @@ NIL NIL (-250 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4403 -4078 (-4348 (|has| |#4| (-1046)) (|has| |#4| (-233))) (-4348 (|has| |#4| (-1046)) (|has| |#4| (-897 (-1170)))) (|has| |#4| (-6 -4403)) (-4348 (|has| |#4| (-1046)) (|has| |#4| (-637 (-564))))) (-4400 |has| |#4| (-1046)) (-4401 |has| |#4| (-1046)) ((-4408 "*") |has| |#4| (-172)) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4078 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4078 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (QUOTE (-790))) (-4078 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (QUOTE (-845)))) (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-172))) (-4078 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-790)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-845)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-4078 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4078 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-723))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4078 (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-4078 (|HasAttribute| |#4| (QUOTE -4403)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) +((-4403 -2789 (-2342 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-2342 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1170)))) (|has| |#4| (-6 -4403)) (-2342 (|has| |#4| (-1045)) (|has| |#4| (-637 (-564))))) (-4400 |has| |#4| (-1045)) (-4401 |has| |#4| (-1045)) ((-4408 "*") |has| |#4| (-172)) (-4406 . T)) +((-2789 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-2789 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-2789 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-2789 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-2789 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-2789 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-2789 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-2789 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-2789 (|HasAttribute| |#4| (QUOTE -4403)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) (-251 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4403 -4078 (-4348 (|has| |#3| (-1046)) (|has| |#3| (-233))) (-4348 (|has| |#3| (-1046)) (|has| |#3| (-897 (-1170)))) (|has| |#3| (-6 -4403)) (-4348 (|has| |#3| (-1046)) (|has| |#3| (-637 (-564))))) (-4400 |has| |#3| (-1046)) (-4401 |has| |#3| (-1046)) ((-4408 "*") |has| |#3| (-172)) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4078 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4078 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-723))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4078 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4078 (|HasAttribute| |#3| (QUOTE -4403)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +((-4403 -2789 (-2342 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-2342 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1170)))) (|has| |#3| (-6 -4403)) (-2342 (|has| |#3| (-1045)) (|has| |#3| (-637 (-564))))) (-4400 |has| |#3| (-1045)) (-4401 |has| |#3| (-1045)) ((-4408 "*") |has| |#3| (-172)) (-4406 . T)) +((-2789 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-2789 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2789 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-2789 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-2789 (|HasAttribute| |#3| (QUOTE -4403)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (-252 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -987,7 +987,7 @@ NIL (-264 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-905))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-265 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1032,11 +1032,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-276 R -3629) +(-276 R -2286) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-277 R -3629) +(-277 R -2286) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1055,7 +1055,7 @@ NIL (-281 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094)))) +((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094)))) (-282 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) ((-4407 . T)) @@ -1084,7 +1084,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-289 S R |Mod| -2879 -3956 |exactQuo|) +(-289 S R |Mod| -2347 -2988 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL @@ -1106,21 +1106,21 @@ NIL NIL (-294 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4403 -4078 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4400 |has| |#1| (-1046)) (-4401 |has| |#1| (-1046))) -((|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723)))) (|HasCategory| |#1| (QUOTE (-473))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4078 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4078 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723)))) (-4078 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-172)))) +((-4403 -2789 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4400 |has| |#1| (-1045)) (-4401 |has| |#1| (-1045))) +((|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2789 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-2789 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-2789 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172)))) (-295 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858))))) (-296) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-297 -3629 S) +(-297 -2286 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-298 E -3629) +(-298 E -2286) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1135,7 +1135,7 @@ NIL (-301 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1046)))) +((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-302) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1168,7 +1168,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-310 -3629) +(-310 -2286) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1183,7 +1183,7 @@ NIL (-313 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1019))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (-4078 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-4078 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))))) +((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-2789 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-2789 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))))) (-314 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1194,9 +1194,9 @@ NIL NIL (-316 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4403 -4078 (-4348 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-4078 (-4348 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1046)) (|has| |#1| (-473)))) (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) ((-4408 "*") |has| |#1| (-556)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4398 |has| |#1| (-556))) -((-4078 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-4078 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4078 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4078 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4078 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4078 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) -(-317 R -3629) +((-4403 -2789 (-2342 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-2789 (-2342 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) ((-4408 "*") |has| |#1| (-556)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4398 |has| |#1| (-556))) +((-2789 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-2789 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2789 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2789 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2789 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2789 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564))))) +(-317 R -2286) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1207,7 +1207,7 @@ NIL (-319 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-320 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1219,7 +1219,7 @@ NIL (-322 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) ((-4401 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-789)))) +((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-788)))) (-323 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1227,7 +1227,7 @@ NIL (-324 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-768) (QUOTE (-789)))) +((|HasCategory| (-767) (QUOTE (-788)))) (-325 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL @@ -1239,12 +1239,12 @@ NIL (-327 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-328 S -3629) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-328 S -2286) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-368)))) -(-329 -3629) +(-329 -2286) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL @@ -1264,15 +1264,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-334 S -3629 UP UPUP R) +(-334 S -2286 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -3629 UP UPUP R) +(-335 -2286 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-336 -3629 UP UPUP R) +(-336 -2286 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1287,31 +1287,31 @@ NIL (-339 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564))))) (-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-341 S -3629 UP UPUP) +(-341 S -2286 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363)))) -(-342 -3629 UP UPUP) +(-342 -2286 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4399 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) (-4398 |has| (-407 |#2|) (-363)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-343 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) +((-2789 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) (-344 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2789 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-345 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2789 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-346 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1328,31 +1328,31 @@ NIL ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-350 R UP -3629) +(-350 R UP -2286) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-351 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) +((-2789 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) (-352 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2789 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-353 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2789 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-354 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) +((-2789 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-356 -3629 GF) +((-2789 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-356 -2286 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1360,14 +1360,14 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-358 -3629 FP FPP) +(-358 -2286 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-359 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2789 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-360 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL @@ -1419,7 +1419,7 @@ NIL (-372 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094)))) +((|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094)))) (-373 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) ((-4406 . T)) @@ -1446,7 +1446,7 @@ NIL NIL (-379) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4389 . T) (-4397 . T) (-2508 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-4389 . T) (-4397 . T) (-3564 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-380 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1475,7 +1475,7 @@ NIL (-386 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-847)))) +((|HasCategory| |#1| (QUOTE (-846)))) (-387) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) @@ -1496,7 +1496,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-392 -3629 UP UPUP R) +(-392 -2286 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1520,11 +1520,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-398 -1316 |returnType| -3514 |symbols|) +(-398 -2420 |returnType| -1586 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-399 -3629 UP) +(-399 -2286 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1546,7 +1546,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4389)) (|HasAttribute| |#1| (QUOTE -4397))) (-404) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2508 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-3564 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-405 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1559,7 +1559,7 @@ NIL (-407 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4393 -12 (|has| |#1| (-6 -4404)) (|has| |#1| (-452)) (|has| |#1| (-6 -4393))) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-817))) (-4078 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-847)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4393)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-2789 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4393)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-408 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL @@ -1571,7 +1571,7 @@ NIL (-410 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-411 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1580,14 +1580,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-413 R -3629 UP A) +(-413 R -2286 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) ((-4403 . T)) NIL -(-414 R -3629 UP A |ibasis|) +(-414 R -2286 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1035) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1034) (|devaluate| |#2|)))) (-415 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1603,7 +1603,7 @@ NIL (-418 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) +((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) (-419 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1627,12 +1627,12 @@ NIL (-424 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-368)))) +((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368)))) (-425 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) ((-4406 . T) (-4396 . T) (-4407 . T)) NIL -(-426 R -3629) +(-426 R -2286) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL @@ -1640,27 +1640,27 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4393 -12 (|has| |#1| (-6 -4393)) (|has| |#2| (-6 -4393))) (-4400 . T) (-4401 . T) (-4403 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4393)) (|HasAttribute| |#2| (QUOTE -4393)))) -(-428 R -3629) +(-428 R -2286) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-429 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) +((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-430 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4403 -4078 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) ((-4408 "*") |has| |#1| (-556)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4398 |has| |#1| (-556))) +((-4403 -2789 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) ((-4408 "*") |has| |#1| (-556)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4398 |has| |#1| (-556))) NIL -(-431 R -3629) +(-431 R -2286) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-432 R -3629) +(-432 R -2286) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-433 R -3629) +(-433 R -2286) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1668,10 +1668,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-435 R -3629 UP) +(-435 R -2286 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-48))))) (-436) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1700,7 +1700,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-443 R UP -3629) +(-443 R UP -2286) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1742,12 +1742,12 @@ NIL NIL (-453 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4403 |has| (-407 (-949 |#1|)) (-556)) (-4401 . T) (-4400 . T)) -((|HasCategory| (-407 (-949 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-949 |#1|)) (QUOTE (-556)))) +((-4403 |has| (-407 (-948 |#1|)) (-556)) (-4401 . T) (-4400 . T)) +((|HasCategory| (-407 (-948 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-948 |#1|)) (QUOTE (-556)))) (-454 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4408 "*") |has| |#2| (-172)) (-4399 |has| |#2| (-556)) (-4404 |has| |#2| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-905))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) (-455 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1783,7 +1783,7 @@ NIL (-463 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858))))) (-464 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1812,7 +1812,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-471 |lv| -3629 R) +(-471 |lv| -2286 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1827,15 +1827,15 @@ NIL (-474 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-475 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094)))) +((-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094)))) (-476 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858))))) (-477) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) @@ -1847,7 +1847,7 @@ NIL (-479 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858))))) (-480) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1855,11 +1855,11 @@ NIL (-481 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4408 "*") |has| |#2| (-172)) (-4399 |has| |#2| (-556)) (-4404 |has| |#2| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-482 -1727 S) +((|HasCategory| |#2| (QUOTE (-905))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-482 -2268 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4400 |has| |#2| (-1046)) (-4401 |has| |#2| (-1046)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4078 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4078 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-4400 |has| |#2| (-1045)) (-4401 |has| |#2| (-1045)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) +((-2789 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2789 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2789 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-483) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL @@ -1867,8 +1867,8 @@ NIL (-484 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-485 -3629 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) +(-485 -2286 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1879,11 +1879,11 @@ NIL (-487) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4078 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2789 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145))))) (-488 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) +((|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (-489 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1904,34 +1904,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-494 -3629 UP |AlExt| |AlPol|) +(-494 -2286 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-495) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564))))) (-496 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-497 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-498 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-499 R UP -3629) +(-499 R UP -2286) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-500 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-858))))) (-501 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1944,7 +1944,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-504 -3629 |Expon| |VarSet| |DPoly|) +(-504 -2286 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1170))))) @@ -1991,11 +1991,11 @@ NIL (-515 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-789)))) +((|HasCategory| |#2| (QUOTE (-788)))) (-516 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-517) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2003,15 +2003,15 @@ NIL (-518 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145)))) +((-2789 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145)))) (-519 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-520 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-521 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2023,7 +2023,7 @@ NIL (-523 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4408 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4408 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-524) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2056,7 +2056,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-532 K -3629 |Par|) +(-532 K -2286 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2080,7 +2080,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-538 K -3629 |Par|) +(-538 K -2286 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2131,12 +2131,12 @@ NIL (-550 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) -(-551 R -3629) +((-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858))))) +(-551 R -2286) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-552 R0 -3629 UP UPUP R) +(-552 R0 -2286 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2146,7 +2146,7 @@ NIL NIL (-554 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2508 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-3564 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-555 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2156,7 +2156,7 @@ NIL ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-557 R -3629) +(-557 R -2286) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2168,7 +2168,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-560 R -3629 L) +(-560 R -2286 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|)))) @@ -2176,11 +2176,11 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-562 -3629 UP UPUP R) +(-562 -2286 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-563 -3629 UP) +(-563 -2286 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2192,15 +2192,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-566 R -3629 L) +(-566 R -2286 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|)))) -(-567 R -3629) +(-567 R -2286) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627))))) -(-568 -3629 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627))))) +(-568 -2286 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2208,27 +2208,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-570 -3629) +(-570 -2286) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-571 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2508 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-3564 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-572) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-573 R -3629) +(-573 R -2286) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556)))) -(-574 -3629 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556)))) +(-574 -2286 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-575 R -3629) +(-575 R -2286) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2260,18 +2260,18 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-583 R -3629) +(-583 R -2286) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-584 E -3629) +(-584 E -2286) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-585 -3629) +(-585 -2286) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4401 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170))))) +((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1170))))) (-586 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2299,7 +2299,7 @@ NIL (-592 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4078 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-2789 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-2789 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-593 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2307,7 +2307,7 @@ NIL (-594 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564)))))) (-595 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) ((-4401 |has| |#1| (-556)) (-4400 |has| |#1| (-556)) ((-4408 "*") |has| |#1| (-556)) (-4399 |has| |#1| (-556)) (-4403 . T)) @@ -2320,7 +2320,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-598 R -3629 FG) +(-598 R -2286 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2331,11 +2331,11 @@ NIL (-600 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-601 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-847))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#3| (QUOTE (-1094)))) +((|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#3| (QUOTE (-1094)))) (-602 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2350,12 +2350,12 @@ NIL NIL (-605 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4403 -4078 (-4348 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4401 . T) (-4400 . T)) -((-4078 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +((-4403 -2789 (-2342 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4401 . T) (-4400 . T)) +((-2789 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-606 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -611) (QUOTE (-858))))) (-607 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2371,7 +2371,7 @@ NIL (-610 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) +((|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-611 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL @@ -2380,7 +2380,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-613 -3629 UP) +(-613 -2286 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2407,15 +2407,15 @@ NIL (-619 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-845)))) -(-620 R -3629) +((|HasCategory| |#1| (QUOTE (-844)))) +(-620 R -2286) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL (-621 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) ((-4401 . T) (-4400 . T) ((-4408 "*") . T) (-4399 . T) (-4403 . T)) -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (-622 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2440,18 +2440,18 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-628 R -3629) +(-628 R -2286) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-629 |lv| -3629) +(-629 |lv| -2286) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-630) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -1389) (QUOTE (-52))))))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-847))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (QUOTE (-1094)))) +((-12 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2511) (QUOTE (-52))))))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-846))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (QUOTE (-1094)))) (-631 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2462,8 +2462,8 @@ NIL NIL (-633 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4403 -4078 (-4348 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4401 . T) (-4400 . T)) -((-4078 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +((-4403 -2789 (-2342 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4401 . T) (-4400 . T)) +((-2789 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-634 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL @@ -2475,7 +2475,7 @@ NIL (-636 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-4338 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) +((-2329 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) (-637 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) ((-4403 . T)) @@ -2495,7 +2495,7 @@ NIL (-641 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-642 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2503,7 +2503,7 @@ NIL (-643 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-644 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL @@ -2520,18 +2520,18 @@ NIL ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-648 R -3629 L) +(-648 R -2286 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-649 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) (-650 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) (-651 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL @@ -2540,14 +2540,14 @@ NIL ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-653 -3629 UP) +(-653 -2286 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-654 A -1844) +(-654 A -3546) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) (-655 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL @@ -2563,7 +2563,7 @@ NIL (-658 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4401 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-788)))) +((|HasCategory| |#1| (QUOTE (-787)))) (-659 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL @@ -2580,11 +2580,11 @@ NIL ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) ((-4407 . T) (-4406 . T)) NIL -(-663 -3629) +(-663 -2286) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-664 -3629 |Row| |Col| M) +(-664 -2286 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2595,7 +2595,7 @@ NIL (-666 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4403 . T) (-4406 . T) (-4400 . T) (-4401 . T)) -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-4078 (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-2789 (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-667) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2615,7 +2615,7 @@ NIL (-671 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-672) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2671,7 +2671,7 @@ NIL (-685 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4406 . T) (-4407 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4408 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4408 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-686 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2680,7 +2680,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-688 S -3629 FLAF FLAS) +(-688 S -2286 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2690,8 +2690,8 @@ NIL NIL (-690) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4399 . T) (-4404 |has| (-695) (-363)) (-4398 |has| (-695) (-363)) (-2522 . T) (-4405 |has| (-695) (-6 -4405)) (-4402 |has| (-695) (-6 -4402)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-4078 (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-4078 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4078 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1019))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-999))) (|HasCategory| (-695) (QUOTE (-1194)))) (-4078 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (-4078 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906))) (-4078 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363)))) (-4078 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-847))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4405)) (|HasAttribute| (-695) (QUOTE -4402)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-145)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-349))))) +((-4399 . T) (-4404 |has| (-695) (-363)) (-4398 |has| (-695) (-363)) (-3570 . T) (-4405 |has| (-695) (-6 -4405)) (-4402 |has| (-695) (-6 -4402)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-2789 (|HasCategory| (-695) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-2789 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (-2789 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1018))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-998))) (|HasCategory| (-695) (QUOTE (-1194)))) (-2789 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-905))))) (-2789 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-905)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-905))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1054))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1054))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905))) (-2789 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-363)))) (-2789 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-846))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4405)) (|HasAttribute| (-695) (QUOTE -4402)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-145)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-349))))) (-691 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4407 . T)) @@ -2704,13 +2704,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-694 OV E -3629 PG) +(-694 OV E -2286 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-695) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2508 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) +((-3564 . T) (-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-696 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2725,1494 +2725,1494 @@ NIL NIL NIL (-699 S) -((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set."))) -NIL -NIL -(-700 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-701 S) +(-700 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-702 S T$) +(-701 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-703 S -3435 I) +(-702 S -3917 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-704 E OV R P) +(-703 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-705 R) +(-704 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) ((-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-706 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-705 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-707) +(-706) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-708 R |Mod| -2879 -3956 |exactQuo|) +(-707 R |Mod| -2347 -2988 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-709 R |Rep|) +(-708 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4402 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-710 IS E |ff|) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-709 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-711 R M) +(-710 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) (-4403 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-712 R |Mod| -2879 -3956 |exactQuo|) +(-711 R |Mod| -2347 -2988 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4403 . T)) NIL -(-713 S R) +(-712 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-714 R) +(-713 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4401 . T) (-4400 . T)) NIL -(-715 -3629) +(-714 -2286) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) ((-4403 . T)) NIL -(-716 S) +(-715 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-717) +(-716) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-718 S) +(-717 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-719) +(-718) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-720 S R UP) +(-719 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368)))) -(-721 R UP) +(-720 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) ((-4399 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-722 S) +(-721 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-723) +(-722) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-724 -3629 UP) +(-723 -2286 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-725 |VarSet| E1 E2 R S PR PS) +(-724 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-726 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-725 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-727 E OV R PPR) +(-726 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-728 |vl| R) +(-727 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4408 "*") |has| |#2| (-172)) (-4399 |has| |#2| (-556)) (-4404 |has| |#2| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-729 E OV R PRF) +((|HasCategory| |#2| (QUOTE (-905))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-728 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-730 E OV R P) +(-729 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-731 R S M) +(-730 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-732 R M) +(-731 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) ((-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) (-4403 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-847)))) -(-733 S) +((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-846)))) +(-732 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) ((-4396 . T) (-4407 . T)) NIL -(-734 S) +(-733 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) ((-4406 . T) (-4396 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-735) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) +(-734) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-736 S) +(-735 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-737 |Coef| |Var|) +(-736 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4401 . T) (-4400 . T) (-4403 . T)) NIL -(-738 OV E R P) +(-737 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-739 E OV R P) +(-738 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-740 S R) +(-739 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-741 R) +(-740 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) ((-4401 . T) (-4400 . T)) NIL -(-742) +(-741) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-743) +(-742) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-744) +(-743) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-745) +(-744) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-746) +(-745) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-747) +(-746) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-748) +(-747) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-749) +(-748) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-750) +(-749) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-751) +(-750) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-752) +(-751) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-753) +(-752) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-754) +(-753) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-755) +(-754) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-756) +(-755) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-757 S) +(-756 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-758) +(-757) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-759 S) +(-758 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-760) +(-759) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-761 |Par|) +(-760 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-762 -3629) +(-761 -2286) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-763 P -3629) +(-762 P -2286) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-764 T$) +(-763 T$) NIL NIL NIL -(-765 UP -3629) +(-764 UP -2286) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-766) +(-765) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-767 R) +(-766 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-768) +(-767) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4408 "*") . T)) NIL -(-769 R -3629) +(-768 R -2286) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-770 S) +(-769 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-771) +(-770) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-772 R |PolR| E |PolE|) +(-771 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-773 R E V P TS) +(-772 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-774 -3629 |ExtF| |SUEx| |ExtP| |n|) +(-773 -2286 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-775 BP E OV R P) +(-774 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-776 |Par|) +(-775 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-777 R |VarSet|) +(-776 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4338 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4338 (|HasCategory| |#1| (QUOTE (-545)))) (-4338 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4338 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-4338 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4338 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-778 R S) +((|HasCategory| |#1| (QUOTE (-905))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2329 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2329 (|HasCategory| |#1| (QUOTE (-545)))) (-2329 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2329 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-2329 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2329 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-777 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-779 R) +(-778 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4402 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-780 R) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-779 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) -(-781 R E V P) +(-780 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) ((-4407 . T) (-4406 . T)) NIL -(-782 S) +(-781 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-172)))) -(-783) +((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-172)))) +(-782) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-784) +(-783) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-785) +(-784) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-786) +(-785) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-787 |Curve|) +(-786 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-788) +(-787) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-789) +(-788) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-790) +(-789) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-791) +(-790) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-792) +(-791) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-793 S R) +(-792 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-368)))) -(-794 R) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368)))) +(-793 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-795 -4078 R OS S) +(-794 -2789 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-796 R) +(-795 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4078 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) -(-797) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-2789 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) +(-796) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-798 R -3629 L) +(-797 R -2286 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-799 R -3629) +(-798 R -2286) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-800) +(-799) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-801 R -3629) +(-800 R -2286) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-802) +(-801) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-803 -3629 UP UPUP R) +(-802 -2286 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-804 -3629 UP L LQ) +(-803 -2286 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-805) +(-804) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-806 -3629 UP L LQ) +(-805 -2286 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-807 -3629 UP) +(-806 -2286 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-808 -3629 L UP A LO) +(-807 -2286 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-809 -3629 UP) +(-808 -2286 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-810 -3629 LO) +(-809 -2286 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-811 -3629 LODO) +(-810 -2286 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-812 -1727 S |f|) +(-811 -2268 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4400 |has| |#2| (-1046)) (-4401 |has| |#2| (-1046)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4078 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4078 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) -(-813 R) +((-4400 |has| |#2| (-1045)) (-4401 |has| |#2| (-1045)) (-4403 |has| |#2| (-6 -4403)) ((-4408 "*") |has| |#2| (-172)) (-4406 . T)) +((-2789 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2789 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2789 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +(-812 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-814 |Kernels| R |var|) +((|HasCategory| |#1| (QUOTE (-905))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-813 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4408 "*") |has| |#2| (-363)) (-4399 |has| |#2| (-363)) (-4404 |has| |#2| (-363)) (-4398 |has| |#2| (-363)) (-4403 . T) (-4401 . T) (-4400 . T)) ((|HasCategory| |#2| (QUOTE (-363)))) -(-815 S) +(-814 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-816 S) +(-815 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-817) +(-816) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-818) +(-817) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-819) +(-818) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-820) +(-819) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-821) +(-820) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-822) +(-821) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-823 R) +(-822 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-824 P R) +(-823 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) ((-4400 . T) (-4401 . T) (-4403 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) -(-825) +(-824) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-826) +(-825) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-827 S) +(-826 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) ((-4406 . T) (-4396 . T) (-4407 . T)) NIL -(-828) +(-827) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-829 R S) +(-828 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-830 R) +(-829 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4403 |has| |#1| (-845))) -((|HasCategory| |#1| (QUOTE (-845))) (-4078 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4078 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) -(-831 A S) +((-4403 |has| |#1| (-844))) +((|HasCategory| |#1| (QUOTE (-844))) (-2789 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2789 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +(-830 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-832 S) +(-831 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-833 R) +(-832 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) ((-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) (-4403 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-834) +(-833) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-835) +(-834) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-836) +(-835) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-837) +(-836) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-838) +(-837) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-839 R S) +(-838 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-840 R) +(-839 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4403 |has| |#1| (-845))) -((|HasCategory| |#1| (QUOTE (-845))) (-4078 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4078 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) -(-841) +((-4403 |has| |#1| (-844))) +((|HasCategory| |#1| (QUOTE (-844))) (-2789 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2789 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +(-840) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-842 -1727 S) +(-841 -2268 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-843) +(-842) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-844 S) +(-843 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-845) +(-844) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) ((-4403 . T)) NIL -(-846 S) +(-845 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-847) +(-846) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-848 S R) +(-847 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172)))) -(-849 R) +(-848 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) ((-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-850 R C) +(-849 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) -(-851 R |sigma| -3597) +(-850 R |sigma| -2551) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-852 |x| R |sigma| -3597) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-851 |x| R |sigma| -2551) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) -(-853 R) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) +(-852 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) -(-854) +(-853) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-855) +(-854) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-856 S) +(-855 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-857) +(-856) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-858) +(-857) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-859) +(-858) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-860) +(-859) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-861 |VariableList|) +(-860 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-862) +(-861) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-863 R |vl| |wl| |wtlevel|) +(-862 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) ((-4401 |has| |#1| (-172)) (-4400 |has| |#1| (-172)) (-4403 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) -(-864 R PS UP) +(-863 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-865 R |x| |pt|) +(-864 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-866 |p|) +(-865 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-867 |p|) +(-866 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-868 |p|) +(-867 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-867 |#1|) (QUOTE (-906))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-147))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-867 |#1|) (QUOTE (-1019))) (|HasCategory| (-867 |#1|) (QUOTE (-817))) (-4078 (|HasCategory| (-867 |#1|) (QUOTE (-817))) (|HasCategory| (-867 |#1|) (QUOTE (-847)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-1145))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-233))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -867) (|devaluate| |#1|)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (QUOTE (-307))) (|HasCategory| (-867 |#1|) (QUOTE (-545))) (|HasCategory| (-867 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))))) -(-869 |p| PADIC) +((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-2789 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-866 |#1|) (QUOTE (-1145))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))))) +(-868 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (-4078 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-870 S T$) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-2789 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-869 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) -(-871) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))))) +(-870) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-872) +(-871) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-873 CF1 CF2) +(-872 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-874 |ComponentFunction|) +(-873 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-875 CF1 CF2) +(-874 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-876 |ComponentFunction|) +(-875 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-877) +(-876) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-878 CF1 CF2) +(-877 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-879 |ComponentFunction|) +(-878 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-880) +(-879) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-881 R) +(-880 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-882 R S L) +(-881 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-883 S) +(-882 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-884 |Base| |Subject| |Pat|) +(-883 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-4338 (|HasCategory| |#2| (QUOTE (-1046)))) (-4338 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (-4338 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) -(-885 R A B) +((-12 (-2329 (|HasCategory| |#2| (QUOTE (-1045)))) (-2329 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-2329 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170))))) +(-884 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-886 R S) +(-885 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-887 R -3435) +(-886 R -3917) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-888 R S) +(-887 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-889 R) +(-888 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-890 |VarSet|) +(-889 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-891 UP R) +(-890 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-892) +(-891) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-893 UP -3629) +(-892 UP -2286) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-894) +(-893) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-895) +(-894) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-896 A S) +(-895 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-897 S) +(-896 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) ((-4403 . T)) NIL -(-898 S) +(-897 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-899 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) +(-898 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-900 S) +(-899 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) ((-4403 . T)) NIL -(-901 S) +(-900 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-902 S) +(-901 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4403 . T)) -((-4078 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) -(-903 R E |VarSet| S) +((-2789 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) +(-902 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-904 R S) +(-903 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-905 S) +(-904 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-906) +(-905) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-907 |p|) +(-906 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) -(-908 R0 -3629 UP UPUP R) +(-907 R0 -2286 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-909 UP UPUP R) +(-908 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-910 UP UPUP) +(-909 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-911 R) +(-910 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-912 R) +(-911 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-913 E OV R P) +(-912 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-914) +(-913) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-915 -3629) +(-914 -2286) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-916 R) +(-915 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-917) +(-916) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) ((-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-918) +(-917) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) (((-4408 "*") . T)) NIL -(-919 -3629 P) +(-918 -2286 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-920 |xx| -3629) +(-919 |xx| -2286) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-921 R |Var| |Expon| GR) +(-920 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-922 S) +(-921 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-923) +(-922) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-924) +(-923) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-925) +(-924) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-926 R -3629) +(-925 R -2286) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-927) +(-926) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-928 S A B) +(-927 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-929 S R -3629) +(-928 S R -2286) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-930 I) +(-929 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-931 S E) +(-930 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-932 S R L) +(-931 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-933 S E V R P) +(-932 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -883) (|devaluate| |#1|)))) -(-934 R -3629 -3435) +((|HasCategory| |#3| (LIST (QUOTE -882) (|devaluate| |#1|)))) +(-933 R -2286 -3917) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-935 -3435) +(-934 -3917) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-936 S R Q) +(-935 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-937 S) +(-936 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-938 S R P) +(-937 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-939) +(-938) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-940 R) +(-939 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-941 |lv| R) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-940 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-942 |TheField| |ThePols|) +(-941 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) -(-943 R S) +((|HasCategory| |#1| (QUOTE (-844)))) +(-942 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-944 |x| R) +(-943 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-945 S R E |VarSet|) +(-944 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-906))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847)))) -(-946 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846)))) +(-945 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) NIL -(-947 E V R P -3629) +(-946 E V R P -2286) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-948 E |Vars| R P S) +(-947 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-949 R) +(-948 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-950 E V R P -3629) +((|HasCategory| |#1| (QUOTE (-905))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-949 E V R P -2286) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-452)))) -(-951) +(-950) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-952) +(-951) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-953 R L) +(-952 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-954 A B) +(-953 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-955 S) +(-954 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-956) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-955) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-957 -3629) +(-956 -2286) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-958 I) +(-957 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-959) +(-958) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-960 R E) +(-959 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4404))) -(-961 A B) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4404))) +(-960 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) ((-4403 -12 (|has| |#2| (-473)) (|has| |#1| (-473)))) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) -(-962) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) +(-961) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-963 T$) +(-962 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-964) +(-963) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-965 S) +(-964 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) ((-4406 . T) (-4407 . T)) NIL -(-966 R |polR|) +(-965 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-452)))) -(-967) +(-966) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-968) +(-967) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-969 S |Coef| |Expon| |Var|) +(-968 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-970 |Coef| |Expon| |Var|) +(-969 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-971) +(-970) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-972 S R E |VarSet| P) +(-971 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-556)))) -(-973 R E |VarSet| P) +(-972 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) ((-4406 . T)) NIL -(-974 R E V P) +(-973 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-452)))) -(-975 K) +(-974 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-976 |VarSet| E RC P) +(-975 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-977 R) +(-976 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) ((-4407 . T) (-4406 . T)) NIL -(-978 R1 R2) +(-977 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-979 R) +(-978 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-980 K) +(-979 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-981 R E OV PPR) +(-980 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-982 K R UP -3629) +(-981 K R UP -2286) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-983 |vl| |nv|) +(-982 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-984 R |Var| |Expon| |Dpoly|) +(-983 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307))))) -(-985 R E V P TS) +(-984 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-986) +(-985) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-987 A B R S) +(-986 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-988 A S) +(-987 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145)))) -(-989 S) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145)))) +(-988 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-990 |n| K) +(-989 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-991) +(-990) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-992 S) +(-991 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) ((-4406 . T) (-4407 . T)) NIL -(-993 S R) +(-992 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-290)))) -(-994 R) +((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290)))) +(-993 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) ((-4399 |has| |#1| (-290)) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-995 QR R QS S) +(-994 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-996 R) +(-995 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4399 |has| |#1| (-290)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545)))) -(-997 S) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545)))) +(-996 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-998 S) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) +(-997 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-999) +(-998) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1000 -3629 UP UPUP |radicnd| |n|) +(-999 -2286 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4399 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) (-4398 |has| (-407 |#2|) (-363)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4078 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4078 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4078 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4078 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-1001 |bb|) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2789 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2789 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2789 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2789 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-1000 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4078 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) -(-1002) +((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2789 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145))))) +(-1001) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1003) +(-1002) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1004 RP) +(-1003 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1005 S) +(-1004 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1006 A S) +(-1005 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL ((|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-1094)))) -(-1007 S) +(-1006 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1008 S) +(-1007 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1009) +(-1008) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4399 . T) (-4404 . T) (-4398 . T) (-4401 . T) (-4400 . T) ((-4408 "*") . T) (-4403 . T)) NIL -(-1010 R -3629) +(-1009 R -2286) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1011 R -3629) +(-1010 R -2286) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1012 -3629 UP) +(-1011 -2286 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1013 -3629 UP) +(-1012 -2286 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1014 S) +(-1013 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1015 F1 UP UPUP R F2) +(-1014 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1016) +(-1015) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1017 |Pol|) +(-1016 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1018 |Pol|) +(-1017 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1019) +(-1018) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1020) +(-1019) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1021 |TheField|) +(-1020 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4399 . T) (-4404 . T) (-4398 . T) (-4401 . T) (-4400 . T) ((-4408 "*") . T) (-4403 . T)) -((-4078 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564))))) -(-1022 -3629 L) +((-2789 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1034) (QUOTE (-564))))) +(-1021 -2286 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1023 S) +(-1022 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL ((|HasCategory| |#1| (QUOTE (-1094)))) -(-1024 R E V P) +(-1023 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) -(-1025 R) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858))))) +(-1024 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL ((|HasAttribute| |#1| (QUOTE (-4408 "*")))) -(-1026 R) +(-1025 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307)))) -(-1027 S) +(-1026 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1028) +(-1027) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1029 S) +(-1028 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1030 S) +(-1029 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1031 -3629 |Expon| |VarSet| |FPol| |LFPol|) +(-1030 -2286 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-1032) +(-1031) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1389) (QUOTE (-52))))))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) -(-1033) +((-12 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2511) (QUOTE (-52))))))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858))))) +(-1032) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1034 A S) +(-1033 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1035 S) +(-1034 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1036 Q R) +(-1035 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1037) +(-1036) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1038 UP) +(-1037 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1039 R) +(-1038 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1040 R) +(-1039 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1041 T$) +(-1040 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1042 T$) +(-1041 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1043 R |ls|) +(-1042 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| (-777 |#1| (-861 |#2|)) (QUOTE (-1094))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -777) (|devaluate| |#1|) (LIST (QUOTE -861) (|devaluate| |#2|)))))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-777 |#1| (-861 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-861 |#2|) (QUOTE (-368))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) -(-1044) +((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1094))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-858))))) +(-1043) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1045 S) +(-1044 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1046) +(-1045) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4403 . T)) NIL -(-1047 |xx| -3629) +(-1046 |xx| -2286) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1048 S |m| |n| R |Row| |Col|) +(-1047 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-556))) (|HasCategory| |#4| (QUOTE (-172)))) -(-1049 |m| |n| R |Row| |Col|) +(-1048 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) ((-4406 . T) (-4401 . T) (-4400 . T)) NIL -(-1050 |m| |n| R) +(-1049 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4406 . T) (-4401 . T) (-4400 . T)) -((-4078 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) -(-1051 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-2789 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858))))) +(-1050 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1052 R) +(-1051 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1053) +(-1052) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1054 S) +(-1053 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1055) +(-1054) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-1056 |TheField| |ThePolDom|) +(-1055 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1057) +(-1056) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) ((-4394 . T) (-4398 . T) (-4393 . T) (-4404 . T) (-4405 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL -(-1058) +(-1057) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1389) (QUOTE (-52))))))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) -(-1059 S R E V) +((-12 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2511) (QUOTE (-52))))))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (LIST (QUOTE -611) (QUOTE (-858))))) +(-1058 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1170))))) -(-1060 R E V) +((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -988) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1170))))) +(-1059 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) NIL -(-1061) +(-1060) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1062 S |TheField| |ThePols|) +(-1061 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1063 |TheField| |ThePols|) +(-1062 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1064 R E V P TS) +(-1063 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1065 S R E V P) +(-1064 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1066 R E V P) +(-1065 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) ((-4407 . T) (-4406 . T)) NIL -(-1067 R E V P TS) +(-1066 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1068) +(-1067) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL +(-1068) +((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,{}y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) +NIL +NIL (-1069 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1070 |Base| R -3629) +(-1070 |Base| R -2286) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1071 |Base| R -3629) +(-1071 |Base| R -2286) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL @@ -4227,7 +4227,7 @@ NIL (-1074 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4399 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) (-1075 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4255,7 +4255,7 @@ NIL (-1081 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-905))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1082 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4263,7 +4263,7 @@ NIL (-1083 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) +((|HasCategory| |#1| (QUOTE (-844)))) (-1084) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL @@ -4283,7 +4283,7 @@ NIL (-1088 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1094)))) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1094)))) (-1089 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) NIL @@ -4315,7 +4315,7 @@ NIL (-1096 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) ((-4406 . T) (-4396 . T) (-4407 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-1097 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL @@ -4358,8 +4358,8 @@ NIL NIL (-1107 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4400 |has| |#3| (-1046)) (-4401 |has| |#3| (-1046)) (-4403 |has| |#3| (-6 -4403)) ((-4408 "*") |has| |#3| (-172)) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4078 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4078 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4078 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4078 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4078 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4078 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4078 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4078 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4403)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +((-4400 |has| |#3| (-1045)) (-4401 |has| |#3| (-1045)) (-4403 |has| |#3| (-6 -4403)) ((-4408 "*") |has| |#3| (-172)) (-4406 . T)) +((-2789 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-2789 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-2789 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2789 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1094)))) (-2789 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2789 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2789 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2789 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2789 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4403)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (-1108 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4368,7 +4368,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1110 R -3629) +(-1110 R -2286) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4407,16 +4407,16 @@ NIL (-1119 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-905))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1120 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) (-1121 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4407 . T) (-4406 . T)) NIL -(-1122 UP -3629) +(-1122 UP -2286) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4435,7 +4435,7 @@ NIL (-1126 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-847)))) +((|HasCategory| |#1| (QUOTE (-846)))) (-1127 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL @@ -4471,11 +4471,11 @@ NIL (-1135 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-4078 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-2789 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-858))))) (-1136 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4403 . T) (-4395 |has| |#2| (-6 (-4408 "*"))) (-4406 . T) (-4400 . T) (-4401 . T)) -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-4078 (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-2789 (|HasAttribute| |#2| (QUOTE (-4408 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-1137 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4491,11 +4491,11 @@ NIL (-1140 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858))))) (-1141 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-1142 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4507,7 +4507,7 @@ NIL (-1144 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094)))) +((-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094)))) (-1145) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4531,7 +4531,7 @@ NIL (-1150 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-1151) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) ((-4407 . T) (-4406 . T)) @@ -4539,11 +4539,11 @@ NIL (-1152) NIL ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-2789 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-1153 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#1|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#1|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (LIST (QUOTE -611) (QUOTE (-858))))) (-1154 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL @@ -4574,9 +4574,9 @@ NIL NIL (-1161 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4408 "*") -4078 (-4348 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4348 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4399 -4078 (-4348 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4348 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1162 R -3629) +(((-4408 "*") -2789 (-2342 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2342 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-905)))) (-4399 -2789 (-2342 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-816))) (|has| |#1| (-556)) (-2342 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-905)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) +((-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1162 R -2286) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4595,15 +4595,15 @@ NIL (-1166 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4402 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1167 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1168 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1169) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4619,7 +4619,7 @@ NIL (-1172 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-6 -4404)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-968) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4404))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4404))) (-1173) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4659,7 +4659,7 @@ NIL (-1182 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) ((-4406 . T) (-4407 . T)) -((-12 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2568) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1389) (|devaluate| |#2|)))))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4078 (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3076) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2789 (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -611) (QUOTE (-858))))) (-1183 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL @@ -4711,7 +4711,7 @@ NIL (-1195 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (-1196 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4720,7 +4720,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1198 R -3629) +(-1198 R -2286) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4728,10 +4728,10 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1200 R -3629) +(-1200 R -2286) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -883) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -883) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|))))) (-1201 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL @@ -4743,7 +4743,7 @@ NIL (-1203 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) (-1204 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL @@ -4755,8 +4755,8 @@ NIL (-1206 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-1207 -3629) +((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) +(-1207 -2286) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL @@ -4771,7 +4771,7 @@ NIL (-1210 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-847)))) +((|HasCategory| |#1| (QUOTE (-846)))) (-1211) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL @@ -4819,11 +4819,11 @@ NIL (-1222 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4078 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))))) (-4078 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) +((-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-2789 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-2789 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) (-1223 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4408 "*") -4078 (-4348 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4348 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4399 -4078 (-4348 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4348 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4408 "*") -2789 (-2342 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2342 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-905)))) (-4399 -2789 (-2342 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-816))) (|has| |#1| (-556)) (-2342 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-905)))) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) +((-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1224 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4831,11 +4831,11 @@ NIL (-1225 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) +((|HasCategory| |#1| (QUOTE (-844)))) (-1226 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1094)))) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1094)))) (-1227 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL @@ -4859,7 +4859,7 @@ NIL (-1232 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4408 "*") |has| |#2| (-172)) (-4399 |has| |#2| (-556)) (-4402 |has| |#2| (-363)) (-4404 |has| |#2| (-6 -4404)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4078 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4078 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4078 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2789 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2789 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2789 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) (-1233 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4875,7 +4875,7 @@ NIL (-1236 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1831) (LIST (|devaluate| |#2|) (QUOTE (-1170)))))) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2322) (LIST (|devaluate| |#2|) (QUOTE (-1170)))))) (-1237 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) @@ -4903,15 +4903,15 @@ NIL (-1243 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) +((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-1244 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4398 |has| |#1| (-363)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4078 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2789 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1245 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) (((-4408 "*") |has| (-1244 |#2| |#3| |#4|) (-172)) (-4399 |has| (-1244 |#2| |#3| |#4|) (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-4078 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556)))) +((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-2789 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556)))) (-1246 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -4927,7 +4927,7 @@ NIL (-1249 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3907) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3719) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-1250 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) @@ -4935,12 +4935,12 @@ NIL (-1251 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4408 "*") |has| |#1| (-172)) (-4399 |has| |#1| (-556)) (-4400 . T) (-4401 . T) (-4403 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4078 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -1831) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4078 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3907) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3209) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2789 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -2322) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-2789 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3719) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -2534) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1252 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1253 -3629 UP L UTS) +(-1253 -2286 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-556)))) @@ -4955,7 +4955,7 @@ NIL (-1256 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +((|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1257 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) ((-4407 . T) (-4406 . T)) @@ -4967,7 +4967,7 @@ NIL (-1259 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4407 . T) (-4406 . T)) -((-4078 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4078 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4078 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2789 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2789 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2789 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-1260) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -5000,7 +5000,7 @@ NIL ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1268 K R UP -3629) +(-1268 K R UP -2286) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -5019,7 +5019,7 @@ NIL (-1272 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) ((-4407 . T) (-4406 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858))))) (-1273 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) ((-4400 . T) (-4401 . T) (-4403 . T)) @@ -5036,18 +5036,18 @@ NIL ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) ((-4399 |has| |#2| (-6 -4399)) (-4401 . T) (-4400 . T) (-4403 . T)) NIL -(-1277 S -3629) +(-1277 S -2286) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1278 -3629) +(-1278 -2286) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4398 . T) (-4404 . T) (-4399 . T) ((-4408 "*") . T) (-4400 . T) (-4401 . T) (-4403 . T)) NIL (-1279 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) ((-4399 |has| |#2| (-6 -4399)) (-4401 . T) (-4400 . T) (-4403 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -714) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4399))) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4399))) (-1280 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) ((-4399 |has| |#2| (-6 -4399)) (-4401 . T) (-4400 . T) (-4403 . T)) @@ -5096,4 +5096,4 @@ NIL NIL NIL NIL -((-3 NIL 2283103 2283108 2283113 2283118) (-2 NIL 2283083 2283088 2283093 2283098) (-1 NIL 2283063 2283068 2283073 2283078) (0 NIL 2283043 2283048 2283053 2283058) (-1287 "ZMOD.spad" 2282852 2282865 2282981 2283038) (-1286 "ZLINDEP.spad" 2281896 2281907 2282842 2282847) (-1285 "ZDSOLVE.spad" 2271745 2271767 2281886 2281891) (-1284 "YSTREAM.spad" 2271238 2271249 2271735 2271740) (-1283 "XRPOLY.spad" 2270458 2270478 2271094 2271163) (-1282 "XPR.spad" 2268249 2268262 2270176 2270275) (-1281 "XPOLY.spad" 2267804 2267815 2268105 2268174) (-1280 "XPOLYC.spad" 2267121 2267137 2267730 2267799) (-1279 "XPBWPOLY.spad" 2265558 2265578 2266901 2266970) (-1278 "XF.spad" 2264019 2264034 2265460 2265553) (-1277 "XF.spad" 2262460 2262477 2263903 2263908) (-1276 "XFALG.spad" 2259484 2259500 2262386 2262455) (-1275 "XEXPPKG.spad" 2258735 2258761 2259474 2259479) (-1274 "XDPOLY.spad" 2258349 2258365 2258591 2258660) (-1273 "XALG.spad" 2258009 2258020 2258305 2258344) (-1272 "WUTSET.spad" 2253848 2253865 2257655 2257682) (-1271 "WP.spad" 2253047 2253091 2253706 2253773) (-1270 "WHILEAST.spad" 2252845 2252854 2253037 2253042) (-1269 "WHEREAST.spad" 2252516 2252525 2252835 2252840) (-1268 "WFFINTBS.spad" 2250079 2250101 2252506 2252511) (-1267 "WEIER.spad" 2248293 2248304 2250069 2250074) (-1266 "VSPACE.spad" 2247966 2247977 2248261 2248288) (-1265 "VSPACE.spad" 2247659 2247672 2247956 2247961) (-1264 "VOID.spad" 2247336 2247345 2247649 2247654) (-1263 "VIEW.spad" 2244958 2244967 2247326 2247331) (-1262 "VIEWDEF.spad" 2240155 2240164 2244948 2244953) (-1261 "VIEW3D.spad" 2223990 2223999 2240145 2240150) (-1260 "VIEW2D.spad" 2211727 2211736 2223980 2223985) (-1259 "VECTOR.spad" 2210402 2210413 2210653 2210680) (-1258 "VECTOR2.spad" 2209029 2209042 2210392 2210397) (-1257 "VECTCAT.spad" 2206929 2206940 2208997 2209024) (-1256 "VECTCAT.spad" 2204637 2204650 2206707 2206712) (-1255 "VARIABLE.spad" 2204417 2204432 2204627 2204632) (-1254 "UTYPE.spad" 2204061 2204070 2204407 2204412) (-1253 "UTSODETL.spad" 2203354 2203378 2204017 2204022) (-1252 "UTSODE.spad" 2201542 2201562 2203344 2203349) (-1251 "UTS.spad" 2196331 2196359 2200009 2200106) (-1250 "UTSCAT.spad" 2193782 2193798 2196229 2196326) (-1249 "UTSCAT.spad" 2190877 2190895 2193326 2193331) (-1248 "UTS2.spad" 2190470 2190505 2190867 2190872) (-1247 "URAGG.spad" 2185102 2185113 2190460 2190465) (-1246 "URAGG.spad" 2179698 2179711 2185058 2185063) (-1245 "UPXSSING.spad" 2177341 2177367 2178779 2178912) (-1244 "UPXS.spad" 2174489 2174517 2175473 2175622) (-1243 "UPXSCONS.spad" 2172246 2172266 2172621 2172770) (-1242 "UPXSCCA.spad" 2170811 2170831 2172092 2172241) (-1241 "UPXSCCA.spad" 2169518 2169540 2170801 2170806) (-1240 "UPXSCAT.spad" 2168099 2168115 2169364 2169513) (-1239 "UPXS2.spad" 2167640 2167693 2168089 2168094) (-1238 "UPSQFREE.spad" 2166052 2166066 2167630 2167635) (-1237 "UPSCAT.spad" 2163645 2163669 2165950 2166047) (-1236 "UPSCAT.spad" 2160944 2160970 2163251 2163256) (-1235 "UPOLYC.spad" 2155922 2155933 2160786 2160939) (-1234 "UPOLYC.spad" 2150792 2150805 2155658 2155663) (-1233 "UPOLYC2.spad" 2150261 2150280 2150782 2150787) (-1232 "UP.spad" 2147418 2147433 2147811 2147964) (-1231 "UPMP.spad" 2146308 2146321 2147408 2147413) (-1230 "UPDIVP.spad" 2145871 2145885 2146298 2146303) (-1229 "UPDECOMP.spad" 2144108 2144122 2145861 2145866) (-1228 "UPCDEN.spad" 2143315 2143331 2144098 2144103) (-1227 "UP2.spad" 2142677 2142698 2143305 2143310) (-1226 "UNISEG.spad" 2142030 2142041 2142596 2142601) (-1225 "UNISEG2.spad" 2141523 2141536 2141986 2141991) (-1224 "UNIFACT.spad" 2140624 2140636 2141513 2141518) (-1223 "ULS.spad" 2131176 2131204 2132269 2132698) (-1222 "ULSCONS.spad" 2123570 2123590 2123942 2124091) (-1221 "ULSCCAT.spad" 2121299 2121319 2123416 2123565) (-1220 "ULSCCAT.spad" 2119136 2119158 2121255 2121260) (-1219 "ULSCAT.spad" 2117352 2117368 2118982 2119131) (-1218 "ULS2.spad" 2116864 2116917 2117342 2117347) (-1217 "UINT8.spad" 2116741 2116750 2116854 2116859) (-1216 "UINT64.spad" 2116617 2116626 2116731 2116736) (-1215 "UINT32.spad" 2116493 2116502 2116607 2116612) (-1214 "UINT16.spad" 2116369 2116378 2116483 2116488) (-1213 "UFD.spad" 2115434 2115443 2116295 2116364) (-1212 "UFD.spad" 2114561 2114572 2115424 2115429) (-1211 "UDVO.spad" 2113408 2113417 2114551 2114556) (-1210 "UDPO.spad" 2110835 2110846 2113364 2113369) (-1209 "TYPE.spad" 2110767 2110776 2110825 2110830) (-1208 "TYPEAST.spad" 2110686 2110695 2110757 2110762) (-1207 "TWOFACT.spad" 2109336 2109351 2110676 2110681) (-1206 "TUPLE.spad" 2108820 2108831 2109235 2109240) (-1205 "TUBETOOL.spad" 2105657 2105666 2108810 2108815) (-1204 "TUBE.spad" 2104298 2104315 2105647 2105652) (-1203 "TS.spad" 2102887 2102903 2103863 2103960) (-1202 "TSETCAT.spad" 2090014 2090031 2102855 2102882) (-1201 "TSETCAT.spad" 2077127 2077146 2089970 2089975) (-1200 "TRMANIP.spad" 2071493 2071510 2076833 2076838) (-1199 "TRIMAT.spad" 2070452 2070477 2071483 2071488) (-1198 "TRIGMNIP.spad" 2068969 2068986 2070442 2070447) (-1197 "TRIGCAT.spad" 2068481 2068490 2068959 2068964) (-1196 "TRIGCAT.spad" 2067991 2068002 2068471 2068476) (-1195 "TREE.spad" 2066562 2066573 2067598 2067625) (-1194 "TRANFUN.spad" 2066393 2066402 2066552 2066557) (-1193 "TRANFUN.spad" 2066222 2066233 2066383 2066388) (-1192 "TOPSP.spad" 2065896 2065905 2066212 2066217) (-1191 "TOOLSIGN.spad" 2065559 2065570 2065886 2065891) (-1190 "TEXTFILE.spad" 2064116 2064125 2065549 2065554) (-1189 "TEX.spad" 2061248 2061257 2064106 2064111) (-1188 "TEX1.spad" 2060804 2060815 2061238 2061243) (-1187 "TEMUTL.spad" 2060359 2060368 2060794 2060799) (-1186 "TBCMPPK.spad" 2058452 2058475 2060349 2060354) (-1185 "TBAGG.spad" 2057488 2057511 2058432 2058447) (-1184 "TBAGG.spad" 2056532 2056557 2057478 2057483) (-1183 "TANEXP.spad" 2055908 2055919 2056522 2056527) (-1182 "TABLE.spad" 2054319 2054342 2054589 2054616) (-1181 "TABLEAU.spad" 2053800 2053811 2054309 2054314) (-1180 "TABLBUMP.spad" 2050583 2050594 2053790 2053795) (-1179 "SYSTEM.spad" 2049811 2049820 2050573 2050578) (-1178 "SYSSOLP.spad" 2047284 2047295 2049801 2049806) (-1177 "SYSNNI.spad" 2046464 2046475 2047274 2047279) (-1176 "SYSINT.spad" 2045868 2045879 2046454 2046459) (-1175 "SYNTAX.spad" 2042062 2042071 2045858 2045863) (-1174 "SYMTAB.spad" 2040118 2040127 2042052 2042057) (-1173 "SYMS.spad" 2036103 2036112 2040108 2040113) (-1172 "SYMPOLY.spad" 2035110 2035121 2035192 2035319) (-1171 "SYMFUNC.spad" 2034585 2034596 2035100 2035105) (-1170 "SYMBOL.spad" 2032012 2032021 2034575 2034580) (-1169 "SWITCH.spad" 2028769 2028778 2032002 2032007) (-1168 "SUTS.spad" 2025668 2025696 2027236 2027333) (-1167 "SUPXS.spad" 2022803 2022831 2023800 2023949) (-1166 "SUP.spad" 2019572 2019583 2020353 2020506) (-1165 "SUPFRACF.spad" 2018677 2018695 2019562 2019567) (-1164 "SUP2.spad" 2018067 2018080 2018667 2018672) (-1163 "SUMRF.spad" 2017033 2017044 2018057 2018062) (-1162 "SUMFS.spad" 2016666 2016683 2017023 2017028) (-1161 "SULS.spad" 2007205 2007233 2008311 2008740) (-1160 "SUCHTAST.spad" 2006974 2006983 2007195 2007200) (-1159 "SUCH.spad" 2006654 2006669 2006964 2006969) (-1158 "SUBSPACE.spad" 1998661 1998676 2006644 2006649) (-1157 "SUBRESP.spad" 1997821 1997835 1998617 1998622) (-1156 "STTF.spad" 1993920 1993936 1997811 1997816) (-1155 "STTFNC.spad" 1990388 1990404 1993910 1993915) (-1154 "STTAYLOR.spad" 1982786 1982797 1990269 1990274) (-1153 "STRTBL.spad" 1981291 1981308 1981440 1981467) (-1152 "STRING.spad" 1980700 1980709 1980714 1980741) (-1151 "STRICAT.spad" 1980488 1980497 1980668 1980695) (-1150 "STREAM.spad" 1977346 1977357 1980013 1980028) (-1149 "STREAM3.spad" 1976891 1976906 1977336 1977341) (-1148 "STREAM2.spad" 1975959 1975972 1976881 1976886) (-1147 "STREAM1.spad" 1975663 1975674 1975949 1975954) (-1146 "STINPROD.spad" 1974569 1974585 1975653 1975658) (-1145 "STEP.spad" 1973770 1973779 1974559 1974564) (-1144 "STBL.spad" 1972296 1972324 1972463 1972478) (-1143 "STAGG.spad" 1971371 1971382 1972286 1972291) (-1142 "STAGG.spad" 1970444 1970457 1971361 1971366) (-1141 "STACK.spad" 1969795 1969806 1970051 1970078) (-1140 "SREGSET.spad" 1967499 1967516 1969441 1969468) (-1139 "SRDCMPK.spad" 1966044 1966064 1967489 1967494) (-1138 "SRAGG.spad" 1961141 1961150 1966012 1966039) (-1137 "SRAGG.spad" 1956258 1956269 1961131 1961136) (-1136 "SQMATRIX.spad" 1953874 1953892 1954790 1954877) (-1135 "SPLTREE.spad" 1948426 1948439 1953310 1953337) (-1134 "SPLNODE.spad" 1945014 1945027 1948416 1948421) (-1133 "SPFCAT.spad" 1943791 1943800 1945004 1945009) (-1132 "SPECOUT.spad" 1942341 1942350 1943781 1943786) (-1131 "SPADXPT.spad" 1934480 1934489 1942331 1942336) (-1130 "spad-parser.spad" 1933945 1933954 1934470 1934475) (-1129 "SPADAST.spad" 1933646 1933655 1933935 1933940) (-1128 "SPACEC.spad" 1917659 1917670 1933636 1933641) (-1127 "SPACE3.spad" 1917435 1917446 1917649 1917654) (-1126 "SORTPAK.spad" 1916980 1916993 1917391 1917396) (-1125 "SOLVETRA.spad" 1914737 1914748 1916970 1916975) (-1124 "SOLVESER.spad" 1913257 1913268 1914727 1914732) (-1123 "SOLVERAD.spad" 1909267 1909278 1913247 1913252) (-1122 "SOLVEFOR.spad" 1907687 1907705 1909257 1909262) (-1121 "SNTSCAT.spad" 1907287 1907304 1907655 1907682) (-1120 "SMTS.spad" 1905547 1905573 1906852 1906949) (-1119 "SMP.spad" 1902986 1903006 1903376 1903503) (-1118 "SMITH.spad" 1901829 1901854 1902976 1902981) (-1117 "SMATCAT.spad" 1899939 1899969 1901773 1901824) (-1116 "SMATCAT.spad" 1897981 1898013 1899817 1899822) (-1115 "SKAGG.spad" 1896942 1896953 1897949 1897976) (-1114 "SINT.spad" 1895768 1895777 1896808 1896937) (-1113 "SIMPAN.spad" 1895496 1895505 1895758 1895763) (-1112 "SIG.spad" 1894824 1894833 1895486 1895491) (-1111 "SIGNRF.spad" 1893932 1893943 1894814 1894819) (-1110 "SIGNEF.spad" 1893201 1893218 1893922 1893927) (-1109 "SIGAST.spad" 1892582 1892591 1893191 1893196) (-1108 "SHP.spad" 1890500 1890515 1892538 1892543) (-1107 "SHDP.spad" 1880211 1880238 1880720 1880851) (-1106 "SGROUP.spad" 1879819 1879828 1880201 1880206) (-1105 "SGROUP.spad" 1879425 1879436 1879809 1879814) (-1104 "SGCF.spad" 1872306 1872315 1879415 1879420) (-1103 "SFRTCAT.spad" 1871234 1871251 1872274 1872301) (-1102 "SFRGCD.spad" 1870297 1870317 1871224 1871229) (-1101 "SFQCMPK.spad" 1864934 1864954 1870287 1870292) (-1100 "SFORT.spad" 1864369 1864383 1864924 1864929) (-1099 "SEXOF.spad" 1864212 1864252 1864359 1864364) (-1098 "SEX.spad" 1864104 1864113 1864202 1864207) (-1097 "SEXCAT.spad" 1861655 1861695 1864094 1864099) (-1096 "SET.spad" 1859955 1859966 1861076 1861115) (-1095 "SETMN.spad" 1858389 1858406 1859945 1859950) (-1094 "SETCAT.spad" 1857874 1857883 1858379 1858384) (-1093 "SETCAT.spad" 1857357 1857368 1857864 1857869) (-1092 "SETAGG.spad" 1853878 1853889 1857337 1857352) (-1091 "SETAGG.spad" 1850407 1850420 1853868 1853873) (-1090 "SEQAST.spad" 1850110 1850119 1850397 1850402) (-1089 "SEGXCAT.spad" 1849232 1849245 1850100 1850105) (-1088 "SEG.spad" 1849045 1849056 1849151 1849156) (-1087 "SEGCAT.spad" 1847952 1847963 1849035 1849040) (-1086 "SEGBIND.spad" 1847024 1847035 1847907 1847912) (-1085 "SEGBIND2.spad" 1846720 1846733 1847014 1847019) (-1084 "SEGAST.spad" 1846434 1846443 1846710 1846715) (-1083 "SEG2.spad" 1845859 1845872 1846390 1846395) (-1082 "SDVAR.spad" 1845135 1845146 1845849 1845854) (-1081 "SDPOL.spad" 1842525 1842536 1842816 1842943) (-1080 "SCPKG.spad" 1840604 1840615 1842515 1842520) (-1079 "SCOPE.spad" 1839757 1839766 1840594 1840599) (-1078 "SCACHE.spad" 1838439 1838450 1839747 1839752) (-1077 "SASTCAT.spad" 1838348 1838357 1838429 1838434) (-1076 "SAOS.spad" 1838220 1838229 1838338 1838343) (-1075 "SAERFFC.spad" 1837933 1837953 1838210 1838215) (-1074 "SAE.spad" 1836108 1836124 1836719 1836854) (-1073 "SAEFACT.spad" 1835809 1835829 1836098 1836103) (-1072 "RURPK.spad" 1833450 1833466 1835799 1835804) (-1071 "RULESET.spad" 1832891 1832915 1833440 1833445) (-1070 "RULE.spad" 1831095 1831119 1832881 1832886) (-1069 "RULECOLD.spad" 1830947 1830960 1831085 1831090) (-1068 "RSTRCAST.spad" 1830664 1830673 1830937 1830942) (-1067 "RSETGCD.spad" 1827042 1827062 1830654 1830659) (-1066 "RSETCAT.spad" 1816826 1816843 1827010 1827037) (-1065 "RSETCAT.spad" 1806630 1806649 1816816 1816821) (-1064 "RSDCMPK.spad" 1805082 1805102 1806620 1806625) (-1063 "RRCC.spad" 1803466 1803496 1805072 1805077) (-1062 "RRCC.spad" 1801848 1801880 1803456 1803461) (-1061 "RPTAST.spad" 1801550 1801559 1801838 1801843) (-1060 "RPOLCAT.spad" 1780910 1780925 1801418 1801545) (-1059 "RPOLCAT.spad" 1759984 1760001 1780494 1780499) (-1058 "ROUTINE.spad" 1755847 1755856 1758631 1758658) (-1057 "ROMAN.spad" 1755175 1755184 1755713 1755842) (-1056 "ROIRC.spad" 1754255 1754287 1755165 1755170) (-1055 "RNS.spad" 1753158 1753167 1754157 1754250) (-1054 "RNS.spad" 1752147 1752158 1753148 1753153) (-1053 "RNG.spad" 1751882 1751891 1752137 1752142) (-1052 "RMODULE.spad" 1751520 1751531 1751872 1751877) (-1051 "RMCAT2.spad" 1750928 1750985 1751510 1751515) (-1050 "RMATRIX.spad" 1749752 1749771 1750095 1750134) (-1049 "RMATCAT.spad" 1745285 1745316 1749708 1749747) (-1048 "RMATCAT.spad" 1740708 1740741 1745133 1745138) (-1047 "RINTERP.spad" 1740596 1740616 1740698 1740703) (-1046 "RING.spad" 1740066 1740075 1740576 1740591) (-1045 "RING.spad" 1739544 1739555 1740056 1740061) (-1044 "RIDIST.spad" 1738928 1738937 1739534 1739539) (-1043 "RGCHAIN.spad" 1737507 1737523 1738413 1738440) (-1042 "RGBCSPC.spad" 1737288 1737300 1737497 1737502) (-1041 "RGBCMDL.spad" 1736818 1736830 1737278 1737283) (-1040 "RF.spad" 1734432 1734443 1736808 1736813) (-1039 "RFFACTOR.spad" 1733894 1733905 1734422 1734427) (-1038 "RFFACT.spad" 1733629 1733641 1733884 1733889) (-1037 "RFDIST.spad" 1732617 1732626 1733619 1733624) (-1036 "RETSOL.spad" 1732034 1732047 1732607 1732612) (-1035 "RETRACT.spad" 1731462 1731473 1732024 1732029) (-1034 "RETRACT.spad" 1730888 1730901 1731452 1731457) (-1033 "RETAST.spad" 1730700 1730709 1730878 1730883) (-1032 "RESULT.spad" 1728760 1728769 1729347 1729374) (-1031 "RESRING.spad" 1728107 1728154 1728698 1728755) (-1030 "RESLATC.spad" 1727431 1727442 1728097 1728102) (-1029 "REPSQ.spad" 1727160 1727171 1727421 1727426) (-1028 "REP.spad" 1724712 1724721 1727150 1727155) (-1027 "REPDB.spad" 1724417 1724428 1724702 1724707) (-1026 "REP2.spad" 1713989 1714000 1724259 1724264) (-1025 "REP1.spad" 1707979 1707990 1713939 1713944) (-1024 "REGSET.spad" 1705776 1705793 1707625 1707652) (-1023 "REF.spad" 1705105 1705116 1705731 1705736) (-1022 "REDORDER.spad" 1704281 1704298 1705095 1705100) (-1021 "RECLOS.spad" 1703064 1703084 1703768 1703861) (-1020 "REALSOLV.spad" 1702196 1702205 1703054 1703059) (-1019 "REAL.spad" 1702068 1702077 1702186 1702191) (-1018 "REAL0Q.spad" 1699350 1699365 1702058 1702063) (-1017 "REAL0.spad" 1696178 1696193 1699340 1699345) (-1016 "RDUCEAST.spad" 1695899 1695908 1696168 1696173) (-1015 "RDIV.spad" 1695550 1695575 1695889 1695894) (-1014 "RDIST.spad" 1695113 1695124 1695540 1695545) (-1013 "RDETRS.spad" 1693909 1693927 1695103 1695108) (-1012 "RDETR.spad" 1692016 1692034 1693899 1693904) (-1011 "RDEEFS.spad" 1691089 1691106 1692006 1692011) (-1010 "RDEEF.spad" 1690085 1690102 1691079 1691084) (-1009 "RCFIELD.spad" 1687271 1687280 1689987 1690080) (-1008 "RCFIELD.spad" 1684543 1684554 1687261 1687266) (-1007 "RCAGG.spad" 1682455 1682466 1684533 1684538) (-1006 "RCAGG.spad" 1680294 1680307 1682374 1682379) (-1005 "RATRET.spad" 1679654 1679665 1680284 1680289) (-1004 "RATFACT.spad" 1679346 1679358 1679644 1679649) (-1003 "RANDSRC.spad" 1678665 1678674 1679336 1679341) (-1002 "RADUTIL.spad" 1678419 1678428 1678655 1678660) (-1001 "RADIX.spad" 1675320 1675334 1676886 1676979) (-1000 "RADFF.spad" 1673733 1673770 1673852 1674008) (-999 "RADCAT.spad" 1673327 1673335 1673723 1673728) (-998 "RADCAT.spad" 1672919 1672929 1673317 1673322) (-997 "QUEUE.spad" 1672262 1672272 1672526 1672553) (-996 "QUAT.spad" 1670844 1670854 1671186 1671251) (-995 "QUATCT2.spad" 1670463 1670481 1670834 1670839) (-994 "QUATCAT.spad" 1668628 1668638 1670393 1670458) (-993 "QUATCAT.spad" 1666544 1666556 1668311 1668316) (-992 "QUAGG.spad" 1665370 1665380 1666512 1666539) (-991 "QQUTAST.spad" 1665139 1665147 1665360 1665365) (-990 "QFORM.spad" 1664602 1664616 1665129 1665134) (-989 "QFCAT.spad" 1663305 1663315 1664504 1664597) (-988 "QFCAT.spad" 1661599 1661611 1662800 1662805) (-987 "QFCAT2.spad" 1661290 1661306 1661589 1661594) (-986 "QEQUAT.spad" 1660847 1660855 1661280 1661285) (-985 "QCMPACK.spad" 1655594 1655613 1660837 1660842) (-984 "QALGSET.spad" 1651669 1651701 1655508 1655513) (-983 "QALGSET2.spad" 1649665 1649683 1651659 1651664) (-982 "PWFFINTB.spad" 1646975 1646996 1649655 1649660) (-981 "PUSHVAR.spad" 1646304 1646323 1646965 1646970) (-980 "PTRANFN.spad" 1642430 1642440 1646294 1646299) (-979 "PTPACK.spad" 1639518 1639528 1642420 1642425) (-978 "PTFUNC2.spad" 1639339 1639353 1639508 1639513) (-977 "PTCAT.spad" 1638588 1638598 1639307 1639334) (-976 "PSQFR.spad" 1637895 1637919 1638578 1638583) (-975 "PSEUDLIN.spad" 1636753 1636763 1637885 1637890) (-974 "PSETPK.spad" 1622186 1622202 1636631 1636636) (-973 "PSETCAT.spad" 1616106 1616129 1622166 1622181) (-972 "PSETCAT.spad" 1610000 1610025 1616062 1616067) (-971 "PSCURVE.spad" 1608983 1608991 1609990 1609995) (-970 "PSCAT.spad" 1607750 1607779 1608881 1608978) (-969 "PSCAT.spad" 1606607 1606638 1607740 1607745) (-968 "PRTITION.spad" 1605552 1605560 1606597 1606602) (-967 "PRTDAST.spad" 1605271 1605279 1605542 1605547) (-966 "PRS.spad" 1594833 1594850 1605227 1605232) (-965 "PRQAGG.spad" 1594264 1594274 1594801 1594828) (-964 "PROPLOG.spad" 1593667 1593675 1594254 1594259) (-963 "PROPFRML.spad" 1592475 1592486 1593657 1593662) (-962 "PROPERTY.spad" 1591969 1591977 1592465 1592470) (-961 "PRODUCT.spad" 1589649 1589661 1589935 1589990) (-960 "PR.spad" 1588035 1588047 1588740 1588867) (-959 "PRINT.spad" 1587787 1587795 1588025 1588030) (-958 "PRIMES.spad" 1586038 1586048 1587777 1587782) (-957 "PRIMELT.spad" 1584019 1584033 1586028 1586033) (-956 "PRIMCAT.spad" 1583642 1583650 1584009 1584014) (-955 "PRIMARR.spad" 1582647 1582657 1582825 1582852) (-954 "PRIMARR2.spad" 1581370 1581382 1582637 1582642) (-953 "PREASSOC.spad" 1580742 1580754 1581360 1581365) (-952 "PPCURVE.spad" 1579879 1579887 1580732 1580737) (-951 "PORTNUM.spad" 1579654 1579662 1579869 1579874) (-950 "POLYROOT.spad" 1578483 1578505 1579610 1579615) (-949 "POLY.spad" 1575780 1575790 1576297 1576424) (-948 "POLYLIFT.spad" 1575041 1575064 1575770 1575775) (-947 "POLYCATQ.spad" 1573143 1573165 1575031 1575036) (-946 "POLYCAT.spad" 1566549 1566570 1573011 1573138) (-945 "POLYCAT.spad" 1559257 1559280 1565721 1565726) (-944 "POLY2UP.spad" 1558705 1558719 1559247 1559252) (-943 "POLY2.spad" 1558300 1558312 1558695 1558700) (-942 "POLUTIL.spad" 1557241 1557270 1558256 1558261) (-941 "POLTOPOL.spad" 1555989 1556004 1557231 1557236) (-940 "POINT.spad" 1554828 1554838 1554915 1554942) (-939 "PNTHEORY.spad" 1551494 1551502 1554818 1554823) (-938 "PMTOOLS.spad" 1550251 1550265 1551484 1551489) (-937 "PMSYM.spad" 1549796 1549806 1550241 1550246) (-936 "PMQFCAT.spad" 1549383 1549397 1549786 1549791) (-935 "PMPRED.spad" 1548852 1548866 1549373 1549378) (-934 "PMPREDFS.spad" 1548296 1548318 1548842 1548847) (-933 "PMPLCAT.spad" 1547366 1547384 1548228 1548233) (-932 "PMLSAGG.spad" 1546947 1546961 1547356 1547361) (-931 "PMKERNEL.spad" 1546514 1546526 1546937 1546942) (-930 "PMINS.spad" 1546090 1546100 1546504 1546509) (-929 "PMFS.spad" 1545663 1545681 1546080 1546085) (-928 "PMDOWN.spad" 1544949 1544963 1545653 1545658) (-927 "PMASS.spad" 1543961 1543969 1544939 1544944) (-926 "PMASSFS.spad" 1542930 1542946 1543951 1543956) (-925 "PLOTTOOL.spad" 1542710 1542718 1542920 1542925) (-924 "PLOT.spad" 1537541 1537549 1542700 1542705) (-923 "PLOT3D.spad" 1533961 1533969 1537531 1537536) (-922 "PLOT1.spad" 1533102 1533112 1533951 1533956) (-921 "PLEQN.spad" 1520318 1520345 1533092 1533097) (-920 "PINTERP.spad" 1519934 1519953 1520308 1520313) (-919 "PINTERPA.spad" 1519716 1519732 1519924 1519929) (-918 "PI.spad" 1519323 1519331 1519690 1519711) (-917 "PID.spad" 1518279 1518287 1519249 1519318) (-916 "PICOERCE.spad" 1517936 1517946 1518269 1518274) (-915 "PGROEB.spad" 1516533 1516547 1517926 1517931) (-914 "PGE.spad" 1507786 1507794 1516523 1516528) (-913 "PGCD.spad" 1506668 1506685 1507776 1507781) (-912 "PFRPAC.spad" 1505811 1505821 1506658 1506663) (-911 "PFR.spad" 1502468 1502478 1505713 1505806) (-910 "PFOTOOLS.spad" 1501726 1501742 1502458 1502463) (-909 "PFOQ.spad" 1501096 1501114 1501716 1501721) (-908 "PFO.spad" 1500515 1500542 1501086 1501091) (-907 "PF.spad" 1500089 1500101 1500320 1500413) (-906 "PFECAT.spad" 1497755 1497763 1500015 1500084) (-905 "PFECAT.spad" 1495449 1495459 1497711 1497716) (-904 "PFBRU.spad" 1493319 1493331 1495439 1495444) (-903 "PFBR.spad" 1490857 1490880 1493309 1493314) (-902 "PERM.spad" 1486538 1486548 1490687 1490702) (-901 "PERMGRP.spad" 1481274 1481284 1486528 1486533) (-900 "PERMCAT.spad" 1479826 1479836 1481254 1481269) (-899 "PERMAN.spad" 1478358 1478372 1479816 1479821) (-898 "PENDTREE.spad" 1477697 1477707 1477987 1477992) (-897 "PDRING.spad" 1476188 1476198 1477677 1477692) (-896 "PDRING.spad" 1474687 1474699 1476178 1476183) (-895 "PDEPROB.spad" 1473702 1473710 1474677 1474682) (-894 "PDEPACK.spad" 1467704 1467712 1473692 1473697) (-893 "PDECOMP.spad" 1467166 1467183 1467694 1467699) (-892 "PDECAT.spad" 1465520 1465528 1467156 1467161) (-891 "PCOMP.spad" 1465371 1465384 1465510 1465515) (-890 "PBWLB.spad" 1463953 1463970 1465361 1465366) (-889 "PATTERN.spad" 1458384 1458394 1463943 1463948) (-888 "PATTERN2.spad" 1458120 1458132 1458374 1458379) (-887 "PATTERN1.spad" 1456422 1456438 1458110 1458115) (-886 "PATRES.spad" 1453969 1453981 1456412 1456417) (-885 "PATRES2.spad" 1453631 1453645 1453959 1453964) (-884 "PATMATCH.spad" 1451788 1451819 1453339 1453344) (-883 "PATMAB.spad" 1451213 1451223 1451778 1451783) (-882 "PATLRES.spad" 1450297 1450311 1451203 1451208) (-881 "PATAB.spad" 1450061 1450071 1450287 1450292) (-880 "PARTPERM.spad" 1447423 1447431 1450051 1450056) (-879 "PARSURF.spad" 1446851 1446879 1447413 1447418) (-878 "PARSU2.spad" 1446646 1446662 1446841 1446846) (-877 "script-parser.spad" 1446166 1446174 1446636 1446641) (-876 "PARSCURV.spad" 1445594 1445622 1446156 1446161) (-875 "PARSC2.spad" 1445383 1445399 1445584 1445589) (-874 "PARPCURV.spad" 1444841 1444869 1445373 1445378) (-873 "PARPC2.spad" 1444630 1444646 1444831 1444836) (-872 "PAN2EXPR.spad" 1444042 1444050 1444620 1444625) (-871 "PALETTE.spad" 1443012 1443020 1444032 1444037) (-870 "PAIR.spad" 1441995 1442008 1442600 1442605) (-869 "PADICRC.spad" 1439325 1439343 1440500 1440593) (-868 "PADICRAT.spad" 1437340 1437352 1437561 1437654) (-867 "PADIC.spad" 1437035 1437047 1437266 1437335) (-866 "PADICCT.spad" 1435576 1435588 1436961 1437030) (-865 "PADEPAC.spad" 1434255 1434274 1435566 1435571) (-864 "PADE.spad" 1432995 1433011 1434245 1434250) (-863 "OWP.spad" 1432235 1432265 1432853 1432920) (-862 "OVERSET.spad" 1431808 1431816 1432225 1432230) (-861 "OVAR.spad" 1431589 1431612 1431798 1431803) (-860 "OUT.spad" 1430673 1430681 1431579 1431584) (-859 "OUTFORM.spad" 1419969 1419977 1430663 1430668) (-858 "OUTBFILE.spad" 1419387 1419395 1419959 1419964) (-857 "OUTBCON.spad" 1418385 1418393 1419377 1419382) (-856 "OUTBCON.spad" 1417381 1417391 1418375 1418380) (-855 "OSI.spad" 1416856 1416864 1417371 1417376) (-854 "OSGROUP.spad" 1416774 1416782 1416846 1416851) (-853 "ORTHPOL.spad" 1415235 1415245 1416691 1416696) (-852 "OREUP.spad" 1414688 1414716 1414915 1414954) (-851 "ORESUP.spad" 1413987 1414011 1414368 1414407) (-850 "OREPCTO.spad" 1411806 1411818 1413907 1413912) (-849 "OREPCAT.spad" 1405863 1405873 1411762 1411801) (-848 "OREPCAT.spad" 1399810 1399822 1405711 1405716) (-847 "ORDSET.spad" 1398976 1398984 1399800 1399805) (-846 "ORDSET.spad" 1398140 1398150 1398966 1398971) (-845 "ORDRING.spad" 1397530 1397538 1398120 1398135) (-844 "ORDRING.spad" 1396928 1396938 1397520 1397525) (-843 "ORDMON.spad" 1396783 1396791 1396918 1396923) (-842 "ORDFUNS.spad" 1395909 1395925 1396773 1396778) (-841 "ORDFIN.spad" 1395729 1395737 1395899 1395904) (-840 "ORDCOMP.spad" 1394194 1394204 1395276 1395305) (-839 "ORDCOMP2.spad" 1393479 1393491 1394184 1394189) (-838 "OPTPROB.spad" 1392117 1392125 1393469 1393474) (-837 "OPTPACK.spad" 1384502 1384510 1392107 1392112) (-836 "OPTCAT.spad" 1382177 1382185 1384492 1384497) (-835 "OPSIG.spad" 1381829 1381837 1382167 1382172) (-834 "OPQUERY.spad" 1381378 1381386 1381819 1381824) (-833 "OP.spad" 1381120 1381130 1381200 1381267) (-832 "OPERCAT.spad" 1380708 1380718 1381110 1381115) (-831 "OPERCAT.spad" 1380294 1380306 1380698 1380703) (-830 "ONECOMP.spad" 1379039 1379049 1379841 1379870) (-829 "ONECOMP2.spad" 1378457 1378469 1379029 1379034) (-828 "OMSERVER.spad" 1377459 1377467 1378447 1378452) (-827 "OMSAGG.spad" 1377247 1377257 1377415 1377454) (-826 "OMPKG.spad" 1375859 1375867 1377237 1377242) (-825 "OM.spad" 1374824 1374832 1375849 1375854) (-824 "OMLO.spad" 1374249 1374261 1374710 1374749) (-823 "OMEXPR.spad" 1374083 1374093 1374239 1374244) (-822 "OMERR.spad" 1373626 1373634 1374073 1374078) (-821 "OMERRK.spad" 1372660 1372668 1373616 1373621) (-820 "OMENC.spad" 1372004 1372012 1372650 1372655) (-819 "OMDEV.spad" 1366293 1366301 1371994 1371999) (-818 "OMCONN.spad" 1365702 1365710 1366283 1366288) (-817 "OINTDOM.spad" 1365465 1365473 1365628 1365697) (-816 "OFMONOID.spad" 1361652 1361662 1365455 1365460) (-815 "ODVAR.spad" 1360913 1360923 1361642 1361647) (-814 "ODR.spad" 1360557 1360583 1360725 1360874) (-813 "ODPOL.spad" 1357903 1357913 1358243 1358370) (-812 "ODP.spad" 1347750 1347770 1348123 1348254) (-811 "ODETOOLS.spad" 1346333 1346352 1347740 1347745) (-810 "ODESYS.spad" 1343983 1344000 1346323 1346328) (-809 "ODERTRIC.spad" 1339924 1339941 1343940 1343945) (-808 "ODERED.spad" 1339311 1339335 1339914 1339919) (-807 "ODERAT.spad" 1336862 1336879 1339301 1339306) (-806 "ODEPRRIC.spad" 1333753 1333775 1336852 1336857) (-805 "ODEPROB.spad" 1333010 1333018 1333743 1333748) (-804 "ODEPRIM.spad" 1330284 1330306 1333000 1333005) (-803 "ODEPAL.spad" 1329660 1329684 1330274 1330279) (-802 "ODEPACK.spad" 1316262 1316270 1329650 1329655) (-801 "ODEINT.spad" 1315693 1315709 1316252 1316257) (-800 "ODEIFTBL.spad" 1313088 1313096 1315683 1315688) (-799 "ODEEF.spad" 1308455 1308471 1313078 1313083) (-798 "ODECONST.spad" 1307974 1307992 1308445 1308450) (-797 "ODECAT.spad" 1306570 1306578 1307964 1307969) (-796 "OCT.spad" 1304708 1304718 1305424 1305463) (-795 "OCTCT2.spad" 1304352 1304373 1304698 1304703) (-794 "OC.spad" 1302126 1302136 1304308 1304347) (-793 "OC.spad" 1299625 1299637 1301809 1301814) (-792 "OCAMON.spad" 1299473 1299481 1299615 1299620) (-791 "OASGP.spad" 1299288 1299296 1299463 1299468) (-790 "OAMONS.spad" 1298808 1298816 1299278 1299283) (-789 "OAMON.spad" 1298669 1298677 1298798 1298803) (-788 "OAGROUP.spad" 1298531 1298539 1298659 1298664) (-787 "NUMTUBE.spad" 1298118 1298134 1298521 1298526) (-786 "NUMQUAD.spad" 1285980 1285988 1298108 1298113) (-785 "NUMODE.spad" 1277116 1277124 1285970 1285975) (-784 "NUMINT.spad" 1274674 1274682 1277106 1277111) (-783 "NUMFMT.spad" 1273514 1273522 1274664 1274669) (-782 "NUMERIC.spad" 1265586 1265596 1273319 1273324) (-781 "NTSCAT.spad" 1264088 1264104 1265554 1265581) (-780 "NTPOLFN.spad" 1263633 1263643 1264005 1264010) (-779 "NSUP.spad" 1256643 1256653 1261183 1261336) (-778 "NSUP2.spad" 1256035 1256047 1256633 1256638) (-777 "NSMP.spad" 1252230 1252249 1252538 1252665) (-776 "NREP.spad" 1250602 1250616 1252220 1252225) (-775 "NPCOEF.spad" 1249848 1249868 1250592 1250597) (-774 "NORMRETR.spad" 1249446 1249485 1249838 1249843) (-773 "NORMPK.spad" 1247348 1247367 1249436 1249441) (-772 "NORMMA.spad" 1247036 1247062 1247338 1247343) (-771 "NONE.spad" 1246777 1246785 1247026 1247031) (-770 "NONE1.spad" 1246453 1246463 1246767 1246772) (-769 "NODE1.spad" 1245922 1245938 1246443 1246448) (-768 "NNI.spad" 1244809 1244817 1245896 1245917) (-767 "NLINSOL.spad" 1243431 1243441 1244799 1244804) (-766 "NIPROB.spad" 1241972 1241980 1243421 1243426) (-765 "NFINTBAS.spad" 1239432 1239449 1241962 1241967) (-764 "NETCLT.spad" 1239406 1239417 1239422 1239427) (-763 "NCODIV.spad" 1237604 1237620 1239396 1239401) (-762 "NCNTFRAC.spad" 1237246 1237260 1237594 1237599) (-761 "NCEP.spad" 1235406 1235420 1237236 1237241) (-760 "NASRING.spad" 1235002 1235010 1235396 1235401) (-759 "NASRING.spad" 1234596 1234606 1234992 1234997) (-758 "NARNG.spad" 1233940 1233948 1234586 1234591) (-757 "NARNG.spad" 1233282 1233292 1233930 1233935) (-756 "NAGSP.spad" 1232355 1232363 1233272 1233277) (-755 "NAGS.spad" 1221880 1221888 1232345 1232350) (-754 "NAGF07.spad" 1220273 1220281 1221870 1221875) (-753 "NAGF04.spad" 1214505 1214513 1220263 1220268) (-752 "NAGF02.spad" 1208314 1208322 1214495 1214500) (-751 "NAGF01.spad" 1203917 1203925 1208304 1208309) (-750 "NAGE04.spad" 1197377 1197385 1203907 1203912) (-749 "NAGE02.spad" 1187719 1187727 1197367 1197372) (-748 "NAGE01.spad" 1183603 1183611 1187709 1187714) (-747 "NAGD03.spad" 1181523 1181531 1183593 1183598) (-746 "NAGD02.spad" 1174054 1174062 1181513 1181518) (-745 "NAGD01.spad" 1168167 1168175 1174044 1174049) (-744 "NAGC06.spad" 1163954 1163962 1168157 1168162) (-743 "NAGC05.spad" 1162423 1162431 1163944 1163949) (-742 "NAGC02.spad" 1161678 1161686 1162413 1162418) (-741 "NAALG.spad" 1161213 1161223 1161646 1161673) (-740 "NAALG.spad" 1160768 1160780 1161203 1161208) (-739 "MULTSQFR.spad" 1157726 1157743 1160758 1160763) (-738 "MULTFACT.spad" 1157109 1157126 1157716 1157721) (-737 "MTSCAT.spad" 1155143 1155164 1157007 1157104) (-736 "MTHING.spad" 1154800 1154810 1155133 1155138) (-735 "MSYSCMD.spad" 1154234 1154242 1154790 1154795) (-734 "MSET.spad" 1152176 1152186 1153940 1153979) (-733 "MSETAGG.spad" 1152021 1152031 1152144 1152171) (-732 "MRING.spad" 1148992 1149004 1151729 1151796) (-731 "MRF2.spad" 1148560 1148574 1148982 1148987) (-730 "MRATFAC.spad" 1148106 1148123 1148550 1148555) (-729 "MPRFF.spad" 1146136 1146155 1148096 1148101) (-728 "MPOLY.spad" 1143571 1143586 1143930 1144057) (-727 "MPCPF.spad" 1142835 1142854 1143561 1143566) (-726 "MPC3.spad" 1142650 1142690 1142825 1142830) (-725 "MPC2.spad" 1142292 1142325 1142640 1142645) (-724 "MONOTOOL.spad" 1140627 1140644 1142282 1142287) (-723 "MONOID.spad" 1139946 1139954 1140617 1140622) (-722 "MONOID.spad" 1139263 1139273 1139936 1139941) (-721 "MONOGEN.spad" 1138009 1138022 1139123 1139258) (-720 "MONOGEN.spad" 1136777 1136792 1137893 1137898) (-719 "MONADWU.spad" 1134791 1134799 1136767 1136772) (-718 "MONADWU.spad" 1132803 1132813 1134781 1134786) (-717 "MONAD.spad" 1131947 1131955 1132793 1132798) (-716 "MONAD.spad" 1131089 1131099 1131937 1131942) (-715 "MOEBIUS.spad" 1129775 1129789 1131069 1131084) (-714 "MODULE.spad" 1129645 1129655 1129743 1129770) (-713 "MODULE.spad" 1129535 1129547 1129635 1129640) (-712 "MODRING.spad" 1128866 1128905 1129515 1129530) (-711 "MODOP.spad" 1127525 1127537 1128688 1128755) (-710 "MODMONOM.spad" 1127254 1127272 1127515 1127520) (-709 "MODMON.spad" 1124013 1124029 1124732 1124885) (-708 "MODFIELD.spad" 1123371 1123410 1123915 1124008) (-707 "MMLFORM.spad" 1122231 1122239 1123361 1123366) (-706 "MMAP.spad" 1121971 1122005 1122221 1122226) (-705 "MLO.spad" 1120398 1120408 1121927 1121966) (-704 "MLIFT.spad" 1118970 1118987 1120388 1120393) (-703 "MKUCFUNC.spad" 1118503 1118521 1118960 1118965) (-702 "MKRECORD.spad" 1118105 1118118 1118493 1118498) (-701 "MKFUNC.spad" 1117486 1117496 1118095 1118100) (-700 "MKFLCFN.spad" 1116442 1116452 1117476 1117481) (-699 "MKCHSET.spad" 1116307 1116317 1116432 1116437) (-698 "MKBCFUNC.spad" 1115792 1115810 1116297 1116302) (-697 "MINT.spad" 1115231 1115239 1115694 1115787) (-696 "MHROWRED.spad" 1113732 1113742 1115221 1115226) (-695 "MFLOAT.spad" 1112248 1112256 1113622 1113727) (-694 "MFINFACT.spad" 1111648 1111670 1112238 1112243) (-693 "MESH.spad" 1109380 1109388 1111638 1111643) (-692 "MDDFACT.spad" 1107573 1107583 1109370 1109375) (-691 "MDAGG.spad" 1106860 1106870 1107553 1107568) (-690 "MCMPLX.spad" 1102834 1102842 1103448 1103649) (-689 "MCDEN.spad" 1102042 1102054 1102824 1102829) (-688 "MCALCFN.spad" 1099144 1099170 1102032 1102037) (-687 "MAYBE.spad" 1098428 1098439 1099134 1099139) (-686 "MATSTOR.spad" 1095704 1095714 1098418 1098423) (-685 "MATRIX.spad" 1094408 1094418 1094892 1094919) (-684 "MATLIN.spad" 1091734 1091758 1094292 1094297) (-683 "MATCAT.spad" 1083319 1083341 1091702 1091729) (-682 "MATCAT.spad" 1074776 1074800 1083161 1083166) (-681 "MATCAT2.spad" 1074044 1074092 1074766 1074771) (-680 "MAPPKG3.spad" 1072943 1072957 1074034 1074039) (-679 "MAPPKG2.spad" 1072277 1072289 1072933 1072938) (-678 "MAPPKG1.spad" 1071095 1071105 1072267 1072272) (-677 "MAPPAST.spad" 1070408 1070416 1071085 1071090) (-676 "MAPHACK3.spad" 1070216 1070230 1070398 1070403) (-675 "MAPHACK2.spad" 1069981 1069993 1070206 1070211) (-674 "MAPHACK1.spad" 1069611 1069621 1069971 1069976) (-673 "MAGMA.spad" 1067401 1067418 1069601 1069606) (-672 "MACROAST.spad" 1066980 1066988 1067391 1067396) (-671 "M3D.spad" 1064676 1064686 1066358 1066363) (-670 "LZSTAGG.spad" 1061904 1061914 1064666 1064671) (-669 "LZSTAGG.spad" 1059130 1059142 1061894 1061899) (-668 "LWORD.spad" 1055835 1055852 1059120 1059125) (-667 "LSTAST.spad" 1055619 1055627 1055825 1055830) (-666 "LSQM.spad" 1053845 1053859 1054243 1054294) (-665 "LSPP.spad" 1053378 1053395 1053835 1053840) (-664 "LSMP.spad" 1052218 1052246 1053368 1053373) (-663 "LSMP1.spad" 1050022 1050036 1052208 1052213) (-662 "LSAGG.spad" 1049691 1049701 1049990 1050017) (-661 "LSAGG.spad" 1049380 1049392 1049681 1049686) (-660 "LPOLY.spad" 1048334 1048353 1049236 1049305) (-659 "LPEFRAC.spad" 1047591 1047601 1048324 1048329) (-658 "LO.spad" 1046992 1047006 1047525 1047552) (-657 "LOGIC.spad" 1046594 1046602 1046982 1046987) (-656 "LOGIC.spad" 1046194 1046204 1046584 1046589) (-655 "LODOOPS.spad" 1045112 1045124 1046184 1046189) (-654 "LODO.spad" 1044496 1044512 1044792 1044831) (-653 "LODOF.spad" 1043540 1043557 1044453 1044458) (-652 "LODOCAT.spad" 1042198 1042208 1043496 1043535) (-651 "LODOCAT.spad" 1040854 1040866 1042154 1042159) (-650 "LODO2.spad" 1040127 1040139 1040534 1040573) (-649 "LODO1.spad" 1039527 1039537 1039807 1039846) (-648 "LODEEF.spad" 1038299 1038317 1039517 1039522) (-647 "LNAGG.spad" 1034101 1034111 1038289 1038294) (-646 "LNAGG.spad" 1029867 1029879 1034057 1034062) (-645 "LMOPS.spad" 1026603 1026620 1029857 1029862) (-644 "LMODULE.spad" 1026245 1026255 1026593 1026598) (-643 "LMDICT.spad" 1025528 1025538 1025796 1025823) (-642 "LITERAL.spad" 1025434 1025445 1025518 1025523) (-641 "LIST.spad" 1023152 1023162 1024581 1024608) (-640 "LIST3.spad" 1022443 1022457 1023142 1023147) (-639 "LIST2.spad" 1021083 1021095 1022433 1022438) (-638 "LIST2MAP.spad" 1017960 1017972 1021073 1021078) (-637 "LINEXP.spad" 1017392 1017402 1017940 1017955) (-636 "LINDEP.spad" 1016169 1016181 1017304 1017309) (-635 "LIMITRF.spad" 1014083 1014093 1016159 1016164) (-634 "LIMITPS.spad" 1012966 1012979 1014073 1014078) (-633 "LIE.spad" 1010980 1010992 1012256 1012401) (-632 "LIECAT.spad" 1010456 1010466 1010906 1010975) (-631 "LIECAT.spad" 1009960 1009972 1010412 1010417) (-630 "LIB.spad" 1008008 1008016 1008619 1008634) (-629 "LGROBP.spad" 1005361 1005380 1007998 1008003) (-628 "LF.spad" 1004280 1004296 1005351 1005356) (-627 "LFCAT.spad" 1003299 1003307 1004270 1004275) (-626 "LEXTRIPK.spad" 998802 998817 1003289 1003294) (-625 "LEXP.spad" 996805 996832 998782 998797) (-624 "LETAST.spad" 996504 996512 996795 996800) (-623 "LEADCDET.spad" 994888 994905 996494 996499) (-622 "LAZM3PK.spad" 993592 993614 994878 994883) (-621 "LAUPOL.spad" 992281 992294 993185 993254) (-620 "LAPLACE.spad" 991854 991870 992271 992276) (-619 "LA.spad" 991294 991308 991776 991815) (-618 "LALG.spad" 991070 991080 991274 991289) (-617 "LALG.spad" 990854 990866 991060 991065) (-616 "KVTFROM.spad" 990589 990599 990844 990849) (-615 "KTVLOGIC.spad" 990012 990020 990579 990584) (-614 "KRCFROM.spad" 989750 989760 990002 990007) (-613 "KOVACIC.spad" 988463 988480 989740 989745) (-612 "KONVERT.spad" 988185 988195 988453 988458) (-611 "KOERCE.spad" 987922 987932 988175 988180) (-610 "KERNEL.spad" 986457 986467 987706 987711) (-609 "KERNEL2.spad" 986160 986172 986447 986452) (-608 "KDAGG.spad" 985263 985285 986140 986155) (-607 "KDAGG.spad" 984374 984398 985253 985258) (-606 "KAFILE.spad" 983337 983353 983572 983599) (-605 "JORDAN.spad" 981164 981176 982627 982772) (-604 "JOINAST.spad" 980858 980866 981154 981159) (-603 "JAVACODE.spad" 980724 980732 980848 980853) (-602 "IXAGG.spad" 978847 978871 980714 980719) (-601 "IXAGG.spad" 976825 976851 978694 978699) (-600 "IVECTOR.spad" 975596 975611 975751 975778) (-599 "ITUPLE.spad" 974741 974751 975586 975591) (-598 "ITRIGMNP.spad" 973552 973571 974731 974736) (-597 "ITFUN3.spad" 973046 973060 973542 973547) (-596 "ITFUN2.spad" 972776 972788 973036 973041) (-595 "ITAYLOR.spad" 970568 970583 972612 972737) (-594 "ISUPS.spad" 962979 962994 969542 969639) (-593 "ISUMP.spad" 962476 962492 962969 962974) (-592 "ISTRING.spad" 961479 961492 961645 961672) (-591 "ISAST.spad" 961198 961206 961469 961474) (-590 "IRURPK.spad" 959911 959930 961188 961193) (-589 "IRSN.spad" 957871 957879 959901 959906) (-588 "IRRF2F.spad" 956346 956356 957827 957832) (-587 "IRREDFFX.spad" 955947 955958 956336 956341) (-586 "IROOT.spad" 954278 954288 955937 955942) (-585 "IR.spad" 952067 952081 954133 954160) (-584 "IR2.spad" 951087 951103 952057 952062) (-583 "IR2F.spad" 950287 950303 951077 951082) (-582 "IPRNTPK.spad" 950047 950055 950277 950282) (-581 "IPF.spad" 949612 949624 949852 949945) (-580 "IPADIC.spad" 949373 949399 949538 949607) (-579 "IP4ADDR.spad" 948930 948938 949363 949368) (-578 "IOMODE.spad" 948551 948559 948920 948925) (-577 "IOBFILE.spad" 947912 947920 948541 948546) (-576 "IOBCON.spad" 947777 947785 947902 947907) (-575 "INVLAPLA.spad" 947422 947438 947767 947772) (-574 "INTTR.spad" 940668 940685 947412 947417) (-573 "INTTOOLS.spad" 938379 938395 940242 940247) (-572 "INTSLPE.spad" 937685 937693 938369 938374) (-571 "INTRVL.spad" 937251 937261 937599 937680) (-570 "INTRF.spad" 935615 935629 937241 937246) (-569 "INTRET.spad" 935047 935057 935605 935610) (-568 "INTRAT.spad" 933722 933739 935037 935042) (-567 "INTPM.spad" 932085 932101 933365 933370) (-566 "INTPAF.spad" 929853 929871 932017 932022) (-565 "INTPACK.spad" 920163 920171 929843 929848) (-564 "INT.spad" 919524 919532 920017 920158) (-563 "INTHERTR.spad" 918790 918807 919514 919519) (-562 "INTHERAL.spad" 918456 918480 918780 918785) (-561 "INTHEORY.spad" 914869 914877 918446 918451) (-560 "INTG0.spad" 908332 908350 914801 914806) (-559 "INTFTBL.spad" 902361 902369 908322 908327) (-558 "INTFACT.spad" 901420 901430 902351 902356) (-557 "INTEF.spad" 899735 899751 901410 901415) (-556 "INTDOM.spad" 898350 898358 899661 899730) (-555 "INTDOM.spad" 897027 897037 898340 898345) (-554 "INTCAT.spad" 895280 895290 896941 897022) (-553 "INTBIT.spad" 894783 894791 895270 895275) (-552 "INTALG.spad" 893965 893992 894773 894778) (-551 "INTAF.spad" 893457 893473 893955 893960) (-550 "INTABL.spad" 891975 892006 892138 892165) (-549 "INT8.spad" 891855 891863 891965 891970) (-548 "INT64.spad" 891734 891742 891845 891850) (-547 "INT32.spad" 891613 891621 891724 891729) (-546 "INT16.spad" 891492 891500 891603 891608) (-545 "INS.spad" 888959 888967 891394 891487) (-544 "INS.spad" 886512 886522 888949 888954) (-543 "INPSIGN.spad" 885946 885959 886502 886507) (-542 "INPRODPF.spad" 885012 885031 885936 885941) (-541 "INPRODFF.spad" 884070 884094 885002 885007) (-540 "INNMFACT.spad" 883041 883058 884060 884065) (-539 "INMODGCD.spad" 882525 882555 883031 883036) (-538 "INFSP.spad" 880810 880832 882515 882520) (-537 "INFPROD0.spad" 879860 879879 880800 880805) (-536 "INFORM.spad" 877021 877029 879850 879855) (-535 "INFORM1.spad" 876646 876656 877011 877016) (-534 "INFINITY.spad" 876198 876206 876636 876641) (-533 "INETCLTS.spad" 876175 876183 876188 876193) (-532 "INEP.spad" 874707 874729 876165 876170) (-531 "INDE.spad" 874436 874453 874697 874702) (-530 "INCRMAPS.spad" 873857 873867 874426 874431) (-529 "INBFILE.spad" 872929 872937 873847 873852) (-528 "INBFF.spad" 868699 868710 872919 872924) (-527 "INBCON.spad" 866987 866995 868689 868694) (-526 "INBCON.spad" 865273 865283 866977 866982) (-525 "INAST.spad" 864934 864942 865263 865268) (-524 "IMPTAST.spad" 864642 864650 864924 864929) (-523 "IMATRIX.spad" 863587 863613 864099 864126) (-522 "IMATQF.spad" 862681 862725 863543 863548) (-521 "IMATLIN.spad" 861286 861310 862637 862642) (-520 "ILIST.spad" 859942 859957 860469 860496) (-519 "IIARRAY2.spad" 859330 859368 859549 859576) (-518 "IFF.spad" 858740 858756 859011 859104) (-517 "IFAST.spad" 858354 858362 858730 858735) (-516 "IFARRAY.spad" 855841 855856 857537 857564) (-515 "IFAMON.spad" 855703 855720 855797 855802) (-514 "IEVALAB.spad" 855092 855104 855693 855698) (-513 "IEVALAB.spad" 854479 854493 855082 855087) (-512 "IDPO.spad" 854277 854289 854469 854474) (-511 "IDPOAMS.spad" 854033 854045 854267 854272) (-510 "IDPOAM.spad" 853753 853765 854023 854028) (-509 "IDPC.spad" 852687 852699 853743 853748) (-508 "IDPAM.spad" 852432 852444 852677 852682) (-507 "IDPAG.spad" 852179 852191 852422 852427) (-506 "IDENT.spad" 851829 851837 852169 852174) (-505 "IDECOMP.spad" 849066 849084 851819 851824) (-504 "IDEAL.spad" 843989 844028 849001 849006) (-503 "ICDEN.spad" 843140 843156 843979 843984) (-502 "ICARD.spad" 842329 842337 843130 843135) (-501 "IBPTOOLS.spad" 840922 840939 842319 842324) (-500 "IBITS.spad" 840121 840134 840558 840585) (-499 "IBATOOL.spad" 836996 837015 840111 840116) (-498 "IBACHIN.spad" 835483 835498 836986 836991) (-497 "IARRAY2.spad" 834471 834497 835090 835117) (-496 "IARRAY1.spad" 833516 833531 833654 833681) (-495 "IAN.spad" 831729 831737 833332 833425) (-494 "IALGFACT.spad" 831330 831363 831719 831724) (-493 "HYPCAT.spad" 830754 830762 831320 831325) (-492 "HYPCAT.spad" 830176 830186 830744 830749) (-491 "HOSTNAME.spad" 829984 829992 830166 830171) (-490 "HOMOTOP.spad" 829727 829737 829974 829979) (-489 "HOAGG.spad" 826995 827005 829717 829722) (-488 "HOAGG.spad" 824038 824050 826762 826767) (-487 "HEXADEC.spad" 822140 822148 822505 822598) (-486 "HEUGCD.spad" 821155 821166 822130 822135) (-485 "HELLFDIV.spad" 820745 820769 821145 821150) (-484 "HEAP.spad" 820137 820147 820352 820379) (-483 "HEADAST.spad" 819668 819676 820127 820132) (-482 "HDP.spad" 809511 809527 809888 810019) (-481 "HDMP.spad" 806687 806702 807305 807432) (-480 "HB.spad" 804924 804932 806677 806682) (-479 "HASHTBL.spad" 803394 803425 803605 803632) (-478 "HASAST.spad" 803110 803118 803384 803389) (-477 "HACKPI.spad" 802593 802601 803012 803105) (-476 "GTSET.spad" 801532 801548 802239 802266) (-475 "GSTBL.spad" 800051 800086 800225 800240) (-474 "GSERIES.spad" 797218 797245 798183 798332) (-473 "GROUP.spad" 796487 796495 797198 797213) (-472 "GROUP.spad" 795764 795774 796477 796482) (-471 "GROEBSOL.spad" 794252 794273 795754 795759) (-470 "GRMOD.spad" 792823 792835 794242 794247) (-469 "GRMOD.spad" 791392 791406 792813 792818) (-468 "GRIMAGE.spad" 783997 784005 791382 791387) (-467 "GRDEF.spad" 782376 782384 783987 783992) (-466 "GRAY.spad" 780835 780843 782366 782371) (-465 "GRALG.spad" 779882 779894 780825 780830) (-464 "GRALG.spad" 778927 778941 779872 779877) (-463 "GPOLSET.spad" 778381 778404 778609 778636) (-462 "GOSPER.spad" 777646 777664 778371 778376) (-461 "GMODPOL.spad" 776784 776811 777614 777641) (-460 "GHENSEL.spad" 775853 775867 776774 776779) (-459 "GENUPS.spad" 771954 771967 775843 775848) (-458 "GENUFACT.spad" 771531 771541 771944 771949) (-457 "GENPGCD.spad" 771115 771132 771521 771526) (-456 "GENMFACT.spad" 770567 770586 771105 771110) (-455 "GENEEZ.spad" 768506 768519 770557 770562) (-454 "GDMP.spad" 765524 765541 766300 766427) (-453 "GCNAALG.spad" 759419 759446 765318 765385) (-452 "GCDDOM.spad" 758591 758599 759345 759414) (-451 "GCDDOM.spad" 757825 757835 758581 758586) (-450 "GB.spad" 755343 755381 757781 757786) (-449 "GBINTERN.spad" 751363 751401 755333 755338) (-448 "GBF.spad" 747120 747158 751353 751358) (-447 "GBEUCLID.spad" 744994 745032 747110 747115) (-446 "GAUSSFAC.spad" 744291 744299 744984 744989) (-445 "GALUTIL.spad" 742613 742623 744247 744252) (-444 "GALPOLYU.spad" 741059 741072 742603 742608) (-443 "GALFACTU.spad" 739224 739243 741049 741054) (-442 "GALFACT.spad" 729357 729368 739214 739219) (-441 "FVFUN.spad" 726380 726388 729347 729352) (-440 "FVC.spad" 725432 725440 726370 726375) (-439 "FUNDESC.spad" 725110 725118 725422 725427) (-438 "FUNCTION.spad" 724959 724971 725100 725105) (-437 "FT.spad" 723252 723260 724949 724954) (-436 "FTEM.spad" 722415 722423 723242 723247) (-435 "FSUPFACT.spad" 721315 721334 722351 722356) (-434 "FST.spad" 719401 719409 721305 721310) (-433 "FSRED.spad" 718879 718895 719391 719396) (-432 "FSPRMELT.spad" 717703 717719 718836 718841) (-431 "FSPECF.spad" 715780 715796 717693 717698) (-430 "FS.spad" 709842 709852 715555 715775) (-429 "FS.spad" 703682 703694 709397 709402) (-428 "FSINT.spad" 703340 703356 703672 703677) (-427 "FSERIES.spad" 702527 702539 703160 703259) (-426 "FSCINT.spad" 701840 701856 702517 702522) (-425 "FSAGG.spad" 700957 700967 701796 701835) (-424 "FSAGG.spad" 700036 700048 700877 700882) (-423 "FSAGG2.spad" 698735 698751 700026 700031) (-422 "FS2UPS.spad" 693218 693252 698725 698730) (-421 "FS2.spad" 692863 692879 693208 693213) (-420 "FS2EXPXP.spad" 691986 692009 692853 692858) (-419 "FRUTIL.spad" 690928 690938 691976 691981) (-418 "FR.spad" 684622 684632 689952 690021) (-417 "FRNAALG.spad" 679709 679719 684564 684617) (-416 "FRNAALG.spad" 674808 674820 679665 679670) (-415 "FRNAAF2.spad" 674262 674280 674798 674803) (-414 "FRMOD.spad" 673656 673686 674193 674198) (-413 "FRIDEAL.spad" 672851 672872 673636 673651) (-412 "FRIDEAL2.spad" 672453 672485 672841 672846) (-411 "FRETRCT.spad" 671964 671974 672443 672448) (-410 "FRETRCT.spad" 671341 671353 671822 671827) (-409 "FRAMALG.spad" 669669 669682 671297 671336) (-408 "FRAMALG.spad" 668029 668044 669659 669664) (-407 "FRAC.spad" 665128 665138 665531 665704) (-406 "FRAC2.spad" 664731 664743 665118 665123) (-405 "FR2.spad" 664065 664077 664721 664726) (-404 "FPS.spad" 660874 660882 663955 664060) (-403 "FPS.spad" 657711 657721 660794 660799) (-402 "FPC.spad" 656753 656761 657613 657706) (-401 "FPC.spad" 655881 655891 656743 656748) (-400 "FPATMAB.spad" 655643 655653 655871 655876) (-399 "FPARFRAC.spad" 654116 654133 655633 655638) (-398 "FORTRAN.spad" 652622 652665 654106 654111) (-397 "FORT.spad" 651551 651559 652612 652617) (-396 "FORTFN.spad" 648721 648729 651541 651546) (-395 "FORTCAT.spad" 648405 648413 648711 648716) (-394 "FORMULA.spad" 645869 645877 648395 648400) (-393 "FORMULA1.spad" 645348 645358 645859 645864) (-392 "FORDER.spad" 645039 645063 645338 645343) (-391 "FOP.spad" 644240 644248 645029 645034) (-390 "FNLA.spad" 643664 643686 644208 644235) (-389 "FNCAT.spad" 642251 642259 643654 643659) (-388 "FNAME.spad" 642143 642151 642241 642246) (-387 "FMTC.spad" 641941 641949 642069 642138) (-386 "FMONOID.spad" 638996 639006 641897 641902) (-385 "FM.spad" 638691 638703 638930 638957) (-384 "FMFUN.spad" 635721 635729 638681 638686) (-383 "FMC.spad" 634773 634781 635711 635716) (-382 "FMCAT.spad" 632427 632445 634741 634768) (-381 "FM1.spad" 631784 631796 632361 632388) (-380 "FLOATRP.spad" 629505 629519 631774 631779) (-379 "FLOAT.spad" 622793 622801 629371 629500) (-378 "FLOATCP.spad" 620210 620224 622783 622788) (-377 "FLINEXP.spad" 619922 619932 620190 620205) (-376 "FLINEXP.spad" 619588 619600 619858 619863) (-375 "FLASORT.spad" 618908 618920 619578 619583) (-374 "FLALG.spad" 616554 616573 618834 618903) (-373 "FLAGG.spad" 613572 613582 616534 616549) (-372 "FLAGG.spad" 610491 610503 613455 613460) (-371 "FLAGG2.spad" 609172 609188 610481 610486) (-370 "FINRALG.spad" 607201 607214 609128 609167) (-369 "FINRALG.spad" 605156 605171 607085 607090) (-368 "FINITE.spad" 604308 604316 605146 605151) (-367 "FINAALG.spad" 593289 593299 604250 604303) (-366 "FINAALG.spad" 582282 582294 593245 593250) (-365 "FILE.spad" 581865 581875 582272 582277) (-364 "FILECAT.spad" 580383 580400 581855 581860) (-363 "FIELD.spad" 579789 579797 580285 580378) (-362 "FIELD.spad" 579281 579291 579779 579784) (-361 "FGROUP.spad" 577890 577900 579261 579276) (-360 "FGLMICPK.spad" 576677 576692 577880 577885) (-359 "FFX.spad" 576052 576067 576393 576486) (-358 "FFSLPE.spad" 575541 575562 576042 576047) (-357 "FFPOLY.spad" 566793 566804 575531 575536) (-356 "FFPOLY2.spad" 565853 565870 566783 566788) (-355 "FFP.spad" 565250 565270 565569 565662) (-354 "FF.spad" 564698 564714 564931 565024) (-353 "FFNBX.spad" 563210 563230 564414 564507) (-352 "FFNBP.spad" 561723 561740 562926 563019) (-351 "FFNB.spad" 560188 560209 561404 561497) (-350 "FFINTBAS.spad" 557602 557621 560178 560183) (-349 "FFIELDC.spad" 555177 555185 557504 557597) (-348 "FFIELDC.spad" 552838 552848 555167 555172) (-347 "FFHOM.spad" 551586 551603 552828 552833) (-346 "FFF.spad" 549021 549032 551576 551581) (-345 "FFCGX.spad" 547868 547888 548737 548830) (-344 "FFCGP.spad" 546757 546777 547584 547677) (-343 "FFCG.spad" 545549 545570 546438 546531) (-342 "FFCAT.spad" 538576 538598 545388 545544) (-341 "FFCAT.spad" 531682 531706 538496 538501) (-340 "FFCAT2.spad" 531427 531467 531672 531677) (-339 "FEXPR.spad" 523136 523182 531183 531222) (-338 "FEVALAB.spad" 522842 522852 523126 523131) (-337 "FEVALAB.spad" 522333 522345 522619 522624) (-336 "FDIV.spad" 521775 521799 522323 522328) (-335 "FDIVCAT.spad" 519817 519841 521765 521770) (-334 "FDIVCAT.spad" 517857 517883 519807 519812) (-333 "FDIV2.spad" 517511 517551 517847 517852) (-332 "FCPAK1.spad" 516064 516072 517501 517506) (-331 "FCOMP.spad" 515443 515453 516054 516059) (-330 "FC.spad" 505358 505366 515433 515438) (-329 "FAXF.spad" 498293 498307 505260 505353) (-328 "FAXF.spad" 491280 491296 498249 498254) (-327 "FARRAY.spad" 489426 489436 490463 490490) (-326 "FAMR.spad" 487546 487558 489324 489421) (-325 "FAMR.spad" 485650 485664 487430 487435) (-324 "FAMONOID.spad" 485300 485310 485604 485609) (-323 "FAMONC.spad" 483522 483534 485290 485295) (-322 "FAGROUP.spad" 483128 483138 483418 483445) (-321 "FACUTIL.spad" 481324 481341 483118 483123) (-320 "FACTFUNC.spad" 480500 480510 481314 481319) (-319 "EXPUPXS.spad" 477333 477356 478632 478781) (-318 "EXPRTUBE.spad" 474561 474569 477323 477328) (-317 "EXPRODE.spad" 471433 471449 474551 474556) (-316 "EXPR.spad" 466708 466718 467422 467829) (-315 "EXPR2UPS.spad" 462800 462813 466698 466703) (-314 "EXPR2.spad" 462503 462515 462790 462795) (-313 "EXPEXPAN.spad" 459441 459466 460075 460168) (-312 "EXIT.spad" 459112 459120 459431 459436) (-311 "EXITAST.spad" 458848 458856 459102 459107) (-310 "EVALCYC.spad" 458306 458320 458838 458843) (-309 "EVALAB.spad" 457870 457880 458296 458301) (-308 "EVALAB.spad" 457432 457444 457860 457865) (-307 "EUCDOM.spad" 454974 454982 457358 457427) (-306 "EUCDOM.spad" 452578 452588 454964 454969) (-305 "ESTOOLS.spad" 444418 444426 452568 452573) (-304 "ESTOOLS2.spad" 444019 444033 444408 444413) (-303 "ESTOOLS1.spad" 443704 443715 444009 444014) (-302 "ES.spad" 436251 436259 443694 443699) (-301 "ES.spad" 428704 428714 436149 436154) (-300 "ESCONT.spad" 425477 425485 428694 428699) (-299 "ESCONT1.spad" 425226 425238 425467 425472) (-298 "ES2.spad" 424721 424737 425216 425221) (-297 "ES1.spad" 424287 424303 424711 424716) (-296 "ERROR.spad" 421608 421616 424277 424282) (-295 "EQTBL.spad" 420080 420102 420289 420316) (-294 "EQ.spad" 414954 414964 417753 417865) (-293 "EQ2.spad" 414670 414682 414944 414949) (-292 "EP.spad" 410984 410994 414660 414665) (-291 "ENV.spad" 409660 409668 410974 410979) (-290 "ENTIRER.spad" 409328 409336 409604 409655) (-289 "EMR.spad" 408529 408570 409254 409323) (-288 "ELTAGG.spad" 406769 406788 408519 408524) (-287 "ELTAGG.spad" 404973 404994 406725 406730) (-286 "ELTAB.spad" 404420 404438 404963 404968) (-285 "ELFUTS.spad" 403799 403818 404410 404415) (-284 "ELEMFUN.spad" 403488 403496 403789 403794) (-283 "ELEMFUN.spad" 403175 403185 403478 403483) (-282 "ELAGG.spad" 401118 401128 403155 403170) (-281 "ELAGG.spad" 398998 399010 401037 401042) (-280 "ELABEXPR.spad" 397921 397929 398988 398993) (-279 "EFUPXS.spad" 394697 394727 397877 397882) (-278 "EFULS.spad" 391533 391556 394653 394658) (-277 "EFSTRUC.spad" 389488 389504 391523 391528) (-276 "EF.spad" 384254 384270 389478 389483) (-275 "EAB.spad" 382530 382538 384244 384249) (-274 "E04UCFA.spad" 382066 382074 382520 382525) (-273 "E04NAFA.spad" 381643 381651 382056 382061) (-272 "E04MBFA.spad" 381223 381231 381633 381638) (-271 "E04JAFA.spad" 380759 380767 381213 381218) (-270 "E04GCFA.spad" 380295 380303 380749 380754) (-269 "E04FDFA.spad" 379831 379839 380285 380290) (-268 "E04DGFA.spad" 379367 379375 379821 379826) (-267 "E04AGNT.spad" 375209 375217 379357 379362) (-266 "DVARCAT.spad" 371894 371904 375199 375204) (-265 "DVARCAT.spad" 368577 368589 371884 371889) (-264 "DSMP.spad" 366008 366022 366313 366440) (-263 "DROPT.spad" 359953 359961 365998 366003) (-262 "DROPT1.spad" 359616 359626 359943 359948) (-261 "DROPT0.spad" 354443 354451 359606 359611) (-260 "DRAWPT.spad" 352598 352606 354433 354438) (-259 "DRAW.spad" 345198 345211 352588 352593) (-258 "DRAWHACK.spad" 344506 344516 345188 345193) (-257 "DRAWCX.spad" 341948 341956 344496 344501) (-256 "DRAWCURV.spad" 341485 341500 341938 341943) (-255 "DRAWCFUN.spad" 330657 330665 341475 341480) (-254 "DQAGG.spad" 328825 328835 330625 330652) (-253 "DPOLCAT.spad" 324166 324182 328693 328820) (-252 "DPOLCAT.spad" 319593 319611 324122 324127) (-251 "DPMO.spad" 311819 311835 311957 312258) (-250 "DPMM.spad" 304058 304076 304183 304484) (-249 "DOMCTOR.spad" 303950 303958 304048 304053) (-248 "DOMAIN.spad" 303081 303089 303940 303945) (-247 "DMP.spad" 300303 300318 300875 301002) (-246 "DLP.spad" 299651 299661 300293 300298) (-245 "DLIST.spad" 298230 298240 298834 298861) (-244 "DLAGG.spad" 296641 296651 298220 298225) (-243 "DIVRING.spad" 296183 296191 296585 296636) (-242 "DIVRING.spad" 295769 295779 296173 296178) (-241 "DISPLAY.spad" 293949 293957 295759 295764) (-240 "DIRPROD.spad" 283529 283545 284169 284300) (-239 "DIRPROD2.spad" 282337 282355 283519 283524) (-238 "DIRPCAT.spad" 281279 281295 282201 282332) (-237 "DIRPCAT.spad" 279950 279968 280874 280879) (-236 "DIOSP.spad" 278775 278783 279940 279945) (-235 "DIOPS.spad" 277759 277769 278755 278770) (-234 "DIOPS.spad" 276717 276729 277715 277720) (-233 "DIFRING.spad" 276009 276017 276697 276712) (-232 "DIFRING.spad" 275309 275319 275999 276004) (-231 "DIFEXT.spad" 274468 274478 275289 275304) (-230 "DIFEXT.spad" 273544 273556 274367 274372) (-229 "DIAGG.spad" 273174 273184 273524 273539) (-228 "DIAGG.spad" 272812 272824 273164 273169) (-227 "DHMATRIX.spad" 271116 271126 272269 272296) (-226 "DFSFUN.spad" 264524 264532 271106 271111) (-225 "DFLOAT.spad" 261245 261253 264414 264519) (-224 "DFINTTLS.spad" 259454 259470 261235 261240) (-223 "DERHAM.spad" 257364 257396 259434 259449) (-222 "DEQUEUE.spad" 256682 256692 256971 256998) (-221 "DEGRED.spad" 256297 256311 256672 256677) (-220 "DEFINTRF.spad" 253822 253832 256287 256292) (-219 "DEFINTEF.spad" 252318 252334 253812 253817) (-218 "DEFAST.spad" 251686 251694 252308 252313) (-217 "DECIMAL.spad" 249792 249800 250153 250246) (-216 "DDFACT.spad" 247591 247608 249782 249787) (-215 "DBLRESP.spad" 247189 247213 247581 247586) (-214 "DBASE.spad" 245843 245853 247179 247184) (-213 "DATAARY.spad" 245305 245318 245833 245838) (-212 "D03FAFA.spad" 245133 245141 245295 245300) (-211 "D03EEFA.spad" 244953 244961 245123 245128) (-210 "D03AGNT.spad" 244033 244041 244943 244948) (-209 "D02EJFA.spad" 243495 243503 244023 244028) (-208 "D02CJFA.spad" 242973 242981 243485 243490) (-207 "D02BHFA.spad" 242463 242471 242963 242968) (-206 "D02BBFA.spad" 241953 241961 242453 242458) (-205 "D02AGNT.spad" 236757 236765 241943 241948) (-204 "D01WGTS.spad" 235076 235084 236747 236752) (-203 "D01TRNS.spad" 235053 235061 235066 235071) (-202 "D01GBFA.spad" 234575 234583 235043 235048) (-201 "D01FCFA.spad" 234097 234105 234565 234570) (-200 "D01ASFA.spad" 233565 233573 234087 234092) (-199 "D01AQFA.spad" 233011 233019 233555 233560) (-198 "D01APFA.spad" 232435 232443 233001 233006) (-197 "D01ANFA.spad" 231929 231937 232425 232430) (-196 "D01AMFA.spad" 231439 231447 231919 231924) (-195 "D01ALFA.spad" 230979 230987 231429 231434) (-194 "D01AKFA.spad" 230505 230513 230969 230974) (-193 "D01AJFA.spad" 230028 230036 230495 230500) (-192 "D01AGNT.spad" 226087 226095 230018 230023) (-191 "CYCLOTOM.spad" 225593 225601 226077 226082) (-190 "CYCLES.spad" 222425 222433 225583 225588) (-189 "CVMP.spad" 221842 221852 222415 222420) (-188 "CTRIGMNP.spad" 220332 220348 221832 221837) (-187 "CTOR.spad" 220023 220031 220322 220327) (-186 "CTORKIND.spad" 219626 219634 220013 220018) (-185 "CTORCAT.spad" 218875 218883 219616 219621) (-184 "CTORCAT.spad" 218122 218132 218865 218870) (-183 "CTORCALL.spad" 217702 217710 218112 218117) (-182 "CSTTOOLS.spad" 216945 216958 217692 217697) (-181 "CRFP.spad" 210649 210662 216935 216940) (-180 "CRCEAST.spad" 210369 210377 210639 210644) (-179 "CRAPACK.spad" 209412 209422 210359 210364) (-178 "CPMATCH.spad" 208912 208927 209337 209342) (-177 "CPIMA.spad" 208617 208636 208902 208907) (-176 "COORDSYS.spad" 203510 203520 208607 208612) (-175 "CONTOUR.spad" 202921 202929 203500 203505) (-174 "CONTFRAC.spad" 198533 198543 202823 202916) (-173 "CONDUIT.spad" 198291 198299 198523 198528) (-172 "COMRING.spad" 197965 197973 198229 198286) (-171 "COMPPROP.spad" 197479 197487 197955 197960) (-170 "COMPLPAT.spad" 197246 197261 197469 197474) (-169 "COMPLEX.spad" 191270 191280 191514 191775) (-168 "COMPLEX2.spad" 190983 190995 191260 191265) (-167 "COMPFACT.spad" 190585 190599 190973 190978) (-166 "COMPCAT.spad" 188653 188663 190319 190580) (-165 "COMPCAT.spad" 186414 186426 188082 188087) (-164 "COMMUPC.spad" 186160 186178 186404 186409) (-163 "COMMONOP.spad" 185693 185701 186150 186155) (-162 "COMM.spad" 185502 185510 185683 185688) (-161 "COMMAAST.spad" 185265 185273 185492 185497) (-160 "COMBOPC.spad" 184170 184178 185255 185260) (-159 "COMBINAT.spad" 182915 182925 184160 184165) (-158 "COMBF.spad" 180283 180299 182905 182910) (-157 "COLOR.spad" 179120 179128 180273 180278) (-156 "COLONAST.spad" 178786 178794 179110 179115) (-155 "CMPLXRT.spad" 178495 178512 178776 178781) (-154 "CLLCTAST.spad" 178157 178165 178485 178490) (-153 "CLIP.spad" 174249 174257 178147 178152) (-152 "CLIF.spad" 172888 172904 174205 174244) (-151 "CLAGG.spad" 169373 169383 172878 172883) (-150 "CLAGG.spad" 165729 165741 169236 169241) (-149 "CINTSLPE.spad" 165054 165067 165719 165724) (-148 "CHVAR.spad" 163132 163154 165044 165049) (-147 "CHARZ.spad" 163047 163055 163112 163127) (-146 "CHARPOL.spad" 162555 162565 163037 163042) (-145 "CHARNZ.spad" 162308 162316 162535 162550) (-144 "CHAR.spad" 160176 160184 162298 162303) (-143 "CFCAT.spad" 159492 159500 160166 160171) (-142 "CDEN.spad" 158650 158664 159482 159487) (-141 "CCLASS.spad" 156799 156807 158061 158100) (-140 "CATEGORY.spad" 155889 155897 156789 156794) (-139 "CATCTOR.spad" 155780 155788 155879 155884) (-138 "CATAST.spad" 155398 155406 155770 155775) (-137 "CASEAST.spad" 155112 155120 155388 155393) (-136 "CARTEN.spad" 150215 150239 155102 155107) (-135 "CARTEN2.spad" 149601 149628 150205 150210) (-134 "CARD.spad" 146890 146898 149575 149596) (-133 "CAPSLAST.spad" 146664 146672 146880 146885) (-132 "CACHSET.spad" 146286 146294 146654 146659) (-131 "CABMON.spad" 145839 145847 146276 146281) (-130 "BYTEORD.spad" 145514 145522 145829 145834) (-129 "BYTE.spad" 144939 144947 145504 145509) (-128 "BYTEBUF.spad" 142796 142804 144108 144135) (-127 "BTREE.spad" 141865 141875 142403 142430) (-126 "BTOURN.spad" 140868 140878 141472 141499) (-125 "BTCAT.spad" 140256 140266 140836 140863) (-124 "BTCAT.spad" 139664 139676 140246 140251) (-123 "BTAGG.spad" 138786 138794 139632 139659) (-122 "BTAGG.spad" 137928 137938 138776 138781) (-121 "BSTREE.spad" 136663 136673 137535 137562) (-120 "BRILL.spad" 134858 134869 136653 136658) (-119 "BRAGG.spad" 133782 133792 134848 134853) (-118 "BRAGG.spad" 132670 132682 133738 133743) (-117 "BPADICRT.spad" 130651 130663 130906 130999) (-116 "BPADIC.spad" 130315 130327 130577 130646) (-115 "BOUNDZRO.spad" 129971 129988 130305 130310) (-114 "BOP.spad" 124996 125004 129961 129966) (-113 "BOP1.spad" 122382 122392 124952 124957) (-112 "BOOLEAN.spad" 121706 121714 122372 122377) (-111 "BMODULE.spad" 121418 121430 121674 121701) (-110 "BITS.spad" 120837 120845 121054 121081) (-109 "BINDING.spad" 120256 120264 120827 120832) (-108 "BINARY.spad" 118367 118375 118723 118816) (-107 "BGAGG.spad" 117564 117574 118347 118362) (-106 "BGAGG.spad" 116769 116781 117554 117559) (-105 "BFUNCT.spad" 116333 116341 116749 116764) (-104 "BEZOUT.spad" 115467 115494 116283 116288) (-103 "BBTREE.spad" 112286 112296 115074 115101) (-102 "BASTYPE.spad" 111958 111966 112276 112281) (-101 "BASTYPE.spad" 111628 111638 111948 111953) (-100 "BALFACT.spad" 111067 111080 111618 111623) (-99 "AUTOMOR.spad" 110514 110523 111047 111062) (-98 "ATTREG.spad" 107233 107240 110266 110509) (-97 "ATTRBUT.spad" 103256 103263 107213 107228) (-96 "ATTRAST.spad" 102973 102980 103246 103251) (-95 "ATRIG.spad" 102443 102450 102963 102968) (-94 "ATRIG.spad" 101911 101920 102433 102438) (-93 "ASTCAT.spad" 101815 101822 101901 101906) (-92 "ASTCAT.spad" 101717 101726 101805 101810) (-91 "ASTACK.spad" 101050 101059 101324 101351) (-90 "ASSOCEQ.spad" 99850 99861 101006 101011) (-89 "ASP9.spad" 98931 98944 99840 99845) (-88 "ASP8.spad" 97974 97987 98921 98926) (-87 "ASP80.spad" 97296 97309 97964 97969) (-86 "ASP7.spad" 96456 96469 97286 97291) (-85 "ASP78.spad" 95907 95920 96446 96451) (-84 "ASP77.spad" 95276 95289 95897 95902) (-83 "ASP74.spad" 94368 94381 95266 95271) (-82 "ASP73.spad" 93639 93652 94358 94363) (-81 "ASP6.spad" 92506 92519 93629 93634) (-80 "ASP55.spad" 91015 91028 92496 92501) (-79 "ASP50.spad" 88832 88845 91005 91010) (-78 "ASP4.spad" 88127 88140 88822 88827) (-77 "ASP49.spad" 87126 87139 88117 88122) (-76 "ASP42.spad" 85533 85572 87116 87121) (-75 "ASP41.spad" 84112 84151 85523 85528) (-74 "ASP35.spad" 83100 83113 84102 84107) (-73 "ASP34.spad" 82401 82414 83090 83095) (-72 "ASP33.spad" 81961 81974 82391 82396) (-71 "ASP31.spad" 81101 81114 81951 81956) (-70 "ASP30.spad" 79993 80006 81091 81096) (-69 "ASP29.spad" 79459 79472 79983 79988) (-68 "ASP28.spad" 70732 70745 79449 79454) (-67 "ASP27.spad" 69629 69642 70722 70727) (-66 "ASP24.spad" 68716 68729 69619 69624) (-65 "ASP20.spad" 68180 68193 68706 68711) (-64 "ASP1.spad" 67561 67574 68170 68175) (-63 "ASP19.spad" 62247 62260 67551 67556) (-62 "ASP12.spad" 61661 61674 62237 62242) (-61 "ASP10.spad" 60932 60945 61651 61656) (-60 "ARRAY2.spad" 60292 60301 60539 60566) (-59 "ARRAY1.spad" 59127 59136 59475 59502) (-58 "ARRAY12.spad" 57796 57807 59117 59122) (-57 "ARR2CAT.spad" 53458 53479 57764 57791) (-56 "ARR2CAT.spad" 49140 49163 53448 53453) (-55 "ARITY.spad" 48512 48519 49130 49135) (-54 "APPRULE.spad" 47756 47778 48502 48507) (-53 "APPLYORE.spad" 47371 47384 47746 47751) (-52 "ANY.spad" 45713 45720 47361 47366) (-51 "ANY1.spad" 44784 44793 45703 45708) (-50 "ANTISYM.spad" 43223 43239 44764 44779) (-49 "ANON.spad" 42916 42923 43213 43218) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2283234 2283239 2283244 2283249) (-2 NIL 2283214 2283219 2283224 2283229) (-1 NIL 2283194 2283199 2283204 2283209) (0 NIL 2283174 2283179 2283184 2283189) (-1287 "ZMOD.spad" 2282983 2282996 2283112 2283169) (-1286 "ZLINDEP.spad" 2282027 2282038 2282973 2282978) (-1285 "ZDSOLVE.spad" 2271876 2271898 2282017 2282022) (-1284 "YSTREAM.spad" 2271369 2271380 2271866 2271871) (-1283 "XRPOLY.spad" 2270589 2270609 2271225 2271294) (-1282 "XPR.spad" 2268380 2268393 2270307 2270406) (-1281 "XPOLY.spad" 2267935 2267946 2268236 2268305) (-1280 "XPOLYC.spad" 2267252 2267268 2267861 2267930) (-1279 "XPBWPOLY.spad" 2265689 2265709 2267032 2267101) (-1278 "XF.spad" 2264150 2264165 2265591 2265684) (-1277 "XF.spad" 2262591 2262608 2264034 2264039) (-1276 "XFALG.spad" 2259615 2259631 2262517 2262586) (-1275 "XEXPPKG.spad" 2258866 2258892 2259605 2259610) (-1274 "XDPOLY.spad" 2258480 2258496 2258722 2258791) (-1273 "XALG.spad" 2258140 2258151 2258436 2258475) (-1272 "WUTSET.spad" 2253979 2253996 2257786 2257813) (-1271 "WP.spad" 2253178 2253222 2253837 2253904) (-1270 "WHILEAST.spad" 2252976 2252985 2253168 2253173) (-1269 "WHEREAST.spad" 2252647 2252656 2252966 2252971) (-1268 "WFFINTBS.spad" 2250210 2250232 2252637 2252642) (-1267 "WEIER.spad" 2248424 2248435 2250200 2250205) (-1266 "VSPACE.spad" 2248097 2248108 2248392 2248419) (-1265 "VSPACE.spad" 2247790 2247803 2248087 2248092) (-1264 "VOID.spad" 2247467 2247476 2247780 2247785) (-1263 "VIEW.spad" 2245089 2245098 2247457 2247462) (-1262 "VIEWDEF.spad" 2240286 2240295 2245079 2245084) (-1261 "VIEW3D.spad" 2224121 2224130 2240276 2240281) (-1260 "VIEW2D.spad" 2211858 2211867 2224111 2224116) (-1259 "VECTOR.spad" 2210533 2210544 2210784 2210811) (-1258 "VECTOR2.spad" 2209160 2209173 2210523 2210528) (-1257 "VECTCAT.spad" 2207060 2207071 2209128 2209155) (-1256 "VECTCAT.spad" 2204768 2204781 2206838 2206843) (-1255 "VARIABLE.spad" 2204548 2204563 2204758 2204763) (-1254 "UTYPE.spad" 2204192 2204201 2204538 2204543) (-1253 "UTSODETL.spad" 2203485 2203509 2204148 2204153) (-1252 "UTSODE.spad" 2201673 2201693 2203475 2203480) (-1251 "UTS.spad" 2196462 2196490 2200140 2200237) (-1250 "UTSCAT.spad" 2193913 2193929 2196360 2196457) (-1249 "UTSCAT.spad" 2191008 2191026 2193457 2193462) (-1248 "UTS2.spad" 2190601 2190636 2190998 2191003) (-1247 "URAGG.spad" 2185233 2185244 2190591 2190596) (-1246 "URAGG.spad" 2179829 2179842 2185189 2185194) (-1245 "UPXSSING.spad" 2177472 2177498 2178910 2179043) (-1244 "UPXS.spad" 2174620 2174648 2175604 2175753) (-1243 "UPXSCONS.spad" 2172377 2172397 2172752 2172901) (-1242 "UPXSCCA.spad" 2170942 2170962 2172223 2172372) (-1241 "UPXSCCA.spad" 2169649 2169671 2170932 2170937) (-1240 "UPXSCAT.spad" 2168230 2168246 2169495 2169644) (-1239 "UPXS2.spad" 2167771 2167824 2168220 2168225) (-1238 "UPSQFREE.spad" 2166183 2166197 2167761 2167766) (-1237 "UPSCAT.spad" 2163776 2163800 2166081 2166178) (-1236 "UPSCAT.spad" 2161075 2161101 2163382 2163387) (-1235 "UPOLYC.spad" 2156053 2156064 2160917 2161070) (-1234 "UPOLYC.spad" 2150923 2150936 2155789 2155794) (-1233 "UPOLYC2.spad" 2150392 2150411 2150913 2150918) (-1232 "UP.spad" 2147549 2147564 2147942 2148095) (-1231 "UPMP.spad" 2146439 2146452 2147539 2147544) (-1230 "UPDIVP.spad" 2146002 2146016 2146429 2146434) (-1229 "UPDECOMP.spad" 2144239 2144253 2145992 2145997) (-1228 "UPCDEN.spad" 2143446 2143462 2144229 2144234) (-1227 "UP2.spad" 2142808 2142829 2143436 2143441) (-1226 "UNISEG.spad" 2142161 2142172 2142727 2142732) (-1225 "UNISEG2.spad" 2141654 2141667 2142117 2142122) (-1224 "UNIFACT.spad" 2140755 2140767 2141644 2141649) (-1223 "ULS.spad" 2131307 2131335 2132400 2132829) (-1222 "ULSCONS.spad" 2123701 2123721 2124073 2124222) (-1221 "ULSCCAT.spad" 2121430 2121450 2123547 2123696) (-1220 "ULSCCAT.spad" 2119267 2119289 2121386 2121391) (-1219 "ULSCAT.spad" 2117483 2117499 2119113 2119262) (-1218 "ULS2.spad" 2116995 2117048 2117473 2117478) (-1217 "UINT8.spad" 2116872 2116881 2116985 2116990) (-1216 "UINT64.spad" 2116748 2116757 2116862 2116867) (-1215 "UINT32.spad" 2116624 2116633 2116738 2116743) (-1214 "UINT16.spad" 2116500 2116509 2116614 2116619) (-1213 "UFD.spad" 2115565 2115574 2116426 2116495) (-1212 "UFD.spad" 2114692 2114703 2115555 2115560) (-1211 "UDVO.spad" 2113539 2113548 2114682 2114687) (-1210 "UDPO.spad" 2110966 2110977 2113495 2113500) (-1209 "TYPE.spad" 2110898 2110907 2110956 2110961) (-1208 "TYPEAST.spad" 2110817 2110826 2110888 2110893) (-1207 "TWOFACT.spad" 2109467 2109482 2110807 2110812) (-1206 "TUPLE.spad" 2108951 2108962 2109366 2109371) (-1205 "TUBETOOL.spad" 2105788 2105797 2108941 2108946) (-1204 "TUBE.spad" 2104429 2104446 2105778 2105783) (-1203 "TS.spad" 2103018 2103034 2103994 2104091) (-1202 "TSETCAT.spad" 2090145 2090162 2102986 2103013) (-1201 "TSETCAT.spad" 2077258 2077277 2090101 2090106) (-1200 "TRMANIP.spad" 2071624 2071641 2076964 2076969) (-1199 "TRIMAT.spad" 2070583 2070608 2071614 2071619) (-1198 "TRIGMNIP.spad" 2069100 2069117 2070573 2070578) (-1197 "TRIGCAT.spad" 2068612 2068621 2069090 2069095) (-1196 "TRIGCAT.spad" 2068122 2068133 2068602 2068607) (-1195 "TREE.spad" 2066693 2066704 2067729 2067756) (-1194 "TRANFUN.spad" 2066524 2066533 2066683 2066688) (-1193 "TRANFUN.spad" 2066353 2066364 2066514 2066519) (-1192 "TOPSP.spad" 2066027 2066036 2066343 2066348) (-1191 "TOOLSIGN.spad" 2065690 2065701 2066017 2066022) (-1190 "TEXTFILE.spad" 2064247 2064256 2065680 2065685) (-1189 "TEX.spad" 2061379 2061388 2064237 2064242) (-1188 "TEX1.spad" 2060935 2060946 2061369 2061374) (-1187 "TEMUTL.spad" 2060490 2060499 2060925 2060930) (-1186 "TBCMPPK.spad" 2058583 2058606 2060480 2060485) (-1185 "TBAGG.spad" 2057619 2057642 2058563 2058578) (-1184 "TBAGG.spad" 2056663 2056688 2057609 2057614) (-1183 "TANEXP.spad" 2056039 2056050 2056653 2056658) (-1182 "TABLE.spad" 2054450 2054473 2054720 2054747) (-1181 "TABLEAU.spad" 2053931 2053942 2054440 2054445) (-1180 "TABLBUMP.spad" 2050714 2050725 2053921 2053926) (-1179 "SYSTEM.spad" 2049942 2049951 2050704 2050709) (-1178 "SYSSOLP.spad" 2047415 2047426 2049932 2049937) (-1177 "SYSNNI.spad" 2046595 2046606 2047405 2047410) (-1176 "SYSINT.spad" 2045999 2046010 2046585 2046590) (-1175 "SYNTAX.spad" 2042193 2042202 2045989 2045994) (-1174 "SYMTAB.spad" 2040249 2040258 2042183 2042188) (-1173 "SYMS.spad" 2036234 2036243 2040239 2040244) (-1172 "SYMPOLY.spad" 2035241 2035252 2035323 2035450) (-1171 "SYMFUNC.spad" 2034716 2034727 2035231 2035236) (-1170 "SYMBOL.spad" 2032143 2032152 2034706 2034711) (-1169 "SWITCH.spad" 2028900 2028909 2032133 2032138) (-1168 "SUTS.spad" 2025799 2025827 2027367 2027464) (-1167 "SUPXS.spad" 2022934 2022962 2023931 2024080) (-1166 "SUP.spad" 2019703 2019714 2020484 2020637) (-1165 "SUPFRACF.spad" 2018808 2018826 2019693 2019698) (-1164 "SUP2.spad" 2018198 2018211 2018798 2018803) (-1163 "SUMRF.spad" 2017164 2017175 2018188 2018193) (-1162 "SUMFS.spad" 2016797 2016814 2017154 2017159) (-1161 "SULS.spad" 2007336 2007364 2008442 2008871) (-1160 "SUCHTAST.spad" 2007105 2007114 2007326 2007331) (-1159 "SUCH.spad" 2006785 2006800 2007095 2007100) (-1158 "SUBSPACE.spad" 1998792 1998807 2006775 2006780) (-1157 "SUBRESP.spad" 1997952 1997966 1998748 1998753) (-1156 "STTF.spad" 1994051 1994067 1997942 1997947) (-1155 "STTFNC.spad" 1990519 1990535 1994041 1994046) (-1154 "STTAYLOR.spad" 1982917 1982928 1990400 1990405) (-1153 "STRTBL.spad" 1981422 1981439 1981571 1981598) (-1152 "STRING.spad" 1980831 1980840 1980845 1980872) (-1151 "STRICAT.spad" 1980619 1980628 1980799 1980826) (-1150 "STREAM.spad" 1977477 1977488 1980144 1980159) (-1149 "STREAM3.spad" 1977022 1977037 1977467 1977472) (-1148 "STREAM2.spad" 1976090 1976103 1977012 1977017) (-1147 "STREAM1.spad" 1975794 1975805 1976080 1976085) (-1146 "STINPROD.spad" 1974700 1974716 1975784 1975789) (-1145 "STEP.spad" 1973901 1973910 1974690 1974695) (-1144 "STBL.spad" 1972427 1972455 1972594 1972609) (-1143 "STAGG.spad" 1971502 1971513 1972417 1972422) (-1142 "STAGG.spad" 1970575 1970588 1971492 1971497) (-1141 "STACK.spad" 1969926 1969937 1970182 1970209) (-1140 "SREGSET.spad" 1967630 1967647 1969572 1969599) (-1139 "SRDCMPK.spad" 1966175 1966195 1967620 1967625) (-1138 "SRAGG.spad" 1961272 1961281 1966143 1966170) (-1137 "SRAGG.spad" 1956389 1956400 1961262 1961267) (-1136 "SQMATRIX.spad" 1954005 1954023 1954921 1955008) (-1135 "SPLTREE.spad" 1948557 1948570 1953441 1953468) (-1134 "SPLNODE.spad" 1945145 1945158 1948547 1948552) (-1133 "SPFCAT.spad" 1943922 1943931 1945135 1945140) (-1132 "SPECOUT.spad" 1942472 1942481 1943912 1943917) (-1131 "SPADXPT.spad" 1934611 1934620 1942462 1942467) (-1130 "spad-parser.spad" 1934076 1934085 1934601 1934606) (-1129 "SPADAST.spad" 1933777 1933786 1934066 1934071) (-1128 "SPACEC.spad" 1917790 1917801 1933767 1933772) (-1127 "SPACE3.spad" 1917566 1917577 1917780 1917785) (-1126 "SORTPAK.spad" 1917111 1917124 1917522 1917527) (-1125 "SOLVETRA.spad" 1914868 1914879 1917101 1917106) (-1124 "SOLVESER.spad" 1913388 1913399 1914858 1914863) (-1123 "SOLVERAD.spad" 1909398 1909409 1913378 1913383) (-1122 "SOLVEFOR.spad" 1907818 1907836 1909388 1909393) (-1121 "SNTSCAT.spad" 1907418 1907435 1907786 1907813) (-1120 "SMTS.spad" 1905678 1905704 1906983 1907080) (-1119 "SMP.spad" 1903117 1903137 1903507 1903634) (-1118 "SMITH.spad" 1901960 1901985 1903107 1903112) (-1117 "SMATCAT.spad" 1900070 1900100 1901904 1901955) (-1116 "SMATCAT.spad" 1898112 1898144 1899948 1899953) (-1115 "SKAGG.spad" 1897073 1897084 1898080 1898107) (-1114 "SINT.spad" 1895899 1895908 1896939 1897068) (-1113 "SIMPAN.spad" 1895627 1895636 1895889 1895894) (-1112 "SIG.spad" 1894955 1894964 1895617 1895622) (-1111 "SIGNRF.spad" 1894063 1894074 1894945 1894950) (-1110 "SIGNEF.spad" 1893332 1893349 1894053 1894058) (-1109 "SIGAST.spad" 1892713 1892722 1893322 1893327) (-1108 "SHP.spad" 1890631 1890646 1892669 1892674) (-1107 "SHDP.spad" 1880342 1880369 1880851 1880982) (-1106 "SGROUP.spad" 1879950 1879959 1880332 1880337) (-1105 "SGROUP.spad" 1879556 1879567 1879940 1879945) (-1104 "SGCF.spad" 1872437 1872446 1879546 1879551) (-1103 "SFRTCAT.spad" 1871365 1871382 1872405 1872432) (-1102 "SFRGCD.spad" 1870428 1870448 1871355 1871360) (-1101 "SFQCMPK.spad" 1865065 1865085 1870418 1870423) (-1100 "SFORT.spad" 1864500 1864514 1865055 1865060) (-1099 "SEXOF.spad" 1864343 1864383 1864490 1864495) (-1098 "SEX.spad" 1864235 1864244 1864333 1864338) (-1097 "SEXCAT.spad" 1861786 1861826 1864225 1864230) (-1096 "SET.spad" 1860086 1860097 1861207 1861246) (-1095 "SETMN.spad" 1858520 1858537 1860076 1860081) (-1094 "SETCAT.spad" 1858005 1858014 1858510 1858515) (-1093 "SETCAT.spad" 1857488 1857499 1857995 1858000) (-1092 "SETAGG.spad" 1854009 1854020 1857468 1857483) (-1091 "SETAGG.spad" 1850538 1850551 1853999 1854004) (-1090 "SEQAST.spad" 1850241 1850250 1850528 1850533) (-1089 "SEGXCAT.spad" 1849363 1849376 1850231 1850236) (-1088 "SEG.spad" 1849176 1849187 1849282 1849287) (-1087 "SEGCAT.spad" 1848083 1848094 1849166 1849171) (-1086 "SEGBIND.spad" 1847155 1847166 1848038 1848043) (-1085 "SEGBIND2.spad" 1846851 1846864 1847145 1847150) (-1084 "SEGAST.spad" 1846565 1846574 1846841 1846846) (-1083 "SEG2.spad" 1845990 1846003 1846521 1846526) (-1082 "SDVAR.spad" 1845266 1845277 1845980 1845985) (-1081 "SDPOL.spad" 1842656 1842667 1842947 1843074) (-1080 "SCPKG.spad" 1840735 1840746 1842646 1842651) (-1079 "SCOPE.spad" 1839888 1839897 1840725 1840730) (-1078 "SCACHE.spad" 1838570 1838581 1839878 1839883) (-1077 "SASTCAT.spad" 1838479 1838488 1838560 1838565) (-1076 "SAOS.spad" 1838351 1838360 1838469 1838474) (-1075 "SAERFFC.spad" 1838064 1838084 1838341 1838346) (-1074 "SAE.spad" 1836239 1836255 1836850 1836985) (-1073 "SAEFACT.spad" 1835940 1835960 1836229 1836234) (-1072 "RURPK.spad" 1833581 1833597 1835930 1835935) (-1071 "RULESET.spad" 1833022 1833046 1833571 1833576) (-1070 "RULE.spad" 1831226 1831250 1833012 1833017) (-1069 "RULECOLD.spad" 1831078 1831091 1831216 1831221) (-1068 "RTVALUE.spad" 1830811 1830820 1831068 1831073) (-1067 "RSTRCAST.spad" 1830528 1830537 1830801 1830806) (-1066 "RSETGCD.spad" 1826906 1826926 1830518 1830523) (-1065 "RSETCAT.spad" 1816690 1816707 1826874 1826901) (-1064 "RSETCAT.spad" 1806494 1806513 1816680 1816685) (-1063 "RSDCMPK.spad" 1804946 1804966 1806484 1806489) (-1062 "RRCC.spad" 1803330 1803360 1804936 1804941) (-1061 "RRCC.spad" 1801712 1801744 1803320 1803325) (-1060 "RPTAST.spad" 1801414 1801423 1801702 1801707) (-1059 "RPOLCAT.spad" 1780774 1780789 1801282 1801409) (-1058 "RPOLCAT.spad" 1759848 1759865 1780358 1780363) (-1057 "ROUTINE.spad" 1755711 1755720 1758495 1758522) (-1056 "ROMAN.spad" 1755039 1755048 1755577 1755706) (-1055 "ROIRC.spad" 1754119 1754151 1755029 1755034) (-1054 "RNS.spad" 1753022 1753031 1754021 1754114) (-1053 "RNS.spad" 1752011 1752022 1753012 1753017) (-1052 "RNG.spad" 1751746 1751755 1752001 1752006) (-1051 "RMODULE.spad" 1751384 1751395 1751736 1751741) (-1050 "RMCAT2.spad" 1750792 1750849 1751374 1751379) (-1049 "RMATRIX.spad" 1749616 1749635 1749959 1749998) (-1048 "RMATCAT.spad" 1745149 1745180 1749572 1749611) (-1047 "RMATCAT.spad" 1740572 1740605 1744997 1745002) (-1046 "RINTERP.spad" 1740460 1740480 1740562 1740567) (-1045 "RING.spad" 1739930 1739939 1740440 1740455) (-1044 "RING.spad" 1739408 1739419 1739920 1739925) (-1043 "RIDIST.spad" 1738792 1738801 1739398 1739403) (-1042 "RGCHAIN.spad" 1737371 1737387 1738277 1738304) (-1041 "RGBCSPC.spad" 1737152 1737164 1737361 1737366) (-1040 "RGBCMDL.spad" 1736682 1736694 1737142 1737147) (-1039 "RF.spad" 1734296 1734307 1736672 1736677) (-1038 "RFFACTOR.spad" 1733758 1733769 1734286 1734291) (-1037 "RFFACT.spad" 1733493 1733505 1733748 1733753) (-1036 "RFDIST.spad" 1732481 1732490 1733483 1733488) (-1035 "RETSOL.spad" 1731898 1731911 1732471 1732476) (-1034 "RETRACT.spad" 1731326 1731337 1731888 1731893) (-1033 "RETRACT.spad" 1730752 1730765 1731316 1731321) (-1032 "RETAST.spad" 1730564 1730573 1730742 1730747) (-1031 "RESULT.spad" 1728624 1728633 1729211 1729238) (-1030 "RESRING.spad" 1727971 1728018 1728562 1728619) (-1029 "RESLATC.spad" 1727295 1727306 1727961 1727966) (-1028 "REPSQ.spad" 1727024 1727035 1727285 1727290) (-1027 "REP.spad" 1724576 1724585 1727014 1727019) (-1026 "REPDB.spad" 1724281 1724292 1724566 1724571) (-1025 "REP2.spad" 1713853 1713864 1724123 1724128) (-1024 "REP1.spad" 1707843 1707854 1713803 1713808) (-1023 "REGSET.spad" 1705640 1705657 1707489 1707516) (-1022 "REF.spad" 1704969 1704980 1705595 1705600) (-1021 "REDORDER.spad" 1704145 1704162 1704959 1704964) (-1020 "RECLOS.spad" 1702928 1702948 1703632 1703725) (-1019 "REALSOLV.spad" 1702060 1702069 1702918 1702923) (-1018 "REAL.spad" 1701932 1701941 1702050 1702055) (-1017 "REAL0Q.spad" 1699214 1699229 1701922 1701927) (-1016 "REAL0.spad" 1696042 1696057 1699204 1699209) (-1015 "RDUCEAST.spad" 1695763 1695772 1696032 1696037) (-1014 "RDIV.spad" 1695414 1695439 1695753 1695758) (-1013 "RDIST.spad" 1694977 1694988 1695404 1695409) (-1012 "RDETRS.spad" 1693773 1693791 1694967 1694972) (-1011 "RDETR.spad" 1691880 1691898 1693763 1693768) (-1010 "RDEEFS.spad" 1690953 1690970 1691870 1691875) (-1009 "RDEEF.spad" 1689949 1689966 1690943 1690948) (-1008 "RCFIELD.spad" 1687135 1687144 1689851 1689944) (-1007 "RCFIELD.spad" 1684407 1684418 1687125 1687130) (-1006 "RCAGG.spad" 1682319 1682330 1684397 1684402) (-1005 "RCAGG.spad" 1680158 1680171 1682238 1682243) (-1004 "RATRET.spad" 1679518 1679529 1680148 1680153) (-1003 "RATFACT.spad" 1679210 1679222 1679508 1679513) (-1002 "RANDSRC.spad" 1678529 1678538 1679200 1679205) (-1001 "RADUTIL.spad" 1678283 1678292 1678519 1678524) (-1000 "RADIX.spad" 1675184 1675198 1676750 1676843) (-999 "RADFF.spad" 1673598 1673634 1673716 1673872) (-998 "RADCAT.spad" 1673192 1673200 1673588 1673593) (-997 "RADCAT.spad" 1672784 1672794 1673182 1673187) (-996 "QUEUE.spad" 1672127 1672137 1672391 1672418) (-995 "QUAT.spad" 1670709 1670719 1671051 1671116) (-994 "QUATCT2.spad" 1670328 1670346 1670699 1670704) (-993 "QUATCAT.spad" 1668493 1668503 1670258 1670323) (-992 "QUATCAT.spad" 1666409 1666421 1668176 1668181) (-991 "QUAGG.spad" 1665235 1665245 1666377 1666404) (-990 "QQUTAST.spad" 1665004 1665012 1665225 1665230) (-989 "QFORM.spad" 1664467 1664481 1664994 1664999) (-988 "QFCAT.spad" 1663170 1663180 1664369 1664462) (-987 "QFCAT.spad" 1661464 1661476 1662665 1662670) (-986 "QFCAT2.spad" 1661155 1661171 1661454 1661459) (-985 "QEQUAT.spad" 1660712 1660720 1661145 1661150) (-984 "QCMPACK.spad" 1655459 1655478 1660702 1660707) (-983 "QALGSET.spad" 1651534 1651566 1655373 1655378) (-982 "QALGSET2.spad" 1649530 1649548 1651524 1651529) (-981 "PWFFINTB.spad" 1646840 1646861 1649520 1649525) (-980 "PUSHVAR.spad" 1646169 1646188 1646830 1646835) (-979 "PTRANFN.spad" 1642295 1642305 1646159 1646164) (-978 "PTPACK.spad" 1639383 1639393 1642285 1642290) (-977 "PTFUNC2.spad" 1639204 1639218 1639373 1639378) (-976 "PTCAT.spad" 1638453 1638463 1639172 1639199) (-975 "PSQFR.spad" 1637760 1637784 1638443 1638448) (-974 "PSEUDLIN.spad" 1636618 1636628 1637750 1637755) (-973 "PSETPK.spad" 1622051 1622067 1636496 1636501) (-972 "PSETCAT.spad" 1615971 1615994 1622031 1622046) (-971 "PSETCAT.spad" 1609865 1609890 1615927 1615932) (-970 "PSCURVE.spad" 1608848 1608856 1609855 1609860) (-969 "PSCAT.spad" 1607615 1607644 1608746 1608843) (-968 "PSCAT.spad" 1606472 1606503 1607605 1607610) (-967 "PRTITION.spad" 1605417 1605425 1606462 1606467) (-966 "PRTDAST.spad" 1605136 1605144 1605407 1605412) (-965 "PRS.spad" 1594698 1594715 1605092 1605097) (-964 "PRQAGG.spad" 1594129 1594139 1594666 1594693) (-963 "PROPLOG.spad" 1593532 1593540 1594119 1594124) (-962 "PROPFRML.spad" 1592340 1592351 1593522 1593527) (-961 "PROPERTY.spad" 1591834 1591842 1592330 1592335) (-960 "PRODUCT.spad" 1589514 1589526 1589800 1589855) (-959 "PR.spad" 1587900 1587912 1588605 1588732) (-958 "PRINT.spad" 1587652 1587660 1587890 1587895) (-957 "PRIMES.spad" 1585903 1585913 1587642 1587647) (-956 "PRIMELT.spad" 1583884 1583898 1585893 1585898) (-955 "PRIMCAT.spad" 1583507 1583515 1583874 1583879) (-954 "PRIMARR.spad" 1582512 1582522 1582690 1582717) (-953 "PRIMARR2.spad" 1581235 1581247 1582502 1582507) (-952 "PREASSOC.spad" 1580607 1580619 1581225 1581230) (-951 "PPCURVE.spad" 1579744 1579752 1580597 1580602) (-950 "PORTNUM.spad" 1579519 1579527 1579734 1579739) (-949 "POLYROOT.spad" 1578348 1578370 1579475 1579480) (-948 "POLY.spad" 1575645 1575655 1576162 1576289) (-947 "POLYLIFT.spad" 1574906 1574929 1575635 1575640) (-946 "POLYCATQ.spad" 1573008 1573030 1574896 1574901) (-945 "POLYCAT.spad" 1566414 1566435 1572876 1573003) (-944 "POLYCAT.spad" 1559122 1559145 1565586 1565591) (-943 "POLY2UP.spad" 1558570 1558584 1559112 1559117) (-942 "POLY2.spad" 1558165 1558177 1558560 1558565) (-941 "POLUTIL.spad" 1557106 1557135 1558121 1558126) (-940 "POLTOPOL.spad" 1555854 1555869 1557096 1557101) (-939 "POINT.spad" 1554693 1554703 1554780 1554807) (-938 "PNTHEORY.spad" 1551359 1551367 1554683 1554688) (-937 "PMTOOLS.spad" 1550116 1550130 1551349 1551354) (-936 "PMSYM.spad" 1549661 1549671 1550106 1550111) (-935 "PMQFCAT.spad" 1549248 1549262 1549651 1549656) (-934 "PMPRED.spad" 1548717 1548731 1549238 1549243) (-933 "PMPREDFS.spad" 1548161 1548183 1548707 1548712) (-932 "PMPLCAT.spad" 1547231 1547249 1548093 1548098) (-931 "PMLSAGG.spad" 1546812 1546826 1547221 1547226) (-930 "PMKERNEL.spad" 1546379 1546391 1546802 1546807) (-929 "PMINS.spad" 1545955 1545965 1546369 1546374) (-928 "PMFS.spad" 1545528 1545546 1545945 1545950) (-927 "PMDOWN.spad" 1544814 1544828 1545518 1545523) (-926 "PMASS.spad" 1543826 1543834 1544804 1544809) (-925 "PMASSFS.spad" 1542795 1542811 1543816 1543821) (-924 "PLOTTOOL.spad" 1542575 1542583 1542785 1542790) (-923 "PLOT.spad" 1537406 1537414 1542565 1542570) (-922 "PLOT3D.spad" 1533826 1533834 1537396 1537401) (-921 "PLOT1.spad" 1532967 1532977 1533816 1533821) (-920 "PLEQN.spad" 1520183 1520210 1532957 1532962) (-919 "PINTERP.spad" 1519799 1519818 1520173 1520178) (-918 "PINTERPA.spad" 1519581 1519597 1519789 1519794) (-917 "PI.spad" 1519188 1519196 1519555 1519576) (-916 "PID.spad" 1518144 1518152 1519114 1519183) (-915 "PICOERCE.spad" 1517801 1517811 1518134 1518139) (-914 "PGROEB.spad" 1516398 1516412 1517791 1517796) (-913 "PGE.spad" 1507651 1507659 1516388 1516393) (-912 "PGCD.spad" 1506533 1506550 1507641 1507646) (-911 "PFRPAC.spad" 1505676 1505686 1506523 1506528) (-910 "PFR.spad" 1502333 1502343 1505578 1505671) (-909 "PFOTOOLS.spad" 1501591 1501607 1502323 1502328) (-908 "PFOQ.spad" 1500961 1500979 1501581 1501586) (-907 "PFO.spad" 1500380 1500407 1500951 1500956) (-906 "PF.spad" 1499954 1499966 1500185 1500278) (-905 "PFECAT.spad" 1497620 1497628 1499880 1499949) (-904 "PFECAT.spad" 1495314 1495324 1497576 1497581) (-903 "PFBRU.spad" 1493184 1493196 1495304 1495309) (-902 "PFBR.spad" 1490722 1490745 1493174 1493179) (-901 "PERM.spad" 1486403 1486413 1490552 1490567) (-900 "PERMGRP.spad" 1481139 1481149 1486393 1486398) (-899 "PERMCAT.spad" 1479691 1479701 1481119 1481134) (-898 "PERMAN.spad" 1478223 1478237 1479681 1479686) (-897 "PENDTREE.spad" 1477562 1477572 1477852 1477857) (-896 "PDRING.spad" 1476053 1476063 1477542 1477557) (-895 "PDRING.spad" 1474552 1474564 1476043 1476048) (-894 "PDEPROB.spad" 1473567 1473575 1474542 1474547) (-893 "PDEPACK.spad" 1467569 1467577 1473557 1473562) (-892 "PDECOMP.spad" 1467031 1467048 1467559 1467564) (-891 "PDECAT.spad" 1465385 1465393 1467021 1467026) (-890 "PCOMP.spad" 1465236 1465249 1465375 1465380) (-889 "PBWLB.spad" 1463818 1463835 1465226 1465231) (-888 "PATTERN.spad" 1458249 1458259 1463808 1463813) (-887 "PATTERN2.spad" 1457985 1457997 1458239 1458244) (-886 "PATTERN1.spad" 1456287 1456303 1457975 1457980) (-885 "PATRES.spad" 1453834 1453846 1456277 1456282) (-884 "PATRES2.spad" 1453496 1453510 1453824 1453829) (-883 "PATMATCH.spad" 1451653 1451684 1453204 1453209) (-882 "PATMAB.spad" 1451078 1451088 1451643 1451648) (-881 "PATLRES.spad" 1450162 1450176 1451068 1451073) (-880 "PATAB.spad" 1449926 1449936 1450152 1450157) (-879 "PARTPERM.spad" 1447288 1447296 1449916 1449921) (-878 "PARSURF.spad" 1446716 1446744 1447278 1447283) (-877 "PARSU2.spad" 1446511 1446527 1446706 1446711) (-876 "script-parser.spad" 1446031 1446039 1446501 1446506) (-875 "PARSCURV.spad" 1445459 1445487 1446021 1446026) (-874 "PARSC2.spad" 1445248 1445264 1445449 1445454) (-873 "PARPCURV.spad" 1444706 1444734 1445238 1445243) (-872 "PARPC2.spad" 1444495 1444511 1444696 1444701) (-871 "PAN2EXPR.spad" 1443907 1443915 1444485 1444490) (-870 "PALETTE.spad" 1442877 1442885 1443897 1443902) (-869 "PAIR.spad" 1441860 1441873 1442465 1442470) (-868 "PADICRC.spad" 1439190 1439208 1440365 1440458) (-867 "PADICRAT.spad" 1437205 1437217 1437426 1437519) (-866 "PADIC.spad" 1436900 1436912 1437131 1437200) (-865 "PADICCT.spad" 1435441 1435453 1436826 1436895) (-864 "PADEPAC.spad" 1434120 1434139 1435431 1435436) (-863 "PADE.spad" 1432860 1432876 1434110 1434115) (-862 "OWP.spad" 1432100 1432130 1432718 1432785) (-861 "OVERSET.spad" 1431673 1431681 1432090 1432095) (-860 "OVAR.spad" 1431454 1431477 1431663 1431668) (-859 "OUT.spad" 1430538 1430546 1431444 1431449) (-858 "OUTFORM.spad" 1419834 1419842 1430528 1430533) (-857 "OUTBFILE.spad" 1419252 1419260 1419824 1419829) (-856 "OUTBCON.spad" 1418250 1418258 1419242 1419247) (-855 "OUTBCON.spad" 1417246 1417256 1418240 1418245) (-854 "OSI.spad" 1416721 1416729 1417236 1417241) (-853 "OSGROUP.spad" 1416639 1416647 1416711 1416716) (-852 "ORTHPOL.spad" 1415100 1415110 1416556 1416561) (-851 "OREUP.spad" 1414553 1414581 1414780 1414819) (-850 "ORESUP.spad" 1413852 1413876 1414233 1414272) (-849 "OREPCTO.spad" 1411671 1411683 1413772 1413777) (-848 "OREPCAT.spad" 1405728 1405738 1411627 1411666) (-847 "OREPCAT.spad" 1399675 1399687 1405576 1405581) (-846 "ORDSET.spad" 1398841 1398849 1399665 1399670) (-845 "ORDSET.spad" 1398005 1398015 1398831 1398836) (-844 "ORDRING.spad" 1397395 1397403 1397985 1398000) (-843 "ORDRING.spad" 1396793 1396803 1397385 1397390) (-842 "ORDMON.spad" 1396648 1396656 1396783 1396788) (-841 "ORDFUNS.spad" 1395774 1395790 1396638 1396643) (-840 "ORDFIN.spad" 1395594 1395602 1395764 1395769) (-839 "ORDCOMP.spad" 1394059 1394069 1395141 1395170) (-838 "ORDCOMP2.spad" 1393344 1393356 1394049 1394054) (-837 "OPTPROB.spad" 1391982 1391990 1393334 1393339) (-836 "OPTPACK.spad" 1384367 1384375 1391972 1391977) (-835 "OPTCAT.spad" 1382042 1382050 1384357 1384362) (-834 "OPSIG.spad" 1381694 1381702 1382032 1382037) (-833 "OPQUERY.spad" 1381243 1381251 1381684 1381689) (-832 "OP.spad" 1380985 1380995 1381065 1381132) (-831 "OPERCAT.spad" 1380573 1380583 1380975 1380980) (-830 "OPERCAT.spad" 1380159 1380171 1380563 1380568) (-829 "ONECOMP.spad" 1378904 1378914 1379706 1379735) (-828 "ONECOMP2.spad" 1378322 1378334 1378894 1378899) (-827 "OMSERVER.spad" 1377324 1377332 1378312 1378317) (-826 "OMSAGG.spad" 1377112 1377122 1377280 1377319) (-825 "OMPKG.spad" 1375724 1375732 1377102 1377107) (-824 "OM.spad" 1374689 1374697 1375714 1375719) (-823 "OMLO.spad" 1374114 1374126 1374575 1374614) (-822 "OMEXPR.spad" 1373948 1373958 1374104 1374109) (-821 "OMERR.spad" 1373491 1373499 1373938 1373943) (-820 "OMERRK.spad" 1372525 1372533 1373481 1373486) (-819 "OMENC.spad" 1371869 1371877 1372515 1372520) (-818 "OMDEV.spad" 1366158 1366166 1371859 1371864) (-817 "OMCONN.spad" 1365567 1365575 1366148 1366153) (-816 "OINTDOM.spad" 1365330 1365338 1365493 1365562) (-815 "OFMONOID.spad" 1361517 1361527 1365320 1365325) (-814 "ODVAR.spad" 1360778 1360788 1361507 1361512) (-813 "ODR.spad" 1360422 1360448 1360590 1360739) (-812 "ODPOL.spad" 1357768 1357778 1358108 1358235) (-811 "ODP.spad" 1347615 1347635 1347988 1348119) (-810 "ODETOOLS.spad" 1346198 1346217 1347605 1347610) (-809 "ODESYS.spad" 1343848 1343865 1346188 1346193) (-808 "ODERTRIC.spad" 1339789 1339806 1343805 1343810) (-807 "ODERED.spad" 1339176 1339200 1339779 1339784) (-806 "ODERAT.spad" 1336727 1336744 1339166 1339171) (-805 "ODEPRRIC.spad" 1333618 1333640 1336717 1336722) (-804 "ODEPROB.spad" 1332875 1332883 1333608 1333613) (-803 "ODEPRIM.spad" 1330149 1330171 1332865 1332870) (-802 "ODEPAL.spad" 1329525 1329549 1330139 1330144) (-801 "ODEPACK.spad" 1316127 1316135 1329515 1329520) (-800 "ODEINT.spad" 1315558 1315574 1316117 1316122) (-799 "ODEIFTBL.spad" 1312953 1312961 1315548 1315553) (-798 "ODEEF.spad" 1308320 1308336 1312943 1312948) (-797 "ODECONST.spad" 1307839 1307857 1308310 1308315) (-796 "ODECAT.spad" 1306435 1306443 1307829 1307834) (-795 "OCT.spad" 1304573 1304583 1305289 1305328) (-794 "OCTCT2.spad" 1304217 1304238 1304563 1304568) (-793 "OC.spad" 1301991 1302001 1304173 1304212) (-792 "OC.spad" 1299490 1299502 1301674 1301679) (-791 "OCAMON.spad" 1299338 1299346 1299480 1299485) (-790 "OASGP.spad" 1299153 1299161 1299328 1299333) (-789 "OAMONS.spad" 1298673 1298681 1299143 1299148) (-788 "OAMON.spad" 1298534 1298542 1298663 1298668) (-787 "OAGROUP.spad" 1298396 1298404 1298524 1298529) (-786 "NUMTUBE.spad" 1297983 1297999 1298386 1298391) (-785 "NUMQUAD.spad" 1285845 1285853 1297973 1297978) (-784 "NUMODE.spad" 1276981 1276989 1285835 1285840) (-783 "NUMINT.spad" 1274539 1274547 1276971 1276976) (-782 "NUMFMT.spad" 1273379 1273387 1274529 1274534) (-781 "NUMERIC.spad" 1265451 1265461 1273184 1273189) (-780 "NTSCAT.spad" 1263953 1263969 1265419 1265446) (-779 "NTPOLFN.spad" 1263498 1263508 1263870 1263875) (-778 "NSUP.spad" 1256508 1256518 1261048 1261201) (-777 "NSUP2.spad" 1255900 1255912 1256498 1256503) (-776 "NSMP.spad" 1252095 1252114 1252403 1252530) (-775 "NREP.spad" 1250467 1250481 1252085 1252090) (-774 "NPCOEF.spad" 1249713 1249733 1250457 1250462) (-773 "NORMRETR.spad" 1249311 1249350 1249703 1249708) (-772 "NORMPK.spad" 1247213 1247232 1249301 1249306) (-771 "NORMMA.spad" 1246901 1246927 1247203 1247208) (-770 "NONE.spad" 1246642 1246650 1246891 1246896) (-769 "NONE1.spad" 1246318 1246328 1246632 1246637) (-768 "NODE1.spad" 1245787 1245803 1246308 1246313) (-767 "NNI.spad" 1244674 1244682 1245761 1245782) (-766 "NLINSOL.spad" 1243296 1243306 1244664 1244669) (-765 "NIPROB.spad" 1241837 1241845 1243286 1243291) (-764 "NFINTBAS.spad" 1239297 1239314 1241827 1241832) (-763 "NETCLT.spad" 1239271 1239282 1239287 1239292) (-762 "NCODIV.spad" 1237469 1237485 1239261 1239266) (-761 "NCNTFRAC.spad" 1237111 1237125 1237459 1237464) (-760 "NCEP.spad" 1235271 1235285 1237101 1237106) (-759 "NASRING.spad" 1234867 1234875 1235261 1235266) (-758 "NASRING.spad" 1234461 1234471 1234857 1234862) (-757 "NARNG.spad" 1233805 1233813 1234451 1234456) (-756 "NARNG.spad" 1233147 1233157 1233795 1233800) (-755 "NAGSP.spad" 1232220 1232228 1233137 1233142) (-754 "NAGS.spad" 1221745 1221753 1232210 1232215) (-753 "NAGF07.spad" 1220138 1220146 1221735 1221740) (-752 "NAGF04.spad" 1214370 1214378 1220128 1220133) (-751 "NAGF02.spad" 1208179 1208187 1214360 1214365) (-750 "NAGF01.spad" 1203782 1203790 1208169 1208174) (-749 "NAGE04.spad" 1197242 1197250 1203772 1203777) (-748 "NAGE02.spad" 1187584 1187592 1197232 1197237) (-747 "NAGE01.spad" 1183468 1183476 1187574 1187579) (-746 "NAGD03.spad" 1181388 1181396 1183458 1183463) (-745 "NAGD02.spad" 1173919 1173927 1181378 1181383) (-744 "NAGD01.spad" 1168032 1168040 1173909 1173914) (-743 "NAGC06.spad" 1163819 1163827 1168022 1168027) (-742 "NAGC05.spad" 1162288 1162296 1163809 1163814) (-741 "NAGC02.spad" 1161543 1161551 1162278 1162283) (-740 "NAALG.spad" 1161078 1161088 1161511 1161538) (-739 "NAALG.spad" 1160633 1160645 1161068 1161073) (-738 "MULTSQFR.spad" 1157591 1157608 1160623 1160628) (-737 "MULTFACT.spad" 1156974 1156991 1157581 1157586) (-736 "MTSCAT.spad" 1155008 1155029 1156872 1156969) (-735 "MTHING.spad" 1154665 1154675 1154998 1155003) (-734 "MSYSCMD.spad" 1154099 1154107 1154655 1154660) (-733 "MSET.spad" 1152041 1152051 1153805 1153844) (-732 "MSETAGG.spad" 1151886 1151896 1152009 1152036) (-731 "MRING.spad" 1148857 1148869 1151594 1151661) (-730 "MRF2.spad" 1148425 1148439 1148847 1148852) (-729 "MRATFAC.spad" 1147971 1147988 1148415 1148420) (-728 "MPRFF.spad" 1146001 1146020 1147961 1147966) (-727 "MPOLY.spad" 1143436 1143451 1143795 1143922) (-726 "MPCPF.spad" 1142700 1142719 1143426 1143431) (-725 "MPC3.spad" 1142515 1142555 1142690 1142695) (-724 "MPC2.spad" 1142157 1142190 1142505 1142510) (-723 "MONOTOOL.spad" 1140492 1140509 1142147 1142152) (-722 "MONOID.spad" 1139811 1139819 1140482 1140487) (-721 "MONOID.spad" 1139128 1139138 1139801 1139806) (-720 "MONOGEN.spad" 1137874 1137887 1138988 1139123) (-719 "MONOGEN.spad" 1136642 1136657 1137758 1137763) (-718 "MONADWU.spad" 1134656 1134664 1136632 1136637) (-717 "MONADWU.spad" 1132668 1132678 1134646 1134651) (-716 "MONAD.spad" 1131812 1131820 1132658 1132663) (-715 "MONAD.spad" 1130954 1130964 1131802 1131807) (-714 "MOEBIUS.spad" 1129640 1129654 1130934 1130949) (-713 "MODULE.spad" 1129510 1129520 1129608 1129635) (-712 "MODULE.spad" 1129400 1129412 1129500 1129505) (-711 "MODRING.spad" 1128731 1128770 1129380 1129395) (-710 "MODOP.spad" 1127390 1127402 1128553 1128620) (-709 "MODMONOM.spad" 1127119 1127137 1127380 1127385) (-708 "MODMON.spad" 1123878 1123894 1124597 1124750) (-707 "MODFIELD.spad" 1123236 1123275 1123780 1123873) (-706 "MMLFORM.spad" 1122096 1122104 1123226 1123231) (-705 "MMAP.spad" 1121836 1121870 1122086 1122091) (-704 "MLO.spad" 1120263 1120273 1121792 1121831) (-703 "MLIFT.spad" 1118835 1118852 1120253 1120258) (-702 "MKUCFUNC.spad" 1118368 1118386 1118825 1118830) (-701 "MKRECORD.spad" 1117970 1117983 1118358 1118363) (-700 "MKFUNC.spad" 1117351 1117361 1117960 1117965) (-699 "MKFLCFN.spad" 1116307 1116317 1117341 1117346) (-698 "MKBCFUNC.spad" 1115792 1115810 1116297 1116302) (-697 "MINT.spad" 1115231 1115239 1115694 1115787) (-696 "MHROWRED.spad" 1113732 1113742 1115221 1115226) (-695 "MFLOAT.spad" 1112248 1112256 1113622 1113727) (-694 "MFINFACT.spad" 1111648 1111670 1112238 1112243) (-693 "MESH.spad" 1109380 1109388 1111638 1111643) (-692 "MDDFACT.spad" 1107573 1107583 1109370 1109375) (-691 "MDAGG.spad" 1106860 1106870 1107553 1107568) (-690 "MCMPLX.spad" 1102834 1102842 1103448 1103649) (-689 "MCDEN.spad" 1102042 1102054 1102824 1102829) (-688 "MCALCFN.spad" 1099144 1099170 1102032 1102037) (-687 "MAYBE.spad" 1098428 1098439 1099134 1099139) (-686 "MATSTOR.spad" 1095704 1095714 1098418 1098423) (-685 "MATRIX.spad" 1094408 1094418 1094892 1094919) (-684 "MATLIN.spad" 1091734 1091758 1094292 1094297) (-683 "MATCAT.spad" 1083319 1083341 1091702 1091729) (-682 "MATCAT.spad" 1074776 1074800 1083161 1083166) (-681 "MATCAT2.spad" 1074044 1074092 1074766 1074771) (-680 "MAPPKG3.spad" 1072943 1072957 1074034 1074039) (-679 "MAPPKG2.spad" 1072277 1072289 1072933 1072938) (-678 "MAPPKG1.spad" 1071095 1071105 1072267 1072272) (-677 "MAPPAST.spad" 1070408 1070416 1071085 1071090) (-676 "MAPHACK3.spad" 1070216 1070230 1070398 1070403) (-675 "MAPHACK2.spad" 1069981 1069993 1070206 1070211) (-674 "MAPHACK1.spad" 1069611 1069621 1069971 1069976) (-673 "MAGMA.spad" 1067401 1067418 1069601 1069606) (-672 "MACROAST.spad" 1066980 1066988 1067391 1067396) (-671 "M3D.spad" 1064676 1064686 1066358 1066363) (-670 "LZSTAGG.spad" 1061904 1061914 1064666 1064671) (-669 "LZSTAGG.spad" 1059130 1059142 1061894 1061899) (-668 "LWORD.spad" 1055835 1055852 1059120 1059125) (-667 "LSTAST.spad" 1055619 1055627 1055825 1055830) (-666 "LSQM.spad" 1053845 1053859 1054243 1054294) (-665 "LSPP.spad" 1053378 1053395 1053835 1053840) (-664 "LSMP.spad" 1052218 1052246 1053368 1053373) (-663 "LSMP1.spad" 1050022 1050036 1052208 1052213) (-662 "LSAGG.spad" 1049691 1049701 1049990 1050017) (-661 "LSAGG.spad" 1049380 1049392 1049681 1049686) (-660 "LPOLY.spad" 1048334 1048353 1049236 1049305) (-659 "LPEFRAC.spad" 1047591 1047601 1048324 1048329) (-658 "LO.spad" 1046992 1047006 1047525 1047552) (-657 "LOGIC.spad" 1046594 1046602 1046982 1046987) (-656 "LOGIC.spad" 1046194 1046204 1046584 1046589) (-655 "LODOOPS.spad" 1045112 1045124 1046184 1046189) (-654 "LODO.spad" 1044496 1044512 1044792 1044831) (-653 "LODOF.spad" 1043540 1043557 1044453 1044458) (-652 "LODOCAT.spad" 1042198 1042208 1043496 1043535) (-651 "LODOCAT.spad" 1040854 1040866 1042154 1042159) (-650 "LODO2.spad" 1040127 1040139 1040534 1040573) (-649 "LODO1.spad" 1039527 1039537 1039807 1039846) (-648 "LODEEF.spad" 1038299 1038317 1039517 1039522) (-647 "LNAGG.spad" 1034101 1034111 1038289 1038294) (-646 "LNAGG.spad" 1029867 1029879 1034057 1034062) (-645 "LMOPS.spad" 1026603 1026620 1029857 1029862) (-644 "LMODULE.spad" 1026245 1026255 1026593 1026598) (-643 "LMDICT.spad" 1025528 1025538 1025796 1025823) (-642 "LITERAL.spad" 1025434 1025445 1025518 1025523) (-641 "LIST.spad" 1023152 1023162 1024581 1024608) (-640 "LIST3.spad" 1022443 1022457 1023142 1023147) (-639 "LIST2.spad" 1021083 1021095 1022433 1022438) (-638 "LIST2MAP.spad" 1017960 1017972 1021073 1021078) (-637 "LINEXP.spad" 1017392 1017402 1017940 1017955) (-636 "LINDEP.spad" 1016169 1016181 1017304 1017309) (-635 "LIMITRF.spad" 1014083 1014093 1016159 1016164) (-634 "LIMITPS.spad" 1012966 1012979 1014073 1014078) (-633 "LIE.spad" 1010980 1010992 1012256 1012401) (-632 "LIECAT.spad" 1010456 1010466 1010906 1010975) (-631 "LIECAT.spad" 1009960 1009972 1010412 1010417) (-630 "LIB.spad" 1008008 1008016 1008619 1008634) (-629 "LGROBP.spad" 1005361 1005380 1007998 1008003) (-628 "LF.spad" 1004280 1004296 1005351 1005356) (-627 "LFCAT.spad" 1003299 1003307 1004270 1004275) (-626 "LEXTRIPK.spad" 998802 998817 1003289 1003294) (-625 "LEXP.spad" 996805 996832 998782 998797) (-624 "LETAST.spad" 996504 996512 996795 996800) (-623 "LEADCDET.spad" 994888 994905 996494 996499) (-622 "LAZM3PK.spad" 993592 993614 994878 994883) (-621 "LAUPOL.spad" 992281 992294 993185 993254) (-620 "LAPLACE.spad" 991854 991870 992271 992276) (-619 "LA.spad" 991294 991308 991776 991815) (-618 "LALG.spad" 991070 991080 991274 991289) (-617 "LALG.spad" 990854 990866 991060 991065) (-616 "KVTFROM.spad" 990589 990599 990844 990849) (-615 "KTVLOGIC.spad" 990012 990020 990579 990584) (-614 "KRCFROM.spad" 989750 989760 990002 990007) (-613 "KOVACIC.spad" 988463 988480 989740 989745) (-612 "KONVERT.spad" 988185 988195 988453 988458) (-611 "KOERCE.spad" 987922 987932 988175 988180) (-610 "KERNEL.spad" 986457 986467 987706 987711) (-609 "KERNEL2.spad" 986160 986172 986447 986452) (-608 "KDAGG.spad" 985263 985285 986140 986155) (-607 "KDAGG.spad" 984374 984398 985253 985258) (-606 "KAFILE.spad" 983337 983353 983572 983599) (-605 "JORDAN.spad" 981164 981176 982627 982772) (-604 "JOINAST.spad" 980858 980866 981154 981159) (-603 "JAVACODE.spad" 980724 980732 980848 980853) (-602 "IXAGG.spad" 978847 978871 980714 980719) (-601 "IXAGG.spad" 976825 976851 978694 978699) (-600 "IVECTOR.spad" 975596 975611 975751 975778) (-599 "ITUPLE.spad" 974741 974751 975586 975591) (-598 "ITRIGMNP.spad" 973552 973571 974731 974736) (-597 "ITFUN3.spad" 973046 973060 973542 973547) (-596 "ITFUN2.spad" 972776 972788 973036 973041) (-595 "ITAYLOR.spad" 970568 970583 972612 972737) (-594 "ISUPS.spad" 962979 962994 969542 969639) (-593 "ISUMP.spad" 962476 962492 962969 962974) (-592 "ISTRING.spad" 961479 961492 961645 961672) (-591 "ISAST.spad" 961198 961206 961469 961474) (-590 "IRURPK.spad" 959911 959930 961188 961193) (-589 "IRSN.spad" 957871 957879 959901 959906) (-588 "IRRF2F.spad" 956346 956356 957827 957832) (-587 "IRREDFFX.spad" 955947 955958 956336 956341) (-586 "IROOT.spad" 954278 954288 955937 955942) (-585 "IR.spad" 952067 952081 954133 954160) (-584 "IR2.spad" 951087 951103 952057 952062) (-583 "IR2F.spad" 950287 950303 951077 951082) (-582 "IPRNTPK.spad" 950047 950055 950277 950282) (-581 "IPF.spad" 949612 949624 949852 949945) (-580 "IPADIC.spad" 949373 949399 949538 949607) (-579 "IP4ADDR.spad" 948930 948938 949363 949368) (-578 "IOMODE.spad" 948551 948559 948920 948925) (-577 "IOBFILE.spad" 947912 947920 948541 948546) (-576 "IOBCON.spad" 947777 947785 947902 947907) (-575 "INVLAPLA.spad" 947422 947438 947767 947772) (-574 "INTTR.spad" 940668 940685 947412 947417) (-573 "INTTOOLS.spad" 938379 938395 940242 940247) (-572 "INTSLPE.spad" 937685 937693 938369 938374) (-571 "INTRVL.spad" 937251 937261 937599 937680) (-570 "INTRF.spad" 935615 935629 937241 937246) (-569 "INTRET.spad" 935047 935057 935605 935610) (-568 "INTRAT.spad" 933722 933739 935037 935042) (-567 "INTPM.spad" 932085 932101 933365 933370) (-566 "INTPAF.spad" 929853 929871 932017 932022) (-565 "INTPACK.spad" 920163 920171 929843 929848) (-564 "INT.spad" 919524 919532 920017 920158) (-563 "INTHERTR.spad" 918790 918807 919514 919519) (-562 "INTHERAL.spad" 918456 918480 918780 918785) (-561 "INTHEORY.spad" 914869 914877 918446 918451) (-560 "INTG0.spad" 908332 908350 914801 914806) (-559 "INTFTBL.spad" 902361 902369 908322 908327) (-558 "INTFACT.spad" 901420 901430 902351 902356) (-557 "INTEF.spad" 899735 899751 901410 901415) (-556 "INTDOM.spad" 898350 898358 899661 899730) (-555 "INTDOM.spad" 897027 897037 898340 898345) (-554 "INTCAT.spad" 895280 895290 896941 897022) (-553 "INTBIT.spad" 894783 894791 895270 895275) (-552 "INTALG.spad" 893965 893992 894773 894778) (-551 "INTAF.spad" 893457 893473 893955 893960) (-550 "INTABL.spad" 891975 892006 892138 892165) (-549 "INT8.spad" 891855 891863 891965 891970) (-548 "INT64.spad" 891734 891742 891845 891850) (-547 "INT32.spad" 891613 891621 891724 891729) (-546 "INT16.spad" 891492 891500 891603 891608) (-545 "INS.spad" 888959 888967 891394 891487) (-544 "INS.spad" 886512 886522 888949 888954) (-543 "INPSIGN.spad" 885946 885959 886502 886507) (-542 "INPRODPF.spad" 885012 885031 885936 885941) (-541 "INPRODFF.spad" 884070 884094 885002 885007) (-540 "INNMFACT.spad" 883041 883058 884060 884065) (-539 "INMODGCD.spad" 882525 882555 883031 883036) (-538 "INFSP.spad" 880810 880832 882515 882520) (-537 "INFPROD0.spad" 879860 879879 880800 880805) (-536 "INFORM.spad" 877021 877029 879850 879855) (-535 "INFORM1.spad" 876646 876656 877011 877016) (-534 "INFINITY.spad" 876198 876206 876636 876641) (-533 "INETCLTS.spad" 876175 876183 876188 876193) (-532 "INEP.spad" 874707 874729 876165 876170) (-531 "INDE.spad" 874436 874453 874697 874702) (-530 "INCRMAPS.spad" 873857 873867 874426 874431) (-529 "INBFILE.spad" 872929 872937 873847 873852) (-528 "INBFF.spad" 868699 868710 872919 872924) (-527 "INBCON.spad" 866987 866995 868689 868694) (-526 "INBCON.spad" 865273 865283 866977 866982) (-525 "INAST.spad" 864934 864942 865263 865268) (-524 "IMPTAST.spad" 864642 864650 864924 864929) (-523 "IMATRIX.spad" 863587 863613 864099 864126) (-522 "IMATQF.spad" 862681 862725 863543 863548) (-521 "IMATLIN.spad" 861286 861310 862637 862642) (-520 "ILIST.spad" 859942 859957 860469 860496) (-519 "IIARRAY2.spad" 859330 859368 859549 859576) (-518 "IFF.spad" 858740 858756 859011 859104) (-517 "IFAST.spad" 858354 858362 858730 858735) (-516 "IFARRAY.spad" 855841 855856 857537 857564) (-515 "IFAMON.spad" 855703 855720 855797 855802) (-514 "IEVALAB.spad" 855092 855104 855693 855698) (-513 "IEVALAB.spad" 854479 854493 855082 855087) (-512 "IDPO.spad" 854277 854289 854469 854474) (-511 "IDPOAMS.spad" 854033 854045 854267 854272) (-510 "IDPOAM.spad" 853753 853765 854023 854028) (-509 "IDPC.spad" 852687 852699 853743 853748) (-508 "IDPAM.spad" 852432 852444 852677 852682) (-507 "IDPAG.spad" 852179 852191 852422 852427) (-506 "IDENT.spad" 851829 851837 852169 852174) (-505 "IDECOMP.spad" 849066 849084 851819 851824) (-504 "IDEAL.spad" 843989 844028 849001 849006) (-503 "ICDEN.spad" 843140 843156 843979 843984) (-502 "ICARD.spad" 842329 842337 843130 843135) (-501 "IBPTOOLS.spad" 840922 840939 842319 842324) (-500 "IBITS.spad" 840121 840134 840558 840585) (-499 "IBATOOL.spad" 836996 837015 840111 840116) (-498 "IBACHIN.spad" 835483 835498 836986 836991) (-497 "IARRAY2.spad" 834471 834497 835090 835117) (-496 "IARRAY1.spad" 833516 833531 833654 833681) (-495 "IAN.spad" 831729 831737 833332 833425) (-494 "IALGFACT.spad" 831330 831363 831719 831724) (-493 "HYPCAT.spad" 830754 830762 831320 831325) (-492 "HYPCAT.spad" 830176 830186 830744 830749) (-491 "HOSTNAME.spad" 829984 829992 830166 830171) (-490 "HOMOTOP.spad" 829727 829737 829974 829979) (-489 "HOAGG.spad" 826995 827005 829717 829722) (-488 "HOAGG.spad" 824038 824050 826762 826767) (-487 "HEXADEC.spad" 822140 822148 822505 822598) (-486 "HEUGCD.spad" 821155 821166 822130 822135) (-485 "HELLFDIV.spad" 820745 820769 821145 821150) (-484 "HEAP.spad" 820137 820147 820352 820379) (-483 "HEADAST.spad" 819668 819676 820127 820132) (-482 "HDP.spad" 809511 809527 809888 810019) (-481 "HDMP.spad" 806687 806702 807305 807432) (-480 "HB.spad" 804924 804932 806677 806682) (-479 "HASHTBL.spad" 803394 803425 803605 803632) (-478 "HASAST.spad" 803110 803118 803384 803389) (-477 "HACKPI.spad" 802593 802601 803012 803105) (-476 "GTSET.spad" 801532 801548 802239 802266) (-475 "GSTBL.spad" 800051 800086 800225 800240) (-474 "GSERIES.spad" 797218 797245 798183 798332) (-473 "GROUP.spad" 796487 796495 797198 797213) (-472 "GROUP.spad" 795764 795774 796477 796482) (-471 "GROEBSOL.spad" 794252 794273 795754 795759) (-470 "GRMOD.spad" 792823 792835 794242 794247) (-469 "GRMOD.spad" 791392 791406 792813 792818) (-468 "GRIMAGE.spad" 783997 784005 791382 791387) (-467 "GRDEF.spad" 782376 782384 783987 783992) (-466 "GRAY.spad" 780835 780843 782366 782371) (-465 "GRALG.spad" 779882 779894 780825 780830) (-464 "GRALG.spad" 778927 778941 779872 779877) (-463 "GPOLSET.spad" 778381 778404 778609 778636) (-462 "GOSPER.spad" 777646 777664 778371 778376) (-461 "GMODPOL.spad" 776784 776811 777614 777641) (-460 "GHENSEL.spad" 775853 775867 776774 776779) (-459 "GENUPS.spad" 771954 771967 775843 775848) (-458 "GENUFACT.spad" 771531 771541 771944 771949) (-457 "GENPGCD.spad" 771115 771132 771521 771526) (-456 "GENMFACT.spad" 770567 770586 771105 771110) (-455 "GENEEZ.spad" 768506 768519 770557 770562) (-454 "GDMP.spad" 765524 765541 766300 766427) (-453 "GCNAALG.spad" 759419 759446 765318 765385) (-452 "GCDDOM.spad" 758591 758599 759345 759414) (-451 "GCDDOM.spad" 757825 757835 758581 758586) (-450 "GB.spad" 755343 755381 757781 757786) (-449 "GBINTERN.spad" 751363 751401 755333 755338) (-448 "GBF.spad" 747120 747158 751353 751358) (-447 "GBEUCLID.spad" 744994 745032 747110 747115) (-446 "GAUSSFAC.spad" 744291 744299 744984 744989) (-445 "GALUTIL.spad" 742613 742623 744247 744252) (-444 "GALPOLYU.spad" 741059 741072 742603 742608) (-443 "GALFACTU.spad" 739224 739243 741049 741054) (-442 "GALFACT.spad" 729357 729368 739214 739219) (-441 "FVFUN.spad" 726380 726388 729347 729352) (-440 "FVC.spad" 725432 725440 726370 726375) (-439 "FUNDESC.spad" 725110 725118 725422 725427) (-438 "FUNCTION.spad" 724959 724971 725100 725105) (-437 "FT.spad" 723252 723260 724949 724954) (-436 "FTEM.spad" 722415 722423 723242 723247) (-435 "FSUPFACT.spad" 721315 721334 722351 722356) (-434 "FST.spad" 719401 719409 721305 721310) (-433 "FSRED.spad" 718879 718895 719391 719396) (-432 "FSPRMELT.spad" 717703 717719 718836 718841) (-431 "FSPECF.spad" 715780 715796 717693 717698) (-430 "FS.spad" 709842 709852 715555 715775) (-429 "FS.spad" 703682 703694 709397 709402) (-428 "FSINT.spad" 703340 703356 703672 703677) (-427 "FSERIES.spad" 702527 702539 703160 703259) (-426 "FSCINT.spad" 701840 701856 702517 702522) (-425 "FSAGG.spad" 700957 700967 701796 701835) (-424 "FSAGG.spad" 700036 700048 700877 700882) (-423 "FSAGG2.spad" 698735 698751 700026 700031) (-422 "FS2UPS.spad" 693218 693252 698725 698730) (-421 "FS2.spad" 692863 692879 693208 693213) (-420 "FS2EXPXP.spad" 691986 692009 692853 692858) (-419 "FRUTIL.spad" 690928 690938 691976 691981) (-418 "FR.spad" 684622 684632 689952 690021) (-417 "FRNAALG.spad" 679709 679719 684564 684617) (-416 "FRNAALG.spad" 674808 674820 679665 679670) (-415 "FRNAAF2.spad" 674262 674280 674798 674803) (-414 "FRMOD.spad" 673656 673686 674193 674198) (-413 "FRIDEAL.spad" 672851 672872 673636 673651) (-412 "FRIDEAL2.spad" 672453 672485 672841 672846) (-411 "FRETRCT.spad" 671964 671974 672443 672448) (-410 "FRETRCT.spad" 671341 671353 671822 671827) (-409 "FRAMALG.spad" 669669 669682 671297 671336) (-408 "FRAMALG.spad" 668029 668044 669659 669664) (-407 "FRAC.spad" 665128 665138 665531 665704) (-406 "FRAC2.spad" 664731 664743 665118 665123) (-405 "FR2.spad" 664065 664077 664721 664726) (-404 "FPS.spad" 660874 660882 663955 664060) (-403 "FPS.spad" 657711 657721 660794 660799) (-402 "FPC.spad" 656753 656761 657613 657706) (-401 "FPC.spad" 655881 655891 656743 656748) (-400 "FPATMAB.spad" 655643 655653 655871 655876) (-399 "FPARFRAC.spad" 654116 654133 655633 655638) (-398 "FORTRAN.spad" 652622 652665 654106 654111) (-397 "FORT.spad" 651551 651559 652612 652617) (-396 "FORTFN.spad" 648721 648729 651541 651546) (-395 "FORTCAT.spad" 648405 648413 648711 648716) (-394 "FORMULA.spad" 645869 645877 648395 648400) (-393 "FORMULA1.spad" 645348 645358 645859 645864) (-392 "FORDER.spad" 645039 645063 645338 645343) (-391 "FOP.spad" 644240 644248 645029 645034) (-390 "FNLA.spad" 643664 643686 644208 644235) (-389 "FNCAT.spad" 642251 642259 643654 643659) (-388 "FNAME.spad" 642143 642151 642241 642246) (-387 "FMTC.spad" 641941 641949 642069 642138) (-386 "FMONOID.spad" 638996 639006 641897 641902) (-385 "FM.spad" 638691 638703 638930 638957) (-384 "FMFUN.spad" 635721 635729 638681 638686) (-383 "FMC.spad" 634773 634781 635711 635716) (-382 "FMCAT.spad" 632427 632445 634741 634768) (-381 "FM1.spad" 631784 631796 632361 632388) (-380 "FLOATRP.spad" 629505 629519 631774 631779) (-379 "FLOAT.spad" 622793 622801 629371 629500) (-378 "FLOATCP.spad" 620210 620224 622783 622788) (-377 "FLINEXP.spad" 619922 619932 620190 620205) (-376 "FLINEXP.spad" 619588 619600 619858 619863) (-375 "FLASORT.spad" 618908 618920 619578 619583) (-374 "FLALG.spad" 616554 616573 618834 618903) (-373 "FLAGG.spad" 613572 613582 616534 616549) (-372 "FLAGG.spad" 610491 610503 613455 613460) (-371 "FLAGG2.spad" 609172 609188 610481 610486) (-370 "FINRALG.spad" 607201 607214 609128 609167) (-369 "FINRALG.spad" 605156 605171 607085 607090) (-368 "FINITE.spad" 604308 604316 605146 605151) (-367 "FINAALG.spad" 593289 593299 604250 604303) (-366 "FINAALG.spad" 582282 582294 593245 593250) (-365 "FILE.spad" 581865 581875 582272 582277) (-364 "FILECAT.spad" 580383 580400 581855 581860) (-363 "FIELD.spad" 579789 579797 580285 580378) (-362 "FIELD.spad" 579281 579291 579779 579784) (-361 "FGROUP.spad" 577890 577900 579261 579276) (-360 "FGLMICPK.spad" 576677 576692 577880 577885) (-359 "FFX.spad" 576052 576067 576393 576486) (-358 "FFSLPE.spad" 575541 575562 576042 576047) (-357 "FFPOLY.spad" 566793 566804 575531 575536) (-356 "FFPOLY2.spad" 565853 565870 566783 566788) (-355 "FFP.spad" 565250 565270 565569 565662) (-354 "FF.spad" 564698 564714 564931 565024) (-353 "FFNBX.spad" 563210 563230 564414 564507) (-352 "FFNBP.spad" 561723 561740 562926 563019) (-351 "FFNB.spad" 560188 560209 561404 561497) (-350 "FFINTBAS.spad" 557602 557621 560178 560183) (-349 "FFIELDC.spad" 555177 555185 557504 557597) (-348 "FFIELDC.spad" 552838 552848 555167 555172) (-347 "FFHOM.spad" 551586 551603 552828 552833) (-346 "FFF.spad" 549021 549032 551576 551581) (-345 "FFCGX.spad" 547868 547888 548737 548830) (-344 "FFCGP.spad" 546757 546777 547584 547677) (-343 "FFCG.spad" 545549 545570 546438 546531) (-342 "FFCAT.spad" 538576 538598 545388 545544) (-341 "FFCAT.spad" 531682 531706 538496 538501) (-340 "FFCAT2.spad" 531427 531467 531672 531677) (-339 "FEXPR.spad" 523136 523182 531183 531222) (-338 "FEVALAB.spad" 522842 522852 523126 523131) (-337 "FEVALAB.spad" 522333 522345 522619 522624) (-336 "FDIV.spad" 521775 521799 522323 522328) (-335 "FDIVCAT.spad" 519817 519841 521765 521770) (-334 "FDIVCAT.spad" 517857 517883 519807 519812) (-333 "FDIV2.spad" 517511 517551 517847 517852) (-332 "FCPAK1.spad" 516064 516072 517501 517506) (-331 "FCOMP.spad" 515443 515453 516054 516059) (-330 "FC.spad" 505358 505366 515433 515438) (-329 "FAXF.spad" 498293 498307 505260 505353) (-328 "FAXF.spad" 491280 491296 498249 498254) (-327 "FARRAY.spad" 489426 489436 490463 490490) (-326 "FAMR.spad" 487546 487558 489324 489421) (-325 "FAMR.spad" 485650 485664 487430 487435) (-324 "FAMONOID.spad" 485300 485310 485604 485609) (-323 "FAMONC.spad" 483522 483534 485290 485295) (-322 "FAGROUP.spad" 483128 483138 483418 483445) (-321 "FACUTIL.spad" 481324 481341 483118 483123) (-320 "FACTFUNC.spad" 480500 480510 481314 481319) (-319 "EXPUPXS.spad" 477333 477356 478632 478781) (-318 "EXPRTUBE.spad" 474561 474569 477323 477328) (-317 "EXPRODE.spad" 471433 471449 474551 474556) (-316 "EXPR.spad" 466708 466718 467422 467829) (-315 "EXPR2UPS.spad" 462800 462813 466698 466703) (-314 "EXPR2.spad" 462503 462515 462790 462795) (-313 "EXPEXPAN.spad" 459441 459466 460075 460168) (-312 "EXIT.spad" 459112 459120 459431 459436) (-311 "EXITAST.spad" 458848 458856 459102 459107) (-310 "EVALCYC.spad" 458306 458320 458838 458843) (-309 "EVALAB.spad" 457870 457880 458296 458301) (-308 "EVALAB.spad" 457432 457444 457860 457865) (-307 "EUCDOM.spad" 454974 454982 457358 457427) (-306 "EUCDOM.spad" 452578 452588 454964 454969) (-305 "ESTOOLS.spad" 444418 444426 452568 452573) (-304 "ESTOOLS2.spad" 444019 444033 444408 444413) (-303 "ESTOOLS1.spad" 443704 443715 444009 444014) (-302 "ES.spad" 436251 436259 443694 443699) (-301 "ES.spad" 428704 428714 436149 436154) (-300 "ESCONT.spad" 425477 425485 428694 428699) (-299 "ESCONT1.spad" 425226 425238 425467 425472) (-298 "ES2.spad" 424721 424737 425216 425221) (-297 "ES1.spad" 424287 424303 424711 424716) (-296 "ERROR.spad" 421608 421616 424277 424282) (-295 "EQTBL.spad" 420080 420102 420289 420316) (-294 "EQ.spad" 414954 414964 417753 417865) (-293 "EQ2.spad" 414670 414682 414944 414949) (-292 "EP.spad" 410984 410994 414660 414665) (-291 "ENV.spad" 409660 409668 410974 410979) (-290 "ENTIRER.spad" 409328 409336 409604 409655) (-289 "EMR.spad" 408529 408570 409254 409323) (-288 "ELTAGG.spad" 406769 406788 408519 408524) (-287 "ELTAGG.spad" 404973 404994 406725 406730) (-286 "ELTAB.spad" 404420 404438 404963 404968) (-285 "ELFUTS.spad" 403799 403818 404410 404415) (-284 "ELEMFUN.spad" 403488 403496 403789 403794) (-283 "ELEMFUN.spad" 403175 403185 403478 403483) (-282 "ELAGG.spad" 401118 401128 403155 403170) (-281 "ELAGG.spad" 398998 399010 401037 401042) (-280 "ELABEXPR.spad" 397921 397929 398988 398993) (-279 "EFUPXS.spad" 394697 394727 397877 397882) (-278 "EFULS.spad" 391533 391556 394653 394658) (-277 "EFSTRUC.spad" 389488 389504 391523 391528) (-276 "EF.spad" 384254 384270 389478 389483) (-275 "EAB.spad" 382530 382538 384244 384249) (-274 "E04UCFA.spad" 382066 382074 382520 382525) (-273 "E04NAFA.spad" 381643 381651 382056 382061) (-272 "E04MBFA.spad" 381223 381231 381633 381638) (-271 "E04JAFA.spad" 380759 380767 381213 381218) (-270 "E04GCFA.spad" 380295 380303 380749 380754) (-269 "E04FDFA.spad" 379831 379839 380285 380290) (-268 "E04DGFA.spad" 379367 379375 379821 379826) (-267 "E04AGNT.spad" 375209 375217 379357 379362) (-266 "DVARCAT.spad" 371894 371904 375199 375204) (-265 "DVARCAT.spad" 368577 368589 371884 371889) (-264 "DSMP.spad" 366008 366022 366313 366440) (-263 "DROPT.spad" 359953 359961 365998 366003) (-262 "DROPT1.spad" 359616 359626 359943 359948) (-261 "DROPT0.spad" 354443 354451 359606 359611) (-260 "DRAWPT.spad" 352598 352606 354433 354438) (-259 "DRAW.spad" 345198 345211 352588 352593) (-258 "DRAWHACK.spad" 344506 344516 345188 345193) (-257 "DRAWCX.spad" 341948 341956 344496 344501) (-256 "DRAWCURV.spad" 341485 341500 341938 341943) (-255 "DRAWCFUN.spad" 330657 330665 341475 341480) (-254 "DQAGG.spad" 328825 328835 330625 330652) (-253 "DPOLCAT.spad" 324166 324182 328693 328820) (-252 "DPOLCAT.spad" 319593 319611 324122 324127) (-251 "DPMO.spad" 311819 311835 311957 312258) (-250 "DPMM.spad" 304058 304076 304183 304484) (-249 "DOMCTOR.spad" 303950 303958 304048 304053) (-248 "DOMAIN.spad" 303081 303089 303940 303945) (-247 "DMP.spad" 300303 300318 300875 301002) (-246 "DLP.spad" 299651 299661 300293 300298) (-245 "DLIST.spad" 298230 298240 298834 298861) (-244 "DLAGG.spad" 296641 296651 298220 298225) (-243 "DIVRING.spad" 296183 296191 296585 296636) (-242 "DIVRING.spad" 295769 295779 296173 296178) (-241 "DISPLAY.spad" 293949 293957 295759 295764) (-240 "DIRPROD.spad" 283529 283545 284169 284300) (-239 "DIRPROD2.spad" 282337 282355 283519 283524) (-238 "DIRPCAT.spad" 281279 281295 282201 282332) (-237 "DIRPCAT.spad" 279950 279968 280874 280879) (-236 "DIOSP.spad" 278775 278783 279940 279945) (-235 "DIOPS.spad" 277759 277769 278755 278770) (-234 "DIOPS.spad" 276717 276729 277715 277720) (-233 "DIFRING.spad" 276009 276017 276697 276712) (-232 "DIFRING.spad" 275309 275319 275999 276004) (-231 "DIFEXT.spad" 274468 274478 275289 275304) (-230 "DIFEXT.spad" 273544 273556 274367 274372) (-229 "DIAGG.spad" 273174 273184 273524 273539) (-228 "DIAGG.spad" 272812 272824 273164 273169) (-227 "DHMATRIX.spad" 271116 271126 272269 272296) (-226 "DFSFUN.spad" 264524 264532 271106 271111) (-225 "DFLOAT.spad" 261245 261253 264414 264519) (-224 "DFINTTLS.spad" 259454 259470 261235 261240) (-223 "DERHAM.spad" 257364 257396 259434 259449) (-222 "DEQUEUE.spad" 256682 256692 256971 256998) (-221 "DEGRED.spad" 256297 256311 256672 256677) (-220 "DEFINTRF.spad" 253822 253832 256287 256292) (-219 "DEFINTEF.spad" 252318 252334 253812 253817) (-218 "DEFAST.spad" 251686 251694 252308 252313) (-217 "DECIMAL.spad" 249792 249800 250153 250246) (-216 "DDFACT.spad" 247591 247608 249782 249787) (-215 "DBLRESP.spad" 247189 247213 247581 247586) (-214 "DBASE.spad" 245843 245853 247179 247184) (-213 "DATAARY.spad" 245305 245318 245833 245838) (-212 "D03FAFA.spad" 245133 245141 245295 245300) (-211 "D03EEFA.spad" 244953 244961 245123 245128) (-210 "D03AGNT.spad" 244033 244041 244943 244948) (-209 "D02EJFA.spad" 243495 243503 244023 244028) (-208 "D02CJFA.spad" 242973 242981 243485 243490) (-207 "D02BHFA.spad" 242463 242471 242963 242968) (-206 "D02BBFA.spad" 241953 241961 242453 242458) (-205 "D02AGNT.spad" 236757 236765 241943 241948) (-204 "D01WGTS.spad" 235076 235084 236747 236752) (-203 "D01TRNS.spad" 235053 235061 235066 235071) (-202 "D01GBFA.spad" 234575 234583 235043 235048) (-201 "D01FCFA.spad" 234097 234105 234565 234570) (-200 "D01ASFA.spad" 233565 233573 234087 234092) (-199 "D01AQFA.spad" 233011 233019 233555 233560) (-198 "D01APFA.spad" 232435 232443 233001 233006) (-197 "D01ANFA.spad" 231929 231937 232425 232430) (-196 "D01AMFA.spad" 231439 231447 231919 231924) (-195 "D01ALFA.spad" 230979 230987 231429 231434) (-194 "D01AKFA.spad" 230505 230513 230969 230974) (-193 "D01AJFA.spad" 230028 230036 230495 230500) (-192 "D01AGNT.spad" 226087 226095 230018 230023) (-191 "CYCLOTOM.spad" 225593 225601 226077 226082) (-190 "CYCLES.spad" 222425 222433 225583 225588) (-189 "CVMP.spad" 221842 221852 222415 222420) (-188 "CTRIGMNP.spad" 220332 220348 221832 221837) (-187 "CTOR.spad" 220023 220031 220322 220327) (-186 "CTORKIND.spad" 219626 219634 220013 220018) (-185 "CTORCAT.spad" 218875 218883 219616 219621) (-184 "CTORCAT.spad" 218122 218132 218865 218870) (-183 "CTORCALL.spad" 217702 217710 218112 218117) (-182 "CSTTOOLS.spad" 216945 216958 217692 217697) (-181 "CRFP.spad" 210649 210662 216935 216940) (-180 "CRCEAST.spad" 210369 210377 210639 210644) (-179 "CRAPACK.spad" 209412 209422 210359 210364) (-178 "CPMATCH.spad" 208912 208927 209337 209342) (-177 "CPIMA.spad" 208617 208636 208902 208907) (-176 "COORDSYS.spad" 203510 203520 208607 208612) (-175 "CONTOUR.spad" 202921 202929 203500 203505) (-174 "CONTFRAC.spad" 198533 198543 202823 202916) (-173 "CONDUIT.spad" 198291 198299 198523 198528) (-172 "COMRING.spad" 197965 197973 198229 198286) (-171 "COMPPROP.spad" 197479 197487 197955 197960) (-170 "COMPLPAT.spad" 197246 197261 197469 197474) (-169 "COMPLEX.spad" 191270 191280 191514 191775) (-168 "COMPLEX2.spad" 190983 190995 191260 191265) (-167 "COMPFACT.spad" 190585 190599 190973 190978) (-166 "COMPCAT.spad" 188653 188663 190319 190580) (-165 "COMPCAT.spad" 186414 186426 188082 188087) (-164 "COMMUPC.spad" 186160 186178 186404 186409) (-163 "COMMONOP.spad" 185693 185701 186150 186155) (-162 "COMM.spad" 185502 185510 185683 185688) (-161 "COMMAAST.spad" 185265 185273 185492 185497) (-160 "COMBOPC.spad" 184170 184178 185255 185260) (-159 "COMBINAT.spad" 182915 182925 184160 184165) (-158 "COMBF.spad" 180283 180299 182905 182910) (-157 "COLOR.spad" 179120 179128 180273 180278) (-156 "COLONAST.spad" 178786 178794 179110 179115) (-155 "CMPLXRT.spad" 178495 178512 178776 178781) (-154 "CLLCTAST.spad" 178157 178165 178485 178490) (-153 "CLIP.spad" 174249 174257 178147 178152) (-152 "CLIF.spad" 172888 172904 174205 174244) (-151 "CLAGG.spad" 169373 169383 172878 172883) (-150 "CLAGG.spad" 165729 165741 169236 169241) (-149 "CINTSLPE.spad" 165054 165067 165719 165724) (-148 "CHVAR.spad" 163132 163154 165044 165049) (-147 "CHARZ.spad" 163047 163055 163112 163127) (-146 "CHARPOL.spad" 162555 162565 163037 163042) (-145 "CHARNZ.spad" 162308 162316 162535 162550) (-144 "CHAR.spad" 160176 160184 162298 162303) (-143 "CFCAT.spad" 159492 159500 160166 160171) (-142 "CDEN.spad" 158650 158664 159482 159487) (-141 "CCLASS.spad" 156799 156807 158061 158100) (-140 "CATEGORY.spad" 155889 155897 156789 156794) (-139 "CATCTOR.spad" 155780 155788 155879 155884) (-138 "CATAST.spad" 155398 155406 155770 155775) (-137 "CASEAST.spad" 155112 155120 155388 155393) (-136 "CARTEN.spad" 150215 150239 155102 155107) (-135 "CARTEN2.spad" 149601 149628 150205 150210) (-134 "CARD.spad" 146890 146898 149575 149596) (-133 "CAPSLAST.spad" 146664 146672 146880 146885) (-132 "CACHSET.spad" 146286 146294 146654 146659) (-131 "CABMON.spad" 145839 145847 146276 146281) (-130 "BYTEORD.spad" 145514 145522 145829 145834) (-129 "BYTE.spad" 144939 144947 145504 145509) (-128 "BYTEBUF.spad" 142796 142804 144108 144135) (-127 "BTREE.spad" 141865 141875 142403 142430) (-126 "BTOURN.spad" 140868 140878 141472 141499) (-125 "BTCAT.spad" 140256 140266 140836 140863) (-124 "BTCAT.spad" 139664 139676 140246 140251) (-123 "BTAGG.spad" 138786 138794 139632 139659) (-122 "BTAGG.spad" 137928 137938 138776 138781) (-121 "BSTREE.spad" 136663 136673 137535 137562) (-120 "BRILL.spad" 134858 134869 136653 136658) (-119 "BRAGG.spad" 133782 133792 134848 134853) (-118 "BRAGG.spad" 132670 132682 133738 133743) (-117 "BPADICRT.spad" 130651 130663 130906 130999) (-116 "BPADIC.spad" 130315 130327 130577 130646) (-115 "BOUNDZRO.spad" 129971 129988 130305 130310) (-114 "BOP.spad" 124996 125004 129961 129966) (-113 "BOP1.spad" 122382 122392 124952 124957) (-112 "BOOLEAN.spad" 121706 121714 122372 122377) (-111 "BMODULE.spad" 121418 121430 121674 121701) (-110 "BITS.spad" 120837 120845 121054 121081) (-109 "BINDING.spad" 120256 120264 120827 120832) (-108 "BINARY.spad" 118367 118375 118723 118816) (-107 "BGAGG.spad" 117564 117574 118347 118362) (-106 "BGAGG.spad" 116769 116781 117554 117559) (-105 "BFUNCT.spad" 116333 116341 116749 116764) (-104 "BEZOUT.spad" 115467 115494 116283 116288) (-103 "BBTREE.spad" 112286 112296 115074 115101) (-102 "BASTYPE.spad" 111958 111966 112276 112281) (-101 "BASTYPE.spad" 111628 111638 111948 111953) (-100 "BALFACT.spad" 111067 111080 111618 111623) (-99 "AUTOMOR.spad" 110514 110523 111047 111062) (-98 "ATTREG.spad" 107233 107240 110266 110509) (-97 "ATTRBUT.spad" 103256 103263 107213 107228) (-96 "ATTRAST.spad" 102973 102980 103246 103251) (-95 "ATRIG.spad" 102443 102450 102963 102968) (-94 "ATRIG.spad" 101911 101920 102433 102438) (-93 "ASTCAT.spad" 101815 101822 101901 101906) (-92 "ASTCAT.spad" 101717 101726 101805 101810) (-91 "ASTACK.spad" 101050 101059 101324 101351) (-90 "ASSOCEQ.spad" 99850 99861 101006 101011) (-89 "ASP9.spad" 98931 98944 99840 99845) (-88 "ASP8.spad" 97974 97987 98921 98926) (-87 "ASP80.spad" 97296 97309 97964 97969) (-86 "ASP7.spad" 96456 96469 97286 97291) (-85 "ASP78.spad" 95907 95920 96446 96451) (-84 "ASP77.spad" 95276 95289 95897 95902) (-83 "ASP74.spad" 94368 94381 95266 95271) (-82 "ASP73.spad" 93639 93652 94358 94363) (-81 "ASP6.spad" 92506 92519 93629 93634) (-80 "ASP55.spad" 91015 91028 92496 92501) (-79 "ASP50.spad" 88832 88845 91005 91010) (-78 "ASP4.spad" 88127 88140 88822 88827) (-77 "ASP49.spad" 87126 87139 88117 88122) (-76 "ASP42.spad" 85533 85572 87116 87121) (-75 "ASP41.spad" 84112 84151 85523 85528) (-74 "ASP35.spad" 83100 83113 84102 84107) (-73 "ASP34.spad" 82401 82414 83090 83095) (-72 "ASP33.spad" 81961 81974 82391 82396) (-71 "ASP31.spad" 81101 81114 81951 81956) (-70 "ASP30.spad" 79993 80006 81091 81096) (-69 "ASP29.spad" 79459 79472 79983 79988) (-68 "ASP28.spad" 70732 70745 79449 79454) (-67 "ASP27.spad" 69629 69642 70722 70727) (-66 "ASP24.spad" 68716 68729 69619 69624) (-65 "ASP20.spad" 68180 68193 68706 68711) (-64 "ASP1.spad" 67561 67574 68170 68175) (-63 "ASP19.spad" 62247 62260 67551 67556) (-62 "ASP12.spad" 61661 61674 62237 62242) (-61 "ASP10.spad" 60932 60945 61651 61656) (-60 "ARRAY2.spad" 60292 60301 60539 60566) (-59 "ARRAY1.spad" 59127 59136 59475 59502) (-58 "ARRAY12.spad" 57796 57807 59117 59122) (-57 "ARR2CAT.spad" 53458 53479 57764 57791) (-56 "ARR2CAT.spad" 49140 49163 53448 53453) (-55 "ARITY.spad" 48512 48519 49130 49135) (-54 "APPRULE.spad" 47756 47778 48502 48507) (-53 "APPLYORE.spad" 47371 47384 47746 47751) (-52 "ANY.spad" 45713 45720 47361 47366) (-51 "ANY1.spad" 44784 44793 45703 45708) (-50 "ANTISYM.spad" 43223 43239 44764 44779) (-49 "ANON.spad" 42916 42923 43213 43218) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 35cd3c38..9596063d 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,79 +1,79 @@ -(162182 . 3451054390) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) -((((-564)) . T) (($) -4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T)) +(162119 . 3451299473) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) +((((-564)) . T) (($) -2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-564)) . T)) -((($ $) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564))))) +((($ $) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564))))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#2|) . T)) -((($) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -(|has| |#1| (-906)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((($) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +(|has| |#1| (-905)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((($) . T) (((-407 (-564))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-144)) . T)) -((((-536)) . T) (((-1152)) . T) (((-225)) . T) (((-379)) . T) (((-889 (-379))) . T)) +((((-536)) . T) (((-1152)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) (((|#1|) . T)) -((((-225)) . T) (((-859)) . T)) +((((-225)) . T) (((-858)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) -((($ $) . T) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -(-4078 (|has| |#1| (-817)) (|has| |#1| (-847))) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-845)) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) +((($ $) . T) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) +(-2789 (|has| |#1| (-816)) (|has| |#1| (-846))) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(|has| |#1| (-844)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#2| |#3|) . T)) ((((-1175)) . T)) -((((-564)) . T) (((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-859)) . T)) +((((-564)) . T) (((-866 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((($) . T) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-858)) . T)) ((((-1175)) . T)) (((|#4|) . T)) -((((-859)) . T)) -((((-859)) |has| |#1| (-1094))) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T)) +((((-858)) |has| |#1| (-1094))) +((((-858)) . T) (((-1175)) . T)) (((|#1|) . T) ((|#2|) . T)) ((((-1175)) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(((|#2| (-482 (-2828 |#1|) (-768))) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(((|#2| (-482 (-2059 |#1|) (-767))) . T)) (((|#1| (-531 (-1170))) . T)) -(((#0=(-867 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -((((-1152)) . T) (((-955 (-129))) . T) (((-859)) . T)) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(((#0=(-866 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((((-1152)) . T) (((-954 (-129))) . T) (((-858)) . T)) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (|has| |#4| (-368)) (|has| |#3| (-368)) (((|#1|) . T)) ((((-1170)) . T)) ((((-506)) . T)) -((((-867 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-866 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-556)) -((((-564)) . T) (((-407 (-564))) -4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-2 (|:| -1468 |#1|) (|:| -1558 |#2|))) . T)) +((((-564)) . T) (((-407 (-564))) -2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +((((-2 (|:| -1998 |#1|) (|:| -3866 |#2|))) . T)) ((($) . T)) -((((-564)) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1170)) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-564)) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1170)) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) ((((-1170)) . T)) ((((-564)) . T) (($) . T)) @@ -81,69 +81,69 @@ ((($) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -((((-859)) . T)) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -(((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) (((|#1| |#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) (((|#1|) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) (((|#2|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) ((($ $) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-368)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) (((|#1| |#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-556)) (((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|)))) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) ((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (|has| |#1| (-1094)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (|has| |#1| (-1094)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -(|has| |#1| (-845)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +(|has| |#1| (-844)) ((($) . T) (((-407 (-564))) . T)) (((|#1|) . T)) ((((-564) (-129)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((((-129)) . T)) ((((-1175)) . T)) -(-4078 (|has| |#4| (-790)) (|has| |#4| (-845))) -(-4078 (|has| |#4| (-790)) (|has| |#4| (-845))) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) +(-2789 (|has| |#4| (-789)) (|has| |#4| (-844))) +(-2789 (|has| |#4| (-789)) (|has| |#4| (-844))) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-1094)) @@ -152,38 +152,38 @@ ((((-564) |#1|) . T)) ((((-564)) . T)) ((((-564)) . T)) -((((-907 |#1|)) . T)) +((((-906 |#1|)) . T)) (((|#1| (-531 |#2|)) . T)) ((((-564)) . T)) ((((-564)) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(((|#1| (-768)) . T)) -(|has| |#2| (-790)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -(|has| |#2| (-845)) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1| (-767)) . T)) +(|has| |#2| (-789)) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +(|has| |#2| (-844)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-1152) |#1|) . T)) ((((-564) (-129)) . T)) (((|#1|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -(((|#3| (-768)) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +(((|#3| (-767)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-1094)) ((((-407 (-564))) . T) (((-564)) . T)) -((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -((((-564)) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#2|) . T)) +((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +((((-564)) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#2|) . T)) ((((-1170) |#2|) |has| |#2| (-514 (-1170) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|))) ((((-407 (-564))) . T) (((-564)) . T)) -((((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) +((((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (((|#1|) . T) (($) . T)) ((((-564)) . T)) ((((-564)) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) ((((-564)) . T)) ((((-564)) . T)) (((#0=(-695) (-1166 #0#)) . T)) @@ -195,290 +195,290 @@ ((($) . T) (((-564)) . T) (((-407 (-564))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-1152) |#1|) . T)) (((|#3| |#3|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046)))) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-564) |#1|) . T)) -((((-859)) . T)) -((((-169 (-225))) |has| |#1| (-1019)) (((-169 (-379))) |has| |#1| (-1019)) (((-536)) |has| |#1| (-612 (-536))) (((-1166 |#1|)) . T) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379))))) +((((-858)) . T)) +((((-169 (-225))) |has| |#1| (-1018)) (((-169 (-379))) |has| |#1| (-1018)) (((-536)) |has| |#1| (-612 (-536))) (((-1166 |#1|)) . T) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379))))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) (|has| |#1| (-363)) -((((-859)) . T)) +((((-858)) . T)) ((((-129)) . T)) -(-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) -(-4078 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +(-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) +(-2789 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) (((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -(((|#2|) . T) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) (|has| |#1| (-556)) -((((-564)) -4078 (|has| |#4| (-172)) (|has| |#4| (-845)) (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046))) ((|#4|) -4078 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094)))) -((((-564)) -4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) +((((-564)) -2789 (|has| |#4| (-172)) (|has| |#4| (-844)) (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1045))) ((|#4|) -2789 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094)))) +((((-564)) -2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045))) ((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (|has| |#1| (-556)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (((|#1|) . T)) (|has| |#1| (-556)) (|has| |#1| (-556)) (|has| |#1| (-556)) ((((-695)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-999)) (|has| |#1| (-1194))) +(-12 (|has| |#1| (-998)) (|has| |#1| (-1194))) (((|#2|) . T) (($) . T) (((-407 (-564))) . T)) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))) ((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -(((|#4| |#4|) -4078 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($ $) |has| |#4| (-172))) -(((|#3| |#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172))) +(((|#4| |#4|) -2789 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172))) (((|#1|) . T)) (((|#2|) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) -((((-859)) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564))))) +((((-858)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -1468 |#1|) (|:| -1558 |#2|))) . T) (((-859)) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564))))) -(((|#4|) -4078 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($) |has| |#4| (-172))) -(((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172))) -((((-2 (|:| -1468 |#1|) (|:| -1558 |#2|))) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-2 (|:| -1998 |#1|) (|:| -3866 |#2|))) . T) (((-858)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564))))) +(((|#4|) -2789 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($) |has| |#4| (-172))) +(((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172))) +((((-2 (|:| -1998 |#1|) (|:| -3866 |#2|))) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) ((((-641 |#1|)) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) ((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) ((((-407 $) (-407 $)) |has| |#2| (-556)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) . T)) (((|#1|) . T)) -(|has| |#2| (-906)) +(|has| |#2| (-905)) ((((-1152) (-52)) . T)) ((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T)) -((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-889 (-379))) . T)) -((((-859)) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) +((((-858)) . T)) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) (((|#1|) |has| |#1| (-172))) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-407 (-564))) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) -(|has| |#1| (-847)) -(((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T)) +((((-858)) . T)) +(|has| |#1| (-846)) +(((|#2|) . T) (((-564)) . T) (((-815 |#1|)) . T)) (|has| |#1| (-1094)) (((|#1|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) . T) (((-1175)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-858)) . T) (((-1175)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) ((((-1175)) . T)) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-233)) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1| (-531 (-815 (-1170)))) . T)) -(((|#1| (-968)) . T)) -(((#0=(-867 |#1|) $) |has| #0# (-286 #0# #0#))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1| (-531 (-814 (-1170)))) . T)) +(((|#1| (-967)) . T)) +(((#0=(-866 |#1|) $) |has| #0# (-286 #0# #0#))) ((((-564) |#4|) . T)) ((((-564) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (|has| |#1| (-1145)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-147)) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1|) |has| |#1| (-172))) -((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) +((((-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (|has| |#1| (-1094)) ((((-1152) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-815 (-1170))) . T) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T)) +((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-814 (-1170))) . T) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-1170)) . T)) (|has| |#2| (-368)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1046))) -((((-859)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#2|) |has| |#2| (-1045))) +((((-858)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (((|#1|) . T)) -((((-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) #0#) |has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))))) -((((-859)) . T)) +((((-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) #0#) |has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))))) +((((-858)) . T)) ((((-564) |#1|) . T)) -((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379))))) (((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) +((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379))))) (((-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) ((($) . T)) -((((-859)) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) +((((-858)) . T)) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) -((((-859)) . T)) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) +((((-858)) . T)) (|has| (-1244 |#2| |#3| |#4|) (-147)) (|has| (-1244 |#2| |#3| |#4|) (-145)) -(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T)) (|has| |#1| (-1094)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) (((|#1|) . T)) ((((-564) |#1|) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) -((((-859)) |has| |#1| (-1094))) -(-4078 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-907 |#1|)) . T)) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) +((((-858)) |has| |#1| (-1094))) +(-2789 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-906 |#1|)) . T)) ((((-407 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-564) |#1|))) ((((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-847)) +(|has| |#1| (-846)) (((|#1|) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) ((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) (|has| |#1| (-363)) -(-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) +(-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) ((((-564)) . T)) -(|has| |#1| (-15 * (|#1| (-768) |#1|))) -((((-1136 |#2| (-407 (-949 |#1|)))) . T) (((-407 (-949 |#1|))) . T)) +(|has| |#1| (-15 * (|#1| (-767) |#1|))) +((((-1136 |#2| (-407 (-948 |#1|)))) . T) (((-407 (-948 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) (((|#1|) . T)) ((((-564) |#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) . T)) -(-4078 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-2789 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) ((($) |has| |#1| (-556)) (((-564)) . T)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -((((-1251 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) -((((-1255 |#2|)) . T) (((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +((((-1251 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) +((((-1255 |#2|)) . T) (((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T)) (((|#1|) . T)) -((((-1170)) -12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) +((((-1170)) -12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) -(-4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556)))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +(-2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556)))) ((($ $) |has| |#1| (-556))) (((#0=(-695) (-1166 #0#)) . T)) -((((-859)) . T) (((-1259 |#4|)) . T)) -((((-859)) . T) (((-1259 |#3|)) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((((-858)) . T) (((-1259 |#4|)) . T)) +((((-858)) . T) (((-1259 |#3|)) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556)))) ((($) |has| |#1| (-556))) -((((-859)) . T)) -((($) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1251 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -(((|#3|) |has| |#3| (-1046))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) +((($) . T)) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1251 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) +(((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +(((|#3|) |has| |#3| (-1045))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-1094)) -(((|#2| (-816 |#1|)) . T)) +(((|#2| (-815 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-363)) ((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) (((#0=(-1076) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-859)) . T)) -((((-907 |#1|)) . T)) +((((-858)) . T)) +((((-906 |#1|)) . T)) ((((-144)) . T)) ((((-144)) . T)) -(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) (|has| |#1| (-363)) ((((-1175)) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) ((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(|has| |#2| (-817)) +(|has| |#2| (-816)) (|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-845)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(|has| |#1| (-844)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-536)) |has| |#1| (-612 (-536)))) (((|#1| |#2|) . T)) -((((-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) +((((-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) ((((-1152) |#1|) . T)) (((|#1| |#2| |#3| (-531 |#3|)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (|has| |#1| (-368)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((((-564)) . T)) ((((-564)) . T)) (((|#1|) . T) (((-564)) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -((((-859)) . T)) -((((-859)) . T)) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +((((-858)) . T)) +((((-858)) . T)) (((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1046))) -((((-1170) #0=(-867 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) +((((-1170) #0=(-866 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) (((|#1|) . T)) ((((-564) |#4|) . T)) ((((-564) |#3|) . T)) (((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) ((((-407 (-564))) . T) (((-564)) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) @@ -489,103 +489,103 @@ ((((-564)) . T)) ((($) . T) (((-564)) . T) (((-407 (-564))) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((((-564)) -4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +((((-564)) -2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) |has| |#1| (-556))) ((((-564) |#4|) . T)) ((((-564) |#3|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) ((($ $) . T) ((#0=(-1170) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-172))) -((($) -4078 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -(((|#2| |#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172))) +((($) -2789 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +(((|#2| |#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) ((((-144)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-368)) (|has| |#2| (-368))) -((((-859)) . T)) -(((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172))) +((((-858)) . T)) +(((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-1094)) (|has| $ (-147)) ((((-1175)) . T)) ((((-564) |#1|) . T)) -((($) -4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) +((($) -2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (|has| |#1| (-363)) -(-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) +(-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-768) |#1|))) +(|has| |#1| (-15 * (|#1| (-767) |#1|))) (((|#1|) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((((-859)) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((((-858)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -(((|#2| (-531 (-861 |#1|))) . T)) -((((-859)) . T)) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +(((|#2| (-531 (-860 |#1|))) . T)) +((((-858)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((((-581 |#1|)) . T)) ((($) . T)) ((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) (((|#1|) . T) (($) . T)) ((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-1168 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) -((((-1255 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((((-1168 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) +((((-1255 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) (((|#4|) . T)) (((|#3|) . T)) -((((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-866 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T)) -((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) +((((-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-564)) . T) (((-407 (-564))) -4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-564)) . T) (((-407 (-564))) -2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) ((((-564) |#2|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1168 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) -(((|#2|) |has| |#2| (-1046))) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1168 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) +(((|#2|) |has| |#2| (-1045))) (|has| |#1| (-1094)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) +(((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) -((((-859)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) +((((-858)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) (((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) ((($) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#2|) |has| |#1| (-363))) ((((-564) |#1|) . T)) ((((-1175)) . T)) @@ -594,7 +594,7 @@ ((((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-407 |#2|) |#3|) . T)) (((|#1| (-407 (-564))) . T)) ((((-407 (-564))) . T) (($) . T)) @@ -602,44 +602,44 @@ (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-1175)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((((-407 (-564))) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T)) -(((|#2| |#3| (-861 |#1|)) . T)) -((((-1170)) |has| |#2| (-897 (-1170)))) +(((|#2| |#3| (-860 |#1|)) . T)) +((((-1170)) |has| |#2| (-896 (-1170)))) (((|#1|) . T)) (((|#1| (-531 |#2|) |#2|) . T)) -(((|#1| (-768) (-1076)) . T)) +(((|#1| (-767) (-1076)) . T)) ((((-407 (-564))) |has| |#2| (-363)) (($) . T)) (((|#1| (-531 (-1082 (-1170))) (-1082 (-1170))) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((|#1|) . T)) -((((-996 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4078 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(|has| |#2| (-790)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) +((((-995 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2789 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(|has| |#2| (-789)) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -(|has| |#2| (-845)) -((((-890 |#1|)) . T) (((-816 |#1|)) . T)) -((((-816 (-1170))) . T)) +(|has| |#2| (-844)) +((((-889 |#1|)) . T) (((-815 |#1|)) . T)) +((((-815 (-1170))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-641 (-564))) . T)) -((((-641 (-564))) . T) (((-859)) . T)) -((((-407 (-564))) . T) (((-859)) . T)) -((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-641 (-564))) . T) (((-858)) . T)) +((((-407 (-564))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) (|has| |#1| (-233)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) @@ -654,77 +654,76 @@ (((|#1|) . T)) ((((-1134 |#1| |#2|)) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|)))) (((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) -(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) (((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (((|#2|) . T)) -((((-859)) -4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T)) +((((-858)) -2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) ((((-564)) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((((-564) (-144)) . T)) -((($) -4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046)))) +((($) -2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) ((((-564)) . T)) (((|#1|) . T) ((|#2|) . T) (((-564)) . T)) -((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-564)) . T)) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) (((|#1|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) (((|#2|) |has| |#1| (-363))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-1175)) . T)) (((|#1| (-531 #0=(-1170)) #0#) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-172)) (|has| |#3| (-172)) -(((#0=(-407 (-949 |#1|)) #0#) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(((#0=(-407 (-948 |#1|)) #0#) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (|has| |#1| (-1094)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (|has| |#1| (-1094)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((((-859)) . T) (((-1175)) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) -((((-407 (-949 |#1|))) . T)) +((((-407 (-948 |#1|))) . T)) (((|#1|) |has| |#1| (-172))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -((((-859)) . T)) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +((((-858)) . T)) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1046)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) +(((|#1|) |has| |#1| (-1045)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((|#1| |#2|) . T)) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -(|has| |#3| (-790)) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -(|has| |#3| (-845)) -(((|#1|) . T)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) -(((|#2|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -(((|#1| (-1150 |#1|)) |has| |#1| (-845))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(|has| |#3| (-789)) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +(|has| |#3| (-844)) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) +(((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1| (-1150 |#1|)) |has| |#1| (-844))) ((((-564) |#2|) . T)) (|has| |#1| (-1094)) (((|#1|) . T)) @@ -732,23 +731,23 @@ (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (|has| |#1| (-1094)) (((|#2|) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) -(((|#4|) -4078 (|has| |#4| (-172)) (|has| |#4| (-363)))) -(((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)))) -((((-859)) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564))))) +(((|#4|) -2789 (|has| |#4| (-172)) (|has| |#4| (-363)))) +(((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)))) +((((-858)) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906))) -((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-815 (-1170)) |#1|) . T) ((#1# $) . T)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-906))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) +((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-814 (-1170)) |#1|) . T) ((#1# $) . T)) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-905))) ((((-564) |#2|) . T)) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((($) -4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046)))) +((($) -2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045)))) ((((-564) |#1|) . T)) (|has| (-407 |#2|) (-147)) (|has| (-407 |#2|) (-145)) @@ -756,43 +755,43 @@ (|has| |#1| (-38 (-407 (-564)))) (((|#1|) . T)) (((|#2|) . T) (($) . T) (((-407 (-564))) . T)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-556)) (|has| |#1| (-556)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-859)) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-858)) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) (|has| |#1| (-38 (-407 (-564)))) -((((-388) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +((((-388) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-1145)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-1208)) . T) (((-859)) . T) (((-1175)) . T)) +((((-1208)) . T) (((-858)) . T) (((-1175)) . T)) ((((-116 |#1|)) . T)) ((((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) (((|#1|) . T)) ((((-388) (-1152)) . T)) (|has| |#1| (-556)) ((((-564) |#1|) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (((|#2|) . T)) -((((-859)) . T)) -((((-816 |#1|)) . T)) +((((-858)) . T)) +((((-815 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) ((((-1170) (-52)) . T)) (((|#1|) . T)) @@ -801,9 +800,9 @@ (|has| |#1| (-556)) (((|#1|) |has| |#1| (-172))) ((((-641 |#1|)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (((|#2|) |has| |#2| (-309 |#2|))) (((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) (((|#1|) . T)) @@ -813,7 +812,7 @@ (((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) ((($) . T) (((-564)) . T) (((-407 (-564))) . T)) (|has| |#2| (-368)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) @@ -822,15 +821,15 @@ (((|#1| |#2|) . T)) ((((-564)) . T) (((-407 (-564))) . T) (($) . T)) ((((-1168 |#1| |#2| |#3|) $) -12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -((($) . T) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +((($) . T) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) ((($ $) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($ $) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((#0=(-1251 |#1| |#2| |#3|) #0#) -12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1170) #0#) -12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) @@ -838,74 +837,74 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((((-407 (-564))) . T) (((-564)) . T)) ((((-564) (-144)) . T)) ((((-144)) . T)) (((|#1|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) ((((-112)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-112)) . T)) (((|#1|) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-225)) . #0=(|has| |#1| (-1019))) (((-379)) . #0#)) -((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-225)) . #0=(|has| |#1| (-1018))) (((-379)) . #0#)) +((((-858)) . T)) ((((-1175)) . T)) -(|has| |#1| (-817)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(|has| |#1| (-847)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) +(|has| |#1| (-816)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(|has| |#1| (-846)) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) (|has| |#1| (-556)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) -(|has| |#1| (-906)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) +(|has| |#1| (-905)) (((|#1|) . T)) (|has| |#1| (-1094)) -((((-859)) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) ((((-564) (-144)) . T)) ((($) . T)) -(-4078 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -((((-1175)) . T) (((-859)) . T)) +(-2789 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-1175)) . T) (((-858)) . T)) ((((-1175)) . T)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-1094)) -(((|#1| (-968)) . T)) +(((|#1| (-967)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) (((|#1|) . T)) -(|has| |#2| (-790)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) +(|has| |#2| (-789)) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) (((|#1| |#2|) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(|has| |#2| (-845)) -(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) -(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) +(|has| |#2| (-844)) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-564)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-349)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-407 (-564))) . T) (($) . T)) -((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T)) -((($) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) -(|has| |#1| (-825)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-564)) . T)) +((($) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) +(|has| |#1| (-824)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) (|has| |#1| (-1094)) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) ((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) @@ -913,85 +912,83 @@ (((|#4|) |has| |#4| (-1094))) (((|#3|) |has| |#3| (-1094))) (|has| |#3| (-368)) -(((|#1|) . T) (((-859)) . T)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -(((|#1| |#2|) . T)) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +((((-858)) . T)) +((((-858)) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1| |#1|) |has| |#1| (-172))) (|has| |#2| (-363)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) ((((-407 (-564))) . T) (((-564)) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) ((((-144)) . T)) (((|#1|) . T)) -((($) -4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046)))) +((($) -2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) ((((-144)) . T)) ((((-144)) . T)) ((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-564)) . T)) (((|#1| |#2| |#3|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) (|has| $ (-147)) (|has| $ (-147)) ((((-1175)) . T)) (|has| |#1| (-1094)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1045)) (|has| |#1| (-1106))) ((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|))) (((|#1| (-407 (-564))) . T)) (((|#1|) . T)) ((((-1170)) . T)) (|has| |#1| (-556)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-556)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T)) +((((-858)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T) (($) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(|has| |#4| (-845)) -(((|#2| (-240 (-2828 |#1|) (-768)) (-861 |#1|)) . T)) -(|has| |#3| (-845)) +(|has| |#4| (-844)) +(((|#2| (-240 (-2059 |#1|) (-767)) (-860 |#1|)) . T)) +(|has| |#3| (-844)) (((|#1| (-531 |#3|) |#3|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) (((#0=(-407 (-564)) #0#) |has| |#2| (-363)) (($ $) . T)) -((((-867 |#1|)) . T)) +((((-866 |#1|)) . T)) (|has| |#1| (-147)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-145)) ((((-407 (-564))) |has| |#2| (-363)) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-349)) (|has| |#1| (-368))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-349)) (|has| |#1| (-368))) ((((-1136 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-172)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1046))) -(((|#2|) . T) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -((((-859)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) +(((|#2|) . T) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-858)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) ((((-695)) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (|has| |#1| (-556)) (((|#1|) . T)) (((|#1|) . T)) @@ -1002,52 +999,52 @@ (((|#1|) . T)) ((((-1170) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-1001 10)) . T) (((-407 (-564))) . T) (((-859)) . T)) -((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-1000 10)) . T) (((-407 (-564))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) (((|#1|) . T)) -((((-1001 16)) . T) (((-407 (-564))) . T) (((-859)) . T)) -((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-1000 16)) . T) (((-407 (-564))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) (((|#1| (-564)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1| (-407 (-564))) . T)) (((|#3|) . T) (((-610 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-564)) -4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-564)) -2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (((#0=(-1168 |#1| |#2| |#3|) #0#) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1170) #0#) -12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) |has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))))) -((((-859)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) |has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))))) +((((-858)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) ((((-1170) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-825)) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-824)) (|has| |#1| (-1094)) -(((|#2| |#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172))) -(((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)))) -((((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) +(((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)))) +((((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) ((((-1175)) . T)) -((((-768)) . T)) +((((-767)) . T)) (|has| |#1| (-556)) ((((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| (-407 (-564)) (-1076)) . T)) (|has| |#1| (-145)) (((|#1|) . T)) @@ -1056,71 +1053,71 @@ ((((-116 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-147)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) -((((-889 (-564))) . T) (((-889 (-379))) . T) (((-536)) . T) (((-1170)) . T)) -((((-859)) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((((-859)) . T) (((-1175)) . T)) -((((-1175)) . T)) -((($) . T)) -((((-859)) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) +((((-888 (-564))) . T) (((-888 (-379))) . T) (((-536)) . T) (((-1170)) . T)) +((((-858)) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((((-858)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((($) . T)) +((((-858)) . T)) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((|#2|) |has| |#2| (-172))) -((($) -4078 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -((((-867 |#1|)) . T)) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) +((($) -2789 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +((((-866 |#1|)) . T)) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (|has| |#2| (-1145)) -(((#0=(-52)) . T) (((-2 (|:| -2568 (-1170)) (|:| -1389 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3076 (-1170)) (|:| -2511 #0#))) . T)) (((|#1| |#2|) . T)) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) (((|#1| (-564) (-1076)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| (-407 (-564)) (-1076)) . T)) -((($) -4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((($) -2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) ((((-564) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-368)) (-12 (|has| |#1| (-368)) (|has| |#2| (-368))) -((((-859)) . T)) +((((-858)) . T)) ((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (((|#1|) . T)) ((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#4|) . T)) (|has| |#1| (-349)) -((((-564)) -4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) +((((-564)) -2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045))) ((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (((|#1|) . T)) -(((|#4|) . T) (((-859)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#4|) . T) (((-858)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (|has| |#1| (-556)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-906))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-905))) ((((-407 (-564))) . T) (((-564)) . T)) ((((-564)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) ((($) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-859)) . T)) -(((|#3| |#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172))) -(|has| |#1| (-1019)) -((((-859)) . T)) -(((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172))) +((((-866 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-858)) . T)) +(((|#3| |#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172))) +(|has| |#1| (-1018)) +((((-858)) . T)) +(((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172))) ((((-564) (-112)) . T)) ((((-1175)) . T)) (((|#1|) |has| |#1| (-309 |#1|))) @@ -1129,21 +1126,21 @@ (|has| |#1| (-368)) (|has| |#1| (-368)) ((((-1170) $) |has| |#1| (-514 (-1170) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|))) -((((-1170)) |has| |#1| (-897 (-1170)))) -(-4078 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349))) +((((-1170)) |has| |#1| (-896 (-1170)))) +(-2789 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-388) |#1|) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) (|has| |#1| (-1094)) -(((|#2|) . T) (((-859)) . T)) -((((-859)) . T)) +(((|#2|) . T) (((-858)) . T)) +((((-858)) . T)) (((|#2|) . T)) -((((-907 |#1|)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-906 |#1|)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) @@ -1151,184 +1148,184 @@ (((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) (((|#1| |#1|) . T)) -(((#0=(-867 |#1|)) |has| #0# (-309 #0#))) -((((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T)) +(((#0=(-866 |#1|)) |has| #0# (-309 #0#))) +((((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) (((|#1|) . T)) -(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) -(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (|has| |#1| (-1194)) (((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) ((((-407 (-564))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1046))) -(((|#3|) |has| |#3| (-1046))) +(((|#4|) |has| |#4| (-1045))) +(((|#3|) |has| |#3| (-1045))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (|has| |#1| (-363)) ((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((($ $) . T) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((($ $) . T) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-564) |#3|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-536)) |has| |#3| (-612 (-536)))) -((((-685 |#3|)) . T) (((-859)) . T)) +((((-685 |#3|)) . T) (((-858)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-845)) -(|has| |#1| (-845)) -((($) . T) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +((($) . T) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) ((($) . T)) -(((#0=(-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) #0#) |has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))))) -(|has| |#2| (-847)) +(((#0=(-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) #0#) |has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))))) +(|has| |#2| (-846)) ((($) . T)) (((|#2|) |has| |#2| (-1094))) -((((-859)) -4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) -(|has| |#1| (-847)) -(|has| |#1| (-847)) +((((-858)) -2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) +(|has| |#1| (-846)) +(|has| |#1| (-846)) ((((-1152) (-52)) . T)) -(|has| |#1| (-847)) -((((-859)) . T)) +(|has| |#1| (-846)) +((((-858)) . T)) ((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T)) ((($) . T) (((-564)) . T)) ((((-564) (-144)) . T)) -((((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((|#1| |#2|) . T)) +((((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((|#1| |#2|) . T)) ((((-407 (-564))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-859)) . T)) -((((-907 |#1|)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-858)) . T)) +((((-906 |#1|)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) -(|has| |#1| (-845)) +(|has| |#1| (-844)) (|has| |#1| (-363)) -(|has| |#1| (-845)) +(|has| |#1| (-844)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-845)) -((((-1170)) |has| |#1| (-897 (-1170)))) +(|has| |#1| (-844)) +((((-1170)) |has| |#1| (-896 (-1170)))) ((((-506)) . T)) (((|#1| (-1170)) . T)) (((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) ((((-1175)) . T)) (|has| |#1| (-1094)) -(((|#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) . T)) -((((-407 (-949 |#1|))) . T)) +(((|#1| (-1170) (-814 (-1170)) (-531 (-814 (-1170)))) . T)) +((((-407 (-948 |#1|))) . T)) ((((-536)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((|#1| |#2|) . T)) +((((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564))))) -((((-859)) . T)) -(((|#2|) . T) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564))))) +((((-858)) . T)) +(((|#2|) . T) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-506)) . T)) -(|has| |#2| (-845)) +(|has| |#2| (-844)) ((((-506)) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1046))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) (|has| |#1| (-556)) ((((-1152) |#1|) . T)) (|has| |#1| (-1145)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -((((-955 |#1|)) . T)) -(((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-564))) (((-564)) |has| |#1| (-1035 (-564))) (((-1170)) |has| |#1| (-1035 (-1170))) ((|#1|) . T)) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-954 |#1|)) . T)) +(((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-564))) (((-564)) |has| |#1| (-1034 (-564))) (((-1170)) |has| |#1| (-1034 (-1170))) ((|#1|) . T)) ((((-564) |#2|) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) -((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379)))) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) +((((-564)) |has| |#1| (-882 (-564))) (((-379)) |has| |#1| (-882 (-379)))) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) (((|#1|) . T)) -((((-641 |#4|)) . T) (((-859)) . T)) +((((-641 |#4|)) . T) (((-858)) . T)) ((((-536)) |has| |#4| (-612 (-536)))) ((((-536)) |has| |#4| (-612 (-536)))) -((((-859)) . T) (((-641 |#4|)) . T)) -((($) |has| |#1| (-845))) -((((-564)) -4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +((((-858)) . T) (((-641 |#4|)) . T)) +((($) |has| |#1| (-844))) +((((-564)) -2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T)) -((((-641 |#4|)) . T) (((-859)) . T)) +((((-641 |#4|)) . T) (((-858)) . T)) ((((-536)) |has| |#4| (-612 (-536)))) (((|#1|) . T)) +((((-1170)) |has| (-407 |#2|) (-896 (-1170)))) (((|#2|) . T)) -((((-1170)) |has| (-407 |#2|) (-897 (-1170)))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-859)) -4078 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-859))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) (((-1259 |#3|)) . T)) +((((-858)) -2789 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-858))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094))) (((-1259 |#3|)) . T)) ((((-564) |#2|) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -(((|#2| |#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +(((|#2| |#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) (((|#2|) . T) (((-564)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((|#2|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-1152) (-1170) (-564) (-225) (-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-1152) (-1170) (-564) (-225) (-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-858)) . T)) ((((-564) (-112)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-112)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T)) +((((-858)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -(((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +(((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) (|has| $ (-147)) ((((-407 |#2|)) . T)) -((((-890 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T)) -((((-407 (-564))) |has| #0=(-407 |#2|) (-1035 (-407 (-564)))) (((-564)) |has| #0# (-1035 (-564))) ((#0#) . T)) +((((-889 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-815 |#1|)) . T)) +((((-407 (-564))) |has| #0=(-407 |#2|) (-1034 (-407 (-564)))) (((-564)) |has| #0# (-1034 (-564))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-172))) (|has| |#2| (-145)) @@ -1336,27 +1333,27 @@ (((|#3|) |has| |#3| (-172))) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#2| (-233)) (((|#2|) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) ((((-1170) (-52)) . T)) -((((-859)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) (((|#1| |#1|) . T)) -((((-1170)) |has| |#2| (-897 (-1170)))) +((((-1170)) |has| |#2| (-896 (-1170)))) ((((-129)) . T)) +(((|#1|) . T) (((-564)) . T) (((-815 (-1170))) . T)) ((((-564) (-112)) . T)) (|has| |#1| (-556)) -(((|#1|) . T) (((-564)) . T) (((-816 (-1170))) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) @@ -1367,45 +1364,45 @@ (|has| |#1| (-38 (-407 (-564)))) (((|#3|) . T)) (|has| |#1| (-38 (-407 (-564)))) -((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) -(((|#1|) . T)) -((((-1001 2)) . T) (((-407 (-564))) . T) (((-859)) . T)) -((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-996 |#1|)) . T) ((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) +(((|#1|) . T)) +((((-1000 2)) . T) (((-407 (-564))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-995 |#1|)) . T) ((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T)) (((|#1| (-1166 |#1|)) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-847)) +(|has| |#1| (-846)) (((|#2|) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) ((((-564) |#2|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (((|#2|) . T)) ((((-564) |#3|) . T)) (((|#2|) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T)) +((((-858)) . T)) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) (((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (|has| |#1| (-1094)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-38 (-407 (-564)))) (((|#2|) . T)) (|has| |#2| (-363)) -(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) (((|#1|) . T)) (((|#2|) . T)) ((((-1152) (-52)) . T)) @@ -1413,7 +1410,7 @@ ((((-564) |#3|) . T)) ((((-564) (-144)) . T)) ((((-144)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-1175)) . T)) ((((-112)) . T)) (|has| |#1| (-147)) @@ -1426,7 +1423,7 @@ (((|#1|) . T)) (((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) ((((-144)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) ((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) ((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) @@ -1435,86 +1432,86 @@ (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#2|) . T)) ((((-564) (-144)) . T)) -(((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(|has| |#1| (-847)) -(((|#2| (-768) (-1076)) . T)) +(((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(|has| |#1| (-846)) +(((|#2| (-767) (-1076)) . T)) (((|#1| |#2|) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) -(|has| |#1| (-788)) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) +(|has| |#1| (-787)) (((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-4078 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147)))) -(-4078 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))) +(-2789 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147)))) +(-2789 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))) (((|#4|) . T)) (|has| |#1| (-145)) ((((-1152) |#1|) . T)) (|has| |#1| (-147)) (((|#1|) . T)) ((((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#3|) . T)) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-859)) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-858)) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (((|#1|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))) (((-955 |#1|)) . T)) -(|has| |#1| (-845)) -(|has| |#1| (-845)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))) (((-954 |#1|)) . T)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-955 |#1|)) . T)) +((((-954 |#1|)) . T)) (|has| |#2| (-363)) (((|#1|) |has| |#1| (-172))) -(((|#2|) |has| |#2| (-1046))) +(((|#2|) |has| |#2| (-1045))) ((((-1152) |#1|) . T)) (((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) -(((|#2| (-890 |#1|)) . T)) +(((|#2| (-889 |#1|)) . T)) ((($) . T)) ((((-388) (-1152)) . T)) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-859)) -4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2568 (-1152)) (|:| -1389 #0#))) . T)) +((((-858)) -2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3076 (-1152)) (|:| -2511 #0#))) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) ((((-144)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (|has| |#1| (-473)) -(-4078 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) (|has| |#1| (-363)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-38 (-407 (-564)))) ((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) ((($) |has| |#1| (-556))) ((((-1175)) . T)) -(|has| |#1| (-845)) -(|has| |#1| (-845)) -((((-859)) . T)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +((((-858)) . T)) (((|#2|) . T)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T)) +(((|#2|) . T) (((-564)) . T) (((-815 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1170)) |has| |#1| (-897 (-1170)))) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-1170)) |has| |#1| (-896 (-1170)))) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) (|has| |#1| (-1094)) -(((|#2| (-482 (-2828 |#1|) (-768)) (-861 |#1|)) . T)) +(((|#2| (-482 (-2059 |#1|) (-767)) (-860 |#1|)) . T)) ((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) (((|#1| (-531 (-1170)) (-1170)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1528,66 +1525,66 @@ (|has| |#1| (-147)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) +(((|#1|) . T) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-1170) (-52)) . T)) ((($ $) . T)) (((|#1| (-564)) . T)) -((((-907 |#1|)) . T)) -(((|#1|) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))) (($) -4078 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))) -(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -(|has| |#1| (-847)) -(|has| |#1| (-847)) +((((-906 |#1|)) . T)) +(((|#1|) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))) (($) -2789 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))) +(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +(|has| |#1| (-846)) +(|has| |#1| (-846)) ((((-564) |#2|) . T)) ((((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-1251 |#1| |#2| |#3|)) -12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -(|has| |#1| (-847)) -((((-685 |#2|)) . T) (((-859)) . T)) +(|has| |#1| (-846)) +((((-685 |#2|)) . T) (((-858)) . T)) ((((-407 (-564))) . T) (((-564)) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-407 (-949 |#1|))) . T)) +((((-407 (-948 |#1|))) . T)) (((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (((|#1|) |has| |#1| (-172))) (((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) -(|has| |#2| (-847)) -(|has| |#1| (-847)) -(((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(-4078 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-906))) +(|has| |#2| (-846)) +(|has| |#1| (-846)) +(((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)))) +(-2789 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-905))) ((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) ((((-564) |#2|) . T)) -(((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)))) +(((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)))) (|has| |#1| (-349)) (((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (((|#2|) . T) (((-564)) . T)) ((($) . T) (((-407 (-564))) . T)) ((((-564) (-112)) . T)) -(|has| |#1| (-817)) -(|has| |#1| (-817)) +(|has| |#1| (-816)) +(|has| |#1| (-816)) (((|#1|) . T)) -(-4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-845)) -(|has| |#1| (-845)) -(|has| |#1| (-845)) +(-2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (|has| |#1| (-38 (-407 (-564)))) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) (|has| |#1| (-38 (-407 (-564)))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-1170)) |has| |#1| (-896 (-1170))) (((-1076)) . T)) (((|#1|) . T)) -(|has| |#1| (-845)) -(((#0=(-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) #0#) |has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))))) +(|has| |#1| (-844)) +(((#0=(-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) #0#) |has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (|has| |#1| (-1094)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) @@ -1598,16 +1595,16 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1| (-531 |#2|) |#2|) . T)) -((((-859)) . T)) -((((-144)) . T) (((-859)) . T)) -(((|#1| (-768) (-1076)) . T)) +((((-858)) . T)) +((((-144)) . T) (((-858)) . T)) +(((|#1| (-767) (-1076)) . T)) (((|#3|) . T)) ((((-144)) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4078 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) -2789 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))) ((|#1|) . T)) (((|#1|) . T)) ((((-144)) . T)) (((|#2|) |has| |#2| (-172))) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -1616,68 +1613,68 @@ (((|#3|) |has| |#3| (-363))) (((|#1|) . T)) (((|#2|) |has| |#1| (-363))) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) . T)) (((|#1| (-1166 |#1|)) . T)) -((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) ((($) . T) ((|#1|) . T) (((-407 (-564))) . T)) (((|#2|) . T)) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) |has| |#1| (-845))) -(|has| |#1| (-906)) +((($) |has| |#1| (-844))) +(|has| |#1| (-905)) ((((-1170)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) #0#) |has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))))) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-906))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) #0#) |has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-905))) (((|#1|) . T) (($) . T)) (((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(|has| |#1| (-847)) +(((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)))) +(|has| |#1| (-846)) (|has| |#1| (-556)) ((((-581 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-4078 (-12 (|has| |#1| (-363)) (|has| |#2| (-817))) (-12 (|has| |#1| (-363)) (|has| |#2| (-847)))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-907 |#1|)) . T)) +(-2789 (-12 (|has| |#1| (-363)) (|has| |#2| (-816))) (-12 (|has| |#1| (-363)) (|has| |#2| (-846)))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +((((-906 |#1|)) . T)) (((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-768)) . T)) +(((|#1| (-767)) . T)) ((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) ((((-668 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-536)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-858)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) ((((-1175)) . T)) ((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T)) (((|#3|) . T) (((-564)) . T) (((-610 $)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#2|) . T)) -(-4078 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +(-2789 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) (|has| |#1| (-1194)) (|has| |#1| (-1194)) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (|has| |#1| (-1194)) (|has| |#1| (-1194)) (((|#3| |#3|) . T)) @@ -1690,47 +1687,47 @@ (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) ((((-1152) (-52)) . T)) (|has| |#1| (-1094)) -(-4078 (|has| |#2| (-817)) (|has| |#2| (-847))) +(-2789 (|has| |#2| (-816)) (|has| |#2| (-846))) (((|#1|) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) ((($) . T)) ((((-1168 |#1| |#2| |#3|)) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T) (($) . T)) -((((-768)) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +((((-767)) . T)) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) +((((-858)) . T)) ((($) . T) (((-564)) . T)) ((($) . T)) -(|has| |#2| (-906)) +(|has| |#2| (-905)) (|has| |#1| (-363)) (((|#2|) |has| |#2| (-1094))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((((-536)) . T) (((-407 (-1166 (-564)))) . T) (((-225)) . T) (((-379)) . T)) -((((-379)) . T) (((-225)) . T) (((-859)) . T)) -(|has| |#1| (-906)) -(|has| |#1| (-906)) -(|has| |#1| (-906)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-906))) +((((-379)) . T) (((-225)) . T) (((-858)) . T)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-905))) ((($) . T) ((|#2|) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906))) -((((-859)) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) +((((-858)) . T)) (((|#1|) . T)) (((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) ((($ $) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((($ $) . T)) ((((-564) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-564)) . T)) ((((-112)) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-38 (-407 (-564)))) (((|#1| (-564)) . T)) ((($) . T)) @@ -1739,129 +1736,129 @@ (((|#1|) . T)) ((((-564)) . T)) (((|#1| |#2|) . T)) -((((-1170)) |has| |#1| (-1046))) +((((-1170)) |has| |#1| (-1045))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| (-564)) . T)) (((|#1| (-1251 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-407 (-564))) . T)) (((|#1| (-1223 |#1| |#2| |#3|)) . T)) -(((|#1| (-768)) . T)) +(((|#1| (-767)) . T)) (((|#1|) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-859)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-858)) . T)) (|has| |#1| (-1094)) ((((-1152) |#1|) . T)) ((($) . T)) (|has| |#2| (-147)) (|has| |#2| (-145)) -(((|#1| (-531 (-815 (-1170))) (-815 (-1170))) . T)) -((((-859)) . T)) +(((|#1| (-531 (-814 (-1170))) (-814 (-1170))) . T)) +((((-858)) . T)) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1046))) +(((|#1|) |has| |#1| (-1045))) ((((-564) (-112)) . T)) -((((-859)) |has| |#1| (-1094))) +((((-858)) |has| |#1| (-1094))) (|has| |#2| (-172)) ((((-564)) . T)) -(|has| |#2| (-845)) +(|has| |#2| (-844)) (((|#1|) . T)) ((((-564)) . T)) -((((-859)) . T)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-349))) +((((-858)) . T)) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-349))) (|has| |#1| (-147)) -((((-859)) . T)) +((((-858)) . T)) (((|#3|) . T)) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -((((-859)) . T)) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T)) ((((-1244 |#2| |#3| |#4|)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T)) -((((-859)) . T)) -((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) -4078 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T)) +((((-858)) . T)) +((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) -2789 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-407 (-948 |#1|))) |has| |#1| (-556)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1170)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-768)) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#1| (-767)) . T)) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (((|#1|) |has| |#1| (-309 |#1|))) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) -((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379)))) +((((-564)) |has| |#1| (-882 (-564))) (((-379)) |has| |#1| (-882 (-379)))) (((|#1|) . T)) (|has| |#1| (-556)) (((|#1|) . T)) -((((-859)) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +((((-858)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (((|#1|) |has| |#1| (-172))) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#1|) . T)) (((|#3|) |has| |#3| (-1094))) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((|#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-363)))) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((|#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-363)))) ((((-1244 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-817)) -(|has| |#1| (-817)) +(|has| |#1| (-816)) +(|has| |#1| (-816)) (((|#1| (-564) (-1076)) . T)) ((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|))) -(|has| |#1| (-845)) -(|has| |#1| (-845)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) (((|#1| (-564) (-1076)) . T)) -(-4078 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(-2789 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1| (-407 (-564)) (-1076)) . T)) -(((|#1| (-768) (-1076)) . T)) -(|has| |#1| (-847)) -(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) +(((|#1| (-767) (-1076)) . T)) +(|has| |#1| (-846)) +(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-1094)) -((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-906 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-1094)) -((((-564)) -4078 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))) +((((-564)) -2789 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))) (((|#1|) . T)) (|has| |#1| (-1094)) ((((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((|#2|) |has| |#1| (-363))) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) -((((-685 (-339 (-1842) (-1842 (QUOTE X) (QUOTE HESS)) (-695)))) . T)) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) +((((-685 (-339 (-2335) (-2335 (QUOTE X) (QUOTE HESS)) (-695)))) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) -((((-859)) . T)) -(|has| |#3| (-845)) -((((-859)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) +((((-858)) . T)) +(|has| |#3| (-844)) +((((-858)) . T)) ((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) -((((-859)) . T)) -(((|#1| |#1|) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046)))) +((((-858)) . T)) +(((|#1| |#1|) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045)))) (((|#1|) . T)) ((((-564)) . T)) ((((-564)) . T)) -(((|#1|) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046)))) +(((|#1|) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045)))) (((|#2|) |has| |#2| (-363))) ((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -(|has| |#1| (-847)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(|has| |#1| (-846)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) |has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-906))) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) |has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-905))) (((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -((((-859)) . T)) -((((-859)) . T)) -((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) (|has| |#1| (-38 (-407 (-564)))) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) ((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-233)) (((|#1|) . T)) (((|#1| (-564)) . T)) -(|has| |#1| (-845)) +(|has| |#1| (-844)) (((|#1| (-1168 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) @@ -1869,7 +1866,7 @@ (((|#1|) . T)) (((|#1| (-407 (-564))) . T)) (((|#1| (-1161 |#1| |#2| |#3|)) . T)) -(((|#1| (-768)) . T)) +(((|#1| (-767)) . T)) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1878,54 +1875,54 @@ (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#1| (-1035 (-1170)))) +((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#1| (-1034 (-1170)))) (((|#1| |#2|) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4078 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) -2789 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))) ((|#1|) . T)) ((((-144)) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (((|#1|) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) ((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| (-407 |#2|) (-233)) ((((-641 |#1|)) . T)) -(|has| |#1| (-906)) -(((|#2|) |has| |#2| (-1046))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(|has| |#1| (-905)) +(((|#2|) |has| |#2| (-1045))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (|has| |#1| (-363)) (((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) -((((-867 |#1|)) . T)) -((((-859)) . T)) +((((-866 |#1|)) . T)) +((((-858)) . T)) (((|#1|) . T)) (((|#2|) |has| |#2| (-1094))) -(|has| |#2| (-847)) +(|has| |#2| (-846)) (((|#1|) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-859)) . T)) +((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-858)) . T)) ((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($) . T)) -(|has| |#1| (-847)) -((((-859)) . T)) +(|has| |#1| (-846)) +((((-858)) . T)) (((|#1| (-531 |#2|) |#2|) . T)) (((|#1| (-564) (-1076)) . T)) -((((-907 |#1|)) . T)) -((((-859)) . T)) +((((-906 |#1|)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1| (-407 (-564)) (-1076)) . T)) -(((|#1| (-768) (-1076)) . T)) +(((|#1| (-767) (-1076)) . T)) (((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-564)) -4078 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) . T)) +(((|#1|) . T) (((-564)) -2789 (|has| (-407 (-564)) (-1034 (-564))) (|has| |#1| (-1034 (-564)))) (((-407 (-564))) . T)) (((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) @@ -1933,56 +1930,56 @@ (((|#1|) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) (|has| |#2| (-233)) -(((|#2| (-531 (-861 |#1|)) (-861 |#1|)) . T)) -((((-859)) . T)) +(((|#2| (-531 (-860 |#1|)) (-860 |#1|)) . T)) +((((-858)) . T)) ((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#3|) . T)) -((((-859)) . T)) -(((|#1|) |has| |#1| (-172)) (((-949 |#1|)) . T) (((-564)) . T)) +((((-858)) . T)) +(((|#1|) |has| |#1| (-172)) (((-948 |#1|)) . T) (((-564)) . T)) (((|#1|) |has| |#1| (-172))) ((((-695)) . T)) ((((-695)) . T)) (((|#2|) |has| |#2| (-172))) -(|has| |#2| (-845)) -((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) -((((-112)) |has| |#1| (-1094)) (((-859)) -4078 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))) +(|has| |#2| (-844)) +((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) +((((-112)) |has| |#1| (-1094)) (((-858)) -2789 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) . T)) -((((-859)) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) . T)) +((((-858)) . T)) ((((-564) |#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-695)) . T) (((-407 (-564))) . T) (((-564)) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) ((((-379)) . T)) ((((-695)) . T)) ((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) (((|#1|) |has| |#1| (-172))) -((((-407 (-949 |#1|))) . T)) +((((-407 (-948 |#1|))) . T)) (((|#2| |#2|) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-847)) -(|has| |#2| (-906)) -(|has| |#1| (-906)) +(|has| |#2| (-846)) +(|has| |#2| (-905)) +(|has| |#1| (-905)) (|has| |#1| (-363)) -(|has| |#1| (-847)) -(((|#3|) |has| |#3| (-1046))) -((((-1170)) |has| |#2| (-897 (-1170)))) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(|has| |#1| (-846)) +(((|#3|) |has| |#3| (-1045))) +((((-1170)) |has| |#2| (-896 (-1170)))) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-407 (-564))) . T) (($) . T)) (|has| |#1| (-473)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-363)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1045)) (|has| |#1| (-1106))) (|has| |#1| (-38 (-407 (-564)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) @@ -1992,8 +1989,8 @@ ((($) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(((|#2|) . T) (((-859)) . T)) -(((|#2|) . T) (((-859)) . T)) +(((|#2|) . T) (((-858)) . T)) +(((|#2|) . T) (((-858)) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) @@ -2002,66 +1999,66 @@ (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-847)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +(|has| |#1| (-846)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) (|has| |#1| (-368)) -(|has| |#1| (-847)) -(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +(|has| |#1| (-846)) +(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) ((((-116 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) ((((-564)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -((((-859)) . T)) -((((-859)) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-379)) . #0=(|has| |#1| (-1019))) (((-225)) . #0#)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))) (((-379)) . #0=(|has| |#1| (-1018))) (((-225)) . #0#)) (((|#1|) |has| |#1| (-363))) -((((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((($ $) . T) (((-610 $) $) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) ((($) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T)) -((($) -4078 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556))) +((($) -2789 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556))) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) ((((-379)) . T) (((-564)) . T) (((-407 (-564))) . T)) -((((-641 (-777 |#1| (-861 |#2|)))) . T) (((-859)) . T)) -((((-536)) |has| (-777 |#1| (-861 |#2|)) (-612 (-536)))) +((((-641 (-776 |#1| (-860 |#2|)))) . T) (((-858)) . T)) +((((-536)) |has| (-776 |#1| (-860 |#2|)) (-612 (-536)))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-379)) . T)) (((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) -((((-859)) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-906))) +((((-858)) . T)) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-905))) (((|#1|) . T)) -(|has| |#1| (-847)) -(|has| |#1| (-847)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(|has| |#1| (-846)) +(|has| |#1| (-846)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) (((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) -((((-768)) . T)) +((((-767)) . T)) (|has| |#1| (-1094)) -((((-859)) . T)) -((((-1170)) . T) (((-859)) . T)) +((((-858)) . T)) +((((-1170)) . T) (((-858)) . T)) ((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-564)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (($) . T)) ((((-564)) . T)) (|has| |#1| (-363)) -(-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) -(-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) +(-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) (|has| |#1| (-363)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -2070,42 +2067,42 @@ (|has| |#1| (-233)) (|has| |#1| (-363)) (((|#3|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-564)) |has| |#2| (-637 (-564))) ((|#2|) . T)) (((|#2|) . T)) (|has| |#1| (-1094)) (((|#1| |#2|) . T)) -((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) +((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564)))))) (((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) (((|#3|) |has| |#3| (-172))) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) -((((-859)) . T)) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) +((((-858)) . T)) ((((-564)) . T)) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) ((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -((((-949 |#1|)) . T) (((-859)) . T)) +((((-948 |#1|)) . T) (((-858)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363))) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) -((((-949 |#1|)) . T)) +(((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363))) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) +((((-948 |#1|)) . T)) ((($) . T)) ((((-564) |#1|) . T)) -((((-1170)) |has| (-407 |#2|) (-897 (-1170)))) -(((|#1|) . T) (($) -4078 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363))) +((((-1170)) |has| (-407 |#2|) (-896 (-1170)))) +(((|#1|) . T) (($) -2789 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363))) ((((-536)) |has| |#2| (-612 (-536)))) -((((-685 |#2|)) . T) (((-859)) . T)) +((((-685 |#2|)) . T) (((-858)) . T)) (((|#1|) . T)) (((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) -((((-867 |#1|)) . T)) +((((-866 |#1|)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(-4078 (|has| |#4| (-790)) (|has| |#4| (-845))) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -((((-859)) . T)) -((((-859)) . T)) +(-2789 (|has| |#4| (-789)) (|has| |#4| (-844))) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-858)) . T)) +((((-858)) . T)) (((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) -(((|#2|) |has| |#2| (-1046))) +(((|#2|) |has| |#2| (-1045))) (((|#1|) . T)) ((((-407 |#2|)) . T)) (((|#1|) . T)) @@ -2117,19 +2114,19 @@ ((((-407 (-564))) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T)) ((((-407 (-564))) . T) (($) . T)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-1213))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-1213))) ((($) . T)) -((((-407 (-564))) |has| #0=(-407 |#2|) (-1035 (-407 (-564)))) (((-564)) |has| #0# (-1035 (-564))) ((#0#) . T)) +((((-407 (-564))) |has| #0=(-407 |#2|) (-1034 (-407 (-564)))) (((-564)) |has| #0# (-1034 (-564))) ((#0#) . T)) (((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -(((|#1| (-768)) . T)) -(|has| |#1| (-847)) +(((|#1| (-767)) . T)) +(|has| |#1| (-846)) (((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) ((((-564)) . T)) (|has| |#1| (-38 (-407 (-564)))) -((((-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) |has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))))) +((((-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) |has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(|has| |#1| (-845)) +(|has| |#1| (-844)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) @@ -2150,102 +2147,102 @@ (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) ((((-1152)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T)) -((((-859)) . T)) -(((|#2|) . T) (((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) +((((-858)) . T)) +(((|#2|) . T) (((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (((|#1| |#2|) . T)) ((((-144)) . T)) -((((-777 |#1| (-861 |#2|))) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-776 |#1| (-860 |#2|))) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (|has| |#1| (-1194)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -(-4078 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) +(-2789 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094))) ((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|))) (((|#2|) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-907 |#1|)) . T)) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-906 |#1|)) . T)) ((($) . T)) -((((-407 (-949 |#1|))) . T)) +((((-407 (-948 |#1|))) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((((-536)) |has| |#4| (-612 (-536)))) -((((-859)) . T) (((-641 |#4|)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-858)) . T) (((-641 |#4|)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1|) . T)) -(|has| |#1| (-845)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) |has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))))) +(|has| |#1| (-844)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) |has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))))) (|has| |#1| (-1094)) (|has| |#1| (-363)) -(|has| |#1| (-847)) +(|has| |#1| (-846)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-668 |#1|)) . T)) ((($) . T) (((-407 (-564))) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) -(-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) +(-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) -(|has| |#1| (-845)) +(|has| |#1| (-844)) (((|#1| |#2|) . T)) (((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) ((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) (|has| |#1| (-1094)) (((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-564)) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) (|has| |#1| (-1094)) (((|#2|) |has| |#2| (-172))) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-363))) ((((-407 |#2|)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(((|#1|) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)))) +(((|#1|) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)))) ((((-316 |#1|)) . T)) (((|#2|) |has| |#2| (-363))) (((|#2|) . T)) ((((-407 (-564))) . T) (((-695)) . T) (($) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(((#0=(-777 |#1| (-861 |#2|)) #0#) |has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|))))) +(((#0=(-776 |#1| (-860 |#2|)) #0#) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|))))) ((((-564)) . T) (($) . T)) -((((-861 |#1|)) . T)) +((((-860 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#2|) . T)) -((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T)) -((((-1170)) |has| |#1| (-897 (-1170))) (((-1082 (-1170))) . T)) +((((-1170)) |has| |#1| (-896 (-1170))) (((-1076)) . T)) +((((-1170)) |has| |#1| (-896 (-1170))) (((-1082 (-1170))) . T)) (((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (|has| |#1| (-38 (-407 (-564)))) -(((|#4|) |has| |#4| (-1046)) (((-564)) -12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046)))) -(((|#3|) |has| |#3| (-1046)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) +(((|#4|) |has| |#4| (-1045)) (((-564)) -12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045)))) +(((|#3|) |has| |#3| (-1045)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (|has| |#1| (-145)) (|has| |#1| (-147)) ((($ $) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)) (|has| |#1| (-1094))) (|has| |#1| (-556)) (((|#2|) . T)) ((((-564)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1|) . T)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) ((((-581 |#1|)) . T)) ((($) . T)) @@ -2253,7 +2250,7 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) |has| |#2| (-6 (-4408 "*")))) (((|#1|) . T)) (((|#1|) . T)) @@ -2261,25 +2258,25 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-1244 |#2| |#3| |#4|)) . T) (((-564)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-564)) -4078 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -4078 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T)) -((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (((-564)) -2789 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))) (|has| |#1| (-1045))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -2789 (|has| |#1| (-556)) (|has| |#1| (-1034 (-407 (-564))))) (((-407 (-948 |#1|))) |has| |#1| (-556)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1170)) . T)) +((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T)) ((($) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T)) -((((-1119 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -((((-1166 |#1|)) . T) (((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -((((-1119 |#1| (-1170))) . T) (((-1082 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-1170)) . T)) +((((-1119 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +((((-1166 |#1|)) . T) (((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +((((-1119 |#1| (-1170))) . T) (((-1082 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-1170)) . T)) (|has| |#1| (-1094)) ((($) . T)) (|has| |#1| (-1094)) -((((-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))) (((-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) +((((-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((|#1| |#2|) . T)) ((((-1170) |#1|) . T)) (((|#4|) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((((-1170) (-52)) . T)) ((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) -((((-859)) . T)) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T)) +((((-858)) . T)) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((#0=(-1245 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-564)) #0#) |has| |#1| (-556)) (($ $) |has| |#1| (-556))) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) @@ -2299,88 +2296,88 @@ (((|#1|) . T)) (((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#2| |#3|) . T)) -(-4078 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-2789 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((|#1| (-531 |#2|)) . T)) -(((|#1| (-768)) . T)) +(((|#1| (-767)) . T)) (((|#1| (-531 (-1082 (-1170)))) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(|has| |#2| (-906)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -((((-859)) . T)) +(|has| |#2| (-905)) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +((((-858)) . T)) ((($ $) . T) ((#0=(-1244 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) |has| #0# (-38 (-407 (-564))))) -((((-907 |#1|)) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +((((-906 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((($) . T) (((-407 (-564))) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($) . T)) ((($) . T)) -(-4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (|has| |#1| (-363)) (|has| |#1| (-363)) (((|#1| |#2|) . T)) ((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) -(-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363)) (|has| |#1| (-349))) -(-4078 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +(-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))) ((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) . T)) +(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) (|has| |#2| (-363)) -(|has| |#1| (-847)) +(|has| |#1| (-846)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-1094)) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-817)) +(|has| |#2| (-816)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| (-531 (-1170))) . T)) (((|#1|) |has| |#1| (-172))) -((((-859)) . T)) +((((-858)) . T)) (((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) -(((|#2|) -4078 (|has| |#2| (-6 (-4408 "*"))) (|has| |#2| (-172)))) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(|has| |#2| (-847)) -(|has| |#2| (-906)) -(|has| |#1| (-906)) +(((|#2|) -2789 (|has| |#2| (-6 (-4408 "*"))) (|has| |#2| (-172)))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(|has| |#2| (-846)) +(|has| |#2| (-905)) +(|has| |#1| (-905)) (((|#2|) |has| |#2| (-172))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-859)) . T)) -((((-859)) . T)) -((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#1| (-407 (-564))) . T)) (((|#1|) . T)) -(-4078 (|has| |#1| (-290)) (|has| |#1| (-363))) +(-2789 (|has| |#1| (-290)) (|has| |#1| (-363))) ((((-144)) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-845)) -((((-859)) . T)) -((((-859)) . T)) +(|has| |#1| (-844)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) @@ -2388,51 +2385,51 @@ (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-187)) . T) (((-859)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-187)) . T) (((-858)) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379))))) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379))))) ((((-1170) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-641 (-144))) . T) (((-1152)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-1152)) . T)) ((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) -(|has| |#1| (-847)) -((((-859)) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) +(|has| |#1| (-846)) +((((-858)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) |has| |#2| (-363))) -((((-859)) . T)) +((((-858)) . T)) ((((-536)) |has| |#4| (-612 (-536)))) -((((-859)) . T) (((-641 |#4|)) . T)) +((((-858)) . T) (((-641 |#4|)) . T)) (((|#2|) . T)) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) ((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T)) -(-4078 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046))) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +(-2789 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((((-1170) (-52)) . T)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(|has| |#1| (-906)) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(|has| |#1| (-906)) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(|has| |#1| (-905)) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(|has| |#1| (-905)) (((|#1|) . T) (((-564)) . T) (((-407 (-564))) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T)) (((#0=(-407 (-564)) #0#) . T) (($ $) . T)) ((((-407 (-564))) . T) (($) . T)) @@ -2442,54 +2439,54 @@ (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(|has| |#1| (-817)) -(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(|has| |#1| (-816)) +(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) ((((-407 |#2|)) . T)) -(|has| |#1| (-845)) -((((-1195 |#1|)) . T) (((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(|has| |#1| (-844)) +((((-1195 |#1|)) . T) (((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-564) #1#) . T) (($ $) . T)) -((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) +((((-906 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +(((|#2|) |has| |#2| (-1045)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) (((|#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-407 (-564))) . T) (((-695)) . T) (($) . T) (((-564)) . T)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2568 (-1170)) (|:| -1389 #0#))) . T)) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3076 (-1170)) (|:| -2511 #0#))) . T)) (|has| |#1| (-349)) ((((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) (((#0=(-1245 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#))) (|has| |#1| (-363)) (((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) (((#0=(-407 (-564)) #0#) . T) ((#1=(-695) #1#) . T) (($ $) . T)) ((((-316 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-1094)) (((|#1|) . T)) -(((|#1|) -4078 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) -(((|#1|) -4078 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) +(((|#1|) -2789 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) +(((|#1|) -2789 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) (((|#2|) . T)) ((((-407 (-564))) . T) (((-695)) . T) (($) . T)) ((((-579)) . T)) (((|#3| |#3|) . T)) (|has| |#2| (-233)) -((((-861 |#1|)) . T)) -((((-1170)) |has| |#1| (-897 (-1170))) ((|#3|) . T)) +((((-860 |#1|)) . T)) +((((-1170)) |has| |#1| (-896 (-1170))) ((|#3|) . T)) ((((-641 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-1019))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) ((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) @@ -2500,8 +2497,8 @@ (((|#2|) . T)) (((|#1|) . T)) ((((-564)) . T)) -(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T)) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -2511,11 +2508,11 @@ (((|#1|) . T) (($) . T)) (((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) -((((-1119 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#2|) . T)) +((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T)) +((((-1119 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2523,7 +2520,7 @@ ((((-668 |#1|)) . T)) ((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) ((((-116 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) (((-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379))))) +((((-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((|#2|) . T) ((|#6|) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) ((((-144)) . T)) @@ -2532,53 +2529,53 @@ ((((-379)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) ((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) . T)) -(|has| |#2| (-906)) -(|has| |#1| (-906)) -(|has| |#1| (-906)) +(|has| |#2| (-905)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) (((|#4|) . T)) -(|has| |#2| (-1019)) +(|has| |#2| (-1018)) ((($) . T)) -(|has| |#1| (-906)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(|has| |#1| (-905)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-363)) -((((-907 |#1|)) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-906 |#1|)) . T)) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(-4078 (|has| |#1| (-368)) (|has| |#1| (-847))) +(-2789 (|has| |#1| (-368)) (|has| |#1| (-846))) (((|#1|) . T)) -((((-768)) . T)) -((((-859)) . T)) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) +((((-767)) . T)) +((((-858)) . T)) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) ((((-407 |#2|) |#3|) . T)) ((($) . T) (((-407 (-564))) . T)) ((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T)) ((((-564)) . T) (($) . T)) ((((-564)) . T) (($) . T)) -((((-768) |#1|) . T)) -(((|#2| (-240 (-2828 |#1|) (-768))) . T)) +((((-767) |#1|) . T)) +(((|#2| (-240 (-2059 |#1|) (-767))) . T)) (((|#1| (-531 |#3|)) . T)) ((((-407 (-564))) . T)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -((((-1152)) . T) (((-859)) . T)) -(((#0=(-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) #0#) |has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +((((-1152)) . T) (((-858)) . T)) +(((#0=(-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) #0#) |has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))))) ((((-1152)) . T)) -(|has| |#1| (-906)) +(|has| |#1| (-905)) (|has| |#2| (-363)) -(-4078 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) ((((-379)) . T) (((-564)) . T)) (((#0=(-407 (-564)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (|has| |#1| (-556)) ((((-407 (-564))) . T) (($) . T)) ((($) . T)) @@ -2586,13 +2583,13 @@ (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(-4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) (|has| |#1| (-38 (-407 (-564)))) -(-12 (|has| |#1| (-545)) (|has| |#1| (-825))) -((((-859)) . T)) -((((-1170)) -4078 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170)))))) +(-12 (|has| |#1| (-545)) (|has| |#1| (-824))) +((((-858)) . T)) +((((-1170)) -2789 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1170)))))) (|has| |#1| (-363)) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (|has| |#1| (-363)) ((((-407 (-564))) . T) (($) . T)) ((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) @@ -2601,34 +2598,34 @@ (((|#2|) |has| |#1| (-363))) (((|#2|) |has| |#1| (-363))) ((((-564)) . T) (($) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) (((-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564))))) +(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))) (((-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564))))) (((|#2|) . T)) ((((-1170) #0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) ((((-610 $) $) . T) (($ $) . T)) -((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1166 (-695))) . T) (((-889 (-379))) . T)) -((((-859)) . T)) +((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1166 (-695))) . T) (((-888 (-379))) . T)) +((((-858)) . T)) (|has| |#1| (-556)) (|has| |#1| (-556)) (|has| (-407 |#2|) (-233)) (((|#1| (-407 (-564))) . T)) ((($ $) . T)) -((((-1170)) |has| |#2| (-897 (-1170)))) +((((-1170)) |has| |#2| (-896 (-1170)))) ((($) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-407 (-564))) . T) (($) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) |has| |#1| (-363))) -((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564))))) +((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-564))))) (|has| |#1| (-363)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-363)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-363)) (|has| |#1| (-556)) (((|#1|) . T)) @@ -2637,22 +2634,22 @@ ((((-1152)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T)) (((|#1|) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(-4078 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#2|) . T)) (((|#2|) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (|has| |#1| (-38 (-407 (-564)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-407 (-564)))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) ((((-1152) |#1|) . T)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) ((((-581 |#1|)) . T)) ((($) . T)) @@ -2660,71 +2657,71 @@ (|has| |#1| (-556)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-349))) (|has| |#1| (-147)) -((((-859)) . T)) +((((-858)) . T)) ((($) . T)) -((((-407 (-564))) |has| |#2| (-1035 (-564))) (((-564)) |has| |#2| (-1035 (-564))) (((-1170)) |has| |#2| (-1035 (-1170))) ((|#2|) . T)) +((((-407 (-564))) |has| |#2| (-1034 (-564))) (((-564)) |has| |#2| (-1034 (-564))) (((-1170)) |has| |#2| (-1034 (-1170))) ((|#2|) . T)) (((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) (((|#1|) . T)) ((((-1134 |#1| |#2|)) . T)) (((|#1| (-564)) . T)) (((|#1| (-407 (-564))) . T)) -((((-564)) |has| |#2| (-883 (-564))) (((-379)) |has| |#2| (-883 (-379)))) +((((-564)) |has| |#2| (-882 (-564))) (((-379)) |has| |#2| (-882 (-379)))) (((|#2|) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-1170) (-52)) . T)) ((((-407 |#2|)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) (|has| |#1| (-1094)) -(|has| |#1| (-788)) -(|has| |#1| (-788)) -((((-859)) . T)) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +((((-858)) . T)) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-225)) . T) (((-379)) . T) (((-889 (-379))) . T)) -((((-859)) . T)) +((((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) +((((-858)) . T)) ((((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#2|) . T)) -((((-859)) . T)) -(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) +((((-858)) . T)) +(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-906 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-363)) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) . T)) ((((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) ((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-1152)) . T) (((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-1152)) . T) (((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) ((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)) (|has| |#1| (-1094))) (|has| |#1| (-1145)) ((((-564) |#1|) . T)) (((|#1|) . T)) @@ -2732,9 +2729,9 @@ (((|#1|) |has| |#1| (-172))) ((((-316 |#1|)) . T) (((-564)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-114)) . T) ((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-309 |#1|))) ((((-564) |#1|) . T)) @@ -2744,8 +2741,8 @@ (((|#1|) . T)) (|has| |#1| (-556)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) ((((-379)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2753,42 +2750,42 @@ (|has| |#1| (-363)) (|has| |#1| (-556)) (|has| |#1| (-1094)) -((((-777 |#1| (-861 |#2|))) |has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|))))) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +((((-776 |#1| (-860 |#2|))) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|))))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-906)) +(|has| |#2| (-905)) (((|#1| (-531 |#2|)) . T)) -(((|#1| (-768)) . T)) +(((|#1| (-767)) . T)) (|has| |#1| (-233)) (((|#1| (-531 (-1082 (-1170)))) . T)) (|has| |#2| (-363)) ((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) ((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-564)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) -((((-859)) . T)) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -((((-859)) . T)) -((((-1114)) . T) (((-859)) . T)) -((((-536)) . T) (((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-858)) . T)) +((((-1114)) . T) (((-858)) . T)) +((((-536)) . T) (((-858)) . T)) (((|#1|) . T)) ((($ $) . T) (((-610 $) $) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-564)) . T)) (((|#3|) . T)) -((((-859)) . T)) -(-4078 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-564)) . T) (((-407 (-564))) -4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) -((((-1119 |#1| |#2|)) . T) ((|#2|) . T) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T)) -((((-1166 |#1|)) . T) (((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) -(-4078 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) -((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-1082 (-1170))) . T) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T)) +((((-858)) . T)) +(-2789 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-564)) . T) (((-407 (-564))) -2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +((((-1119 |#1| |#2|)) . T) ((|#2|) . T) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-564)) . T)) +((((-1166 |#1|)) . T) (((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) +(-2789 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) +((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-1082 (-1170))) . T) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-1170)) . T)) (((#0=(-581 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) ((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#1|) |has| |#1| (-172))) @@ -2798,11 +2795,11 @@ ((($) . T) (((-407 (-564))) . T)) (((|#2|) |has| |#2| (-6 (-4408 "*")))) (((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-294 |#3|)) . T)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) @@ -2810,21 +2807,21 @@ (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) (((|#2|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(|has| |#2| (-906)) -(|has| |#1| (-906)) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(|has| |#2| (-905)) +(|has| |#1| (-905)) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) (((|#1|) . T)) -((((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) . T)) +((((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2834,64 +2831,64 @@ (|has| |#1| (-1094)) (((|#1|) . T)) ((((-1170)) . T) ((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((#0=(-407 (-564)) #0#) . T)) ((((-407 (-564))) . T)) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#1|) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((((-407 (-564))) . T) (((-564)) . T) (($) . T)) ((((-536)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-1170)) |has| |#2| (-897 (-1170))) (((-1076)) . T)) +((((-1170)) |has| |#2| (-896 (-1170))) (((-1076)) . T)) ((((-1244 |#2| |#3| |#4|)) . T)) -((((-907 |#1|)) . T)) +((((-906 |#1|)) . T)) ((($) . T) (((-407 (-564))) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) -((((-859)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +((((-858)) . T)) (|has| |#1| (-1213)) (((|#2|) . T)) ((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((((-1170)) |has| |#1| (-897 (-1170)))) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((($) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((((-1170)) |has| |#1| (-896 (-1170)))) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((($) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-556)))) ((($) . T) (((-407 (-564))) . T)) (((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-556)))) +(((|#2|) |has| |#2| (-1045)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-556)))) (|has| |#1| (-556)) (((|#1|) |has| |#1| (-363))) ((((-564)) . T)) -(|has| |#1| (-788)) -(|has| |#1| (-788)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) ((((-1170) #0=(-116 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) -((((-1076)) . T) ((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) +((((-1076)) . T) ((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-564) (-768)) . T) ((|#3| (-768)) . T)) +((((-564) (-767)) . T) ((|#3| (-767)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-859)) . T)) -(|has| |#2| (-817)) -(|has| |#2| (-817)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) +((((-858)) . T)) +(|has| |#2| (-816)) +(|has| |#2| (-816)) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379)))) +(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +((((-564)) |has| |#1| (-882 (-564))) (((-379)) |has| |#1| (-882 (-379)))) (((|#1|) . T)) -((((-867 |#1|)) . T)) -((((-867 |#1|)) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-906))) +((((-866 |#1|)) . T)) +((((-866 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-905))) ((((-407 (-564))) . T) (((-695)) . T) (($) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) @@ -2904,33 +2901,33 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-861 |#1|)) . T)) +((((-860 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-768)) . T)) +(((|#2| (-767)) . T)) ((((-1170)) . T)) -((((-867 |#1|)) . T)) -(-4078 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -((((-859)) . T)) +((((-866 |#1|)) . T)) +(-2789 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-790)) (|has| |#2| (-845))) -(-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))) -((((-867 |#1|)) . T)) +(-2789 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))) +((((-866 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) ((($ $) . T) (((-610 $) $) . T)) ((($) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T)) (((|#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($) . T) ((|#2|) . T) (((-407 (-564))) . T)) (|has| |#1| (-1094)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) @@ -2939,30 +2936,30 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-859)) . T)) -(|has| |#2| (-906)) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) -((((-859)) . T)) -((((-859)) . T)) -(((|#3|) |has| |#3| (-1046)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) -((((-1119 |#1| |#2|)) . T) (((-949 |#1|)) |has| |#2| (-612 (-1170))) (((-859)) . T)) -((((-949 |#1|)) |has| |#2| (-612 (-1170))) (((-1152)) -12 (|has| |#1| (-1035 (-564))) (|has| |#2| (-612 (-1170)))) (((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564))))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) -((((-1166 |#1|)) . T) (((-859)) . T)) -((((-859)) . T)) -((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((((-858)) . T)) +(|has| |#2| (-905)) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564))))) +((((-858)) . T)) +((((-858)) . T)) +(((|#3|) |has| |#3| (-1045)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) +((((-1119 |#1| |#2|)) . T) (((-948 |#1|)) |has| |#2| (-612 (-1170))) (((-858)) . T)) +((((-948 |#1|)) |has| |#2| (-612 (-1170))) (((-1152)) -12 (|has| |#1| (-1034 (-564))) (|has| |#2| (-612 (-1170)))) (((-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564))))) (((-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) +((((-1166 |#1|)) . T) (((-858)) . T)) +((((-858)) . T)) +((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T)) ((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T) (((-1170)) . T)) -((((-859)) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T) (((-1170)) . T)) +((((-858)) . T)) ((((-564)) . T)) (((|#1|) . T)) ((($) . T)) -((((-379)) |has| |#1| (-883 (-379))) (((-564)) |has| |#1| (-883 (-564)))) +((((-379)) |has| |#1| (-882 (-379))) (((-564)) |has| |#1| (-882 (-564)))) ((((-564)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) @@ -2973,49 +2970,49 @@ (((|#1|) |has| |#1| (-172)) (($) . T)) ((((-564)) . T) (((-407 (-564))) . T)) (((|#1|) |has| |#1| (-309 |#1|))) -((((-859)) . T)) +((((-858)) . T)) ((((-379)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-407 (-564))) . T) (($) . T)) ((((-407 |#2|) |#3|) . T)) (((|#1|) . T)) (|has| |#1| (-1094)) -(((|#2| (-482 (-2828 |#1|) (-768))) . T)) +(((|#2| (-482 (-2059 |#1|) (-767))) . T)) ((((-564) |#1|) . T)) -((((-1152)) . T) (((-859)) . T)) +((((-1152)) . T) (((-858)) . T)) (((|#2| |#2|) . T)) (((|#1| (-531 (-1170))) . T)) -(-4078 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((((-564)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T)) +((((-1170)) |has| |#1| (-896 (-1170))) (((-1076)) . T)) (((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) (|has| |#1| (-556)) ((($) . T) (((-407 (-564))) . T)) ((($) . T)) ((($) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) (((|#1|) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-859)) . T)) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) ((((-144)) . T)) (((|#1|) . T) (((-407 (-564))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#1|) . T)) (|has| |#1| (-1145)) -(((|#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) . T)) +(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) (((|#1|) . T)) ((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -((((-859)) . T)) -((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T) ((|#2|) . T)) -((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) -((((-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379)))) (((-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564))))) +(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +((((-858)) . T)) +((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T) ((|#2|) . T)) +((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564))))) +((((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))) (((-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564))))) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) ((((-564) |#1|) . T)) (((|#1| |#1|) . T)) @@ -3023,7 +3020,7 @@ (((|#1|) |has| |#1| (-172)) (($) . T)) ((($) . T)) ((((-695)) . T)) -((((-777 |#1| (-861 |#2|))) . T)) +((((-776 |#1| (-860 |#2|))) . T)) ((($) . T)) ((((-407 (-564))) . T) (($) . T)) (|has| |#1| (-1094)) @@ -3033,36 +3030,36 @@ (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564)))) ((((-564)) . T)) -((((-1170)) -12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) -((((-1170)) -12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) +((((-1170)) -12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) +((((-1170)) -12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (((|#1|) . T)) (|has| |#1| (-233)) (((|#1| (-531 |#3|)) . T)) -(((|#2| (-240 (-2828 |#1|) (-768))) . T)) +(((|#2| (-240 (-2059 |#1|) (-767))) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) (((|#1|) . T) (($) . T)) (((|#1| (-531 |#2|)) . T)) -(-4078 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(((|#1| (-768)) . T)) +(-2789 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1| (-767)) . T)) (|has| |#1| (-556)) -(-4078 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-859)) . T)) +((((-858)) . T)) ((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -(-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) -(-4078 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) +(-2789 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#1|) |has| |#1| (-172))) -(((|#4|) |has| |#4| (-1046))) -(((|#3|) |has| |#3| (-1046))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) -((((-564)) . T) (((-407 (-564))) -4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) -((((-1119 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#2|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +(((|#4|) |has| |#4| (-1045))) +(((|#3|) |has| |#3| (-1045))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +((((-564)) . T) (((-407 (-564))) -2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +((((-1119 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) ((|#2|) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) (((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) (((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) @@ -3071,35 +3068,35 @@ ((((-668 |#1|)) . T)) ((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) ((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((((-859)) . T)) -((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-859)) . T)) +((((-858)) . T)) +((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-858)) . T)) ((($) . T) (((-407 (-564))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1094)) (((-564)) -12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094)))) -(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) +(((|#4|) |has| |#4| (-1094)) (((-564)) -12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094)))) +(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (|has| |#2| (-363)) -(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) +(((|#2|) |has| |#2| (-1045)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((|#1|) . T)) (|has| |#2| (-363)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#2| |#2|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#2|) . T)) -((((-859)) |has| |#1| (-1094))) +((((-858)) |has| |#1| (-1094))) ((($) . T)) ((((-1245 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-817)) -(|has| |#2| (-817)) +(|has| |#2| (-816)) +(|has| |#2| (-816)) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) @@ -3107,179 +3104,179 @@ (((|#1|) |has| |#2| (-417 |#1|))) (((|#1|) |has| |#2| (-417 |#1|))) ((((-1152)) . T)) -((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-641 |#1|)) . T) (((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) +((((-641 |#1|)) . T) (((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) ((((-641 |#1|)) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-1208)) . T) (((-859)) . T) (((-1175)) . T)) +((((-858)) . T)) +((((-858)) . T) (((-1175)) . T)) +((((-1208)) . T) (((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) |has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))))) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) |has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))))) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((((-564) |#1|) . T)) ((((-564) |#1|) . T)) ((((-564) |#1|) . T)) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((((-564) |#1|) . T)) (((|#1|) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -((((-1170)) |has| |#1| (-897 (-1170))) (((-815 (-1170))) . T)) -(-4078 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -((((-816 |#1|)) . T)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-1170)) |has| |#1| (-896 (-1170))) (((-814 (-1170))) . T)) +(-2789 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-815 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-859)) . T)) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-858)) . T)) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T)) +((((-858)) . T)) ((((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) (((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) (((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) (|has| |#1| (-363)) -(-4078 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) +(-2789 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) (((|#1|) . T)) -(((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) +(((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) ((((-564) |#1|) . T)) ((((-316 |#1|)) . T)) (((#0=(-695) (-1166 #0#)) . T)) -((((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) +((((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-845)) -(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4078 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1119 |#1| (-1170))) . T) (((-815 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-1170)) . T)) +(|has| |#1| (-844)) +(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2789 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1119 |#1| (-1170))) . T) (((-814 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-1170)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) (((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T)) ((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1082 (-1170)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -(|has| |#2| (-906)) +(|has| |#2| (-905)) ((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) ((((-564) |#1|) . T)) ((((-1175)) . T)) (((#0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) (|has| |#2| (-233)) (|has| $ (-147)) -((((-859)) . T)) -((($) . T) (((-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-859)) . T)) -(|has| |#1| (-845)) +((((-858)) . T)) +((($) . T) (((-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-858)) . T)) +(|has| |#1| (-844)) ((((-129)) . T)) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) ((((-407 |#2|) |#3|) . T)) (((|#1|) . T)) ((((-129)) . T)) -((((-859)) . T)) +((((-858)) . T)) (((|#2| (-668 |#1|)) . T)) -(-12 (|has| |#1| (-307)) (|has| |#1| (-906))) +(-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#4|) . T)) (|has| |#1| (-556)) -((($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) -((((-1170)) -4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) -(((|#1|) . T) (($) -4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) +((($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) +((((-1170)) -2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) +(((|#1|) . T) (($) -2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) ((((-564) |#1|) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((|#1|) . T)) -(((|#1| (-531 (-815 (-1170)))) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) -((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#2| (-1035 (-1170)))) +(((|#1| (-531 (-814 (-1170)))) . T)) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) +((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#2| (-1034 (-1170)))) (((|#1|) . T)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((|#1|) . T)) -(-4078 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) +(-2789 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) . T) (((-867 |#1|)) . T) (((-407 (-564))) . T)) +((($) . T) (((-866 |#1|)) . T) (((-407 (-564))) . T)) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) (|has| |#1| (-556)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-407 |#2|)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T)) ((((-564)) . T)) (((|#2|) . T) (((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-407 (-564))) . T) (($) . T)) ((((-564) |#1|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($ $) . T) (((-1170) $) . T)) ((((-1251 |#1| |#2| |#3|)) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) -((((-859)) . T)) -((((-859)) . T)) -((((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536))))) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -(((|#1|) . T) (((-859)) . T) (((-1175)) . T)) -((((-859)) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564))))) +((((-858)) . T)) +((((-858)) . T)) +((((-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) (((-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536))))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-858)) . T) (((-1175)) . T)) +((((-858)) . T)) ((((-1175)) . T)) ((((-114)) . T) ((|#1|) . T) (((-564)) . T)) (((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -(((|#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) . T)) +(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) ((((-129)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) (|has| |#1| (-363)) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((((-1098)) . T)) -((((-859)) . T)) -((($) -4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-858)) . T)) +((($) -2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) ((($) . T)) -((($) -4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) ((((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T)) -((((-1170)) . T) (((-859)) . T)) -(|has| |#2| (-906)) +((((-1170)) . T) (((-858)) . T)) +(|has| |#2| (-905)) (((|#1|) . T)) -(|has| |#1| (-906)) +(|has| |#1| (-905)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-172))) ((((-695)) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) ((((-1175)) . T)) (((|#1|) |has| |#1| (-172))) ((((-1175)) . T)) @@ -3291,16 +3288,16 @@ ((((-1175)) . T)) ((((-1175)) . T)) ((((-1175)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) ((((-1175)) . T)) ((((-1175)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(-4078 (|has| |#1| (-172)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-172)) (|has| |#1| (-556))) (((|#1| (-564)) . T)) (((|#1| (-407 (-564))) . T)) -(((|#1| (-768)) . T)) +(((|#1| (-767)) . T)) ((((-407 (-564))) . T)) (((|#1| (-531 |#2|) |#2|) . T)) ((((-564) |#1|) . T)) @@ -3309,75 +3306,75 @@ ((((-564) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-889 (-379))) . T) (((-889 (-564))) . T) (((-1170)) . T) (((-536)) . T)) +((((-888 (-379))) . T) (((-888 (-564))) . T) (((-1170)) . T) (((-536)) . T)) (((|#1|) . T)) -((((-859)) . T)) -(-4078 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -(-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) +((((-858)) . T)) +(-2789 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) ((((-564)) . T)) ((((-564)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-4078 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) -((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) -(-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) +(-2789 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) +(-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-363)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-233)) -((((-859)) . T)) -(((|#1| (-768) (-1076)) . T)) +((((-858)) . T)) +(((|#1| (-767) (-1076)) . T)) ((((-564) |#1|) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-564) |#1|) . T)) ((((-564) |#1|) . T)) ((((-116 |#1|)) . T)) ((((-407 (-564))) . T) (((-564)) . T)) -(((|#2|) |has| |#2| (-1046))) +(((|#2|) |has| |#2| (-1045))) ((((-407 (-564))) . T) (($) . T)) (((|#2|) . T)) ((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) ((((-564)) . T)) ((((-564)) . T)) -((((-1152) (-1170) (-564) (-225) (-859)) . T)) +((((-1152) (-1170) (-564) (-225) (-858)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-564)) . T) ((|#2|) |has| |#2| (-172))) ((((-114)) . T) ((|#1|) . T) (((-564)) . T)) -(-4078 (|has| |#1| (-349)) (|has| |#1| (-368))) +(-2789 (|has| |#1| (-349)) (|has| |#1| (-368))) (((|#1| |#2|) . T)) ((((-225)) . T)) ((((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($) . T) ((|#1|) . T)) ((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T)) (((|#1|) . T)) ((((-536)) |has| |#1| (-612 (-536)))) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094)))) ((($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-906)) -(|has| |#1| (-906)) -((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) (((-889 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-379))))) (((-889 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-564))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536))))) -((((-859)) . T)) -((((-859)) . T)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) +((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-379))))) (((-888 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-564))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536))))) +((((-858)) . T)) +((((-858)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#1|) . T) (((-564)) . T)) ((((-1175)) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) (((|#2|) . T)) -(-4078 (|has| |#1| (-21)) (|has| |#1| (-845))) +(-2789 (|has| |#1| (-21)) (|has| |#1| (-844))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-859)) -4078 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) +((((-858)) -2789 (-12 (|has| |#1| (-611 (-858))) (|has| |#2| (-611 (-858)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) ((((-407 |#2|) |#3|) . T)) ((((-407 (-564))) . T) (($) . T)) (|has| |#1| (-38 (-407 (-564)))) @@ -3389,21 +3386,21 @@ (((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) (((#0=(-564) #0#) . T)) ((($) . T) (((-407 (-564))) . T)) -(-4078 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046))) -(-4078 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) -((((-859)) . T) (((-1175)) . T)) -(|has| |#4| (-790)) -(-4078 (|has| |#4| (-790)) (|has| |#4| (-845))) -(|has| |#4| (-845)) -(|has| |#3| (-790)) -((((-1175)) . T)) -(-4078 (|has| |#3| (-790)) (|has| |#3| (-845))) -(|has| |#3| (-845)) +(-2789 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-2789 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T) (((-1175)) . T)) +(|has| |#4| (-789)) +(-2789 (|has| |#4| (-789)) (|has| |#4| (-844))) +(|has| |#4| (-844)) +(|has| |#3| (-789)) +((((-1175)) . T)) +(-2789 (|has| |#3| (-789)) (|has| |#3| (-844))) +(|has| |#3| (-844)) ((((-564)) . T)) (((|#2|) . T)) -((((-1170)) -4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) -((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) +((((-1170)) -2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (((|#1| |#1|) . T) (($ $) . T)) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) @@ -3412,55 +3409,55 @@ (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-861 |#1|)) . T)) +((((-860 |#1|)) . T)) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) ((((-1134 |#1| |#2|)) . T)) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) -(((|#2|) . T) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) +(((|#2|) . T) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1019)) -(((|#2|) . T) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) -((((-859)) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-379)) . #0=(|has| |#2| (-1019))) (((-225)) . #0#)) +(|has| |#1| (-1018)) +(((|#2|) . T) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) +((((-858)) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-379)) . #0=(|has| |#2| (-1018))) (((-225)) . #0#)) ((((-294 |#3|)) . T)) ((((-1170) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))) -((((-859)) . T)) +((((-858)) . T)) (((|#2|) . T)) -((((-859)) . T)) +((((-858)) . T)) ((($ $) . T)) ((((-407 (-564))) . T) (((-695)) . T) (($) . T)) ((((-1168 |#1| |#2| |#3|)) . T)) ((((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T)) -((((-859)) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) ((((-564) |#1|) . T)) ((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-363)) -(((|#3|) . T) ((|#2|) . T) (($) -4078 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) ((|#4|) -4078 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046)))) -(((|#2|) . T) (($) -4078 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4078 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046)))) +(((|#3|) . T) ((|#2|) . T) (($) -2789 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) ((|#4|) -2789 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045)))) +(((|#2|) . T) (($) -2789 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -2789 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-363)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T)) ((((-1170)) . T) ((|#1|) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) -((((-187)) . T) (((-859)) . T)) -((((-859)) . T)) -(((|#1|) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) -((((-129)) . T) (((-859)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-187)) . T) (((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) +((((-129)) . T) (((-858)) . T)) ((((-564) |#1|) . T)) ((((-129)) . T)) (((|#1|) . T)) @@ -3468,49 +3465,49 @@ (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906))) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((((-859)) . T)) -((((-859)) . T)) -((((-859)) . T)) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| (-531 |#2|)) . T)) -((((-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) . T)) +((((-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) . T)) ((((-564) (-129)) . T)) (((|#1| (-564)) . T)) (((|#1| (-407 (-564))) . T)) -(((|#1| (-768)) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +(((|#1| (-767)) . T)) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) ((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) ((((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) -(-4078 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) -(-4078 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-858)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) +(-2789 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) +(-2789 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((($) . T)) -(((|#2| (-531 (-861 |#1|))) . T)) +(((|#2| (-531 (-860 |#1|))) . T)) ((((-1175)) . T)) ((((-1175)) . T)) ((((-564) |#1|) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) (((|#2|) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-859)) . T) (((-1175)) . T)) +((((-858)) . T) (((-1175)) . T)) ((((-1175)) . T)) -((((-859)) -4078 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-858)) -2789 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094)))) (((|#1|) . T)) -(((|#2| (-768)) . T)) +(((|#2| (-767)) . T)) (((|#1| |#2|) . T)) ((((-1152) |#1|) . T)) ((((-407 |#2|)) . T)) -((((-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T)) +((((-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T)) (|has| |#1| (-556)) (|has| |#1| (-556)) ((($) . T) ((|#2|) . T)) @@ -3518,19 +3515,19 @@ (((|#1| |#2|) . T)) ((((-564)) . T) (($) . T)) (((|#2| $) |has| |#2| (-286 |#2| |#2|))) -(((|#1| (-641 |#1|)) |has| |#1| (-845))) -(-4078 (|has| |#1| (-233)) (|has| |#1| (-349))) -(-4078 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1255 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(((|#1| (-641 |#1|)) |has| |#1| (-844))) +(-2789 (|has| |#1| (-233)) (|has| |#1| (-349))) +(-2789 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1255 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564))))) (|has| |#1| (-1094)) (((|#1|) . T)) -((((-1255 |#1|)) . T) (((-564)) . T) (($) -4078 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-1076)) . T) ((|#2|) . T) (((-407 (-564))) -4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) +((((-1255 |#1|)) . T) (((-564)) . T) (($) -2789 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-1076)) . T) ((|#2|) . T) (((-407 (-564))) -2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) ((((-407 (-564))) . T) (($) . T)) -((((-996 |#1|)) . T) ((|#1|) . T) (((-564)) -4078 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) -4078 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) +((((-995 |#1|)) . T) ((|#1|) . T) (((-564)) -2789 (|has| (-995 |#1|) (-1034 (-564))) (|has| |#1| (-1034 (-564)))) (((-407 (-564))) -2789 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) -((((-1170)) |has| |#1| (-897 (-1170)))) +((((-1170)) |has| |#1| (-896 (-1170)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T)) @@ -3538,10 +3535,10 @@ (((|#1| |#2| |#3| |#4|) . T)) (((#0=(-1134 |#1| |#2|) #0#) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) #0#) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) (((#0=(-116 |#1|)) |has| #0# (-309 #0#))) ((($ $) . T)) -(-4078 (|has| |#1| (-847)) (|has| |#1| (-1094))) -((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) +(-2789 (|has| |#1| (-846)) (|has| |#1| (-1094))) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-478 . -1094) T) ((-264 . -514) 162073) ((-247 . -514) 162016) ((-245 . -1094) 161966) ((-571 . -111) 161951) ((-531 . -23) T) ((-138 . -1094) T) ((-137 . -1094) T) ((-117 . -309) 161908) ((-133 . -1094) T) ((-479 . -514) 161700) ((-673 . -614) 161684) ((-690 . -102) T) ((-1135 . -514) 161603) ((-390 . -131) T) ((-1272 . -973) 161572) ((-31 . -93) T) ((-600 . -489) 161556) ((-619 . -131) T) ((-816 . -843) T) ((-523 . -57) 161506) ((-59 . -514) 161439) ((-519 . -514) 161372) ((-418 . -897) 161331) ((-169 . -1046) T) ((-516 . -514) 161264) ((-497 . -514) 161197) ((-496 . -514) 161130) ((-796 . -1035) 160913) ((-695 . -38) 160878) ((-1232 . -614) 160626) ((-343 . -349) T) ((-1088 . -1087) 160610) ((-1088 . -1094) 160588) ((-852 . -614) 160485) ((-169 . -243) 160436) ((-169 . -233) 160387) ((-1088 . -1089) 160345) ((-869 . -286) 160303) ((-225 . -792) T) ((-225 . -789) T) ((-690 . -284) NIL) ((-571 . -614) 160275) ((-1144 . -1185) 160254) ((-407 . -989) 160238) ((-697 . -21) T) ((-697 . -25) T) ((-1274 . -644) 160212) ((-316 . -160) 160191) ((-316 . -143) 160170) ((-1144 . -107) 160120) ((-134 . -25) T) ((-40 . -231) 160097) ((-116 . -21) T) ((-116 . -25) T) ((-606 . -288) 160073) ((-475 . -288) 160052) ((-1232 . -326) 160029) ((-1232 . -1046) T) ((-852 . -1046) T) ((-796 . -338) 160013) ((-139 . -185) T) ((-117 . -1145) NIL) ((-91 . -611) 159945) ((-477 . -131) T) ((-1232 . -233) T) ((-1090 . -490) 159926) ((-1090 . -611) 159892) ((-1084 . -490) 159873) ((-1084 . -611) 159839) ((-592 . -1209) T) ((-1068 . -490) 159820) ((-571 . -1046) T) ((-1068 . -611) 159786) ((-658 . -714) 159770) ((-1061 . -490) 159751) ((-1061 . -611) 159717) ((-955 . -288) 159694) ((-60 . -34) T) ((-1057 . -792) T) ((-1057 . -789) T) ((-1033 . -490) 159675) ((-1016 . -490) 159656) ((-813 . -723) T) ((-728 . -47) 159621) ((-621 . -38) 159608) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159539) ((-247 . -290) 159470) ((-1033 . -611) 159436) ((-1021 . -102) T) ((-1016 . -611) 159402) ((-624 . -490) 159383) ((-413 . -723) T) ((-117 . -38) 159328) ((-483 . -490) 159309) ((-624 . -611) 159275) ((-413 . -473) T) ((-218 . -490) 159256) ((-483 . -611) 159222) ((-354 . -102) T) ((-218 . -611) 159188) ((-1203 . -1053) T) ((-708 . -1053) T) ((-1168 . -47) 159165) ((-1167 . -47) 159135) ((-1161 . -47) 159112) ((-128 . -288) 159087) ((-1032 . -151) 159033) ((-907 . -290) T) ((-1120 . -47) 159005) ((-690 . -309) NIL) ((-515 . -611) 158987) ((-510 . -611) 158969) ((-508 . -611) 158951) ((-327 . -1094) 158901) ((-709 . -452) 158832) ((-48 . -102) T) ((-1243 . -286) 158817) ((-1222 . -286) 158737) ((-641 . -662) 158721) ((-641 . -647) 158705) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-641 . -373) 158689) ((-603 . -490) 158671) ((-600 . -286) 158648) ((-603 . -611) 158615) ((-388 . -102) T) ((-1114 . -143) T) ((-126 . -611) 158547) ((-871 . -1094) T) ((-654 . -411) 158531) ((-711 . -611) 158513) ((-249 . -611) 158480) ((-187 . -611) 158462) ((-162 . -611) 158444) ((-157 . -611) 158426) ((-1274 . -723) T) ((-1096 . -34) T) ((-868 . -792) NIL) ((-868 . -789) NIL) ((-855 . -847) T) ((-728 . -883) NIL) ((-1283 . -131) T) ((-381 . -131) T) ((-889 . -614) 158394) ((-901 . -102) T) ((-728 . -1035) 158270) ((-531 . -131) T) ((-1081 . -411) 158254) ((-997 . -489) 158238) ((-117 . -400) 158215) ((-1161 . -1209) 158194) ((-779 . -411) 158178) ((-777 . -411) 158162) ((-940 . -34) T) ((-690 . -1145) NIL) ((-251 . -644) 157997) ((-250 . -644) 157819) ((-814 . -917) 157798) ((-454 . -411) 157782) ((-600 . -19) 157766) ((-1140 . -1202) 157735) ((-1161 . -883) NIL) ((-1161 . -881) 157687) ((-600 . -602) 157664) ((-1195 . -611) 157596) ((-1169 . -611) 157578) ((-62 . -395) T) ((-1167 . -1035) 157513) ((-1161 . -1035) 157479) ((-690 . -38) 157429) ((-474 . -286) 157414) ((-1215 . -611) 157396) ((-728 . -377) 157380) ((-835 . -611) 157362) ((-654 . -1053) T) ((-1243 . -999) 157328) ((-1222 . -999) 157294) ((-1082 . -614) 157278) ((-1058 . -1185) 157253) ((-1070 . -614) 157230) ((-869 . -612) 157037) ((-869 . -611) 157019) ((-1182 . -489) 156956) ((-418 . -1019) 156934) ((-48 . -309) 156921) ((-1058 . -107) 156867) ((-479 . -489) 156804) ((-520 . -1209) T) ((-1161 . -338) 156756) ((-1135 . -489) 156727) ((-1161 . -377) 156679) ((-1081 . -1053) T) ((-437 . -102) T) ((-183 . -1094) T) ((-251 . -34) T) ((-250 . -34) T) ((-779 . -1053) T) ((-777 . -1053) T) ((-728 . -897) 156656) ((-454 . -1053) T) ((-59 . -489) 156640) ((-1031 . -1052) 156614) ((-519 . -489) 156598) ((-516 . -489) 156582) ((-497 . -489) 156566) ((-496 . -489) 156550) ((-245 . -514) 156483) ((-1031 . -111) 156450) ((-1168 . -897) 156363) ((-1167 . -897) 156269) ((-1161 . -897) 156102) ((-1120 . -897) 156086) ((-666 . -1106) T) ((-354 . -1145) T) ((-642 . -93) T) ((-322 . -1052) 156068) ((-251 . -788) 156047) ((-251 . -791) 155998) ((-31 . -490) 155979) ((-251 . -790) 155958) ((-250 . -788) 155937) ((-250 . -791) 155888) ((-250 . -790) 155867) ((-31 . -611) 155833) ((-50 . -1053) T) ((-251 . -723) 155743) ((-250 . -723) 155653) ((-1203 . -1094) T) ((-666 . -23) T) ((-581 . -1053) T) ((-518 . -1053) T) ((-379 . -1052) 155618) ((-322 . -111) 155593) ((-73 . -383) T) ((-73 . -395) T) ((-1021 . -38) 155530) ((-690 . -400) 155512) ((-99 . -102) T) ((-708 . -1094) T) ((-1000 . -145) 155484) ((-1000 . -147) 155456) ((-379 . -111) 155412) ((-319 . -1213) 155391) ((-474 . -999) 155357) ((-354 . -38) 155322) ((-40 . -370) 155294) ((-870 . -611) 155166) ((-127 . -125) 155150) ((-121 . -125) 155134) ((-833 . -1052) 155104) ((-830 . -21) 155056) ((-824 . -1052) 155040) ((-830 . -25) 154992) ((-319 . -556) 154943) ((-517 . -614) 154924) ((-564 . -825) T) ((-240 . -1209) T) ((-1031 . -614) 154893) ((-833 . -111) 154858) ((-824 . -111) 154837) ((-1243 . -611) 154819) ((-1222 . -611) 154801) ((-1222 . -612) 154472) ((-1166 . -906) 154451) ((-1119 . -906) 154430) ((-48 . -38) 154395) ((-1281 . -1106) T) ((-600 . -611) 154307) ((-600 . -612) 154268) ((-1279 . -1106) T) ((-361 . -614) 154252) ((-322 . -614) 154236) ((-240 . -1035) 154063) ((-1166 . -644) 153988) ((-1119 . -644) 153913) ((-851 . -644) 153887) ((-715 . -611) 153869) ((-546 . -368) T) ((-1281 . -23) T) ((-1279 . -23) T) ((-491 . -1094) T) ((-379 . -614) 153819) ((-379 . -616) 153801) ((-1031 . -1046) T) ((-862 . -102) T) ((-1182 . -286) 153780) ((-169 . -368) 153731) ((-1001 . -1209) T) ((-833 . -614) 153685) ((-824 . -614) 153640) ((-44 . -23) T) ((-479 . -286) 153619) ((-585 . -1094) T) ((-1140 . -1103) 153588) ((-1098 . -1097) 153540) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1106) T) ((-1287 . -102) T) ((-1001 . -881) 153522) ((-1001 . -883) 153504) ((-1203 . -714) 153401) ((-621 . -231) 153385) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1189 . -1094) T) ((-708 . -714) 153350) ((-240 . -377) 153319) ((-1001 . -1035) 153279) ((-379 . -1046) T) ((-223 . -1053) T) ((-117 . -231) 153256) ((-59 . -286) 153233) ((-152 . -23) T) ((-516 . -286) 153210) ((-327 . -514) 153143) ((-496 . -286) 153120) ((-379 . -243) T) ((-379 . -233) T) ((-833 . -1046) T) ((-824 . -1046) T) ((-709 . -946) 153089) ((-697 . -847) T) ((-474 . -611) 153071) ((-824 . -233) 153050) ((-134 . -847) T) ((-654 . -1094) T) ((-1182 . -602) 153029) ((-550 . -1185) 153008) ((-336 . -1094) T) ((-319 . -363) 152987) ((-407 . -147) 152966) ((-407 . -145) 152945) ((-961 . -1106) 152844) ((-240 . -897) 152776) ((-812 . -1106) 152686) ((-650 . -849) 152670) ((-479 . -602) 152649) ((-550 . -107) 152599) ((-1001 . -377) 152581) ((-1001 . -338) 152563) ((-97 . -1094) T) ((-961 . -23) 152374) ((-477 . -21) T) ((-477 . -25) T) ((-812 . -23) 152244) ((-1170 . -611) 152226) ((-59 . -19) 152210) ((-1170 . -612) 152132) ((-1166 . -723) T) ((-1119 . -723) T) ((-516 . -19) 152116) ((-496 . -19) 152100) ((-59 . -602) 152077) ((-1081 . -1094) T) ((-898 . -102) 152055) ((-851 . -723) T) ((-779 . -1094) T) ((-516 . -602) 152032) ((-496 . -602) 152009) ((-777 . -1094) T) ((-777 . -1060) 151976) ((-461 . -1094) T) ((-454 . -1094) T) ((-585 . -714) 151951) ((-645 . -1094) T) ((-1251 . -47) 151928) ((-1245 . -102) T) ((-1244 . -47) 151898) ((-1223 . -47) 151875) ((-1203 . -172) 151826) ((-1167 . -307) 151805) ((-1001 . -897) NIL) ((-1161 . -307) 151784) ((-625 . -1106) T) ((-666 . -131) T) ((-1090 . -614) 151765) ((-1084 . -614) 151746) ((-1074 . -556) 151697) ((-1074 . -1213) 151648) ((-1068 . -614) 151629) ((-275 . -1094) T) ((-85 . -441) T) ((-85 . -395) T) ((-1061 . -614) 151610) ((-1033 . -614) 151591) ((-50 . -1094) T) ((-1016 . -614) 151572) ((-708 . -172) T) ((-594 . -47) 151549) ((-225 . -644) 151514) ((-581 . -1094) T) ((-518 . -1094) T) ((-359 . -1213) T) ((-353 . -1213) T) ((-345 . -1213) T) ((-487 . -817) T) ((-487 . -917) T) ((-319 . -1106) T) ((-108 . -1213) T) ((-711 . -1052) 151484) ((-339 . -847) T) ((-217 . -917) T) ((-217 . -817) T) ((-624 . -614) 151465) ((-359 . -556) T) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 151446) ((-108 . -556) T) ((-654 . -714) 151416) ((-1161 . -1019) NIL) ((-218 . -614) 151397) ((-319 . -23) T) ((-67 . -1209) T) ((-997 . -611) 151329) ((-690 . -231) 151311) ((-711 . -111) 151276) ((-641 . -34) T) ((-245 . -489) 151260) ((-1096 . -1092) 151244) ((-171 . -1094) T) ((-949 . -906) 151223) ((-515 . -614) 151207) ((-1287 . -1145) T) ((-1283 . -21) T) ((-481 . -906) 151186) ((-1283 . -25) T) ((-1281 . -131) T) ((-1279 . -131) T) ((-1272 . -102) T) ((-1255 . -611) 151152) ((-1244 . -1035) 151087) ((-1081 . -714) 150936) ((-1057 . -644) 150923) ((-949 . -644) 150848) ((-779 . -714) 150677) ((-536 . -611) 150659) ((-536 . -612) 150640) ((-777 . -714) 150489) ((-1223 . -1209) 150468) ((-1071 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -644) 150393) ((-461 . -714) 150364) ((-454 . -714) 150213) ((-984 . -102) T) ((-1223 . -883) NIL) ((-1223 . -881) 150165) ((-1182 . -612) NIL) ((-734 . -102) T) ((-1182 . -611) 150147) ((-603 . -614) 150129) ((-1136 . -1117) 150074) ((-1043 . -1202) 150003) ((-531 . -25) T) ((-898 . -309) 149941) ((-711 . -614) 149895) ((-343 . -1053) T) ((-642 . -490) 149876) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1106) T) ((-677 . -93) T) ((-672 . -93) T) ((-660 . -611) 149858) ((-642 . -611) 149811) ((-478 . -93) T) ((-355 . -611) 149793) ((-352 . -611) 149775) ((-344 . -611) 149757) ((-264 . -612) 149505) ((-264 . -611) 149487) ((-247 . -611) 149469) ((-247 . -612) 149330) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1223 . -1035) 149296) ((-1203 . -514) 149263) ((-1135 . -611) 149245) ((-816 . -854) T) ((-816 . -723) T) ((-600 . -288) 149222) ((-581 . -714) 149187) ((-479 . -612) NIL) ((-479 . -611) 149169) ((-518 . -714) 149114) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-907 . -611) 149096) ((-386 . -723) T) ((-869 . -1052) 149048) ((-907 . -612) 149030) ((-869 . -111) 148968) ((-711 . -1046) T) ((-709 . -1235) 148952) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-690 . -349) NIL) ((-519 . -611) 148884) ((-379 . -792) T) ((-223 . -1094) T) ((-379 . -789) T) ((-225 . -791) T) ((-225 . -788) T) ((-59 . -612) 148845) ((-59 . -611) 148757) ((-225 . -723) T) ((-516 . -612) 148718) ((-516 . -611) 148630) ((-497 . -611) 148562) ((-496 . -612) 148523) ((-496 . -611) 148435) ((-1074 . -363) 148386) ((-40 . -411) 148363) ((-77 . -1209) T) ((-868 . -906) NIL) ((-359 . -329) 148347) ((-359 . -363) T) ((-353 . -329) 148331) ((-353 . -363) T) ((-345 . -329) 148315) ((-345 . -363) T) ((-316 . -284) 148294) ((-108 . -363) T) ((-70 . -1209) T) ((-1223 . -338) 148246) ((-868 . -644) 148191) ((-1223 . -377) 148143) ((-961 . -131) 147998) ((-812 . -131) 147868) ((-955 . -647) 147852) ((-1081 . -172) 147763) ((-955 . -373) 147747) ((-1057 . -791) T) ((-1057 . -788) T) ((-869 . -614) 147645) ((-779 . -172) 147536) ((-777 . -172) 147447) ((-813 . -47) 147409) ((-1057 . -723) T) ((-327 . -489) 147393) ((-949 . -723) T) ((-454 . -172) 147304) ((-245 . -286) 147281) ((-1272 . -309) 147219) ((-1251 . -897) 147132) ((-481 . -723) T) ((-1244 . -897) 147038) ((-1243 . -1052) 146873) ((-1223 . -897) 146706) ((-1222 . -1052) 146514) ((-1203 . -290) 146493) ((-1179 . -1209) T) ((-1177 . -368) T) ((-1176 . -368) T) ((-1140 . -151) 146477) ((-1114 . -102) T) ((-1112 . -1094) T) ((-1074 . -23) T) ((-1069 . -102) T) ((-924 . -952) T) ((-734 . -309) 146415) ((-75 . -1209) T) ((-30 . -952) T) ((-169 . -906) 146368) ((-660 . -382) 146340) ((-112 . -841) T) ((-1 . -611) 146322) ((-1074 . -1106) T) ((-128 . -647) 146304) ((-50 . -618) 146288) ((-1000 . -409) 146260) ((-594 . -897) 146173) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146155) ((-869 . -1046) T) ((-830 . -847) 146134) ((-81 . -1209) T) ((-708 . -290) T) ((-40 . -1053) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 146116) ((-169 . -644) 146026) ((-507 . -611) 146008) ((-351 . -147) 145990) ((-351 . -145) T) ((-359 . -1106) T) ((-353 . -1106) T) ((-345 . -1106) T) ((-1001 . -307) T) ((-911 . -307) T) ((-869 . -243) T) ((-108 . -1106) T) ((-869 . -233) 145969) ((-1243 . -111) 145790) ((-1222 . -111) 145579) ((-245 . -1247) 145563) ((-564 . -845) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145550) ((-313 . -309) 145491) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1001 . -1019) T) ((-31 . -614) 145472) ((-108 . -23) T) ((-245 . -602) 145449) ((-1245 . -38) 145341) ((-1232 . -906) 145320) ((-112 . -1094) T) ((-1032 . -102) T) ((-1232 . -644) 145245) ((-868 . -791) NIL) ((-852 . -644) 145219) ((-868 . -788) NIL) ((-813 . -883) NIL) ((-868 . -723) T) ((-1081 . -514) 145092) ((-779 . -514) 145039) ((-777 . -514) 144991) ((-571 . -644) 144978) ((-813 . -1035) 144806) ((-454 . -514) 144749) ((-388 . -389) T) ((-1243 . -614) 144562) ((-1222 . -614) 144310) ((-60 . -1209) T) ((-619 . -847) 144289) ((-500 . -657) T) ((-1140 . -973) 144258) ((-1000 . -452) T) ((-695 . -845) T) ((-510 . -789) T) ((-474 . -1052) 144093) ((-343 . -1094) T) ((-313 . -1145) NIL) ((-289 . -131) T) ((-394 . -1094) T) ((-690 . -370) 144060) ((-867 . -1053) T) ((-223 . -618) 144037) ((-327 . -286) 144014) ((-474 . -111) 143835) ((-1243 . -1046) T) ((-1222 . -1046) T) ((-813 . -377) 143819) ((-169 . -723) T) ((-650 . -102) T) ((-1243 . -243) 143798) ((-1243 . -233) 143750) ((-1222 . -233) 143655) ((-1222 . -243) 143634) ((-1000 . -402) NIL) ((-666 . -637) 143582) ((-316 . -38) 143492) ((-313 . -38) 143421) ((-69 . -611) 143403) ((-319 . -493) 143369) ((-1182 . -288) 143348) ((-1217 . -847) T) ((-1107 . -1106) 143258) ((-83 . -1209) T) ((-61 . -611) 143240) ((-479 . -288) 143219) ((-1274 . -1035) 143196) ((-1158 . -1094) T) ((-1107 . -23) 143066) ((-813 . -897) 143002) ((-1232 . -723) T) ((-1096 . -1209) T) ((-474 . -614) 142828) ((-1081 . -290) 142759) ((-963 . -1094) T) ((-890 . -102) T) ((-779 . -290) 142670) ((-327 . -19) 142654) ((-59 . -288) 142631) ((-777 . -290) 142562) ((-852 . -723) T) ((-117 . -845) NIL) ((-516 . -288) 142539) ((-327 . -602) 142516) ((-496 . -288) 142493) ((-454 . -290) 142424) ((-1032 . -309) 142275) ((-677 . -490) 142256) ((-571 . -723) T) ((-672 . -490) 142237) ((-677 . -611) 142187) ((-672 . -611) 142153) ((-658 . -611) 142135) ((-478 . -490) 142116) ((-478 . -611) 142082) ((-245 . -612) 142043) ((-245 . -490) 142020) ((-138 . -490) 142001) ((-137 . -490) 141982) ((-133 . -490) 141963) ((-245 . -611) 141855) ((-213 . -102) T) ((-138 . -611) 141821) ((-137 . -611) 141787) ((-133 . -611) 141753) ((-1141 . -34) T) ((-940 . -1209) T) ((-343 . -714) 141698) ((-666 . -25) T) ((-666 . -21) T) ((-1170 . -614) 141679) ((-474 . -1046) T) ((-633 . -417) 141644) ((-605 . -417) 141609) ((-1114 . -1145) T) ((-581 . -290) T) ((-518 . -290) T) ((-1244 . -307) 141588) ((-474 . -233) 141540) ((-474 . -243) 141519) ((-1223 . -307) 141498) ((-1223 . -1019) NIL) ((-1074 . -131) T) ((-869 . -792) 141477) ((-144 . -102) T) ((-40 . -1094) T) ((-869 . -789) 141456) ((-641 . -1007) 141440) ((-580 . -1053) T) ((-564 . -1053) T) ((-495 . -1053) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141424) ((-313 . -400) 141385) ((-353 . -131) T) ((-345 . -131) T) ((-1175 . -1094) T) ((-1114 . -38) 141372) ((-1088 . -611) 141339) ((-108 . -131) T) ((-951 . -1094) T) ((-918 . -1094) T) ((-768 . -1094) T) ((-668 . -1094) T) ((-697 . -147) T) ((-116 . -147) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-660 . -1052) 141323) ((-531 . -847) T) ((-500 . -847) T) ((-355 . -1052) 141275) ((-352 . -1052) 141227) ((-344 . -1052) 141179) ((-251 . -1209) T) ((-250 . -1209) T) ((-264 . -1052) 141022) ((-247 . -1052) 140865) ((-660 . -111) 140844) ((-547 . -841) T) ((-355 . -111) 140782) ((-352 . -111) 140720) ((-344 . -111) 140658) ((-264 . -111) 140487) ((-247 . -111) 140316) ((-814 . -1213) 140295) ((-621 . -411) 140279) ((-44 . -21) T) ((-44 . -25) T) ((-812 . -637) 140185) ((-814 . -556) 140164) ((-251 . -1035) 139991) ((-250 . -1035) 139818) ((-126 . -119) 139802) ((-907 . -1052) 139767) ((-709 . -102) T) ((-695 . -1053) T) ((-536 . -616) 139670) ((-343 . -172) T) ((-88 . -611) 139652) ((-152 . -21) T) ((-152 . -25) T) ((-907 . -111) 139608) ((-40 . -714) 139553) ((-867 . -1094) T) ((-660 . -614) 139530) ((-642 . -614) 139511) ((-355 . -614) 139448) ((-352 . -614) 139385) ((-547 . -1094) T) ((-344 . -614) 139322) ((-327 . -612) 139283) ((-327 . -611) 139195) ((-264 . -614) 138948) ((-247 . -614) 138733) ((-1222 . -789) 138686) ((-1222 . -792) 138639) ((-251 . -377) 138608) ((-250 . -377) 138577) ((-650 . -38) 138547) ((-606 . -34) T) ((-482 . -1106) 138457) ((-475 . -34) T) ((-1107 . -131) 138327) ((-961 . -25) 138138) ((-907 . -614) 138088) ((-871 . -611) 138070) ((-961 . -21) 138025) ((-812 . -21) 137935) ((-812 . -25) 137786) ((-1215 . -368) T) ((-621 . -1053) T) ((-1172 . -556) 137765) ((-1166 . -47) 137742) ((-355 . -1046) T) ((-352 . -1046) T) ((-482 . -23) 137612) ((-344 . -1046) T) ((-247 . -1046) T) ((-264 . -1046) T) ((-1119 . -47) 137584) ((-117 . -1053) T) ((-1031 . -644) 137558) ((-955 . -34) T) ((-355 . -233) 137537) ((-355 . -243) T) ((-352 . -233) 137516) ((-352 . -243) T) ((-344 . -233) 137495) ((-344 . -243) T) ((-247 . -326) 137452) ((-264 . -326) 137424) ((-264 . -233) 137403) ((-1150 . -151) 137387) ((-251 . -897) 137319) ((-250 . -897) 137251) ((-1076 . -847) T) ((-414 . -1106) T) ((-1050 . -23) T) ((-907 . -1046) T) ((-322 . -644) 137233) ((-1021 . -845) T) ((-1203 . -999) 137199) ((-1167 . -917) 137178) ((-1161 . -917) 137157) ((-1161 . -817) NIL) ((-907 . -243) T) ((-814 . -363) 137136) ((-385 . -23) T) ((-127 . -1094) 137114) ((-121 . -1094) 137092) ((-907 . -233) T) ((-128 . -34) T) ((-379 . -644) 137057) ((-867 . -714) 137044) ((-1043 . -151) 137009) ((-40 . -172) T) ((-690 . -411) 136991) ((-709 . -309) 136978) ((-833 . -644) 136938) ((-824 . -644) 136912) ((-319 . -25) T) ((-319 . -21) T) ((-654 . -286) 136891) ((-580 . -1094) T) ((-564 . -1094) T) ((-495 . -1094) T) ((-245 . -288) 136868) ((-313 . -231) 136829) ((-1166 . -883) NIL) ((-55 . -1094) T) ((-1119 . -883) 136688) ((-129 . -847) T) ((-1166 . -1035) 136568) ((-1119 . -1035) 136451) ((-183 . -611) 136433) ((-851 . -1035) 136329) ((-779 . -286) 136256) ((-814 . -1106) T) ((-1031 . -723) T) ((-600 . -647) 136240) ((-1043 . -973) 136169) ((-996 . -102) T) ((-814 . -23) T) ((-709 . -1145) 136147) ((-690 . -1053) T) ((-600 . -373) 136131) ((-351 . -452) T) ((-343 . -290) T) ((-1260 . -1094) T) ((-248 . -1094) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -723) T) ((-707 . -1094) T) ((-695 . -1094) T) ((-361 . -473) T) ((-1203 . -611) 136113) ((-1166 . -377) 136097) ((-1119 . -377) 136081) ((-1021 . -411) 136043) ((-141 . -229) 136025) ((-379 . -791) T) ((-379 . -788) T) ((-867 . -172) T) ((-379 . -723) T) ((-708 . -611) 136007) ((-709 . -38) 135836) ((-1259 . -1257) 135820) ((-351 . -402) T) ((-1259 . -1094) 135770) ((-580 . -714) 135757) ((-564 . -714) 135744) ((-495 . -714) 135709) ((-316 . -627) 135688) ((-833 . -723) T) ((-824 . -723) T) ((-641 . -1209) T) ((-1074 . -637) 135636) ((-1166 . -897) 135579) ((-1119 . -897) 135563) ((-658 . -1052) 135547) ((-108 . -637) 135529) ((-482 . -131) 135399) ((-1172 . -1106) T) ((-949 . -47) 135368) ((-621 . -1094) T) ((-658 . -111) 135347) ((-491 . -611) 135313) ((-327 . -288) 135290) ((-481 . -47) 135247) ((-1172 . -23) T) ((-117 . -1094) T) ((-103 . -102) 135225) ((-1271 . -1106) T) ((-548 . -847) T) ((-1050 . -131) T) ((-1021 . -1053) T) ((-816 . -1035) 135209) ((-1000 . -721) 135181) ((-1271 . -23) T) ((-695 . -714) 135146) ((-585 . -611) 135128) ((-386 . -1035) 135112) ((-354 . -1053) T) ((-385 . -131) T) ((-324 . -1035) 135096) ((-225 . -883) 135078) ((-1001 . -917) T) ((-91 . -34) T) ((-1001 . -817) T) ((-911 . -917) T) ((-1189 . -611) 135060) ((-1114 . -825) T) ((-487 . -1213) T) ((-1099 . -1094) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-217 . -1213) T) ((-996 . -309) 135025) ((-225 . -1035) 134985) ((-40 . -290) T) ((-711 . -644) 134945) ((-677 . -614) 134926) ((-672 . -614) 134907) ((-487 . -556) T) ((-478 . -614) 134888) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 134865) ((-138 . -614) 134846) ((-137 . -614) 134827) ((-133 . -614) 134808) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1053) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-654 . -611) 134790) ((-734 . -733) 134774) ((-336 . -611) 134756) ((-68 . -383) T) ((-68 . -395) T) ((-1096 . -107) 134740) ((-1057 . -883) 134722) ((-949 . -883) 134647) ((-649 . -1106) T) ((-621 . -714) 134634) ((-481 . -883) NIL) ((-1140 . -102) T) ((-1088 . -616) 134618) ((-1057 . -1035) 134600) ((-97 . -611) 134582) ((-477 . -147) T) ((-949 . -1035) 134462) ((-117 . -714) 134407) ((-649 . -23) T) ((-481 . -1035) 134283) ((-1081 . -612) NIL) ((-1081 . -611) 134265) ((-779 . -612) NIL) ((-779 . -611) 134226) ((-777 . -612) 133860) ((-777 . -611) 133774) ((-1107 . -637) 133680) ((-461 . -611) 133662) ((-454 . -611) 133644) ((-454 . -612) 133505) ((-1032 . -229) 133451) ((-869 . -906) 133430) ((-126 . -34) T) ((-814 . -131) T) ((-645 . -611) 133412) ((-578 . -102) T) ((-355 . -1278) 133396) ((-352 . -1278) 133380) ((-344 . -1278) 133364) ((-127 . -514) 133297) ((-121 . -514) 133230) ((-511 . -789) T) ((-511 . -792) T) ((-510 . -791) T) ((-103 . -309) 133168) ((-222 . -102) 133146) ((-690 . -1094) T) ((-695 . -172) T) ((-869 . -644) 133098) ((-65 . -384) T) ((-275 . -611) 133080) ((-65 . -395) T) ((-949 . -377) 133064) ((-867 . -290) T) ((-50 . -611) 133046) ((-996 . -38) 132994) ((-581 . -611) 132976) ((-481 . -377) 132960) ((-581 . -612) 132942) ((-518 . -611) 132924) ((-907 . -1278) 132911) ((-868 . -1209) T) ((-697 . -452) T) ((-495 . -514) 132877) ((-487 . -363) T) ((-355 . -368) 132856) ((-352 . -368) 132835) ((-344 . -368) 132814) ((-711 . -723) T) ((-217 . -363) T) ((-116 . -452) T) ((-1282 . -1273) 132798) ((-868 . -881) 132775) ((-868 . -883) NIL) ((-961 . -847) 132674) ((-812 . -847) 132625) ((-1216 . -102) T) ((-650 . -652) 132609) ((-1195 . -34) T) ((-171 . -611) 132591) ((-1107 . -21) 132501) ((-1107 . -25) 132352) ((-868 . -1035) 132329) ((-949 . -897) 132310) ((-1232 . -47) 132287) ((-907 . -368) T) ((-59 . -647) 132271) ((-516 . -647) 132255) ((-481 . -897) 132232) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -647) 132216) ((-59 . -373) 132200) ((-621 . -172) T) ((-516 . -373) 132184) ((-496 . -373) 132168) ((-824 . -705) 132152) ((-1166 . -307) 132131) ((-1172 . -131) T) ((-117 . -172) T) ((-1140 . -309) 132069) ((-169 . -1209) T) ((-633 . -741) 132053) ((-605 . -741) 132037) ((-1271 . -131) T) ((-1244 . -917) 132016) ((-1223 . -917) 131995) ((-1223 . -817) NIL) ((-690 . -714) 131945) ((-1222 . -906) 131898) ((-1021 . -1094) T) ((-868 . -377) 131875) ((-868 . -338) 131852) ((-902 . -1106) T) ((-169 . -881) 131836) ((-169 . -883) 131761) ((-487 . -1106) T) ((-354 . -1094) T) ((-217 . -1106) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1035) 131657) ((-319 . -847) T) ((-1259 . -514) 131590) ((-1243 . -644) 131487) ((-1222 . -644) 131357) ((-869 . -791) 131336) ((-869 . -788) 131315) ((-869 . -723) T) ((-487 . -23) T) ((-223 . -611) 131297) ((-174 . -452) T) ((-222 . -309) 131235) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1283 . -1276) 131214) ((-580 . -290) T) ((-564 . -290) T) ((-673 . -1035) 131198) ((-495 . -290) T) ((-136 . -470) 131153) ((-48 . -1094) T) ((-709 . -231) 131137) ((-868 . -897) NIL) ((-1232 . -883) NIL) ((-886 . -102) T) ((-882 . -102) T) ((-388 . -1094) T) ((-169 . -377) 131121) ((-169 . -338) 131105) ((-1232 . -1035) 130985) ((-852 . -1035) 130881) ((-1136 . -102) T) ((-649 . -131) T) ((-117 . -514) 130789) ((-658 . -789) 130768) ((-658 . -792) 130747) ((-571 . -1035) 130729) ((-294 . -1266) 130699) ((-863 . -102) T) ((-960 . -556) 130678) ((-1203 . -1052) 130561) ((-482 . -637) 130467) ((-901 . -1094) T) ((-1021 . -714) 130404) ((-708 . -1052) 130369) ((-615 . -102) T) ((-600 . -34) T) ((-1141 . -1209) T) ((-1203 . -111) 130238) ((-474 . -644) 130135) ((-354 . -714) 130080) ((-169 . -897) 130039) ((-695 . -290) T) ((-690 . -172) T) ((-708 . -111) 129995) ((-1287 . -1053) T) ((-1232 . -377) 129979) ((-418 . -1213) 129957) ((-1112 . -611) 129939) ((-313 . -845) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1222 . -788) 129892) ((-1222 . -791) 129845) ((-1243 . -723) T) ((-1222 . -723) T) ((-48 . -714) 129810) ((-225 . -1019) T) ((-351 . -1266) 129787) ((-1245 . -411) 129753) ((-715 . -723) T) ((-1232 . -897) 129696) ((-1203 . -614) 129578) ((-112 . -611) 129560) ((-112 . -612) 129542) ((-715 . -473) T) ((-708 . -614) 129492) ((-482 . -21) 129402) ((-127 . -489) 129386) ((-121 . -489) 129370) ((-482 . -25) 129221) ((-621 . -290) T) ((-585 . -1052) 129196) ((-437 . -1094) T) ((-1057 . -307) T) ((-117 . -290) T) ((-1098 . -102) T) ((-1000 . -102) T) ((-585 . -111) 129164) ((-1136 . -309) 129102) ((-1203 . -1046) T) ((-1057 . -1019) T) ((-66 . -1209) T) ((-1050 . -25) T) ((-1050 . -21) T) ((-708 . -1046) T) ((-385 . -21) T) ((-385 . -25) T) ((-690 . -514) NIL) ((-1021 . -172) T) ((-708 . -243) T) ((-1057 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 129084) ((-394 . -611) 129066) ((-474 . -723) T) ((-1114 . -845) T) ((-889 . -1035) 129034) ((-108 . -847) T) ((-654 . -1052) 129018) ((-487 . -131) T) ((-1245 . -1053) T) ((-217 . -131) T) ((-1150 . -102) 128996) ((-99 . -1094) T) ((-245 . -662) 128980) ((-245 . -647) 128964) ((-654 . -111) 128943) ((-585 . -614) 128927) ((-316 . -411) 128911) ((-245 . -373) 128895) ((-1153 . -235) 128842) ((-996 . -231) 128826) ((-74 . -1209) T) ((-48 . -172) T) ((-697 . -387) T) ((-697 . -143) T) ((-1282 . -102) T) ((-1189 . -614) 128808) ((-1081 . -1052) 128651) ((-264 . -906) 128630) ((-247 . -906) 128609) ((-779 . -1052) 128432) ((-777 . -1052) 128275) ((-606 . -1209) T) ((-1158 . -611) 128257) ((-1081 . -111) 128086) ((-1043 . -102) T) ((-475 . -1209) T) ((-461 . -1052) 128057) ((-454 . -1052) 127900) ((-660 . -644) 127884) ((-868 . -307) T) ((-779 . -111) 127693) ((-777 . -111) 127522) ((-355 . -644) 127474) ((-352 . -644) 127426) ((-344 . -644) 127378) ((-264 . -644) 127303) ((-247 . -644) 127228) ((-1152 . -847) T) ((-1082 . -1035) 127212) ((-461 . -111) 127173) ((-454 . -111) 127002) ((-1070 . -1035) 126979) ((-997 . -34) T) ((-963 . -611) 126961) ((-955 . -1209) T) ((-126 . -1007) 126945) ((-960 . -1106) T) ((-868 . -1019) NIL) ((-732 . -1106) T) ((-712 . -1106) T) ((-654 . -614) 126863) ((-1259 . -489) 126847) ((-1136 . -38) 126807) ((-960 . -23) T) ((-862 . -1094) T) ((-840 . -102) T) ((-814 . -21) T) ((-814 . -25) T) ((-732 . -23) T) ((-712 . -23) T) ((-110 . -657) T) ((-907 . -644) 126772) ((-581 . -1052) 126737) ((-518 . -1052) 126682) ((-227 . -57) 126640) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-690 . -290) T) ((-863 . -38) 126610) ((-581 . -111) 126566) ((-518 . -111) 126495) ((-1081 . -614) 126231) ((-418 . -1106) T) ((-316 . -1053) 126121) ((-313 . -1053) T) ((-128 . -1209) T) ((-779 . -614) 125869) ((-777 . -614) 125635) ((-654 . -1046) T) ((-1287 . -1094) T) ((-454 . -614) 125420) ((-169 . -307) 125351) ((-418 . -23) T) ((-40 . -611) 125333) ((-40 . -612) 125317) ((-108 . -989) 125299) ((-116 . -866) 125283) ((-645 . -614) 125267) ((-48 . -514) 125233) ((-1195 . -1007) 125217) ((-1175 . -611) 125184) ((-1182 . -34) T) ((-951 . -611) 125150) ((-918 . -611) 125132) ((-1107 . -847) 125083) ((-768 . -611) 125065) ((-668 . -611) 125047) ((-1150 . -309) 124985) ((-479 . -34) T) ((-1086 . -1209) T) ((-477 . -452) T) ((-1135 . -34) T) ((-1081 . -1046) T) ((-50 . -614) 124954) ((-779 . -1046) T) ((-777 . -1046) T) ((-643 . -235) 124938) ((-630 . -235) 124884) ((-581 . -614) 124834) ((-518 . -614) 124764) ((-1232 . -307) 124743) ((-1081 . -326) 124704) ((-454 . -1046) T) ((-1172 . -21) T) ((-1081 . -233) 124683) ((-779 . -326) 124660) ((-779 . -233) T) ((-777 . -326) 124632) ((-728 . -1213) 124611) ((-327 . -647) 124595) ((-1172 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124574) ((-327 . -373) 124558) ((-497 . -34) T) ((-496 . -34) T) ((-1000 . -1145) NIL) ((-728 . -556) 124489) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -723) T) ((-352 . -723) T) ((-344 . -723) T) ((-264 . -723) T) ((-247 . -723) T) ((-1043 . -309) 124397) ((-898 . -1094) 124375) ((-50 . -1046) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1168 . -556) 124354) ((-1167 . -1213) 124333) ((-581 . -1046) T) ((-518 . -1046) T) ((-1161 . -1213) 124312) ((-361 . -1035) 124296) ((-322 . -1035) 124280) ((-1021 . -290) T) ((-379 . -883) 124262) ((-1167 . -556) 124213) ((-1161 . -556) 124164) ((-1000 . -38) 124109) ((-796 . -1106) T) ((-907 . -723) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1120 . -556) 124088) ((-354 . -290) T) ((-643 . -691) 124072) ((-379 . -1035) 124032) ((-1114 . -1053) T) ((-103 . -125) 124016) ((-796 . -23) T) ((-1281 . -1276) 123992) ((-1259 . -286) 123969) ((-407 . -309) 123934) ((-1279 . -1276) 123913) ((-1245 . -1094) T) ((-867 . -611) 123895) ((-833 . -1035) 123864) ((-203 . -784) T) ((-202 . -784) T) ((-201 . -784) T) ((-200 . -784) T) ((-199 . -784) T) ((-198 . -784) T) ((-197 . -784) T) ((-196 . -784) T) ((-195 . -784) T) ((-194 . -784) T) ((-547 . -611) 123846) ((-495 . -999) T) ((-274 . -836) T) ((-273 . -836) T) ((-272 . -836) T) ((-271 . -836) T) ((-48 . -290) T) ((-270 . -836) T) ((-269 . -836) T) ((-268 . -836) T) ((-193 . -784) T) ((-610 . -847) T) ((-650 . -411) 123830) ((-223 . -614) 123792) ((-110 . -847) T) ((-649 . -21) T) ((-649 . -25) T) ((-1282 . -38) 123762) ((-117 . -286) 123713) ((-1259 . -19) 123697) ((-1259 . -602) 123674) ((-1272 . -1094) T) ((-1071 . -1094) T) ((-984 . -1094) T) ((-960 . -131) T) ((-734 . -1094) T) ((-732 . -131) T) ((-712 . -131) T) ((-511 . -790) T) ((-407 . -1145) 123652) ((-453 . -131) T) ((-511 . -791) T) ((-223 . -1046) T) ((-294 . -102) 123434) ((-141 . -1094) T) ((-695 . -999) T) ((-91 . -1209) T) ((-127 . -611) 123366) ((-121 . -611) 123298) ((-1287 . -172) T) ((-1167 . -363) 123277) ((-1161 . -363) 123256) ((-316 . -1094) T) ((-418 . -131) T) ((-313 . -1094) T) ((-407 . -38) 123208) ((-1127 . -102) T) ((-1245 . -714) 123100) ((-650 . -1053) T) ((-1129 . -1254) T) ((-319 . -145) 123079) ((-319 . -147) 123058) ((-139 . -1094) T) ((-136 . -1094) T) ((-114 . -1094) T) ((-855 . -102) T) ((-580 . -611) 123040) ((-564 . -612) 122939) ((-564 . -611) 122921) ((-495 . -611) 122903) ((-495 . -612) 122848) ((-485 . -23) T) ((-482 . -847) 122799) ((-487 . -637) 122781) ((-962 . -611) 122763) ((-217 . -637) 122745) ((-225 . -404) T) ((-658 . -644) 122729) ((-55 . -611) 122711) ((-1166 . -917) 122690) ((-728 . -1106) T) ((-351 . -102) T) ((-1208 . -1077) T) ((-1114 . -841) T) ((-815 . -847) T) ((-728 . -23) T) ((-343 . -1052) 122635) ((-1152 . -1151) T) ((-1141 . -107) 122619) ((-1168 . -1106) T) ((-1167 . -1106) T) ((-515 . -1035) 122603) ((-1161 . -1106) T) ((-1120 . -1106) T) ((-343 . -111) 122532) ((-1001 . -1213) T) ((-126 . -1209) T) ((-911 . -1213) T) ((-690 . -286) NIL) ((-1260 . -611) 122514) ((-1168 . -23) T) ((-1167 . -23) T) ((-1161 . -23) T) ((-1001 . -556) T) ((-1136 . -231) 122498) ((-911 . -556) T) ((-1120 . -23) T) ((-248 . -611) 122480) ((-1069 . -1094) T) ((-796 . -131) T) ((-707 . -611) 122462) ((-316 . -714) 122372) ((-313 . -714) 122301) ((-695 . -611) 122283) ((-695 . -612) 122228) ((-407 . -400) 122212) ((-438 . -1094) T) ((-487 . -25) T) ((-487 . -21) T) ((-1114 . -1094) T) ((-217 . -25) T) ((-217 . -21) T) ((-709 . -411) 122196) ((-711 . -1035) 122165) ((-1259 . -611) 122077) ((-1259 . -612) 122038) ((-1245 . -172) T) ((-245 . -34) T) ((-343 . -614) 121968) ((-394 . -614) 121950) ((-923 . -971) T) ((-1195 . -1209) T) ((-658 . -788) 121929) ((-658 . -791) 121908) ((-398 . -395) T) ((-523 . -102) 121886) ((-1032 . -1094) T) ((-222 . -992) 121870) ((-504 . -102) T) ((-621 . -611) 121852) ((-45 . -847) NIL) ((-621 . -612) 121829) ((-1032 . -608) 121804) ((-898 . -514) 121737) ((-343 . -1046) T) ((-117 . -612) NIL) ((-117 . -611) 121719) ((-869 . -1209) T) ((-666 . -417) 121703) ((-666 . -1117) 121648) ((-500 . -151) 121630) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1052) 121575) ((-869 . -881) 121559) ((-869 . -883) 121484) ((-709 . -1053) T) ((-690 . -999) NIL) ((-3 . |UnionCategory|) T) ((-1243 . -47) 121454) ((-1222 . -47) 121431) ((-1135 . -1007) 121402) ((-963 . -614) 121386) ((-225 . -917) T) ((-40 . -111) 121315) ((-869 . -1035) 121179) ((-1114 . -714) 121166) ((-1099 . -611) 121148) ((-1074 . -147) 121127) ((-1074 . -145) 121078) ((-1001 . -363) T) ((-319 . -1197) 121044) ((-379 . -307) T) ((-319 . -1194) 121010) ((-316 . -172) 120989) ((-313 . -172) T) ((-1000 . -231) 120966) ((-911 . -363) T) ((-581 . -1278) 120953) ((-518 . -1278) 120930) ((-359 . -147) 120909) ((-359 . -145) 120860) ((-353 . -147) 120839) ((-353 . -145) 120790) ((-606 . -1185) 120766) ((-345 . -147) 120745) ((-345 . -145) 120696) ((-319 . -35) 120662) ((-475 . -1185) 120641) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120607) ((-379 . -1019) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120557) ((-650 . -1094) T) ((-606 . -107) 120504) ((-485 . -131) T) ((-475 . -107) 120454) ((-240 . -1106) 120364) ((-869 . -377) 120348) ((-869 . -338) 120332) ((-240 . -23) 120202) ((-40 . -614) 120132) ((-1057 . -917) T) ((-1057 . -817) T) ((-581 . -368) T) ((-518 . -368) T) ((-351 . -1145) T) ((-327 . -34) T) ((-44 . -417) 120116) ((-1175 . -614) 120052) ((-870 . -1209) T) ((-390 . -741) 120036) ((-1272 . -514) 119969) ((-728 . -131) T) ((-668 . -614) 119953) ((-1251 . -556) 119932) ((-1244 . -1213) 119911) ((-1244 . -556) 119862) ((-1223 . -1213) 119841) ((-311 . -1077) T) ((-1223 . -556) 119792) ((-734 . -514) 119725) ((-1222 . -1209) 119704) ((-1222 . -883) 119577) ((-890 . -1094) T) ((-144 . -841) T) ((-1222 . -881) 119547) ((-687 . -611) 119529) ((-1168 . -131) T) ((-523 . -309) 119467) ((-1167 . -131) T) ((-141 . -514) NIL) ((-1161 . -131) T) ((-1120 . -131) T) ((-1021 . -999) T) ((-1001 . -23) T) ((-351 . -38) 119432) ((-1001 . -1106) T) ((-911 . -1106) T) ((-82 . -611) 119414) ((-40 . -1046) T) ((-867 . -1052) 119401) ((-1000 . -349) NIL) ((-869 . -897) 119360) ((-697 . -102) T) ((-968 . -23) T) ((-600 . -1209) T) ((-911 . -23) T) ((-867 . -111) 119345) ((-427 . -1106) T) ((-213 . -1094) T) ((-474 . -47) 119315) ((-134 . -102) T) ((-40 . -233) 119287) ((-40 . -243) T) ((-116 . -102) T) ((-595 . -556) 119266) ((-594 . -556) 119245) ((-690 . -611) 119227) ((-690 . -612) 119135) ((-316 . -514) 119101) ((-313 . -514) 118993) ((-1243 . -1035) 118977) ((-1222 . -1035) 118763) ((-996 . -411) 118747) ((-427 . -23) T) ((-1114 . -172) T) ((-1245 . -290) T) ((-650 . -714) 118717) ((-144 . -1094) T) ((-48 . -999) T) ((-407 . -231) 118701) ((-295 . -235) 118651) ((-868 . -917) T) ((-868 . -817) NIL) ((-867 . -614) 118623) ((-861 . -847) T) ((-1222 . -338) 118593) ((-1222 . -377) 118563) ((-222 . -1115) 118547) ((-1259 . -288) 118524) ((-1203 . -644) 118449) ((-960 . -21) T) ((-960 . -25) T) ((-732 . -21) T) ((-732 . -25) T) ((-712 . -21) T) ((-712 . -25) T) ((-708 . -644) 118414) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-996 . -1053) T) ((-867 . -1046) T) ((-771 . -102) T) ((-1244 . -363) 118393) ((-1243 . -897) 118299) ((-1223 . -363) 118278) ((-1222 . -897) 118129) ((-1021 . -611) 118111) ((-407 . -825) 118064) ((-1168 . -493) 118030) ((-169 . -917) 117961) ((-1167 . -493) 117927) ((-1161 . -493) 117893) ((-709 . -1094) T) ((-1120 . -493) 117859) ((-580 . -1052) 117846) ((-564 . -1052) 117833) ((-495 . -1052) 117798) ((-316 . -290) 117777) ((-313 . -290) T) ((-354 . -611) 117759) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117738) ((-580 . -111) 117723) ((-564 . -111) 117708) ((-495 . -111) 117664) ((-1170 . -883) 117631) ((-898 . -489) 117615) ((-48 . -611) 117597) ((-48 . -612) 117542) ((-240 . -131) 117412) ((-1232 . -917) 117391) ((-813 . -1213) 117370) ((-388 . -490) 117351) ((-1032 . -514) 117195) ((-388 . -611) 117161) ((-813 . -556) 117092) ((-585 . -644) 117067) ((-264 . -47) 117039) ((-247 . -47) 116996) ((-531 . -509) 116973) ((-580 . -614) 116945) ((-564 . -614) 116917) ((-495 . -614) 116850) ((-997 . -1209) T) ((-695 . -1052) 116815) ((-1251 . -23) T) ((-1251 . -1106) T) ((-1244 . -1106) T) ((-1223 . -1106) T) ((-1000 . -370) 116787) ((-112 . -368) T) ((-474 . -897) 116693) ((-1244 . -23) T) ((-901 . -611) 116675) ((-55 . -614) 116657) ((-91 . -107) 116641) ((-1203 . -723) T) ((-902 . -847) 116592) ((-697 . -1145) T) ((-695 . -111) 116548) ((-1223 . -23) T) ((-595 . -1106) T) ((-594 . -1106) T) ((-709 . -714) 116377) ((-708 . -723) T) ((-1114 . -290) T) ((-1001 . -131) T) ((-487 . -847) T) ((-968 . -131) T) ((-911 . -131) T) ((-796 . -25) T) ((-217 . -847) T) ((-796 . -21) T) ((-580 . -1046) T) ((-564 . -1046) T) ((-495 . -1046) T) ((-595 . -23) T) ((-343 . -1278) 116354) ((-319 . -452) 116333) ((-339 . -309) 116320) ((-594 . -23) T) ((-427 . -131) T) ((-654 . -644) 116294) ((-245 . -1007) 116278) ((-869 . -307) T) ((-1283 . -1273) 116262) ((-768 . -789) T) ((-768 . -792) T) ((-697 . -38) 116249) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1144 . -235) 116199) ((-1081 . -906) 116178) ((-116 . -38) 116165) ((-209 . -797) T) ((-208 . -797) T) ((-207 . -797) T) ((-206 . -797) T) ((-869 . -1019) 116143) ((-1272 . -489) 116127) ((-779 . -906) 116106) ((-777 . -906) 116085) ((-1182 . -1209) T) ((-454 . -906) 116064) ((-734 . -489) 116048) ((-1081 . -644) 115973) ((-695 . -614) 115908) ((-779 . -644) 115833) ((-621 . -1052) 115820) ((-479 . -1209) T) ((-343 . -368) T) ((-141 . -489) 115802) ((-777 . -644) 115727) ((-1135 . -1209) T) ((-549 . -847) T) ((-461 . -644) 115698) ((-264 . -883) 115557) ((-247 . -883) NIL) ((-117 . -1052) 115502) ((-454 . -644) 115427) ((-660 . -1035) 115404) ((-621 . -111) 115389) ((-355 . -1035) 115373) ((-352 . -1035) 115357) ((-344 . -1035) 115341) ((-264 . -1035) 115185) ((-247 . -1035) 115061) ((-117 . -111) 114990) ((-59 . -1209) T) ((-519 . -1209) T) ((-516 . -1209) T) ((-497 . -1209) T) ((-496 . -1209) T) ((-437 . -611) 114972) ((-434 . -611) 114954) ((-3 . -102) T) ((-1024 . -1202) 114923) ((-830 . -102) T) ((-685 . -57) 114881) ((-695 . -1046) T) ((-50 . -644) 114855) ((-289 . -452) T) ((-476 . -1202) 114824) ((0 . -102) T) ((-581 . -644) 114789) ((-518 . -644) 114734) ((-49 . -102) T) ((-907 . -1035) 114721) ((-695 . -243) T) ((-1074 . -409) 114700) ((-728 . -637) 114648) ((-996 . -1094) T) ((-709 . -172) 114539) ((-621 . -614) 114434) ((-487 . -989) 114416) ((-264 . -377) 114400) ((-247 . -377) 114384) ((-399 . -1094) T) ((-1023 . -102) 114362) ((-339 . -38) 114346) ((-217 . -989) 114328) ((-117 . -614) 114258) ((-174 . -38) 114190) ((-1243 . -307) 114169) ((-1222 . -307) 114148) ((-654 . -723) T) ((-99 . -611) 114130) ((-1161 . -637) 114082) ((-485 . -25) T) ((-485 . -21) T) ((-1222 . -1019) 114034) ((-621 . -1046) T) ((-379 . -404) T) ((-390 . -102) T) ((-1099 . -616) 113949) ((-264 . -897) 113895) ((-247 . -897) 113872) ((-117 . -1046) T) ((-813 . -1106) T) ((-1081 . -723) T) ((-621 . -233) 113851) ((-619 . -102) T) ((-779 . -723) T) ((-777 . -723) T) ((-413 . -1106) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1214 . -847) T) ((-454 . -723) T) ((-813 . -23) T) ((-728 . -25) T) ((-728 . -21) T) ((-699 . -847) T) ((-1071 . -286) 113830) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -764) 113812) ((-690 . -1052) 113762) ((-1251 . -131) T) ((-1244 . -131) T) ((-1223 . -131) T) ((-1168 . -25) T) ((-1136 . -411) 113746) ((-633 . -367) 113678) ((-605 . -367) 113610) ((-1150 . -1143) 113594) ((-103 . -1094) 113572) ((-1168 . -21) T) ((-1167 . -21) T) ((-862 . -611) 113554) ((-996 . -714) 113502) ((-223 . -644) 113469) ((-690 . -111) 113403) ((-50 . -723) T) ((-1167 . -25) T) ((-351 . -349) T) ((-1161 . -21) T) ((-1074 . -452) 113354) ((-1161 . -25) T) ((-709 . -514) 113301) ((-581 . -723) T) ((-518 . -723) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-595 . -131) T) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113280) ((-1217 . -102) T) ((-313 . -286) 113215) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-687 . -614) 113199) ((-1287 . -611) 113181) ((-1287 . -612) 113163) ((-1074 . -402) 113142) ((-1032 . -489) 113073) ((-564 . -792) T) ((-564 . -789) T) ((-1058 . -235) 113019) ((-359 . -402) 112970) ((-353 . -402) 112921) ((-345 . -402) 112872) ((-1274 . -1106) T) ((-690 . -614) 112807) ((-1274 . -23) T) ((-1261 . -102) T) ((-175 . -611) 112789) ((-1136 . -1053) T) ((-547 . -368) T) ((-666 . -741) 112773) ((-1172 . -145) 112752) ((-1172 . -147) 112731) ((-1140 . -1094) T) ((-1140 . -1066) 112700) ((-69 . -1209) T) ((-1021 . -1052) 112637) ((-863 . -1053) T) ((-240 . -637) 112543) ((-690 . -1046) T) ((-354 . -1052) 112488) ((-61 . -1209) T) ((-1021 . -111) 112404) ((-898 . -611) 112315) ((-690 . -243) T) ((-690 . -233) NIL) ((-840 . -845) 112294) ((-695 . -792) T) ((-695 . -789) T) ((-1000 . -411) 112271) ((-354 . -111) 112200) ((-379 . -917) T) ((-407 . -845) 112179) ((-709 . -290) 112090) ((-223 . -723) T) ((-1251 . -493) 112056) ((-1244 . -493) 112022) ((-1223 . -493) 111988) ((-578 . -1094) T) ((-316 . -999) 111967) ((-222 . -1094) 111945) ((-1216 . -841) T) ((-319 . -970) 111907) ((-105 . -102) T) ((-48 . -1052) 111872) ((-1283 . -102) T) ((-381 . -102) T) ((-48 . -111) 111828) ((-1001 . -637) 111810) ((-1245 . -611) 111792) ((-531 . -102) T) ((-500 . -102) T) ((-1127 . -1128) 111776) ((-152 . -1266) 111760) ((-245 . -1209) T) ((-1208 . -102) T) ((-1021 . -614) 111697) ((-1166 . -1213) 111676) ((-354 . -614) 111606) ((-1119 . -1213) 111585) ((-240 . -21) 111495) ((-240 . -25) 111346) ((-127 . -119) 111330) ((-121 . -119) 111314) ((-44 . -741) 111298) ((-1166 . -556) 111209) ((-1119 . -556) 111140) ((-1216 . -1094) T) ((-1032 . -286) 111115) ((-1160 . -1077) T) ((-991 . -1077) T) ((-813 . -131) T) ((-117 . -792) NIL) ((-117 . -789) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1106) 111025) ((-250 . -1106) 110935) ((-1021 . -1046) T) ((-1000 . -1053) T) ((-48 . -614) 110868) ((-343 . -644) 110813) ((-619 . -38) 110797) ((-1272 . -611) 110759) ((-1272 . -612) 110720) ((-1071 . -611) 110702) ((-1021 . -243) T) ((-354 . -1046) T) ((-812 . -1266) 110672) ((-251 . -23) T) ((-250 . -23) T) ((-984 . -611) 110654) ((-734 . -612) 110615) ((-734 . -611) 110597) ((-796 . -847) 110576) ((-1153 . -151) 110523) ((-996 . -514) 110435) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 110416) ((-1001 . -25) T) ((-141 . -611) 110398) ((-141 . -612) 110357) ((-907 . -307) T) ((-1001 . -21) T) ((-968 . -25) T) ((-911 . -21) T) ((-911 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-840 . -411) 110341) ((-48 . -1046) T) ((-1281 . -1273) 110325) ((-1279 . -1273) 110309) ((-1032 . -602) 110284) ((-316 . -612) 110145) ((-316 . -611) 110127) ((-313 . -612) NIL) ((-313 . -611) 110109) ((-48 . -243) T) ((-48 . -233) T) ((-650 . -286) 110070) ((-550 . -235) 110020) ((-139 . -611) 109987) ((-136 . -611) 109969) ((-114 . -611) 109951) ((-477 . -38) 109916) ((-1283 . -1280) 109895) ((-1274 . -131) T) ((-1282 . -1053) T) ((-1076 . -102) T) ((-88 . -1209) T) ((-500 . -309) NIL) ((-997 . -107) 109879) ((-886 . -1094) T) ((-882 . -1094) T) ((-1259 . -647) 109863) ((-1259 . -373) 109847) ((-327 . -1209) T) ((-592 . -847) T) ((-1136 . -1094) T) ((-1136 . -1049) 109787) ((-103 . -514) 109720) ((-924 . -611) 109702) ((-343 . -723) T) ((-30 . -611) 109684) ((-863 . -1094) T) ((-840 . -1053) 109663) ((-40 . -644) 109608) ((-225 . -1213) T) ((-407 . -1053) T) ((-1152 . -151) 109590) ((-996 . -290) 109541) ((-615 . -1094) T) ((-225 . -556) T) ((-319 . -1240) 109525) ((-319 . -1237) 109495) ((-1182 . -1185) 109474) ((-1069 . -611) 109456) ((-643 . -151) 109440) ((-630 . -151) 109386) ((-1182 . -107) 109336) ((-479 . -1185) 109315) ((-487 . -147) T) ((-487 . -145) NIL) ((-1114 . -612) 109230) ((-438 . -611) 109212) ((-217 . -147) T) ((-217 . -145) NIL) ((-1114 . -611) 109194) ((-129 . -102) T) ((-52 . -102) T) ((-1223 . -637) 109146) ((-479 . -107) 109096) ((-990 . -23) T) ((-1283 . -38) 109066) ((-1166 . -1106) T) ((-1119 . -1106) T) ((-1057 . -1213) T) ((-311 . -102) T) ((-851 . -1106) T) ((-949 . -1213) 109045) ((-481 . -1213) 109024) ((-728 . -847) 109003) ((-1057 . -556) T) ((-949 . -556) 108934) ((-1166 . -23) T) ((-1119 . -23) T) ((-851 . -23) T) ((-481 . -556) 108865) ((-1136 . -714) 108797) ((-1140 . -514) 108730) ((-1032 . -612) NIL) ((-1032 . -611) 108712) ((-96 . -1077) T) ((-863 . -714) 108682) ((-1203 . -47) 108651) ((-251 . -131) T) ((-250 . -131) T) ((-1098 . -1094) T) ((-1000 . -1094) T) ((-62 . -611) 108633) ((-1161 . -847) NIL) ((-1021 . -789) T) ((-1021 . -792) T) ((-1287 . -1052) 108620) ((-1287 . -111) 108605) ((-867 . -644) 108592) ((-1251 . -25) T) ((-1251 . -21) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1024 . -151) 108576) ((-869 . -817) 108555) ((-869 . -917) T) ((-709 . -286) 108482) ((-595 . -21) T) ((-595 . -25) T) ((-594 . -21) T) ((-40 . -723) T) ((-222 . -514) 108415) ((-594 . -25) T) ((-476 . -151) 108399) ((-463 . -151) 108383) ((-918 . -791) T) ((-918 . -723) T) ((-768 . -790) T) ((-768 . -791) T) ((-506 . -1094) T) ((-502 . -1094) T) ((-768 . -723) T) ((-225 . -363) T) ((-1150 . -1094) 108361) ((-868 . -1213) T) ((-650 . -611) 108343) ((-868 . -556) T) ((-690 . -368) NIL) ((-1287 . -614) 108325) ((-1282 . -1094) T) ((-359 . -1266) 108309) ((-666 . -102) T) ((-353 . -1266) 108293) ((-345 . -1266) 108277) ((-548 . -102) T) ((-520 . -847) 108256) ((-814 . -452) 108235) ((-1043 . -1094) T) ((-1043 . -1066) 108164) ((-1024 . -973) 108133) ((-816 . -1106) T) ((-1000 . -714) 108078) ((-386 . -1106) T) ((-476 . -973) 108047) ((-463 . -973) 108016) ((-110 . -151) 107998) ((-73 . -611) 107980) ((-890 . -611) 107962) ((-1074 . -721) 107941) ((-1287 . -1046) T) ((-813 . -637) 107889) ((-294 . -1053) 107831) ((-169 . -1213) 107736) ((-225 . -1106) T) ((-324 . -23) T) ((-1161 . -989) 107688) ((-840 . -1094) T) ((-1245 . -1052) 107593) ((-1120 . -737) 107572) ((-1243 . -917) 107551) ((-1222 . -917) 107530) ((-867 . -723) T) ((-169 . -556) 107441) ((-580 . -644) 107428) ((-564 . -644) 107415) ((-407 . -1094) T) ((-263 . -1094) T) ((-213 . -611) 107397) ((-495 . -644) 107362) ((-225 . -23) T) ((-1222 . -817) 107315) ((-1281 . -102) T) ((-354 . -1278) 107292) ((-1279 . -102) T) ((-1245 . -111) 107184) ((-144 . -611) 107166) ((-990 . -131) T) ((-44 . -102) T) ((-240 . -847) 107117) ((-1232 . -1213) 107096) ((-103 . -489) 107080) ((-1282 . -714) 107050) ((-1081 . -47) 107011) ((-1057 . -1106) T) ((-949 . -1106) T) ((-127 . -34) T) ((-121 . -34) T) ((-779 . -47) 106988) ((-777 . -47) 106960) ((-1232 . -556) 106871) ((-354 . -368) T) ((-481 . -1106) T) ((-1166 . -131) T) ((-1119 . -131) T) ((-454 . -47) 106850) ((-868 . -363) T) ((-851 . -131) T) ((-152 . -102) T) ((-1057 . -23) T) ((-949 . -23) T) ((-571 . -556) T) ((-813 . -25) T) ((-813 . -21) T) ((-1136 . -514) 106783) ((-591 . -1077) T) ((-585 . -1035) 106767) ((-1245 . -614) 106641) ((-481 . -23) T) ((-351 . -1053) T) ((-1203 . -897) 106622) ((-666 . -309) 106560) ((-1107 . -1266) 106530) ((-695 . -644) 106495) ((-1000 . -172) T) ((-960 . -145) 106474) ((-633 . -1094) T) ((-605 . -1094) T) ((-960 . -147) 106453) ((-1001 . -847) T) ((-732 . -147) 106432) ((-732 . -145) 106411) ((-968 . -847) T) ((-474 . -917) 106390) ((-316 . -1052) 106300) ((-313 . -1052) 106229) ((-996 . -286) 106187) ((-407 . -714) 106139) ((-697 . -845) T) ((-1245 . -1046) T) ((-316 . -111) 106035) ((-313 . -111) 105948) ((-961 . -102) T) ((-812 . -102) 105738) ((-709 . -612) NIL) ((-709 . -611) 105720) ((-654 . -1035) 105616) ((-1245 . -326) 105560) ((-1032 . -288) 105535) ((-580 . -723) T) ((-564 . -791) T) ((-169 . -363) 105486) ((-564 . -788) T) ((-564 . -723) T) ((-495 . -723) T) ((-1140 . -489) 105470) ((-1081 . -883) NIL) ((-868 . -1106) T) ((-117 . -906) NIL) ((-1281 . -1280) 105446) ((-1279 . -1280) 105425) ((-779 . -883) NIL) ((-777 . -883) 105284) ((-1274 . -25) T) ((-1274 . -21) T) ((-1206 . -102) 105262) ((-1100 . -395) T) ((-621 . -644) 105249) ((-454 . -883) NIL) ((-671 . -102) 105227) ((-1081 . -1035) 105054) ((-868 . -23) T) ((-779 . -1035) 104913) ((-777 . -1035) 104770) ((-117 . -644) 104715) ((-454 . -1035) 104591) ((-316 . -614) 104155) ((-313 . -614) 104038) ((-645 . -1035) 104022) ((-625 . -102) T) ((-222 . -489) 104006) ((-1259 . -34) T) ((-136 . -614) 103990) ((-633 . -714) 103974) ((-605 . -714) 103958) ((-666 . -38) 103918) ((-319 . -102) T) ((-85 . -611) 103900) ((-50 . -1035) 103884) ((-1114 . -1052) 103871) ((-1081 . -377) 103855) ((-779 . -377) 103839) ((-695 . -723) T) ((-695 . -791) T) ((-695 . -788) T) ((-581 . -1035) 103826) ((-518 . -1035) 103803) ((-60 . -57) 103765) ((-324 . -131) T) ((-316 . -1046) 103655) ((-313 . -1046) T) ((-169 . -1106) T) ((-777 . -377) 103639) ((-45 . -151) 103589) ((-1001 . -989) 103571) ((-454 . -377) 103555) ((-407 . -172) T) ((-316 . -243) 103534) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1094) 103316) ((-225 . -131) T) ((-1114 . -111) 103301) ((-169 . -23) T) ((-796 . -147) 103280) ((-796 . -145) 103259) ((-251 . -637) 103165) ((-250 . -637) 103071) ((-319 . -284) 103037) ((-1150 . -514) 102970) ((-1127 . -1094) T) ((-225 . -1055) T) ((-812 . -309) 102908) ((-1081 . -897) 102843) ((-779 . -897) 102786) ((-777 . -897) 102770) ((-1281 . -38) 102740) ((-1279 . -38) 102710) ((-1232 . -1106) T) ((-852 . -1106) T) ((-454 . -897) 102687) ((-855 . -1094) T) ((-1232 . -23) T) ((-1114 . -614) 102659) ((-571 . -1106) T) ((-852 . -23) T) ((-621 . -723) T) ((-355 . -917) T) ((-352 . -917) T) ((-289 . -102) T) ((-344 . -917) T) ((-1057 . -131) T) ((-967 . -1077) T) ((-949 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-117 . -723) T) ((-690 . -906) NIL) ((-1043 . -514) 102560) ((-481 . -131) T) ((-571 . -23) T) ((-671 . -309) 102498) ((-633 . -758) T) ((-605 . -758) T) ((-1223 . -847) NIL) ((-1000 . -290) T) ((-251 . -21) T) ((-690 . -644) 102448) ((-351 . -1094) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102432) ((-2 . -102) T) ((-907 . -917) T) ((-482 . -1266) 102402) ((-223 . -1035) 102379) ((-1114 . -1046) T) ((-708 . -307) T) ((-294 . -714) 102321) ((-697 . -1053) T) ((-487 . -452) T) ((-407 . -514) 102233) ((-217 . -452) T) ((-1114 . -233) T) ((-295 . -151) 102183) ((-996 . -612) 102144) ((-996 . -611) 102126) ((-986 . -611) 102108) ((-116 . -1053) T) ((-650 . -1052) 102092) ((-225 . -493) T) ((-399 . -611) 102074) ((-399 . -612) 102051) ((-1050 . -1266) 102021) ((-650 . -111) 102000) ((-1136 . -489) 101984) ((-812 . -38) 101954) ((-63 . -441) T) ((-63 . -395) T) ((-1153 . -102) T) ((-868 . -131) T) ((-484 . -102) 101932) ((-1287 . -368) T) ((-1074 . -102) T) ((-1056 . -102) T) ((-351 . -714) 101877) ((-728 . -147) 101856) ((-728 . -145) 101835) ((-650 . -614) 101753) ((-1021 . -644) 101690) ((-523 . -1094) 101668) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1094) T) ((-354 . -644) 101613) ((-1166 . -637) 101561) ((-1119 . -637) 101509) ((-385 . -509) 101488) ((-830 . -845) 101467) ((-379 . -1213) T) ((-690 . -723) T) ((-339 . -1053) T) ((-1223 . -989) 101419) ((-174 . -1053) T) ((-103 . -611) 101351) ((-1168 . -145) 101330) ((-1168 . -147) 101309) ((-379 . -556) T) ((-1167 . -147) 101288) ((-1167 . -145) 101267) ((-1161 . -145) 101174) ((-407 . -290) T) ((-1161 . -147) 101081) ((-1120 . -147) 101060) ((-1120 . -145) 101039) ((-319 . -38) 100880) ((-169 . -131) T) ((-313 . -792) NIL) ((-313 . -789) NIL) ((-650 . -1046) T) ((-48 . -644) 100845) ((-890 . -614) 100822) ((-1160 . -102) T) ((-991 . -102) T) ((-990 . -21) T) ((-127 . -1007) 100806) ((-121 . -1007) 100790) ((-990 . -25) T) ((-898 . -119) 100774) ((-1152 . -102) T) ((-813 . -847) 100753) ((-1232 . -131) T) ((-1166 . -25) T) ((-1166 . -21) T) ((-852 . -131) T) ((-1119 . -25) T) ((-1119 . -21) T) ((-851 . -25) T) ((-851 . -21) T) ((-779 . -307) 100732) ((-643 . -102) 100710) ((-630 . -102) T) ((-1153 . -309) 100505) ((-571 . -131) T) ((-619 . -845) 100484) ((-1150 . -489) 100468) ((-1144 . -151) 100418) ((-1140 . -611) 100380) ((-1140 . -612) 100341) ((-1021 . -788) T) ((-1021 . -791) T) ((-1021 . -723) T) ((-709 . -1052) 100164) ((-484 . -309) 100102) ((-453 . -417) 100072) ((-351 . -172) T) ((-289 . -38) 100059) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1035) 100036) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -723) T) ((-709 . -111) 99845) ((-666 . -231) 99829) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 99778) ((-108 . -309) NIL) ((-72 . -395) T) ((-1107 . -102) 99568) ((-830 . -411) 99552) ((-1114 . -792) T) ((-1114 . -789) T) ((-697 . -1094) T) ((-578 . -611) 99534) ((-379 . -363) T) ((-169 . -493) 99512) ((-222 . -611) 99444) ((-134 . -1094) T) ((-116 . -1094) T) ((-48 . -723) T) ((-1043 . -489) 99409) ((-141 . -425) 99391) ((-141 . -368) T) ((-1024 . -102) T) ((-512 . -509) 99370) ((-709 . -614) 99126) ((-476 . -102) T) ((-463 . -102) T) ((-1031 . -1106) T) ((-1216 . -611) 99108) ((-1175 . -1035) 99044) ((-1168 . -35) 99010) ((-1168 . -95) 98976) ((-1168 . -1197) 98942) ((-1168 . -1194) 98908) ((-1152 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1074 . -1145) 98887) ((-1167 . -1194) 98853) ((-1167 . -1197) 98819) ((-1031 . -23) T) ((-1167 . -95) 98785) ((-571 . -493) T) ((-1167 . -35) 98751) ((-1161 . -1194) 98717) ((-1161 . -1197) 98683) ((-1161 . -95) 98649) ((-361 . -1106) T) ((-359 . -1145) 98628) ((-353 . -1145) 98607) ((-345 . -1145) 98586) ((-1161 . -35) 98552) ((-1120 . -35) 98518) ((-1120 . -95) 98484) ((-108 . -1145) T) ((-1120 . -1197) 98450) ((-830 . -1053) 98429) ((-643 . -309) 98367) ((-630 . -309) 98218) ((-1120 . -1194) 98184) ((-709 . -1046) T) ((-1057 . -637) 98166) ((-1074 . -38) 98034) ((-949 . -637) 97982) ((-1001 . -147) T) ((-1001 . -145) NIL) ((-379 . -1106) T) ((-324 . -25) T) ((-322 . -23) T) ((-940 . -847) 97961) ((-709 . -326) 97938) ((-481 . -637) 97886) ((-40 . -1035) 97774) ((-709 . -233) T) ((-697 . -714) 97761) ((-339 . -1094) T) ((-174 . -1094) T) ((-331 . -847) T) ((-418 . -452) 97711) ((-379 . -23) T) ((-359 . -38) 97676) ((-353 . -38) 97641) ((-345 . -38) 97606) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-833 . -1106) T) ((-108 . -38) 97556) ((-824 . -1106) T) ((-771 . -1094) T) ((-116 . -714) 97543) ((-668 . -1035) 97527) ((-610 . -102) T) ((-833 . -23) T) ((-824 . -23) T) ((-1150 . -286) 97504) ((-1107 . -309) 97442) ((-1096 . -235) 97426) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97403) ((-96 . -102) T) ((-649 . -849) 97387) ((-1129 . -1077) T) ((-1057 . -21) T) ((-1057 . -25) T) ((-812 . -231) 97356) ((-949 . -25) T) ((-949 . -21) T) ((-619 . -1053) T) ((-1114 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1024 . -309) 97294) ((-886 . -611) 97276) ((-882 . -611) 97258) ((-251 . -847) 97209) ((-250 . -847) 97160) ((-523 . -514) 97093) ((-868 . -637) 97070) ((-476 . -309) 97008) ((-463 . -309) 96946) ((-351 . -290) T) ((-1150 . -1247) 96930) ((-1136 . -611) 96892) ((-1136 . -612) 96853) ((-1134 . -102) T) ((-996 . -1052) 96749) ((-40 . -897) 96701) ((-1150 . -602) 96678) ((-1287 . -644) 96665) ((-863 . -490) 96642) ((-1058 . -151) 96588) ((-869 . -1213) T) ((-996 . -111) 96470) ((-339 . -714) 96454) ((-863 . -611) 96416) ((-174 . -714) 96348) ((-407 . -286) 96306) ((-869 . -556) T) ((-108 . -400) 96288) ((-84 . -384) T) ((-84 . -395) T) ((-697 . -172) T) ((-615 . -611) 96270) ((-99 . -723) T) ((-482 . -102) 96060) ((-99 . -473) T) ((-116 . -172) T) ((-1107 . -38) 96030) ((-169 . -637) 95978) ((-1050 . -102) T) ((-996 . -614) 95868) ((-868 . -25) T) ((-812 . -238) 95847) ((-868 . -21) T) ((-815 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95825) ((-127 . -1209) T) ((-121 . -1209) T) ((-1031 . -131) T) ((-666 . -367) 95809) ((-996 . -1046) T) ((-1232 . -637) 95757) ((-1098 . -611) 95739) ((-1000 . -611) 95721) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1094) T) ((-1000 . -612) 95705) ((-996 . -243) 95684) ((-996 . -233) 95663) ((-1287 . -723) T) ((-1251 . -145) 95642) ((-830 . -1094) T) ((-1251 . -147) 95621) ((-1244 . -147) 95600) ((-1244 . -145) 95579) ((-1243 . -1213) 95558) ((-1223 . -145) 95465) ((-1223 . -147) 95372) ((-1222 . -1213) 95351) ((-379 . -131) T) ((-564 . -883) 95333) ((0 . -1094) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1094) T) ((-1245 . -644) 95238) ((-1243 . -556) 95189) ((-711 . -1106) T) ((-1222 . -556) 95140) ((-564 . -1035) 95122) ((-594 . -147) 95101) ((-594 . -145) 95080) ((-495 . -1035) 95023) ((-1129 . -1131) T) ((-87 . -384) T) ((-87 . -395) T) ((-869 . -363) T) ((-833 . -131) T) ((-824 . -131) T) ((-711 . -23) T) ((-506 . -611) 94989) ((-502 . -611) 94971) ((-1283 . -1053) T) ((-379 . -1055) T) ((-1023 . -1094) 94949) ((-55 . -1035) 94931) ((-898 . -34) T) ((-482 . -309) 94869) ((-591 . -102) T) ((-1150 . -612) 94830) ((-1150 . -611) 94762) ((-1166 . -847) 94741) ((-45 . -102) T) ((-1119 . -847) 94720) ((-814 . -102) T) ((-1232 . -25) T) ((-1232 . -21) T) ((-852 . -25) T) ((-44 . -367) 94704) ((-852 . -21) T) ((-728 . -452) 94655) ((-1282 . -611) 94637) ((-1050 . -309) 94575) ((-667 . -1077) T) ((-604 . -1077) T) ((-390 . -1094) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1077) T) ((-161 . -1077) T) ((-156 . -1077) T) ((-154 . -1077) T) ((-619 . -1094) T) ((-695 . -883) 94557) ((-1259 . -1209) T) ((-227 . -309) 94495) ((-144 . -368) T) ((-1043 . -612) 94437) ((-1043 . -611) 94380) ((-313 . -906) NIL) ((-1217 . -841) T) ((-695 . -1035) 94325) ((-708 . -917) T) ((-474 . -1213) 94304) ((-1167 . -452) 94283) ((-1161 . -452) 94262) ((-330 . -102) T) ((-869 . -1106) T) ((-316 . -644) 94083) ((-313 . -644) 94012) ((-474 . -556) 93963) ((-339 . -514) 93929) ((-550 . -151) 93879) ((-40 . -307) T) ((-840 . -611) 93861) ((-697 . -290) T) ((-869 . -23) T) ((-379 . -493) T) ((-1074 . -231) 93831) ((-512 . -102) T) ((-407 . -612) 93638) ((-407 . -611) 93620) ((-263 . -611) 93602) ((-116 . -290) T) ((-1245 . -723) T) ((-1243 . -363) 93581) ((-1222 . -363) 93560) ((-1272 . -34) T) ((-1217 . -1094) T) ((-117 . -1209) T) ((-108 . -231) 93542) ((-1172 . -102) T) ((-477 . -1094) T) ((-523 . -489) 93526) ((-734 . -34) T) ((-482 . -38) 93496) ((-141 . -34) T) ((-117 . -881) 93473) ((-117 . -883) NIL) ((-621 . -1035) 93356) ((-641 . -847) 93335) ((-1271 . -102) T) ((-295 . -102) T) ((-709 . -368) 93314) ((-117 . -1035) 93291) ((-390 . -714) 93275) ((-619 . -714) 93259) ((-45 . -309) 93063) ((-813 . -145) 93042) ((-813 . -147) 93021) ((-1282 . -382) 93000) ((-816 . -847) T) ((-1261 . -1094) T) ((-1153 . -229) 92947) ((-386 . -847) 92926) ((-1251 . -1197) 92892) ((-1251 . -1194) 92858) ((-1244 . -1194) 92824) ((-515 . -131) T) ((-1244 . -1197) 92790) ((-1223 . -1194) 92756) ((-1223 . -1197) 92722) ((-1251 . -35) 92688) ((-1251 . -95) 92654) ((-633 . -611) 92623) ((-605 . -611) 92592) ((-225 . -847) T) ((-1244 . -95) 92558) ((-1244 . -35) 92524) ((-1243 . -1106) T) ((-1114 . -644) 92511) ((-1223 . -95) 92477) ((-1222 . -1106) T) ((-592 . -151) 92459) ((-1074 . -349) 92438) ((-174 . -290) T) ((-117 . -377) 92415) ((-117 . -338) 92392) ((-1223 . -35) 92358) ((-867 . -307) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-316 . -723) 92207) ((-313 . -723) T) ((-474 . -363) 92186) ((-359 . -349) 92165) ((-353 . -349) 92144) ((-345 . -349) 92123) ((-316 . -473) 92102) ((-1243 . -23) T) ((-1222 . -23) T) ((-715 . -1106) T) ((-711 . -131) T) ((-649 . -102) T) ((-477 . -714) 92067) ((-45 . -282) 92017) ((-105 . -1094) T) ((-68 . -611) 91999) ((-967 . -102) T) ((-861 . -102) T) ((-621 . -897) 91958) ((-1283 . -1094) T) ((-381 . -1094) T) ((-1208 . -1094) T) ((-1107 . -231) 91927) ((-82 . -1209) T) ((-1057 . -847) T) ((-949 . -847) 91906) ((-117 . -897) NIL) ((-779 . -917) 91885) ((-710 . -847) T) ((-531 . -1094) T) ((-500 . -1094) T) ((-355 . -1213) T) ((-352 . -1213) T) ((-344 . -1213) T) ((-264 . -1213) 91864) ((-247 . -1213) 91843) ((-533 . -857) T) ((-481 . -847) 91822) ((-1152 . -825) T) ((-1136 . -1052) 91806) ((-390 . -758) T) ((-690 . -1209) T) ((-687 . -1035) 91790) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 91721) ((-247 . -556) 91652) ((-525 . -1077) T) ((-1136 . -111) 91631) ((-453 . -741) 91601) ((-863 . -1052) 91571) ((-814 . -38) 91513) ((-690 . -881) 91495) ((-690 . -883) 91477) ((-295 . -309) 91281) ((-907 . -1213) T) ((-666 . -411) 91265) ((-863 . -111) 91230) ((-690 . -1035) 91175) ((-1001 . -452) T) ((-907 . -556) T) ((-533 . -611) 91157) ((-581 . -917) T) ((-474 . -1106) T) ((-518 . -917) T) ((-1150 . -288) 91134) ((-911 . -452) T) ((-65 . -611) 91116) ((-630 . -229) 91062) ((-474 . -23) T) ((-1114 . -791) T) ((-869 . -131) T) ((-1114 . -788) T) ((-1274 . -1276) 91041) ((-1114 . -723) T) ((-650 . -644) 91015) ((-294 . -611) 90756) ((-1136 . -614) 90674) ((-1032 . -34) T) ((-812 . -845) 90653) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1283 . -714) 90623) ((-690 . -377) 90605) ((-690 . -338) 90587) ((-477 . -172) T) ((-381 . -714) 90557) ((-863 . -614) 90492) ((-868 . -847) NIL) ((-564 . -1019) T) ((-495 . -1019) T) ((-1127 . -611) 90474) ((-1107 . -238) 90453) ((-214 . -102) T) ((-1144 . -102) T) ((-71 . -611) 90435) ((-1136 . -1046) T) ((-1172 . -38) 90332) ((-855 . -611) 90314) ((-564 . -545) T) ((-666 . -1053) T) ((-728 . -946) 90267) ((-1136 . -233) 90246) ((-1076 . -1094) T) ((-1031 . -25) T) ((-1031 . -21) T) ((-1000 . -1052) 90191) ((-902 . -102) T) ((-863 . -1046) T) ((-690 . -897) NIL) ((-355 . -329) 90175) ((-355 . -363) T) ((-352 . -329) 90159) ((-352 . -363) T) ((-344 . -329) 90143) ((-344 . -363) T) ((-487 . -102) T) ((-1271 . -38) 90113) ((-546 . -847) T) ((-523 . -683) 90063) ((-217 . -102) T) ((-1021 . -1035) 89943) ((-1000 . -111) 89872) ((-1168 . -970) 89841) ((-1167 . -970) 89803) ((-520 . -151) 89787) ((-1074 . -370) 89766) ((-351 . -611) 89748) ((-322 . -21) T) ((-354 . -1035) 89725) ((-322 . -25) T) ((-1161 . -970) 89694) ((-1120 . -970) 89661) ((-76 . -611) 89643) ((-695 . -307) T) ((-169 . -847) 89622) ((-129 . -841) T) ((-907 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-907 . -329) 89609) ((-86 . -611) 89591) ((-695 . -1019) T) ((-673 . -847) T) ((-1243 . -131) T) ((-1222 . -131) T) ((-898 . -1007) 89575) ((-833 . -21) T) ((-48 . -1035) 89518) ((-833 . -25) T) ((-824 . -25) T) ((-824 . -21) T) ((-1281 . -1053) T) ((-549 . -102) T) ((-1279 . -1053) T) ((-650 . -723) T) ((-1098 . -616) 89421) ((-1000 . -614) 89351) ((-1282 . -1052) 89335) ((-1232 . -847) 89314) ((-812 . -411) 89283) ((-103 . -119) 89267) ((-129 . -1094) T) ((-52 . -1094) T) ((-923 . -611) 89249) ((-868 . -989) 89226) ((-820 . -102) T) ((-1282 . -111) 89205) ((-649 . -38) 89175) ((-571 . -847) T) ((-355 . -1106) T) ((-352 . -1106) T) ((-344 . -1106) T) ((-264 . -1106) T) ((-247 . -1106) T) ((-621 . -307) 89154) ((-1144 . -309) 88958) ((-524 . -1077) T) ((-311 . -1094) T) ((-660 . -23) T) ((-482 . -231) 88927) ((-152 . -1053) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-1000 . -1046) T) ((-709 . -906) 88906) ((-1150 . -614) 88883) ((-1000 . -233) 88855) ((-1000 . -243) T) ((-117 . -1019) NIL) ((-907 . -1106) T) ((-1244 . -452) 88834) ((-1223 . -452) 88813) ((-523 . -611) 88745) ((-709 . -644) 88670) ((-407 . -1052) 88622) ((-504 . -611) 88604) ((-907 . -23) T) ((-487 . -309) NIL) ((-1282 . -614) 88560) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88498) ((-812 . -1053) 88428) ((-734 . -1092) 88412) ((-1243 . -493) 88378) ((-1222 . -493) 88344) ((-548 . -841) T) ((-141 . -1092) 88326) ((-477 . -290) T) ((-1282 . -1046) T) ((-1214 . -102) T) ((-1058 . -102) T) ((-840 . -614) 88194) ((-500 . -514) NIL) ((-699 . -102) T) ((-482 . -238) 88173) ((-407 . -614) 88071) ((-1166 . -145) 88050) ((-1166 . -147) 88029) ((-1119 . -147) 88008) ((-1119 . -145) 87987) ((-633 . -1052) 87971) ((-605 . -1052) 87955) ((-1168 . -1250) 87939) ((-666 . -1094) T) ((-666 . -1049) 87879) ((-1168 . -1237) 87856) ((-548 . -1094) T) ((-487 . -1145) T) ((-1167 . -1242) 87817) ((-1167 . -1237) 87787) ((-1167 . -1240) 87771) ((-217 . -1145) T) ((-343 . -917) T) ((-815 . -266) 87755) ((-633 . -111) 87734) ((-605 . -111) 87713) ((-1161 . -1221) 87674) ((-840 . -1046) 87653) ((-1161 . -1237) 87630) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1161 . -1219) 87614) ((-407 . -1046) T) ((-319 . -1053) T) ((-690 . -307) T) ((-108 . -845) T) ((-709 . -723) T) ((-407 . -243) T) ((-407 . -233) 87593) ((-487 . -38) 87543) ((-217 . -38) 87493) ((-474 . -493) 87459) ((-1216 . -368) T) ((-1152 . -1138) T) ((-1095 . -102) T) ((-697 . -611) 87441) ((-697 . -612) 87356) ((-711 . -21) T) ((-711 . -25) T) ((-1129 . -102) T) ((-134 . -611) 87338) ((-116 . -611) 87320) ((-157 . -25) T) ((-1281 . -1094) T) ((-869 . -637) 87268) ((-1279 . -1094) T) ((-960 . -102) T) ((-732 . -102) T) ((-712 . -102) T) ((-453 . -102) T) ((-813 . -452) 87219) ((-44 . -1094) T) ((-1082 . -847) T) ((-660 . -131) T) ((-1058 . -309) 87070) ((-666 . -714) 87054) ((-289 . -1053) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1094) T) ((-45 . -229) 87004) ((-955 . -847) 86983) ((-996 . -644) 86921) ((-240 . -1266) 86891) ((-1021 . -307) T) ((-294 . -1052) 86812) ((-907 . -131) T) ((-40 . -917) T) ((-487 . -400) 86794) ((-354 . -307) T) ((-217 . -400) 86776) ((-1074 . -411) 86760) ((-294 . -111) 86676) ((-1177 . -847) T) ((-1176 . -847) T) ((-869 . -25) T) ((-869 . -21) T) ((-339 . -611) 86658) ((-1245 . -47) 86602) ((-225 . -147) T) ((-174 . -611) 86584) ((-1107 . -845) 86563) ((-771 . -611) 86545) ((-128 . -847) T) ((-606 . -235) 86492) ((-475 . -235) 86442) ((-1281 . -714) 86412) ((-48 . -307) T) ((-1279 . -714) 86382) ((-65 . -614) 86311) ((-961 . -1094) T) ((-812 . -1094) 86101) ((-312 . -102) T) ((-898 . -1209) T) ((-48 . -1019) T) ((-1222 . -637) 86009) ((-685 . -102) 85987) ((-44 . -714) 85971) ((-550 . -102) T) ((-294 . -614) 85902) ((-67 . -383) T) ((-67 . -395) T) ((-658 . -23) T) ((-666 . -758) T) ((-1206 . -1094) 85880) ((-351 . -1052) 85825) ((-671 . -1094) 85803) ((-1057 . -147) T) ((-949 . -147) 85782) ((-949 . -145) 85761) ((-796 . -102) T) ((-152 . -714) 85745) ((-481 . -147) 85724) ((-481 . -145) 85703) ((-351 . -111) 85632) ((-1074 . -1053) T) ((-322 . -847) 85611) ((-1251 . -970) 85580) ((-625 . -1094) T) ((-1244 . -970) 85542) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85492) ((-359 . -1053) T) ((-353 . -1053) T) ((-345 . -1053) T) ((-294 . -1046) 85434) ((-1223 . -970) 85403) ((-379 . -847) T) ((-108 . -1053) T) ((-996 . -723) T) ((-867 . -917) T) ((-840 . -792) 85382) ((-840 . -789) 85361) ((-418 . -309) 85300) ((-468 . -102) T) ((-594 . -970) 85269) ((-319 . -1094) T) ((-407 . -792) 85248) ((-407 . -789) 85227) ((-500 . -489) 85209) ((-1245 . -1035) 85175) ((-1243 . -21) T) ((-1243 . -25) T) ((-1222 . -21) T) ((-1222 . -25) T) ((-812 . -714) 85117) ((-351 . -614) 85047) ((-695 . -404) T) ((-1272 . -1209) T) ((-604 . -102) T) ((-1107 . -411) 85016) ((-1000 . -368) NIL) ((-667 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-734 . -1209) T) ((-44 . -758) T) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-649 . -652) 85000) ((-141 . -1209) T) ((-868 . -147) T) ((-868 . -145) NIL) ((-1208 . -93) T) ((-351 . -1046) T) ((-70 . -383) T) ((-70 . -395) T) ((-1159 . -102) T) ((-666 . -514) 84933) ((-685 . -309) 84871) ((-960 . -38) 84768) ((-732 . -38) 84738) ((-550 . -309) 84542) ((-316 . -1209) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1209) T) ((-289 . -1094) T) ((-1174 . -611) 84524) ((-708 . -1213) T) ((-1150 . -647) 84508) ((-1203 . -556) 84487) ((-708 . -556) T) ((-316 . -881) 84471) ((-316 . -883) 84396) ((-313 . -881) 84357) ((-313 . -883) NIL) ((-796 . -309) 84322) ((-319 . -714) 84163) ((-324 . -323) 84140) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84114) ((-316 . -1035) 83777) ((-225 . -1194) T) ((-225 . -1197) T) ((-3 . -611) 83759) ((-313 . -1035) 83689) ((-2 . -1094) T) ((-2 . |RecordCategory|) T) ((-830 . -611) 83671) ((-1107 . -1053) 83601) ((-580 . -917) T) ((-564 . -817) T) ((-564 . -917) T) ((-495 . -917) T) ((-136 . -1035) 83585) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -611) 83567) ((-169 . -147) 83546) ((-169 . -145) 83497) ((-225 . -35) T) ((-49 . -611) 83479) ((-477 . -1053) T) ((-487 . -231) 83461) ((-484 . -965) 83445) ((-482 . -845) 83424) ((-217 . -231) 83406) ((-81 . -441) T) ((-81 . -395) T) ((-1140 . -34) T) ((-812 . -172) 83385) ((-728 . -102) T) ((-1023 . -611) 83352) ((-500 . -286) 83327) ((-316 . -377) 83296) ((-313 . -377) 83257) ((-313 . -338) 83218) ((-1079 . -611) 83200) ((-813 . -946) 83147) ((-658 . -131) T) ((-1232 . -145) 83126) ((-1232 . -147) 83105) ((-1168 . -102) T) ((-1167 . -102) T) ((-1161 . -102) T) ((-1153 . -1094) T) ((-1120 . -102) T) ((-222 . -34) T) ((-289 . -714) 83092) ((-1153 . -608) 83068) ((-592 . -309) NIL) ((-484 . -1094) 83046) ((-390 . -611) 83028) ((-510 . -847) T) ((-1144 . -229) 82978) ((-1251 . -1250) 82962) ((-1251 . -1237) 82939) ((-1244 . -1242) 82900) ((-1244 . -1237) 82870) ((-1244 . -1240) 82854) ((-1223 . -1221) 82815) ((-1223 . -1237) 82792) ((-619 . -611) 82774) ((-1223 . -1219) 82758) ((-695 . -917) T) ((-1168 . -284) 82724) ((-1167 . -284) 82690) ((-1161 . -284) 82656) ((-1074 . -1094) T) ((-1056 . -1094) T) ((-48 . -302) T) ((-316 . -897) 82622) ((-313 . -897) NIL) ((-1056 . -1063) 82601) ((-1114 . -883) 82583) ((-796 . -38) 82567) ((-264 . -637) 82515) ((-247 . -637) 82463) ((-697 . -1052) 82450) ((-594 . -1237) 82427) ((-1120 . -284) 82393) ((-319 . -172) 82324) ((-359 . -1094) T) ((-353 . -1094) T) ((-345 . -1094) T) ((-500 . -19) 82306) ((-1114 . -1035) 82288) ((-1096 . -151) 82272) ((-108 . -1094) T) ((-116 . -1052) 82259) ((-708 . -363) T) ((-500 . -602) 82234) ((-697 . -111) 82219) ((-436 . -102) T) ((-45 . -1143) 82169) ((-116 . -111) 82154) ((-633 . -717) T) ((-605 . -717) T) ((-812 . -514) 82087) ((-1032 . -1209) T) ((-940 . -151) 82071) ((-1217 . -611) 82053) ((-1166 . -452) 81984) ((-1160 . -1094) T) ((-1152 . -1094) T) ((-525 . -102) T) ((-520 . -102) 81934) ((-1136 . -644) 81908) ((-1119 . -452) 81859) ((-1081 . -1213) 81838) ((-779 . -1213) 81817) ((-777 . -1213) 81796) ((-62 . -1209) T) ((-477 . -611) 81748) ((-477 . -612) 81670) ((-1081 . -556) 81601) ((-991 . -1094) T) ((-779 . -556) 81512) ((-777 . -556) 81443) ((-482 . -411) 81412) ((-621 . -917) 81391) ((-454 . -1213) 81370) ((-728 . -309) 81357) ((-697 . -614) 81329) ((-398 . -611) 81311) ((-671 . -514) 81244) ((-660 . -25) T) ((-660 . -21) T) ((-454 . -556) 81175) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -917) T) ((-117 . -817) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 81157) ((-116 . -614) 81129) ((-1261 . -611) 81111) ((-1215 . -847) T) ((-1203 . -1106) T) ((-1203 . -23) T) ((-1161 . -309) 80996) ((-1120 . -309) 80983) ((-1074 . -714) 80851) ((-863 . -644) 80811) ((-940 . -977) 80795) ((-907 . -21) T) ((-289 . -172) T) ((-907 . -25) T) ((-311 . -93) T) ((-869 . -847) 80746) ((-708 . -1106) T) ((-708 . -23) T) ((-697 . -1046) T) ((-643 . -1094) 80724) ((-630 . -1094) T) ((-581 . -1213) T) ((-518 . -1213) T) ((-697 . -233) T) ((-630 . -608) 80699) ((-581 . -556) T) ((-518 . -556) T) ((-359 . -714) 80651) ((-339 . -1052) 80635) ((-353 . -714) 80587) ((-345 . -714) 80539) ((-174 . -1052) 80471) ((-174 . -111) 80382) ((-108 . -714) 80332) ((-339 . -111) 80311) ((-274 . -1094) T) ((-273 . -1094) T) ((-272 . -1094) T) ((-271 . -1094) T) ((-270 . -1094) T) ((-269 . -1094) T) ((-268 . -1094) T) ((-212 . -1094) T) ((-211 . -1094) T) ((-169 . -1197) 80289) ((-169 . -1194) 80267) ((-209 . -1094) T) ((-208 . -1094) T) ((-116 . -1046) T) ((-207 . -1094) T) ((-206 . -1094) T) ((-203 . -1094) T) ((-202 . -1094) T) ((-201 . -1094) T) ((-200 . -1094) T) ((-199 . -1094) T) ((-198 . -1094) T) ((-197 . -1094) T) ((-196 . -1094) T) ((-195 . -1094) T) ((-194 . -1094) T) ((-193 . -1094) T) ((-240 . -102) 80057) ((-169 . -35) 80035) ((-169 . -95) 80013) ((-650 . -1035) 79909) ((-482 . -1053) 79839) ((-1107 . -1094) 79629) ((-1136 . -34) T) ((-666 . -489) 79613) ((-73 . -1209) T) ((-105 . -611) 79595) ((-1283 . -611) 79577) ((-381 . -611) 79559) ((-339 . -614) 79511) ((-174 . -614) 79428) ((-1208 . -490) 79409) ((-728 . -38) 79258) ((-571 . -1197) T) ((-571 . -1194) T) ((-531 . -611) 79240) ((-520 . -309) 79178) ((-500 . -611) 79160) ((-500 . -612) 79142) ((-1208 . -611) 79108) ((-1161 . -1145) NIL) ((-1024 . -1066) 79077) ((-1024 . -1094) T) ((-1001 . -102) T) ((-968 . -102) T) ((-911 . -102) T) ((-890 . -1035) 79054) ((-1136 . -723) T) ((-1000 . -644) 78999) ((-476 . -1094) T) ((-463 . -1094) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1058 . -229) 78945) ((-1168 . -38) 78842) ((-863 . -723) T) ((-690 . -917) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1167 . -38) 78683) ((-339 . -1046) T) ((-1161 . -38) 78479) ((-1074 . -172) T) ((-174 . -1046) T) ((-1120 . -38) 78376) ((-709 . -47) 78353) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78327) ((-497 . -57) 78277) ((-351 . -1278) 78254) ((-225 . -452) T) ((-319 . -290) 78205) ((-345 . -172) T) ((-174 . -243) T) ((-1222 . -847) 78104) ((-108 . -172) T) ((-869 . -989) 78088) ((-654 . -1106) T) ((-581 . -363) T) ((-581 . -329) 78075) ((-518 . -329) 78052) ((-518 . -363) T) ((-316 . -307) 78031) ((-313 . -307) T) ((-600 . -847) 78010) ((-1107 . -714) 77952) ((-520 . -282) 77936) ((-654 . -23) T) ((-418 . -231) 77920) ((-313 . -1019) NIL) ((-336 . -23) T) ((-103 . -1007) 77904) ((-45 . -36) 77883) ((-610 . -1094) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77821) ((-1081 . -1106) T) ((-1282 . -644) 77795) ((-779 . -1106) T) ((-777 . -1106) T) ((-454 . -1106) T) ((-1057 . -452) T) ((-949 . -452) 77746) ((-1109 . -1077) T) ((-110 . -1094) T) ((-1081 . -23) T) ((-814 . -1053) T) ((-779 . -23) T) ((-777 . -23) T) ((-481 . -452) 77697) ((-1153 . -514) 77480) ((-381 . -382) 77459) ((-1172 . -411) 77443) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1094) T) ((-484 . -514) 77376) ((-289 . -290) T) ((-1076 . -611) 77358) ((-1076 . -612) 77339) ((-407 . -906) 77318) ((-50 . -1106) T) ((-1021 . -917) T) ((-1000 . -723) T) ((-709 . -883) NIL) ((-581 . -1106) T) ((-518 . -1106) T) ((-840 . -644) 77291) ((-1203 . -131) T) ((-1161 . -400) 77243) ((-1001 . -309) NIL) ((-812 . -489) 77227) ((-354 . -917) T) ((-1150 . -34) T) ((-407 . -644) 77179) ((-50 . -23) T) ((-708 . -131) T) ((-709 . -1035) 77059) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 77030) ((-1134 . -1094) T) ((-1274 . -1273) 77014) ((-697 . -792) T) ((-697 . -789) T) ((-1114 . -307) T) ((-379 . -147) T) ((-280 . -611) 76996) ((-1222 . -989) 76966) ((-48 . -917) T) ((-671 . -489) 76950) ((-251 . -1266) 76920) ((-250 . -1266) 76890) ((-1170 . -847) T) ((-1107 . -172) 76869) ((-1114 . -1019) T) ((-1043 . -34) T) ((-833 . -147) 76848) ((-833 . -145) 76827) ((-734 . -107) 76811) ((-610 . -132) T) ((-482 . -1094) 76601) ((-1172 . -1053) T) ((-868 . -452) T) ((-85 . -1209) T) ((-240 . -38) 76571) ((-141 . -107) 76553) ((-709 . -377) 76537) ((-830 . -614) 76405) ((-1114 . -545) T) ((-579 . -102) T) ((-129 . -490) 76387) ((-390 . -1052) 76371) ((-1282 . -723) T) ((-1166 . -946) 76340) ((-129 . -611) 76307) ((-52 . -611) 76289) ((-1119 . -946) 76256) ((-649 . -411) 76240) ((-1271 . -1053) T) ((-619 . -1052) 76224) ((-658 . -25) T) ((-658 . -21) T) ((-1152 . -514) NIL) ((-1251 . -102) T) ((-1244 . -102) T) ((-390 . -111) 76203) ((-222 . -254) 76187) ((-1223 . -102) T) ((-1050 . -1094) T) ((-1001 . -1145) T) ((-1050 . -1049) 76127) ((-815 . -1094) T) ((-343 . -1213) T) ((-633 . -644) 76111) ((-619 . -111) 76090) ((-605 . -644) 76074) ((-595 . -102) T) ((-311 . -490) 76055) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1094) T) ((-385 . -1094) T) ((-311 . -611) 76021) ((-227 . -1094) 75999) ((-643 . -514) 75932) ((-630 . -514) 75776) ((-830 . -1046) 75755) ((-641 . -151) 75739) ((-343 . -556) T) ((-709 . -897) 75682) ((-550 . -229) 75632) ((-1251 . -284) 75598) ((-1074 . -290) 75549) ((-487 . -845) T) ((-223 . -1106) T) ((-1244 . -284) 75515) ((-1223 . -284) 75481) ((-1001 . -38) 75431) ((-217 . -845) T) ((-1203 . -493) 75397) ((-911 . -38) 75349) ((-840 . -791) 75328) ((-840 . -788) 75307) ((-840 . -723) 75286) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75217) ((-427 . -38) 75201) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -791) 75180) ((-407 . -788) 75159) ((-407 . -723) T) ((-500 . -288) 75134) ((-477 . -1052) 75099) ((-654 . -131) T) ((-619 . -614) 75068) ((-1107 . -514) 75001) ((-336 . -131) T) ((-169 . -402) 74980) ((-482 . -714) 74922) ((-812 . -286) 74899) ((-477 . -111) 74855) ((-649 . -1053) T) ((-1232 . -452) 74786) ((-1270 . -1077) T) ((-1269 . -1077) T) ((-1081 . -131) T) ((-1050 . -714) 74728) ((-264 . -847) 74707) ((-247 . -847) 74686) ((-779 . -131) T) ((-777 . -131) T) ((-571 . -452) T) ((-1024 . -514) 74619) ((-619 . -1046) T) ((-591 . -1094) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1094) T) ((-385 . -714) 74589) ((-814 . -1094) T) ((-476 . -514) 74522) ((-463 . -514) 74455) ((-453 . -367) 74425) ((-45 . -608) 74404) ((-316 . -302) T) ((-477 . -614) 74354) ((-666 . -611) 74316) ((-59 . -847) 74295) ((-1223 . -309) 74180) ((-548 . -611) 74162) ((-1001 . -400) 74144) ((-812 . -602) 74121) ((-516 . -847) 74100) ((-496 . -847) 74079) ((-40 . -1213) T) ((-996 . -1035) 73975) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -644) 73835) ((-343 . -329) 73812) ((-343 . -363) T) ((-322 . -323) 73789) ((-319 . -286) 73774) ((-40 . -556) T) ((-379 . -1194) T) ((-379 . -1197) T) ((-1032 . -1185) 73749) ((-1182 . -235) 73699) ((-1161 . -231) 73651) ((-330 . -1094) T) ((-379 . -95) T) ((-379 . -35) T) ((-1032 . -107) 73597) ((-477 . -1046) T) ((-479 . -235) 73547) ((-1153 . -489) 73481) ((-1283 . -1052) 73465) ((-381 . -1052) 73449) ((-477 . -243) T) ((-813 . -102) T) ((-711 . -147) 73428) ((-711 . -145) 73407) ((-484 . -489) 73391) ((-485 . -335) 73360) ((-1283 . -111) 73339) ((-512 . -1094) T) ((-482 . -172) 73318) ((-996 . -377) 73302) ((-413 . -102) T) ((-381 . -111) 73281) ((-996 . -338) 73265) ((-279 . -980) 73249) ((-278 . -980) 73233) ((-1281 . -611) 73215) ((-1279 . -611) 73197) ((-110 . -514) NIL) ((-1166 . -1235) 73181) ((-851 . -849) 73165) ((-1172 . -1094) T) ((-103 . -1209) T) ((-949 . -946) 73126) ((-814 . -714) 73068) ((-1223 . -1145) NIL) ((-481 . -946) 73013) ((-1057 . -143) T) ((-60 . -102) 72991) ((-44 . -611) 72973) ((-78 . -611) 72955) ((-351 . -644) 72900) ((-1271 . -1094) T) ((-511 . -847) T) ((-343 . -1106) T) ((-295 . -1094) T) ((-996 . -897) 72859) ((-295 . -608) 72838) ((-1283 . -614) 72787) ((-1251 . -38) 72684) ((-1244 . -38) 72525) ((-1223 . -38) 72321) ((-487 . -1053) T) ((-381 . -614) 72305) ((-217 . -1053) T) ((-343 . -23) T) ((-152 . -611) 72287) ((-830 . -792) 72266) ((-830 . -789) 72245) ((-1208 . -614) 72226) ((-595 . -38) 72199) ((-594 . -38) 72096) ((-867 . -556) T) ((-223 . -131) T) ((-319 . -999) 72062) ((-79 . -611) 72044) ((-709 . -307) 72023) ((-294 . -723) 71925) ((-821 . -102) T) ((-861 . -841) T) ((-294 . -473) 71904) ((-1274 . -102) T) ((-40 . -363) T) ((-869 . -147) 71883) ((-869 . -145) 71862) ((-1152 . -489) 71844) ((-1283 . -1046) T) ((-482 . -514) 71777) ((-1140 . -1209) T) ((-961 . -611) 71759) ((-643 . -489) 71743) ((-630 . -489) 71674) ((-812 . -611) 71405) ((-48 . -27) T) ((-1172 . -714) 71302) ((-649 . -1094) T) ((-858 . -857) T) ((-436 . -364) 71276) ((-1096 . -102) T) ((-967 . -1094) T) ((-861 . -1094) T) ((-813 . -309) 71263) ((-533 . -527) T) ((-533 . -576) T) ((-1279 . -382) 71235) ((-1050 . -514) 71168) ((-1153 . -286) 71144) ((-240 . -231) 71113) ((-1271 . -714) 71083) ((-1160 . -93) T) ((-991 . -93) T) ((-814 . -172) 71062) ((-1206 . -490) 71039) ((-227 . -514) 70972) ((-619 . -792) 70951) ((-619 . -789) 70930) ((-1206 . -611) 70842) ((-222 . -1209) T) ((-671 . -611) 70774) ((-1150 . -1007) 70758) ((-940 . -102) 70708) ((-351 . -723) T) ((-858 . -611) 70690) ((-1223 . -400) 70642) ((-1107 . -489) 70626) ((-60 . -309) 70564) ((-331 . -102) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-40 . -1106) T) ((-708 . -21) T) ((-625 . -611) 70546) ((-515 . -323) 70525) ((-708 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-918 . -1106) T) ((-40 . -23) T) ((-768 . -1106) T) ((-564 . -1213) T) ((-495 . -1213) T) ((-319 . -611) 70507) ((-1001 . -231) 70489) ((-169 . -166) 70473) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-768 . -23) T) ((-1243 . -147) 70452) ((-1153 . -602) 70428) ((-1243 . -145) 70407) ((-1024 . -489) 70391) ((-1222 . -145) 70316) ((-1222 . -147) 70241) ((-1274 . -1280) 70220) ((-476 . -489) 70204) ((-463 . -489) 70188) ((-523 . -34) T) ((-649 . -714) 70158) ((-112 . -964) T) ((-658 . -847) 70137) ((-1172 . -172) 70088) ((-365 . -102) T) ((-240 . -238) 70067) ((-251 . -102) T) ((-250 . -102) T) ((-1232 . -946) 70036) ((-245 . -847) 70015) ((-813 . -38) 69864) ((-45 . -514) 69656) ((-1152 . -286) 69631) ((-214 . -1094) T) ((-1144 . -1094) T) ((-1144 . -608) 69610) ((-585 . -25) T) ((-585 . -21) T) ((-1096 . -309) 69548) ((-960 . -411) 69532) ((-695 . -1213) T) ((-630 . -286) 69507) ((-1081 . -637) 69455) ((-779 . -637) 69403) ((-777 . -637) 69351) ((-343 . -131) T) ((-289 . -611) 69333) ((-902 . -1094) T) ((-695 . -556) T) ((-129 . -614) 69315) ((-867 . -1106) T) ((-454 . -637) 69263) ((-902 . -900) 69247) ((-379 . -452) T) ((-487 . -1094) T) ((-940 . -309) 69185) ((-697 . -644) 69172) ((-549 . -841) T) ((-217 . -1094) T) ((-316 . -917) 69151) ((-313 . -917) T) ((-313 . -817) NIL) ((-390 . -717) T) ((-867 . -23) T) ((-116 . -644) 69138) ((-474 . -145) 69117) ((-418 . -411) 69101) ((-474 . -147) 69080) ((-110 . -489) 69062) ((-311 . -614) 69043) ((-2 . -611) 69025) ((-186 . -102) T) ((-1152 . -19) 69007) ((-1152 . -602) 68982) ((-654 . -21) T) ((-654 . -25) T) ((-592 . -1138) T) ((-1107 . -286) 68959) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1274 . -38) 68929) ((-1136 . -1209) T) ((-630 . -602) 68904) ((-549 . -1094) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-531 . -789) T) ((-531 . -792) T) ((-117 . -1213) T) ((-960 . -1053) T) ((-621 . -556) T) ((-779 . -25) T) ((-779 . -21) T) ((-777 . -21) T) ((-777 . -25) T) ((-732 . -1053) T) ((-712 . -1053) T) ((-666 . -1052) 68888) ((-517 . -1077) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1281 . -1052) 68872) ((-1136 . -1035) 68768) ((-814 . -290) 68747) ((-1279 . -1052) 68731) ((-820 . -1094) T) ((-1243 . -1194) 68697) ((-963 . -964) T) ((-666 . -111) 68676) ((-295 . -514) 68468) ((-1243 . -1197) 68434) ((-1243 . -95) 68400) ((-1226 . -102) 68378) ((-251 . -309) 68316) ((-250 . -309) 68254) ((-1223 . -231) 68206) ((-1153 . -612) NIL) ((-1153 . -611) 68188) ((-1222 . -1194) 68154) ((-1222 . -1197) 68120) ((-1217 . -368) T) ((-96 . -93) T) ((-1214 . -841) T) ((-1136 . -377) 68104) ((-1114 . -817) T) ((-1114 . -917) T) ((-1107 . -602) 68081) ((-1074 . -612) 68065) ((-484 . -611) 67997) ((-812 . -288) 67974) ((-606 . -151) 67921) ((-418 . -1053) T) ((-487 . -714) 67871) ((-482 . -489) 67855) ((-327 . -847) 67834) ((-339 . -644) 67808) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -714) 67758) ((-169 . -721) 67729) ((-174 . -644) 67661) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67611) ((-1074 . -611) 67593) ((-1056 . -611) 67575) ((-990 . -102) T) ((-859 . -102) T) ((-796 . -411) 67539) ((-40 . -131) T) ((-695 . -363) T) ((-697 . -723) T) ((-697 . -791) T) ((-697 . -788) T) ((-212 . -892) T) ((-580 . -1106) T) ((-564 . -1106) T) ((-495 . -1106) T) ((-359 . -611) 67521) ((-353 . -611) 67503) ((-345 . -611) 67485) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 67415) ((-108 . -611) 67357) ((-211 . -892) T) ((-955 . -151) 67341) ((-768 . -131) T) ((-666 . -614) 67259) ((-134 . -723) T) ((-116 . -723) T) ((-1243 . -35) 67225) ((-1050 . -489) 67209) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1222 . -95) 67175) ((-1222 . -35) 67141) ((-1166 . -102) T) ((-1119 . -102) T) ((-851 . -102) T) ((-227 . -489) 67125) ((-1281 . -111) 67104) ((-1279 . -111) 67083) ((-44 . -1052) 67067) ((-1232 . -1235) 67051) ((-852 . -849) 67035) ((-1281 . -614) 66981) ((-1172 . -290) 66960) ((-110 . -286) 66935) ((-1214 . -1094) T) ((-128 . -151) 66917) ((-1136 . -897) 66876) ((-44 . -111) 66855) ((-1175 . -1254) T) ((-1160 . -490) 66836) ((-1160 . -611) 66802) ((-1152 . -612) NIL) ((-666 . -1046) T) ((-1152 . -611) 66784) ((-1058 . -608) 66759) ((-1058 . -1094) T) ((-991 . -490) 66740) ((-991 . -611) 66706) ((-74 . -441) T) ((-74 . -395) T) ((-699 . -1094) T) ((-152 . -1052) 66690) ((-666 . -233) 66669) ((-571 . -554) 66653) ((-355 . -147) 66632) ((-355 . -145) 66583) ((-352 . -147) 66562) ((-352 . -145) 66513) ((-344 . -147) 66492) ((-344 . -145) 66443) ((-264 . -145) 66422) ((-264 . -147) 66401) ((-251 . -38) 66371) ((-247 . -147) 66350) ((-117 . -363) T) ((-247 . -145) 66329) ((-250 . -38) 66299) ((-152 . -111) 66278) ((-1000 . -1035) 66166) ((-1161 . -845) NIL) ((-690 . -1213) T) ((-796 . -1053) T) ((-695 . -1106) T) ((-1281 . -1046) T) ((-1279 . -614) 66095) ((-1279 . -1046) T) ((-1150 . -1209) T) ((-1000 . -377) 66072) ((-907 . -145) T) ((-907 . -147) 66054) ((-867 . -131) T) ((-812 . -1052) 65951) ((-690 . -556) T) ((-695 . -23) T) ((-643 . -611) 65883) ((-643 . -612) 65844) ((-630 . -612) NIL) ((-630 . -611) 65826) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1197) 65792) ((-474 . -1194) 65758) ((-274 . -611) 65740) ((-273 . -611) 65722) ((-272 . -611) 65704) ((-271 . -611) 65686) ((-270 . -611) 65668) ((-500 . -647) 65650) ((-269 . -611) 65632) ((-339 . -723) T) ((-268 . -611) 65614) ((-110 . -19) 65596) ((-174 . -723) T) ((-500 . -373) 65578) ((-212 . -611) 65560) ((-520 . -1143) 65544) ((-500 . -123) T) ((-110 . -602) 65519) ((-211 . -611) 65501) ((-474 . -35) 65467) ((-474 . -95) 65433) ((-209 . -611) 65415) ((-208 . -611) 65397) ((-207 . -611) 65379) ((-206 . -611) 65361) ((-203 . -611) 65343) ((-202 . -611) 65325) ((-201 . -611) 65307) ((-200 . -611) 65289) ((-199 . -611) 65271) ((-198 . -611) 65253) ((-197 . -611) 65235) ((-536 . -1097) 65187) ((-196 . -611) 65169) ((-195 . -611) 65151) ((-45 . -489) 65088) ((-194 . -611) 65070) ((-193 . -611) 65052) ((-152 . -614) 65021) ((-1109 . -102) T) ((-812 . -111) 64911) ((-641 . -102) 64861) ((-482 . -286) 64838) ((-1107 . -611) 64569) ((-1095 . -1094) T) ((-1043 . -1209) T) ((-1282 . -1035) 64553) ((-621 . -1106) T) ((-1166 . -309) 64540) ((-1129 . -1094) T) ((-1119 . -309) 64527) ((-1090 . -1077) T) ((-1084 . -1077) T) ((-1068 . -1077) T) ((-1061 . -1077) T) ((-1033 . -1077) T) ((-1016 . -1077) T) ((-117 . -1106) T) ((-816 . -102) T) ((-624 . -1077) T) ((-621 . -23) T) ((-1144 . -514) 64319) ((-483 . -1077) T) ((-1000 . -897) 64271) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1077) T) ((-960 . -1094) T) ((-152 . -1046) T) ((-728 . -411) 64255) ((-117 . -23) T) ((-732 . -1094) T) ((-712 . -1094) T) ((-699 . -132) T) ((-453 . -1094) T) ((-407 . -1209) T) ((-316 . -430) 64239) ((-591 . -93) T) ((-1024 . -612) 64200) ((-1021 . -1213) T) ((-225 . -102) T) ((-1024 . -611) 64162) ((-813 . -231) 64146) ((-812 . -614) 63876) ((-1021 . -556) T) ((-830 . -644) 63849) ((-354 . -1213) T) ((-476 . -611) 63811) ((-476 . -612) 63772) ((-463 . -612) 63733) ((-463 . -611) 63695) ((-407 . -881) 63679) ((-319 . -1052) 63514) ((-407 . -883) 63439) ((-840 . -1035) 63335) ((-487 . -514) NIL) ((-482 . -602) 63312) ((-354 . -556) T) ((-217 . -514) NIL) ((-869 . -452) T) ((-418 . -1094) T) ((-407 . -1035) 63176) ((-319 . -111) 62997) ((-690 . -363) T) ((-225 . -284) T) ((-1206 . -614) 62974) ((-48 . -1213) T) ((-812 . -1046) 62904) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1166 . -1145) 62882) ((-48 . -556) T) ((-1153 . -288) 62858) ((-1057 . -102) T) ((-949 . -102) T) ((-316 . -27) 62837) ((-812 . -233) 62789) ((-249 . -832) 62771) ((-240 . -845) 62750) ((-187 . -832) 62732) ((-710 . -102) T) ((-295 . -489) 62669) ((-481 . -102) T) ((-728 . -1053) T) ((-610 . -611) 62651) ((-610 . -612) 62512) ((-407 . -377) 62496) ((-407 . -338) 62480) ((-319 . -614) 62306) ((-1166 . -38) 62135) ((-1119 . -38) 61984) ((-851 . -38) 61954) ((-390 . -644) 61938) ((-641 . -309) 61876) ((-960 . -714) 61773) ((-732 . -714) 61743) ((-222 . -107) 61727) ((-45 . -286) 61652) ((-619 . -644) 61626) ((-312 . -1094) T) ((-289 . -1052) 61613) ((-110 . -611) 61595) ((-110 . -612) 61577) ((-453 . -714) 61547) ((-813 . -253) 61486) ((-685 . -1094) 61464) ((-550 . -1094) T) ((-1168 . -1053) T) ((-1167 . -1053) T) ((-96 . -490) 61445) ((-1161 . -1053) T) ((-289 . -111) 61430) ((-1120 . -1053) T) ((-550 . -608) 61409) ((-96 . -611) 61375) ((-1001 . -845) T) ((-227 . -683) 61333) ((-690 . -1106) T) ((-1203 . -737) 61309) ((-1021 . -363) T) ((-835 . -832) 61291) ((-319 . -1046) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -897) 61250) ((-68 . -1209) T) ((-830 . -791) 61229) ((-418 . -714) 61203) ((-796 . -1094) T) ((-830 . -788) 61182) ((-695 . -131) T) ((-709 . -917) 61161) ((-690 . -23) T) ((-487 . -290) T) ((-830 . -723) 61140) ((-319 . -233) 61092) ((-319 . -243) 61071) ((-217 . -290) T) ((-129 . -368) T) ((-1243 . -452) 61050) ((-1222 . -452) 61029) ((-354 . -329) 61006) ((-354 . -363) T) ((-1134 . -611) 60988) ((-45 . -1247) 60938) ((-868 . -102) T) ((-641 . -282) 60922) ((-695 . -1055) T) ((-1270 . -102) T) ((-1269 . -102) T) ((-477 . -644) 60887) ((-468 . -1094) T) ((-45 . -602) 60812) ((-1152 . -288) 60787) ((-289 . -614) 60759) ((-40 . -637) 60698) ((-48 . -363) T) ((-1100 . -611) 60680) ((-1081 . -847) 60659) ((-630 . -288) 60634) ((-779 . -847) 60613) ((-777 . -847) 60592) ((-482 . -611) 60323) ((-240 . -411) 60292) ((-949 . -309) 60279) ((-454 . -847) 60258) ((-65 . -1209) T) ((-1058 . -514) 60102) ((-621 . -131) T) ((-546 . -102) T) ((-481 . -309) 60089) ((-604 . -1094) T) ((-117 . -131) T) ((-667 . -1094) T) ((-289 . -1046) T) ((-180 . -1094) T) ((-161 . -1094) T) ((-156 . -1094) T) ((-154 . -1094) T) ((-453 . -758) T) ((-31 . -1077) T) ((-960 . -172) 60040) ((-967 . -93) T) ((-1074 . -1052) 59950) ((-619 . -791) 59929) ((-592 . -1094) T) ((-619 . -788) 59908) ((-619 . -723) T) ((-295 . -286) 59887) ((-294 . -1209) T) ((-1050 . -611) 59849) ((-1050 . -612) 59810) ((-1021 . -1106) T) ((-169 . -102) T) ((-275 . -847) T) ((-1159 . -1094) T) ((-815 . -611) 59792) ((-1107 . -288) 59769) ((-1096 . -229) 59753) ((-1000 . -307) T) ((-796 . -714) 59737) ((-359 . -1052) 59689) ((-354 . -1106) T) ((-353 . -1052) 59641) ((-414 . -611) 59623) ((-385 . -611) 59605) ((-345 . -1052) 59557) ((-227 . -611) 59489) ((-1074 . -111) 59385) ((-1021 . -23) T) ((-108 . -1052) 59335) ((-895 . -102) T) ((-838 . -102) T) ((-805 . -102) T) ((-766 . -102) T) ((-673 . -102) T) ((-474 . -452) 59314) ((-418 . -172) T) ((-359 . -111) 59252) ((-353 . -111) 59190) ((-345 . -111) 59128) ((-251 . -231) 59097) ((-250 . -231) 59066) ((-354 . -23) T) ((-71 . -1209) T) ((-225 . -38) 59031) ((-108 . -111) 58965) ((-40 . -25) T) ((-40 . -21) T) ((-666 . -717) T) ((-169 . -284) 58943) ((-48 . -1106) T) ((-918 . -25) T) ((-768 . -25) T) ((-1144 . -489) 58880) ((-485 . -1094) T) ((-1283 . -644) 58854) ((-1232 . -102) T) ((-1057 . -1145) T) ((-852 . -102) T) ((-240 . -1053) 58784) ((-961 . -789) 58737) ((-961 . -792) 58690) ((-381 . -644) 58674) ((-48 . -23) T) ((-812 . -792) 58625) ((-812 . -789) 58576) ((-548 . -368) T) ((-295 . -602) 58555) ((-477 . -723) T) ((-571 . -102) T) ((-1074 . -614) 58373) ((-249 . -185) T) ((-187 . -185) T) ((-868 . -309) 58330) ((-649 . -286) 58309) ((-112 . -657) T) ((-359 . -614) 58246) ((-353 . -614) 58183) ((-345 . -614) 58120) ((-76 . -1209) T) ((-108 . -614) 58070) ((-1057 . -38) 58057) ((-660 . -374) 58036) ((-949 . -38) 57885) ((-728 . -1094) T) ((-481 . -38) 57734) ((-86 . -1209) T) ((-591 . -490) 57715) ((-571 . -284) T) ((-1223 . -845) NIL) ((-591 . -611) 57681) ((-1168 . -1094) T) ((-1167 . -1094) T) ((-1074 . -1046) T) ((-351 . -1035) 57658) ((-814 . -490) 57642) ((-1001 . -1053) T) ((-45 . -611) 57624) ((-45 . -612) NIL) ((-911 . -1053) T) ((-814 . -611) 57593) ((-1161 . -1094) T) ((-1141 . -102) 57571) ((-1074 . -243) 57522) ((-427 . -1053) T) ((-359 . -1046) T) ((-365 . -364) 57499) ((-353 . -1046) T) ((-345 . -1046) T) ((-251 . -238) 57478) ((-250 . -238) 57457) ((-1074 . -233) 57382) ((-1120 . -1094) T) ((-294 . -897) 57341) ((-108 . -1046) T) ((-690 . -131) T) ((-418 . -514) 57183) ((-359 . -233) 57162) ((-359 . -243) T) ((-44 . -717) T) ((-353 . -233) 57141) ((-353 . -243) T) ((-345 . -233) 57120) ((-345 . -243) T) ((-1160 . -614) 57101) ((-169 . -309) 57066) ((-108 . -243) T) ((-108 . -233) T) ((-991 . -614) 57047) ((-319 . -789) T) ((-867 . -21) T) ((-867 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 57022) ((-1107 . -1052) 56919) ((-868 . -1145) NIL) ((-330 . -611) 56901) ((-407 . -1019) 56879) ((-1107 . -111) 56769) ((-687 . -1254) T) ((-436 . -1094) T) ((-1283 . -723) T) ((-63 . -611) 56751) ((-868 . -38) 56696) ((-523 . -1209) T) ((-600 . -151) 56680) ((-512 . -611) 56662) ((-1232 . -309) 56649) ((-728 . -714) 56498) ((-531 . -790) T) ((-531 . -791) T) ((-564 . -637) 56480) ((-495 . -637) 56440) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56391) ((-525 . -1094) T) ((-520 . -1094) 56341) ((-247 . -452) 56292) ((-1144 . -286) 56271) ((-1172 . -611) 56253) ((-685 . -514) 56186) ((-960 . -290) 56165) ((-550 . -514) 55957) ((-1271 . -611) 55926) ((-1166 . -231) 55910) ((-1107 . -614) 55640) ((-169 . -1145) 55619) ((-1271 . -490) 55603) ((-1168 . -714) 55500) ((-1167 . -714) 55341) ((-889 . -102) T) ((-1161 . -714) 55137) ((-1120 . -714) 55034) ((-1150 . -670) 55018) ((-355 . -402) 54969) ((-352 . -402) 54920) ((-344 . -402) 54871) ((-1021 . -131) T) ((-796 . -514) 54783) ((-295 . -612) NIL) ((-295 . -611) 54765) ((-907 . -452) T) ((-961 . -368) 54718) ((-812 . -368) 54697) ((-510 . -509) 54676) ((-508 . -509) 54655) ((-487 . -286) NIL) ((-482 . -288) 54632) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-690 . -493) NIL) ((-99 . -1106) T) ((-169 . -38) 54460) ((-1243 . -970) 54422) ((-1141 . -309) 54360) ((-1222 . -970) 54329) ((-907 . -402) T) ((-1107 . -1046) 54259) ((-1245 . -556) T) ((-1144 . -602) 54238) ((-112 . -847) T) ((-1058 . -489) 54169) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1232 . -1145) 54147) ((-1107 . -233) 54099) ((-48 . -131) T) ((-1190 . -102) T) ((-240 . -1094) 53889) ((-868 . -400) 53866) ((-1082 . -102) T) ((-1070 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1232 . -38) 53695) ((-852 . -38) 53665) ((-728 . -172) 53576) ((-649 . -611) 53558) ((-642 . -1077) T) ((-571 . -38) 53545) ((-967 . -490) 53526) ((-967 . -611) 53492) ((-955 . -102) 53442) ((-861 . -611) 53424) ((-861 . -612) 53346) ((-592 . -514) NIL) ((-1251 . -1053) T) ((-1244 . -1053) T) ((-1223 . -1053) T) ((-1287 . -1106) T) ((-1177 . -102) T) ((-595 . -1053) T) ((-594 . -1053) T) ((-1176 . -102) T) ((-1168 . -172) 53297) ((-1167 . -172) 53228) ((-1161 . -172) 53159) ((-1120 . -172) 53110) ((-1001 . -1094) T) ((-968 . -1094) T) ((-911 . -1094) T) ((-1203 . -147) 53089) ((-796 . -794) 53073) ((-695 . -25) T) ((-695 . -21) T) ((-117 . -637) 53050) ((-697 . -883) 53032) ((-427 . -1094) T) ((-316 . -1213) 53011) ((-313 . -1213) T) ((-169 . -400) 52995) ((-1203 . -145) 52974) ((-474 . -970) 52936) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 52918) ((-108 . -792) T) ((-108 . -789) T) ((-697 . -1035) 52900) ((-316 . -556) 52879) ((-313 . -556) T) ((-1287 . -23) T) ((-134 . -1035) 52861) ((-96 . -614) 52842) ((-482 . -1052) 52739) ((-45 . -288) 52664) ((-240 . -714) 52606) ((-517 . -102) T) ((-482 . -111) 52496) ((-1086 . -102) 52474) ((-1031 . -102) T) ((-641 . -825) 52453) ((-728 . -514) 52396) ((-1050 . -1052) 52380) ((-1129 . -93) T) ((-1058 . -286) 52355) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1094) T) ((-361 . -102) T) ((-322 . -102) T) ((-666 . -644) 52329) ((-385 . -1052) 52313) ((-1050 . -111) 52292) ((-813 . -411) 52276) ((-117 . -25) T) ((-89 . -611) 52258) ((-117 . -21) T) ((-606 . -309) 52053) ((-475 . -309) 51857) ((-1144 . -612) NIL) ((-385 . -111) 51836) ((-379 . -102) T) ((-214 . -611) 51818) ((-1144 . -611) 51800) ((-1161 . -514) 51569) ((-1001 . -714) 51519) ((-1120 . -514) 51489) ((-911 . -714) 51441) ((-482 . -614) 51171) ((-351 . -307) T) ((-1182 . -151) 51121) ((-955 . -309) 51059) ((-833 . -102) T) ((-427 . -714) 51043) ((-225 . -825) T) ((-824 . -102) T) ((-822 . -102) T) ((-479 . -151) 50993) ((-1243 . -1242) 50972) ((-1114 . -1213) T) ((-339 . -1035) 50939) ((-1243 . -1237) 50909) ((-1243 . -1240) 50893) ((-1222 . -1221) 50872) ((-80 . -611) 50854) ((-902 . -611) 50836) ((-1222 . -1237) 50813) ((-1114 . -556) T) ((-918 . -847) T) ((-768 . -847) T) ((-487 . -612) 50743) ((-487 . -611) 50684) ((-379 . -284) T) ((-668 . -847) T) ((-1222 . -1219) 50668) ((-1245 . -1106) T) ((-217 . -612) 50598) ((-217 . -611) 50539) ((-1281 . -644) 50513) ((-1058 . -602) 50488) ((-815 . -614) 50472) ((-59 . -151) 50456) ((-516 . -151) 50440) ((-496 . -151) 50424) ((-359 . -1278) 50408) ((-353 . -1278) 50392) ((-345 . -1278) 50376) ((-316 . -363) 50355) ((-313 . -363) T) ((-482 . -1046) 50285) ((-690 . -637) 50267) ((-1279 . -644) 50241) ((-128 . -309) NIL) ((-1245 . -23) T) ((-685 . -489) 50225) ((-64 . -611) 50207) ((-1107 . -792) 50158) ((-1107 . -789) 50109) ((-550 . -489) 50046) ((-666 . -34) T) ((-482 . -233) 49998) ((-295 . -288) 49977) ((-240 . -172) 49956) ((-813 . -1053) T) ((-44 . -644) 49914) ((-1074 . -368) 49865) ((-728 . -290) 49796) ((-520 . -514) 49729) ((-814 . -1052) 49680) ((-1081 . -145) 49659) ((-549 . -611) 49641) ((-359 . -368) 49620) ((-353 . -368) 49599) ((-345 . -368) 49578) ((-1081 . -147) 49557) ((-868 . -231) 49534) ((-814 . -111) 49476) ((-779 . -145) 49455) ((-779 . -147) 49434) ((-264 . -946) 49401) ((-251 . -845) 49380) ((-247 . -946) 49325) ((-250 . -845) 49304) ((-777 . -145) 49283) ((-777 . -147) 49262) ((-152 . -644) 49236) ((-579 . -1094) T) ((-454 . -147) 49215) ((-454 . -145) 49194) ((-666 . -723) T) ((-820 . -611) 49176) ((-1251 . -1094) T) ((-1244 . -1094) T) ((-1223 . -1094) T) ((-1203 . -1197) 49142) ((-1203 . -1194) 49108) ((-1168 . -290) 49087) ((-1167 . -290) 49038) ((-1161 . -290) 48989) ((-1120 . -290) 48968) ((-339 . -897) 48949) ((-1001 . -172) T) ((-911 . -172) T) ((-595 . -1094) T) ((-594 . -1094) T) ((-690 . -21) T) ((-690 . -25) T) ((-474 . -1240) 48933) ((-474 . -1237) 48903) ((-418 . -286) 48831) ((-547 . -847) T) ((-316 . -1106) 48680) ((-313 . -1106) T) ((-1203 . -35) 48646) ((-1203 . -95) 48612) ((-84 . -611) 48594) ((-91 . -102) 48572) ((-1287 . -131) T) ((-591 . -614) 48553) ((-581 . -145) T) ((-581 . -147) 48535) ((-518 . -147) 48517) ((-518 . -145) T) ((-316 . -23) 48369) ((-40 . -342) 48343) ((-313 . -23) T) ((-814 . -614) 48257) ((-1152 . -647) 48239) ((-1274 . -1053) T) ((-1152 . -373) 48221) ((-812 . -644) 48069) ((-1090 . -102) T) ((-1084 . -102) T) ((-1068 . -102) T) ((-169 . -231) 48053) ((-1061 . -102) T) ((-1033 . -102) T) ((-1016 . -102) T) ((-592 . -489) 48035) ((-624 . -102) T) ((-240 . -514) 47968) ((-483 . -102) T) ((-1281 . -723) T) ((-1279 . -723) T) ((-218 . -102) T) ((-1172 . -1052) 47851) ((-1172 . -111) 47720) ((-858 . -173) T) ((-814 . -1046) T) ((-677 . -1077) T) ((-672 . -1077) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 47680) ((-508 . -102) T) ((-478 . -1077) T) ((-1271 . -1052) 47650) ((-138 . -1077) T) ((-137 . -1077) T) ((-133 . -1077) T) ((-1031 . -38) 47634) ((-814 . -233) T) ((-814 . -243) 47613) ((-1271 . -111) 47578) ((-1251 . -714) 47475) ((-1244 . -714) 47316) ((-1232 . -231) 47300) ((-550 . -286) 47279) ((-1214 . -611) 47261) ((-1058 . -612) NIL) ((-604 . -93) T) ((-1058 . -611) 47243) ((-699 . -490) 47227) ((-667 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1223 . -714) 47023) ((-1000 . -917) T) ((-699 . -611) 46992) ((-152 . -723) T) ((-1107 . -368) 46971) ((-1001 . -514) NIL) ((-251 . -411) 46940) ((-250 . -411) 46909) ((-1021 . -25) T) ((-1021 . -21) T) ((-595 . -714) 46882) ((-594 . -714) 46779) ((-796 . -286) 46737) ((-126 . -102) 46715) ((-830 . -1035) 46611) ((-169 . -825) 46590) ((-319 . -644) 46487) ((-812 . -34) T) ((-711 . -102) T) ((-1172 . -614) 46340) ((-1114 . -1106) T) ((-1023 . -1209) T) ((-379 . -38) 46305) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1266) 46289) ((-352 . -1266) 46273) ((-344 . -1266) 46257) ((-169 . -349) 46236) ((-564 . -847) T) ((-495 . -847) T) ((-1114 . -23) T) ((-87 . -611) 46218) ((-697 . -307) T) ((-833 . -38) 46188) ((-824 . -38) 46158) ((-1271 . -614) 46100) ((-1245 . -131) T) ((-1144 . -288) 46079) ((-961 . -790) 46032) ((-961 . -791) 45985) ((-812 . -788) 45964) ((-116 . -307) T) ((-91 . -309) 45902) ((-671 . -34) T) ((-550 . -602) 45881) ((-48 . -25) T) ((-48 . -21) T) ((-812 . -791) 45832) ((-812 . -790) 45811) ((-697 . -1019) T) ((-649 . -1052) 45795) ((-961 . -723) 45694) ((-812 . -723) 45604) ((-961 . -473) 45557) ((-482 . -792) 45508) ((-482 . -789) 45459) ((-907 . -1266) 45446) ((-1172 . -1046) T) ((-649 . -111) 45425) ((-1172 . -326) 45402) ((-1195 . -102) 45380) ((-1095 . -611) 45362) ((-697 . -545) T) ((-813 . -1094) T) ((-1271 . -1046) T) ((-1129 . -490) 45343) ((-1215 . -102) T) ((-413 . -1094) T) ((-1129 . -611) 45309) ((-251 . -1053) 45239) ((-250 . -1053) 45169) ((-835 . -102) T) ((-289 . -644) 45156) ((-592 . -286) 45131) ((-685 . -683) 45089) ((-960 . -611) 45071) ((-869 . -102) T) ((-732 . -611) 45053) ((-712 . -611) 45035) ((-1251 . -172) 44986) ((-1244 . -172) 44917) ((-1223 . -172) 44848) ((-695 . -847) T) ((-1001 . -290) T) ((-453 . -611) 44830) ((-625 . -723) T) ((-60 . -1094) 44808) ((-245 . -151) 44792) ((-911 . -290) T) ((-1021 . -1009) T) ((-625 . -473) T) ((-709 . -1213) 44771) ((-649 . -614) 44689) ((-595 . -172) 44668) ((-594 . -172) 44619) ((-1259 . -847) 44598) ((-709 . -556) 44509) ((-407 . -917) T) ((-407 . -817) 44488) ((-319 . -791) T) ((-967 . -614) 44469) ((-319 . -723) T) ((-418 . -611) 44451) ((-418 . -612) 44358) ((-641 . -1143) 44342) ((-110 . -647) 44324) ((-174 . -307) T) ((-126 . -309) 44262) ((-110 . -373) 44244) ((-398 . -1209) T) ((-316 . -131) 44115) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44099) ((-650 . -1106) T) ((-592 . -19) 44081) ((-61 . -441) T) ((-61 . -395) T) ((-821 . -1094) T) ((-592 . -602) 44056) ((-477 . -1035) 44016) ((-649 . -1046) T) ((-650 . -23) T) ((-1274 . -1094) T) ((-31 . -102) T) ((-813 . -714) 43865) ((-577 . -857) T) ((-117 . -847) NIL) ((-1166 . -411) 43849) ((-1119 . -411) 43833) ((-851 . -411) 43817) ((-870 . -102) 43768) ((-1243 . -102) T) ((-1223 . -514) 43537) ((-1222 . -102) T) ((-1195 . -309) 43475) ((-525 . -93) T) ((-1168 . -286) 43460) ((-312 . -611) 43442) ((-1167 . -286) 43427) ((-1096 . -1094) T) ((-1074 . -644) 43337) ((-685 . -611) 43269) ((-289 . -723) T) ((-108 . -906) NIL) ((-685 . -612) 43230) ((-599 . -611) 43212) ((-577 . -611) 43194) ((-550 . -612) NIL) ((-550 . -611) 43176) ((-529 . -611) 43158) ((-1161 . -286) 43006) ((-487 . -1052) 42956) ((-708 . -452) T) ((-511 . -509) 42935) ((-507 . -509) 42914) ((-217 . -1052) 42864) ((-359 . -644) 42816) ((-353 . -644) 42768) ((-225 . -845) T) ((-345 . -644) 42720) ((-600 . -102) 42670) ((-482 . -368) 42649) ((-108 . -644) 42599) ((-487 . -111) 42533) ((-240 . -489) 42517) ((-343 . -147) 42499) ((-343 . -145) T) ((-169 . -370) 42470) ((-940 . -1257) 42454) ((-217 . -111) 42388) ((-869 . -309) 42353) ((-940 . -1094) 42303) ((-796 . -612) 42264) ((-796 . -611) 42246) ((-715 . -102) T) ((-331 . -1094) T) ((-214 . -614) 42223) ((-1114 . -131) T) ((-711 . -38) 42193) ((-316 . -493) 42172) ((-500 . -1209) T) ((-1243 . -284) 42138) ((-1222 . -284) 42104) ((-327 . -151) 42088) ((-439 . -1094) T) ((-1058 . -288) 42063) ((-1274 . -714) 42033) ((-1153 . -34) T) ((-1283 . -1035) 42010) ((-468 . -611) 41992) ((-484 . -34) T) ((-381 . -1035) 41976) ((-1166 . -1053) T) ((-1119 . -1053) T) ((-851 . -1053) T) ((-1057 . -845) T) ((-487 . -614) 41926) ((-217 . -614) 41876) ((-813 . -172) 41787) ((-520 . -286) 41764) ((-1251 . -290) 41743) ((-1190 . -364) 41717) ((-1082 . -266) 41701) ((-667 . -490) 41682) ((-667 . -611) 41648) ((-604 . -490) 41629) ((-117 . -989) 41606) ((-604 . -611) 41556) ((-474 . -102) T) ((-180 . -490) 41537) ((-180 . -611) 41503) ((-161 . -490) 41484) ((-156 . -490) 41465) ((-154 . -490) 41446) ((-161 . -611) 41412) ((-156 . -611) 41378) ((-365 . -1094) T) ((-251 . -1094) T) ((-250 . -1094) T) ((-154 . -611) 41344) ((-1244 . -290) 41295) ((-1223 . -290) 41246) ((-869 . -1145) 41224) ((-1168 . -999) 41190) ((-606 . -364) 41130) ((-1167 . -999) 41096) ((-606 . -229) 41043) ((-592 . -611) 41025) ((-592 . -612) NIL) ((-690 . -847) T) ((-475 . -229) 40975) ((-487 . -1046) T) ((-1161 . -999) 40941) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1046) T) ((-1120 . -999) 40907) ((-1074 . -723) T) ((-709 . -1106) T) ((-595 . -290) 40886) ((-594 . -290) 40865) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1159 . -611) 40847) ((-869 . -38) 40799) ((-359 . -723) T) ((-353 . -723) T) ((-345 . -723) T) ((-108 . -791) T) ((-108 . -788) T) ((-709 . -23) T) ((-108 . -723) T) ((-520 . -1247) 40783) ((-1287 . -25) T) ((-474 . -284) 40749) ((-1287 . -21) T) ((-1222 . -309) 40688) ((-1170 . -102) T) ((-40 . -145) 40660) ((-40 . -147) 40632) ((-520 . -602) 40609) ((-1107 . -644) 40457) ((-600 . -309) 40395) ((-45 . -647) 40345) ((-45 . -662) 40295) ((-45 . -373) 40245) ((-1152 . -34) T) ((-868 . -845) NIL) ((-650 . -131) T) ((-485 . -611) 40227) ((-240 . -286) 40204) ((-186 . -1094) T) ((-643 . -34) T) ((-630 . -34) T) ((-1081 . -452) 40155) ((-813 . -514) 40029) ((-779 . -452) 39960) ((-777 . -452) 39911) ((-454 . -452) 39862) ((-949 . -411) 39846) ((-728 . -611) 39828) ((-251 . -714) 39770) ((-250 . -714) 39712) ((-728 . -612) 39573) ((-481 . -411) 39557) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -917) T) ((-997 . -102) 39535) ((-1021 . -847) T) ((-60 . -514) 39468) ((-1222 . -1145) 39420) ((-1001 . -286) NIL) ((-225 . -1053) T) ((-379 . -825) T) ((-1107 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1226 . -1087) 39404) ((-1226 . -1094) 39382) ((-240 . -602) 39359) ((-1226 . -1089) 39316) ((-1168 . -611) 39298) ((-1167 . -611) 39280) ((-1161 . -611) 39262) ((-1161 . -612) NIL) ((-1120 . -611) 39244) ((-869 . -400) 39228) ((-536 . -102) T) ((-1243 . -38) 39069) ((-1222 . -38) 38883) ((-867 . -147) T) ((-699 . -614) 38867) ((-581 . -402) T) ((-48 . -847) T) ((-518 . -402) T) ((-1255 . -102) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1107 . -788) 38846) ((-1107 . -791) 38797) ((-1107 . -790) 38776) ((-990 . -1094) T) ((-1024 . -34) T) ((-859 . -1094) T) ((-1107 . -723) 38686) ((-660 . -102) T) ((-642 . -102) T) ((-550 . -288) 38665) ((-1182 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1057 . -1053) T) ((-949 . -1053) T) ((-316 . -637) 38571) ((-313 . -637) 38532) ((-481 . -1053) T) ((-479 . -102) T) ((-436 . -611) 38514) ((-1166 . -1094) T) ((-1119 . -1094) T) ((-851 . -1094) T) ((-1135 . -102) T) ((-813 . -290) 38445) ((-960 . -1052) 38328) ((-477 . -1019) T) ((-732 . -1052) 38298) ((-453 . -1052) 38268) ((-1141 . -1115) 38252) ((-1096 . -514) 38185) ((-960 . -111) 38054) ((-907 . -102) T) ((-732 . -111) 38019) ((-525 . -490) 38000) ((-525 . -611) 37966) ((-59 . -102) 37916) ((-520 . -612) 37877) ((-520 . -611) 37789) ((-519 . -102) 37767) ((-516 . -102) 37717) ((-497 . -102) 37695) ((-496 . -102) 37645) ((-453 . -111) 37608) ((-251 . -172) 37587) ((-250 . -172) 37566) ((-418 . -1052) 37540) ((-1203 . -970) 37502) ((-996 . -1106) T) ((-1129 . -614) 37483) ((-940 . -514) 37416) ((-487 . -792) T) ((-474 . -38) 37257) ((-418 . -111) 37224) ((-487 . -789) T) ((-997 . -309) 37162) ((-217 . -792) T) ((-217 . -789) T) ((-996 . -23) T) ((-709 . -131) T) ((-1222 . -400) 37132) ((-316 . -25) 36984) ((-169 . -411) 36968) ((-316 . -21) 36839) ((-313 . -25) T) ((-313 . -21) T) ((-861 . -368) T) ((-960 . -614) 36692) ((-110 . -34) T) ((-732 . -614) 36648) ((-712 . -614) 36630) ((-482 . -644) 36478) ((-868 . -1053) T) ((-592 . -288) 36453) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1166 . -714) 36282) ((-1119 . -714) 36131) ((-1114 . -637) 36113) ((-851 . -714) 36083) ((-666 . -1209) T) ((-1 . -102) T) ((-418 . -614) 35991) ((-240 . -611) 35722) ((-1109 . -1094) T) ((-1232 . -411) 35706) ((-1182 . -309) 35510) ((-960 . -1046) T) ((-732 . -1046) T) ((-712 . -1046) T) ((-641 . -1094) 35460) ((-1050 . -644) 35444) ((-852 . -411) 35428) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35415) ((-264 . -309) 35402) ((-960 . -326) 35381) ((-385 . -644) 35365) ((-479 . -309) 35169) ((-251 . -514) 35102) ((-666 . -1035) 34998) ((-250 . -514) 34931) ((-1135 . -309) 34857) ((-816 . -1094) T) ((-796 . -1052) 34841) ((-1251 . -286) 34826) ((-1244 . -286) 34811) ((-1223 . -286) 34659) ((-386 . -1094) T) ((-324 . -1094) T) ((-418 . -1046) T) ((-169 . -1053) T) ((-59 . -309) 34597) ((-796 . -111) 34576) ((-594 . -286) 34561) ((-519 . -309) 34499) ((-516 . -309) 34437) ((-497 . -309) 34375) ((-496 . -309) 34313) ((-418 . -233) 34292) ((-482 . -34) T) ((-1001 . -612) 34222) ((-225 . -1094) T) ((-1001 . -611) 34182) ((-968 . -611) 34142) ((-968 . -612) 34117) ((-911 . -611) 34099) ((-695 . -147) T) ((-697 . -917) T) ((-697 . -817) T) ((-427 . -611) 34081) ((-1114 . -21) T) ((-1114 . -25) T) ((-666 . -377) 34065) ((-116 . -917) T) ((-869 . -231) 34049) ((-78 . -1209) T) ((-126 . -125) 34033) ((-1050 . -34) T) ((-1281 . -1035) 34007) ((-1279 . -1035) 33964) ((-1232 . -1053) T) ((-852 . -1053) T) ((-482 . -788) 33943) ((-355 . -1145) 33922) ((-352 . -1145) 33901) ((-344 . -1145) 33880) ((-482 . -791) 33831) ((-482 . -790) 33810) ((-227 . -34) T) ((-482 . -723) 33720) ((-796 . -614) 33568) ((-60 . -489) 33552) ((-571 . -1053) T) ((-1166 . -172) 33443) ((-1119 . -172) 33354) ((-1057 . -1094) T) ((-1081 . -946) 33299) ((-949 . -1094) T) ((-814 . -644) 33250) ((-779 . -946) 33219) ((-710 . -1094) T) ((-777 . -946) 33186) ((-516 . -282) 33170) ((-666 . -897) 33129) ((-481 . -1094) T) ((-454 . -946) 33096) ((-79 . -1209) T) ((-355 . -38) 33061) ((-352 . -38) 33026) ((-344 . -38) 32991) ((-264 . -38) 32840) ((-247 . -38) 32689) ((-907 . -1145) T) ((-524 . -490) 32670) ((-621 . -147) 32649) ((-621 . -145) 32628) ((-524 . -611) 32594) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -723) T) ((-796 . -1046) T) ((-343 . -452) T) ((-1251 . -999) 32560) ((-1244 . -999) 32526) ((-1223 . -999) 32492) ((-907 . -38) 32457) ((-225 . -714) 32422) ((-319 . -47) 32392) ((-40 . -409) 32364) ((-140 . -611) 32346) ((-996 . -131) T) ((-812 . -1209) T) ((-174 . -917) T) ((-549 . -368) T) ((-604 . -614) 32327) ((-343 . -402) T) ((-667 . -614) 32308) ((-180 . -614) 32289) ((-161 . -614) 32270) ((-156 . -614) 32251) ((-154 . -614) 32232) ((-520 . -288) 32209) ((-1222 . -231) 32179) ((-812 . -1035) 32006) ((-45 . -34) T) ((-677 . -102) T) ((-672 . -102) T) ((-658 . -102) T) ((-650 . -21) T) ((-650 . -25) T) ((-1096 . -489) 31990) ((-671 . -1209) T) ((-478 . -102) T) ((-245 . -102) 31940) ((-546 . -841) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-868 . -1094) T) ((-1172 . -644) 31865) ((-1057 . -714) 31852) ((-728 . -1052) 31695) ((-1166 . -514) 31642) ((-949 . -714) 31491) ((-1119 . -514) 31443) ((-1270 . -1094) T) ((-1269 . -1094) T) ((-481 . -714) 31292) ((-67 . -611) 31274) ((-728 . -111) 31103) ((-940 . -489) 31087) ((-1271 . -644) 31047) ((-814 . -723) T) ((-1168 . -1052) 30930) ((-1167 . -1052) 30765) ((-1161 . -1052) 30555) ((-1120 . -1052) 30438) ((-1000 . -1213) T) ((-1088 . -102) 30416) ((-812 . -377) 30385) ((-579 . -611) 30367) ((-546 . -1094) T) ((-1000 . -556) T) ((-1168 . -111) 30236) ((-1167 . -111) 30057) ((-1161 . -111) 29826) ((-1120 . -111) 29695) ((-1099 . -1097) 29659) ((-379 . -845) T) ((-1251 . -611) 29641) ((-1244 . -611) 29623) ((-1223 . -611) 29605) ((-1223 . -612) NIL) ((-240 . -288) 29582) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1094) T) ((-728 . -614) 29367) ((-690 . -147) T) ((-690 . -145) NIL) ((-595 . -611) 29349) ((-594 . -611) 29331) ((-895 . -1094) T) ((-838 . -1094) T) ((-805 . -1094) T) ((-766 . -1094) T) ((-654 . -849) 29315) ((-673 . -1094) T) ((-812 . -897) 29247) ((-1214 . -368) T) ((-40 . -402) NIL) ((-1168 . -614) 29129) ((-1114 . -657) T) ((-868 . -714) 29074) ((-251 . -489) 29058) ((-250 . -489) 29042) ((-1167 . -614) 28785) ((-1161 . -614) 28580) ((-709 . -637) 28528) ((-649 . -644) 28502) ((-1120 . -614) 28384) ((-295 . -34) T) ((-728 . -1046) T) ((-581 . -1266) 28371) ((-518 . -1266) 28348) ((-1232 . -1094) T) ((-1166 . -290) 28259) ((-1119 . -290) 28190) ((-1057 . -172) T) ((-852 . -1094) T) ((-949 . -172) 28101) ((-779 . -1235) 28085) ((-641 . -514) 28018) ((-77 . -611) 28000) ((-728 . -326) 27965) ((-1172 . -723) T) ((-571 . -1094) T) ((-481 . -172) 27876) ((-245 . -309) 27814) ((-1136 . -1106) T) ((-70 . -611) 27796) ((-1271 . -723) T) ((-1168 . -1046) T) ((-1167 . -1046) T) ((-327 . -102) 27746) ((-1161 . -1046) T) ((-1136 . -23) T) ((-1120 . -1046) T) ((-91 . -1115) 27730) ((-863 . -1106) T) ((-1168 . -233) 27689) ((-1167 . -243) 27668) ((-1167 . -233) 27620) ((-1161 . -233) 27507) ((-1161 . -243) 27486) ((-319 . -897) 27392) ((-863 . -23) T) ((-169 . -714) 27220) ((-407 . -1213) T) ((-1095 . -368) T) ((-1021 . -147) T) ((-1000 . -363) T) ((-867 . -452) T) ((-940 . -286) 27197) ((-316 . -847) T) ((-313 . -847) NIL) ((-871 . -102) T) ((-709 . -25) T) ((-407 . -556) T) ((-709 . -21) T) ((-525 . -614) 27178) ((-354 . -147) 27160) ((-354 . -145) T) ((-1141 . -1094) 27138) ((-453 . -717) T) ((-75 . -611) 27120) ((-114 . -847) T) ((-245 . -282) 27104) ((-240 . -1052) 27001) ((-81 . -611) 26983) ((-732 . -368) 26936) ((-1170 . -825) T) ((-734 . -235) 26920) ((-1153 . -1209) T) ((-141 . -235) 26902) ((-240 . -111) 26792) ((-1232 . -714) 26621) ((-48 . -147) T) ((-868 . -172) T) ((-852 . -714) 26591) ((-484 . -1209) T) ((-949 . -514) 26538) ((-649 . -723) T) ((-571 . -714) 26525) ((-1031 . -1053) T) ((-481 . -514) 26468) ((-940 . -19) 26452) ((-940 . -602) 26429) ((-813 . -612) NIL) ((-813 . -611) 26411) ((-1001 . -1052) 26361) ((-413 . -611) 26343) ((-251 . -286) 26320) ((-250 . -286) 26297) ((-487 . -906) NIL) ((-316 . -29) 26267) ((-108 . -1209) T) ((-1000 . -1106) T) ((-217 . -906) NIL) ((-911 . -1052) 26219) ((-1074 . -1035) 26115) ((-1001 . -111) 26049) ((-1000 . -23) T) ((-734 . -691) 26033) ((-264 . -231) 26017) ((-427 . -1052) 26001) ((-379 . -1053) T) ((-240 . -614) 25731) ((-911 . -111) 25669) ((-690 . -1197) NIL) ((-487 . -644) 25619) ((-108 . -881) 25601) ((-108 . -883) 25583) ((-690 . -1194) NIL) ((-217 . -644) 25533) ((-359 . -1035) 25517) ((-353 . -1035) 25501) ((-327 . -309) 25439) ((-345 . -1035) 25423) ((-225 . -290) T) ((-427 . -111) 25402) ((-60 . -611) 25334) ((-169 . -172) T) ((-1114 . -847) T) ((-108 . -1035) 25294) ((-889 . -1094) T) ((-833 . -1053) T) ((-824 . -1053) T) ((-690 . -35) NIL) ((-690 . -95) NIL) ((-313 . -989) 25255) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1046) 25185) ((-1144 . -34) T) ((-477 . -917) T) ((-996 . -637) 25133) ((-251 . -602) 25110) ((-250 . -602) 25087) ((-1074 . -377) 25071) ((-868 . -514) 24979) ((-240 . -233) 24931) ((-1152 . -1209) T) ((-1001 . -614) 24881) ((-911 . -614) 24818) ((-821 . -611) 24800) ((-1282 . -1106) T) ((-1274 . -611) 24782) ((-1232 . -172) 24673) ((-427 . -614) 24642) ((-108 . -377) 24624) ((-108 . -338) 24606) ((-1057 . -290) T) ((-949 . -290) 24537) ((-796 . -368) 24516) ((-643 . -1209) T) ((-630 . -1209) T) ((-481 . -290) 24447) ((-571 . -172) T) ((-327 . -282) 24431) ((-1282 . -23) T) ((-1203 . -102) T) ((-1190 . -1094) T) ((-1082 . -1094) T) ((-1070 . -1094) T) ((-83 . -611) 24413) ((-1177 . -841) T) ((-1176 . -841) T) ((-708 . -102) T) ((-355 . -349) 24392) ((-606 . -1094) T) ((-352 . -349) 24371) ((-344 . -349) 24350) ((-475 . -1094) T) ((-1182 . -229) 24300) ((-264 . -253) 24262) ((-1136 . -131) T) ((-606 . -608) 24238) ((-1074 . -897) 24171) ((-1001 . -1046) T) ((-911 . -1046) T) ((-475 . -608) 24150) ((-1161 . -789) NIL) ((-1161 . -792) NIL) ((-1096 . -612) 24111) ((-479 . -229) 24061) ((-1096 . -611) 24043) ((-1001 . -243) T) ((-1001 . -233) T) ((-427 . -1046) T) ((-955 . -1094) 23993) ((-911 . -243) T) ((-863 . -131) T) ((-695 . -452) T) ((-840 . -1106) 23972) ((-108 . -897) NIL) ((-1203 . -284) 23938) ((-869 . -845) 23917) ((-1107 . -1209) T) ((-902 . -723) T) ((-169 . -514) 23829) ((-996 . -25) T) ((-902 . -473) T) ((-407 . -1106) T) ((-487 . -791) T) ((-487 . -788) T) ((-907 . -349) T) ((-487 . -723) T) ((-217 . -791) T) ((-217 . -788) T) ((-996 . -21) T) ((-217 . -723) T) ((-840 . -23) 23781) ((-524 . -614) 23762) ((-1177 . -1094) T) ((-319 . -307) 23741) ((-1176 . -1094) T) ((-1032 . -235) 23687) ((-407 . -23) T) ((-940 . -612) 23648) ((-940 . -611) 23560) ((-641 . -489) 23544) ((-45 . -1007) 23494) ((-615 . -964) T) ((-491 . -102) T) ((-331 . -611) 23476) ((-1107 . -1035) 23303) ((-592 . -647) 23285) ((-130 . -1094) T) ((-128 . -1094) T) ((-592 . -373) 23267) ((-343 . -1266) 23244) ((-439 . -611) 23226) ((-1024 . -1209) T) ((-868 . -290) T) ((-1232 . -514) 23173) ((-476 . -1209) T) ((-463 . -1209) T) ((-585 . -102) T) ((-1166 . -286) 23100) ((-621 . -452) 23079) ((-997 . -992) 23063) ((-1274 . -382) 23035) ((-517 . -1094) T) ((-117 . -452) T) ((-1189 . -102) T) ((-1086 . -1094) 23013) ((-1031 . -1094) T) ((-1109 . -93) T) ((-890 . -847) T) ((-351 . -1213) T) ((-1251 . -1052) 22896) ((-1107 . -377) 22865) ((-1244 . -1052) 22700) ((-1223 . -1052) 22490) ((-1251 . -111) 22359) ((-1244 . -111) 22180) ((-1223 . -111) 21949) ((-1203 . -309) 21936) ((-351 . -556) T) ((-365 . -611) 21918) ((-289 . -307) T) ((-595 . -1052) 21891) ((-594 . -1052) 21774) ((-361 . -1094) T) ((-322 . -1094) T) ((-251 . -611) 21735) ((-250 . -611) 21696) ((-1000 . -131) T) ((-633 . -23) T) ((-690 . -409) 21663) ((-605 . -23) T) ((-654 . -102) T) ((-595 . -111) 21634) ((-594 . -111) 21503) ((-379 . -1094) T) ((-336 . -102) T) ((-169 . -290) 21414) ((-1222 . -845) 21367) ((-711 . -1053) T) ((-1141 . -514) 21300) ((-1107 . -897) 21232) ((-833 . -1094) T) ((-824 . -1094) T) ((-822 . -1094) T) ((-97 . -102) T) ((-144 . -847) T) ((-610 . -881) 21216) ((-110 . -1209) T) ((-1081 . -102) T) ((-1058 . -34) T) ((-779 . -102) T) ((-777 . -102) T) ((-1251 . -614) 21098) ((-1244 . -614) 20841) ((-461 . -102) T) ((-454 . -102) T) ((-1223 . -614) 20636) ((-240 . -792) 20587) ((-240 . -789) 20538) ((-645 . -102) T) ((-595 . -614) 20496) ((-594 . -614) 20378) ((-1232 . -290) 20289) ((-660 . -632) 20273) ((-186 . -611) 20255) ((-641 . -286) 20232) ((-1031 . -714) 20216) ((-571 . -290) T) ((-960 . -644) 20141) ((-1282 . -131) T) ((-732 . -644) 20101) ((-712 . -644) 20088) ((-275 . -102) T) ((-453 . -644) 20018) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1251 . -1046) T) ((-1244 . -1046) T) ((-1223 . -1046) T) ((-1251 . -233) 19977) ((-322 . -714) 19959) ((-1244 . -243) 19938) ((-1244 . -233) 19890) ((-1223 . -233) 19777) ((-1223 . -243) 19756) ((-1203 . -38) 19653) ((-1001 . -792) T) ((-595 . -1046) T) ((-594 . -1046) T) ((-1001 . -789) T) ((-968 . -792) T) ((-968 . -789) T) ((-869 . -1053) T) ((-867 . -866) 19637) ((-109 . -611) 19619) ((-690 . -452) T) ((-379 . -714) 19584) ((-418 . -644) 19558) ((-709 . -847) 19537) ((-708 . -38) 19502) ((-594 . -233) 19461) ((-40 . -721) 19433) ((-351 . -329) 19410) ((-351 . -363) T) ((-1074 . -307) 19361) ((-294 . -1106) 19242) ((-1100 . -1209) T) ((-171 . -102) T) ((-1226 . -611) 19209) ((-840 . -131) 19161) ((-641 . -1247) 19145) ((-833 . -714) 19115) ((-824 . -714) 19085) ((-482 . -1209) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-641 . -602) 19062) ((-407 . -131) T) ((-520 . -662) 19046) ((-108 . -307) T) ((-294 . -23) 18929) ((-520 . -647) 18913) ((-690 . -402) NIL) ((-520 . -373) 18897) ((-291 . -611) 18879) ((-91 . -1094) 18857) ((-108 . -1019) T) ((-564 . -143) T) ((-1259 . -151) 18841) ((-482 . -1035) 18668) ((-1245 . -145) 18629) ((-1245 . -147) 18590) ((-1050 . -1209) T) ((-990 . -611) 18572) ((-859 . -611) 18554) ((-813 . -1052) 18397) ((-1270 . -93) T) ((-1269 . -93) T) ((-1166 . -612) NIL) ((-1090 . -1094) T) ((-1084 . -1094) T) ((-1081 . -309) 18384) ((-1068 . -1094) T) ((-227 . -1209) T) ((-1061 . -1094) T) ((-1033 . -1094) T) ((-1016 . -1094) T) ((-779 . -309) 18371) ((-777 . -309) 18358) ((-1166 . -611) 18340) ((-813 . -111) 18169) ((-1119 . -611) 18151) ((-624 . -1094) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 18138) ((-483 . -1094) T) ((-1119 . -612) 17886) ((-1031 . -172) T) ((-940 . -288) 17863) ((-218 . -1094) T) ((-851 . -611) 17845) ((-606 . -514) 17628) ((-81 . -614) 17569) ((-815 . -1035) 17553) ((-475 . -514) 17345) ((-960 . -723) T) ((-732 . -723) T) ((-712 . -723) T) ((-351 . -1106) T) ((-1173 . -611) 17327) ((-223 . -102) T) ((-482 . -377) 17296) ((-515 . -1094) T) ((-510 . -1094) T) ((-508 . -1094) T) ((-796 . -644) 17270) ((-1021 . -452) T) ((-955 . -514) 17203) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 17182) ((-379 . -172) T) ((-1243 . -1053) T) ((-1222 . -1053) T) ((-225 . -999) T) ((-813 . -614) 16919) ((-695 . -387) T) ((-418 . -723) T) ((-697 . -1213) T) ((-1136 . -637) 16867) ((-580 . -866) 16851) ((-1274 . -1052) 16835) ((-1153 . -1185) 16811) ((-697 . -556) T) ((-126 . -1094) 16789) ((-711 . -1094) T) ((-482 . -897) 16721) ((-249 . -1094) T) ((-187 . -1094) T) ((-654 . -38) 16691) ((-354 . -402) T) ((-316 . -147) 16670) ((-316 . -145) 16649) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 16605) ((-313 . -145) 16561) ((-48 . -452) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-1153 . -107) 16508) ((-779 . -1145) 16486) ((-685 . -34) T) ((-1274 . -111) 16465) ((-550 . -34) T) ((-484 . -107) 16449) ((-251 . -288) 16426) ((-250 . -288) 16403) ((-868 . -286) 16354) ((-45 . -1209) T) ((-1215 . -841) T) ((-813 . -1046) T) ((-1172 . -47) 16331) ((-813 . -326) 16293) ((-1081 . -38) 16142) ((-813 . -233) 16121) ((-779 . -38) 15950) ((-777 . -38) 15799) ((-1109 . -490) 15780) ((-454 . -38) 15629) ((-1109 . -611) 15595) ((-1112 . -102) T) ((-641 . -612) 15556) ((-641 . -611) 15468) ((-581 . -1145) T) ((-518 . -1145) T) ((-1141 . -489) 15452) ((-1195 . -1094) 15430) ((-1136 . -25) T) ((-1136 . -21) T) ((-1274 . -614) 15379) ((-474 . -1053) T) ((-1215 . -1094) T) ((-1223 . -789) NIL) ((-1223 . -792) NIL) ((-996 . -847) 15358) ((-835 . -1094) T) ((-816 . -611) 15340) ((-863 . -21) T) ((-863 . -25) T) ((-796 . -723) T) ((-174 . -1213) T) ((-581 . -38) 15305) ((-518 . -38) 15270) ((-386 . -611) 15252) ((-324 . -611) 15234) ((-169 . -286) 15192) ((-63 . -1209) T) ((-112 . -102) T) ((-869 . -1094) T) ((-174 . -556) T) ((-711 . -714) 15162) ((-294 . -131) 15045) ((-225 . -611) 15027) ((-225 . -612) 14957) ((-1000 . -637) 14896) ((-1274 . -1046) T) ((-1114 . -147) T) ((-630 . -1185) 14871) ((-728 . -906) 14850) ((-592 . -34) T) ((-643 . -107) 14834) ((-630 . -107) 14780) ((-1232 . -286) 14707) ((-728 . -644) 14632) ((-295 . -1209) T) ((-1172 . -1035) 14528) ((-940 . -616) 14505) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1161 . -906) NIL) ((-1057 . -612) 14420) ((-1057 . -611) 14402) ((-949 . -611) 14384) ((-710 . -490) 14334) ((-343 . -102) T) ((-251 . -1052) 14231) ((-250 . -1052) 14128) ((-394 . -102) T) ((-31 . -1094) T) ((-949 . -612) 13989) ((-710 . -611) 13924) ((-1272 . -1202) 13893) ((-481 . -611) 13875) ((-481 . -612) 13736) ((-247 . -411) 13720) ((-264 . -411) 13704) ((-251 . -111) 13594) ((-250 . -111) 13484) ((-1168 . -644) 13409) ((-1167 . -644) 13306) ((-1161 . -644) 13158) ((-1120 . -644) 13083) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-1000 . -25) T) ((-1000 . -21) T) ((-870 . -1094) 13034) ((-869 . -714) 12986) ((-379 . -290) T) ((-169 . -999) 12938) ((-690 . -387) T) ((-996 . -994) 12922) ((-697 . -1106) T) ((-690 . -166) 12904) ((-1243 . -1094) T) ((-1222 . -1094) T) ((-316 . -1194) 12883) ((-316 . -1197) 12862) ((-1158 . -102) T) ((-316 . -956) 12841) ((-134 . -1106) T) ((-116 . -1106) T) ((-600 . -1257) 12825) ((-697 . -23) T) ((-600 . -1094) 12775) ((-316 . -95) 12754) ((-91 . -514) 12687) ((-174 . -363) T) ((-251 . -614) 12417) ((-250 . -614) 12147) ((-316 . -35) 12126) ((-606 . -489) 12060) ((-134 . -23) T) ((-116 . -23) T) ((-963 . -102) T) ((-715 . -1094) T) ((-475 . -489) 11997) ((-407 . -637) 11945) ((-649 . -1035) 11841) ((-955 . -489) 11825) ((-355 . -1053) T) ((-352 . -1053) T) ((-344 . -1053) T) ((-264 . -1053) T) ((-247 . -1053) T) ((-868 . -612) NIL) ((-868 . -611) 11807) ((-1270 . -490) 11788) ((-1269 . -490) 11769) ((-1282 . -21) T) ((-1270 . -611) 11735) ((-1269 . -611) 11701) ((-571 . -999) T) ((-728 . -723) T) ((-1282 . -25) T) ((-251 . -1046) 11631) ((-250 . -1046) 11561) ((-72 . -1209) T) ((-251 . -233) 11513) ((-250 . -233) 11465) ((-40 . -102) T) ((-907 . -1053) T) ((-128 . -489) 11447) ((-1175 . -102) T) ((-1168 . -723) T) ((-1167 . -723) T) ((-1161 . -723) T) ((-1161 . -788) NIL) ((-1161 . -791) NIL) ((-951 . -102) T) ((-918 . -102) T) ((-1120 . -723) T) ((-768 . -102) T) ((-668 . -102) T) ((-546 . -611) 11429) ((-474 . -1094) T) ((-339 . -1106) T) ((-174 . -1106) T) ((-319 . -917) 11408) ((-1243 . -714) 11249) ((-869 . -172) T) ((-1222 . -714) 11063) ((-840 . -21) 11015) ((-840 . -25) 10967) ((-245 . -1143) 10951) ((-126 . -514) 10884) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 10650) ((-169 . -611) 10632) ((-174 . -23) T) ((-641 . -288) 10609) ((-520 . -34) T) ((-895 . -611) 10591) ((-89 . -1209) T) ((-838 . -611) 10573) ((-805 . -611) 10555) ((-766 . -611) 10537) ((-673 . -611) 10519) ((-240 . -644) 10367) ((-1170 . -1094) T) ((-1166 . -1052) 10190) ((-1144 . -1209) T) ((-1119 . -1052) 10033) ((-851 . -1052) 10017) ((-1226 . -616) 10001) ((-1166 . -111) 9810) ((-1119 . -111) 9639) ((-851 . -111) 9618) ((-1216 . -847) T) ((-1232 . -612) NIL) ((-1232 . -611) 9600) ((-343 . -1145) T) ((-852 . -611) 9582) ((-1070 . -286) 9561) ((-80 . -1209) T) ((-1001 . -906) NIL) ((-606 . -286) 9537) ((-1195 . -514) 9470) ((-487 . -1209) T) ((-571 . -611) 9452) ((-475 . -286) 9431) ((-517 . -93) T) ((-217 . -1209) T) ((-1081 . -231) 9415) ((-1001 . -644) 9365) ((-289 . -917) T) ((-814 . -307) 9344) ((-867 . -102) T) ((-779 . -231) 9328) ((-955 . -286) 9305) ((-911 . -644) 9257) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 9222) ((-690 . -721) 9189) ((-487 . -881) 9171) ((-487 . -883) 9153) ((-474 . -714) 8994) ((-217 . -881) 8976) ((-64 . -1209) T) ((-217 . -883) 8958) ((-605 . -25) T) ((-427 . -644) 8932) ((-1166 . -614) 8701) ((-487 . -1035) 8661) ((-869 . -514) 8573) ((-1119 . -614) 8365) ((-851 . -614) 8283) ((-217 . -1035) 8243) ((-240 . -34) T) ((-997 . -1094) 8221) ((-1243 . -172) 8152) ((-1222 . -172) 8083) ((-709 . -145) 8062) ((-709 . -147) 8041) ((-697 . -131) T) ((-136 . -465) 8018) ((-1141 . -611) 7950) ((-654 . -652) 7934) ((-128 . -286) 7909) ((-116 . -131) T) ((-477 . -1213) T) ((-606 . -602) 7885) ((-475 . -602) 7864) ((-336 . -335) 7833) ((-536 . -1094) T) ((-477 . -556) T) ((-1166 . -1046) T) ((-1119 . -1046) T) ((-851 . -1046) T) ((-240 . -788) 7812) ((-240 . -791) 7763) ((-240 . -790) 7742) ((-1166 . -326) 7719) ((-240 . -723) 7629) ((-955 . -19) 7613) ((-487 . -377) 7595) ((-487 . -338) 7577) ((-1119 . -326) 7549) ((-354 . -1266) 7526) ((-217 . -377) 7508) ((-217 . -338) 7490) ((-955 . -602) 7467) ((-1166 . -233) T) ((-660 . -1094) T) ((-642 . -1094) T) ((-1255 . -1094) T) ((-1182 . -1094) T) ((-1081 . -253) 7404) ((-355 . -1094) T) ((-352 . -1094) T) ((-344 . -1094) T) ((-264 . -1094) T) ((-247 . -1094) T) ((-84 . -1209) T) ((-127 . -102) 7382) ((-121 . -102) 7360) ((-1182 . -608) 7339) ((-479 . -1094) T) ((-1135 . -1094) T) ((-479 . -608) 7318) ((-251 . -792) 7269) ((-251 . -789) 7220) ((-250 . -792) 7171) ((-40 . -1145) NIL) ((-250 . -789) 7122) ((-1109 . -614) 7103) ((-128 . -19) 7085) ((-1074 . -917) 7036) ((-1001 . -791) T) ((-1001 . -788) T) ((-1001 . -723) T) ((-968 . -791) T) ((-128 . -602) 7011) ((-911 . -723) T) ((-91 . -489) 6995) ((-487 . -897) NIL) ((-907 . -1094) T) ((-225 . -1052) 6960) ((-869 . -290) T) ((-217 . -897) NIL) ((-830 . -1106) 6939) ((-59 . -1094) 6889) ((-519 . -1094) 6867) ((-516 . -1094) 6817) ((-497 . -1094) 6795) ((-496 . -1094) 6745) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 6676) ((-359 . -917) T) ((-353 . -917) T) ((-345 . -917) T) ((-225 . -111) 6632) ((-830 . -23) 6584) ((-427 . -723) T) ((-108 . -917) T) ((-40 . -38) 6529) ((-108 . -817) T) ((-581 . -349) T) ((-518 . -349) T) ((-1222 . -514) 6389) ((-316 . -452) 6368) ((-313 . -452) T) ((-889 . -611) 6350) ((-833 . -286) 6329) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6193) ((-294 . -21) 6076) ((-45 . -1185) 6055) ((-66 . -611) 6037) ((-55 . -102) T) ((-600 . -514) 5970) ((-45 . -107) 5920) ((-816 . -614) 5904) ((-1096 . -425) 5888) ((-1096 . -368) 5867) ((-386 . -614) 5851) ((-324 . -614) 5835) ((-1058 . -1209) T) ((-1057 . -1052) 5822) ((-949 . -1052) 5665) ((-1260 . -102) T) ((-1259 . -102) 5615) ((-1057 . -111) 5600) ((-481 . -1052) 5443) ((-660 . -714) 5427) ((-949 . -111) 5256) ((-225 . -614) 5206) ((-477 . -363) T) ((-355 . -714) 5158) ((-352 . -714) 5110) ((-344 . -714) 5062) ((-264 . -714) 4911) ((-247 . -714) 4760) ((-1251 . -644) 4685) ((-1223 . -906) NIL) ((-1090 . -93) T) ((-1084 . -93) T) ((-940 . -647) 4669) ((-1068 . -93) T) ((-481 . -111) 4498) ((-1061 . -93) T) ((-1033 . -93) T) ((-940 . -373) 4482) ((-248 . -102) T) ((-1016 . -93) T) ((-74 . -611) 4464) ((-960 . -47) 4443) ((-707 . -102) T) ((-695 . -102) T) ((-1 . -1094) T) ((-619 . -1106) T) ((-1244 . -644) 4340) ((-624 . -93) T) ((-1190 . -611) 4322) ((-1082 . -611) 4304) ((-126 . -489) 4288) ((-483 . -93) T) ((-1070 . -611) 4270) ((-390 . -23) T) ((-87 . -1209) T) ((-218 . -93) T) ((-1223 . -644) 4122) ((-907 . -714) 4087) ((-619 . -23) T) ((-606 . -611) 4069) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4051) ((-511 . -1094) T) ((-507 . -1094) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3989) ((-121 . -309) 3927) ((-595 . -644) 3914) ((-225 . -1046) T) ((-594 . -644) 3839) ((-379 . -999) T) ((-225 . -243) T) ((-225 . -233) T) ((-1057 . -614) 3811) ((-1057 . -616) 3792) ((-955 . -612) 3753) ((-955 . -611) 3665) ((-949 . -614) 3454) ((-867 . -38) 3441) ((-710 . -614) 3391) ((-1243 . -290) 3342) ((-1222 . -290) 3293) ((-481 . -614) 3078) ((-1114 . -452) T) ((-502 . -847) T) ((-316 . -1133) 3057) ((-996 . -147) 3036) ((-996 . -145) 3015) ((-495 . -309) 3002) ((-295 . -1185) 2981) ((-1177 . -611) 2963) ((-1176 . -611) 2945) ((-868 . -1052) 2890) ((-477 . -1106) T) ((-139 . -832) 2872) ((-114 . -832) 2853) ((-621 . -102) T) ((-1195 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1057 . -1046) T) ((-295 . -107) 2745) ((-130 . -611) 2727) ((-128 . -612) NIL) ((-128 . -611) 2671) ((-117 . -102) T) ((-949 . -1046) T) ((-868 . -111) 2600) ((-477 . -23) T) ((-481 . -1046) T) ((-1057 . -233) T) ((-949 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-960 . -1035) 2244) ((-517 . -490) 2225) ((-732 . -1035) 2196) ((-517 . -611) 2162) ((-1099 . -102) T) ((-1086 . -611) 2129) ((-1031 . -611) 2111) ((-1272 . -151) 2095) ((-1270 . -614) 2076) ((-1264 . -611) 2058) ((-1251 . -723) T) ((-1244 . -723) T) ((-1223 . -788) NIL) ((-1223 . -791) NIL) ((-169 . -1052) 1968) ((-907 . -172) T) ((-868 . -614) 1898) ((-1223 . -723) T) ((-1269 . -614) 1879) ((-1000 . -342) 1853) ((-997 . -514) 1786) ((-840 . -847) 1765) ((-564 . -1145) T) ((-474 . -290) 1716) ((-595 . -723) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1035) 1576) ((-594 . -723) T) ((-407 . -847) 1527) ((-169 . -111) 1423) ((-830 . -131) 1375) ((-734 . -151) 1359) ((-1259 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1007) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-711 . -286) 1123) ((-487 . -1019) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1019) T) ((-868 . -1046) T) ((-833 . -611) 1044) ((-824 . -611) 1026) ((-822 . -611) 1008) ((-813 . -906) 987) ((-1283 . -1106) T) ((-1232 . -1052) 810) ((-852 . -1052) 794) ((-868 . -243) T) ((-868 . -233) NIL) ((-685 . -1209) T) ((-1283 . -23) T) ((-813 . -644) 719) ((-550 . -1209) T) ((-418 . -338) 703) ((-571 . -1052) 690) ((-1232 . -111) 499) ((-697 . -637) 481) ((-852 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1182 . -514) 30) ((-658 . -1094) T) ((-677 . -1094) T) ((-672 . -1094) T))
\ No newline at end of file +(((-478 . -1094) T) ((-264 . -514) 162010) ((-247 . -514) 161953) ((-245 . -1094) 161903) ((-571 . -111) 161888) ((-531 . -23) T) ((-138 . -1094) T) ((-137 . -1094) T) ((-117 . -309) 161845) ((-133 . -1094) T) ((-479 . -514) 161637) ((-673 . -614) 161621) ((-690 . -102) T) ((-1135 . -514) 161540) ((-390 . -131) T) ((-1272 . -972) 161509) ((-31 . -93) T) ((-600 . -489) 161493) ((-619 . -131) T) ((-815 . -842) T) ((-523 . -57) 161443) ((-59 . -514) 161376) ((-519 . -514) 161309) ((-418 . -896) 161268) ((-169 . -1045) T) ((-516 . -514) 161201) ((-497 . -514) 161134) ((-496 . -514) 161067) ((-795 . -1034) 160850) ((-695 . -38) 160815) ((-1232 . -614) 160563) ((-343 . -349) T) ((-1088 . -1087) 160547) ((-1088 . -1094) 160525) ((-851 . -614) 160422) ((-169 . -243) 160373) ((-169 . -233) 160324) ((-1088 . -1089) 160282) ((-868 . -286) 160240) ((-225 . -791) T) ((-225 . -788) T) ((-690 . -284) NIL) ((-571 . -614) 160212) ((-1144 . -1185) 160191) ((-407 . -988) 160175) ((-697 . -21) T) ((-697 . -25) T) ((-1274 . -644) 160149) ((-316 . -160) 160128) ((-316 . -143) 160107) ((-1144 . -107) 160057) ((-134 . -25) T) ((-40 . -231) 160034) ((-116 . -21) T) ((-116 . -25) T) ((-606 . -288) 160010) ((-475 . -288) 159989) ((-1232 . -326) 159966) ((-1232 . -1045) T) ((-851 . -1045) T) ((-795 . -338) 159950) ((-139 . -185) T) ((-117 . -1145) NIL) ((-91 . -611) 159882) ((-477 . -131) T) ((-1232 . -233) T) ((-1090 . -490) 159863) ((-1090 . -611) 159829) ((-1084 . -490) 159810) ((-1084 . -611) 159776) ((-592 . -1209) T) ((-1067 . -490) 159757) ((-571 . -1045) T) ((-1067 . -611) 159723) ((-658 . -713) 159707) ((-1060 . -490) 159688) ((-1060 . -611) 159654) ((-954 . -288) 159631) ((-60 . -34) T) ((-1056 . -791) T) ((-1056 . -788) T) ((-1032 . -490) 159612) ((-1015 . -490) 159593) ((-812 . -722) T) ((-727 . -47) 159558) ((-621 . -38) 159545) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159476) ((-247 . -290) 159407) ((-1032 . -611) 159373) ((-1020 . -102) T) ((-1015 . -611) 159339) ((-624 . -490) 159320) ((-413 . -722) T) ((-117 . -38) 159265) ((-483 . -490) 159246) ((-624 . -611) 159212) ((-413 . -473) T) ((-218 . -490) 159193) ((-483 . -611) 159159) ((-354 . -102) T) ((-218 . -611) 159125) ((-1203 . -1052) T) ((-707 . -1052) T) ((-1168 . -47) 159102) ((-1167 . -47) 159072) ((-1161 . -47) 159049) ((-128 . -288) 159024) ((-1031 . -151) 158970) ((-906 . -290) T) ((-1120 . -47) 158942) ((-690 . -309) NIL) ((-515 . -611) 158924) ((-510 . -611) 158906) ((-508 . -611) 158888) ((-327 . -1094) 158838) ((-708 . -452) 158769) ((-48 . -102) T) ((-1243 . -286) 158754) ((-1222 . -286) 158674) ((-641 . -662) 158658) ((-641 . -647) 158642) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-641 . -373) 158626) ((-603 . -490) 158608) ((-600 . -286) 158585) ((-603 . -611) 158552) ((-388 . -102) T) ((-1114 . -143) T) ((-126 . -611) 158484) ((-870 . -1094) T) ((-654 . -411) 158468) ((-710 . -611) 158450) ((-249 . -611) 158417) ((-187 . -611) 158399) ((-162 . -611) 158381) ((-157 . -611) 158363) ((-1274 . -722) T) ((-1096 . -34) T) ((-867 . -791) NIL) ((-867 . -788) NIL) ((-854 . -846) T) ((-727 . -882) NIL) ((-1283 . -131) T) ((-381 . -131) T) ((-888 . -614) 158331) ((-900 . -102) T) ((-727 . -1034) 158207) ((-531 . -131) T) ((-1081 . -411) 158191) ((-996 . -489) 158175) ((-117 . -400) 158152) ((-1161 . -1209) 158131) ((-778 . -411) 158115) ((-776 . -411) 158099) ((-939 . -34) T) ((-690 . -1145) NIL) ((-251 . -644) 157934) ((-250 . -644) 157756) ((-813 . -916) 157735) ((-454 . -411) 157719) ((-600 . -19) 157703) ((-1140 . -1202) 157672) ((-1161 . -882) NIL) ((-1161 . -880) 157624) ((-600 . -602) 157601) ((-1195 . -611) 157533) ((-1169 . -611) 157515) ((-62 . -395) T) ((-1167 . -1034) 157450) ((-1161 . -1034) 157416) ((-690 . -38) 157366) ((-474 . -286) 157351) ((-1215 . -611) 157333) ((-727 . -377) 157317) ((-834 . -611) 157299) ((-654 . -1052) T) ((-1243 . -998) 157265) ((-1222 . -998) 157231) ((-1082 . -614) 157215) ((-1057 . -1185) 157190) ((-1070 . -614) 157167) ((-868 . -612) 156974) ((-868 . -611) 156956) ((-1182 . -489) 156893) ((-418 . -1018) 156871) ((-48 . -309) 156858) ((-1057 . -107) 156804) ((-479 . -489) 156741) ((-520 . -1209) T) ((-1161 . -338) 156693) ((-1135 . -489) 156664) ((-1161 . -377) 156616) ((-1081 . -1052) T) ((-437 . -102) T) ((-183 . -1094) T) ((-251 . -34) T) ((-250 . -34) T) ((-778 . -1052) T) ((-776 . -1052) T) ((-727 . -896) 156593) ((-454 . -1052) T) ((-59 . -489) 156577) ((-1030 . -1051) 156551) ((-519 . -489) 156535) ((-516 . -489) 156519) ((-497 . -489) 156503) ((-496 . -489) 156487) ((-245 . -514) 156420) ((-1030 . -111) 156387) ((-1168 . -896) 156300) ((-1167 . -896) 156206) ((-1161 . -896) 156039) ((-1120 . -896) 156023) ((-666 . -1106) T) ((-354 . -1145) T) ((-642 . -93) T) ((-322 . -1051) 156005) ((-251 . -787) 155984) ((-251 . -790) 155935) ((-31 . -490) 155916) ((-251 . -789) 155895) ((-250 . -787) 155874) ((-250 . -790) 155825) ((-250 . -789) 155804) ((-31 . -611) 155770) ((-50 . -1052) T) ((-251 . -722) 155680) ((-250 . -722) 155590) ((-1203 . -1094) T) ((-666 . -23) T) ((-581 . -1052) T) ((-518 . -1052) T) ((-379 . -1051) 155555) ((-322 . -111) 155530) ((-73 . -383) T) ((-73 . -395) T) ((-1020 . -38) 155467) ((-690 . -400) 155449) ((-99 . -102) T) ((-707 . -1094) T) ((-999 . -145) 155421) ((-999 . -147) 155393) ((-379 . -111) 155349) ((-319 . -1213) 155328) ((-474 . -998) 155294) ((-354 . -38) 155259) ((-40 . -370) 155231) ((-869 . -611) 155103) ((-127 . -125) 155087) ((-121 . -125) 155071) ((-832 . -1051) 155041) ((-829 . -21) 154993) ((-823 . -1051) 154977) ((-829 . -25) 154929) ((-319 . -556) 154880) ((-517 . -614) 154861) ((-564 . -824) T) ((-240 . -1209) T) ((-1030 . -614) 154830) ((-832 . -111) 154795) ((-823 . -111) 154774) ((-1243 . -611) 154756) ((-1222 . -611) 154738) ((-1222 . -612) 154409) ((-1166 . -905) 154388) ((-1119 . -905) 154367) ((-48 . -38) 154332) ((-1281 . -1106) T) ((-600 . -611) 154244) ((-600 . -612) 154205) ((-1279 . -1106) T) ((-361 . -614) 154189) ((-322 . -614) 154173) ((-240 . -1034) 154000) ((-1166 . -644) 153925) ((-1119 . -644) 153850) ((-850 . -644) 153824) ((-714 . -611) 153806) ((-546 . -368) T) ((-1281 . -23) T) ((-1279 . -23) T) ((-491 . -1094) T) ((-379 . -614) 153756) ((-379 . -616) 153738) ((-1030 . -1045) T) ((-861 . -102) T) ((-1182 . -286) 153717) ((-169 . -368) 153668) ((-1000 . -1209) T) ((-832 . -614) 153622) ((-823 . -614) 153577) ((-44 . -23) T) ((-479 . -286) 153556) ((-585 . -1094) T) ((-1140 . -1103) 153525) ((-1098 . -1097) 153477) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1106) T) ((-1287 . -102) T) ((-1000 . -880) 153459) ((-1000 . -882) 153441) ((-1203 . -713) 153338) ((-621 . -231) 153322) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1189 . -1094) T) ((-707 . -713) 153287) ((-240 . -377) 153256) ((-1000 . -1034) 153216) ((-379 . -1045) T) ((-223 . -1052) T) ((-117 . -231) 153193) ((-59 . -286) 153170) ((-152 . -23) T) ((-516 . -286) 153147) ((-327 . -514) 153080) ((-496 . -286) 153057) ((-379 . -243) T) ((-379 . -233) T) ((-832 . -1045) T) ((-823 . -1045) T) ((-708 . -945) 153026) ((-697 . -846) T) ((-474 . -611) 153008) ((-823 . -233) 152987) ((-134 . -846) T) ((-654 . -1094) T) ((-1182 . -602) 152966) ((-550 . -1185) 152945) ((-336 . -1094) T) ((-319 . -363) 152924) ((-407 . -147) 152903) ((-407 . -145) 152882) ((-960 . -1106) 152781) ((-240 . -896) 152713) ((-811 . -1106) 152623) ((-650 . -848) 152607) ((-479 . -602) 152586) ((-550 . -107) 152536) ((-1000 . -377) 152518) ((-1000 . -338) 152500) ((-97 . -1094) T) ((-960 . -23) 152311) ((-477 . -21) T) ((-477 . -25) T) ((-811 . -23) 152181) ((-1170 . -611) 152163) ((-59 . -19) 152147) ((-1170 . -612) 152069) ((-1166 . -722) T) ((-1119 . -722) T) ((-516 . -19) 152053) ((-496 . -19) 152037) ((-59 . -602) 152014) ((-1081 . -1094) T) ((-897 . -102) 151992) ((-850 . -722) T) ((-778 . -1094) T) ((-516 . -602) 151969) ((-496 . -602) 151946) ((-776 . -1094) T) ((-776 . -1059) 151913) ((-461 . -1094) T) ((-454 . -1094) T) ((-585 . -713) 151888) ((-645 . -1094) T) ((-1251 . -47) 151865) ((-1245 . -102) T) ((-1244 . -47) 151835) ((-1223 . -47) 151812) ((-1203 . -172) 151763) ((-1167 . -307) 151742) ((-1000 . -896) NIL) ((-1161 . -307) 151721) ((-625 . -1106) T) ((-666 . -131) T) ((-1090 . -614) 151702) ((-1084 . -614) 151683) ((-1074 . -556) 151634) ((-1074 . -1213) 151585) ((-1067 . -614) 151566) ((-275 . -1094) T) ((-85 . -441) T) ((-85 . -395) T) ((-1060 . -614) 151547) ((-1032 . -614) 151528) ((-50 . -1094) T) ((-1015 . -614) 151509) ((-707 . -172) T) ((-594 . -47) 151486) ((-225 . -644) 151451) ((-581 . -1094) T) ((-518 . -1094) T) ((-359 . -1213) T) ((-353 . -1213) T) ((-345 . -1213) T) ((-487 . -816) T) ((-487 . -916) T) ((-319 . -1106) T) ((-108 . -1213) T) ((-710 . -1051) 151421) ((-339 . -846) T) ((-217 . -916) T) ((-217 . -816) T) ((-624 . -614) 151402) ((-359 . -556) T) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 151383) ((-108 . -556) T) ((-654 . -713) 151353) ((-1161 . -1018) NIL) ((-218 . -614) 151334) ((-319 . -23) T) ((-67 . -1209) T) ((-996 . -611) 151266) ((-690 . -231) 151248) ((-710 . -111) 151213) ((-641 . -34) T) ((-245 . -489) 151197) ((-1096 . -1092) 151181) ((-171 . -1094) T) ((-948 . -905) 151160) ((-515 . -614) 151144) ((-1287 . -1145) T) ((-1283 . -21) T) ((-481 . -905) 151123) ((-1283 . -25) T) ((-1281 . -131) T) ((-1279 . -131) T) ((-1272 . -102) T) ((-1255 . -611) 151089) ((-1244 . -1034) 151024) ((-1081 . -713) 150873) ((-1056 . -644) 150860) ((-948 . -644) 150785) ((-778 . -713) 150614) ((-536 . -611) 150596) ((-536 . -612) 150577) ((-776 . -713) 150426) ((-1223 . -1209) 150405) ((-1071 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -644) 150330) ((-461 . -713) 150301) ((-454 . -713) 150150) ((-983 . -102) T) ((-1223 . -882) NIL) ((-1223 . -880) 150102) ((-1182 . -612) NIL) ((-733 . -102) T) ((-1182 . -611) 150084) ((-603 . -614) 150066) ((-1136 . -1117) 150011) ((-1042 . -1202) 149940) ((-531 . -25) T) ((-897 . -309) 149878) ((-710 . -614) 149832) ((-343 . -1052) T) ((-642 . -490) 149813) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1106) T) ((-677 . -93) T) ((-672 . -93) T) ((-660 . -611) 149795) ((-642 . -611) 149748) ((-478 . -93) T) ((-355 . -611) 149730) ((-352 . -611) 149712) ((-344 . -611) 149694) ((-264 . -612) 149442) ((-264 . -611) 149424) ((-247 . -611) 149406) ((-247 . -612) 149267) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1223 . -1034) 149233) ((-1203 . -514) 149200) ((-1135 . -611) 149182) ((-815 . -853) T) ((-815 . -722) T) ((-600 . -288) 149159) ((-581 . -713) 149124) ((-479 . -612) NIL) ((-479 . -611) 149106) ((-518 . -713) 149051) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-906 . -611) 149033) ((-386 . -722) T) ((-868 . -1051) 148985) ((-906 . -612) 148967) ((-868 . -111) 148905) ((-710 . -1045) T) ((-708 . -1235) 148889) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-690 . -349) NIL) ((-519 . -611) 148821) ((-379 . -791) T) ((-223 . -1094) T) ((-379 . -788) T) ((-225 . -790) T) ((-225 . -787) T) ((-59 . -612) 148782) ((-59 . -611) 148694) ((-225 . -722) T) ((-516 . -612) 148655) ((-516 . -611) 148567) ((-497 . -611) 148499) ((-496 . -612) 148460) ((-496 . -611) 148372) ((-1074 . -363) 148323) ((-40 . -411) 148300) ((-77 . -1209) T) ((-867 . -905) NIL) ((-359 . -329) 148284) ((-359 . -363) T) ((-353 . -329) 148268) ((-353 . -363) T) ((-345 . -329) 148252) ((-345 . -363) T) ((-316 . -284) 148231) ((-108 . -363) T) ((-70 . -1209) T) ((-1223 . -338) 148183) ((-867 . -644) 148128) ((-1223 . -377) 148080) ((-960 . -131) 147935) ((-811 . -131) 147805) ((-954 . -647) 147789) ((-1081 . -172) 147700) ((-954 . -373) 147684) ((-1056 . -790) T) ((-1056 . -787) T) ((-868 . -614) 147582) ((-778 . -172) 147473) ((-776 . -172) 147384) ((-812 . -47) 147346) ((-1056 . -722) T) ((-327 . -489) 147330) ((-948 . -722) T) ((-454 . -172) 147241) ((-245 . -286) 147218) ((-1272 . -309) 147156) ((-1251 . -896) 147069) ((-481 . -722) T) ((-1244 . -896) 146975) ((-1243 . -1051) 146810) ((-1223 . -896) 146643) ((-1222 . -1051) 146451) ((-1203 . -290) 146430) ((-1179 . -1209) T) ((-1177 . -368) T) ((-1176 . -368) T) ((-1140 . -151) 146414) ((-1114 . -102) T) ((-1112 . -1094) T) ((-1074 . -23) T) ((-1069 . -102) T) ((-923 . -951) T) ((-733 . -309) 146352) ((-75 . -1209) T) ((-30 . -951) T) ((-169 . -905) 146305) ((-660 . -382) 146277) ((-112 . -840) T) ((-1 . -611) 146259) ((-1074 . -1106) T) ((-128 . -647) 146241) ((-50 . -618) 146225) ((-999 . -409) 146197) ((-594 . -896) 146110) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146092) ((-868 . -1045) T) ((-829 . -846) 146071) ((-81 . -1209) T) ((-707 . -290) T) ((-40 . -1052) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 146053) ((-169 . -644) 145963) ((-507 . -611) 145945) ((-351 . -147) 145927) ((-351 . -145) T) ((-359 . -1106) T) ((-353 . -1106) T) ((-345 . -1106) T) ((-1000 . -307) T) ((-910 . -307) T) ((-868 . -243) T) ((-108 . -1106) T) ((-868 . -233) 145906) ((-1243 . -111) 145727) ((-1222 . -111) 145516) ((-245 . -1247) 145500) ((-564 . -844) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145487) ((-313 . -309) 145428) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1000 . -1018) T) ((-31 . -614) 145409) ((-108 . -23) T) ((-245 . -602) 145386) ((-1245 . -38) 145278) ((-1232 . -905) 145257) ((-112 . -1094) T) ((-1031 . -102) T) ((-1232 . -644) 145182) ((-867 . -790) NIL) ((-851 . -644) 145156) ((-867 . -787) NIL) ((-812 . -882) NIL) ((-867 . -722) T) ((-1081 . -514) 145029) ((-778 . -514) 144976) ((-776 . -514) 144928) ((-571 . -644) 144915) ((-812 . -1034) 144743) ((-454 . -514) 144686) ((-388 . -389) T) ((-1243 . -614) 144499) ((-1222 . -614) 144247) ((-60 . -1209) T) ((-619 . -846) 144226) ((-500 . -657) T) ((-1140 . -972) 144195) ((-999 . -452) T) ((-695 . -844) T) ((-510 . -788) T) ((-474 . -1051) 144030) ((-343 . -1094) T) ((-313 . -1145) NIL) ((-289 . -131) T) ((-394 . -1094) T) ((-690 . -370) 143997) ((-866 . -1052) T) ((-223 . -618) 143974) ((-327 . -286) 143951) ((-474 . -111) 143772) ((-1243 . -1045) T) ((-1222 . -1045) T) ((-812 . -377) 143756) ((-169 . -722) T) ((-650 . -102) T) ((-1243 . -243) 143735) ((-1243 . -233) 143687) ((-1222 . -233) 143592) ((-1222 . -243) 143571) ((-999 . -402) NIL) ((-666 . -637) 143519) ((-316 . -38) 143429) ((-313 . -38) 143358) ((-69 . -611) 143340) ((-319 . -493) 143306) ((-1182 . -288) 143285) ((-1217 . -846) T) ((-1107 . -1106) 143195) ((-83 . -1209) T) ((-61 . -611) 143177) ((-479 . -288) 143156) ((-1274 . -1034) 143133) ((-1158 . -1094) T) ((-1107 . -23) 143003) ((-812 . -896) 142939) ((-1232 . -722) T) ((-1096 . -1209) T) ((-474 . -614) 142765) ((-1081 . -290) 142696) ((-962 . -1094) T) ((-889 . -102) T) ((-778 . -290) 142607) ((-327 . -19) 142591) ((-59 . -288) 142568) ((-776 . -290) 142499) ((-851 . -722) T) ((-117 . -844) NIL) ((-516 . -288) 142476) ((-327 . -602) 142453) ((-496 . -288) 142430) ((-454 . -290) 142361) ((-1031 . -309) 142212) ((-677 . -490) 142193) ((-571 . -722) T) ((-672 . -490) 142174) ((-677 . -611) 142124) ((-672 . -611) 142090) ((-658 . -611) 142072) ((-478 . -490) 142053) ((-478 . -611) 142019) ((-245 . -612) 141980) ((-245 . -490) 141957) ((-138 . -490) 141938) ((-137 . -490) 141919) ((-133 . -490) 141900) ((-245 . -611) 141792) ((-213 . -102) T) ((-138 . -611) 141758) ((-137 . -611) 141724) ((-133 . -611) 141690) ((-1141 . -34) T) ((-939 . -1209) T) ((-343 . -713) 141635) ((-666 . -25) T) ((-666 . -21) T) ((-1170 . -614) 141616) ((-474 . -1045) T) ((-633 . -417) 141581) ((-605 . -417) 141546) ((-1114 . -1145) T) ((-581 . -290) T) ((-518 . -290) T) ((-1244 . -307) 141525) ((-474 . -233) 141477) ((-474 . -243) 141456) ((-1223 . -307) 141435) ((-1223 . -1018) NIL) ((-1074 . -131) T) ((-868 . -791) 141414) ((-144 . -102) T) ((-40 . -1094) T) ((-868 . -788) 141393) ((-641 . -1006) 141377) ((-580 . -1052) T) ((-564 . -1052) T) ((-495 . -1052) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141361) ((-313 . -400) 141322) ((-353 . -131) T) ((-345 . -131) T) ((-1175 . -1094) T) ((-1114 . -38) 141309) ((-1088 . -611) 141276) ((-108 . -131) T) ((-950 . -1094) T) ((-917 . -1094) T) ((-767 . -1094) T) ((-668 . -1094) T) ((-697 . -147) T) ((-116 . -147) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-660 . -1051) 141260) ((-531 . -846) T) ((-500 . -846) T) ((-355 . -1051) 141212) ((-352 . -1051) 141164) ((-344 . -1051) 141116) ((-251 . -1209) T) ((-250 . -1209) T) ((-264 . -1051) 140959) ((-247 . -1051) 140802) ((-660 . -111) 140781) ((-547 . -840) T) ((-355 . -111) 140719) ((-352 . -111) 140657) ((-344 . -111) 140595) ((-264 . -111) 140424) ((-247 . -111) 140253) ((-813 . -1213) 140232) ((-621 . -411) 140216) ((-44 . -21) T) ((-44 . -25) T) ((-811 . -637) 140122) ((-813 . -556) 140101) ((-251 . -1034) 139928) ((-250 . -1034) 139755) ((-126 . -119) 139739) ((-906 . -1051) 139704) ((-708 . -102) T) ((-695 . -1052) T) ((-536 . -616) 139607) ((-343 . -172) T) ((-88 . -611) 139589) ((-152 . -21) T) ((-152 . -25) T) ((-906 . -111) 139545) ((-40 . -713) 139490) ((-866 . -1094) T) ((-660 . -614) 139467) ((-642 . -614) 139448) ((-355 . -614) 139385) ((-352 . -614) 139322) ((-547 . -1094) T) ((-344 . -614) 139259) ((-327 . -612) 139220) ((-327 . -611) 139132) ((-264 . -614) 138885) ((-247 . -614) 138670) ((-1222 . -788) 138623) ((-1222 . -791) 138576) ((-251 . -377) 138545) ((-250 . -377) 138514) ((-650 . -38) 138484) ((-606 . -34) T) ((-482 . -1106) 138394) ((-475 . -34) T) ((-1107 . -131) 138264) ((-960 . -25) 138075) ((-906 . -614) 138025) ((-870 . -611) 138007) ((-960 . -21) 137962) ((-811 . -21) 137872) ((-811 . -25) 137723) ((-1215 . -368) T) ((-621 . -1052) T) ((-1172 . -556) 137702) ((-1166 . -47) 137679) ((-355 . -1045) T) ((-352 . -1045) T) ((-482 . -23) 137549) ((-344 . -1045) T) ((-247 . -1045) T) ((-264 . -1045) T) ((-1119 . -47) 137521) ((-117 . -1052) T) ((-1030 . -644) 137495) ((-954 . -34) T) ((-355 . -233) 137474) ((-355 . -243) T) ((-352 . -233) 137453) ((-352 . -243) T) ((-344 . -233) 137432) ((-344 . -243) T) ((-247 . -326) 137389) ((-264 . -326) 137361) ((-264 . -233) 137340) ((-1150 . -151) 137324) ((-251 . -896) 137256) ((-250 . -896) 137188) ((-1076 . -846) T) ((-414 . -1106) T) ((-1049 . -23) T) ((-906 . -1045) T) ((-322 . -644) 137170) ((-1020 . -844) T) ((-1203 . -998) 137136) ((-1167 . -916) 137115) ((-1161 . -916) 137094) ((-1161 . -816) NIL) ((-906 . -243) T) ((-813 . -363) 137073) ((-385 . -23) T) ((-127 . -1094) 137051) ((-121 . -1094) 137029) ((-906 . -233) T) ((-128 . -34) T) ((-379 . -644) 136994) ((-866 . -713) 136981) ((-1042 . -151) 136946) ((-40 . -172) T) ((-690 . -411) 136928) ((-708 . -309) 136915) ((-832 . -644) 136875) ((-823 . -644) 136849) ((-319 . -25) T) ((-319 . -21) T) ((-654 . -286) 136828) ((-580 . -1094) T) ((-564 . -1094) T) ((-495 . -1094) T) ((-245 . -288) 136805) ((-313 . -231) 136766) ((-1166 . -882) NIL) ((-55 . -1094) T) ((-1119 . -882) 136625) ((-129 . -846) T) ((-1166 . -1034) 136505) ((-1119 . -1034) 136388) ((-183 . -611) 136370) ((-850 . -1034) 136266) ((-778 . -286) 136193) ((-813 . -1106) T) ((-1030 . -722) T) ((-600 . -647) 136177) ((-1042 . -972) 136106) ((-995 . -102) T) ((-813 . -23) T) ((-708 . -1145) 136084) ((-690 . -1052) T) ((-600 . -373) 136068) ((-351 . -452) T) ((-343 . -290) T) ((-1260 . -1094) T) ((-248 . -1094) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -722) T) ((-706 . -1094) T) ((-695 . -1094) T) ((-361 . -473) T) ((-1203 . -611) 136050) ((-1166 . -377) 136034) ((-1119 . -377) 136018) ((-1020 . -411) 135980) ((-141 . -229) 135962) ((-379 . -790) T) ((-379 . -787) T) ((-866 . -172) T) ((-379 . -722) T) ((-707 . -611) 135944) ((-708 . -38) 135773) ((-1259 . -1257) 135757) ((-351 . -402) T) ((-1259 . -1094) 135707) ((-580 . -713) 135694) ((-564 . -713) 135681) ((-495 . -713) 135646) ((-316 . -627) 135625) ((-832 . -722) T) ((-823 . -722) T) ((-641 . -1209) T) ((-1074 . -637) 135573) ((-1166 . -896) 135516) ((-1119 . -896) 135500) ((-658 . -1051) 135484) ((-108 . -637) 135466) ((-482 . -131) 135336) ((-1172 . -1106) T) ((-948 . -47) 135305) ((-621 . -1094) T) ((-658 . -111) 135284) ((-491 . -611) 135250) ((-327 . -288) 135227) ((-481 . -47) 135184) ((-1172 . -23) T) ((-117 . -1094) T) ((-103 . -102) 135162) ((-1271 . -1106) T) ((-548 . -846) T) ((-1049 . -131) T) ((-1020 . -1052) T) ((-815 . -1034) 135146) ((-999 . -720) 135118) ((-1271 . -23) T) ((-695 . -713) 135083) ((-585 . -611) 135065) ((-386 . -1034) 135049) ((-354 . -1052) T) ((-385 . -131) T) ((-324 . -1034) 135033) ((-225 . -882) 135015) ((-1000 . -916) T) ((-91 . -34) T) ((-1000 . -816) T) ((-910 . -916) T) ((-1189 . -611) 134997) ((-1114 . -824) T) ((-487 . -1213) T) ((-1099 . -1094) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-217 . -1213) T) ((-995 . -309) 134962) ((-225 . -1034) 134922) ((-40 . -290) T) ((-710 . -644) 134882) ((-677 . -614) 134863) ((-672 . -614) 134844) ((-487 . -556) T) ((-478 . -614) 134825) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 134802) ((-138 . -614) 134783) ((-137 . -614) 134764) ((-133 . -614) 134745) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1052) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-654 . -611) 134727) ((-733 . -732) 134711) ((-336 . -611) 134693) ((-68 . -383) T) ((-68 . -395) T) ((-1096 . -107) 134677) ((-1056 . -882) 134659) ((-948 . -882) 134584) ((-649 . -1106) T) ((-621 . -713) 134571) ((-481 . -882) NIL) ((-1140 . -102) T) ((-1088 . -616) 134555) ((-1056 . -1034) 134537) ((-97 . -611) 134519) ((-477 . -147) T) ((-948 . -1034) 134399) ((-117 . -713) 134344) ((-649 . -23) T) ((-481 . -1034) 134220) ((-1081 . -612) NIL) ((-1081 . -611) 134202) ((-778 . -612) NIL) ((-778 . -611) 134163) ((-776 . -612) 133797) ((-776 . -611) 133711) ((-1107 . -637) 133617) ((-461 . -611) 133599) ((-454 . -611) 133581) ((-454 . -612) 133442) ((-1031 . -229) 133388) ((-868 . -905) 133367) ((-126 . -34) T) ((-813 . -131) T) ((-645 . -611) 133349) ((-578 . -102) T) ((-355 . -1278) 133333) ((-352 . -1278) 133317) ((-344 . -1278) 133301) ((-127 . -514) 133234) ((-121 . -514) 133167) ((-511 . -788) T) ((-511 . -791) T) ((-510 . -790) T) ((-103 . -309) 133105) ((-222 . -102) 133083) ((-690 . -1094) T) ((-695 . -172) T) ((-868 . -644) 133035) ((-65 . -384) T) ((-275 . -611) 133017) ((-65 . -395) T) ((-948 . -377) 133001) ((-866 . -290) T) ((-50 . -611) 132983) ((-995 . -38) 132931) ((-581 . -611) 132913) ((-481 . -377) 132897) ((-581 . -612) 132879) ((-518 . -611) 132861) ((-906 . -1278) 132848) ((-867 . -1209) T) ((-697 . -452) T) ((-495 . -514) 132814) ((-487 . -363) T) ((-355 . -368) 132793) ((-352 . -368) 132772) ((-344 . -368) 132751) ((-710 . -722) T) ((-217 . -363) T) ((-116 . -452) T) ((-1282 . -1273) 132735) ((-867 . -880) 132712) ((-867 . -882) NIL) ((-960 . -846) 132611) ((-811 . -846) 132562) ((-1216 . -102) T) ((-650 . -652) 132546) ((-1195 . -34) T) ((-171 . -611) 132528) ((-1107 . -21) 132438) ((-1107 . -25) 132289) ((-867 . -1034) 132266) ((-948 . -896) 132247) ((-1232 . -47) 132224) ((-906 . -368) T) ((-59 . -647) 132208) ((-516 . -647) 132192) ((-481 . -896) 132169) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -647) 132153) ((-59 . -373) 132137) ((-621 . -172) T) ((-516 . -373) 132121) ((-496 . -373) 132105) ((-823 . -704) 132089) ((-1166 . -307) 132068) ((-1172 . -131) T) ((-117 . -172) T) ((-1140 . -309) 132006) ((-169 . -1209) T) ((-633 . -740) 131990) ((-605 . -740) 131974) ((-1271 . -131) T) ((-1244 . -916) 131953) ((-1223 . -916) 131932) ((-1223 . -816) NIL) ((-690 . -713) 131882) ((-1222 . -905) 131835) ((-1020 . -1094) T) ((-867 . -377) 131812) ((-867 . -338) 131789) ((-901 . -1106) T) ((-169 . -880) 131773) ((-169 . -882) 131698) ((-487 . -1106) T) ((-354 . -1094) T) ((-217 . -1106) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1034) 131594) ((-319 . -846) T) ((-1259 . -514) 131527) ((-1243 . -644) 131424) ((-1222 . -644) 131294) ((-868 . -790) 131273) ((-868 . -787) 131252) ((-868 . -722) T) ((-487 . -23) T) ((-223 . -611) 131234) ((-174 . -452) T) ((-222 . -309) 131172) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1283 . -1276) 131151) ((-580 . -290) T) ((-564 . -290) T) ((-673 . -1034) 131135) ((-495 . -290) T) ((-136 . -470) 131090) ((-48 . -1094) T) ((-708 . -231) 131074) ((-867 . -896) NIL) ((-1232 . -882) NIL) ((-885 . -102) T) ((-881 . -102) T) ((-388 . -1094) T) ((-169 . -377) 131058) ((-169 . -338) 131042) ((-1232 . -1034) 130922) ((-851 . -1034) 130818) ((-1136 . -102) T) ((-649 . -131) T) ((-117 . -514) 130726) ((-658 . -788) 130705) ((-658 . -791) 130684) ((-571 . -1034) 130666) ((-294 . -1266) 130636) ((-862 . -102) T) ((-959 . -556) 130615) ((-1203 . -1051) 130498) ((-482 . -637) 130404) ((-900 . -1094) T) ((-1020 . -713) 130341) ((-707 . -1051) 130306) ((-615 . -102) T) ((-600 . -34) T) ((-1141 . -1209) T) ((-1203 . -111) 130175) ((-474 . -644) 130072) ((-354 . -713) 130017) ((-169 . -896) 129976) ((-695 . -290) T) ((-690 . -172) T) ((-707 . -111) 129932) ((-1287 . -1052) T) ((-1232 . -377) 129916) ((-418 . -1213) 129894) ((-1112 . -611) 129876) ((-313 . -844) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1222 . -787) 129829) ((-1222 . -790) 129782) ((-1243 . -722) T) ((-1222 . -722) T) ((-48 . -713) 129747) ((-225 . -1018) T) ((-351 . -1266) 129724) ((-1245 . -411) 129690) ((-714 . -722) T) ((-1232 . -896) 129633) ((-1203 . -614) 129515) ((-112 . -611) 129497) ((-112 . -612) 129479) ((-714 . -473) T) ((-707 . -614) 129429) ((-482 . -21) 129339) ((-127 . -489) 129323) ((-121 . -489) 129307) ((-482 . -25) 129158) ((-621 . -290) T) ((-585 . -1051) 129133) ((-437 . -1094) T) ((-1056 . -307) T) ((-117 . -290) T) ((-1098 . -102) T) ((-999 . -102) T) ((-585 . -111) 129101) ((-1136 . -309) 129039) ((-1203 . -1045) T) ((-1056 . -1018) T) ((-66 . -1209) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-707 . -1045) T) ((-385 . -21) T) ((-385 . -25) T) ((-690 . -514) NIL) ((-1020 . -172) T) ((-707 . -243) T) ((-1056 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 129021) ((-394 . -611) 129003) ((-474 . -722) T) ((-1114 . -844) T) ((-888 . -1034) 128971) ((-108 . -846) T) ((-654 . -1051) 128955) ((-487 . -131) T) ((-1245 . -1052) T) ((-217 . -131) T) ((-1150 . -102) 128933) ((-99 . -1094) T) ((-245 . -662) 128917) ((-245 . -647) 128901) ((-654 . -111) 128880) ((-585 . -614) 128864) ((-316 . -411) 128848) ((-245 . -373) 128832) ((-1153 . -235) 128779) ((-995 . -231) 128763) ((-74 . -1209) T) ((-48 . -172) T) ((-697 . -387) T) ((-697 . -143) T) ((-1282 . -102) T) ((-1189 . -614) 128745) ((-1081 . -1051) 128588) ((-264 . -905) 128567) ((-247 . -905) 128546) ((-778 . -1051) 128369) ((-776 . -1051) 128212) ((-606 . -1209) T) ((-1158 . -611) 128194) ((-1081 . -111) 128023) ((-1042 . -102) T) ((-475 . -1209) T) ((-461 . -1051) 127994) ((-454 . -1051) 127837) ((-660 . -644) 127821) ((-867 . -307) T) ((-778 . -111) 127630) ((-776 . -111) 127459) ((-355 . -644) 127411) ((-352 . -644) 127363) ((-344 . -644) 127315) ((-264 . -644) 127240) ((-247 . -644) 127165) ((-1152 . -846) T) ((-1082 . -1034) 127149) ((-461 . -111) 127110) ((-454 . -111) 126939) ((-1070 . -1034) 126916) ((-996 . -34) T) ((-962 . -611) 126898) ((-954 . -1209) T) ((-126 . -1006) 126882) ((-959 . -1106) T) ((-867 . -1018) NIL) ((-731 . -1106) T) ((-711 . -1106) T) ((-654 . -614) 126800) ((-1259 . -489) 126784) ((-1136 . -38) 126744) ((-959 . -23) T) ((-861 . -1094) T) ((-839 . -102) T) ((-813 . -21) T) ((-813 . -25) T) ((-731 . -23) T) ((-711 . -23) T) ((-110 . -657) T) ((-906 . -644) 126709) ((-581 . -1051) 126674) ((-518 . -1051) 126619) ((-227 . -57) 126577) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-690 . -290) T) ((-862 . -38) 126547) ((-581 . -111) 126503) ((-518 . -111) 126432) ((-1081 . -614) 126168) ((-418 . -1106) T) ((-316 . -1052) 126058) ((-313 . -1052) T) ((-128 . -1209) T) ((-778 . -614) 125806) ((-776 . -614) 125572) ((-654 . -1045) T) ((-1287 . -1094) T) ((-454 . -614) 125357) ((-169 . -307) 125288) ((-418 . -23) T) ((-40 . -611) 125270) ((-40 . -612) 125254) ((-108 . -988) 125236) ((-116 . -865) 125220) ((-645 . -614) 125204) ((-48 . -514) 125170) ((-1195 . -1006) 125154) ((-1175 . -611) 125121) ((-1182 . -34) T) ((-950 . -611) 125087) ((-917 . -611) 125069) ((-1107 . -846) 125020) ((-767 . -611) 125002) ((-668 . -611) 124984) ((-1150 . -309) 124922) ((-479 . -34) T) ((-1086 . -1209) T) ((-477 . -452) T) ((-1135 . -34) T) ((-1081 . -1045) T) ((-50 . -614) 124891) ((-778 . -1045) T) ((-776 . -1045) T) ((-643 . -235) 124875) ((-630 . -235) 124821) ((-581 . -614) 124771) ((-518 . -614) 124701) ((-1232 . -307) 124680) ((-1081 . -326) 124641) ((-454 . -1045) T) ((-1172 . -21) T) ((-1081 . -233) 124620) ((-778 . -326) 124597) ((-778 . -233) T) ((-776 . -326) 124569) ((-727 . -1213) 124548) ((-327 . -647) 124532) ((-1172 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124511) ((-327 . -373) 124495) ((-497 . -34) T) ((-496 . -34) T) ((-999 . -1145) NIL) ((-727 . -556) 124426) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -722) T) ((-352 . -722) T) ((-344 . -722) T) ((-264 . -722) T) ((-247 . -722) T) ((-1042 . -309) 124334) ((-897 . -1094) 124312) ((-50 . -1045) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1168 . -556) 124291) ((-1167 . -1213) 124270) ((-581 . -1045) T) ((-518 . -1045) T) ((-1161 . -1213) 124249) ((-361 . -1034) 124233) ((-322 . -1034) 124217) ((-1020 . -290) T) ((-379 . -882) 124199) ((-1167 . -556) 124150) ((-1161 . -556) 124101) ((-999 . -38) 124046) ((-795 . -1106) T) ((-906 . -722) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1120 . -556) 124025) ((-354 . -290) T) ((-643 . -691) 124009) ((-379 . -1034) 123969) ((-1114 . -1052) T) ((-103 . -125) 123953) ((-795 . -23) T) ((-1281 . -1276) 123929) ((-1259 . -286) 123906) ((-407 . -309) 123871) ((-1279 . -1276) 123850) ((-1245 . -1094) T) ((-866 . -611) 123832) ((-832 . -1034) 123801) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-200 . -783) T) ((-199 . -783) T) ((-198 . -783) T) ((-197 . -783) T) ((-196 . -783) T) ((-195 . -783) T) ((-194 . -783) T) ((-547 . -611) 123783) ((-495 . -998) T) ((-274 . -835) T) ((-273 . -835) T) ((-272 . -835) T) ((-271 . -835) T) ((-48 . -290) T) ((-270 . -835) T) ((-269 . -835) T) ((-268 . -835) T) ((-193 . -783) T) ((-610 . -846) T) ((-650 . -411) 123767) ((-223 . -614) 123729) ((-110 . -846) T) ((-649 . -21) T) ((-649 . -25) T) ((-1282 . -38) 123699) ((-117 . -286) 123650) ((-1259 . -19) 123634) ((-1259 . -602) 123611) ((-1272 . -1094) T) ((-1071 . -1094) T) ((-983 . -1094) T) ((-959 . -131) T) ((-733 . -1094) T) ((-731 . -131) T) ((-711 . -131) T) ((-511 . -789) T) ((-407 . -1145) 123589) ((-453 . -131) T) ((-511 . -790) T) ((-223 . -1045) T) ((-294 . -102) 123371) ((-141 . -1094) T) ((-695 . -998) T) ((-91 . -1209) T) ((-127 . -611) 123303) ((-121 . -611) 123235) ((-1287 . -172) T) ((-1167 . -363) 123214) ((-1161 . -363) 123193) ((-316 . -1094) T) ((-418 . -131) T) ((-313 . -1094) T) ((-407 . -38) 123145) ((-1127 . -102) T) ((-1245 . -713) 123037) ((-650 . -1052) T) ((-1129 . -1254) T) ((-319 . -145) 123016) ((-319 . -147) 122995) ((-139 . -1094) T) ((-136 . -1094) T) ((-114 . -1094) T) ((-854 . -102) T) ((-580 . -611) 122977) ((-564 . -612) 122876) ((-564 . -611) 122858) ((-495 . -611) 122840) ((-495 . -612) 122785) ((-485 . -23) T) ((-482 . -846) 122736) ((-487 . -637) 122718) ((-961 . -611) 122700) ((-217 . -637) 122682) ((-225 . -404) T) ((-658 . -644) 122666) ((-55 . -611) 122648) ((-1166 . -916) 122627) ((-727 . -1106) T) ((-351 . -102) T) ((-1208 . -1077) T) ((-1114 . -840) T) ((-814 . -846) T) ((-727 . -23) T) ((-343 . -1051) 122572) ((-1152 . -1151) T) ((-1141 . -107) 122556) ((-1168 . -1106) T) ((-1167 . -1106) T) ((-515 . -1034) 122540) ((-1161 . -1106) T) ((-1120 . -1106) T) ((-343 . -111) 122469) ((-1000 . -1213) T) ((-126 . -1209) T) ((-910 . -1213) T) ((-690 . -286) NIL) ((-1260 . -611) 122451) ((-1168 . -23) T) ((-1167 . -23) T) ((-1161 . -23) T) ((-1000 . -556) T) ((-1136 . -231) 122435) ((-910 . -556) T) ((-1120 . -23) T) ((-248 . -611) 122417) ((-1069 . -1094) T) ((-795 . -131) T) ((-706 . -611) 122399) ((-316 . -713) 122309) ((-313 . -713) 122238) ((-695 . -611) 122220) ((-695 . -612) 122165) ((-407 . -400) 122149) ((-438 . -1094) T) ((-487 . -25) T) ((-487 . -21) T) ((-1114 . -1094) T) ((-217 . -25) T) ((-217 . -21) T) ((-708 . -411) 122133) ((-710 . -1034) 122102) ((-1259 . -611) 122014) ((-1259 . -612) 121975) ((-1245 . -172) T) ((-245 . -34) T) ((-343 . -614) 121905) ((-394 . -614) 121887) ((-922 . -970) T) ((-1195 . -1209) T) ((-658 . -787) 121866) ((-658 . -790) 121845) ((-398 . -395) T) ((-523 . -102) 121823) ((-1031 . -1094) T) ((-222 . -991) 121807) ((-504 . -102) T) ((-621 . -611) 121789) ((-45 . -846) NIL) ((-621 . -612) 121766) ((-1031 . -608) 121741) ((-897 . -514) 121674) ((-343 . -1045) T) ((-117 . -612) NIL) ((-117 . -611) 121656) ((-868 . -1209) T) ((-666 . -417) 121640) ((-666 . -1117) 121585) ((-500 . -151) 121567) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1051) 121512) ((-868 . -880) 121496) ((-868 . -882) 121421) ((-708 . -1052) T) ((-690 . -998) NIL) ((-3 . |UnionCategory|) T) ((-1243 . -47) 121391) ((-1222 . -47) 121368) ((-1135 . -1006) 121339) ((-962 . -614) 121323) ((-225 . -916) T) ((-40 . -111) 121252) ((-868 . -1034) 121116) ((-1114 . -713) 121103) ((-1099 . -611) 121085) ((-1074 . -147) 121064) ((-1074 . -145) 121015) ((-1000 . -363) T) ((-319 . -1197) 120981) ((-379 . -307) T) ((-319 . -1194) 120947) ((-316 . -172) 120926) ((-313 . -172) T) ((-999 . -231) 120903) ((-910 . -363) T) ((-581 . -1278) 120890) ((-518 . -1278) 120867) ((-359 . -147) 120846) ((-359 . -145) 120797) ((-353 . -147) 120776) ((-353 . -145) 120727) ((-606 . -1185) 120703) ((-345 . -147) 120682) ((-345 . -145) 120633) ((-319 . -35) 120599) ((-475 . -1185) 120578) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120544) ((-379 . -1018) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120494) ((-650 . -1094) T) ((-606 . -107) 120441) ((-485 . -131) T) ((-475 . -107) 120391) ((-240 . -1106) 120301) ((-868 . -377) 120285) ((-868 . -338) 120269) ((-240 . -23) 120139) ((-40 . -614) 120069) ((-1056 . -916) T) ((-1056 . -816) T) ((-581 . -368) T) ((-518 . -368) T) ((-351 . -1145) T) ((-327 . -34) T) ((-44 . -417) 120053) ((-1175 . -614) 119989) ((-869 . -1209) T) ((-390 . -740) 119973) ((-1272 . -514) 119906) ((-727 . -131) T) ((-668 . -614) 119890) ((-1251 . -556) 119869) ((-1244 . -1213) 119848) ((-1244 . -556) 119799) ((-1223 . -1213) 119778) ((-311 . -1077) T) ((-1223 . -556) 119729) ((-733 . -514) 119662) ((-1222 . -1209) 119641) ((-1222 . -882) 119514) ((-889 . -1094) T) ((-144 . -840) T) ((-1222 . -880) 119484) ((-687 . -611) 119466) ((-1168 . -131) T) ((-523 . -309) 119404) ((-1167 . -131) T) ((-141 . -514) NIL) ((-1161 . -131) T) ((-1120 . -131) T) ((-1020 . -998) T) ((-1000 . -23) T) ((-351 . -38) 119369) ((-1000 . -1106) T) ((-910 . -1106) T) ((-82 . -611) 119351) ((-40 . -1045) T) ((-866 . -1051) 119338) ((-999 . -349) NIL) ((-868 . -896) 119297) ((-697 . -102) T) ((-967 . -23) T) ((-600 . -1209) T) ((-910 . -23) T) ((-866 . -111) 119282) ((-427 . -1106) T) ((-213 . -1094) T) ((-474 . -47) 119252) ((-134 . -102) T) ((-40 . -233) 119224) ((-40 . -243) T) ((-116 . -102) T) ((-595 . -556) 119203) ((-594 . -556) 119182) ((-690 . -611) 119164) ((-690 . -612) 119072) ((-316 . -514) 119038) ((-313 . -514) 118930) ((-1243 . -1034) 118914) ((-1222 . -1034) 118700) ((-995 . -411) 118684) ((-427 . -23) T) ((-1114 . -172) T) ((-1245 . -290) T) ((-650 . -713) 118654) ((-144 . -1094) T) ((-48 . -998) T) ((-407 . -231) 118638) ((-295 . -235) 118588) ((-867 . -916) T) ((-867 . -816) NIL) ((-866 . -614) 118560) ((-860 . -846) T) ((-1222 . -338) 118530) ((-1222 . -377) 118500) ((-222 . -1115) 118484) ((-1259 . -288) 118461) ((-1203 . -644) 118386) ((-959 . -21) T) ((-959 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-711 . -21) T) ((-711 . -25) T) ((-707 . -644) 118351) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-995 . -1052) T) ((-866 . -1045) T) ((-770 . -102) T) ((-1244 . -363) 118330) ((-1243 . -896) 118236) ((-1223 . -363) 118215) ((-1222 . -896) 118066) ((-1020 . -611) 118048) ((-407 . -824) 118001) ((-1168 . -493) 117967) ((-169 . -916) 117898) ((-1167 . -493) 117864) ((-1161 . -493) 117830) ((-708 . -1094) T) ((-1120 . -493) 117796) ((-580 . -1051) 117783) ((-564 . -1051) 117770) ((-495 . -1051) 117735) ((-316 . -290) 117714) ((-313 . -290) T) ((-354 . -611) 117696) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117675) ((-580 . -111) 117660) ((-564 . -111) 117645) ((-495 . -111) 117601) ((-1170 . -882) 117568) ((-897 . -489) 117552) ((-48 . -611) 117534) ((-48 . -612) 117479) ((-240 . -131) 117349) ((-1232 . -916) 117328) ((-812 . -1213) 117307) ((-388 . -490) 117288) ((-1031 . -514) 117132) ((-388 . -611) 117098) ((-812 . -556) 117029) ((-585 . -644) 117004) ((-264 . -47) 116976) ((-247 . -47) 116933) ((-531 . -509) 116910) ((-580 . -614) 116882) ((-564 . -614) 116854) ((-495 . -614) 116787) ((-1068 . -1209) T) ((-996 . -1209) T) ((-695 . -1051) 116752) ((-1251 . -23) T) ((-1251 . -1106) T) ((-1244 . -1106) T) ((-1223 . -1106) T) ((-999 . -370) 116724) ((-112 . -368) T) ((-474 . -896) 116630) ((-1244 . -23) T) ((-900 . -611) 116612) ((-55 . -614) 116594) ((-91 . -107) 116578) ((-1203 . -722) T) ((-901 . -846) 116529) ((-697 . -1145) T) ((-695 . -111) 116485) ((-1223 . -23) T) ((-595 . -1106) T) ((-594 . -1106) T) ((-708 . -713) 116314) ((-707 . -722) T) ((-1114 . -290) T) ((-1000 . -131) T) ((-487 . -846) T) ((-967 . -131) T) ((-910 . -131) T) ((-795 . -25) T) ((-217 . -846) T) ((-795 . -21) T) ((-580 . -1045) T) ((-564 . -1045) T) ((-495 . -1045) T) ((-595 . -23) T) ((-343 . -1278) 116291) ((-319 . -452) 116270) ((-339 . -309) 116257) ((-594 . -23) T) ((-427 . -131) T) ((-654 . -644) 116231) ((-245 . -1006) 116215) ((-868 . -307) T) ((-1283 . -1273) 116199) ((-767 . -788) T) ((-767 . -791) T) ((-697 . -38) 116186) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1144 . -235) 116136) ((-1081 . -905) 116115) ((-116 . -38) 116102) ((-209 . -796) T) ((-208 . -796) T) ((-207 . -796) T) ((-206 . -796) T) ((-868 . -1018) 116080) ((-1272 . -489) 116064) ((-778 . -905) 116043) ((-776 . -905) 116022) ((-1182 . -1209) T) ((-454 . -905) 116001) ((-733 . -489) 115985) ((-1081 . -644) 115910) ((-695 . -614) 115845) ((-778 . -644) 115770) ((-621 . -1051) 115757) ((-479 . -1209) T) ((-343 . -368) T) ((-141 . -489) 115739) ((-776 . -644) 115664) ((-1135 . -1209) T) ((-549 . -846) T) ((-461 . -644) 115635) ((-264 . -882) 115494) ((-247 . -882) NIL) ((-117 . -1051) 115439) ((-454 . -644) 115364) ((-660 . -1034) 115341) ((-621 . -111) 115326) ((-355 . -1034) 115310) ((-352 . -1034) 115294) ((-344 . -1034) 115278) ((-264 . -1034) 115122) ((-247 . -1034) 114998) ((-117 . -111) 114927) ((-59 . -1209) T) ((-519 . -1209) T) ((-516 . -1209) T) ((-497 . -1209) T) ((-496 . -1209) T) ((-437 . -611) 114909) ((-434 . -611) 114891) ((-3 . -102) T) ((-1023 . -1202) 114860) ((-829 . -102) T) ((-685 . -57) 114818) ((-695 . -1045) T) ((-50 . -644) 114792) ((-289 . -452) T) ((-476 . -1202) 114761) ((0 . -102) T) ((-581 . -644) 114726) ((-518 . -644) 114671) ((-49 . -102) T) ((-906 . -1034) 114658) ((-695 . -243) T) ((-1074 . -409) 114637) ((-727 . -637) 114585) ((-995 . -1094) T) ((-708 . -172) 114476) ((-621 . -614) 114371) ((-487 . -988) 114353) ((-264 . -377) 114337) ((-247 . -377) 114321) ((-399 . -1094) T) ((-1022 . -102) 114299) ((-339 . -38) 114283) ((-217 . -988) 114265) ((-117 . -614) 114195) ((-174 . -38) 114127) ((-1243 . -307) 114106) ((-1222 . -307) 114085) ((-654 . -722) T) ((-99 . -611) 114067) ((-1161 . -637) 114019) ((-485 . -25) T) ((-485 . -21) T) ((-1222 . -1018) 113971) ((-621 . -1045) T) ((-379 . -404) T) ((-390 . -102) T) ((-1099 . -616) 113886) ((-264 . -896) 113832) ((-247 . -896) 113809) ((-117 . -1045) T) ((-812 . -1106) T) ((-1081 . -722) T) ((-621 . -233) 113788) ((-619 . -102) T) ((-778 . -722) T) ((-776 . -722) T) ((-413 . -1106) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1214 . -846) T) ((-454 . -722) T) ((-812 . -23) T) ((-727 . -25) T) ((-727 . -21) T) ((-1071 . -286) 113767) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -763) 113749) ((-690 . -1051) 113699) ((-1251 . -131) T) ((-1244 . -131) T) ((-1223 . -131) T) ((-1168 . -25) T) ((-1136 . -411) 113683) ((-633 . -367) 113615) ((-605 . -367) 113547) ((-1150 . -1143) 113531) ((-103 . -1094) 113509) ((-1168 . -21) T) ((-1167 . -21) T) ((-861 . -611) 113491) ((-995 . -713) 113439) ((-223 . -644) 113406) ((-690 . -111) 113340) ((-50 . -722) T) ((-1167 . -25) T) ((-351 . -349) T) ((-1161 . -21) T) ((-1074 . -452) 113291) ((-1161 . -25) T) ((-708 . -514) 113238) ((-581 . -722) T) ((-518 . -722) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-595 . -131) T) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113217) ((-1217 . -102) T) ((-313 . -286) 113152) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-687 . -614) 113136) ((-1287 . -611) 113118) ((-1287 . -612) 113100) ((-1074 . -402) 113079) ((-1031 . -489) 113010) ((-564 . -791) T) ((-564 . -788) T) ((-1057 . -235) 112956) ((-359 . -402) 112907) ((-353 . -402) 112858) ((-345 . -402) 112809) ((-1274 . -1106) T) ((-690 . -614) 112744) ((-1274 . -23) T) ((-1261 . -102) T) ((-175 . -611) 112726) ((-1136 . -1052) T) ((-547 . -368) T) ((-666 . -740) 112710) ((-1172 . -145) 112689) ((-1172 . -147) 112668) ((-1140 . -1094) T) ((-1140 . -1065) 112637) ((-69 . -1209) T) ((-1020 . -1051) 112574) ((-862 . -1052) T) ((-240 . -637) 112480) ((-690 . -1045) T) ((-354 . -1051) 112425) ((-61 . -1209) T) ((-1020 . -111) 112341) ((-897 . -611) 112252) ((-690 . -243) T) ((-690 . -233) NIL) ((-839 . -844) 112231) ((-695 . -791) T) ((-695 . -788) T) ((-999 . -411) 112208) ((-354 . -111) 112137) ((-379 . -916) T) ((-407 . -844) 112116) ((-708 . -290) 112027) ((-223 . -722) T) ((-1251 . -493) 111993) ((-1244 . -493) 111959) ((-1223 . -493) 111925) ((-578 . -1094) T) ((-316 . -998) 111904) ((-222 . -1094) 111882) ((-1216 . -840) T) ((-319 . -969) 111844) ((-105 . -102) T) ((-48 . -1051) 111809) ((-1283 . -102) T) ((-381 . -102) T) ((-48 . -111) 111765) ((-1000 . -637) 111747) ((-1245 . -611) 111729) ((-531 . -102) T) ((-500 . -102) T) ((-1127 . -1128) 111713) ((-152 . -1266) 111697) ((-245 . -1209) T) ((-1208 . -102) T) ((-1020 . -614) 111634) ((-1166 . -1213) 111613) ((-354 . -614) 111543) ((-1119 . -1213) 111522) ((-240 . -21) 111432) ((-240 . -25) 111283) ((-127 . -119) 111267) ((-121 . -119) 111251) ((-44 . -740) 111235) ((-1166 . -556) 111146) ((-1119 . -556) 111077) ((-1216 . -1094) T) ((-1031 . -286) 111052) ((-1160 . -1077) T) ((-990 . -1077) T) ((-812 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1106) 110962) ((-250 . -1106) 110872) ((-1020 . -1045) T) ((-999 . -1052) T) ((-48 . -614) 110805) ((-343 . -644) 110750) ((-619 . -38) 110734) ((-1272 . -611) 110696) ((-1272 . -612) 110657) ((-1071 . -611) 110639) ((-1020 . -243) T) ((-354 . -1045) T) ((-811 . -1266) 110609) ((-251 . -23) T) ((-250 . -23) T) ((-983 . -611) 110591) ((-733 . -612) 110552) ((-733 . -611) 110534) ((-795 . -846) 110513) ((-1153 . -151) 110460) ((-995 . -514) 110372) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 110353) ((-1000 . -25) T) ((-141 . -611) 110335) ((-141 . -612) 110294) ((-906 . -307) T) ((-1000 . -21) T) ((-967 . -25) T) ((-910 . -21) T) ((-910 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-839 . -411) 110278) ((-48 . -1045) T) ((-1281 . -1273) 110262) ((-1279 . -1273) 110246) ((-1031 . -602) 110221) ((-316 . -612) 110082) ((-316 . -611) 110064) ((-313 . -612) NIL) ((-313 . -611) 110046) ((-48 . -243) T) ((-48 . -233) T) ((-650 . -286) 110007) ((-550 . -235) 109957) ((-139 . -611) 109924) ((-136 . -611) 109906) ((-114 . -611) 109888) ((-477 . -38) 109853) ((-1283 . -1280) 109832) ((-1274 . -131) T) ((-1282 . -1052) T) ((-1076 . -102) T) ((-88 . -1209) T) ((-500 . -309) NIL) ((-996 . -107) 109816) ((-885 . -1094) T) ((-881 . -1094) T) ((-1259 . -647) 109800) ((-1259 . -373) 109784) ((-327 . -1209) T) ((-592 . -846) T) ((-1136 . -1094) T) ((-1136 . -1048) 109724) ((-103 . -514) 109657) ((-923 . -611) 109639) ((-343 . -722) T) ((-30 . -611) 109621) ((-862 . -1094) T) ((-839 . -1052) 109600) ((-40 . -644) 109545) ((-225 . -1213) T) ((-407 . -1052) T) ((-1152 . -151) 109527) ((-995 . -290) 109478) ((-615 . -1094) T) ((-225 . -556) T) ((-319 . -1240) 109462) ((-319 . -1237) 109432) ((-1182 . -1185) 109411) ((-1069 . -611) 109393) ((-643 . -151) 109377) ((-630 . -151) 109323) ((-1182 . -107) 109273) ((-479 . -1185) 109252) ((-487 . -147) T) ((-487 . -145) NIL) ((-1114 . -612) 109167) ((-438 . -611) 109149) ((-217 . -147) T) ((-217 . -145) NIL) ((-1114 . -611) 109131) ((-129 . -102) T) ((-52 . -102) T) ((-1223 . -637) 109083) ((-479 . -107) 109033) ((-989 . -23) T) ((-1283 . -38) 109003) ((-1166 . -1106) T) ((-1119 . -1106) T) ((-1056 . -1213) T) ((-311 . -102) T) ((-850 . -1106) T) ((-948 . -1213) 108982) ((-481 . -1213) 108961) ((-727 . -846) 108940) ((-1056 . -556) T) ((-948 . -556) 108871) ((-1166 . -23) T) ((-1119 . -23) T) ((-850 . -23) T) ((-481 . -556) 108802) ((-1136 . -713) 108734) ((-1140 . -514) 108667) ((-1031 . -612) NIL) ((-1031 . -611) 108649) ((-96 . -1077) T) ((-862 . -713) 108619) ((-1203 . -47) 108588) ((-251 . -131) T) ((-250 . -131) T) ((-1098 . -1094) T) ((-999 . -1094) T) ((-62 . -611) 108570) ((-1161 . -846) NIL) ((-1020 . -788) T) ((-1020 . -791) T) ((-1287 . -1051) 108557) ((-1287 . -111) 108542) ((-866 . -644) 108529) ((-1251 . -25) T) ((-1251 . -21) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1023 . -151) 108513) ((-868 . -816) 108492) ((-868 . -916) T) ((-708 . -286) 108419) ((-595 . -21) T) ((-595 . -25) T) ((-594 . -21) T) ((-40 . -722) T) ((-222 . -514) 108352) ((-594 . -25) T) ((-476 . -151) 108336) ((-463 . -151) 108320) ((-917 . -790) T) ((-917 . -722) T) ((-767 . -789) T) ((-767 . -790) T) ((-506 . -1094) T) ((-502 . -1094) T) ((-767 . -722) T) ((-225 . -363) T) ((-1150 . -1094) 108298) ((-867 . -1213) T) ((-650 . -611) 108280) ((-867 . -556) T) ((-690 . -368) NIL) ((-1287 . -614) 108262) ((-1282 . -1094) T) ((-359 . -1266) 108246) ((-666 . -102) T) ((-353 . -1266) 108230) ((-345 . -1266) 108214) ((-548 . -102) T) ((-520 . -846) 108193) ((-813 . -452) 108172) ((-1042 . -1094) T) ((-1042 . -1065) 108101) ((-1023 . -972) 108070) ((-815 . -1106) T) ((-999 . -713) 108015) ((-386 . -1106) T) ((-476 . -972) 107984) ((-463 . -972) 107953) ((-110 . -151) 107935) ((-73 . -611) 107917) ((-889 . -611) 107899) ((-1074 . -720) 107878) ((-1287 . -1045) T) ((-812 . -637) 107826) ((-294 . -1052) 107768) ((-169 . -1213) 107673) ((-225 . -1106) T) ((-324 . -23) T) ((-1161 . -988) 107625) ((-839 . -1094) T) ((-1245 . -1051) 107530) ((-1120 . -736) 107509) ((-1243 . -916) 107488) ((-1222 . -916) 107467) ((-866 . -722) T) ((-169 . -556) 107378) ((-580 . -644) 107365) ((-564 . -644) 107352) ((-407 . -1094) T) ((-263 . -1094) T) ((-213 . -611) 107334) ((-495 . -644) 107299) ((-225 . -23) T) ((-1222 . -816) 107252) ((-1281 . -102) T) ((-354 . -1278) 107229) ((-1279 . -102) T) ((-1245 . -111) 107121) ((-144 . -611) 107103) ((-989 . -131) T) ((-44 . -102) T) ((-240 . -846) 107054) ((-1232 . -1213) 107033) ((-103 . -489) 107017) ((-1282 . -713) 106987) ((-1081 . -47) 106948) ((-1056 . -1106) T) ((-948 . -1106) T) ((-127 . -34) T) ((-121 . -34) T) ((-778 . -47) 106925) ((-776 . -47) 106897) ((-1232 . -556) 106808) ((-354 . -368) T) ((-481 . -1106) T) ((-1166 . -131) T) ((-1119 . -131) T) ((-454 . -47) 106787) ((-867 . -363) T) ((-850 . -131) T) ((-152 . -102) T) ((-1056 . -23) T) ((-948 . -23) T) ((-571 . -556) T) ((-812 . -25) T) ((-812 . -21) T) ((-1136 . -514) 106720) ((-591 . -1077) T) ((-585 . -1034) 106704) ((-1245 . -614) 106578) ((-481 . -23) T) ((-351 . -1052) T) ((-1203 . -896) 106559) ((-666 . -309) 106497) ((-1107 . -1266) 106467) ((-695 . -644) 106432) ((-999 . -172) T) ((-959 . -145) 106411) ((-633 . -1094) T) ((-605 . -1094) T) ((-959 . -147) 106390) ((-1000 . -846) T) ((-731 . -147) 106369) ((-731 . -145) 106348) ((-967 . -846) T) ((-474 . -916) 106327) ((-316 . -1051) 106237) ((-313 . -1051) 106166) ((-995 . -286) 106124) ((-407 . -713) 106076) ((-697 . -844) T) ((-1245 . -1045) T) ((-316 . -111) 105972) ((-313 . -111) 105885) ((-960 . -102) T) ((-811 . -102) 105675) ((-708 . -612) NIL) ((-708 . -611) 105657) ((-654 . -1034) 105553) ((-1245 . -326) 105497) ((-1031 . -288) 105472) ((-580 . -722) T) ((-564 . -790) T) ((-169 . -363) 105423) ((-564 . -787) T) ((-564 . -722) T) ((-495 . -722) T) ((-1140 . -489) 105407) ((-1081 . -882) NIL) ((-867 . -1106) T) ((-117 . -905) NIL) ((-1281 . -1280) 105383) ((-1279 . -1280) 105362) ((-778 . -882) NIL) ((-776 . -882) 105221) ((-1274 . -25) T) ((-1274 . -21) T) ((-1206 . -102) 105199) ((-1100 . -395) T) ((-621 . -644) 105186) ((-454 . -882) NIL) ((-671 . -102) 105164) ((-1081 . -1034) 104991) ((-867 . -23) T) ((-778 . -1034) 104850) ((-776 . -1034) 104707) ((-117 . -644) 104652) ((-454 . -1034) 104528) ((-316 . -614) 104092) ((-313 . -614) 103975) ((-645 . -1034) 103959) ((-625 . -102) T) ((-222 . -489) 103943) ((-1259 . -34) T) ((-136 . -614) 103927) ((-633 . -713) 103911) ((-605 . -713) 103895) ((-666 . -38) 103855) ((-319 . -102) T) ((-85 . -611) 103837) ((-50 . -1034) 103821) ((-1114 . -1051) 103808) ((-1081 . -377) 103792) ((-778 . -377) 103776) ((-695 . -722) T) ((-695 . -790) T) ((-695 . -787) T) ((-581 . -1034) 103763) ((-518 . -1034) 103740) ((-60 . -57) 103702) ((-324 . -131) T) ((-316 . -1045) 103592) ((-313 . -1045) T) ((-169 . -1106) T) ((-776 . -377) 103576) ((-45 . -151) 103526) ((-1000 . -988) 103508) ((-454 . -377) 103492) ((-407 . -172) T) ((-316 . -243) 103471) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1094) 103253) ((-225 . -131) T) ((-1114 . -111) 103238) ((-169 . -23) T) ((-795 . -147) 103217) ((-795 . -145) 103196) ((-251 . -637) 103102) ((-250 . -637) 103008) ((-319 . -284) 102974) ((-1150 . -514) 102907) ((-1127 . -1094) T) ((-225 . -1054) T) ((-811 . -309) 102845) ((-1081 . -896) 102780) ((-778 . -896) 102723) ((-776 . -896) 102707) ((-1281 . -38) 102677) ((-1279 . -38) 102647) ((-1232 . -1106) T) ((-851 . -1106) T) ((-454 . -896) 102624) ((-854 . -1094) T) ((-1232 . -23) T) ((-1114 . -614) 102596) ((-571 . -1106) T) ((-851 . -23) T) ((-621 . -722) T) ((-355 . -916) T) ((-352 . -916) T) ((-289 . -102) T) ((-344 . -916) T) ((-1056 . -131) T) ((-966 . -1077) T) ((-948 . -131) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-117 . -722) T) ((-690 . -905) NIL) ((-1042 . -514) 102497) ((-481 . -131) T) ((-571 . -23) T) ((-671 . -309) 102435) ((-633 . -757) T) ((-605 . -757) T) ((-1223 . -846) NIL) ((-999 . -290) T) ((-251 . -21) T) ((-690 . -644) 102385) ((-351 . -1094) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102369) ((-2 . -102) T) ((-906 . -916) T) ((-482 . -1266) 102339) ((-223 . -1034) 102316) ((-1114 . -1045) T) ((-707 . -307) T) ((-294 . -713) 102258) ((-697 . -1052) T) ((-487 . -452) T) ((-407 . -514) 102170) ((-217 . -452) T) ((-1114 . -233) T) ((-295 . -151) 102120) ((-995 . -612) 102081) ((-995 . -611) 102063) ((-985 . -611) 102045) ((-116 . -1052) T) ((-650 . -1051) 102029) ((-225 . -493) T) ((-399 . -611) 102011) ((-399 . -612) 101988) ((-1049 . -1266) 101958) ((-650 . -111) 101937) ((-1136 . -489) 101921) ((-811 . -38) 101891) ((-63 . -441) T) ((-63 . -395) T) ((-1153 . -102) T) ((-867 . -131) T) ((-484 . -102) 101869) ((-1287 . -368) T) ((-1074 . -102) T) ((-1055 . -102) T) ((-351 . -713) 101814) ((-727 . -147) 101793) ((-727 . -145) 101772) ((-650 . -614) 101690) ((-1020 . -644) 101627) ((-523 . -1094) 101605) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1094) T) ((-354 . -644) 101550) ((-1166 . -637) 101498) ((-1119 . -637) 101446) ((-385 . -509) 101425) ((-829 . -844) 101404) ((-379 . -1213) T) ((-690 . -722) T) ((-339 . -1052) T) ((-1223 . -988) 101356) ((-174 . -1052) T) ((-103 . -611) 101288) ((-1168 . -145) 101267) ((-1168 . -147) 101246) ((-379 . -556) T) ((-1167 . -147) 101225) ((-1167 . -145) 101204) ((-1161 . -145) 101111) ((-407 . -290) T) ((-1161 . -147) 101018) ((-1120 . -147) 100997) ((-1120 . -145) 100976) ((-319 . -38) 100817) ((-169 . -131) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-650 . -1045) T) ((-48 . -644) 100782) ((-889 . -614) 100759) ((-1160 . -102) T) ((-990 . -102) T) ((-989 . -21) T) ((-127 . -1006) 100743) ((-121 . -1006) 100727) ((-989 . -25) T) ((-897 . -119) 100711) ((-1152 . -102) T) ((-812 . -846) 100690) ((-1232 . -131) T) ((-1166 . -25) T) ((-1166 . -21) T) ((-851 . -131) T) ((-1119 . -25) T) ((-1119 . -21) T) ((-850 . -25) T) ((-850 . -21) T) ((-778 . -307) 100669) ((-643 . -102) 100647) ((-630 . -102) T) ((-1153 . -309) 100442) ((-571 . -131) T) ((-619 . -844) 100421) ((-1150 . -489) 100405) ((-1144 . -151) 100355) ((-1140 . -611) 100317) ((-1140 . -612) 100278) ((-1020 . -787) T) ((-1020 . -790) T) ((-1020 . -722) T) ((-708 . -1051) 100101) ((-484 . -309) 100039) ((-453 . -417) 100009) ((-351 . -172) T) ((-289 . -38) 99996) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1034) 99973) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -722) T) ((-708 . -111) 99782) ((-666 . -231) 99766) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 99715) ((-108 . -309) NIL) ((-72 . -395) T) ((-1107 . -102) 99505) ((-829 . -411) 99489) ((-1114 . -791) T) ((-1114 . -788) T) ((-697 . -1094) T) ((-578 . -611) 99471) ((-379 . -363) T) ((-169 . -493) 99449) ((-222 . -611) 99381) ((-134 . -1094) T) ((-116 . -1094) T) ((-48 . -722) T) ((-1042 . -489) 99346) ((-141 . -425) 99328) ((-141 . -368) T) ((-1023 . -102) T) ((-512 . -509) 99307) ((-708 . -614) 99063) ((-476 . -102) T) ((-463 . -102) T) ((-1030 . -1106) T) ((-1216 . -611) 99045) ((-1175 . -1034) 98981) ((-1168 . -35) 98947) ((-1168 . -95) 98913) ((-1168 . -1197) 98879) ((-1168 . -1194) 98845) ((-1152 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1074 . -1145) 98824) ((-1167 . -1194) 98790) ((-1167 . -1197) 98756) ((-1030 . -23) T) ((-1167 . -95) 98722) ((-571 . -493) T) ((-1167 . -35) 98688) ((-1161 . -1194) 98654) ((-1161 . -1197) 98620) ((-1161 . -95) 98586) ((-361 . -1106) T) ((-359 . -1145) 98565) ((-353 . -1145) 98544) ((-345 . -1145) 98523) ((-1161 . -35) 98489) ((-1120 . -35) 98455) ((-1120 . -95) 98421) ((-108 . -1145) T) ((-1120 . -1197) 98387) ((-829 . -1052) 98366) ((-643 . -309) 98304) ((-630 . -309) 98155) ((-1120 . -1194) 98121) ((-708 . -1045) T) ((-1056 . -637) 98103) ((-1074 . -38) 97971) ((-948 . -637) 97919) ((-1000 . -147) T) ((-1000 . -145) NIL) ((-379 . -1106) T) ((-324 . -25) T) ((-322 . -23) T) ((-939 . -846) 97898) ((-708 . -326) 97875) ((-481 . -637) 97823) ((-40 . -1034) 97711) ((-708 . -233) T) ((-697 . -713) 97698) ((-339 . -1094) T) ((-174 . -1094) T) ((-331 . -846) T) ((-418 . -452) 97648) ((-379 . -23) T) ((-359 . -38) 97613) ((-353 . -38) 97578) ((-345 . -38) 97543) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-832 . -1106) T) ((-108 . -38) 97493) ((-823 . -1106) T) ((-770 . -1094) T) ((-116 . -713) 97480) ((-668 . -1034) 97464) ((-610 . -102) T) ((-832 . -23) T) ((-823 . -23) T) ((-1150 . -286) 97441) ((-1107 . -309) 97379) ((-1096 . -235) 97363) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97340) ((-96 . -102) T) ((-649 . -848) 97324) ((-1129 . -1077) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-811 . -231) 97293) ((-948 . -25) T) ((-948 . -21) T) ((-619 . -1052) T) ((-1114 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1023 . -309) 97231) ((-885 . -611) 97213) ((-881 . -611) 97195) ((-251 . -846) 97146) ((-250 . -846) 97097) ((-523 . -514) 97030) ((-867 . -637) 97007) ((-476 . -309) 96945) ((-463 . -309) 96883) ((-351 . -290) T) ((-1150 . -1247) 96867) ((-1136 . -611) 96829) ((-1136 . -612) 96790) ((-1134 . -102) T) ((-995 . -1051) 96686) ((-40 . -896) 96638) ((-1150 . -602) 96615) ((-1287 . -644) 96602) ((-862 . -490) 96579) ((-1057 . -151) 96525) ((-868 . -1213) T) ((-995 . -111) 96407) ((-339 . -713) 96391) ((-862 . -611) 96353) ((-174 . -713) 96285) ((-407 . -286) 96243) ((-868 . -556) T) ((-108 . -400) 96225) ((-84 . -384) T) ((-84 . -395) T) ((-697 . -172) T) ((-615 . -611) 96207) ((-99 . -722) T) ((-482 . -102) 95997) ((-99 . -473) T) ((-116 . -172) T) ((-1107 . -38) 95967) ((-169 . -637) 95915) ((-1049 . -102) T) ((-995 . -614) 95805) ((-867 . -25) T) ((-811 . -238) 95784) ((-867 . -21) T) ((-814 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95762) ((-127 . -1209) T) ((-121 . -1209) T) ((-1030 . -131) T) ((-666 . -367) 95746) ((-995 . -1045) T) ((-1232 . -637) 95694) ((-1098 . -611) 95676) ((-999 . -611) 95658) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1094) T) ((-999 . -612) 95642) ((-995 . -243) 95621) ((-995 . -233) 95600) ((-1287 . -722) T) ((-1251 . -145) 95579) ((-829 . -1094) T) ((-1251 . -147) 95558) ((-1244 . -147) 95537) ((-1244 . -145) 95516) ((-1243 . -1213) 95495) ((-1223 . -145) 95402) ((-1223 . -147) 95309) ((-1222 . -1213) 95288) ((-379 . -131) T) ((-564 . -882) 95270) ((0 . -1094) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1094) T) ((-1245 . -644) 95175) ((-1243 . -556) 95126) ((-710 . -1106) T) ((-1222 . -556) 95077) ((-564 . -1034) 95059) ((-594 . -147) 95038) ((-594 . -145) 95017) ((-495 . -1034) 94960) ((-1129 . -1131) T) ((-87 . -384) T) ((-87 . -395) T) ((-868 . -363) T) ((-832 . -131) T) ((-823 . -131) T) ((-710 . -23) T) ((-506 . -611) 94926) ((-502 . -611) 94908) ((-1283 . -1052) T) ((-379 . -1054) T) ((-1022 . -1094) 94886) ((-55 . -1034) 94868) ((-897 . -34) T) ((-482 . -309) 94806) ((-591 . -102) T) ((-1150 . -612) 94767) ((-1150 . -611) 94699) ((-1166 . -846) 94678) ((-45 . -102) T) ((-1119 . -846) 94657) ((-813 . -102) T) ((-1232 . -25) T) ((-1232 . -21) T) ((-851 . -25) T) ((-44 . -367) 94641) ((-851 . -21) T) ((-727 . -452) 94592) ((-1282 . -611) 94574) ((-1049 . -309) 94512) ((-667 . -1077) T) ((-604 . -1077) T) ((-390 . -1094) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1077) T) ((-161 . -1077) T) ((-156 . -1077) T) ((-154 . -1077) T) ((-619 . -1094) T) ((-695 . -882) 94494) ((-1259 . -1209) T) ((-227 . -309) 94432) ((-144 . -368) T) ((-1042 . -612) 94374) ((-1042 . -611) 94317) ((-313 . -905) NIL) ((-1217 . -840) T) ((-695 . -1034) 94262) ((-707 . -916) T) ((-474 . -1213) 94241) ((-1167 . -452) 94220) ((-1161 . -452) 94199) ((-330 . -102) T) ((-868 . -1106) T) ((-316 . -644) 94020) ((-313 . -644) 93949) ((-474 . -556) 93900) ((-339 . -514) 93866) ((-550 . -151) 93816) ((-40 . -307) T) ((-839 . -611) 93798) ((-697 . -290) T) ((-868 . -23) T) ((-379 . -493) T) ((-1074 . -231) 93768) ((-512 . -102) T) ((-407 . -612) 93575) ((-407 . -611) 93557) ((-263 . -611) 93539) ((-116 . -290) T) ((-1245 . -722) T) ((-1243 . -363) 93518) ((-1222 . -363) 93497) ((-1272 . -34) T) ((-1217 . -1094) T) ((-117 . -1209) T) ((-108 . -231) 93479) ((-1172 . -102) T) ((-477 . -1094) T) ((-523 . -489) 93463) ((-733 . -34) T) ((-482 . -38) 93433) ((-141 . -34) T) ((-117 . -880) 93410) ((-117 . -882) NIL) ((-621 . -1034) 93293) ((-641 . -846) 93272) ((-1271 . -102) T) ((-295 . -102) T) ((-708 . -368) 93251) ((-117 . -1034) 93228) ((-390 . -713) 93212) ((-619 . -713) 93196) ((-45 . -309) 93000) ((-812 . -145) 92979) ((-812 . -147) 92958) ((-1282 . -382) 92937) ((-815 . -846) T) ((-1261 . -1094) T) ((-1153 . -229) 92884) ((-386 . -846) 92863) ((-1251 . -1197) 92829) ((-1251 . -1194) 92795) ((-1244 . -1194) 92761) ((-515 . -131) T) ((-1244 . -1197) 92727) ((-1223 . -1194) 92693) ((-1223 . -1197) 92659) ((-1251 . -35) 92625) ((-1251 . -95) 92591) ((-633 . -611) 92560) ((-605 . -611) 92529) ((-225 . -846) T) ((-1244 . -95) 92495) ((-1244 . -35) 92461) ((-1243 . -1106) T) ((-1114 . -644) 92448) ((-1223 . -95) 92414) ((-1222 . -1106) T) ((-592 . -151) 92396) ((-1074 . -349) 92375) ((-174 . -290) T) ((-117 . -377) 92352) ((-117 . -338) 92329) ((-1223 . -35) 92295) ((-866 . -307) T) ((-313 . -790) NIL) ((-313 . -787) NIL) ((-316 . -722) 92144) ((-313 . -722) T) ((-474 . -363) 92123) ((-359 . -349) 92102) ((-353 . -349) 92081) ((-345 . -349) 92060) ((-316 . -473) 92039) ((-1243 . -23) T) ((-1222 . -23) T) ((-714 . -1106) T) ((-710 . -131) T) ((-649 . -102) T) ((-477 . -713) 92004) ((-45 . -282) 91954) ((-105 . -1094) T) ((-68 . -611) 91936) ((-966 . -102) T) ((-860 . -102) T) ((-621 . -896) 91895) ((-1283 . -1094) T) ((-381 . -1094) T) ((-1208 . -1094) T) ((-1107 . -231) 91864) ((-82 . -1209) T) ((-1056 . -846) T) ((-948 . -846) 91843) ((-117 . -896) NIL) ((-778 . -916) 91822) ((-709 . -846) T) ((-531 . -1094) T) ((-500 . -1094) T) ((-355 . -1213) T) ((-352 . -1213) T) ((-344 . -1213) T) ((-264 . -1213) 91801) ((-247 . -1213) 91780) ((-533 . -856) T) ((-481 . -846) 91759) ((-1152 . -824) T) ((-1136 . -1051) 91743) ((-390 . -757) T) ((-690 . -1209) T) ((-687 . -1034) 91727) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 91658) ((-247 . -556) 91589) ((-525 . -1077) T) ((-1136 . -111) 91568) ((-453 . -740) 91538) ((-862 . -1051) 91508) ((-813 . -38) 91450) ((-690 . -880) 91432) ((-690 . -882) 91414) ((-295 . -309) 91218) ((-906 . -1213) T) ((-666 . -411) 91202) ((-862 . -111) 91167) ((-690 . -1034) 91112) ((-1000 . -452) T) ((-906 . -556) T) ((-533 . -611) 91094) ((-581 . -916) T) ((-474 . -1106) T) ((-518 . -916) T) ((-1150 . -288) 91071) ((-910 . -452) T) ((-65 . -611) 91053) ((-630 . -229) 90999) ((-474 . -23) T) ((-1114 . -790) T) ((-868 . -131) T) ((-1114 . -787) T) ((-1274 . -1276) 90978) ((-1114 . -722) T) ((-650 . -644) 90952) ((-294 . -611) 90693) ((-1136 . -614) 90611) ((-1031 . -34) T) ((-811 . -844) 90590) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1283 . -713) 90560) ((-690 . -377) 90542) ((-690 . -338) 90524) ((-477 . -172) T) ((-381 . -713) 90494) ((-862 . -614) 90429) ((-867 . -846) NIL) ((-564 . -1018) T) ((-495 . -1018) T) ((-1127 . -611) 90411) ((-1107 . -238) 90390) ((-214 . -102) T) ((-1144 . -102) T) ((-71 . -611) 90372) ((-1136 . -1045) T) ((-1172 . -38) 90269) ((-854 . -611) 90251) ((-564 . -545) T) ((-666 . -1052) T) ((-727 . -945) 90204) ((-1136 . -233) 90183) ((-1076 . -1094) T) ((-1030 . -25) T) ((-1030 . -21) T) ((-999 . -1051) 90128) ((-901 . -102) T) ((-862 . -1045) T) ((-690 . -896) NIL) ((-355 . -329) 90112) ((-355 . -363) T) ((-352 . -329) 90096) ((-352 . -363) T) ((-344 . -329) 90080) ((-344 . -363) T) ((-487 . -102) T) ((-1271 . -38) 90050) ((-546 . -846) T) ((-523 . -683) 90000) ((-217 . -102) T) ((-1020 . -1034) 89880) ((-999 . -111) 89809) ((-1168 . -969) 89778) ((-1167 . -969) 89740) ((-520 . -151) 89724) ((-1074 . -370) 89703) ((-351 . -611) 89685) ((-322 . -21) T) ((-354 . -1034) 89662) ((-322 . -25) T) ((-1161 . -969) 89631) ((-1120 . -969) 89598) ((-76 . -611) 89580) ((-695 . -307) T) ((-169 . -846) 89559) ((-129 . -840) T) ((-906 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-906 . -329) 89546) ((-86 . -611) 89528) ((-695 . -1018) T) ((-673 . -846) T) ((-1243 . -131) T) ((-1222 . -131) T) ((-897 . -1006) 89512) ((-832 . -21) T) ((-48 . -1034) 89455) ((-832 . -25) T) ((-823 . -25) T) ((-823 . -21) T) ((-1281 . -1052) T) ((-549 . -102) T) ((-1279 . -1052) T) ((-650 . -722) T) ((-1098 . -616) 89358) ((-999 . -614) 89288) ((-1282 . -1051) 89272) ((-1232 . -846) 89251) ((-811 . -411) 89220) ((-103 . -119) 89204) ((-129 . -1094) T) ((-52 . -1094) T) ((-922 . -611) 89186) ((-867 . -988) 89163) ((-819 . -102) T) ((-1282 . -111) 89142) ((-649 . -38) 89112) ((-571 . -846) T) ((-355 . -1106) T) ((-352 . -1106) T) ((-344 . -1106) T) ((-264 . -1106) T) ((-247 . -1106) T) ((-621 . -307) 89091) ((-1144 . -309) 88895) ((-524 . -1077) T) ((-311 . -1094) T) ((-660 . -23) T) ((-482 . -231) 88864) ((-152 . -1052) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-999 . -1045) T) ((-708 . -905) 88843) ((-1150 . -614) 88820) ((-999 . -233) 88792) ((-999 . -243) T) ((-117 . -1018) NIL) ((-906 . -1106) T) ((-1244 . -452) 88771) ((-1223 . -452) 88750) ((-523 . -611) 88682) ((-708 . -644) 88607) ((-407 . -1051) 88559) ((-504 . -611) 88541) ((-906 . -23) T) ((-487 . -309) NIL) ((-1282 . -614) 88497) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88435) ((-811 . -1052) 88365) ((-733 . -1092) 88349) ((-1243 . -493) 88315) ((-1222 . -493) 88281) ((-548 . -840) T) ((-141 . -1092) 88263) ((-477 . -290) T) ((-1282 . -1045) T) ((-1214 . -102) T) ((-1057 . -102) T) ((-839 . -614) 88131) ((-500 . -514) NIL) ((-482 . -238) 88110) ((-407 . -614) 88008) ((-1166 . -145) 87987) ((-1166 . -147) 87966) ((-1119 . -147) 87945) ((-1119 . -145) 87924) ((-633 . -1051) 87908) ((-605 . -1051) 87892) ((-1168 . -1250) 87876) ((-666 . -1094) T) ((-666 . -1048) 87816) ((-1168 . -1237) 87793) ((-548 . -1094) T) ((-487 . -1145) T) ((-1167 . -1242) 87754) ((-1167 . -1237) 87724) ((-1167 . -1240) 87708) ((-217 . -1145) T) ((-343 . -916) T) ((-814 . -266) 87692) ((-633 . -111) 87671) ((-605 . -111) 87650) ((-1161 . -1221) 87611) ((-839 . -1045) 87590) ((-1161 . -1237) 87567) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1161 . -1219) 87551) ((-407 . -1045) T) ((-319 . -1052) T) ((-690 . -307) T) ((-108 . -844) T) ((-708 . -722) T) ((-407 . -243) T) ((-407 . -233) 87530) ((-487 . -38) 87480) ((-217 . -38) 87430) ((-474 . -493) 87396) ((-1216 . -368) T) ((-1152 . -1138) T) ((-1095 . -102) T) ((-697 . -611) 87378) ((-697 . -612) 87293) ((-710 . -21) T) ((-710 . -25) T) ((-1129 . -102) T) ((-134 . -611) 87275) ((-116 . -611) 87257) ((-157 . -25) T) ((-1281 . -1094) T) ((-868 . -637) 87205) ((-1279 . -1094) T) ((-959 . -102) T) ((-731 . -102) T) ((-711 . -102) T) ((-453 . -102) T) ((-812 . -452) 87156) ((-44 . -1094) T) ((-1082 . -846) T) ((-660 . -131) T) ((-1057 . -309) 87007) ((-666 . -713) 86991) ((-289 . -1052) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1094) T) ((-45 . -229) 86941) ((-954 . -846) 86920) ((-995 . -644) 86858) ((-240 . -1266) 86828) ((-1020 . -307) T) ((-294 . -1051) 86749) ((-906 . -131) T) ((-40 . -916) T) ((-487 . -400) 86731) ((-354 . -307) T) ((-217 . -400) 86713) ((-1074 . -411) 86697) ((-294 . -111) 86613) ((-1177 . -846) T) ((-1176 . -846) T) ((-868 . -25) T) ((-868 . -21) T) ((-339 . -611) 86595) ((-1245 . -47) 86539) ((-225 . -147) T) ((-174 . -611) 86521) ((-1107 . -844) 86500) ((-770 . -611) 86482) ((-128 . -846) T) ((-606 . -235) 86429) ((-475 . -235) 86379) ((-1281 . -713) 86349) ((-48 . -307) T) ((-1279 . -713) 86319) ((-65 . -614) 86248) ((-960 . -1094) T) ((-811 . -1094) 86038) ((-312 . -102) T) ((-897 . -1209) T) ((-48 . -1018) T) ((-1222 . -637) 85946) ((-685 . -102) 85924) ((-44 . -713) 85908) ((-550 . -102) T) ((-294 . -614) 85839) ((-67 . -383) T) ((-67 . -395) T) ((-658 . -23) T) ((-666 . -757) T) ((-1206 . -1094) 85817) ((-351 . -1051) 85762) ((-671 . -1094) 85740) ((-1056 . -147) T) ((-948 . -147) 85719) ((-948 . -145) 85698) ((-795 . -102) T) ((-152 . -713) 85682) ((-481 . -147) 85661) ((-481 . -145) 85640) ((-351 . -111) 85569) ((-1074 . -1052) T) ((-322 . -846) 85548) ((-1251 . -969) 85517) ((-625 . -1094) T) ((-1244 . -969) 85479) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85429) ((-359 . -1052) T) ((-353 . -1052) T) ((-345 . -1052) T) ((-294 . -1045) 85371) ((-1223 . -969) 85340) ((-379 . -846) T) ((-108 . -1052) T) ((-995 . -722) T) ((-866 . -916) T) ((-839 . -791) 85319) ((-839 . -788) 85298) ((-418 . -309) 85237) ((-468 . -102) T) ((-594 . -969) 85206) ((-319 . -1094) T) ((-407 . -791) 85185) ((-407 . -788) 85164) ((-500 . -489) 85146) ((-1245 . -1034) 85112) ((-1243 . -21) T) ((-1243 . -25) T) ((-1222 . -21) T) ((-1222 . -25) T) ((-811 . -713) 85054) ((-351 . -614) 84984) ((-695 . -404) T) ((-1272 . -1209) T) ((-604 . -102) T) ((-1107 . -411) 84953) ((-999 . -368) NIL) ((-667 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-733 . -1209) T) ((-44 . -757) T) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-649 . -652) 84937) ((-141 . -1209) T) ((-867 . -147) T) ((-867 . -145) NIL) ((-1208 . -93) T) ((-351 . -1045) T) ((-70 . -383) T) ((-70 . -395) T) ((-1159 . -102) T) ((-666 . -514) 84870) ((-685 . -309) 84808) ((-959 . -38) 84705) ((-731 . -38) 84675) ((-550 . -309) 84479) ((-316 . -1209) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1209) T) ((-289 . -1094) T) ((-1174 . -611) 84461) ((-707 . -1213) T) ((-1150 . -647) 84445) ((-1203 . -556) 84424) ((-707 . -556) T) ((-316 . -880) 84408) ((-316 . -882) 84333) ((-313 . -880) 84294) ((-313 . -882) NIL) ((-795 . -309) 84259) ((-319 . -713) 84100) ((-324 . -323) 84077) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84051) ((-316 . -1034) 83714) ((-225 . -1194) T) ((-225 . -1197) T) ((-3 . -611) 83696) ((-313 . -1034) 83626) ((-2 . -1094) T) ((-2 . |RecordCategory|) T) ((-829 . -611) 83608) ((-1107 . -1052) 83538) ((-580 . -916) T) ((-564 . -816) T) ((-564 . -916) T) ((-495 . -916) T) ((-136 . -1034) 83522) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -611) 83504) ((-169 . -147) 83483) ((-169 . -145) 83434) ((-225 . -35) T) ((-49 . -611) 83416) ((-477 . -1052) T) ((-487 . -231) 83398) ((-484 . -964) 83382) ((-482 . -844) 83361) ((-217 . -231) 83343) ((-81 . -441) T) ((-81 . -395) T) ((-1140 . -34) T) ((-811 . -172) 83322) ((-727 . -102) T) ((-1022 . -611) 83289) ((-500 . -286) 83264) ((-316 . -377) 83233) ((-313 . -377) 83194) ((-313 . -338) 83155) ((-1079 . -611) 83137) ((-812 . -945) 83084) ((-658 . -131) T) ((-1232 . -145) 83063) ((-1232 . -147) 83042) ((-1168 . -102) T) ((-1167 . -102) T) ((-1161 . -102) T) ((-1153 . -1094) T) ((-1120 . -102) T) ((-222 . -34) T) ((-289 . -713) 83029) ((-1153 . -608) 83005) ((-592 . -309) NIL) ((-484 . -1094) 82983) ((-390 . -611) 82965) ((-510 . -846) T) ((-1144 . -229) 82915) ((-1251 . -1250) 82899) ((-1251 . -1237) 82876) ((-1244 . -1242) 82837) ((-1244 . -1237) 82807) ((-1244 . -1240) 82791) ((-1223 . -1221) 82752) ((-1223 . -1237) 82729) ((-619 . -611) 82711) ((-1223 . -1219) 82695) ((-695 . -916) T) ((-1168 . -284) 82661) ((-1167 . -284) 82627) ((-1161 . -284) 82593) ((-1074 . -1094) T) ((-1055 . -1094) T) ((-48 . -302) T) ((-316 . -896) 82559) ((-313 . -896) NIL) ((-1055 . -1062) 82538) ((-1114 . -882) 82520) ((-795 . -38) 82504) ((-264 . -637) 82452) ((-247 . -637) 82400) ((-697 . -1051) 82387) ((-594 . -1237) 82364) ((-1120 . -284) 82330) ((-319 . -172) 82261) ((-359 . -1094) T) ((-353 . -1094) T) ((-345 . -1094) T) ((-500 . -19) 82243) ((-1114 . -1034) 82225) ((-1096 . -151) 82209) ((-108 . -1094) T) ((-116 . -1051) 82196) ((-707 . -363) T) ((-500 . -602) 82171) ((-697 . -111) 82156) ((-436 . -102) T) ((-45 . -1143) 82106) ((-116 . -111) 82091) ((-633 . -716) T) ((-605 . -716) T) ((-811 . -514) 82024) ((-1031 . -1209) T) ((-939 . -151) 82008) ((-1217 . -611) 81990) ((-1166 . -452) 81921) ((-1160 . -1094) T) ((-1152 . -1094) T) ((-525 . -102) T) ((-520 . -102) 81871) ((-1136 . -644) 81845) ((-1119 . -452) 81796) ((-1081 . -1213) 81775) ((-778 . -1213) 81754) ((-776 . -1213) 81733) ((-62 . -1209) T) ((-477 . -611) 81685) ((-477 . -612) 81607) ((-1081 . -556) 81538) ((-990 . -1094) T) ((-778 . -556) 81449) ((-776 . -556) 81380) ((-482 . -411) 81349) ((-621 . -916) 81328) ((-454 . -1213) 81307) ((-727 . -309) 81294) ((-697 . -614) 81266) ((-398 . -611) 81248) ((-671 . -514) 81181) ((-660 . -25) T) ((-660 . -21) T) ((-454 . -556) 81112) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -916) T) ((-117 . -816) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 81094) ((-116 . -614) 81066) ((-1261 . -611) 81048) ((-1215 . -846) T) ((-1203 . -1106) T) ((-1203 . -23) T) ((-1161 . -309) 80933) ((-1120 . -309) 80920) ((-1074 . -713) 80788) ((-862 . -644) 80748) ((-939 . -976) 80732) ((-906 . -21) T) ((-289 . -172) T) ((-906 . -25) T) ((-311 . -93) T) ((-868 . -846) 80683) ((-707 . -1106) T) ((-707 . -23) T) ((-697 . -1045) T) ((-643 . -1094) 80661) ((-630 . -1094) T) ((-581 . -1213) T) ((-518 . -1213) T) ((-697 . -233) T) ((-630 . -608) 80636) ((-581 . -556) T) ((-518 . -556) T) ((-359 . -713) 80588) ((-339 . -1051) 80572) ((-353 . -713) 80524) ((-345 . -713) 80476) ((-174 . -1051) 80408) ((-174 . -111) 80319) ((-108 . -713) 80269) ((-339 . -111) 80248) ((-274 . -1094) T) ((-273 . -1094) T) ((-272 . -1094) T) ((-271 . -1094) T) ((-270 . -1094) T) ((-269 . -1094) T) ((-268 . -1094) T) ((-212 . -1094) T) ((-211 . -1094) T) ((-169 . -1197) 80226) ((-169 . -1194) 80204) ((-209 . -1094) T) ((-208 . -1094) T) ((-116 . -1045) T) ((-207 . -1094) T) ((-206 . -1094) T) ((-203 . -1094) T) ((-202 . -1094) T) ((-201 . -1094) T) ((-200 . -1094) T) ((-199 . -1094) T) ((-198 . -1094) T) ((-197 . -1094) T) ((-196 . -1094) T) ((-195 . -1094) T) ((-194 . -1094) T) ((-193 . -1094) T) ((-240 . -102) 79994) ((-169 . -35) 79972) ((-169 . -95) 79950) ((-650 . -1034) 79846) ((-482 . -1052) 79776) ((-1107 . -1094) 79566) ((-1136 . -34) T) ((-666 . -489) 79550) ((-73 . -1209) T) ((-105 . -611) 79532) ((-1283 . -611) 79514) ((-381 . -611) 79496) ((-339 . -614) 79448) ((-174 . -614) 79365) ((-1208 . -490) 79346) ((-727 . -38) 79195) ((-571 . -1197) T) ((-571 . -1194) T) ((-531 . -611) 79177) ((-520 . -309) 79115) ((-500 . -611) 79097) ((-500 . -612) 79079) ((-1208 . -611) 79045) ((-1161 . -1145) NIL) ((-1023 . -1065) 79014) ((-1023 . -1094) T) ((-1000 . -102) T) ((-967 . -102) T) ((-910 . -102) T) ((-889 . -1034) 78991) ((-1136 . -722) T) ((-999 . -644) 78936) ((-476 . -1094) T) ((-463 . -1094) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1057 . -229) 78882) ((-1168 . -38) 78779) ((-862 . -722) T) ((-690 . -916) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1167 . -38) 78620) ((-339 . -1045) T) ((-1161 . -38) 78416) ((-1074 . -172) T) ((-174 . -1045) T) ((-1120 . -38) 78313) ((-708 . -47) 78290) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78264) ((-497 . -57) 78214) ((-351 . -1278) 78191) ((-225 . -452) T) ((-319 . -290) 78142) ((-345 . -172) T) ((-174 . -243) T) ((-1222 . -846) 78041) ((-108 . -172) T) ((-868 . -988) 78025) ((-654 . -1106) T) ((-581 . -363) T) ((-581 . -329) 78012) ((-518 . -329) 77989) ((-518 . -363) T) ((-316 . -307) 77968) ((-313 . -307) T) ((-600 . -846) 77947) ((-1107 . -713) 77889) ((-520 . -282) 77873) ((-654 . -23) T) ((-418 . -231) 77857) ((-313 . -1018) NIL) ((-336 . -23) T) ((-103 . -1006) 77841) ((-45 . -36) 77820) ((-610 . -1094) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77758) ((-1081 . -1106) T) ((-1282 . -644) 77732) ((-778 . -1106) T) ((-776 . -1106) T) ((-454 . -1106) T) ((-1056 . -452) T) ((-948 . -452) 77683) ((-1109 . -1077) T) ((-110 . -1094) T) ((-1081 . -23) T) ((-813 . -1052) T) ((-778 . -23) T) ((-776 . -23) T) ((-481 . -452) 77634) ((-1153 . -514) 77417) ((-381 . -382) 77396) ((-1172 . -411) 77380) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1094) T) ((-484 . -514) 77313) ((-289 . -290) T) ((-1076 . -611) 77295) ((-1076 . -612) 77276) ((-407 . -905) 77255) ((-50 . -1106) T) ((-1020 . -916) T) ((-999 . -722) T) ((-708 . -882) NIL) ((-581 . -1106) T) ((-518 . -1106) T) ((-839 . -644) 77228) ((-1203 . -131) T) ((-1161 . -400) 77180) ((-1000 . -309) NIL) ((-811 . -489) 77164) ((-354 . -916) T) ((-1150 . -34) T) ((-407 . -644) 77116) ((-50 . -23) T) ((-707 . -131) T) ((-708 . -1034) 76996) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 76967) ((-1134 . -1094) T) ((-1274 . -1273) 76951) ((-697 . -791) T) ((-697 . -788) T) ((-1114 . -307) T) ((-379 . -147) T) ((-280 . -611) 76933) ((-1222 . -988) 76903) ((-48 . -916) T) ((-671 . -489) 76887) ((-251 . -1266) 76857) ((-250 . -1266) 76827) ((-1170 . -846) T) ((-1107 . -172) 76806) ((-1114 . -1018) T) ((-1042 . -34) T) ((-832 . -147) 76785) ((-832 . -145) 76764) ((-733 . -107) 76748) ((-610 . -132) T) ((-482 . -1094) 76538) ((-1172 . -1052) T) ((-867 . -452) T) ((-85 . -1209) T) ((-240 . -38) 76508) ((-141 . -107) 76490) ((-708 . -377) 76474) ((-829 . -614) 76342) ((-1114 . -545) T) ((-579 . -102) T) ((-129 . -490) 76324) ((-390 . -1051) 76308) ((-1282 . -722) T) ((-1166 . -945) 76277) ((-129 . -611) 76244) ((-52 . -611) 76226) ((-1119 . -945) 76193) ((-649 . -411) 76177) ((-1271 . -1052) T) ((-619 . -1051) 76161) ((-658 . -25) T) ((-658 . -21) T) ((-1152 . -514) NIL) ((-1251 . -102) T) ((-1244 . -102) T) ((-390 . -111) 76140) ((-222 . -254) 76124) ((-1223 . -102) T) ((-1049 . -1094) T) ((-1000 . -1145) T) ((-1049 . -1048) 76064) ((-814 . -1094) T) ((-343 . -1213) T) ((-633 . -644) 76048) ((-619 . -111) 76027) ((-605 . -644) 76011) ((-595 . -102) T) ((-311 . -490) 75992) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1094) T) ((-385 . -1094) T) ((-311 . -611) 75958) ((-227 . -1094) 75936) ((-643 . -514) 75869) ((-630 . -514) 75713) ((-829 . -1045) 75692) ((-641 . -151) 75676) ((-343 . -556) T) ((-708 . -896) 75619) ((-550 . -229) 75569) ((-1251 . -284) 75535) ((-1074 . -290) 75486) ((-487 . -844) T) ((-223 . -1106) T) ((-1244 . -284) 75452) ((-1223 . -284) 75418) ((-1000 . -38) 75368) ((-217 . -844) T) ((-1203 . -493) 75334) ((-910 . -38) 75286) ((-839 . -790) 75265) ((-839 . -787) 75244) ((-839 . -722) 75223) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75154) ((-427 . -38) 75138) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -790) 75117) ((-407 . -787) 75096) ((-407 . -722) T) ((-500 . -288) 75071) ((-477 . -1051) 75036) ((-654 . -131) T) ((-619 . -614) 75005) ((-1107 . -514) 74938) ((-336 . -131) T) ((-169 . -402) 74917) ((-482 . -713) 74859) ((-811 . -286) 74836) ((-477 . -111) 74792) ((-649 . -1052) T) ((-1232 . -452) 74723) ((-1270 . -1077) T) ((-1269 . -1077) T) ((-1081 . -131) T) ((-1049 . -713) 74665) ((-264 . -846) 74644) ((-247 . -846) 74623) ((-778 . -131) T) ((-776 . -131) T) ((-571 . -452) T) ((-1023 . -514) 74556) ((-619 . -1045) T) ((-591 . -1094) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1094) T) ((-385 . -713) 74526) ((-813 . -1094) T) ((-476 . -514) 74459) ((-463 . -514) 74392) ((-453 . -367) 74362) ((-45 . -608) 74341) ((-316 . -302) T) ((-477 . -614) 74291) ((-666 . -611) 74253) ((-59 . -846) 74232) ((-1223 . -309) 74117) ((-548 . -611) 74099) ((-1000 . -400) 74081) ((-811 . -602) 74058) ((-516 . -846) 74037) ((-496 . -846) 74016) ((-40 . -1213) T) ((-995 . -1034) 73912) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -644) 73772) ((-343 . -329) 73749) ((-343 . -363) T) ((-322 . -323) 73726) ((-319 . -286) 73711) ((-40 . -556) T) ((-379 . -1194) T) ((-379 . -1197) T) ((-1031 . -1185) 73686) ((-1182 . -235) 73636) ((-1161 . -231) 73588) ((-330 . -1094) T) ((-379 . -95) T) ((-379 . -35) T) ((-1031 . -107) 73534) ((-477 . -1045) T) ((-479 . -235) 73484) ((-1153 . -489) 73418) ((-1283 . -1051) 73402) ((-381 . -1051) 73386) ((-477 . -243) T) ((-812 . -102) T) ((-710 . -147) 73365) ((-710 . -145) 73344) ((-484 . -489) 73328) ((-485 . -335) 73297) ((-1283 . -111) 73276) ((-512 . -1094) T) ((-482 . -172) 73255) ((-995 . -377) 73239) ((-413 . -102) T) ((-381 . -111) 73218) ((-995 . -338) 73202) ((-279 . -979) 73186) ((-278 . -979) 73170) ((-1281 . -611) 73152) ((-1279 . -611) 73134) ((-110 . -514) NIL) ((-1166 . -1235) 73118) ((-850 . -848) 73102) ((-1172 . -1094) T) ((-103 . -1209) T) ((-948 . -945) 73063) ((-813 . -713) 73005) ((-1223 . -1145) NIL) ((-481 . -945) 72950) ((-1056 . -143) T) ((-60 . -102) 72928) ((-44 . -611) 72910) ((-78 . -611) 72892) ((-351 . -644) 72837) ((-1271 . -1094) T) ((-511 . -846) T) ((-343 . -1106) T) ((-295 . -1094) T) ((-995 . -896) 72796) ((-295 . -608) 72775) ((-1283 . -614) 72724) ((-1251 . -38) 72621) ((-1244 . -38) 72462) ((-1223 . -38) 72258) ((-487 . -1052) T) ((-381 . -614) 72242) ((-217 . -1052) T) ((-343 . -23) T) ((-152 . -611) 72224) ((-829 . -791) 72203) ((-829 . -788) 72182) ((-1208 . -614) 72163) ((-595 . -38) 72136) ((-594 . -38) 72033) ((-866 . -556) T) ((-223 . -131) T) ((-319 . -998) 71999) ((-79 . -611) 71981) ((-708 . -307) 71960) ((-294 . -722) 71862) ((-820 . -102) T) ((-860 . -840) T) ((-294 . -473) 71841) ((-1274 . -102) T) ((-40 . -363) T) ((-868 . -147) 71820) ((-868 . -145) 71799) ((-1152 . -489) 71781) ((-1283 . -1045) T) ((-482 . -514) 71714) ((-1140 . -1209) T) ((-960 . -611) 71696) ((-643 . -489) 71680) ((-630 . -489) 71611) ((-811 . -611) 71342) ((-48 . -27) T) ((-1172 . -713) 71239) ((-649 . -1094) T) ((-857 . -856) T) ((-436 . -364) 71213) ((-1096 . -102) T) ((-966 . -1094) T) ((-860 . -1094) T) ((-812 . -309) 71200) ((-533 . -527) T) ((-533 . -576) T) ((-1279 . -382) 71172) ((-1049 . -514) 71105) ((-1153 . -286) 71081) ((-240 . -231) 71050) ((-1271 . -713) 71020) ((-1160 . -93) T) ((-990 . -93) T) ((-813 . -172) 70999) ((-1206 . -490) 70976) ((-227 . -514) 70909) ((-619 . -791) 70888) ((-619 . -788) 70867) ((-1206 . -611) 70779) ((-222 . -1209) T) ((-671 . -611) 70711) ((-1150 . -1006) 70695) ((-939 . -102) 70645) ((-351 . -722) T) ((-857 . -611) 70627) ((-1223 . -400) 70579) ((-1107 . -489) 70563) ((-60 . -309) 70501) ((-331 . -102) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-40 . -1106) T) ((-707 . -21) T) ((-625 . -611) 70483) ((-515 . -323) 70462) ((-707 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-917 . -1106) T) ((-40 . -23) T) ((-767 . -1106) T) ((-564 . -1213) T) ((-495 . -1213) T) ((-319 . -611) 70444) ((-1000 . -231) 70426) ((-169 . -166) 70410) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-767 . -23) T) ((-1243 . -147) 70389) ((-1153 . -602) 70365) ((-1243 . -145) 70344) ((-1023 . -489) 70328) ((-1222 . -145) 70253) ((-1222 . -147) 70178) ((-1274 . -1280) 70157) ((-476 . -489) 70141) ((-463 . -489) 70125) ((-523 . -34) T) ((-649 . -713) 70095) ((-112 . -963) T) ((-658 . -846) 70074) ((-1172 . -172) 70025) ((-365 . -102) T) ((-240 . -238) 70004) ((-251 . -102) T) ((-250 . -102) T) ((-1232 . -945) 69973) ((-245 . -846) 69952) ((-812 . -38) 69801) ((-45 . -514) 69593) ((-1152 . -286) 69568) ((-214 . -1094) T) ((-1144 . -1094) T) ((-1144 . -608) 69547) ((-585 . -25) T) ((-585 . -21) T) ((-1096 . -309) 69485) ((-959 . -411) 69469) ((-695 . -1213) T) ((-630 . -286) 69444) ((-1081 . -637) 69392) ((-778 . -637) 69340) ((-776 . -637) 69288) ((-343 . -131) T) ((-289 . -611) 69270) ((-901 . -1094) T) ((-695 . -556) T) ((-129 . -614) 69252) ((-866 . -1106) T) ((-454 . -637) 69200) ((-901 . -899) 69184) ((-379 . -452) T) ((-487 . -1094) T) ((-939 . -309) 69122) ((-697 . -644) 69109) ((-549 . -840) T) ((-217 . -1094) T) ((-316 . -916) 69088) ((-313 . -916) T) ((-313 . -816) NIL) ((-390 . -716) T) ((-866 . -23) T) ((-116 . -644) 69075) ((-474 . -145) 69054) ((-418 . -411) 69038) ((-474 . -147) 69017) ((-110 . -489) 68999) ((-311 . -614) 68980) ((-2 . -611) 68962) ((-186 . -102) T) ((-1152 . -19) 68944) ((-1152 . -602) 68919) ((-654 . -21) T) ((-654 . -25) T) ((-592 . -1138) T) ((-1107 . -286) 68896) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1274 . -38) 68866) ((-1136 . -1209) T) ((-630 . -602) 68841) ((-549 . -1094) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-531 . -788) T) ((-531 . -791) T) ((-117 . -1213) T) ((-959 . -1052) T) ((-621 . -556) T) ((-778 . -25) T) ((-778 . -21) T) ((-776 . -21) T) ((-776 . -25) T) ((-731 . -1052) T) ((-711 . -1052) T) ((-666 . -1051) 68825) ((-517 . -1077) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1281 . -1051) 68809) ((-1136 . -1034) 68705) ((-813 . -290) 68684) ((-1279 . -1051) 68668) ((-819 . -1094) T) ((-1243 . -1194) 68634) ((-962 . -963) T) ((-666 . -111) 68613) ((-295 . -514) 68405) ((-1243 . -1197) 68371) ((-1243 . -95) 68337) ((-1226 . -102) 68315) ((-251 . -309) 68253) ((-250 . -309) 68191) ((-1223 . -231) 68143) ((-1153 . -612) NIL) ((-1153 . -611) 68125) ((-1222 . -1194) 68091) ((-1222 . -1197) 68057) ((-1217 . -368) T) ((-96 . -93) T) ((-1214 . -840) T) ((-1136 . -377) 68041) ((-1114 . -816) T) ((-1114 . -916) T) ((-1107 . -602) 68018) ((-1074 . -612) 68002) ((-484 . -611) 67934) ((-811 . -288) 67911) ((-606 . -151) 67858) ((-418 . -1052) T) ((-487 . -713) 67808) ((-482 . -489) 67792) ((-327 . -846) 67771) ((-339 . -644) 67745) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -713) 67695) ((-169 . -720) 67666) ((-174 . -644) 67598) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67548) ((-1074 . -611) 67530) ((-1055 . -611) 67512) ((-989 . -102) T) ((-858 . -102) T) ((-795 . -411) 67476) ((-40 . -131) T) ((-695 . -363) T) ((-697 . -722) T) ((-697 . -790) T) ((-697 . -787) T) ((-212 . -891) T) ((-580 . -1106) T) ((-564 . -1106) T) ((-495 . -1106) T) ((-359 . -611) 67458) ((-353 . -611) 67440) ((-345 . -611) 67422) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 67352) ((-108 . -611) 67294) ((-211 . -891) T) ((-954 . -151) 67278) ((-767 . -131) T) ((-666 . -614) 67196) ((-134 . -722) T) ((-116 . -722) T) ((-1243 . -35) 67162) ((-1049 . -489) 67146) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1222 . -95) 67112) ((-1222 . -35) 67078) ((-1166 . -102) T) ((-1119 . -102) T) ((-850 . -102) T) ((-227 . -489) 67062) ((-1281 . -111) 67041) ((-1279 . -111) 67020) ((-44 . -1051) 67004) ((-1232 . -1235) 66988) ((-851 . -848) 66972) ((-1172 . -290) 66951) ((-110 . -286) 66926) ((-1281 . -614) 66872) ((-128 . -151) 66854) ((-1136 . -896) 66813) ((-44 . -111) 66792) ((-1214 . -1094) T) ((-1175 . -1254) T) ((-1160 . -490) 66773) ((-1160 . -611) 66739) ((-666 . -1045) T) ((-1152 . -612) NIL) ((-1152 . -611) 66721) ((-1057 . -608) 66696) ((-1057 . -1094) T) ((-990 . -490) 66677) ((-74 . -441) T) ((-74 . -395) T) ((-990 . -611) 66643) ((-152 . -1051) 66627) ((-666 . -233) 66606) ((-571 . -554) 66590) ((-355 . -147) 66569) ((-355 . -145) 66520) ((-352 . -147) 66499) ((-352 . -145) 66450) ((-344 . -147) 66429) ((-344 . -145) 66380) ((-264 . -145) 66359) ((-264 . -147) 66338) ((-251 . -38) 66308) ((-247 . -147) 66287) ((-117 . -363) T) ((-247 . -145) 66266) ((-250 . -38) 66236) ((-152 . -111) 66215) ((-999 . -1034) 66103) ((-1161 . -844) NIL) ((-690 . -1213) T) ((-795 . -1052) T) ((-695 . -1106) T) ((-1281 . -1045) T) ((-1279 . -614) 66032) ((-1279 . -1045) T) ((-1150 . -1209) T) ((-999 . -377) 66009) ((-906 . -145) T) ((-906 . -147) 65991) ((-866 . -131) T) ((-811 . -1051) 65888) ((-690 . -556) T) ((-695 . -23) T) ((-643 . -611) 65820) ((-643 . -612) 65781) ((-630 . -612) NIL) ((-630 . -611) 65763) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1197) 65729) ((-474 . -1194) 65695) ((-274 . -611) 65677) ((-273 . -611) 65659) ((-272 . -611) 65641) ((-271 . -611) 65623) ((-270 . -611) 65605) ((-500 . -647) 65587) ((-269 . -611) 65569) ((-339 . -722) T) ((-268 . -611) 65551) ((-110 . -19) 65533) ((-174 . -722) T) ((-500 . -373) 65515) ((-212 . -611) 65497) ((-520 . -1143) 65481) ((-500 . -123) T) ((-110 . -602) 65456) ((-211 . -611) 65438) ((-474 . -35) 65404) ((-474 . -95) 65370) ((-209 . -611) 65352) ((-208 . -611) 65334) ((-207 . -611) 65316) ((-206 . -611) 65298) ((-203 . -611) 65280) ((-202 . -611) 65262) ((-201 . -611) 65244) ((-200 . -611) 65226) ((-199 . -611) 65208) ((-198 . -611) 65190) ((-197 . -611) 65172) ((-536 . -1097) 65124) ((-196 . -611) 65106) ((-195 . -611) 65088) ((-45 . -489) 65025) ((-194 . -611) 65007) ((-193 . -611) 64989) ((-152 . -614) 64958) ((-1109 . -102) T) ((-811 . -111) 64848) ((-641 . -102) 64798) ((-482 . -286) 64775) ((-1107 . -611) 64506) ((-1095 . -1094) T) ((-1042 . -1209) T) ((-1282 . -1034) 64490) ((-621 . -1106) T) ((-1166 . -309) 64477) ((-1129 . -1094) T) ((-1119 . -309) 64464) ((-1090 . -1077) T) ((-1084 . -1077) T) ((-1067 . -1077) T) ((-1060 . -1077) T) ((-1032 . -1077) T) ((-1015 . -1077) T) ((-117 . -1106) T) ((-815 . -102) T) ((-624 . -1077) T) ((-621 . -23) T) ((-1144 . -514) 64256) ((-483 . -1077) T) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1077) T) ((-959 . -1094) T) ((-152 . -1045) T) ((-727 . -411) 64240) ((-117 . -23) T) ((-999 . -896) 64192) ((-731 . -1094) T) ((-711 . -1094) T) ((-453 . -1094) T) ((-407 . -1209) T) ((-316 . -430) 64176) ((-591 . -93) T) ((-1023 . -612) 64137) ((-1020 . -1213) T) ((-225 . -102) T) ((-1023 . -611) 64099) ((-812 . -231) 64083) ((-811 . -614) 63813) ((-1020 . -556) T) ((-829 . -644) 63786) ((-354 . -1213) T) ((-476 . -611) 63748) ((-476 . -612) 63709) ((-463 . -612) 63670) ((-463 . -611) 63632) ((-407 . -880) 63616) ((-319 . -1051) 63451) ((-407 . -882) 63376) ((-839 . -1034) 63272) ((-487 . -514) NIL) ((-482 . -602) 63249) ((-354 . -556) T) ((-217 . -514) NIL) ((-868 . -452) T) ((-418 . -1094) T) ((-407 . -1034) 63113) ((-319 . -111) 62934) ((-690 . -363) T) ((-225 . -284) T) ((-1206 . -614) 62911) ((-48 . -1213) T) ((-811 . -1045) 62841) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1166 . -1145) 62819) ((-48 . -556) T) ((-1153 . -288) 62795) ((-1056 . -102) T) ((-948 . -102) T) ((-316 . -27) 62774) ((-811 . -233) 62726) ((-249 . -831) 62708) ((-240 . -844) 62687) ((-187 . -831) 62669) ((-709 . -102) T) ((-295 . -489) 62606) ((-481 . -102) T) ((-727 . -1052) T) ((-610 . -611) 62588) ((-610 . -612) 62449) ((-407 . -377) 62433) ((-407 . -338) 62417) ((-319 . -614) 62243) ((-1166 . -38) 62072) ((-1119 . -38) 61921) ((-850 . -38) 61891) ((-390 . -644) 61875) ((-641 . -309) 61813) ((-959 . -713) 61710) ((-731 . -713) 61680) ((-222 . -107) 61664) ((-45 . -286) 61589) ((-619 . -644) 61563) ((-312 . -1094) T) ((-289 . -1051) 61550) ((-110 . -611) 61532) ((-110 . -612) 61514) ((-453 . -713) 61484) ((-812 . -253) 61423) ((-685 . -1094) 61401) ((-550 . -1094) T) ((-1168 . -1052) T) ((-1167 . -1052) T) ((-96 . -490) 61382) ((-1161 . -1052) T) ((-289 . -111) 61367) ((-1120 . -1052) T) ((-550 . -608) 61346) ((-96 . -611) 61312) ((-1000 . -844) T) ((-227 . -683) 61270) ((-690 . -1106) T) ((-1203 . -736) 61246) ((-1020 . -363) T) ((-834 . -831) 61228) ((-319 . -1045) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -896) 61187) ((-68 . -1209) T) ((-829 . -790) 61166) ((-418 . -713) 61140) ((-795 . -1094) T) ((-829 . -787) 61119) ((-695 . -131) T) ((-708 . -916) 61098) ((-690 . -23) T) ((-487 . -290) T) ((-829 . -722) 61077) ((-319 . -233) 61029) ((-319 . -243) 61008) ((-217 . -290) T) ((-129 . -368) T) ((-1243 . -452) 60987) ((-1222 . -452) 60966) ((-354 . -329) 60943) ((-354 . -363) T) ((-1134 . -611) 60925) ((-45 . -1247) 60875) ((-867 . -102) T) ((-641 . -282) 60859) ((-695 . -1054) T) ((-1270 . -102) T) ((-1269 . -102) T) ((-477 . -644) 60824) ((-468 . -1094) T) ((-45 . -602) 60749) ((-1152 . -288) 60724) ((-289 . -614) 60696) ((-40 . -637) 60635) ((-48 . -363) T) ((-1100 . -611) 60617) ((-1081 . -846) 60596) ((-630 . -288) 60571) ((-778 . -846) 60550) ((-776 . -846) 60529) ((-482 . -611) 60260) ((-240 . -411) 60229) ((-948 . -309) 60216) ((-454 . -846) 60195) ((-65 . -1209) T) ((-1057 . -514) 60039) ((-621 . -131) T) ((-546 . -102) T) ((-481 . -309) 60026) ((-604 . -1094) T) ((-117 . -131) T) ((-667 . -1094) T) ((-289 . -1045) T) ((-180 . -1094) T) ((-161 . -1094) T) ((-156 . -1094) T) ((-154 . -1094) T) ((-453 . -757) T) ((-31 . -1077) T) ((-959 . -172) 59977) ((-966 . -93) T) ((-1074 . -1051) 59887) ((-619 . -790) 59866) ((-592 . -1094) T) ((-619 . -787) 59845) ((-619 . -722) T) ((-295 . -286) 59824) ((-294 . -1209) T) ((-1049 . -611) 59786) ((-1049 . -612) 59747) ((-1020 . -1106) T) ((-169 . -102) T) ((-275 . -846) T) ((-1159 . -1094) T) ((-814 . -611) 59729) ((-1107 . -288) 59706) ((-1096 . -229) 59690) ((-999 . -307) T) ((-795 . -713) 59674) ((-359 . -1051) 59626) ((-354 . -1106) T) ((-353 . -1051) 59578) ((-414 . -611) 59560) ((-385 . -611) 59542) ((-345 . -1051) 59494) ((-227 . -611) 59426) ((-1074 . -111) 59322) ((-1020 . -23) T) ((-108 . -1051) 59272) ((-894 . -102) T) ((-837 . -102) T) ((-804 . -102) T) ((-765 . -102) T) ((-673 . -102) T) ((-474 . -452) 59251) ((-418 . -172) T) ((-359 . -111) 59189) ((-353 . -111) 59127) ((-345 . -111) 59065) ((-251 . -231) 59034) ((-250 . -231) 59003) ((-354 . -23) T) ((-71 . -1209) T) ((-225 . -38) 58968) ((-108 . -111) 58902) ((-40 . -25) T) ((-40 . -21) T) ((-666 . -716) T) ((-169 . -284) 58880) ((-48 . -1106) T) ((-917 . -25) T) ((-767 . -25) T) ((-1144 . -489) 58817) ((-485 . -1094) T) ((-1283 . -644) 58791) ((-1232 . -102) T) ((-1056 . -1145) T) ((-851 . -102) T) ((-240 . -1052) 58721) ((-960 . -788) 58674) ((-960 . -791) 58627) ((-381 . -644) 58611) ((-48 . -23) T) ((-811 . -791) 58562) ((-811 . -788) 58513) ((-548 . -368) T) ((-295 . -602) 58492) ((-477 . -722) T) ((-571 . -102) T) ((-1074 . -614) 58310) ((-249 . -185) T) ((-187 . -185) T) ((-867 . -309) 58267) ((-649 . -286) 58246) ((-112 . -657) T) ((-359 . -614) 58183) ((-353 . -614) 58120) ((-345 . -614) 58057) ((-76 . -1209) T) ((-108 . -614) 58007) ((-1056 . -38) 57994) ((-660 . -374) 57973) ((-948 . -38) 57822) ((-727 . -1094) T) ((-481 . -38) 57671) ((-86 . -1209) T) ((-591 . -490) 57652) ((-571 . -284) T) ((-1223 . -844) NIL) ((-591 . -611) 57618) ((-1168 . -1094) T) ((-1167 . -1094) T) ((-1074 . -1045) T) ((-351 . -1034) 57595) ((-813 . -490) 57579) ((-1000 . -1052) T) ((-45 . -611) 57561) ((-45 . -612) NIL) ((-910 . -1052) T) ((-813 . -611) 57530) ((-1161 . -1094) T) ((-1141 . -102) 57508) ((-1074 . -243) 57459) ((-427 . -1052) T) ((-359 . -1045) T) ((-365 . -364) 57436) ((-353 . -1045) T) ((-345 . -1045) T) ((-251 . -238) 57415) ((-250 . -238) 57394) ((-1074 . -233) 57319) ((-1120 . -1094) T) ((-294 . -896) 57278) ((-108 . -1045) T) ((-690 . -131) T) ((-418 . -514) 57120) ((-359 . -233) 57099) ((-359 . -243) T) ((-44 . -716) T) ((-353 . -233) 57078) ((-353 . -243) T) ((-345 . -233) 57057) ((-345 . -243) T) ((-1160 . -614) 57038) ((-169 . -309) 57003) ((-108 . -243) T) ((-108 . -233) T) ((-990 . -614) 56984) ((-319 . -788) T) ((-866 . -21) T) ((-866 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 56959) ((-1107 . -1051) 56856) ((-867 . -1145) NIL) ((-330 . -611) 56838) ((-407 . -1018) 56816) ((-1107 . -111) 56706) ((-687 . -1254) T) ((-436 . -1094) T) ((-1283 . -722) T) ((-63 . -611) 56688) ((-867 . -38) 56633) ((-523 . -1209) T) ((-600 . -151) 56617) ((-512 . -611) 56599) ((-1232 . -309) 56586) ((-727 . -713) 56435) ((-531 . -789) T) ((-531 . -790) T) ((-564 . -637) 56417) ((-495 . -637) 56377) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56328) ((-525 . -1094) T) ((-520 . -1094) 56278) ((-247 . -452) 56229) ((-1144 . -286) 56208) ((-1172 . -611) 56190) ((-685 . -514) 56123) ((-959 . -290) 56102) ((-550 . -514) 55894) ((-1271 . -611) 55863) ((-1166 . -231) 55847) ((-1107 . -614) 55577) ((-169 . -1145) 55556) ((-1271 . -490) 55540) ((-1168 . -713) 55437) ((-1167 . -713) 55278) ((-888 . -102) T) ((-1161 . -713) 55074) ((-1120 . -713) 54971) ((-1150 . -670) 54955) ((-355 . -402) 54906) ((-352 . -402) 54857) ((-344 . -402) 54808) ((-1020 . -131) T) ((-795 . -514) 54720) ((-295 . -612) NIL) ((-295 . -611) 54702) ((-906 . -452) T) ((-960 . -368) 54655) ((-811 . -368) 54634) ((-510 . -509) 54613) ((-508 . -509) 54592) ((-487 . -286) NIL) ((-482 . -288) 54569) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-690 . -493) NIL) ((-99 . -1106) T) ((-169 . -38) 54397) ((-1243 . -969) 54359) ((-1141 . -309) 54297) ((-1222 . -969) 54266) ((-906 . -402) T) ((-1107 . -1045) 54196) ((-1245 . -556) T) ((-1144 . -602) 54175) ((-112 . -846) T) ((-1057 . -489) 54106) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1232 . -1145) 54084) ((-1107 . -233) 54036) ((-48 . -131) T) ((-1190 . -102) T) ((-240 . -1094) 53826) ((-867 . -400) 53803) ((-1082 . -102) T) ((-1070 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1232 . -38) 53632) ((-851 . -38) 53602) ((-727 . -172) 53513) ((-649 . -611) 53495) ((-642 . -1077) T) ((-571 . -38) 53482) ((-966 . -490) 53463) ((-966 . -611) 53429) ((-954 . -102) 53379) ((-860 . -611) 53361) ((-860 . -612) 53283) ((-592 . -514) NIL) ((-1251 . -1052) T) ((-1244 . -1052) T) ((-1223 . -1052) T) ((-1287 . -1106) T) ((-1177 . -102) T) ((-595 . -1052) T) ((-594 . -1052) T) ((-1176 . -102) T) ((-1168 . -172) 53234) ((-1167 . -172) 53165) ((-1161 . -172) 53096) ((-1120 . -172) 53047) ((-1000 . -1094) T) ((-967 . -1094) T) ((-910 . -1094) T) ((-1203 . -147) 53026) ((-795 . -793) 53010) ((-695 . -25) T) ((-695 . -21) T) ((-117 . -637) 52987) ((-697 . -882) 52969) ((-427 . -1094) T) ((-316 . -1213) 52948) ((-313 . -1213) T) ((-169 . -400) 52932) ((-1203 . -145) 52911) ((-474 . -969) 52873) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 52855) ((-108 . -791) T) ((-108 . -788) T) ((-697 . -1034) 52837) ((-316 . -556) 52816) ((-313 . -556) T) ((-1287 . -23) T) ((-134 . -1034) 52798) ((-96 . -614) 52779) ((-482 . -1051) 52676) ((-45 . -288) 52601) ((-240 . -713) 52543) ((-517 . -102) T) ((-482 . -111) 52433) ((-1086 . -102) 52411) ((-1030 . -102) T) ((-641 . -824) 52390) ((-727 . -514) 52333) ((-1049 . -1051) 52317) ((-1129 . -93) T) ((-1057 . -286) 52292) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1094) T) ((-361 . -102) T) ((-322 . -102) T) ((-666 . -644) 52266) ((-385 . -1051) 52250) ((-1049 . -111) 52229) ((-812 . -411) 52213) ((-117 . -25) T) ((-89 . -611) 52195) ((-117 . -21) T) ((-606 . -309) 51990) ((-475 . -309) 51794) ((-1144 . -612) NIL) ((-385 . -111) 51773) ((-379 . -102) T) ((-214 . -611) 51755) ((-1144 . -611) 51737) ((-1161 . -514) 51506) ((-1000 . -713) 51456) ((-1120 . -514) 51426) ((-910 . -713) 51378) ((-482 . -614) 51108) ((-351 . -307) T) ((-1182 . -151) 51058) ((-954 . -309) 50996) ((-832 . -102) T) ((-427 . -713) 50980) ((-225 . -824) T) ((-823 . -102) T) ((-821 . -102) T) ((-479 . -151) 50930) ((-1243 . -1242) 50909) ((-1114 . -1213) T) ((-339 . -1034) 50876) ((-1243 . -1237) 50846) ((-1243 . -1240) 50830) ((-1222 . -1221) 50809) ((-80 . -611) 50791) ((-901 . -611) 50773) ((-1222 . -1237) 50750) ((-1114 . -556) T) ((-917 . -846) T) ((-767 . -846) T) ((-487 . -612) 50680) ((-487 . -611) 50621) ((-379 . -284) T) ((-668 . -846) T) ((-1222 . -1219) 50605) ((-1245 . -1106) T) ((-217 . -612) 50535) ((-217 . -611) 50476) ((-1281 . -644) 50450) ((-1057 . -602) 50425) ((-814 . -614) 50409) ((-59 . -151) 50393) ((-516 . -151) 50377) ((-496 . -151) 50361) ((-359 . -1278) 50345) ((-353 . -1278) 50329) ((-345 . -1278) 50313) ((-316 . -363) 50292) ((-313 . -363) T) ((-482 . -1045) 50222) ((-690 . -637) 50204) ((-1279 . -644) 50178) ((-128 . -309) NIL) ((-1245 . -23) T) ((-685 . -489) 50162) ((-64 . -611) 50144) ((-1107 . -791) 50095) ((-1107 . -788) 50046) ((-550 . -489) 49983) ((-666 . -34) T) ((-482 . -233) 49935) ((-295 . -288) 49914) ((-240 . -172) 49893) ((-812 . -1052) T) ((-44 . -644) 49851) ((-1074 . -368) 49802) ((-727 . -290) 49733) ((-520 . -514) 49666) ((-813 . -1051) 49617) ((-1081 . -145) 49596) ((-549 . -611) 49578) ((-359 . -368) 49557) ((-353 . -368) 49536) ((-345 . -368) 49515) ((-1081 . -147) 49494) ((-867 . -231) 49471) ((-813 . -111) 49413) ((-778 . -145) 49392) ((-778 . -147) 49371) ((-264 . -945) 49338) ((-251 . -844) 49317) ((-247 . -945) 49262) ((-250 . -844) 49241) ((-776 . -145) 49220) ((-776 . -147) 49199) ((-152 . -644) 49173) ((-579 . -1094) T) ((-454 . -147) 49152) ((-454 . -145) 49131) ((-666 . -722) T) ((-819 . -611) 49113) ((-1251 . -1094) T) ((-1244 . -1094) T) ((-1223 . -1094) T) ((-1203 . -1197) 49079) ((-1203 . -1194) 49045) ((-1168 . -290) 49024) ((-1167 . -290) 48975) ((-1161 . -290) 48926) ((-1120 . -290) 48905) ((-339 . -896) 48886) ((-1000 . -172) T) ((-910 . -172) T) ((-595 . -1094) T) ((-594 . -1094) T) ((-690 . -21) T) ((-690 . -25) T) ((-474 . -1240) 48870) ((-474 . -1237) 48840) ((-418 . -286) 48768) ((-547 . -846) T) ((-316 . -1106) 48617) ((-313 . -1106) T) ((-1203 . -35) 48583) ((-1203 . -95) 48549) ((-84 . -611) 48531) ((-91 . -102) 48509) ((-1287 . -131) T) ((-591 . -614) 48490) ((-581 . -145) T) ((-581 . -147) 48472) ((-518 . -147) 48454) ((-518 . -145) T) ((-316 . -23) 48306) ((-40 . -342) 48280) ((-313 . -23) T) ((-813 . -614) 48194) ((-1152 . -647) 48176) ((-1274 . -1052) T) ((-1152 . -373) 48158) ((-811 . -644) 48006) ((-1090 . -102) T) ((-1084 . -102) T) ((-1067 . -102) T) ((-169 . -231) 47990) ((-1060 . -102) T) ((-1032 . -102) T) ((-1015 . -102) T) ((-592 . -489) 47972) ((-624 . -102) T) ((-240 . -514) 47905) ((-483 . -102) T) ((-1281 . -722) T) ((-1279 . -722) T) ((-218 . -102) T) ((-1172 . -1051) 47788) ((-1172 . -111) 47657) ((-857 . -173) T) ((-813 . -1045) T) ((-677 . -1077) T) ((-672 . -1077) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 47617) ((-508 . -102) T) ((-478 . -1077) T) ((-1271 . -1051) 47587) ((-138 . -1077) T) ((-137 . -1077) T) ((-133 . -1077) T) ((-1030 . -38) 47571) ((-813 . -233) T) ((-813 . -243) 47550) ((-1271 . -111) 47515) ((-1251 . -713) 47412) ((-1244 . -713) 47253) ((-550 . -286) 47232) ((-1232 . -231) 47216) ((-1214 . -611) 47198) ((-604 . -93) T) ((-1057 . -612) NIL) ((-1057 . -611) 47180) ((-667 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1223 . -713) 46976) ((-999 . -916) T) ((-152 . -722) T) ((-1107 . -368) 46955) ((-1000 . -514) NIL) ((-251 . -411) 46924) ((-250 . -411) 46893) ((-1020 . -25) T) ((-1020 . -21) T) ((-595 . -713) 46866) ((-594 . -713) 46763) ((-795 . -286) 46721) ((-126 . -102) 46699) ((-829 . -1034) 46595) ((-169 . -824) 46574) ((-319 . -644) 46471) ((-811 . -34) T) ((-710 . -102) T) ((-1172 . -614) 46324) ((-1114 . -1106) T) ((-1022 . -1209) T) ((-379 . -38) 46289) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1266) 46273) ((-352 . -1266) 46257) ((-344 . -1266) 46241) ((-169 . -349) 46220) ((-564 . -846) T) ((-495 . -846) T) ((-1114 . -23) T) ((-87 . -611) 46202) ((-697 . -307) T) ((-832 . -38) 46172) ((-823 . -38) 46142) ((-1271 . -614) 46084) ((-1245 . -131) T) ((-1144 . -288) 46063) ((-960 . -789) 46016) ((-960 . -790) 45969) ((-811 . -787) 45948) ((-116 . -307) T) ((-91 . -309) 45886) ((-671 . -34) T) ((-550 . -602) 45865) ((-48 . -25) T) ((-48 . -21) T) ((-811 . -790) 45816) ((-811 . -789) 45795) ((-697 . -1018) T) ((-649 . -1051) 45779) ((-960 . -722) 45678) ((-811 . -722) 45588) ((-960 . -473) 45541) ((-482 . -791) 45492) ((-482 . -788) 45443) ((-906 . -1266) 45430) ((-1172 . -1045) T) ((-649 . -111) 45409) ((-1172 . -326) 45386) ((-1195 . -102) 45364) ((-1095 . -611) 45346) ((-697 . -545) T) ((-812 . -1094) T) ((-1271 . -1045) T) ((-1129 . -490) 45327) ((-1215 . -102) T) ((-413 . -1094) T) ((-1129 . -611) 45293) ((-251 . -1052) 45223) ((-250 . -1052) 45153) ((-834 . -102) T) ((-289 . -644) 45140) ((-592 . -286) 45115) ((-685 . -683) 45073) ((-959 . -611) 45055) ((-868 . -102) T) ((-731 . -611) 45037) ((-711 . -611) 45019) ((-1251 . -172) 44970) ((-1244 . -172) 44901) ((-1223 . -172) 44832) ((-695 . -846) T) ((-1000 . -290) T) ((-453 . -611) 44814) ((-625 . -722) T) ((-60 . -1094) 44792) ((-245 . -151) 44776) ((-910 . -290) T) ((-1020 . -1008) T) ((-625 . -473) T) ((-708 . -1213) 44755) ((-649 . -614) 44673) ((-595 . -172) 44652) ((-594 . -172) 44603) ((-1259 . -846) 44582) ((-708 . -556) 44493) ((-407 . -916) T) ((-407 . -816) 44472) ((-319 . -790) T) ((-966 . -614) 44453) ((-319 . -722) T) ((-418 . -611) 44435) ((-418 . -612) 44342) ((-641 . -1143) 44326) ((-110 . -647) 44308) ((-174 . -307) T) ((-126 . -309) 44246) ((-110 . -373) 44228) ((-398 . -1209) T) ((-316 . -131) 44099) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44083) ((-650 . -1106) T) ((-592 . -19) 44065) ((-61 . -441) T) ((-61 . -395) T) ((-820 . -1094) T) ((-592 . -602) 44040) ((-477 . -1034) 44000) ((-649 . -1045) T) ((-650 . -23) T) ((-1274 . -1094) T) ((-31 . -102) T) ((-812 . -713) 43849) ((-577 . -856) T) ((-117 . -846) NIL) ((-1166 . -411) 43833) ((-1119 . -411) 43817) ((-850 . -411) 43801) ((-869 . -102) 43752) ((-1243 . -102) T) ((-1223 . -514) 43521) ((-1222 . -102) T) ((-1195 . -309) 43459) ((-525 . -93) T) ((-1168 . -286) 43444) ((-312 . -611) 43426) ((-1167 . -286) 43411) ((-1096 . -1094) T) ((-1074 . -644) 43321) ((-685 . -611) 43253) ((-289 . -722) T) ((-108 . -905) NIL) ((-685 . -612) 43214) ((-599 . -611) 43196) ((-577 . -611) 43178) ((-550 . -612) NIL) ((-550 . -611) 43160) ((-529 . -611) 43142) ((-1161 . -286) 42990) ((-487 . -1051) 42940) ((-707 . -452) T) ((-511 . -509) 42919) ((-507 . -509) 42898) ((-217 . -1051) 42848) ((-359 . -644) 42800) ((-353 . -644) 42752) ((-225 . -844) T) ((-345 . -644) 42704) ((-600 . -102) 42654) ((-482 . -368) 42633) ((-108 . -644) 42583) ((-487 . -111) 42517) ((-240 . -489) 42501) ((-343 . -147) 42483) ((-343 . -145) T) ((-169 . -370) 42454) ((-939 . -1257) 42438) ((-217 . -111) 42372) ((-868 . -309) 42337) ((-939 . -1094) 42287) ((-795 . -612) 42248) ((-795 . -611) 42230) ((-714 . -102) T) ((-331 . -1094) T) ((-214 . -614) 42207) ((-1114 . -131) T) ((-710 . -38) 42177) ((-316 . -493) 42156) ((-500 . -1209) T) ((-1243 . -284) 42122) ((-1222 . -284) 42088) ((-327 . -151) 42072) ((-439 . -1094) T) ((-1057 . -288) 42047) ((-1274 . -713) 42017) ((-1153 . -34) T) ((-1283 . -1034) 41994) ((-468 . -611) 41976) ((-484 . -34) T) ((-381 . -1034) 41960) ((-1166 . -1052) T) ((-1119 . -1052) T) ((-850 . -1052) T) ((-1056 . -844) T) ((-487 . -614) 41910) ((-217 . -614) 41860) ((-812 . -172) 41771) ((-520 . -286) 41748) ((-1251 . -290) 41727) ((-1190 . -364) 41701) ((-1082 . -266) 41685) ((-667 . -490) 41666) ((-667 . -611) 41632) ((-604 . -490) 41613) ((-117 . -988) 41590) ((-604 . -611) 41540) ((-474 . -102) T) ((-180 . -490) 41521) ((-180 . -611) 41487) ((-161 . -490) 41468) ((-156 . -490) 41449) ((-154 . -490) 41430) ((-161 . -611) 41396) ((-156 . -611) 41362) ((-365 . -1094) T) ((-251 . -1094) T) ((-250 . -1094) T) ((-154 . -611) 41328) ((-1244 . -290) 41279) ((-1223 . -290) 41230) ((-868 . -1145) 41208) ((-1168 . -998) 41174) ((-606 . -364) 41114) ((-1167 . -998) 41080) ((-606 . -229) 41027) ((-592 . -611) 41009) ((-592 . -612) NIL) ((-690 . -846) T) ((-475 . -229) 40959) ((-487 . -1045) T) ((-1161 . -998) 40925) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1045) T) ((-1120 . -998) 40891) ((-1074 . -722) T) ((-708 . -1106) T) ((-595 . -290) 40870) ((-594 . -290) 40849) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1159 . -611) 40831) ((-868 . -38) 40783) ((-359 . -722) T) ((-353 . -722) T) ((-345 . -722) T) ((-108 . -790) T) ((-108 . -787) T) ((-708 . -23) T) ((-108 . -722) T) ((-520 . -1247) 40767) ((-1287 . -25) T) ((-474 . -284) 40733) ((-1287 . -21) T) ((-1222 . -309) 40672) ((-1170 . -102) T) ((-40 . -145) 40644) ((-40 . -147) 40616) ((-520 . -602) 40593) ((-1107 . -644) 40441) ((-600 . -309) 40379) ((-45 . -647) 40329) ((-45 . -662) 40279) ((-45 . -373) 40229) ((-1152 . -34) T) ((-867 . -844) NIL) ((-650 . -131) T) ((-485 . -611) 40211) ((-240 . -286) 40188) ((-186 . -1094) T) ((-643 . -34) T) ((-630 . -34) T) ((-1081 . -452) 40139) ((-812 . -514) 40013) ((-778 . -452) 39944) ((-776 . -452) 39895) ((-454 . -452) 39846) ((-948 . -411) 39830) ((-727 . -611) 39812) ((-251 . -713) 39754) ((-250 . -713) 39696) ((-727 . -612) 39557) ((-481 . -411) 39541) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -916) T) ((-996 . -102) 39519) ((-1020 . -846) T) ((-60 . -514) 39452) ((-1222 . -1145) 39404) ((-1000 . -286) NIL) ((-225 . -1052) T) ((-379 . -824) T) ((-1107 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1226 . -1087) 39388) ((-1226 . -1094) 39366) ((-240 . -602) 39343) ((-1226 . -1089) 39300) ((-1168 . -611) 39282) ((-1167 . -611) 39264) ((-1161 . -611) 39246) ((-1161 . -612) NIL) ((-1120 . -611) 39228) ((-868 . -400) 39212) ((-536 . -102) T) ((-1243 . -38) 39053) ((-1222 . -38) 38867) ((-866 . -147) T) ((-581 . -402) T) ((-48 . -846) T) ((-518 . -402) T) ((-1255 . -102) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1107 . -787) 38846) ((-1107 . -790) 38797) ((-1107 . -789) 38776) ((-989 . -1094) T) ((-1023 . -34) T) ((-858 . -1094) T) ((-1107 . -722) 38686) ((-660 . -102) T) ((-642 . -102) T) ((-550 . -288) 38665) ((-1182 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1056 . -1052) T) ((-948 . -1052) T) ((-316 . -637) 38571) ((-313 . -637) 38532) ((-481 . -1052) T) ((-479 . -102) T) ((-436 . -611) 38514) ((-1166 . -1094) T) ((-1119 . -1094) T) ((-850 . -1094) T) ((-1135 . -102) T) ((-812 . -290) 38445) ((-959 . -1051) 38328) ((-477 . -1018) T) ((-731 . -1051) 38298) ((-453 . -1051) 38268) ((-1141 . -1115) 38252) ((-1096 . -514) 38185) ((-959 . -111) 38054) ((-906 . -102) T) ((-731 . -111) 38019) ((-525 . -490) 38000) ((-525 . -611) 37966) ((-59 . -102) 37916) ((-520 . -612) 37877) ((-520 . -611) 37789) ((-519 . -102) 37767) ((-516 . -102) 37717) ((-497 . -102) 37695) ((-496 . -102) 37645) ((-453 . -111) 37608) ((-251 . -172) 37587) ((-250 . -172) 37566) ((-418 . -1051) 37540) ((-1203 . -969) 37502) ((-995 . -1106) T) ((-1129 . -614) 37483) ((-939 . -514) 37416) ((-487 . -791) T) ((-474 . -38) 37257) ((-418 . -111) 37224) ((-487 . -788) T) ((-996 . -309) 37162) ((-217 . -791) T) ((-217 . -788) T) ((-995 . -23) T) ((-708 . -131) T) ((-1222 . -400) 37132) ((-316 . -25) 36984) ((-169 . -411) 36968) ((-316 . -21) 36839) ((-313 . -25) T) ((-313 . -21) T) ((-860 . -368) T) ((-959 . -614) 36692) ((-110 . -34) T) ((-731 . -614) 36648) ((-711 . -614) 36630) ((-482 . -644) 36478) ((-867 . -1052) T) ((-592 . -288) 36453) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1166 . -713) 36282) ((-1119 . -713) 36131) ((-1114 . -637) 36113) ((-850 . -713) 36083) ((-666 . -1209) T) ((-1 . -102) T) ((-418 . -614) 35991) ((-240 . -611) 35722) ((-1109 . -1094) T) ((-1232 . -411) 35706) ((-1182 . -309) 35510) ((-959 . -1045) T) ((-731 . -1045) T) ((-711 . -1045) T) ((-641 . -1094) 35460) ((-1049 . -644) 35444) ((-851 . -411) 35428) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35415) ((-264 . -309) 35402) ((-959 . -326) 35381) ((-385 . -644) 35365) ((-479 . -309) 35169) ((-251 . -514) 35102) ((-666 . -1034) 34998) ((-250 . -514) 34931) ((-1135 . -309) 34857) ((-815 . -1094) T) ((-795 . -1051) 34841) ((-1251 . -286) 34826) ((-1244 . -286) 34811) ((-1223 . -286) 34659) ((-386 . -1094) T) ((-324 . -1094) T) ((-418 . -1045) T) ((-169 . -1052) T) ((-59 . -309) 34597) ((-795 . -111) 34576) ((-594 . -286) 34561) ((-519 . -309) 34499) ((-516 . -309) 34437) ((-497 . -309) 34375) ((-496 . -309) 34313) ((-418 . -233) 34292) ((-482 . -34) T) ((-1000 . -612) 34222) ((-225 . -1094) T) ((-1000 . -611) 34182) ((-967 . -611) 34142) ((-967 . -612) 34117) ((-910 . -611) 34099) ((-695 . -147) T) ((-697 . -916) T) ((-697 . -816) T) ((-427 . -611) 34081) ((-1114 . -21) T) ((-1114 . -25) T) ((-666 . -377) 34065) ((-116 . -916) T) ((-868 . -231) 34049) ((-78 . -1209) T) ((-126 . -125) 34033) ((-1049 . -34) T) ((-1281 . -1034) 34007) ((-1279 . -1034) 33964) ((-1232 . -1052) T) ((-851 . -1052) T) ((-482 . -787) 33943) ((-355 . -1145) 33922) ((-352 . -1145) 33901) ((-344 . -1145) 33880) ((-482 . -790) 33831) ((-482 . -789) 33810) ((-227 . -34) T) ((-482 . -722) 33720) ((-795 . -614) 33568) ((-60 . -489) 33552) ((-571 . -1052) T) ((-1166 . -172) 33443) ((-1119 . -172) 33354) ((-1056 . -1094) T) ((-1081 . -945) 33299) ((-948 . -1094) T) ((-813 . -644) 33250) ((-778 . -945) 33219) ((-709 . -1094) T) ((-776 . -945) 33186) ((-516 . -282) 33170) ((-666 . -896) 33129) ((-481 . -1094) T) ((-454 . -945) 33096) ((-79 . -1209) T) ((-355 . -38) 33061) ((-352 . -38) 33026) ((-344 . -38) 32991) ((-264 . -38) 32840) ((-247 . -38) 32689) ((-906 . -1145) T) ((-524 . -490) 32670) ((-621 . -147) 32649) ((-621 . -145) 32628) ((-524 . -611) 32594) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -722) T) ((-795 . -1045) T) ((-343 . -452) T) ((-1251 . -998) 32560) ((-1244 . -998) 32526) ((-1223 . -998) 32492) ((-906 . -38) 32457) ((-225 . -713) 32422) ((-319 . -47) 32392) ((-40 . -409) 32364) ((-140 . -611) 32346) ((-995 . -131) T) ((-811 . -1209) T) ((-174 . -916) T) ((-549 . -368) T) ((-604 . -614) 32327) ((-343 . -402) T) ((-667 . -614) 32308) ((-180 . -614) 32289) ((-161 . -614) 32270) ((-156 . -614) 32251) ((-154 . -614) 32232) ((-520 . -288) 32209) ((-1222 . -231) 32179) ((-811 . -1034) 32006) ((-45 . -34) T) ((-677 . -102) T) ((-672 . -102) T) ((-658 . -102) T) ((-650 . -21) T) ((-650 . -25) T) ((-1096 . -489) 31990) ((-671 . -1209) T) ((-478 . -102) T) ((-245 . -102) 31940) ((-546 . -840) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-867 . -1094) T) ((-1172 . -644) 31865) ((-1056 . -713) 31852) ((-727 . -1051) 31695) ((-1166 . -514) 31642) ((-948 . -713) 31491) ((-1119 . -514) 31443) ((-1270 . -1094) T) ((-1269 . -1094) T) ((-481 . -713) 31292) ((-67 . -611) 31274) ((-727 . -111) 31103) ((-939 . -489) 31087) ((-1271 . -644) 31047) ((-813 . -722) T) ((-1168 . -1051) 30930) ((-1167 . -1051) 30765) ((-1161 . -1051) 30555) ((-1120 . -1051) 30438) ((-999 . -1213) T) ((-1088 . -102) 30416) ((-811 . -377) 30385) ((-579 . -611) 30367) ((-546 . -1094) T) ((-999 . -556) T) ((-1168 . -111) 30236) ((-1167 . -111) 30057) ((-1161 . -111) 29826) ((-1120 . -111) 29695) ((-1099 . -1097) 29659) ((-379 . -844) T) ((-1251 . -611) 29641) ((-1244 . -611) 29623) ((-1223 . -611) 29605) ((-1223 . -612) NIL) ((-240 . -288) 29582) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1094) T) ((-727 . -614) 29367) ((-690 . -147) T) ((-690 . -145) NIL) ((-595 . -611) 29349) ((-594 . -611) 29331) ((-894 . -1094) T) ((-837 . -1094) T) ((-804 . -1094) T) ((-765 . -1094) T) ((-654 . -848) 29315) ((-673 . -1094) T) ((-811 . -896) 29247) ((-1214 . -368) T) ((-40 . -402) NIL) ((-1168 . -614) 29129) ((-1114 . -657) T) ((-867 . -713) 29074) ((-251 . -489) 29058) ((-250 . -489) 29042) ((-1167 . -614) 28785) ((-1161 . -614) 28580) ((-708 . -637) 28528) ((-649 . -644) 28502) ((-1120 . -614) 28384) ((-295 . -34) T) ((-727 . -1045) T) ((-581 . -1266) 28371) ((-518 . -1266) 28348) ((-1232 . -1094) T) ((-1166 . -290) 28259) ((-1119 . -290) 28190) ((-1056 . -172) T) ((-851 . -1094) T) ((-948 . -172) 28101) ((-778 . -1235) 28085) ((-641 . -514) 28018) ((-77 . -611) 28000) ((-727 . -326) 27965) ((-1172 . -722) T) ((-571 . -1094) T) ((-481 . -172) 27876) ((-245 . -309) 27814) ((-1136 . -1106) T) ((-70 . -611) 27796) ((-1271 . -722) T) ((-1168 . -1045) T) ((-1167 . -1045) T) ((-327 . -102) 27746) ((-1161 . -1045) T) ((-1136 . -23) T) ((-1120 . -1045) T) ((-91 . -1115) 27730) ((-862 . -1106) T) ((-1168 . -233) 27689) ((-1167 . -243) 27668) ((-1167 . -233) 27620) ((-1161 . -233) 27507) ((-1161 . -243) 27486) ((-319 . -896) 27392) ((-862 . -23) T) ((-169 . -713) 27220) ((-407 . -1213) T) ((-1095 . -368) T) ((-1020 . -147) T) ((-999 . -363) T) ((-866 . -452) T) ((-939 . -286) 27197) ((-316 . -846) T) ((-313 . -846) NIL) ((-870 . -102) T) ((-708 . -25) T) ((-407 . -556) T) ((-708 . -21) T) ((-525 . -614) 27178) ((-354 . -147) 27160) ((-354 . -145) T) ((-1141 . -1094) 27138) ((-453 . -716) T) ((-75 . -611) 27120) ((-114 . -846) T) ((-245 . -282) 27104) ((-240 . -1051) 27001) ((-81 . -611) 26983) ((-731 . -368) 26936) ((-1170 . -824) T) ((-733 . -235) 26920) ((-1153 . -1209) T) ((-141 . -235) 26902) ((-240 . -111) 26792) ((-1232 . -713) 26621) ((-48 . -147) T) ((-867 . -172) T) ((-851 . -713) 26591) ((-484 . -1209) T) ((-948 . -514) 26538) ((-649 . -722) T) ((-571 . -713) 26525) ((-1030 . -1052) T) ((-481 . -514) 26468) ((-939 . -19) 26452) ((-939 . -602) 26429) ((-812 . -612) NIL) ((-812 . -611) 26411) ((-1000 . -1051) 26361) ((-413 . -611) 26343) ((-251 . -286) 26320) ((-250 . -286) 26297) ((-487 . -905) NIL) ((-316 . -29) 26267) ((-108 . -1209) T) ((-999 . -1106) T) ((-217 . -905) NIL) ((-910 . -1051) 26219) ((-1074 . -1034) 26115) ((-1000 . -111) 26049) ((-999 . -23) T) ((-733 . -691) 26033) ((-264 . -231) 26017) ((-427 . -1051) 26001) ((-379 . -1052) T) ((-240 . -614) 25731) ((-910 . -111) 25669) ((-690 . -1197) NIL) ((-487 . -644) 25619) ((-108 . -880) 25601) ((-108 . -882) 25583) ((-690 . -1194) NIL) ((-217 . -644) 25533) ((-359 . -1034) 25517) ((-353 . -1034) 25501) ((-327 . -309) 25439) ((-345 . -1034) 25423) ((-225 . -290) T) ((-427 . -111) 25402) ((-60 . -611) 25334) ((-169 . -172) T) ((-1114 . -846) T) ((-108 . -1034) 25294) ((-888 . -1094) T) ((-832 . -1052) T) ((-823 . -1052) T) ((-690 . -35) NIL) ((-690 . -95) NIL) ((-313 . -988) 25255) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1045) 25185) ((-1144 . -34) T) ((-477 . -916) T) ((-995 . -637) 25133) ((-251 . -602) 25110) ((-250 . -602) 25087) ((-1074 . -377) 25071) ((-867 . -514) 24979) ((-240 . -233) 24931) ((-1152 . -1209) T) ((-1000 . -614) 24881) ((-910 . -614) 24818) ((-820 . -611) 24800) ((-1282 . -1106) T) ((-1274 . -611) 24782) ((-1232 . -172) 24673) ((-427 . -614) 24642) ((-108 . -377) 24624) ((-108 . -338) 24606) ((-1056 . -290) T) ((-948 . -290) 24537) ((-795 . -368) 24516) ((-643 . -1209) T) ((-630 . -1209) T) ((-481 . -290) 24447) ((-571 . -172) T) ((-327 . -282) 24431) ((-1282 . -23) T) ((-1203 . -102) T) ((-1190 . -1094) T) ((-1082 . -1094) T) ((-1070 . -1094) T) ((-83 . -611) 24413) ((-1177 . -840) T) ((-1176 . -840) T) ((-707 . -102) T) ((-355 . -349) 24392) ((-606 . -1094) T) ((-352 . -349) 24371) ((-344 . -349) 24350) ((-475 . -1094) T) ((-1182 . -229) 24300) ((-264 . -253) 24262) ((-1136 . -131) T) ((-606 . -608) 24238) ((-1074 . -896) 24171) ((-1000 . -1045) T) ((-910 . -1045) T) ((-475 . -608) 24150) ((-1161 . -788) NIL) ((-1161 . -791) NIL) ((-1096 . -612) 24111) ((-479 . -229) 24061) ((-1096 . -611) 24043) ((-1000 . -243) T) ((-1000 . -233) T) ((-427 . -1045) T) ((-954 . -1094) 23993) ((-910 . -243) T) ((-862 . -131) T) ((-695 . -452) T) ((-839 . -1106) 23972) ((-108 . -896) NIL) ((-1203 . -284) 23938) ((-868 . -844) 23917) ((-1107 . -1209) T) ((-901 . -722) T) ((-169 . -514) 23829) ((-995 . -25) T) ((-901 . -473) T) ((-407 . -1106) T) ((-487 . -790) T) ((-487 . -787) T) ((-906 . -349) T) ((-487 . -722) T) ((-217 . -790) T) ((-217 . -787) T) ((-995 . -21) T) ((-217 . -722) T) ((-839 . -23) 23781) ((-524 . -614) 23762) ((-1177 . -1094) T) ((-319 . -307) 23741) ((-1176 . -1094) T) ((-1031 . -235) 23687) ((-407 . -23) T) ((-939 . -612) 23648) ((-939 . -611) 23560) ((-641 . -489) 23544) ((-45 . -1006) 23494) ((-615 . -963) T) ((-491 . -102) T) ((-331 . -611) 23476) ((-1107 . -1034) 23303) ((-592 . -647) 23285) ((-130 . -1094) T) ((-128 . -1094) T) ((-592 . -373) 23267) ((-343 . -1266) 23244) ((-439 . -611) 23226) ((-1023 . -1209) T) ((-867 . -290) T) ((-1232 . -514) 23173) ((-476 . -1209) T) ((-463 . -1209) T) ((-585 . -102) T) ((-1166 . -286) 23100) ((-621 . -452) 23079) ((-996 . -991) 23063) ((-1274 . -382) 23035) ((-517 . -1094) T) ((-117 . -452) T) ((-1189 . -102) T) ((-1086 . -1094) 23013) ((-1030 . -1094) T) ((-1109 . -93) T) ((-889 . -846) T) ((-351 . -1213) T) ((-1251 . -1051) 22896) ((-1107 . -377) 22865) ((-1244 . -1051) 22700) ((-1223 . -1051) 22490) ((-1251 . -111) 22359) ((-1244 . -111) 22180) ((-1223 . -111) 21949) ((-1203 . -309) 21936) ((-351 . -556) T) ((-365 . -611) 21918) ((-289 . -307) T) ((-595 . -1051) 21891) ((-594 . -1051) 21774) ((-361 . -1094) T) ((-322 . -1094) T) ((-251 . -611) 21735) ((-250 . -611) 21696) ((-999 . -131) T) ((-633 . -23) T) ((-690 . -409) 21663) ((-605 . -23) T) ((-654 . -102) T) ((-595 . -111) 21634) ((-594 . -111) 21503) ((-379 . -1094) T) ((-336 . -102) T) ((-169 . -290) 21414) ((-1222 . -844) 21367) ((-710 . -1052) T) ((-1141 . -514) 21300) ((-1107 . -896) 21232) ((-832 . -1094) T) ((-823 . -1094) T) ((-821 . -1094) T) ((-97 . -102) T) ((-144 . -846) T) ((-610 . -880) 21216) ((-110 . -1209) T) ((-1081 . -102) T) ((-1057 . -34) T) ((-778 . -102) T) ((-776 . -102) T) ((-1251 . -614) 21098) ((-1244 . -614) 20841) ((-461 . -102) T) ((-454 . -102) T) ((-1223 . -614) 20636) ((-240 . -791) 20587) ((-240 . -788) 20538) ((-645 . -102) T) ((-595 . -614) 20496) ((-594 . -614) 20378) ((-1232 . -290) 20289) ((-660 . -632) 20273) ((-186 . -611) 20255) ((-641 . -286) 20232) ((-1030 . -713) 20216) ((-571 . -290) T) ((-959 . -644) 20141) ((-1282 . -131) T) ((-731 . -644) 20101) ((-711 . -644) 20088) ((-275 . -102) T) ((-453 . -644) 20018) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1251 . -1045) T) ((-1244 . -1045) T) ((-1223 . -1045) T) ((-1251 . -233) 19977) ((-322 . -713) 19959) ((-1244 . -243) 19938) ((-1244 . -233) 19890) ((-1223 . -233) 19777) ((-1223 . -243) 19756) ((-1203 . -38) 19653) ((-1000 . -791) T) ((-595 . -1045) T) ((-594 . -1045) T) ((-1000 . -788) T) ((-967 . -791) T) ((-967 . -788) T) ((-868 . -1052) T) ((-866 . -865) 19637) ((-109 . -611) 19619) ((-690 . -452) T) ((-379 . -713) 19584) ((-418 . -644) 19558) ((-708 . -846) 19537) ((-707 . -38) 19502) ((-594 . -233) 19461) ((-40 . -720) 19433) ((-351 . -329) 19410) ((-351 . -363) T) ((-1074 . -307) 19361) ((-294 . -1106) 19242) ((-1100 . -1209) T) ((-171 . -102) T) ((-1226 . -611) 19209) ((-839 . -131) 19161) ((-641 . -1247) 19145) ((-832 . -713) 19115) ((-823 . -713) 19085) ((-482 . -1209) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-641 . -602) 19062) ((-407 . -131) T) ((-520 . -662) 19046) ((-108 . -307) T) ((-294 . -23) 18929) ((-520 . -647) 18913) ((-690 . -402) NIL) ((-520 . -373) 18897) ((-291 . -611) 18879) ((-91 . -1094) 18857) ((-108 . -1018) T) ((-564 . -143) T) ((-1259 . -151) 18841) ((-482 . -1034) 18668) ((-1245 . -145) 18629) ((-1245 . -147) 18590) ((-1049 . -1209) T) ((-989 . -611) 18572) ((-858 . -611) 18554) ((-812 . -1051) 18397) ((-1270 . -93) T) ((-1269 . -93) T) ((-1166 . -612) NIL) ((-1090 . -1094) T) ((-1084 . -1094) T) ((-1081 . -309) 18384) ((-1067 . -1094) T) ((-227 . -1209) T) ((-1060 . -1094) T) ((-1032 . -1094) T) ((-1015 . -1094) T) ((-778 . -309) 18371) ((-776 . -309) 18358) ((-1166 . -611) 18340) ((-812 . -111) 18169) ((-1119 . -611) 18151) ((-624 . -1094) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 18138) ((-483 . -1094) T) ((-1119 . -612) 17886) ((-1030 . -172) T) ((-939 . -288) 17863) ((-218 . -1094) T) ((-850 . -611) 17845) ((-606 . -514) 17628) ((-81 . -614) 17569) ((-814 . -1034) 17553) ((-475 . -514) 17345) ((-959 . -722) T) ((-731 . -722) T) ((-711 . -722) T) ((-351 . -1106) T) ((-1173 . -611) 17327) ((-223 . -102) T) ((-482 . -377) 17296) ((-515 . -1094) T) ((-510 . -1094) T) ((-508 . -1094) T) ((-795 . -644) 17270) ((-1020 . -452) T) ((-954 . -514) 17203) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 17182) ((-379 . -172) T) ((-1243 . -1052) T) ((-1222 . -1052) T) ((-225 . -998) T) ((-812 . -614) 16919) ((-695 . -387) T) ((-418 . -722) T) ((-697 . -1213) T) ((-1136 . -637) 16867) ((-580 . -865) 16851) ((-1274 . -1051) 16835) ((-1153 . -1185) 16811) ((-697 . -556) T) ((-126 . -1094) 16789) ((-710 . -1094) T) ((-482 . -896) 16721) ((-249 . -1094) T) ((-187 . -1094) T) ((-654 . -38) 16691) ((-354 . -402) T) ((-316 . -147) 16670) ((-316 . -145) 16649) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 16605) ((-313 . -145) 16561) ((-48 . -452) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-1153 . -107) 16508) ((-778 . -1145) 16486) ((-685 . -34) T) ((-1274 . -111) 16465) ((-550 . -34) T) ((-484 . -107) 16449) ((-251 . -288) 16426) ((-250 . -288) 16403) ((-867 . -286) 16354) ((-45 . -1209) T) ((-1215 . -840) T) ((-812 . -1045) T) ((-1172 . -47) 16331) ((-812 . -326) 16293) ((-1081 . -38) 16142) ((-812 . -233) 16121) ((-778 . -38) 15950) ((-776 . -38) 15799) ((-1109 . -490) 15780) ((-454 . -38) 15629) ((-1109 . -611) 15595) ((-1112 . -102) T) ((-641 . -612) 15556) ((-641 . -611) 15468) ((-581 . -1145) T) ((-518 . -1145) T) ((-1141 . -489) 15452) ((-1195 . -1094) 15430) ((-1136 . -25) T) ((-1136 . -21) T) ((-1274 . -614) 15379) ((-474 . -1052) T) ((-1215 . -1094) T) ((-1223 . -788) NIL) ((-1223 . -791) NIL) ((-995 . -846) 15358) ((-834 . -1094) T) ((-815 . -611) 15340) ((-862 . -21) T) ((-862 . -25) T) ((-795 . -722) T) ((-174 . -1213) T) ((-581 . -38) 15305) ((-518 . -38) 15270) ((-386 . -611) 15252) ((-324 . -611) 15234) ((-169 . -286) 15192) ((-63 . -1209) T) ((-112 . -102) T) ((-868 . -1094) T) ((-174 . -556) T) ((-710 . -713) 15162) ((-294 . -131) 15045) ((-225 . -611) 15027) ((-225 . -612) 14957) ((-999 . -637) 14896) ((-1274 . -1045) T) ((-1114 . -147) T) ((-630 . -1185) 14871) ((-727 . -905) 14850) ((-592 . -34) T) ((-643 . -107) 14834) ((-630 . -107) 14780) ((-1232 . -286) 14707) ((-727 . -644) 14632) ((-295 . -1209) T) ((-1172 . -1034) 14528) ((-939 . -616) 14505) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1161 . -905) NIL) ((-1056 . -612) 14420) ((-1056 . -611) 14402) ((-948 . -611) 14384) ((-709 . -490) 14334) ((-343 . -102) T) ((-251 . -1051) 14231) ((-250 . -1051) 14128) ((-394 . -102) T) ((-31 . -1094) T) ((-948 . -612) 13989) ((-709 . -611) 13924) ((-1272 . -1202) 13893) ((-481 . -611) 13875) ((-481 . -612) 13736) ((-247 . -411) 13720) ((-264 . -411) 13704) ((-251 . -111) 13594) ((-250 . -111) 13484) ((-1168 . -644) 13409) ((-1167 . -644) 13306) ((-1161 . -644) 13158) ((-1120 . -644) 13083) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-999 . -25) T) ((-999 . -21) T) ((-869 . -1094) 13034) ((-868 . -713) 12986) ((-379 . -290) T) ((-169 . -998) 12938) ((-690 . -387) T) ((-995 . -993) 12922) ((-697 . -1106) T) ((-690 . -166) 12904) ((-1243 . -1094) T) ((-1222 . -1094) T) ((-316 . -1194) 12883) ((-316 . -1197) 12862) ((-1158 . -102) T) ((-316 . -955) 12841) ((-134 . -1106) T) ((-116 . -1106) T) ((-600 . -1257) 12825) ((-697 . -23) T) ((-600 . -1094) 12775) ((-316 . -95) 12754) ((-91 . -514) 12687) ((-174 . -363) T) ((-251 . -614) 12417) ((-250 . -614) 12147) ((-316 . -35) 12126) ((-606 . -489) 12060) ((-134 . -23) T) ((-116 . -23) T) ((-962 . -102) T) ((-714 . -1094) T) ((-475 . -489) 11997) ((-407 . -637) 11945) ((-649 . -1034) 11841) ((-954 . -489) 11825) ((-355 . -1052) T) ((-352 . -1052) T) ((-344 . -1052) T) ((-264 . -1052) T) ((-247 . -1052) T) ((-867 . -612) NIL) ((-867 . -611) 11807) ((-1270 . -490) 11788) ((-1269 . -490) 11769) ((-1282 . -21) T) ((-1270 . -611) 11735) ((-1269 . -611) 11701) ((-571 . -998) T) ((-727 . -722) T) ((-1282 . -25) T) ((-251 . -1045) 11631) ((-250 . -1045) 11561) ((-72 . -1209) T) ((-251 . -233) 11513) ((-250 . -233) 11465) ((-40 . -102) T) ((-906 . -1052) T) ((-128 . -489) 11447) ((-1175 . -102) T) ((-1168 . -722) T) ((-1167 . -722) T) ((-1161 . -722) T) ((-1161 . -787) NIL) ((-1161 . -790) NIL) ((-950 . -102) T) ((-917 . -102) T) ((-1120 . -722) T) ((-767 . -102) T) ((-668 . -102) T) ((-546 . -611) 11429) ((-474 . -1094) T) ((-339 . -1106) T) ((-174 . -1106) T) ((-319 . -916) 11408) ((-1243 . -713) 11249) ((-868 . -172) T) ((-1222 . -713) 11063) ((-839 . -21) 11015) ((-839 . -25) 10967) ((-245 . -1143) 10951) ((-126 . -514) 10884) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 10650) ((-169 . -611) 10632) ((-174 . -23) T) ((-641 . -288) 10609) ((-520 . -34) T) ((-894 . -611) 10591) ((-89 . -1209) T) ((-837 . -611) 10573) ((-804 . -611) 10555) ((-765 . -611) 10537) ((-673 . -611) 10519) ((-240 . -644) 10367) ((-1170 . -1094) T) ((-1166 . -1051) 10190) ((-1144 . -1209) T) ((-1119 . -1051) 10033) ((-850 . -1051) 10017) ((-1226 . -616) 10001) ((-1166 . -111) 9810) ((-1119 . -111) 9639) ((-850 . -111) 9618) ((-1216 . -846) T) ((-1232 . -612) NIL) ((-1232 . -611) 9600) ((-343 . -1145) T) ((-851 . -611) 9582) ((-1070 . -286) 9561) ((-80 . -1209) T) ((-1000 . -905) NIL) ((-606 . -286) 9537) ((-1195 . -514) 9470) ((-487 . -1209) T) ((-571 . -611) 9452) ((-475 . -286) 9431) ((-517 . -93) T) ((-217 . -1209) T) ((-1081 . -231) 9415) ((-1000 . -644) 9365) ((-289 . -916) T) ((-813 . -307) 9344) ((-866 . -102) T) ((-778 . -231) 9328) ((-954 . -286) 9305) ((-910 . -644) 9257) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 9222) ((-690 . -720) 9189) ((-487 . -880) 9171) ((-487 . -882) 9153) ((-474 . -713) 8994) ((-217 . -880) 8976) ((-64 . -1209) T) ((-217 . -882) 8958) ((-605 . -25) T) ((-427 . -644) 8932) ((-1166 . -614) 8701) ((-487 . -1034) 8661) ((-868 . -514) 8573) ((-1119 . -614) 8365) ((-850 . -614) 8283) ((-217 . -1034) 8243) ((-240 . -34) T) ((-996 . -1094) 8221) ((-1243 . -172) 8152) ((-1222 . -172) 8083) ((-708 . -145) 8062) ((-708 . -147) 8041) ((-697 . -131) T) ((-136 . -465) 8018) ((-1141 . -611) 7950) ((-654 . -652) 7934) ((-128 . -286) 7909) ((-116 . -131) T) ((-477 . -1213) T) ((-606 . -602) 7885) ((-475 . -602) 7864) ((-336 . -335) 7833) ((-536 . -1094) T) ((-477 . -556) T) ((-1166 . -1045) T) ((-1119 . -1045) T) ((-850 . -1045) T) ((-240 . -787) 7812) ((-240 . -790) 7763) ((-240 . -789) 7742) ((-1166 . -326) 7719) ((-240 . -722) 7629) ((-954 . -19) 7613) ((-487 . -377) 7595) ((-487 . -338) 7577) ((-1119 . -326) 7549) ((-354 . -1266) 7526) ((-217 . -377) 7508) ((-217 . -338) 7490) ((-954 . -602) 7467) ((-1166 . -233) T) ((-660 . -1094) T) ((-642 . -1094) T) ((-1255 . -1094) T) ((-1182 . -1094) T) ((-1081 . -253) 7404) ((-355 . -1094) T) ((-352 . -1094) T) ((-344 . -1094) T) ((-264 . -1094) T) ((-247 . -1094) T) ((-84 . -1209) T) ((-127 . -102) 7382) ((-121 . -102) 7360) ((-1182 . -608) 7339) ((-479 . -1094) T) ((-1135 . -1094) T) ((-479 . -608) 7318) ((-251 . -791) 7269) ((-251 . -788) 7220) ((-250 . -791) 7171) ((-40 . -1145) NIL) ((-250 . -788) 7122) ((-1109 . -614) 7103) ((-128 . -19) 7085) ((-1074 . -916) 7036) ((-1000 . -790) T) ((-1000 . -787) T) ((-1000 . -722) T) ((-967 . -790) T) ((-128 . -602) 7011) ((-910 . -722) T) ((-91 . -489) 6995) ((-487 . -896) NIL) ((-906 . -1094) T) ((-225 . -1051) 6960) ((-868 . -290) T) ((-217 . -896) NIL) ((-829 . -1106) 6939) ((-59 . -1094) 6889) ((-519 . -1094) 6867) ((-516 . -1094) 6817) ((-497 . -1094) 6795) ((-496 . -1094) 6745) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 6676) ((-359 . -916) T) ((-353 . -916) T) ((-345 . -916) T) ((-225 . -111) 6632) ((-829 . -23) 6584) ((-427 . -722) T) ((-108 . -916) T) ((-40 . -38) 6529) ((-108 . -816) T) ((-581 . -349) T) ((-518 . -349) T) ((-1222 . -514) 6389) ((-316 . -452) 6368) ((-313 . -452) T) ((-888 . -611) 6350) ((-832 . -286) 6329) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6193) ((-294 . -21) 6076) ((-45 . -1185) 6055) ((-66 . -611) 6037) ((-55 . -102) T) ((-600 . -514) 5970) ((-45 . -107) 5920) ((-815 . -614) 5904) ((-1096 . -425) 5888) ((-1096 . -368) 5867) ((-386 . -614) 5851) ((-324 . -614) 5835) ((-1057 . -1209) T) ((-1056 . -1051) 5822) ((-948 . -1051) 5665) ((-1260 . -102) T) ((-1259 . -102) 5615) ((-1056 . -111) 5600) ((-481 . -1051) 5443) ((-660 . -713) 5427) ((-948 . -111) 5256) ((-225 . -614) 5206) ((-477 . -363) T) ((-355 . -713) 5158) ((-352 . -713) 5110) ((-344 . -713) 5062) ((-264 . -713) 4911) ((-247 . -713) 4760) ((-1251 . -644) 4685) ((-1223 . -905) NIL) ((-1090 . -93) T) ((-1084 . -93) T) ((-939 . -647) 4669) ((-1067 . -93) T) ((-481 . -111) 4498) ((-1060 . -93) T) ((-1032 . -93) T) ((-939 . -373) 4482) ((-248 . -102) T) ((-1015 . -93) T) ((-74 . -611) 4464) ((-959 . -47) 4443) ((-706 . -102) T) ((-695 . -102) T) ((-1 . -1094) T) ((-619 . -1106) T) ((-1244 . -644) 4340) ((-624 . -93) T) ((-1190 . -611) 4322) ((-1082 . -611) 4304) ((-126 . -489) 4288) ((-483 . -93) T) ((-1070 . -611) 4270) ((-390 . -23) T) ((-87 . -1209) T) ((-218 . -93) T) ((-1223 . -644) 4122) ((-906 . -713) 4087) ((-619 . -23) T) ((-606 . -611) 4069) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4051) ((-511 . -1094) T) ((-507 . -1094) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3989) ((-121 . -309) 3927) ((-595 . -644) 3914) ((-225 . -1045) T) ((-594 . -644) 3839) ((-379 . -998) T) ((-225 . -243) T) ((-225 . -233) T) ((-1056 . -614) 3811) ((-1056 . -616) 3792) ((-954 . -612) 3753) ((-954 . -611) 3665) ((-948 . -614) 3454) ((-866 . -38) 3441) ((-709 . -614) 3391) ((-1243 . -290) 3342) ((-1222 . -290) 3293) ((-481 . -614) 3078) ((-1114 . -452) T) ((-502 . -846) T) ((-316 . -1133) 3057) ((-995 . -147) 3036) ((-995 . -145) 3015) ((-495 . -309) 3002) ((-295 . -1185) 2981) ((-1177 . -611) 2963) ((-1176 . -611) 2945) ((-867 . -1051) 2890) ((-477 . -1106) T) ((-139 . -831) 2872) ((-114 . -831) 2853) ((-621 . -102) T) ((-1195 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1056 . -1045) T) ((-295 . -107) 2745) ((-130 . -611) 2727) ((-128 . -612) NIL) ((-128 . -611) 2671) ((-117 . -102) T) ((-948 . -1045) T) ((-867 . -111) 2600) ((-477 . -23) T) ((-481 . -1045) T) ((-1056 . -233) T) ((-948 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-959 . -1034) 2244) ((-517 . -490) 2225) ((-731 . -1034) 2196) ((-517 . -611) 2162) ((-1099 . -102) T) ((-1086 . -611) 2129) ((-1030 . -611) 2111) ((-1272 . -151) 2095) ((-1270 . -614) 2076) ((-1264 . -611) 2058) ((-1251 . -722) T) ((-1244 . -722) T) ((-1223 . -787) NIL) ((-1223 . -790) NIL) ((-169 . -1051) 1968) ((-906 . -172) T) ((-867 . -614) 1898) ((-1223 . -722) T) ((-1269 . -614) 1879) ((-999 . -342) 1853) ((-996 . -514) 1786) ((-839 . -846) 1765) ((-564 . -1145) T) ((-474 . -290) 1716) ((-595 . -722) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1034) 1576) ((-594 . -722) T) ((-407 . -846) 1527) ((-169 . -111) 1423) ((-829 . -131) 1375) ((-733 . -151) 1359) ((-1259 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1006) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-710 . -286) 1123) ((-487 . -1018) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1018) T) ((-867 . -1045) T) ((-832 . -611) 1044) ((-823 . -611) 1026) ((-821 . -611) 1008) ((-812 . -905) 987) ((-1283 . -1106) T) ((-1232 . -1051) 810) ((-851 . -1051) 794) ((-867 . -243) T) ((-867 . -233) NIL) ((-685 . -1209) T) ((-1283 . -23) T) ((-812 . -644) 719) ((-550 . -1209) T) ((-418 . -338) 703) ((-571 . -1051) 690) ((-1232 . -111) 499) ((-697 . -637) 481) ((-851 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1182 . -514) 30) ((-658 . -1094) T) ((-677 . -1094) T) ((-672 . -1094) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 99300d82..80b76aa9 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,5 +1,5 @@ -(30 . 3451054381) +(30 . 3451299465) (4409 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| @@ -250,23 +250,22 @@ |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| - |MakeBinaryCompiledFunction| |MakeCachableSet| - |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| - |MakeUnaryCompiledFunction| |MultivariateLifting| - |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| - |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| - |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| - |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| - |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| - |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| - |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| - |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| - |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| - |MultivariateFactorize| |MultivariateSquareFree| - |NonAssociativeAlgebra&| |NonAssociativeAlgebra| - |NagPolynomialRootsPackage| |NagRootFindingPackage| - |NagSeriesSummationPackage| |NagIntegrationPackage| - |NagOrdinaryDifferentialEquationsPackage| + |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| + |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| + |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| + |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| + |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| + |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| + |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| + |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| + |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| + |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| + |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| + |MultivariateTaylorSeriesCategory| |MultivariateFactorize| + |MultivariateSquareFree| |NonAssociativeAlgebra&| + |NonAssociativeAlgebra| |NagPolynomialRootsPackage| + |NagRootFindingPackage| |NagSeriesSummationPackage| + |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| @@ -390,8 +389,9 @@ |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| - |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled| - |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| + |RegularTriangularSetGcdPackage| |RestrictAst| |RuntimeValue| + |RuleCalled| |RewriteRule| |Ruleset| + |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope| @@ -477,660 +477,664 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |checkRur| |Zero| |primeFactor| |decompose| - |OMgetInteger| |movedPoints| |s14baf| |showTypeInOutput| |One| - |e01bhf| |diagonal?| |compile| |compdegd| |mdeg| |ravel| |string| - |plus| |lowerCase!| |number?| |normalDeriv| |showClipRegion| - |currentSubProgram| |roman| |zoom| |name| |coefChoose| |OMputEndError| - |reshape| |any| |f02axf| |belong?| |groebgen| |e02baf| |permanent| - |getMatch| |mainForm| |body| |OMcloseConn| |pseudoDivide| - |getProperty| |insertTop!| |finiteBasis| |optional?| |messagePrint| - |internal?| |pushuconst| |leadingTerm| |changeBase| |divisor| - |associatedSystem| |nil?| |f01qcf| |univariatePolynomials| |times| - |possiblyInfinite?| |changeVar| |fintegrate| - |characteristicPolynomial| |elt| |inf| |curve| |setsubMatrix!| - |prepareSubResAlgo| |mathieu22| |readInt8!| |resultant| |status| - |errorInfo| |numberOfOperations| |OMUnknownCD?| |character?| - |evenInfiniteProduct| |update| |endOfFile?| |goodPoint| |seed| - |normDeriv2| |symbolTableOf| |reducedDiscriminant| |quasiMonic?| - |linearAssociatedExp| |functionIsOscillatory| |trailingCoefficient| - |f02aff| |getGoodPrime| |getCode| |reverseLex| |port| |iidprod| - |extractTop!| |infinite?| |monom| |retractable?| |diagonalProduct| - |writeBytes!| |monicModulo| |normalizeAtInfinity| |entry| |isList| - |whitePoint| |subSet| |bernoulli| |modularGcd| |basicSet| |chebyshevT| - |KrullNumber| |doubleRank| |deleteProperty!| |complexNumericIfCan| |t| - |leftRankPolynomial| |exquo| |e02dff| |acscIfCan| |cos2sec| |rotatex| - |setValue!| |vedf2vef| |s21bbf| |rotate!| |div| |legendreP| |resize| - |common| |extractIndex| |element?| |shufflein| |cSec| |prime?| - |mkIntegral| |getRef| |directSum| |quo| |sinhIfCan| |generator| - |rischDEsys| |f2st| |OMputEndBVar| |ListOfTerms| |tanQ| - |numberOfNormalPoly| |parts| |initial| |specialTrigs| |c05adf| - |splitLinear| |e02bef| |move| |call| |Is| |prolateSpheroidal| - |hostPlatform| |typeList| |qqq| |ignore?| |powmod| |leftLcm| |rem| - |OMopenFile| |arrayStack| |basisOfLeftAnnihilator| |genericLeftTrace| - |taylorRep| |subResultantsChain| |overlap| |pushucoef| - |coercePreimagesImages| |cAsin| |readIfCan!| |romberg| |iitan| |zero| - |pointData| BY |backOldPos| |perspective| |index| - |factorSquareFreePolynomial| |removeZero| |clikeUniv| |insertRoot!| - |credPol| |characteristicSet| |rightCharacteristicPolynomial| - |rightDiscriminant| |multiplyCoefficients| |output| |lyndon| |front| - |constDsolve| |headReduce| |symmetricPower| |algebraic?| - |cyclotomicFactorization| |And| |resultantnaif| |associatorDependence| - |changeWeightLevel| |clipPointsDefault| |region| |even?| - |toseLastSubResultant| |pmintegrate| |roughEqualIdeals?| |allRootsOf| - |UP2ifCan| |Or| |generalizedInverse| |lighting| |LyndonWordsList| - |length| |iExquo| |pair| |homogeneous?| |symmetricGroup| - |wordInStrongGenerators| |setTex!| |localIntegralBasis| |Not| |e02ahf| - |symmetric?| |toseInvertible?| |scripts| |pmComplexintegrate| - |vertConcat| |f02awf| |stoseInternalLastSubResultant| |variable?| - |factorsOfCyclicGroupSize| |elseBranch| |value| |makeMulti| |heapSort| - |mindeg| |numberOfHues| |pushdown| |s17dlf| |bezoutResultant| |ode| - |badNum| |tan2trig| |OMlistCDs| |dflist| |musserTrials| |mainValue| - |unitCanonical| |iprint| |c06gqf| |createMultiplicationTable| |tRange| - |overlabel| |mvar| |removeCoshSq| |OMputBind| |structuralConstants| - |root?| |connectTo| |bat| |powers| |besselK| |minPoints| - |radicalEigenvalues| |constantOperator| |whatInfinity| |myDegree| - |mindegTerm| |exponent| |setVariableOrder| |insertMatch| - |numberOfComposites| |OMputAtp| |asecIfCan| |iicsch| |prod| - |partialQuotients| |showIntensityFunctions| - |genericLeftMinimalPolynomial| |positive?| |powerSum| - |generalTwoFactor| |totolex| |lowerCase| |gcdPolynomial| |unitVector| - |e01daf| |viewPosDefault| |leftGcd| |definingInequation| - |fractionFreeGauss!| |resetNew| |pack!| |s17adf| |mulmod| - |clearTheSymbolTable| |polyPart| |denomLODE| |useNagFunctions| - |f02agf| |fortranCarriageReturn| |antisymmetricTensors| - |createGenericMatrix| |OMreadFile| |univariatePolynomialsGcds| - |cAcoth| |substring?| |bandedJacobian| |sign| |eulerE| |OMgetEndBVar| - |exponentialOrder| |f04mcf| |binary| |associative?| |copy!| - |dimensionsOf| |printHeader| |subscriptedVariables| |zeroVector| - |algebraicOf| |OMputVariable| |indiceSubResultantEuclidean| - |transform| |sylvesterSequence| |zero?| |viewZoomDefault| |lifting1| - |tanh2coth| |degree| |suffix?| |symmetricProduct| |OMreceive| - |SturmHabichtSequence| |alternating| |twist| |plusInfinity| |lo| - |zeroDimensional?| |lazyPseudoRemainder| |HenselLift| |closedCurve?| - |rarrow| |OMgetAttr| |signAround| |untab| |SturmHabichtCoefficients| - |viewSizeDefault| |clip| |incr| |minusInfinity| |result| |octon| - |OMencodingXML| ~ |doubleDisc| |resultantReduitEuclidean| |prefix?| - |clearDenominator| |predicate| |createNormalPrimitivePoly| - |divergence| |colorFunction| |inR?| |scanOneDimSubspaces| |trim| - |antiCommutator| |is?| |OMputEndAtp| |degreeSubResultantEuclidean| - |OMputObject| |prevPrime| |topFortranOutputStack| |varselect| - |rootSplit| |properties| |eulerPhi| |gcdprim| |outputAsScript| |open| - |prepareDecompose| |getOrder| |basisOfCentroid| |enumerate| |unit| - |groebner?| |translate| |solveLinearPolynomialEquationByRecursion| - |remainder| |fortranInteger| |id| |chiSquare| |s21bdf| - |OMputEndObject| |complexNormalize| |setImagSteps| |zeroDimPrime?| - |lowerPolynomial| |typeLists| |submod| |powern| |modulus| |minus!| - |iiasec| |scan| |primitivePart!| |squareMatrix| |formula| |stirling1| - |type| |nextsousResultant2| |LowTriBddDenomInv| = |extractClosed| - |lazyResidueClass| |f01rdf| |unaryFunction| |nextsubResultant2| - |nextNormalPoly| |monicRightFactorIfCan| |rotatey| |eigenvalues| - |stronglyReduced?| |less?| |roughBasicSet| |spherical| |acschIfCan| - |aCubic| |integralBasisAtInfinity| |critMonD1| |critBonD| |writeInt8!| - |aromberg| < |cycleLength| |search| |setStatus!| |dim| |addMatch| - |replaceKthElement| |unmakeSUP| |internalIntegrate| |e02bdf| - |mkAnswer| |stosePrepareSubResAlgo| |nextLatticePermutation| |d01bbf| - > |ocf2ocdf| |genericRightTraceForm| |parameters| |outputGeneral| - |infiniteProduct| |s17ahf| |sinh2csch| |nrows| - |halfExtendedResultant2| |lprop| |tanNa| <= |coshIfCan| - |relativeApprox| |d01amf| |setCondition!| |clipSurface| |iiacoth| - |discriminantEuclidean| |ncols| |radicalOfLeftTraceForm| |elliptic| - |e02bcf| |OMclose| >= |putColorInfo| |chvar| |nthFactor| |OMputEndApp| - |nthExpon| |viewpoint| |infix?| |basisOfLeftNucleus| |hi| - |factorGroebnerBasis| |interpret| |identityMatrix| |elements| - |lazyIntegrate| |integralCoordinates| |sample| |multiple?| - |cycleRagits| |mask| |cubic| |groebnerIdeal| |monic?| |nlde| |revert| - |OMParseError?| |charClass| |compactFraction| |sqfree| |iidsum| - |getMultiplicationTable| |setleft!| |entries| |univariate?| - |resultantEuclideannaif| + |rightDivide| |leftQuotient| |f02akf| - |setchildren!| |mainKernel| |shiftLeft| |generalizedEigenvectors| |Ei| - |showArrayValues| |semiResultantEuclideannaif| - |constant| |PDESolve| - |lookup| |palgint| |integerIfCan| |selectOrPolynomials| |shift| - |midpoints| ~= |floor| |wreath| |discreteLog| |idealSimplify| - |moduloP| / |innerEigenvectors| |palglimint| |minimumDegree| - |polygamma| |subResultantChain| |outputAsTex| |primitiveElement| - |coerce| |iitanh| |cTan| |linearMatrix| |inverseIntegralMatrix| - |tanSum| |edf2fi| |pointLists| |mapUnivariateIfCan| |c06gcf| - |operator| |construct| |separateFactors| |diff| |leftExactQuotient| - |close!| |numberOfDivisors| |clearTheFTable| |abs| |point| - |removeRoughlyRedundantFactorsInPols| |cfirst| |realElementary| - |ridHack1| |cyclicGroup| |OMlistSymbols| |addMatchRestricted| |mapUp!| - |degreeSubResultant| |normalizeIfCan| |inverse| |linkToFortran| - |nextColeman| |brillhartTrials| |nextSubsetGray| |setAdaptive3D| - |phiCoord| |OMReadError?| |create3Space| |crushedSet| - |unrankImproperPartitions0| |drawToScale| |symFunc| |pow| |iiatanh| - |component| |iiacsc| |randomR| |coth2trigh| |replace| |series| - |setOfMinN| |deepCopy| |comparison| |extractIfCan| |exponents| - |collectUnder| |digamma| |invertibleSet| |invmultisect| |cschIfCan| - |LazardQuotient2| |quadratic| |lex| |qPot| |normalizedAssociate| - |OMgetType| |categories| |cyclic?| |composite| |acoshIfCan| |iicsc| - |getProperties| |toseSquareFreePart| |escape| |lyndonIfCan| - |leftUnits| |inverseLaplace| |cache| |dominantTerm| |rightTraceMatrix| - |rightScalarTimes!| UP2UTS |iibinom| |bipolar| |irreducibleFactor| - |addBadValue| |B1solve| |df2fi| |gcdcofact| - |semiDiscriminantEuclidean| |divide| |radicalEigenvectors| - |bivariatePolynomials| |min| |fractRagits| |inGroundField?| - |OMconnectTCP| |subresultantSequence| |rightMult| |removeSinhSq| - |unit?| |dimensionOfIrreducibleRepresentation| |mapGen| |bit?| - |d01apf| |surface| |rootsOf| |returnTypeOf| |reopen!| |cAcot| - |moebius| |torsionIfCan| |generalizedEigenvector| |stFunc1| |iilog| - |interpolate| |extendedIntegrate| |ScanArabic| |bright| |radicalRoots| - |getOperands| |OMencodingUnknown| |lfextlimint| |edf2df| |swap!| - |mapCoef| |viewport2D| |f02ajf| |stack| |getBadValues| - |separateDegrees| |any?| |c05nbf| |createLowComplexityTable| |double?| - |partitions| |distdfact| |useEisensteinCriterion| |setelt| - |measure2Result| |completeHermite| |vconcat| |createNormalElement| - |fixedDivisor| |fortranLiteralLine| |lift| |integralAtInfinity?| - |makeTerm| |palgextint0| |c06ekf| |laguerreL| |partition| |factorset| - |numberOfCycles| |sup| |quasiRegular| |reduce| |jacobi| |swapRows!| - |copy| |commutator| |torsion?| |principalAncestors| |prologue| - |fortranLinkerArgs| |basisOfCenter| |showFortranOutputStack| - |presuper| |iiasin| |po| |wordInGenerators| |monomial?| |makeFR| - |mesh?| |unrankImproperPartitions1| |hMonic| |polynomialZeros| - |shuffle| |f02fjf| |separate| |computeInt| |d03eef| - |algebraicVariables| |minColIndex| |ParCondList| |solve| - |createMultiplicationMatrix| |bytes| |real?| |normalized?| |ef2edf| - |f04asf| |hexDigit?| |singleFactorBound| |goodnessOfFit| |uniform01| - |bottom!| |integers| |rst| |lazyPrem| |primPartElseUnitCanonical!| - |leaf?| |cycleTail| |internalDecompose| |testModulus| |randnum| - |getDatabase| |quotedOperators| |infieldint| |complexElementary| - |graeffe| |contains?| |error| |opeval| |rowEchLocal| |maxPoints| - |OMgetObject| |compose| |rightRegularRepresentation| |tanh2trigh| - |cCsch| |hermiteH| |child?| |pomopo!| |s17dhf| |var2StepsDefault| - |assert| |logical?| |minPoints3D| |string?| |transcendentalDecompose| - |fullPartialFraction| |nextPrime| |cAsech| |modifyPointData| - |critMTonD1| |distFact| |contract| |lazyPquo| |cycleElt| - |UpTriBddDenomInv| |bounds| |univariatePolynomial| |reflect| - |selectPDERoutines| |complexEigenvalues| |rationalIfCan| |droot| - |reindex| |semiSubResultantGcdEuclidean2| |squareFreeFactors| |yellow| - |yCoordinates| |e04ycf| |flexibleArray| |delete!| |diagonalMatrix| - |cAcsch| |janko2| |approxSqrt| |color| |modularGcdPrimitive| |rename!| - |parseString| |byte| |leadingIdeal| |inHallBasis?| |Lazard2| - |lastSubResultantElseSplit| |generalSqFr| |tubePoints| - |rightAlternative?| |makeCos| |failed| |expressIdealMember| |c06gbf| - |expextendedint| |FormatRoman| |mainContent| |rule| |kroneckerDelta| - |rquo| |nthExponent| |cCos| |groebnerFactorize| |magnitude| - |pointColor| |lfextendedint| |normalForm| |variationOfParameters| - |shade| |lp| |eigenvectors| |unitNormalize| |delete| |setright!| - |returns| |Hausdorff| |lieAdmissible?| |patternMatch| |pToDmp| |int| - |iiasech| |singular?| |meatAxe| |positiveSolve| |localReal?| - |companionBlocks| |reducedContinuedFraction| |meshPar1Var| |iisqrt3| - |c06fuf| |rootSimp| |rk4f| |parabolic| |notelem| |matrixConcat3D| - |invertIfCan| |rightFactorIfCan| |OMread| |alternatingGroup| - |quasiAlgebraicSet| |decomposeFunc| |order| |fortranCompilerName| - |radicalEigenvector| |useEisensteinCriterion?| |minrank| |toScale| - |cAsec| |setButtonValue| |permutation| |listConjugateBases| - |factorPolynomial| |rightNorm| |dmp2rfi| |traverse| |mainVariable| - |s01eaf| |prinb| |subset?| |exptMod| |removeRedundantFactors| - |fortranLiteral| |completeSmith| |firstSubsetGray| |makingStats?| - |nextIrreduciblePoly| |halfExtendedSubResultantGcd1| - |basisOfRightNucleus| |simpsono| |rootPoly| |rdHack1| |henselFact| - |quoByVar| |iiacot| |removeSinSq| |testDim| |qelt| |OMgetEndObject| - |ScanRoman| |geometric| |isobaric?| |zeroDim?| |maximumExponent| - |pair?| |sparsityIF| |solveid| |iiperm| |qsetelt| - |rangePascalTriangle| |splitDenominator| |hspace| |atom?| - |inputOutputBinaryFile| |s14aaf| |d01akf| |currentScope| |conical| - |cAcsc| |genericLeftTraceForm| |xRange| |goto| GF2FG - |compiledFunction| |showTheSymbolTable| |probablyZeroDim?| - |characteristic| |alphabetic| |nthFractionalTerm| |maxrank| |lagrange| - |sumOfSquares| |yRange| |e02dcf| |positiveRemainder| |mpsode| - |outputFloating| |cAsinh| |say| |rightRankPolynomial| |conjug| - |socf2socdf| |baseRDE| |realEigenvalues| |retract| |zRange| |char| - |f01qdf| |jacobiIdentity?| |primlimintfrac| |makeVariable| - |removeSuperfluousCases| |possiblyNewVariety?| |symbol?| - |semiIndiceSubResultantEuclidean| |deepestTail| |polyRDE| |map!| - |fixedPointExquo| |printCode| |cyclePartition| |createNormalPoly| - |blue| |stoseInvertibleSet| |viewport3D| |optAttributes| - |fortranTypeOf| |cRationalPower| |qsetelt!| |coerceP| - |inputBinaryFile| |refine| |explicitlyEmpty?| |xCoord| |rootKerSimp| - |iicos| |omError| |nativeModuleExtension| |zerosOf| |rational?| - |contractSolve| |OMgetEndError| |leftFactor| |hcrf| |se2rfi| |hasoln| - |listBranches| |OMgetVariable| |deepestInitial| |monicDivide| - |basisOfCommutingElements| |complexExpand| |cCsc| |d03faf| - |maxPoints3D| |closedCurve| |leftRegularRepresentation| |getCurve| - |totalDegree| |quadraticNorm| |float| |someBasis| |psolve| |s19abf| - |branchIfCan| |forLoop| |crest| |ord| |bitTruth| |leftUnit| - |moduleSum| |initTable!| |e02aef| |hermite| |f2df| |topPredicate| - |e02akf| |findCycle| |cothIfCan| |expandPower| |leftRemainder| - |viewDefaults| |acsch| |symmetricTensors| |jordanAdmissible?| - |OMputBVar| |f04atf| |SturmHabichtMultiple| |bag| |parametersOf| - |f02adf| |more?| |multiplyExponents| |computeCycleEntry| |lfunc| - |unparse| |ratDenom| |subCase?| |f02bbf| |tube| |npcoef| |finite?| - |OMsetEncoding| |largest| |d02ejf| |rewriteIdealWithRemainder| - |copies| |safeFloor| |mkcomm| |approximants| |exp1| |firstNumer| - |squareFreePolynomial| |nextPrimitiveNormalPoly| |retractIfCan| - |vspace| |ksec| |taylorQuoByVar| |pleskenSplit| |lambert| |push| - |getConstant| |calcRanges| |initiallyReduce| |s15adf| |log| - |integralBasis| |generalInfiniteProduct| |dihedralGroup| - |resultantReduit| |binaryFunction| |weighted| |prinshINFO| |OMgetBind| - |identitySquareMatrix| |branchPointAtInfinity?| |sumSquares| |normal?| - |d01aqf| |bracket| |setvalue!| |normalize| |getGraph| |prem| |hasHi| - |lfintegrate| |rowEchelonLocal| |linearlyDependent?| |maxRowIndex| - |computeBasis| GE |fibonacci| |square?| |sorted?| |leftExtendedGcd| - |iicosh| |rootOfIrreduciblePoly| |integerBound| |c06frf| |linear?| - |lllip| |mat| GT |symmetricDifference| |constantToUnaryFunction| - |mergeDifference| |leviCivitaSymbol| |mathieu11| |inspect| - |linearAssociatedLog| |shellSort| |inRadical?| |realRoots| |cSech| - |parents| |weights| LE |overset?| |open?| |varList| |curveColor| - |asimpson| |euclideanNormalForm| |c02agf| |freeOf?| |outputBinaryFile| - |eyeDistance| |setScreenResolution| |purelyAlgebraicLeadingMonomial?| - |digits| |eigenMatrix| LT |subResultantGcdEuclidean| |schema| - |squareFreePart| |basisOfNucleus| |merge!| |sizeMultiplication| |axes| - |bits| |isAbsolutelyIrreducible?| |f04axf| |horizConcat| - |karatsubaDivide| |tryFunctionalDecomposition?| |sechIfCan| |cup| - |diagonals| |stop| |createIrreduciblePoly| |elColumn2!| |s20acf| - |linear| |OMputFloat| |knownInfBasis| |e02adf| |map| |arity| - |trueEqual| |euler| |ldf2lst| |numericIfCan| |doubleComplex?| |rk4| - |s17agf| |coth2tanh| |csc2sin| |concat!| |check| |primextendedint| - |mathieu24| |s13acf| |FormatArabic| |complexZeros| |coordinates| - |weierstrass| |polynomial| |stoseInvertible?| |nil| |rk4qc| - |bringDown| |zeroOf| |objectOf| |minimumExponent| |changeName| - |complexLimit| |sncndn| |minPol| |e01bff| |plenaryPower| |property| - |e04gcf| |beauzamyBound| |numerators| |symmetricRemainder| - |fortranDouble| |lazyGintegrate| |interReduce| |power| |palgRDE0| - |mesh| |d01alf| |roughSubIdeal?| |Beta| |loadNativeModule| - |iflist2Result| |setEpilogue!| |LyndonCoordinates| |cotIfCan| - |littleEndian| |primaryDecomp| |setScreenResolution3D| |explogs2trigs| - |rightFactorCandidate| |simplify| |approximate| |exists?| - |leftTraceMatrix| |convert| |isPlus| |center| |graphCurves| |hessian| - |member?| |fortranDoubleComplex| |leadingCoefficientRicDE| |lexico| - |GospersMethod| |units| |complex| |euclideanGroebner| |multiset| - |rightExactQuotient| |e01sff| |s18adf| |genericRightTrace| |e02ajf| - |dark| |countRealRootsMultiple| |cyclicCopy| |clipBoolean| |diagonal| - |balancedFactorisation| |roughBase?| |plus!| |removeSquaresIfCan| - |firstDenom| |radicalSimplify| RF2UTS |mainCharacterization| |An| - |singRicDE| |dequeue| |mapExponents| |constantRight| - |incrementKthElement| |problemPoints| |saturate| |extractProperty| - |nextNormalPrimitivePoly| |directory| |key?| |fractRadix| - |basisOfLeftNucloid| |critB| |splitNodeOf!| |rewriteSetWithReduction| - |coerceListOfPairs| |digit| |argument| |chiSquare1| |makeGraphImage| - |eof?| |null?| |oddintegers| |key| |sinIfCan| |code| - |currentCategoryFrame| |cyclicEntries| |sort!| |makeViewport2D| - |mightHaveRoots| |remove| |checkForZero| |newLine| |exponential| - |moreAlgebraic?| |accuracyIF| |leftCharacteristicPolynomial| - |curryRight| |imagK| |c02aff| |superHeight| |localUnquote| |localAbs| - |readable?| |filename| |Gamma| |selectSumOfSquaresRoutines| - |removeConstantTerm| |patternMatchTimes| |commutative?| |extension| - |d01fcf| |last| |printStatement| |laplacian| - |solveLinearPolynomialEquation| |lastSubResultantEuclidean| - |internalZeroSetSplit| |assoc| |factorAndSplit| |OMgetSymbol| - |negative?| |realZeros| |function| |fixedPoints| |associator| |ptree| - |wordsForStrongGenerators| |parse| |drawComplex| - |getMultiplicationMatrix| |ip4Address| |perfectSqrt| |nextItem| - |measure| |functionIsContinuousAtEndPoints| |modifyPoint| - |firstUncouplingMatrix| |lastSubResultant| |e04jaf| |dmpToP| - |mainExpression| |leftAlternative?| |tree| |cosSinInfo| |cAcosh| - |composites| |eval| |coordinate| |createPrimitivePoly| - |argumentListOf| |algebraicCoefficients?| |setleaves!| |capacity| - |members| |space| |sin2csc| |hasPredicate?| |denominator| - |schwerpunkt| |getMeasure| |float?| |numeric| |gcdcofactprim| |times!| - |green| |unknownEndian| |in?| |ranges| |rombergo| |category| - |evenlambert| |stoseLastSubResultant| |tanAn| |radical| |showSummary| - |tubePointsDefault| |binaryTree| |lineColorDefault| |midpoint| - |expandTrigProducts| |LyndonWordsList1| |epilogue| |equality| - |numberOfChildren| |Aleph| |domain| |lintgcd| |lquo| - |stoseIntegralLastSubResultant| |upperCase?| |ReduceOrder| - |readUInt16!| |primes| |bezoutDiscriminant| |package| |deepExpand| - |RittWuCompare| |findConstructor| |showAttributes| |sin?| - |subQuasiComponent?| |leastPower| |commaSeparate| - |ScanFloatIgnoreSpacesIfCan| |show| |unitsColorDefault| |prindINFO| - |f02xef| |areEquivalent?| |title| |lepol| |OMgetBVar| |elliptic?| - |OMsupportsCD?| |basisOfRightAnnihilator| |polarCoordinates| - |hostByteOrder| |iiGamma| |complexEigenvectors| |headRemainder| - |modTree| |dfRange| |linGenPos| |rectangularMatrix| |mapdiv| |f01qef| - |trace| |linears| |tryFunctionalDecomposition| |e02def| |ldf2vmf| - |central?| |virtualDegree| |expenseOfEvaluationIF| |readUInt8!| - |differentialVariables| |latex| |unprotectedRemoveRedundantFactors| - |lifting| |f04arf| |e| |nonQsign| |monomRDEsys| |blankSeparate| - |quickSort| |f07aef| |pushNewContour| |coleman| |s18dcf| - |partialNumerators| |OMputError| |multMonom| |cn| |lcm| |groebSolve| - |coefficient| |fixedPoint| |d02bhf| |setFieldInfo| |makeYoungTableau| - |zeroMatrix| |ffactor| |subResultantGcd| |hdmpToDmp| |mergeFactors| - |supRittWu?| |leastMonomial| |OMserve| |super| |s19aaf| |deref| - |hdmpToP| |shrinkable| |quoted?| FG2F |nothing| |fortranReal| - |selectODEIVPRoutines| |append| |list?| |rightRecip| |pureLex| - |uniform| |swap| |f01mcf| |equation| |besselI| |imaginary| |transpose| - |repSq| |gcd| |logIfCan| |points| |hash| |nullary| |subscript| - |insert!| |lazyEvaluate| |setProperties!| |makeEq| |cCoth| |false| - |rischNormalize| |rewriteSetByReducingWithParticularGenerators| - |count| |const| |log2| |s19acf| |trapezoidalo| |tValues| |sequence| - |parent| |s17dgf| |writeByte!| |quote| |nthCoef| |rur| |e01sef| - |fortranComplex| |algSplitSimple| |addmod| |algebraicSort| - |oddlambert| |irreducibleRepresentation| |LagrangeInterpolation| - |getOperator| |just| |clearCache| |genericRightDiscriminant| - |sumOfDivisors| |internalAugment| |cylindrical| |lSpaceBasis| |width| - |maxColIndex| |simplifyLog| |rotate| |expenseOfEvaluation| - |rightTrace| |isPower| |d02gbf| |#| |bombieriNorm| |c06eaf| - |dualSignature| |dAndcExp| |pastel| |e01sbf| |HermiteIntegrate| - |s17acf| |withPredicates| |rootRadius| |leftPower| |makeObject| - |OMgetFloat| |conjugates| |readLine!| |triangulate| |d02bbf| - |insertionSort!| |child| |generalPosition| |polygon| |rightQuotient| - |decimal| |conditionsForIdempotents| |deleteRoutine!| |currentEnv| - |shallowExpand| |solid?| |var1StepsDefault| |changeNameToObjf| - |youngGroup| |coef| |sort| |bat1| |whileLoop| |bitCoef| |s17akf| - |att2Result| |makeFloatFunction| |over| |skewSFunction| - |representationType| |getlo| |unary?| |leftNorm| |binarySearchTree| - |genericPosition| |determinant| |getVariableOrder| - |rightMinimalPolynomial| |reduction| |f07fef| |rootNormalize| - |solveInField| |subPolSet?| |init| |autoReduced?| |nextPrimitivePoly| - |OMputEndAttr| |reducedForm| |clearTheIFTable| |optional| - |LazardQuotient| |solveLinearPolynomialEquationByFractions| - |viewWriteDefault| |coord| |leftRank| |indicialEquation| - |getSyntaxFormsFromFile| |hasSolution?| |scalarMatrix| |random| - |stoseInvertible?reg| |binding| |module| |minRowIndex| |quotientByP| - |rangeIsFinite| |fTable| |harmonic| |coerceS| |getZechTable| - |identity| |outlineRender| |isOp| |generic?| |nthRoot| |recur| |diag| - |PollardSmallFactor| |setPosition| |medialSet| |alternative?| |e04mbf| - |setfirst!| |Ci| |rdregime| |children| |singularAtInfinity?| |imagE| - |rootOf| |sdf2lst| |headAst| |screenResolution| |intensity| |iroot| - |mantissa| |restorePrecision| |paraboloidal| |selectPolynomials| - |elementary| |direction| |pile| |e04fdf| |asinhIfCan| |ddFact| |keys| - |separant| |permutationRepresentation| |iiasinh| |one?| |depth| - |zeroSetSplit| |build| |appendPoint| |preprocess| |isTimes| |tower| - |implies| |iisec| |endSubProgram| |f07fdf| |numberOfFractionalTerms| - |leadingExponent| |intChoose| |externalList| |addPoint| SEGMENT - |d02gaf| |totalDifferential| |e02daf| |ptFunc| |OMmakeConn| - |fortranCharacter| |trapezoidal| |debug3D| |laurentIfCan| |subHeight| - |supersub| |multisect| |rroot| |commonDenominator| |constantOpIfCan| - |imagJ| |iteratedInitials| |sayLength| |symbolTable| |acothIfCan| - |semiResultantReduitEuclidean| |monomRDE| |s17aff| |makeprod| |critT| - |innerint| |multiEuclidean| |quasiMonicPolynomials| |cyclicSubmodule| - |OMunhandledSymbol| |startTableInvSet!| |ipow| |factorSquareFree| - |choosemon| |noncommutativeJordanAlgebra?| |universe| |critpOrder| - |test| |c06gsf| |complexNumeric| |host| |content| |neglist| - |limitedint| |atrapezoidal| |printInfo| |iterationVar| - |numericalIntegration| |round| |rules| |tanhIfCan| |hue| - |definingPolynomial| |makeSin| |f01ref| |resultantEuclidean| - |OMgetAtp| |showAllElements| |limit| |kernels| - |pushFortranOutputStack| |complement| |semiSubResultantGcdEuclidean1| - |pole?| |primitivePart| |dot| |unknown| |expintegrate| |mapUnivariate| - |rational| |OMputSymbol| |biRank| |f07adf| |univariate| |SFunction| - |d01asf| |concat| |characteristicSerie| |selectIntegrationRoutines| - |weakBiRank| |conjugate| |shiftRight| |gderiv| |imagi| |tensorProduct| - |rotatez| |prime| |bfKeys| |findBinding| |useSingleFactorBound| - |prefix| |zeroSquareMatrix| |popFortranOutputStack| |palgextint| - |vark| |limitPlus| |iicot| |satisfy?| |column| |makeCrit| - |wholeRagits| |BasicMethod| |outputAsFortran| |factor| |OMreadStr| - |generateIrredPoly| |infix| |Si| |elRow1!| |flatten| - |clearFortranOutputStack| |iipow| |OMgetApp| |signature| - |SturmHabicht| |pdf2ef| |sqrt| |zag| |setClosed| - |selectAndPolynomials| |newTypeLists| |idealiserMatrix| |normal01| - |tubeRadiusDefault| |orthonormalBasis| |real| |integralMatrix| - |setelt!| |intermediateResultsIF| |signatureAst| |stopTableGcd!| - |df2ef| |nonSingularModel| |minIndex| - |semiDegreeSubResultantEuclidean| |imag| |high| |stoseSquareFreePart| - |inverseIntegralMatrixAtInfinity| |readLineIfCan!| |kmax| - |sumOfKthPowerDivisors| |fglmIfCan| |selectsecond| |collect| - |directProduct| |slash| |viewPhiDefault| |qfactor| - |extractSplittingLeaf| |obj| |linearDependence| |palginfieldint| - |splitConstant| |cartesian| |s14abf| |initials| |quasiRegular?| - |limitedIntegrate| |f02aef| |outputArgs| |nodes| |upperCase| - |computePowers| |brace| |overbar| |supDimElseRittWu?| |nextPartition| - |csch2sinh| |denominators| |second| - |rewriteIdealWithQuasiMonicGenerators| |contours| |mathieu23| |e04naf| - |erf| |destruct| |scalarTypeOf| |thenBranch| |primextintfrac| - |coerceImages| |bitLength| |third| |addiag| |vectorise| - |OMencodingBinary| |regime| |binomThmExpt| |top| |mirror| |evaluate| - |rationalFunction| |tab1| |d01gaf| |mainMonomial| - |removeRedundantFactorsInContents| |viewDeltaYDefault| |comment| - |integral| |makeViewport3D| |outerProduct| |trace2PowMod| - |exprHasWeightCosWXorSinWX| |s20adf| |lazyPseudoQuotient| |unravel| - |dilog| |gradient| |c06fpf| |list| |f02bjf| |resetVariableOrder| - |linearPart| |raisePolynomial| |makeResult| |dn| |factorOfDegree| - |squareFreeLexTriangular| |twoFactor| |monomial| |sin| |car| |cot2tan| - |discriminant| |fractionPart| |expt| |subTriSet?| |pol| |stFunc2| - |normalizedDivide| |factorByRecursion| |multivariate| |cos| |cdr| - |degreePartition| |asinIfCan| |hconcat| |cond| |physicalLength| - |c06ebf| |laurentRep| |mainPrimitivePart| |variables| |tan| - |setDifference| |irreducible?| |OMwrite| |addPointLast| |nthRootIfCan| - |repeating| |f04adf| |read!| |taylorIfCan| |truncate| |cot| - |setIntersection| |hypergeometric0F1| |drawComplexVectorField| - |failed?| |makeop| |coefficients| |mapExpon| |RemainderList| |iiacos| - |ODESolve| |radix| |sec| |setUnion| |iiacosh| |delay| |enterPointData| - |rationalPoints| |write!| |reorder| |UnVectorise| |style| |edf2efi| - |invmod| |csc| |apply| |drawStyle| |f04qaf| |rightRemainder| - |zeroSetSplitIntoTriangularSystems| |setRow!| |squareTop| - |headReduced?| |asin| |outputSpacing| |compound?| |setPredicates| - |basisOfMiddleNucleus| |OMconnOutDevice| |ramified?| |lieAlgebra?| - |clearTable!| |writeLine!| |low| |acos| |taylor| |size| - |selectNonFiniteRoutines| |nthr| |setRealSteps| |aQuartic| - |ramifiedAtInfinity?| |invertible?| |chineseRemainder| - |strongGenerators| |atan| |laurent| |reducedQPowers| |prinpolINFO| - |csubst| |functionIsFracPolynomial?| |innerSolve| |pointColorPalette| - |arg1| |corrPoly| |lexGroebner| |acot| |puiseux| |decrease| |palgRDE| - |isTerm| |cycleSplit!| |fracPart| |safetyMargin| |nonLinearPart| - |setStatus| |createPrimitiveElement| |arg2| |systemCommand| - |principalIdeal| |f02aaf| |asec| |first| |extractPoint| |isOr| - |noLinearFactor?| |elem?| UTS2UP |autoCoerce| |slex| |nor| - |complexIntegrate| |Vectorise| |rest| |inv| |acsc| |expandLog| - |divideExponents| |isNot| |setLabelValue| |rightLcm| |complexForm| - |generalizedContinuumHypothesisAssumed?| |reify| |getIdentifier| - |ground?| |orbits| |stoseInvertible?sqfreg| |conditions| |sinh| - |basis| |substitute| |isImplies| |numberOfComputedEntries| - |antiAssociative?| |e02bbf| |removeDuplicates| |setMaxPoints3D| - |complexRoots| |primeFrobenius| |ground| |e01saf| |match| |cosh| - |normal| |selectMultiDimensionalRoutines| |isEquiv| F2FG ** - |resetBadValues| |pr2dmp| |paren| |rightUnits| |anticoord| |nsqfree| - |leadingMonomial| |tanh| |parabolicCylindrical| |yCoord| |position| - |isAnd| |updatF| |interval| |toseInvertibleSet| |removeCosSq| |solid| - |df2st| |karatsuba| |monicCompleteDecompose| |leadingCoefficient| - |coth| |monicLeftDivide| |match?| |numFunEvals| |max| |complexSolve| - |presub| |dimensions| |generalizedContinuumHypothesisAssumed| - |extendedEuclidean| |OMgetString| EQ |primitiveMonomials| |sech| - |leftTrace| |sech2cosh| |birth| |cyclotomicDecomposition| - |subresultantVector| |traceMatrix| |interactiveEnv| |fortran| - |constantKernel| |frobenius| |csch| |reductum| |s18acf| - |doubleFloatFormat| |squareFree| |numberOfIrreduciblePoly| - |rightExtendedGcd| |listRepresentation| |divideIfCan!| |postfix| - |difference| |asinh| |numericalOptimization| |nullity| |d02kef| - |critM| |frst| |rowEch| |isConnected?| |irreducibleFactors| |pade| - |acosh| |symbolIfCan| |poisson| |zeroDimPrimary?| |patternVariable| - |reseed| |debug| |wholePart| |alphanumeric| |intersect| - |permutationGroup| |atanh| |brillhartIrreducible?| |stirling2| - |createRandomElement| |expIfCan| |bipolarCylindrical| |mathieu12| - |cardinality| D |setColumn!| |setLength!| |d01anf| |acoth| |maxIndex| - |d03edf| |axesColorDefault| |zCoord| |df2mf| |cosIfCan| - |leadingSupport| |eigenvector| |ricDsolve| |trivialIdeal?| |asech| - |bfEntry| |repeating?| |digit?| |vector| |iomode| |setClipValue| - |leadingIndex| |identification| |split!| |cyclicEqual?| |qinterval| - |evaluateInverse| |rootPower| |pointSizeDefault| |ref| |imagk| - |distribute| |exprex| |algDsolve| |atanIfCan| |setProperty| - |stripCommentsAndBlanks| |errorKind| |quatern| |continue| |relerror| - |enqueue!| |makeSUP| |prefixRagits| |integralLastSubResultant| |deriv| - |graphStates| |outputList| |shallowCopy| |integralDerivationMatrix| - |viewDeltaXDefault| |absolutelyIrreducible?| |bernoulliB| |gbasis| - |getButtonValue| |listOfMonoms| |reduceByQuasiMonic| |logpart| - |primintfldpoly| |void| |f01bsf| |interpretString| - |exteriorDifferential| |permutations| |setEmpty!| - |stoseInvertibleSetsqfreg| |subspace| |showScalarValues| |showRegion| - |expint| |setMinPoints| |primPartElseUnitCanonical| |minordet| |mr| - |nodeOf?| |expPot| |consnewpol| |smith| |arguments| |gensym| - |alphanumeric?| |perfectNthRoot| |leadingBasisTerm| |palgLODE| |trunc| - |ratpart| |create| |baseRDEsys| |script| |leftDiscriminant| - |algintegrate| |kovacic| |tubePlot| |f01rcf| |atoms| |rank| - |chainSubResultants| |createThreeSpace| |differentiate| |maxint| - |print| |oneDimensionalArray| |cot2trig| |uncouplingMatrices| - |nullSpace| |factorSquareFreeByRecursion| |exactQuotient| |rowEchelon| - |anfactor| |pToHdmp| |partialDenominators| |resolve| |dimension| - |setProperty!| |matrixGcd| |OMgetEndApp| |getExplanations| - |newSubProgram| |sizeLess?| |hex| |noKaratsuba| |linearPolynomials| - |tex| |scaleRoots| |alphabetic?| |entry?| |complementaryBasis| - |minGbasis| |plot| |eq?| |pseudoRemainder| |e02ddf| |kind| |optpair| - |cycle| |padicallyExpand| |adaptive| |besselY| |subst| |lexTriangular| - |karatsubaOnce| |quadraticForm| |selectFiniteRoutines| |upperCase!| - |mainVariables| |op| |jordanAlgebra?| |numberOfImproperPartitions| - |mappingAst| |internalInfRittWu?| |simplifyPower| |extractBottom!| - |removeZeroes| |realSolve| |pseudoQuotient| - |stiffnessAndStabilityOfODEIF| |iiexp| |internalIntegrate0| |reset| - |fullDisplay| |constantLeft| |delta| |monomialIntPoly| - |leftFactorIfCan| |ode1| |s17def| |roughUnitIdeal?| |cycles| - |integer?| |radPoly| |addPoint2| |lists| |light| |minimize| |c05pbf| - |sinhcosh| |ran| |listexp| |write| |ratDsolve| |getStream| - |totalfract| |leftOne| |OMputString| |redmat| |sturmVariationsOf| - |save| |copyInto!| |represents| |indicialEquations| |f04jgf| - |aQuadratic| |powerAssociative?| F |bandedHessian| |curve?| - |createZechTable| |readBytes!| |OMputAttr| |augment| - |definingEquations| |diophantineSystem| |multiple| |table| |objects| - |operations| |colorDef| |innerSolve1| |remove!| |applyQuote| - |moebiusMu| |bothWays| |perfectSquare?| |swapColumns!| |union| |cLog| - |insert| |setrest!| |new| |base| |dec| |infieldIntegrate| |domainOf| - |solveRetract| |summation| |imagI| |redPo| |showTheRoutinesTable| - |cyclic| |solveLinearlyOverQ| |simplifyExp| |fi2df| |part?| - |intPatternMatch| |selectOptimizationRoutines| |extendedResultant| - |OMconnInDevice| |rightZero| |external?| |node| |lambda| |sn| |numer| - |flagFactor| |OMputInteger| |edf2ef| |completeEval| |integral?| - |double| |infinityNorm| |subNodeOf?| |readInt16!| |generate| |close| - |ruleset| |multinomial| |ellipticCylindrical| |denom| |/\\| - |enterInCache| |linearAssociatedOrder| |univcase| |physicalLength!| - |buildSyntax| |polyRicDE| |secIfCan| |rationalApproximation| - |rightGcd| |btwFact| |\\/| |components| |incrementBy| - |semicolonSeparate| |sincos| |mainCoefficients| |returnType!| - |display| |removeRedundantFactorsInPols| |pi| - |genericLeftDiscriminant| |adaptive?| |normInvertible?| |toroidal| - |curveColorPalette| |startStats!| |safeCeiling| |d01gbf| |expand| - |suchThat| |sortConstraints| |infinity| |acosIfCan| - |collectQuasiMonic| |legendre| |charpol| |trigs| |mapSolve| |recip| - |s13aaf| |filterWhile| |e04dgf| |cyclicParents| - |linearDependenceOverZ| |internalLastSubResultant| |flexible?| - |exprToGenUPS| |duplicates?| |generators| |filterUntil| - |createLowComplexityNormalBasis| |stiffnessAndStabilityFactor| - |printStats!| |pquo| |integralMatrixAtInfinity| |linSolve| |row| - |select| |linearlyDependentOverZ?| |balancedBinaryTree| |kernel| - |exprToUPS| |normFactors| |curry| |argumentList!| |declare!| - |bezoutMatrix| |iisqrt2| |input| |makeSeries| |seriesToOutputForm| - |left| |draw| |setPoly| |nary?| |startTable!| |var2Steps| |unexpand| - |fprindINFO| |minimalPolynomial| |library| |certainlySubVariety?| - |right| |qroot| |previous| |finiteBound| |perfectNthPower?| |f01maf| - |numberOfPrimitivePoly| |unitNormal| |singularitiesOf| |OMopenString| - |hasTopPredicate?| |infLex?| |sts2stst| |d02raf| |readUInt32!| - |wholeRadix| |factor1| |viewThetaDefault| |mapmult| |writeUInt8!| - |norm| |fmecg| |updateStatus!| |exprHasAlgebraicWeight| - |listYoungTableaus| |monomials| |userOrdered?| |cscIfCan| |rightOne| - |mapBivariate| |exQuo| |arbitrary| |makeRecord| |set| - |univariateSolve| |subMatrix| |dmpToHdmp| - |rewriteIdealWithHeadRemainder| |inconsistent?| |simpleBounds?| - |stoseInvertibleSetreg| |inrootof| |c06fqf| |iiatan| |setProperties| - |shiftRoots| |graphImage| |extendIfCan| |segment| |complex?| - |reduced?| |setnext!| |componentUpperBound| |antiCommutative?| - |OMgetEndAtp| |expr| |packageCall| |explimitedint| |froot| - |leastAffineMultiple| |sum| |split| |factorial| |factors| - |createPrimitiveNormalPoly| |nand| |purelyTranscendental?| - |graphState| |stopMusserTrials| |wrregime| |isMult| - |extendedSubResultantGcd| |heap| |htrigs| |triangularSystems| - |bigEndian| |d01ajf| |trigs2explogs| - |removeRoughlyRedundantFactorsInPol| |basisOfRightNucloid| |recolor| - |generic| |constant?| |s18aef| |dom| |curryLeft| |parametric?| - |bumptab1| |doublyTransitive?| |symbol| |sturmSequence| |rightUnit| - |bsolve| |sizePascalTriangle| |variable| |e02agf| |block| |leftRecip| - |isQuotient| |numberOfVariables| |expression| |genus| |mainVariable?| - |iterators| |setlast!| |factorials| |indices| |ideal| |lllp| - |highCommonTerms| |middle| |integer| |checkPrecision| |divideIfCan| - |iCompose| |intcompBasis| |s15aef| |lazy?| |ScanFloatIgnoreSpaces| - |rk4a| |OMgetEndBind| |pointColorDefault| |lowerCase?| |inc| - |meshFun2Var| |superscript| |iisech| |sqfrFactor| |principal?| - |badValues| |integrate| |optimize| |pushup| |cycleEntry| - |setMaxPoints| |rCoord| |s21bcf| |clipWithRanges| |lazyPseudoDivide| - |exactQuotient!| |monicDecomposeIfCan| |nilFactor| |reverse| - |euclideanSize| |s17aef| |padecf| |pop!| |logGamma| |compBound| - |height| |genericRightMinimalPolynomial| |polyred| |sPol| |rootBound| - |bumptab| |plotPolar| |redpps| |completeEchelonBasis| |subNode?| - |nthFlag| |algebraicDecompose| |next| |associates?| |s17dcf| |setref| - |atanhIfCan| |recoverAfterFail| |multiEuclideanTree| |setMinPoints3D| - |sub| |drawCurves| |expintfldpoly| |monomialIntegrate| |label| - |extend| |palgint0| |ParCond| |top!| |true| |merge| |convergents| - |stopTable!| |abelianGroup| |LyndonBasis| |triangular?| |Frobenius| - |exportedOperators| |aLinear| |rootProduct| - |combineFeatureCompatibility| |tableForDiscreteLogarithm| - |padicFraction| |listLoops| |monicRightDivide| |useSingleFactorBound?| - |maxrow| |ratPoly| |genericRightNorm| |llprop| |polygon?| |Nul| - |semiLastSubResultantEuclidean| |indicialEquationAtInfinity| - |tubeRadius| |gethi| |scale| |s18def| |infRittWu?| |approxNthRoot| - |printInfo!| |divisorCascade| |iisinh| |bivariate?| |algint| - |factorList| |d02cjf| |LiePoly| LODO2FUN |find| |imagj| - |pascalTriangle| |realEigenvectors| |outputFixed| |bindings| - |setAdaptive| |numberOfComponents| |clipParametric| |reduceLODE| - |readInt32!| |initializeGroupForWordProblem| |OMsend| - |lazyIrreducibleFactors| |palgintegrate| |size?| |quartic| |empty| - |setAttributeButtonStep| |s13adf| |constructor| |acotIfCan| |sec2cos| - |charthRoot| |tanIfCan| |lazyVariations| |exprToXXP| |divisors| - |extendedint| |computeCycleLength| |palglimint0| |scopes| - |derivationCoordinates| |position!| |maxdeg| |doubleResultant| - |declare| |option| |s18aff| |predicates| |tab| |tracePowMod| - |complete| |squareFreePrim| |ode2| |OMputEndBind| |countRealRoots| - |callForm?| |tableau| |semiResultantEuclidean1| |tail| |normalDenom| - |f01brf| |transcendent?| |product| |reducedSystem| |radicalSolve| - |relationsIdeal| |primlimitedint| |leftScalarTimes!| |polCase| - |f04faf| |adjoint| |upDateBranches| |isExpt| |sh| |changeThreshhold| - |chebyshevU| |unvectorise| |lflimitedint| |sequences| |pointPlot| NOT - |scripted?| |tablePow| |makeUnit| |resetAttributeButtons| |datalist| - |setFormula!| |semiResultantEuclidean2| |polar| |printTypes| |every?| - OR |getPickedPoints| |constantCoefficientRicDE| |assign| |rightTrim| - |triangSolve| |sylvesterMatrix| |extensionDegree| - |commutativeEquality| |standardBasisOfCyclicSubmodule| |subtractIfCan| - AND |printingInfo?| |cAtan| |routines| |leftTrim| |increasePrecision| - |operators| |duplicates| |rightRank| |iisin| |factorSFBRlcUnit| - |point?| |integralRepresents| |closeComponent| |leader| - |mapMatrixIfCan| |hyperelliptic| |gcdPrimitive| - |reduceBasisAtInfinity| |screenResolution3D| |totalGroebner| - |changeMeasure| |removeRoughlyRedundantFactorsInContents| |red| - |startTableGcd!| |connect| |viewWriteAvailable| |countable?| |rename| - |e02gaf| |leaves| |push!| |rootDirectory| |loopPoints| |writable?| - |setLegalFortranSourceExtensions| |constantIfCan| |OMputApp| |li| - |numberOfMonomials| |weight| |OMsupportsSymbol?| |outputMeasure| - |solveLinear| |range| |equiv| |tan2cot| |stronglyReduce| - |removeIrreducibleRedundantFactors| |applyRules| |dioSolve| |redPol| - |f02wef| |transcendenceDegree| |validExponential| |idealiser| - |select!| |leftMinimalPolynomial| |branchPoint?| |denomRicDE| |iifact| - |ceiling| |imports| |iFTable| |extract!| |showAll?| |laplace| - |oddInfiniteProduct| |numerator| |setPrologue!| |fillPascalTriangle| - |conditionP| |halfExtendedResultant1| |factorFraction| |terms| - |pattern| |setOrder| |OMgetEndAttr| |log10| |minPoly| - |decreasePrecision| |c06ecf| |asechIfCan| |cCosh| |increase| - |OMbindTCP| |internalSubQuasiComponent?| |leftDivide| |bitand| - |fixPredicate| * |f02abf| |f04mbf| |laguerre| |e01baf| |bumprow| - |numberOfFactors| |bitior| |insertBottom!| |e02zaf| |byteBuffer| - |distance| |cExp| |controlPanel| |inverseColeman| |qualifier| - |mainSquareFreePart| |s19adf| |halfExtendedSubResultantGcd2| |cap| - |updatD| |eisensteinIrreducible?| |explicitEntries?| |head| |message| - |purelyAlgebraic?| |lfinfieldint| |regularRepresentation| |totalLex| - |oblateSpheroidal| |thetaCoord| |stopTableInvSet!| |nullary?| |e04ucf| - |numFunEvals3D| |power!| |jacobian| |mkPrim| |listOfLists| - |symmetricSquare| |f04maf| |s17ajf| |rightPower| |nextSublist| - |stFuncN| |solve1| |internalSubPolSet?| |associatedEquations| - |option?| |bivariateSLPEBR| |boundOfCauchy| |rubiksGroup| |cross| - |dictionary| |elRow2!| |adaptive3D?| |cyclotomic| |quasiComponent| - |Lazard| |makeSketch| |aspFilename| |randomLC| |cSin| |seriesSolve| - |fortranLogical| |primintegrate| |has?| |minset| |repeatUntilLoop| - |showTheFTable| |usingTable?| |orbit| |cons| |eq| |fill!| |binomial| - |putGraph| |cAcos| |particularSolution| |processTemplate| |coerceL| - |xn| |pushdterm| |iter| |binaryTournament| |box| |startPolynomial| - |cAtanh| |OMencodingSGML| |s21baf| |normalise| |condition| |iiacsch| - |lazyPremWithDefault| |exprHasLogarithmicWeights| |splitSquarefree| - |hclf| |mainDefiningPolynomial| |setprevious!| |argscript| - |tanintegrate| |lyndon?| |initiallyReduced?| |primitive?| |e01bef| - |empty?| |pdf2df| |outputForm| |collectUpper| |airyBi| |level| Y - |iicoth| |precision| |increment| |BumInSepFFE| |hitherPlane| |besselJ| - |defineProperty| |mapDown!| |leftMult| |var1Steps| |odd?| - |rationalPower| |shanksDiscLogAlgorithm| |setErrorBound| |newReduc| - |removeSuperfluousQuasiComponents| |pdct| |source| |matrix| |isOpen?| - |normalElement| |partialFraction| |factorsOfDegree| |selectfirst| - |queue| |iiabs| |root| |mainMonomials| |categoryFrame| - |antisymmetric?| |coHeight| |cPower| |graphs| |systemSizeIF| - |reverse!| |exp| |wronskianMatrix| |setTopPredicate| |completeHensel| - |null| |palgLODE0| |exponential1| |morphism| |bubbleSort!| |rischDE| - |index?| |explicitlyFinite?| |not| |generalLambert| |cTanh| - |removeDuplicates!| |figureUnits| |cCot| |meshPar2Var| |hexDigit| - |rspace| |quotient| |and| |rationalPoint?| |readByte!| |mix| |target| - |cosh2sech| |airyAi| |continuedFraction| |gramschmidt| |modularFactor| - |or| |cSinh| |showTheIFTable| |back| |operation| |genericLeftNorm| - |matrixDimensions| |OMUnknownSymbol?| |xor| |dihedral| |comp| - |invertibleElseSplit?| |reciprocalPolynomial| |dequeue!| |lhs| - |options| |OMgetError| |e01bgf| |node?| |quadratic?| |case| - |derivative| |leftZero| |simpson| |closed?| |rhs| |LiePolyIfCan| - |groebner| |indiceSubResultant| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|)
\ No newline at end of file + |Record| |Union| |setchildren!| |consnewpol| |symmetricDifference| + |imports| |associatorDependence| |Lazard2| |viewDeltaYDefault| + |isMult| |rectangularMatrix| |mainKernel| |constantToUnaryFunction| + |smith| |iFTable| |changeWeightLevel| |integral| + |lastSubResultantElseSplit| |extendedSubResultantGcd| |mapdiv| + |shiftLeft| |gensym| |mergeDifference| |extract!| |clipPointsDefault| + |generalSqFr| |makeViewport3D| |heap| |f01qef| + |generalizedEigenvectors| |leviCivitaSymbol| |alphanumeric?| + |showAll?| |region| |trace2PowMod| |tubePoints| |linears| |htrigs| + |Ei| |perfectNthRoot| |mathieu11| |laplace| |vector| |even?| + |exprHasWeightCosWXorSinWX| |rightAlternative?| + |tryFunctionalDecomposition| |triangularSystems| |showArrayValues| + |label| |inspect| |leadingBasisTerm| |oddInfiniteProduct| + |differentiate| |toseLastSubResultant| |makeCos| |s20adf| |bigEndian| + |e02def| |semiResultantEuclideannaif| |linearAssociatedLog| |palgLODE| + |numerator| |pmintegrate| |lazyPseudoQuotient| |expressIdealMember| + |ldf2vmf| |d01ajf| |PDESolve| |shellSort| |trunc| |setPrologue!| + |roughEqualIdeals?| |output| |unravel| |c06gbf| |central?| + |trigs2explogs| |lookup| |inRadical?| |ratpart| |fillPascalTriangle| + |allRootsOf| |expextendedint| |gradient| |virtualDegree| + |removeRoughlyRedundantFactorsInPol| |realRoots| |palgint| |seed| + |create| |conditionP| |UP2ifCan| |c06fpf| |FormatRoman| + |basisOfRightNucloid| |expenseOfEvaluationIF| |integerIfCan| |cSech| + |box| |normDeriv2| |baseRDEsys| |halfExtendedResultant1| + |generalizedInverse| |f02bjf| |mainContent| |recolor| |readUInt8!| + |selectOrPolynomials| |weights| |leftDiscriminant| |factorFraction| + |kroneckerDelta| |constructor| |differentialVariables| + |resetVariableOrder| |generic| |qelt| |algintegrate| |midpoints| + |linear| |overset?| |terms| |depth| |qsetelt| |linearPart| ** |rquo| + |latex| |constant?| |option| |floor| |kovacic| |open?| |setOrder| + |raisePolynomial| |nthExponent| |s18aef| |xRange| + |unprotectedRemoveRedundantFactors| |wreath| |curveColor| |tubePlot| + |polynomial| |OMgetEndAttr| |next| |cCos| |point| |curryLeft| + |makeResult| |lifting| |yRange| |precision| |f01rcf| |asimpson| + |minPoly| |dn| |groebnerFactorize| |f04arf| |zRange| |parametric?| + |lowerPolynomial| |euclideanNormalForm| |atoms| |decreasePrecision| + |factorOfDegree| |map!| |magnitude| |bumptab1| |nonQsign| |typeLists| + |c02agf| |chainSubResultants| |c06ecf| |doublyTransitive?| + |pointColor| |qsetelt!| |series| |squareFreeLexTriangular| |li| + |rightTrim| |monomRDEsys| |submod| |freeOf?| |createThreeSpace| + |asechIfCan| |leftTrim| |blankSeparate| |sturmSequence| |powern| + |maxint| |outputBinaryFile| |cCosh| |rotatez| |wordInGenerators| + |rightUnit| |quickSort| |modulus| |oneDimensionalArray| |eyeDistance| + |increase| |prime| |monomial?| |f07aef| |bsolve| |minus!| + |setScreenResolution| |cot2trig| |OMbindTCP| |bfKeys| |makeFR| |min| + |leaves| |sizePascalTriangle| |pushNewContour| |kind| |iiasec| + |internalSubQuasiComponent?| |findBinding| |mesh?| |e02agf| |acsch| + |coleman| |op| |scan| |critM| |bitTruth| |leftDivide| + |useSingleFactorBound| |unrankImproperPartitions1| |block| |s18dcf| + |primitivePart!| |leftUnit| |frst| |fixPredicate| |zeroSquareMatrix| + |hMonic| |partialNumerators| |leftRecip| |squareMatrix| |moduleSum| + |rowEch| |f02abf| |polynomialZeros| |normalizeAtInfinity| |palgextint| + |stirling1| |isConnected?| |hi| |initTable!| |pattern| |f04mbf| |vark| + |shuffle| |stiffnessAndStabilityFactor| |fixedPoints| + |nextsousResultant2| |e02aef| |irreducibleFactors| |laguerre| |f02fjf| + |limitPlus| |associator| |printStats!| |any| |LowTriBddDenomInv| + |pade| |hermite| |e01baf| |iicot| |separate| + |wordsForStrongGenerators| |pquo| |showClipRegion| |union| + |extractClosed| |f2df| |symbolIfCan| |computeInt| |satisfy?| + |drawComplex| |integralMatrixAtInfinity| |currentSubProgram| |numeric| + |lazyResidueClass| |topPredicate| |poisson| |message| |rdregime| + |isExpt| |d03eef| |column| |getMultiplicationMatrix| |linSolve| + |roman| |arguments| |zeroDimPrimary?| |f01rdf| |radical| |e02akf| + |children| |sh| |makeCrit| |ip4Address| |algebraicVariables| |infix?| + |row| |zoom| |unaryFunction| |close| |patternVariable| |findCycle| + |singularAtInfinity?| |changeThreshhold| |mask| |wholeRagits| + |minColIndex| |perfectSqrt| |linearlyDependentOverZ?| |coefChoose| + |nextsubResultant2| |condition| |cothIfCan| |reseed| |imagE| + |chebyshevU| |BasicMethod| |ParCondList| |balancedBinaryTree| + |nextItem| |e01bgf| |OMputEndError| |nextNormalPoly| |display| + |wholePart| |expandPower| |rootOf| |unvectorise| |OMreadStr| |solve| + |exprToUPS| |measure| |f02axf| |node?| |monicRightFactorIfCan| + |alphanumeric| |leftRemainder| |sdf2lst| |lflimitedint| + |functionIsContinuousAtEndPoints| |createMultiplicationMatrix| + |generateIrredPoly| |normFactors| |cons| |quadratic?| |belong?| + |rotatey| |intersect| |viewDefaults| |headAst| |sequences| |bytes| + |infix| |curry| |modifyPoint| |derivative| |groebgen| |eigenvalues| + |permutationGroup| |symmetricTensors| |screenResolution| |pointPlot| + |Si| |real?| |firstUncouplingMatrix| |argumentList!| |leftZero| + |e02baf| |stronglyReduced?| |brillhartIrreducible?| + |jordanAdmissible?| |scripted?| |intensity| |elRow1!| |normalized?| + |bezoutMatrix| |lastSubResultant| |simpson| |permanent| |stirling2| + |less?| |input| |OMputBVar| |iroot| |tablePow| |ef2edf| + |clearFortranOutputStack| |iisqrt2| |e04jaf| |closed?| |getMatch| + |library| |roughBasicSet| |f04atf| |createRandomElement| |makeUnit| + |restorePrecision| |iipow| |f04asf| |makeSeries| |dmpToP| + |LiePolyIfCan| |mainForm| |spherical| |expIfCan| + |SturmHabichtMultiple| |resetAttributeButtons| |paraboloidal| + |hexDigit?| |seriesToOutputForm| |OMgetApp| |source| |mainExpression| + |groebner| |OMcloseConn| |acschIfCan| |bag| |bipolarCylindrical| + |setFormula!| |selectPolynomials| |singleFactorBound| |SturmHabicht| + |leftAlternative?| |setPoly| |indiceSubResultant| |pseudoDivide| + |aCubic| |mathieu12| |parametersOf| |elementary| + |semiResultantEuclidean2| |pdf2ef| |goodnessOfFit| |nary?| + |cosSinInfo| |getProperty| |integralBasisAtInfinity| |cardinality| + |f02adf| |set| |polar| |direction| |zag| |uniform01| |cAcosh| + |startTable!| |insertTop!| |setColumn!| |critMonD1| |length| |more?| + |pile| |printTypes| |bottom!| |setClosed| |var2Steps| |composites| + |finiteBasis| |setLength!| |critBonD| |scripts| |multiplyExponents| + |every?| |e04fdf| |selectAndPolynomials| |integers| |target| + |coordinate| |unexpand| |optional?| |compile| |writeInt8!| + |computeCycleEntry| |d01anf| |asinhIfCan| |getPickedPoints| + |createPrimitivePoly| |rst| |newTypeLists| |fprindINFO| |retract| + |messagePrint| |aromberg| |lfunc| |maxIndex| |ddFact| + |constantCoefficientRicDE| |idealiserMatrix| |lazyPrem| + |minimalPolynomial| |argumentListOf| |internal?| |cycleLength| + |unparse| |d03edf| |separant| |assign| |normal01| + |primPartElseUnitCanonical!| |certainlySubVariety?| + |algebraicCoefficients?| |pushuconst| |setStatus!| |ratDenom| + |axesColorDefault| |permutationRepresentation| |triangSolve| |leaf?| + |tubeRadiusDefault| |setleaves!| |qroot| |leadingTerm| |addMatch| + |zCoord| |subCase?| |sylvesterMatrix| |iiasinh| |orthonormalBasis| + |cycleTail| |capacity| |finiteBound| |ravel| |changeBase| |fortran| + |replaceKthElement| |df2mf| |f02bbf| |one?| |extensionDegree| |inc| + |integralMatrix| |internalDecompose| |perfectNthPower?| |members| + |divisor| |reshape| |unmakeSUP| |cosIfCan| |tube| + |commutativeEquality| |zeroSetSplit| |space| |testModulus| |setelt!| + |f01maf| |top| |associatedSystem| |internalIntegrate| |optimize| + |leadingSupport| |npcoef| |build| |standardBasisOfCyclicSubmodule| + |intermediateResultsIF| |randnum| |numberOfPrimitivePoly| |sin2csc| + |nil?| |e02bdf| |eigenvector| |finite?| |subtractIfCan| |appendPoint| + |unitNormal| |plus| |equation| |getDatabase| |signatureAst| + |hasPredicate?| |list| |f01qcf| |mkAnswer| |ricDsolve| |OMsetEncoding| + |parse| |preprocess| |printingInfo?| |singularitiesOf| + |quotedOperators| |stopTableGcd!| |denominator| |car| + |univariatePolynomials| |stosePrepareSubResAlgo| |trivialIdeal?| + |largest| |cAtan| |isTimes| |schwerpunkt| |df2ef| |infieldint| + |OMopenString| |cdr| |nextLatticePermutation| |bfEntry| |d02ejf| + |implies| |routines| |nonSingularModel| |setDifference| + |complexElementary| |hasTopPredicate?| |getMeasure| |true| |comp| + |d01bbf| |rewriteIdealWithRemainder| |repeating?| |iisec| + |increasePrecision| |graeffe| |times| |minIndex| |setIntersection| + |float?| |infLex?| |initial| |ocf2ocdf| |copies| |iomode| |operators| + |endSubProgram| |gcdcofactprim| |contains?| + |semiDegreeSubResultantEuclidean| |setUnion| |sts2stst| + |genericRightTraceForm| |setClipValue| |safeFloor| |duplicates| + |f07fdf| |times!| |opeval| |high| |d02raf| |apply| |rightRank| + |outputGeneral| |mkcomm| |leadingIndex| |checkRur| + |numberOfFractionalTerms| |rowEchLocal| |stoseSquareFreePart| + |readUInt32!| |green| |approximants| |infiniteProduct| |iisin| + |identification| |primeFactor| |leadingExponent| |unknownEndian| + |monom| |inverseIntegralMatrixAtInfinity| |maxPoints| |wholeRadix| + |size| |exp1| |s17ahf| |script| |intChoose| |split!| |decompose| + |factorSFBRlcUnit| |rule| |OMgetObject| |readLineIfCan!| |in?| + |factor1| |getCode| |firstNumer| |sinh2csch| |cyclicEqual?| + |OMgetInteger| |point?| |externalList| |kmax| |compose| |ranges| + |viewThetaDefault| |integralRepresents| |qinterval| + |halfExtendedResultant2| |squareFreePolynomial| |movedPoints| + |reverseLex| |addPoint| |common| |rightRegularRepresentation| + |sumOfKthPowerDivisors| |rombergo| |mapmult| |first| |delete| + |nextPrimitiveNormalPoly| |index| |tex| |lprop| |d02gaf| + |evaluateInverse| |s14baf| |closeComponent| |fglmIfCan| |tanh2trigh| + |writeUInt8!| |rest| |evenlambert| |rootPower| |tanNa| + |showTypeInOutput| |vspace| |totalDifferential| |mapMatrixIfCan| + |cCsch| |substitute| |selectsecond| |norm| |stoseLastSubResultant| + |hyperelliptic| |coshIfCan| |ksec| |pointSizeDefault| |e01bhf| + |e02daf| |removeDuplicates| |hermiteH| |collect| |tanAn| |fmecg| + |taylorQuoByVar| |ptFunc| |relativeApprox| |ref| |pair| |diagonal?| + |gcdPrimitive| |slash| |child?| |updateStatus!| |tubePointsDefault| + |pleskenSplit| |d01amf| |reduceBasisAtInfinity| |imagk| |compdegd| + |OMmakeConn| |binaryTree| |pomopo!| |viewPhiDefault| + |exprHasAlgebraicWeight| |value| |distribute| |lambert| EQ + |fortranCharacter| |screenResolution3D| |#| |qfactor| |s17dhf| + |listYoungTableaus| |lineColorDefault| |tanh2coth| |push| |exprex| + |trapezoidal| |totalGroebner| |extractSplittingLeaf| + |var2StepsDefault| |monomials| |midpoint| |degree| |iidprod| + |getConstant| |algDsolve| |debug3D| |changeMeasure| |logical?| + |linearDependence| |expandTrigProducts| |userOrdered?| + |symmetricProduct| |extractTop!| |calcRanges| |atanIfCan| + |removeRoughlyRedundantFactorsInContents| |laurentIfCan| + |LyndonWordsList1| |cscIfCan| |OMreceive| |setProperty| + |initiallyReduce| |subHeight| |red| |reopen!| + |semiResultantReduitEuclidean| |rightOne| |epilogue| + |SturmHabichtSequence| |s15adf| |stripCommentsAndBlanks| |supersub| + |startTableGcd!| |cAcot| |monomRDE| |fintegrate| |equality| + |mapBivariate| |alternating| |errorKind| |integralBasis| |multisect| + |connect| |moebius| |s17aff| |characteristicPolynomial| |exQuo| + |numberOfChildren| |twist| |mdeg| |rroot| |viewWriteAvailable| + |torsionIfCan| |makeprod| |arbitrary| |Aleph| |log10| |properties| + |zeroDimensional?| |primlimintfrac| |numberOfComputedEntries| + |countable?| |lowerCase!| |commonDenominator| |generalizedEigenvector| + |critT| |continue| |lintgcd| |univariateSolve| |bitand| + |lazyPseudoRemainder| |translate| |makeVariable| |antiAssociative?| + |constantOpIfCan| |rename| |innerint| |stFunc1| |subMatrix| |tree| + |lquo| |bitior| |HenselLift| |e02bbf| |removeSuperfluousCases| + |e02gaf| |imagJ| |iilog| |multiEuclidean| |closedCurve?| + |setMaxPoints3D| |possiblyNewVariety?| |iteratedInitials| |push!| + |quasiMonicPolynomials| |interpolate| |mapExponents| |OMconnInDevice| + |rarrow| |complexRoots| |symbol?| |sayLength| |rootDirectory| + |extendedIntegrate| |cyclicSubmodule| |rightZero| |constantRight| + |OMgetAttr| |primeFrobenius| |semiIndiceSubResultantEuclidean| + |setsubMatrix!| |acothIfCan| |loopPoints| |ScanArabic| + |OMunhandledSymbol| |external?| |incrementKthElement| |signAround| + |e01saf| |deepestTail| |prepareSubResAlgo| |startTableInvSet!| + |radicalRoots| |sn| |problemPoints| |untab| |polyRDE| + |selectMultiDimensionalRoutines| |att2Result| |outputFixed| |ipow| + |getOperands| |flagFactor| |saturate| |SturmHabichtCoefficients| + |isEquiv| |fixedPointExquo| |bindings| |makeFloatFunction| + |OMencodingUnknown| |factorSquareFree| |OMputInteger| + |extractProperty| |printCode| |interpret| |isList| |viewSizeDefault| + F2FG |stack| |over| |setAdaptive| |lfextlimint| |choosemon| |edf2ef| + |nextNormalPrimitivePoly| |search| |clip| |resetBadValues| + |cyclePartition| |skewSFunction| |numberOfComponents| |comment| + |edf2df| |noncommutativeJordanAlgebra?| |completeEval| |key?| + |removeSuperfluousQuasiComponents| |octon| |createNormalPoly| |pr2dmp| + |clipParametric| |representationType| |tower| |universe| |swap!| + |integral?| |fractRadix| |pdct| |getlo| |OMencodingXML| |paren| |blue| + |reduceLODE| |constant| |mapCoef| |critpOrder| |basisOfLeftNucloid| + |infinityNorm| |isOpen?| |doubleDisc| |rightUnits| + |stoseInvertibleSet| |unary?| |readInt32!| Y |c06gsf| |dim| + |viewport2D| |critB| |subNodeOf?| |normalElement| + |resultantReduitEuclidean| |anticoord| |viewport3D| |leftNorm| + |initializeGroupForWordProblem| |host| |f02ajf| |readInt16!| + |splitNodeOf!| |partialFraction| |optAttributes| |clearDenominator| + |nsqfree| F |binarySearchTree| |OMsend| |getBadValues| |content| + |multinomial| |rewriteSetWithReduction| |factorsOfDegree| + |createNormalPrimitivePoly| |parabolicCylindrical| |fortranTypeOf| + |genericPosition| |lazyIrreducibleFactors| |separateDegrees| |neglist| + |complexNumeric| |ellipticCylindrical| |coerceListOfPairs| + |selectfirst| |palgintegrate| |cRationalPower| |divergence| |shift| + |yCoord| ~= |determinant| |digit| |any?| |limitedint| |null| + |enterInCache| |queue| |size?| |colorFunction| |coerceP| |isAnd| + |coerce| |getVariableOrder| |kernels| |linearAssociatedOrder| |c05nbf| + |atrapezoidal| |argument| |not| |iiabs| |rightMinimalPolynomial| + |inR?| |updatF| |inputBinaryFile| |construct| |quartic| + |createLowComplexityTable| |iterationVar| |univcase| |univariate| + |chiSquare1| |and| |root| |scanOneDimSubspaces| |interval| |refine| + |reduction| |empty| |double?| |makeGraphImage| |numericalIntegration| + |physicalLength!| |or| |mainMonomials| |trim| |explicitlyEmpty?| + |toseInvertibleSet| |setAttributeButtonStep| |f07fef| |eof?| + |partitions| |round| |buildSyntax| |xor| |categoryFrame| + |antiCommutator| |xCoord| |removeCosSq| |rootNormalize| |s13adf| + |distdfact| |showSummary| |polyRicDE| |tanhIfCan| |factor| |null?| + |case| |antisymmetric?| |is?| |rootKerSimp| |solid| |solveInField| + |acotIfCan| |useEisensteinCriterion| |secIfCan| |hue| |sqrt| + |oddintegers| |Zero| |coHeight| |OMputEndAtp| |iicos| |df2st| + |subPolSet?| |sec2cos| |obj| |measure2Result| |rationalApproximation| + |showAttributes| |definingPolynomial| |real| |sinIfCan| |One| |cPower| + |character?| |degreeSubResultantEuclidean| |omError| |karatsuba| + |charthRoot| |autoReduced?| |number?| |makeSin| |cache| + |completeHermite| |imag| |rightGcd| |currentCategoryFrame| |graphs| + |evenInfiniteProduct| |name| |OMputObject| |nativeModuleExtension| + |monicCompleteDecompose| |nextPrimitivePoly| |tanIfCan| |normalDeriv| + |directProduct| |f01ref| |vconcat| |btwFact| |cyclicEntries| + |systemSizeIF| |body| |prevPrime| |zerosOf| |monicLeftDivide| + |OMputEndAttr| |lazyVariations| |createNormalElement| + |resultantEuclidean| |sort!| |components| |reverse!| + |topFortranOutputStack| |numFunEvals| |rational?| |reducedForm| + |exprToXXP| |OMgetAtp| |fixedDivisor| |brace| |semicolonSeparate| + |makeViewport2D| |wronskianMatrix| |varselect| |complexSolve| + |contractSolve| |divisors| |clearTheIFTable| |fortranLiteralLine| + |destruct| |showAllElements| |mightHaveRoots| |sincos| + |setTopPredicate| |rootSplit| |OMgetEndError| |presub| |extendedint| + |LazardQuotient| |integralAtInfinity?| |limit| |checkForZero| + |mainCoefficients| |completeHensel| |eulerPhi| |leftFactor| + |dimensions| |computeCycleLength| + |solveLinearPolynomialEquationByFractions| |mathieu22| |complement| + |makeTerm| |newLine| |returnType!| |palgLODE0| |gcdprim| + |generalizedContinuumHypothesisAssumed| |hcrf| |palglimint0| + |viewWriteDefault| |readInt8!| |reverse| |palgextint0| + |semiSubResultantGcdEuclidean1| |removeRedundantFactorsInPols| + |exponential| |exponential1| |port| |outputAsScript| + |extendedEuclidean| |se2rfi| |scopes| |coord| |c06ekf| |pole?| + |monomial| |genericLeftDiscriminant| |moreAlgebraic?| |morphism| + |entry| |prepareDecompose| |OMgetString| |hasoln| |leftRank| + |derivationCoordinates| |digit?| |laguerreL| |multivariate| + |primitivePart| |accuracyIF| |adaptive?| |subst| |bubbleSort!| |t| + |exquo| |getOrder| |leftTrace| |listBranches| |position!| + |indicialEquation| |error| |partition| |variables| |dot| + |leftCharacteristicPolynomial| |normInvertible?| |rischDE| + |basisOfCentroid| |div| |OMgetVariable| |sech2cosh| + |getSyntaxFormsFromFile| |maxdeg| |assert| |expintegrate| |factorset| + |toroidal| |curryRight| |index?| |delta| |quo| |enumerate| + |deepestInitial| |birth| |doubleResultant| |hasSolution?| + |mapUnivariate| |numberOfCycles| |curveColorPalette| |imagK| + |explicitlyFinite?| |unit| |cyclotomicDecomposition| |monicDivide| + |s18aff| |scalarMatrix| |sup| |rational| |c02aff| |startStats!| + |generalLambert| |groebner?| |rem| |basisOfCommutingElements| + |subresultantVector| |predicates| |stoseInvertible?reg| |cn| + |OMputSymbol| |quasiRegular| |safeCeiling| |superHeight| |cTanh| + |solveLinearPolynomialEquationByRecursion| |traceMatrix| + |complexExpand| |binding| |tab| |biRank| |localUnquote| |jacobi| + |taylor| |d01gbf| |resultant| |removeDuplicates!| |objects| + |remainder| |interactiveEnv| |cCsc| |tracePowMod| |module| + |sortConstraints| |swapRows!| |f07adf| |laurent| |localAbs| + |errorInfo| |figureUnits| |base| |fortranInteger| |constantKernel| + |d03faf| |complete| |minRowIndex| |SFunction| |commutator| |puiseux| + |readable?| |acosIfCan| |cCot| |max| |chiSquare| |frobenius| + |maxPoints3D| |squareFreePrim| |quotientByP| |d01asf| |torsion?| + |Gamma| |collectQuasiMonic| |meshPar2Var| |s21bdf| |s18acf| + |closedCurve| |rangeIsFinite| |ode2| |principalAncestors| |inv| + |characteristicSerie| |legendre| |selectSumOfSquaresRoutines| + |hexDigit| |OMputEndObject| |leftRegularRepresentation| + |doubleFloatFormat| |fTable| |OMputEndBind| |ground?| + |selectIntegrationRoutines| |prologue| |charpol| |removeConstantTerm| + |rspace| |complexNormalize| |getCurve| |squareFree| |harmonic| + |countRealRoots| |acosh| |weakBiRank| |ground| |fortranLinkerArgs| + |patternMatchTimes| |trigs| |quotient| |setImagSteps| + |numberOfIrreduciblePoly| |totalDegree| |callForm?| |coerceS| |atanh| + |basisOfCenter| |leadingMonomial| |conjugate| |commutative?| + |mapSolve| |rationalPoint?| |zeroDimPrime?| |quadraticNorm| + |rightExtendedGcd| |getZechTable| |tableau| |acoth| + |showFortranOutputStack| |leadingCoefficient| |shiftRight| |extension| + |recip| |readByte!| |someBasis| |listRepresentation| |identity| + |semiResultantEuclidean1| |asech| |presuper| |primitiveMonomials| + |gderiv| |d01fcf| |s13aaf| |mix| |numberOfComposites| |divideIfCan!| + |psolve| |normalDenom| |outlineRender| |iiasin| |imagi| BY |reductum| + |printStatement| |e04dgf| |cosh2sech| |OMputAtp| |s19abf| |postfix| + |f01brf| |isOp| |multiple| |po| |tensorProduct| |laplacian| + |cyclicParents| |airyAi| |asecIfCan| |say| |difference| |branchIfCan| + |generic?| |transcendent?| |applyQuote| + |solveLinearPolynomialEquation| |linearDependenceOverZ| |previous| + |continuedFraction| |iicsch| |forLoop| |numericalOptimization| + |nthRoot| |product| |char| |replace| |operation| + |lastSubResultantEuclidean| |internalLastSubResultant| |gramschmidt| + |prod| |nullity| |crest| |reducedSystem| |recur| |setOfMinN| + |flexible?| |internalZeroSetSplit| |modularFactor| |plusInfinity| + |partialQuotients| |ord| |d02kef| |diag| |radicalSolve| |ruleset| + |deepCopy| |factorAndSplit| |exprToGenUPS| |cSinh| |minusInfinity| + |showIntensityFunctions| |relationsIdeal| |PollardSmallFactor| + |comparison| |duplicates?| |OMgetSymbol| |showTheIFTable| + |genericLeftMinimalPolynomial| |basisOfMiddleNucleus| |makingStats?| + NOT |setPosition| |primlimitedint| |extractIfCan| |generators| + |negative?| |f02aff| |back| |positive?| |nextIrreduciblePoly| + |OMconnOutDevice| OR |leftScalarTimes!| |medialSet| |suchThat| |float| + |exponents| |createLowComplexityNormalBasis| |realZeros| + |genericLeftNorm| |getGoodPrime| |powerSum| |ramified?| + |halfExtendedSubResultantGcd1| AND |alternative?| |polCase| + |collectUnder| |matrixDimensions| |generalTwoFactor| + |basisOfRightNucleus| |lieAlgebra?| |e04mbf| |f04faf| |e04gcf| + |digamma| |print| |roughUnitIdeal?| |type| |OMUnknownSymbol?| + |totolex| |simpsono| |clearTable!| |adjoint| |setfirst!| + |beauzamyBound| |invertibleSet| |resolve| |cycles| |dihedral| + |lowerCase| |rootPoly| |writeLine!| |Ci| |upDateBranches| + |invmultisect| |numerators| |integer?| |invertibleElseSplit?| + |gcdPolynomial| |rdHack1| |low| |cschIfCan| |radPoly| + |symmetricRemainder| |keys| |reciprocalPolynomial| |unitVector| + |selectNonFiniteRoutines| |henselFact| |setref| |rur| + |LazardQuotient2| |fortranDouble| |addPoint2| |dequeue!| |e01daf| + |nthr| |quoByVar| |e01sef| |atanhIfCan| |quadratic| |light| + |lazyGintegrate| |OMgetError| |viewPosDefault| |setRealSteps| |iiacot| + |fortranComplex| |recoverAfterFail| GE |lex| |minimize| |interReduce| + |leftGcd| |aQuartic| |removeSinSq| |multiEuclideanTree| + |algSplitSimple| GT |qPot| |c05pbf| |power| |seriesSolve| + |ramifiedAtInfinity?| |definingInequation| |testDim| |addmod| + |setMinPoints3D| * LE |palgRDE0| |normalizedAssociate| |sinhcosh| + |generate| |fortranLogical| |fractionFreeGauss!| |OMgetEndObject| + |invertible?| |sub| |algebraicSort| LT |OMgetType| |ran| |mesh| + |primintegrate| |resetNew| |chineseRemainder| |ScanRoman| |oddlambert| + |drawCurves| |incrementBy| |d01alf| |cyclic?| |listexp| |predicate| + |has?| |stop| |pack!| |strongGenerators| |geometric| |expintfldpoly| + |irreducibleRepresentation| = |ratDsolve| |composite| |roughSubIdeal?| + |expand| |minset| |s17adf| |isobaric?| |reducedQPowers| + |monomialIntegrate| |LagrangeInterpolation| |getStream| |acoshIfCan| + |Beta| |filterWhile| |repeatUntilLoop| |mulmod| |prinpolINFO| + |zeroDim?| |getOperator| |extend| < |iicsc| |iflist2Result| + |totalfract| |filterUntil| |showTheFTable| |clearTheSymbolTable| + |maximumExponent| |csubst| |palgint0| |just| > |getProperties| + |leftOne| |setEpilogue!| |select| |usingTable?| |polyPart| + |functionIsFracPolynomial?| |pair?| |genericRightDiscriminant| + |ParCond| <= |center| |varList| |toseSquareFreePart| + |LyndonCoordinates| |OMputString| |whitePoint| |orbit| |denomLODE| + |sparsityIF| |innerSolve| |top!| |sumOfDivisors| >= |escape| |redmat| + |cotIfCan| |fill!| |subSet| |useNagFunctions| |status| + |pointColorPalette| |solveid| |internalAugment| |merge| |littleEndian| + |lyndonIfCan| |sturmVariationsOf| |property| |bernoulli| |binomial| + |f02agf| |iiperm| |corrPoly| |convergents| |cylindrical| |copyInto!| + |leftUnits| |parameters| |primaryDecomp| |modularGcd| |putGraph| + |fortranCarriageReturn| |rangePascalTriangle| |lexGroebner| + |lSpaceBasis| |stopTable!| + |inverseLaplace| |represents| + |setScreenResolution3D| |cAcos| |antisymmetricTensors| |decrease| + |splitDenominator| |abelianGroup| |maxColIndex| - |explogs2trigs| + |makeRecord| |dominantTerm| |indicialEquations| |units| + |particularSolution| |palgRDE| |createGenericMatrix| |LyndonBasis| + |hspace| |retractIfCan| |simplifyLog| / |rightTraceMatrix| |f04jgf| + |rightFactorCandidate| |processTemplate| |OMreadFile| |isTerm| |atom?| + |triangular?| |rotate| |rightScalarTimes!| |aQuadratic| |simplify| + |coerceL| |bright| |univariatePolynomialsGcds| |inputOutputBinaryFile| + |cycleSplit!| |expenseOfEvaluation| |Frobenius| UP2UTS + |powerAssociative?| |exists?| |xn| |cAcoth| |kernel| |fracPart| + |s14aaf| |exportedOperators| |rightTrace| |iibinom| |leftTraceMatrix| + |bandedHessian| |writeBytes!| |ptree| |pushdterm| |draw| + |safetyMargin| |bandedJacobian| |d01akf| |isPower| |aLinear| |key| + |bipolar| |function| |clearCache| |code| |isPlus| |monicModulo| + |curve?| |binaryTournament| |sign| |nonLinearPart| |currentScope| + |rootProduct| |d02gbf| |irreducibleFactor| |createZechTable| + |graphCurves| |startPolynomial| |conical| |eulerE| + |combineFeatureCompatibility| |setStatus| |filename| |bombieriNorm| + |eval| |addBadValue| |readBytes!| |hessian| |cAtanh| |rank| + |OMgetEndBVar| |createPrimitiveElement| |cAcsc| + |tableForDiscreteLogarithm| |c06eaf| |isQuotient| |B1solve| + |OMputAttr| |member?| |mr| |OMencodingSGML| |dualSignature| + |makeObject| |exponentialOrder| |genericLeftTraceForm| + |principalIdeal| |padicFraction| |map| |df2fi| |fortranDoubleComplex| + |augment| |s21baf| |f04mcf| |goto| |f02aaf| |dAndcExp| |listLoops| + |currentEnv| |gcdcofact| |leadingCoefficientRicDE| |definingEquations| + |normalise| |binary| |coef| GF2FG |extractPoint| |monicRightDivide| + |pastel| |semiDiscriminantEuclidean| |lexico| |diophantineSystem| + |iiacsch| |associative?| |compiledFunction| |isOr| + |useSingleFactorBound?| |e01sbf| |divide| |GospersMethod| |colorDef| + |lazyPremWithDefault| |copy!| |noLinearFactor?| |showTheSymbolTable| + |HermiteIntegrate| |maxrow| |height| |radicalEigenvectors| + |euclideanGroebner| |innerSolve1| |exprHasLogarithmicWeights| + |ratPoly| |dimensionsOf| |elem?| |probablyZeroDim?| |s17acf| |convert| + |bivariatePolynomials| |multiset| |remove!| |splitSquarefree| |lists| + |printHeader| |characteristic| UTS2UP |genericRightNorm| + |withPredicates| |fractRagits| |moebiusMu| |rightExactQuotient| |hclf| + |subscriptedVariables| |alphabetic| |slex| |rootRadius| |llprop| + |bothWays| |inGroundField?| |e01sff| |title| |mainDefiningPolynomial| + |zeroVector| |nor| |nthFractionalTerm| |leftPower| |polygon?| |lcm| + |OMconnectTCP| |perfectSquare?| |s18adf| |setprevious!| |Nul| |failed| + |algebraicOf| |complexIntegrate| |maxrank| |OMgetFloat| |expr| + |subresultantSequence| |genericRightTrace| |swapColumns!| |argscript| + |OMputVariable| |Vectorise| |lagrange| |conjugates| + |semiLastSubResultantEuclidean| |e| |append| |cLog| |rightMult| + |e02ajf| |lift| |tanintegrate| |indiceSubResultantEuclidean| + |sumOfSquares| |expandLog| |indicialEquationAtInfinity| |readLine!| + |gcd| |removeSinhSq| |dark| |setrest!| |reduce| |lyndon?| |transform| + |e02dcf| |divideExponents| |tubeRadius| |triangulate| |false| |unit?| + |infieldIntegrate| |countRealRootsMultiple| |initiallyReduced?| + |gethi| |sylvesterSequence| |positiveRemainder| |isNot| |d02bbf| + |variable| |domainOf| |dimensionOfIrreducibleRepresentation| |nothing| + |cyclicCopy| |primitive?| |declare| |setLabelValue| |zero?| + |iterators| |mpsode| |insertionSort!| |scale| |mapGen| |clipBoolean| + |solveRetract| |e01bef| |viewZoomDefault| |outputFloating| |rightLcm| + |s18def| |child| |datalist| |bit?| |summation| |diagonal| |empty?| + |lifting1| |tail| |cAsinh| |complexForm| |generalPosition| + |infRittWu?| |d01apf| |balancedFactorisation| |imagI| |pdf2df| + |generalizedContinuumHypothesisAssumed?| |rightRankPolynomial| + |approxNthRoot| |polygon| |surface| |rules| |redPo| |roughBase?| + |outputForm| |lighting| |reify| |conjug| |rightQuotient| |printInfo!| + |outputList| |rootsOf| |plus!| |showTheRoutinesTable| |collectUpper| + |LyndonWordsList| |divisorCascade| |unknown| |getIdentifier| + |socf2socdf| |decimal| |width| |returnTypeOf| |cyclic| + |removeSquaresIfCan| |airyBi| |lambda| |iExquo| |orbits| |baseRDE| + |iisinh| |conditionsForIdempotents| |firstDenom| |solveLinearlyOverQ| + |iicoth| |homogeneous?| |realEigenvalues| |stoseInvertible?sqfreg| + |bivariate?| |deleteRoutine!| |discreteLog| |radicalSimplify| + |simplifyExp| |increment| |symmetricGroup| |basis| |f01qdf| + |shallowExpand| |algint| |init| |idealSimplify| |byte| |fi2df| RF2UTS + |BumInSepFFE| |wordInStrongGenerators| |jacobiIdentity?| |isImplies| + |solid?| |factorList| |inf| |moduloP| |mainCharacterization| |part?| + |hitherPlane| |setTex!| |d02cjf| |var1StepsDefault| |curve| + |innerEigenvectors| |intPatternMatch| |An| |besselJ| + |localIntegralBasis| |lfextendedint| |twoFactor| |changeNameToObjf| + |LiePoly| |palglimint| |singRicDE| |selectOptimizationRoutines| |int| + |defineProperty| |e02ahf| |normalForm| |cot2tan| |optional| + |youngGroup| LODO2FUN |minimumDegree| |dequeue| |extendedResultant| + |mapDown!| |symmetric?| |variationOfParameters| |discriminant| |find| + |bat1| |polygamma| |leftMult| |toseInvertible?| |shade| |fractionPart| + |whileLoop| |imagj| |subResultantChain| |uncouplingMatrices| + |purelyAlgebraicLeadingMonomial?| |var1Steps| |pmComplexintegrate| + |eigenvectors| |expt| |pascalTriangle| |bitCoef| |endOfFile?| + |outputAsTex| |digits| |nullSpace| |odd?| |vertConcat| |unitNormalize| + |subTriSet?| |goodPoint| |s17akf| |realEigenvectors| + |primitiveElement| |factorSquareFreeByRecursion| |eigenMatrix| + |rationalPower| |setright!| |f02awf| |pushFortranOutputStack| |pol| + |iitanh| |subResultantGcdEuclidean| |exactQuotient| + |shanksDiscLogAlgorithm| |stoseInternalLastSubResultant| |returns| + |stFunc2| |OMputError| |numberOfVariables| |log| |cTan| |schema| + |rowEchelon| |setErrorBound| |variable?| |normalizedDivide| + |Hausdorff| |genus| |multMonom| |double| |test| |linearMatrix| + |anfactor| |squareFreePart| SEGMENT |newReduc| + |factorsOfCyclicGroupSize| |lieAdmissible?| |factorByRecursion| + |groebSolve| |mainVariable?| |inverseIntegralMatrix| |basisOfNucleus| + |pToHdmp| |elseBranch| |degreePartition| |patternMatch| |coefficient| + |setlast!| |tanSum| |partialDenominators| |merge!| |bumprow| + |makeMulti| |pToDmp| |asinIfCan| |factorials| |fixedPoint| |edf2fi| + |sizeMultiplication| |dimension| |numberOfFactors| |eq| |iiasech| + |heapSort| |/\\| |hconcat| |indices| |d02bhf| |pointLists| + |setProperty!| |axes| |insertBottom!| |singular?| |iter| + |physicalLength| |mindeg| |\\/| |prefix| |ideal| |setFieldInfo| + |mapUnivariateIfCan| |printInfo| |bits| |matrixGcd| |e02zaf| + |numberOfHues| |c06ebf| |meatAxe| |makeYoungTableau| |lllp| |c06gcf| + |OMgetEndApp| |isAbsolutelyIrreducible?| |byteBuffer| |flatten| + |pushdown| |laurentRep| |positiveSolve| |highCommonTerms| |zeroMatrix| + |declare!| |f04axf| |operator| |possiblyInfinite?| |getExplanations| + |distance| |localReal?| |ffactor| |s17dlf| |nil| |mainPrimitivePart| + |middle| |concat| |parts| |horizConcat| |separateFactors| |mantissa| + |changeVar| |newSubProgram| |cExp| |bezoutResultant| |irreducible?| + |companionBlocks| |divideIfCan| |subResultantGcd| |diff| |sizeLess?| + |karatsubaDivide| |controlPanel| |ode| |reducedContinuedFraction| + |OMwrite| |iCompose| |hdmpToDmp| |leftExactQuotient| + |tryFunctionalDecomposition?| |hex| |inverseColeman| |mergeFactors| + |badNum| |meshPar1Var| |addPointLast| |intcompBasis| |approximate| + |node| |close!| |sechIfCan| |noKaratsuba| |qualifier| |complex| |exp| + |iisqrt3| |tan2trig| |popFortranOutputStack| |nthRootIfCan| |s15aef| + |supRittWu?| |numberOfDivisors| |cup| |linearPolynomials| + |mainSquareFreePart| |OMlistCDs| |c06fuf| |repeating| |lazy?| + |leastMonomial| |clearTheFTable| |scaleRoots| |diagonals| |s19adf| + |dflist| |rootSimp| |f04adf| |ScanFloatIgnoreSpaces| |OMserve| + |segment| |erf| |abs| |alphabetic?| |createIrreduciblePoly| + |halfExtendedSubResultantGcd2| |musserTrials| |read!| |rk4f| |s19aaf| + |rk4a| |removeRoughlyRedundantFactorsInPols| |entry?| |elColumn2!| + |cap| |outerProduct| |mainValue| |parabolic| |taylorIfCan| + |OMgetEndBind| |deref| |symbolTableOf| |cfirst| |complementaryBasis| + |s20acf| |updatD| |unitCanonical| |notelem| |truncate| |hdmpToP| + |pointColorDefault| |reducedDiscriminant| |remove| |dilog| + |realElementary| |minGbasis| |OMputFloat| |eisensteinIrreducible?| + |iprint| |hypergeometric0F1| |matrixConcat3D| |lowerCase?| + |shrinkable| |sin| |ridHack1| |knownInfBasis| |plot| + |explicitEntries?| |c06gqf| |drawComplexVectorField| |invertIfCan| + |meshFun2Var| |quoted?| |last| |cos| |cyclicGroup| |eq?| |e02adf| + |head| |createMultiplicationTable| |failed?| |rightFactorIfCan| FG2F + |superscript| |assoc| |tan| |OMlistSymbols| |arity| |pseudoRemainder| + |purelyAlgebraic?| |tRange| |second| |OMread| |makeop| |iisech| + |fortranReal| |cot| |addMatchRestricted| |trueEqual| |e02ddf| + |lfinfieldint| |overlabel| |third| |alternatingGroup| |coefficients| + |sqfrFactor| |selectODEIVPRoutines| |quasiMonic?| |sec| |signature| + |mapUp!| |optpair| |euler| |regularRepresentation| + |numberOfOperations| |mvar| |mapExpon| |quasiAlgebraicSet| + |principal?| |list?| |linearAssociatedExp| |csc| |degreeSubResultant| + |ldf2lst| |cycle| |totalLex| |OMUnknownCD?| |removeCoshSq| + |decomposeFunc| |RemainderList| |rightRecip| |badValues| |asin| + |normalizeIfCan| |numericIfCan| |padicallyExpand| |oblateSpheroidal| + |lhs| |category| |OMputBind| |iiacos| |order| |pureLex| |integrate| + |acos| |inverse| |doubleComplex?| |adaptive| |thetaCoord| |rhs| + |domain| |structuralConstants| |fortranCompilerName| |ODESolve| + |pushup| |uniform| |atan| |linkToFortran| |void| |rk4| |besselY| + |stopTableInvSet!| |package| |root?| |radix| |radicalEigenvector| + |swap| |cycleEntry| |lexTriangular| |systemCommand| |acot| |show| + |nextColeman| |s17agf| |setelt| |nullary?| |connectTo| |iiacosh| + |useEisensteinCriterion?| |f01mcf| |setMaxPoints| |asec| + |brillhartTrials| |coth2tanh| |karatsubaOnce| |e04ucf| |bat| |minrank| + |delay| |rCoord| |besselI| |nextSubsetGray| |acsc| |quadraticForm| + |trace| |csc2sin| |copy| |numFunEvals3D| |powers| |toScale| + |enterPointData| |imaginary| |s21bcf| |sinh| |setAdaptive3D| |normal| + |selectFiniteRoutines| |concat!| |power!| |clipWithRanges| |besselK| + |rationalPoints| |cAsec| |transpose| |update| |formula| |cosh| + |phiCoord| |check| |upperCase!| |jacobian| |minPoints| + |setButtonValue| |write!| |repSq| |lazyPseudoDivide| |tanh| + |primextendedint| |OMReadError?| |mainVariables| |autoCoerce| |mkPrim| + |permutation| |radicalEigenvalues| |reorder| |sort| |logIfCan| + |exactQuotient!| |coth| |create3Space| |jordanAlgebra?| |mathieu24| + |listOfLists| |constantOperator| |listConjugateBases| |UnVectorise| + |monicDecomposeIfCan| |points| |cond| |sech| |crushedSet| |s13acf| + |numberOfImproperPartitions| |symmetricSquare| |whatInfinity| |style| + |factorPolynomial| |nilFactor| |nullary| |nrows| |csch| |mappingAst| + |unrankImproperPartitions0| |FormatArabic| |hash| |f04maf| |edf2efi| + |myDegree| |euclideanSize| |rightNorm| |subscript| |position| |ncols| + |asinh| |complexZeros| |drawToScale| |count| |internalInfRittWu?| + |s17ajf| |invmod| |s17aef| |mindegTerm| |match?| |dmp2rfi| |random| + |insert!| |symFunc| |simplifyPower| |coordinates| |rightPower| + |exponent| |traverse| |drawStyle| |lazyEvaluate| |padecf| |pow| + |extractBottom!| |weierstrass| |nextSublist| |parents| + |setVariableOrder| |f04qaf| |mainVariable| |setProperties!| |pop!| + |iiatanh| |stoseInvertible?| |substring?| |removeZeroes| |symbolTable| + |stFuncN| |insertMatch| |s01eaf| |rightRemainder| |logGamma| |makeEq| + |component| |rk4qc| |realSolve| |solve1| |call| |prinb| + |zeroSetSplitIntoTriangularSystems| |compBound| |cCoth| |iiacsc| |lo| + |bringDown| |suffix?| |debug| |pseudoQuotient| |internalSubPolSet?| + |c05adf| |setRow!| |subset?| |rischNormalize| + |genericRightMinimalPolynomial| |incr| |zeroOf| |randomR| + |stiffnessAndStabilityOfODEIF| D |associatedEquations| |splitLinear| + |squareTop| |exptMod| |polyred| + |rewriteSetByReducingWithParticularGenerators| |functionIsOscillatory| + |prefix?| |coth2trigh| |objectOf| |iiexp| |option?| |e02bef| + |removeRedundantFactors| |headReduced?| |sPol| |const| + |trailingCoefficient| |internalIntegrate0| |minimumExponent| |leader| + |bivariateSLPEBR| |move| |outputSpacing| |log2| |fortranLiteral| + |rootBound| |arg1| |setCondition!| |changeName| |fullDisplay| + |boundOfCauchy| |Is| |arg2| |completeSmith| |compound?| |s19acf| + |bumptab| |clipSurface| |complexLimit| |constantLeft| |rubiksGroup| + |prolateSpheroidal| |firstSubsetGray| |setPredicates| |trapezoidalo| + |plotPolar| |iiacoth| |sncndn| |monomialIntPoly| |super| |cross| + |hostPlatform| |redpps| |tValues| |conditions| |discriminantEuclidean| + |minPol| |leftFactorIfCan| |dictionary| |typeList| |palginfieldint| + |minPoints3D| |sequence| |completeEchelonBasis| |match| + |radicalOfLeftTraceForm| |e01bff| |ode1| |elRow2!| |splitConstant| + |qqq| |string?| |zero| |subNode?| |parent| |result| |elliptic| + |plenaryPower| |s17def| |basicSet| |adaptive3D?| |ignore?| |cartesian| + |transcendentalDecompose| |nthFlag| |s17dgf| |e02bcf| |chebyshevT| + |cyclotomic| |fullPartialFraction| |powmod| |s14abf| |And| + |writeByte!| |algebraicDecompose| |OMclose| |reset| |quatern| + |generalInfiniteProduct| |KrullNumber| |quasiComponent| |leftLcm| + |nextPrime| |initials| |Or| |associates?| |quote| |putColorInfo| + |relerror| |dihedralGroup| |doubleRank| |Lazard| |cAsech| |OMopenFile| + |quasiRegular?| |Not| |nthCoef| |s17dcf| |chvar| |write| + |resultantReduit| |enqueue!| |deleteProperty!| |makeSketch| + |arrayStack| |limitedIntegrate| |modifyPointData| |save| |nthFactor| + |binaryFunction| |makeSUP| |complexNumericIfCan| |aspFilename| + |basisOfLeftAnnihilator| |critMTonD1| |f02aef| |dmpToHdmp| + |stoseIntegralLastSubResultant| |OMputEndApp| |prefixRagits| + |weighted| |leftRankPolynomial| |randomLC| |genericLeftTrace| + |distFact| |outputArgs| |upperCase?| |rewriteIdealWithHeadRemainder| + |nthExpon| |prinshINFO| |integralLastSubResultant| |e02dff| |cSin| + |taylorRep| |contract| |nodes| |inconsistent?| |ReduceOrder| + |viewpoint| |OMgetBind| |deriv| |acscIfCan| |simpleBounds?| + |subResultantsChain| |lazyPquo| |upperCase| |readUInt16!| |id| + |basisOfLeftNucleus| |identitySquareMatrix| |graphStates| |writable?| + |cos2sec| |cycleElt| |overlap| |computePowers| |generator| |primes| + |stoseInvertibleSetreg| |factorGroebnerBasis| |branchPointAtInfinity?| + |shallowCopy| |rotatex| |setLegalFortranSourceExtensions| |inrootof| + |pushucoef| |overbar| |UpTriBddDenomInv| |bezoutDiscriminant| |table| + |directory| |identityMatrix| |integralDerivationMatrix| |sumSquares| + |constantIfCan| |setValue!| |deepExpand| |insert| + |coercePreimagesImages| |bounds| |supDimElseRittWu?| |c06fqf| |new| + |dec| |elements| |normal?| |viewDeltaXDefault| |vedf2vef| |OMputApp| + |cAsin| |nextPartition| |univariatePolynomial| |iiatan| + |RittWuCompare| |infinite?| |lazyIntegrate| |absolutelyIrreducible?| + |d01aqf| |numberOfMonomials| |s21bbf| |reflect| |readIfCan!| + |csch2sinh| |options| |setProperties| |findConstructor| |weight| + |integralCoordinates| |bernoulliB| |bracket| |rotate!| |level| + |romberg| |denominators| |selectPDERoutines| |sin?| |shiftRoots| + |retractable?| |sample| |gbasis| |setvalue!| |legendreP| + |OMsupportsSymbol?| |iitan| |complexEigenvalues| + |rewriteIdealWithQuasiMonicGenerators| |graphImage| + |subQuasiComponent?| |diagonalProduct| |multiple?| |getButtonValue| + |normalize| |outputMeasure| |resize| ~ |pointData| |rationalIfCan| + |contours| |string| |leastPower| |extendIfCan| |cycleRagits| + |listOfMonoms| |getGraph| |solveLinear| |extractIndex| |droot| + |backOldPos| |matrix| |mathieu23| |numer| |complex?| |commaSeparate| + |cubic| |prem| |reduceByQuasiMonic| |range| |element?| |open| + |reindex| |perspective| |e04naf| |denom| |ScanFloatIgnoreSpacesIfCan| + |reduced?| |groebnerIdeal| |logpart| |hasHi| |shufflein| |equiv| + |factorSquareFreePolynomial| |scalarTypeOf| + |semiSubResultantGcdEuclidean2| |setnext!| |unitsColorDefault| + |monic?| |lfintegrate| |primintfldpoly| |cSec| |tan2cot| |thenBranch| + |removeZero| |squareFreeFactors| |loadNativeModule| |pi| |prindINFO| + |componentUpperBound| |nlde| |rowEchelonLocal| |f01bsf| |prime?| + |stronglyReduce| |yellow| |antiCommutative?| |clikeUniv| + |primextintfrac| |infinity| |f02xef| |left| |categories| |revert| + |linearlyDependent?| |interpretString| |mkIntegral| + |removeIrreducibleRedundantFactors| |operations| |insertRoot!| + |yCoordinates| |OMgetEndAtp| |coerceImages| |areEquivalent?| |right| + |OMParseError?| |exteriorDifferential| |maxRowIndex| |applyRules| + |getRef| |credPol| |bitLength| |e04ycf| |lepol| |packageCall| + |charClass| |computeBasis| |permutations| |dioSolve| |directSum| + |characteristicSet| |flexibleArray| |addiag| |explimitedint| + |OMgetBVar| |compactFraction| |fibonacci| |setEmpty!| |redPol| + |sinhIfCan| |rightCharacteristicPolynomial| |delete!| |vectorise| + |elliptic?| |froot| |sum| |sqfree| |square?| + |stoseInvertibleSetsqfreg| |f02wef| |rischDEsys| |rightDiscriminant| + |OMencodingBinary| |diagonalMatrix| |leastAffineMultiple| + |OMsupportsCD?| |iidsum| |f2st| |sorted?| |subspace| |checkPrecision| + |transcendenceDegree| |multiplyCoefficients| |cAcsch| |regime| + |basisOfRightAnnihilator| |split| |getMultiplicationTable| + |leftExtendedGcd| |showScalarValues| |validExponential| |OMputEndBVar| + |outputAsFortran| |lyndon| |binomThmExpt| |janko2| |factorial| + |polarCoordinates| |setleft!| |iicosh| |showRegion| |idealiser| + |ListOfTerms| |front| |approxSqrt| |mirror| |factors| |hostByteOrder| + |entries| |rootOfIrreduciblePoly| |expint| |tanQ| |select!| + |constDsolve| |lp| |evaluate| |color| |createPrimitiveNormalPoly| + |iiGamma| |univariate?| |integerBound| |setMinPoints| + |numberOfNormalPoly| |leftMinimalPolynomial| |headReduce| + |modularGcdPrimitive| |rationalFunction| |nand| |complexEigenvectors| + |dom| |resultantEuclideannaif| |c06frf| |primPartElseUnitCanonical| + |specialTrigs| |branchPoint?| |symmetricPower| |headRemainder| |elt| + |rename!| |tab1| |purelyTranscendental?| |symbol| |rightDivide| + |linear?| |minordet| |denomRicDE| |modTree| |algebraic?| |parseString| + |d01gaf| |expression| |graphState| |leftQuotient| |lllip| |nodeOf?| + |iifact| |cyclotomicFactorization| |dfRange| |leadingIdeal| + |mainMonomial| |stopMusserTrials| |integer| |f02akf| |mat| |expPot| + |ceiling| |resultantnaif| |inHallBasis?| + |removeRedundantFactorsInContents| |linGenPos| |wrregime| |nil| + |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 28b7c214..02f055cb 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5297 +1,5297 @@ -(3199217 . 3451054405) -((-2386 (((-112) (-1 (-112) |#2| |#2|) $) 85) (((-112) $) NIL)) (-2573 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1970 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 43)) (-4325 (($ $) 79)) (-1988 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-3360 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 95)) (-1433 (((-641 |#2|) $) 13)) (-3956 (($ (-1 (-112) |#2| |#2|) $ $) 62) (($ $ $) NIL)) (-2250 (($ (-1 |#2| |#2|) $) 37)) (-2449 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-3652 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 65)) (-3995 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4077 (((-112) (-1 (-112) |#2|) $) 23)) (-1350 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1226 (-564))) 64)) (-2126 (($ $ (-564)) 74) (($ $ (-1226 (-564))) 73)) (-2791 (((-768) (-1 (-112) |#2|) $) 34) (((-768) |#2| $) NIL)) (-3623 (($ $ $ (-564)) 67)) (-1991 (($ $) 66)) (-1842 (($ (-641 |#2|)) 71)) (-3043 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 86) (($ (-641 $)) 84)) (-1831 (((-859) $) 91)) (-1963 (((-112) (-1 (-112) |#2|) $) 22)) (-1702 (((-112) $ $) 94)) (-1723 (((-112) $ $) 98))) -(((-18 |#1| |#2|) (-10 -8 (-15 -1702 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -3623 (|#1| |#1| |#1| (-564))) (-15 -2386 ((-112) |#1|)) (-15 -3956 (|#1| |#1| |#1|)) (-15 -3360 ((-564) |#2| |#1| (-564))) (-15 -3360 ((-564) |#2| |#1|)) (-15 -3360 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -2386 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3956 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1970 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -2126 (|#1| |#1| (-1226 (-564)))) (-15 -2126 (|#1| |#1| (-564))) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3043 (|#1| (-641 |#1|))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -3995 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1350 (|#2| |#1| (-564))) (-15 -1350 (|#2| |#1| (-564) |#2|)) (-15 -1970 (|#2| |#1| (-564) |#2|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -1433 ((-641 |#2|) |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1991 (|#1| |#1|))) (-19 |#2|) (-1209)) (T -18)) +(3198968 . 3451299487) +((-4294 (((-112) (-1 (-112) |#2| |#2|) $) 85) (((-112) $) NIL)) (-2441 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3750 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 43)) (-2443 (($ $) 79)) (-3239 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-3847 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 95)) (-3534 (((-641 |#2|) $) 13)) (-2988 (($ (-1 (-112) |#2| |#2|) $ $) 62) (($ $ $) NIL)) (-1456 (($ (-1 |#2| |#2|) $) 37)) (-3123 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-4116 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 65)) (-3393 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1763 (((-112) (-1 (-112) |#2|) $) 23)) (-4353 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1226 (-564))) 64)) (-1996 (($ $ (-564)) 74) (($ $ (-1226 (-564))) 73)) (-3852 (((-767) (-1 (-112) |#2|) $) 34) (((-767) |#2| $) NIL)) (-3000 (($ $ $ (-564)) 67)) (-3772 (($ $) 66)) (-2335 (($ (-641 |#2|)) 71)) (-3533 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 86) (($ (-641 $)) 84)) (-2322 (((-858) $) 91)) (-2313 (((-112) (-1 (-112) |#2|) $) 22)) (-2921 (((-112) $ $) 94)) (-2942 (((-112) $ $) 98))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2921 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3000 (|#1| |#1| |#1| (-564))) (-15 -4294 ((-112) |#1|)) (-15 -2988 (|#1| |#1| |#1|)) (-15 -3847 ((-564) |#2| |#1| (-564))) (-15 -3847 ((-564) |#2| |#1|)) (-15 -3847 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4294 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2988 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3750 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -1996 (|#1| |#1| (-1226 (-564)))) (-15 -1996 (|#1| |#1| (-564))) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3533 (|#1| (-641 |#1|))) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -3393 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4353 (|#2| |#1| (-564))) (-15 -4353 (|#2| |#1| (-564) |#2|)) (-15 -3750 (|#2| |#1| (-564) |#2|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3534 ((-641 |#2|) |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3772 (|#1| |#1|))) (-19 |#2|) (-1209)) (T -18)) NIL -(-10 -8 (-15 -1702 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -3623 (|#1| |#1| |#1| (-564))) (-15 -2386 ((-112) |#1|)) (-15 -3956 (|#1| |#1| |#1|)) (-15 -3360 ((-564) |#2| |#1| (-564))) (-15 -3360 ((-564) |#2| |#1|)) (-15 -3360 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -2386 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3956 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1970 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -2126 (|#1| |#1| (-1226 (-564)))) (-15 -2126 (|#1| |#1| (-564))) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3043 (|#1| (-641 |#1|))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -3995 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1350 (|#2| |#1| (-564))) (-15 -1350 (|#2| |#1| (-564) |#2|)) (-15 -1970 (|#2| |#1| (-564) |#2|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -1433 ((-641 |#2|) |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1991 (|#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4325 (($ $) 90 (|has| $ (-6 -4407)))) (-3919 (($ $) 100)) (-3337 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 51)) (-3360 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 87 (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 86 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 42 (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4253 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 70)) (-3043 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +(-10 -8 (-15 -2921 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3000 (|#1| |#1| |#1| (-564))) (-15 -4294 ((-112) |#1|)) (-15 -2988 (|#1| |#1| |#1|)) (-15 -3847 ((-564) |#2| |#1| (-564))) (-15 -3847 ((-564) |#2| |#1|)) (-15 -3847 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4294 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2988 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3750 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -1996 (|#1| |#1| (-1226 (-564)))) (-15 -1996 (|#1| |#1| (-564))) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3533 (|#1| (-641 |#1|))) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -3393 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4353 (|#2| |#1| (-564))) (-15 -4353 (|#2| |#1| (-564) |#2|)) (-15 -3750 (|#2| |#1| (-564) |#2|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3534 ((-641 |#2|) |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3772 (|#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2443 (($ $) 90 (|has| $ (-6 -4407)))) (-2493 (($ $) 100)) (-2027 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 51)) (-3847 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 87 (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 86 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 42 (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2981 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 70)) (-3533 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2964 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 82 (|has| |#1| (-846)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-19 |#1|) (-140) (-1209)) (T -19)) NIL (-13 (-373 |t#1|) (-10 -7 (-6 -4407))) -(((-34) . T) ((-102) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T)) -((-4088 (((-3 $ "failed") $ $) 12)) (-1808 (($ $) NIL) (($ $ $) 9)) (* (($ (-918) $) NIL) (($ (-768) $) 16) (($ (-564) $) 26))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -4088 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-21)) (T -20)) +(((-34) . T) ((-102) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T)) +((-1862 (((-3 $ "failed") $ $) 12)) (-3021 (($ $) NIL) (($ $ $) 9)) (* (($ (-917) $) NIL) (($ (-767) $) 16) (($ (-564) $) 26))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -1862 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -4088 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20))) +(-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -1862 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20))) (((-21) (-140)) (T -21)) -((-1808 (*1 *1 *1) (-4 *1 (-21))) (-1808 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564))))) -(-13 (-131) (-10 -8 (-15 -1808 ($ $)) (-15 -1808 ($ $ $)) (-15 * ($ (-564) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1615 (((-112) $) 10)) (-1778 (($) 15)) (* (($ (-918) $) 14) (($ (-768) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 -1778 (|#1|)) (-15 * (|#1| (-918) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 -1778 (|#1|)) (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) +((-3021 (*1 *1 *1) (-4 *1 (-21))) (-3021 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564))))) +(-13 (-131) (-10 -8 (-15 -3021 ($ $)) (-15 -3021 ($ $ $)) (-15 * ($ (-564) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-3264 (((-112) $) 10)) (-4157 (($) 15)) (* (($ (-917) $) 14) (($ (-767) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 -4157 (|#1|)) (-15 * (|#1| (-917) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 -4157 (|#1|)) (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) (((-23) (-140)) (T -23)) -((-1293 (*1 *1) (-4 *1 (-23))) (-1778 (*1 *1) (-4 *1 (-23))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768))))) -(-13 (-25) (-10 -8 (-15 (-1293) ($) -1809) (-15 -1778 ($) -1809) (-15 -1615 ((-112) $)) (-15 * ($ (-768) $)))) -(((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((* (($ (-918) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-918) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13))) +((-2389 (*1 *1) (-4 *1 (-23))) (-4157 (*1 *1) (-4 *1 (-23))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767))))) +(-13 (-25) (-10 -8 (-15 (-2389) ($) -2255) (-15 -4157 ($) -2255) (-15 -3264 ((-112) $)) (-15 * ($ (-767) $)))) +(((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((* (($ (-917) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-917) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13))) (((-25) (-140)) (T -25)) -((-1797 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918))))) -(-13 (-1094) (-10 -8 (-15 -1797 ($ $ $)) (-15 * ($ (-918) $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-2271 (((-641 $) (-949 $)) 32) (((-641 $) (-1166 $)) 16) (((-641 $) (-1166 $) (-1170)) 20)) (-2474 (($ (-949 $)) 30) (($ (-1166 $)) 11) (($ (-1166 $) (-1170)) 60)) (-1938 (((-641 $) (-949 $)) 33) (((-641 $) (-1166 $)) 18) (((-641 $) (-1166 $) (-1170)) 19)) (-2929 (($ (-949 $)) 31) (($ (-1166 $)) 13) (($ (-1166 $) (-1170)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2271 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2271 ((-641 |#1|) (-1166 |#1|))) (-15 -2271 ((-641 |#1|) (-949 |#1|))) (-15 -2474 (|#1| (-1166 |#1|) (-1170))) (-15 -2474 (|#1| (-1166 |#1|))) (-15 -2474 (|#1| (-949 |#1|))) (-15 -1938 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1938 ((-641 |#1|) (-1166 |#1|))) (-15 -1938 ((-641 |#1|) (-949 |#1|))) (-15 -2929 (|#1| (-1166 |#1|) (-1170))) (-15 -2929 (|#1| (-1166 |#1|))) (-15 -2929 (|#1| (-949 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2271 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2271 ((-641 |#1|) (-1166 |#1|))) (-15 -2271 ((-641 |#1|) (-949 |#1|))) (-15 -2474 (|#1| (-1166 |#1|) (-1170))) (-15 -2474 (|#1| (-1166 |#1|))) (-15 -2474 (|#1| (-949 |#1|))) (-15 -1938 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1938 ((-641 |#1|) (-1166 |#1|))) (-15 -1938 ((-641 |#1|) (-949 |#1|))) (-15 -2929 (|#1| (-1166 |#1|) (-1170))) (-15 -2929 (|#1| (-1166 |#1|))) (-15 -2929 (|#1| (-949 |#1|)))) -((-1817 (((-112) $ $) 7)) (-2271 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79)) (-2474 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3083 (($ $) 93)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-1938 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85)) (-2929 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1420 (((-112) $) 72)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 92)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 66)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +((-3011 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917))))) +(-13 (-1094) (-10 -8 (-15 -3011 ($ $ $)) (-15 * ($ (-917) $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2435 (((-641 $) (-948 $)) 32) (((-641 $) (-1166 $)) 16) (((-641 $) (-1166 $) (-1170)) 20)) (-3914 (($ (-948 $)) 30) (($ (-1166 $)) 11) (($ (-1166 $) (-1170)) 60)) (-3308 (((-641 $) (-948 $)) 33) (((-641 $) (-1166 $)) 18) (((-641 $) (-1166 $) (-1170)) 19)) (-1627 (($ (-948 $)) 31) (($ (-1166 $)) 13) (($ (-1166 $) (-1170)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2435 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2435 ((-641 |#1|) (-1166 |#1|))) (-15 -2435 ((-641 |#1|) (-948 |#1|))) (-15 -3914 (|#1| (-1166 |#1|) (-1170))) (-15 -3914 (|#1| (-1166 |#1|))) (-15 -3914 (|#1| (-948 |#1|))) (-15 -3308 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3308 ((-641 |#1|) (-1166 |#1|))) (-15 -3308 ((-641 |#1|) (-948 |#1|))) (-15 -1627 (|#1| (-1166 |#1|) (-1170))) (-15 -1627 (|#1| (-1166 |#1|))) (-15 -1627 (|#1| (-948 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2435 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2435 ((-641 |#1|) (-1166 |#1|))) (-15 -2435 ((-641 |#1|) (-948 |#1|))) (-15 -3914 (|#1| (-1166 |#1|) (-1170))) (-15 -3914 (|#1| (-1166 |#1|))) (-15 -3914 (|#1| (-948 |#1|))) (-15 -3308 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3308 ((-641 |#1|) (-1166 |#1|))) (-15 -3308 ((-641 |#1|) (-948 |#1|))) (-15 -1627 (|#1| (-1166 |#1|) (-1170))) (-15 -1627 (|#1| (-1166 |#1|))) (-15 -1627 (|#1| (-948 |#1|)))) +((-2310 (((-112) $ $) 7)) (-2435 (((-641 $) (-948 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79)) (-3914 (($ (-948 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-2387 (($ $) 93)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-3308 (((-641 $) (-948 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85)) (-1627 (($ (-948 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-4229 (((-112) $) 72)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 92)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 66)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-27) (-140)) (T -27)) -((-2929 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-2929 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-2474 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1))))) -(-13 (-363) (-999) (-10 -8 (-15 -2929 ($ (-949 $))) (-15 -2929 ($ (-1166 $))) (-15 -2929 ($ (-1166 $) (-1170))) (-15 -1938 ((-641 $) (-949 $))) (-15 -1938 ((-641 $) (-1166 $))) (-15 -1938 ((-641 $) (-1166 $) (-1170))) (-15 -2474 ($ (-949 $))) (-15 -2474 ($ (-1166 $))) (-15 -2474 ($ (-1166 $) (-1170))) (-15 -2271 ((-641 $) (-949 $))) (-15 -2271 ((-641 $) (-1166 $))) (-15 -2271 ((-641 $) (-1166 $) (-1170))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-999) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-2271 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 60) (((-641 $) $) 22) (((-641 $) $ (-1170)) 51)) (-2474 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) 62) (($ $) 20) (($ $ (-1170)) 45)) (-1938 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 58) (((-641 $) $) 18) (((-641 $) $ (-1170)) 53)) (-2929 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) NIL) (($ $) 15) (($ $ (-1170)) 47))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2271 ((-641 |#1|) |#1| (-1170))) (-15 -2474 (|#1| |#1| (-1170))) (-15 -2271 ((-641 |#1|) |#1|)) (-15 -2474 (|#1| |#1|)) (-15 -1938 ((-641 |#1|) |#1| (-1170))) (-15 -2929 (|#1| |#1| (-1170))) (-15 -1938 ((-641 |#1|) |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -2271 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2271 ((-641 |#1|) (-1166 |#1|))) (-15 -2271 ((-641 |#1|) (-949 |#1|))) (-15 -2474 (|#1| (-1166 |#1|) (-1170))) (-15 -2474 (|#1| (-1166 |#1|))) (-15 -2474 (|#1| (-949 |#1|))) (-15 -1938 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1938 ((-641 |#1|) (-1166 |#1|))) (-15 -1938 ((-641 |#1|) (-949 |#1|))) (-15 -2929 (|#1| (-1166 |#1|) (-1170))) (-15 -2929 (|#1| (-1166 |#1|))) (-15 -2929 (|#1| (-949 |#1|)))) (-29 |#2|) (-13 (-847) (-556))) (T -28)) -NIL -(-10 -8 (-15 -2271 ((-641 |#1|) |#1| (-1170))) (-15 -2474 (|#1| |#1| (-1170))) (-15 -2271 ((-641 |#1|) |#1|)) (-15 -2474 (|#1| |#1|)) (-15 -1938 ((-641 |#1|) |#1| (-1170))) (-15 -2929 (|#1| |#1| (-1170))) (-15 -1938 ((-641 |#1|) |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -2271 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2271 ((-641 |#1|) (-1166 |#1|))) (-15 -2271 ((-641 |#1|) (-949 |#1|))) (-15 -2474 (|#1| (-1166 |#1|) (-1170))) (-15 -2474 (|#1| (-1166 |#1|))) (-15 -2474 (|#1| (-949 |#1|))) (-15 -1938 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1938 ((-641 |#1|) (-1166 |#1|))) (-15 -1938 ((-641 |#1|) (-949 |#1|))) (-15 -2929 (|#1| (-1166 |#1|) (-1170))) (-15 -2929 (|#1| (-1166 |#1|))) (-15 -2929 (|#1| (-949 |#1|)))) -((-1817 (((-112) $ $) 7)) (-2271 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79) (((-641 $) $) 125) (((-641 $) $ (-1170)) 123)) (-2474 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82) (($ $) 126) (($ $ (-1170)) 124)) (-1615 (((-112) $) 16)) (-3209 (((-641 (-1170)) $) 200)) (-3040 (((-407 (-1166 $)) $ (-610 $)) 232 (|has| |#1| (-556)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-2956 (((-641 (-610 $)) $) 163)) (-4088 (((-3 $ "failed") $ $) 19)) (-3574 (($ $ (-641 (-610 $)) (-641 $)) 153) (($ $ (-641 (-294 $))) 152) (($ $ (-294 $)) 151)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3083 (($ $) 93)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-1938 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85) (((-641 $) $) 129) (((-641 $) $ (-1170)) 127)) (-2929 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88) (($ $) 130) (($ $ (-1170)) 128)) (-2347 (((-3 (-949 |#1|) "failed") $) 250 (|has| |#1| (-1046))) (((-3 (-407 (-949 |#1|)) "failed") $) 234 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 196) (((-3 (-564) "failed") $) 193 (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) 187) (((-3 (-610 $) "failed") $) 138) (((-3 (-407 (-564)) "failed") $) 121 (-4078 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2237 (((-949 |#1|) $) 249 (|has| |#1| (-1046))) (((-407 (-949 |#1|)) $) 233 (|has| |#1| (-556))) ((|#1| $) 195) (((-564) $) 194 (|has| |#1| (-1035 (-564)))) (((-1170) $) 186) (((-610 $) $) 137) (((-407 (-564)) $) 122 (-4078 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1449 (($ $ $) 56)) (-4050 (((-685 |#1|) (-685 $)) 240 (|has| |#1| (-1046))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 239 (|has| |#1| (-1046))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 120 (-4078 (-4348 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4348 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (((-685 (-564)) (-685 $)) 119 (-4078 (-4348 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4348 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1420 (((-112) $) 72)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 192 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 191 (|has| |#1| (-883 (-564))))) (-3352 (($ (-641 $)) 157) (($ $) 156)) (-4095 (((-641 (-114)) $) 164)) (-1841 (((-114) (-114)) 165)) (-2949 (((-112) $) 31)) (-4301 (((-112) $) 185 (|has| $ (-1035 (-564))))) (-4157 (($ $) 217 (|has| |#1| (-1046)))) (-3678 (((-1119 |#1| (-610 $)) $) 216 (|has| |#1| (-1046)))) (-2915 (($ $ (-564)) 92)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-4168 (((-1166 $) (-610 $)) 182 (|has| $ (-1046)))) (-1925 (($ $ $) 136)) (-3375 (($ $ $) 135)) (-2449 (($ (-1 $ $) (-610 $)) 171)) (-1802 (((-3 (-610 $) "failed") $) 161)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3026 (((-641 (-610 $)) $) 162)) (-3755 (($ (-114) (-641 $)) 170) (($ (-114) $) 169)) (-2955 (((-3 (-641 $) "failed") $) 211 (|has| |#1| (-1106)))) (-2826 (((-3 (-2 (|:| |val| $) (|:| -1558 (-564))) "failed") $) 220 (|has| |#1| (-1046)))) (-2512 (((-3 (-641 $) "failed") $) 213 (|has| |#1| (-25)))) (-3847 (((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 $))) "failed") $) 214 (|has| |#1| (-25)))) (-4059 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-1170)) 219 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-114)) 218 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $) 212 (|has| |#1| (-1106)))) (-1657 (((-112) $ (-1170)) 168) (((-112) $ (-114)) 167)) (-3315 (($ $) 71)) (-3926 (((-768) $) 160)) (-2780 (((-1114) $) 10)) (-3326 (((-112) $) 198)) (-3341 ((|#1| $) 199)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-2417 (((-112) $ (-1170)) 173) (((-112) $ $) 172)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1492 (((-112) $) 184 (|has| $ (-1035 (-564))))) (-2633 (($ $ (-1170) (-768) (-1 $ $)) 224 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 223 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 222 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 221 (|has| |#1| (-1046))) (($ $ (-641 (-114)) (-641 $) (-1170)) 210 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 209 (|has| |#1| (-612 (-536)))) (($ $) 208 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 207 (|has| |#1| (-612 (-536)))) (($ $ (-1170)) 206 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-641 $))) 180) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 179) (($ $ (-641 (-114)) (-641 (-1 $ $))) 178) (($ $ (-1170) (-1 $ $)) 177) (($ $ (-1170) (-1 $ (-641 $))) 176) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 175) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 174) (($ $ (-641 $) (-641 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-641 (-294 $))) 142) (($ $ (-641 (-610 $)) (-641 $)) 141) (($ $ (-610 $) $) 140)) (-3920 (((-768) $) 59)) (-1350 (($ (-114) (-641 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-3467 (($ $ $) 159) (($ $) 158)) (-3534 (($ $ (-1170)) 248 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 247 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 246 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 245 (|has| |#1| (-1046)))) (-2644 (($ $) 227 (|has| |#1| (-556)))) (-3693 (((-1119 |#1| (-610 $)) $) 226 (|has| |#1| (-556)))) (-3019 (($ $) 183 (|has| $ (-1046)))) (-2511 (((-536) $) 254 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-556))) (((-889 (-379)) $) 190 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 189 (|has| |#1| (-612 (-889 (-564)))))) (-3047 (($ $ $) 253 (|has| |#1| (-473)))) (-1992 (($ $ $) 252 (|has| |#1| (-473)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-949 |#1|)) 251 (|has| |#1| (-1046))) (($ (-407 (-949 |#1|))) 235 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 231 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 |#1|)) 229 (|has| |#1| (-556))) (($ (-1119 |#1| (-610 $))) 215 (|has| |#1| (-1046))) (($ |#1|) 197) (($ (-1170)) 188) (($ (-610 $)) 139)) (-4018 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-4264 (($ (-641 $)) 155) (($ $) 154)) (-1322 (((-112) (-114)) 166)) (-3939 (((-112) $ $) 40)) (-3645 (($ (-1170) (-641 $)) 205) (($ (-1170) $ $ $ $) 204) (($ (-1170) $ $ $) 203) (($ (-1170) $ $) 202) (($ (-1170) $) 201)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1170)) 244 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 243 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 242 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 241 (|has| |#1| (-1046)))) (-1762 (((-112) $ $) 133)) (-1737 (((-112) $ $) 132)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 134)) (-1723 (((-112) $ $) 131)) (-1823 (($ $ $) 66) (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 228 (|has| |#1| (-556)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172))))) -(((-29 |#1|) (-140) (-13 (-847) (-556))) (T -29)) -((-2929 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-1938 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-2929 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-1938 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) (-2474 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-2271 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -2929 ($ $)) (-15 -1938 ((-641 $) $)) (-15 -2929 ($ $ (-1170))) (-15 -1938 ((-641 $) $ (-1170))) (-15 -2474 ($ $)) (-15 -2271 ((-641 $) $)) (-15 -2474 ($ $ (-1170))) (-15 -2271 ((-641 $) $ (-1170))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) . T) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) -4078 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T) ((-1213) . T)) -((-2225 (((-1088 (-225)) $) NIL)) (-2213 (((-1088 (-225)) $) NIL)) (-2264 (($ $ (-225)) 167)) (-4238 (($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564)))) 102)) (-2279 (((-641 (-641 (-940 (-225)))) $) 183)) (-1831 (((-859) $) 197))) -(((-30) (-13 (-952) (-10 -8 (-15 -4238 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2264 ($ $ (-225)))))) (T -30)) -((-4238 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170)) (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))) (-2264 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-952) (-10 -8 (-15 -4238 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2264 ($ $ (-225))))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-1129) $) 11)) (-3655 (((-1129) $) 9)) (-1702 (((-112) $ $) NIL))) -(((-31) (-13 (-1077) (-10 -8 (-15 -3655 ((-1129) $)) (-15 -1328 ((-1129) $))))) (T -31)) -((-3655 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))) -(-13 (-1077) (-10 -8 (-15 -3655 ((-1129) $)) (-15 -1328 ((-1129) $)))) -((-2929 ((|#2| (-1166 |#2|) (-1170)) 46)) (-1841 (((-114) (-114)) 60)) (-4168 (((-1166 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1035 (-564))))) (-2934 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1035 (-564))))) (-3818 ((|#2| (-1166 |#2|) |#2|) 29)) (-2079 (((-859) (-641 |#2|)) 88)) (-3019 ((|#2| |#2|) 146 (|has| |#1| (-1035 (-564))))) (-1322 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1035 (-564)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2929 (|#2| (-1166 |#2|) (-1170))) (-15 -1841 ((-114) (-114))) (-15 -1322 ((-112) (-114))) (-15 -3818 (|#2| (-1166 |#2|) |#2|)) (-15 -2079 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -4168 ((-1166 |#2|) (-610 |#2|))) (-15 -3019 (|#2| |#2|)) (-15 -2934 (|#2| |#1| (-564)))) |%noBranch|)) (-13 (-847) (-556)) (-430 |#1|)) (T -32)) -((-2934 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556))))) (-3019 (*1 *2 *2) (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))) (-3818 (*1 *2 *3 *2) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556)))))) -(-10 -7 (-15 -2929 (|#2| (-1166 |#2|) (-1170))) (-15 -1841 ((-114) (-114))) (-15 -1322 ((-112) (-114))) (-15 -3818 (|#2| (-1166 |#2|) |#2|)) (-15 -2079 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -4168 ((-1166 |#2|) (-610 |#2|))) (-15 -3019 (|#2| |#2|)) (-15 -2934 (|#2| |#1| (-564)))) |%noBranch|)) -((-4010 (((-112) $ (-768)) 19)) (-1778 (($) 10)) (-2324 (((-112) $ (-768)) 18)) (-1713 (((-112) $ (-768)) 17)) (-3565 (((-112) $ $) 8)) (-4284 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -1778 (|#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768))) (-15 -4284 ((-112) |#1|)) (-15 -3565 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -1778 (|#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768))) (-15 -4284 ((-112) |#1|)) (-15 -3565 ((-112) |#1| |#1|))) -((-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-2324 (((-112) $ (-768)) 9)) (-1713 (((-112) $ (-768)) 10)) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1991 (($ $) 13)) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-1627 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-1627 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-3914 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1))))) +(-13 (-363) (-998) (-10 -8 (-15 -1627 ($ (-948 $))) (-15 -1627 ($ (-1166 $))) (-15 -1627 ($ (-1166 $) (-1170))) (-15 -3308 ((-641 $) (-948 $))) (-15 -3308 ((-641 $) (-1166 $))) (-15 -3308 ((-641 $) (-1166 $) (-1170))) (-15 -3914 ($ (-948 $))) (-15 -3914 ($ (-1166 $))) (-15 -3914 ($ (-1166 $) (-1170))) (-15 -2435 ((-641 $) (-948 $))) (-15 -2435 ((-641 $) (-1166 $))) (-15 -2435 ((-641 $) (-1166 $) (-1170))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-998) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2435 (((-641 $) (-948 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 60) (((-641 $) $) 22) (((-641 $) $ (-1170)) 51)) (-3914 (($ (-948 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) 62) (($ $) 20) (($ $ (-1170)) 45)) (-3308 (((-641 $) (-948 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 58) (((-641 $) $) 18) (((-641 $) $ (-1170)) 53)) (-1627 (($ (-948 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) NIL) (($ $) 15) (($ $ (-1170)) 47))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2435 ((-641 |#1|) |#1| (-1170))) (-15 -3914 (|#1| |#1| (-1170))) (-15 -2435 ((-641 |#1|) |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3308 ((-641 |#1|) |#1| (-1170))) (-15 -1627 (|#1| |#1| (-1170))) (-15 -3308 ((-641 |#1|) |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -2435 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2435 ((-641 |#1|) (-1166 |#1|))) (-15 -2435 ((-641 |#1|) (-948 |#1|))) (-15 -3914 (|#1| (-1166 |#1|) (-1170))) (-15 -3914 (|#1| (-1166 |#1|))) (-15 -3914 (|#1| (-948 |#1|))) (-15 -3308 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3308 ((-641 |#1|) (-1166 |#1|))) (-15 -3308 ((-641 |#1|) (-948 |#1|))) (-15 -1627 (|#1| (-1166 |#1|) (-1170))) (-15 -1627 (|#1| (-1166 |#1|))) (-15 -1627 (|#1| (-948 |#1|)))) (-29 |#2|) (-13 (-846) (-556))) (T -28)) +NIL +(-10 -8 (-15 -2435 ((-641 |#1|) |#1| (-1170))) (-15 -3914 (|#1| |#1| (-1170))) (-15 -2435 ((-641 |#1|) |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3308 ((-641 |#1|) |#1| (-1170))) (-15 -1627 (|#1| |#1| (-1170))) (-15 -3308 ((-641 |#1|) |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -2435 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2435 ((-641 |#1|) (-1166 |#1|))) (-15 -2435 ((-641 |#1|) (-948 |#1|))) (-15 -3914 (|#1| (-1166 |#1|) (-1170))) (-15 -3914 (|#1| (-1166 |#1|))) (-15 -3914 (|#1| (-948 |#1|))) (-15 -3308 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3308 ((-641 |#1|) (-1166 |#1|))) (-15 -3308 ((-641 |#1|) (-948 |#1|))) (-15 -1627 (|#1| (-1166 |#1|) (-1170))) (-15 -1627 (|#1| (-1166 |#1|))) (-15 -1627 (|#1| (-948 |#1|)))) +((-2310 (((-112) $ $) 7)) (-2435 (((-641 $) (-948 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79) (((-641 $) $) 125) (((-641 $) $ (-1170)) 123)) (-3914 (($ (-948 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82) (($ $) 126) (($ $ (-1170)) 124)) (-3264 (((-112) $) 16)) (-2534 (((-641 (-1170)) $) 200)) (-2340 (((-407 (-1166 $)) $ (-610 $)) 232 (|has| |#1| (-556)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-2244 (((-641 (-610 $)) $) 163)) (-1862 (((-3 $ "failed") $ $) 19)) (-2523 (($ $ (-641 (-610 $)) (-641 $)) 153) (($ $ (-641 (-294 $))) 152) (($ $ (-294 $)) 151)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-2387 (($ $) 93)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-3308 (((-641 $) (-948 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85) (((-641 $) $) 129) (((-641 $) $ (-1170)) 127)) (-1627 (($ (-948 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88) (($ $) 130) (($ $ (-1170)) 128)) (-3032 (((-3 (-948 |#1|) "failed") $) 250 (|has| |#1| (-1045))) (((-3 (-407 (-948 |#1|)) "failed") $) 234 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 196) (((-3 (-564) "failed") $) 193 (|has| |#1| (-1034 (-564)))) (((-3 (-1170) "failed") $) 187) (((-3 (-610 $) "failed") $) 138) (((-3 (-407 (-564)) "failed") $) 121 (-2789 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-1781 (((-948 |#1|) $) 249 (|has| |#1| (-1045))) (((-407 (-948 |#1|)) $) 233 (|has| |#1| (-556))) ((|#1| $) 195) (((-564) $) 194 (|has| |#1| (-1034 (-564)))) (((-1170) $) 186) (((-610 $) $) 137) (((-407 (-564)) $) 122 (-2789 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-2574 (($ $ $) 56)) (-2750 (((-685 |#1|) (-685 $)) 240 (|has| |#1| (-1045))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 239 (|has| |#1| (-1045))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 120 (-2789 (-2342 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (-2342 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (((-685 (-564)) (-685 $)) 119 (-2789 (-2342 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (-2342 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-4229 (((-112) $) 72)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 192 (|has| |#1| (-882 (-379)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 191 (|has| |#1| (-882 (-564))))) (-2252 (($ (-641 $)) 157) (($ $) 156)) (-1921 (((-641 (-114)) $) 164)) (-3523 (((-114) (-114)) 165)) (-1828 (((-112) $) 31)) (-3415 (((-112) $) 185 (|has| $ (-1034 (-564))))) (-1352 (($ $) 217 (|has| |#1| (-1045)))) (-4189 (((-1119 |#1| (-610 $)) $) 216 (|has| |#1| (-1045)))) (-2739 (($ $ (-564)) 92)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1445 (((-1166 $) (-610 $)) 182 (|has| $ (-1045)))) (-1501 (($ $ $) 136)) (-2622 (($ $ $) 135)) (-3123 (($ (-1 $ $) (-610 $)) 171)) (-1301 (((-3 (-610 $) "failed") $) 161)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2324 (((-641 (-610 $)) $) 162)) (-3059 (($ (-114) (-641 $)) 170) (($ (-114) $) 169)) (-1888 (((-3 (-641 $) "failed") $) 211 (|has| |#1| (-1106)))) (-3074 (((-3 (-2 (|:| |val| $) (|:| -3866 (-564))) "failed") $) 220 (|has| |#1| (-1045)))) (-3081 (((-3 (-641 $) "failed") $) 213 (|has| |#1| (-25)))) (-1299 (((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 $))) "failed") $) 214 (|has| |#1| (-25)))) (-1580 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-1170)) 219 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-114)) 218 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $) 212 (|has| |#1| (-1106)))) (-2379 (((-112) $ (-1170)) 168) (((-112) $ (-114)) 167)) (-2639 (($ $) 71)) (-3162 (((-767) $) 160)) (-3840 (((-1114) $) 10)) (-2649 (((-112) $) 198)) (-2662 ((|#1| $) 199)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-1473 (((-112) $ (-1170)) 173) (((-112) $ $) 172)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1333 (((-112) $) 184 (|has| $ (-1034 (-564))))) (-3100 (($ $ (-1170) (-767) (-1 $ $)) 224 (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ (-641 $))) 223 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) 222 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) 221 (|has| |#1| (-1045))) (($ $ (-641 (-114)) (-641 $) (-1170)) 210 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 209 (|has| |#1| (-612 (-536)))) (($ $) 208 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 207 (|has| |#1| (-612 (-536)))) (($ $ (-1170)) 206 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-641 $))) 180) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 179) (($ $ (-641 (-114)) (-641 (-1 $ $))) 178) (($ $ (-1170) (-1 $ $)) 177) (($ $ (-1170) (-1 $ (-641 $))) 176) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 175) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 174) (($ $ (-641 $) (-641 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-641 (-294 $))) 142) (($ $ (-641 (-610 $)) (-641 $)) 141) (($ $ (-610 $) $) 140)) (-3844 (((-767) $) 59)) (-4353 (($ (-114) (-641 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-2054 (($ $ $) 159) (($ $) 158)) (-1343 (($ $ (-1170)) 248 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 247 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 246 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) 245 (|has| |#1| (-1045)))) (-1881 (($ $) 227 (|has| |#1| (-556)))) (-4201 (((-1119 |#1| (-610 $)) $) 226 (|has| |#1| (-556)))) (-2400 (($ $) 183 (|has| $ (-1045)))) (-3172 (((-536) $) 254 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-556))) (((-888 (-379)) $) 190 (|has| |#1| (-612 (-888 (-379))))) (((-888 (-564)) $) 189 (|has| |#1| (-612 (-888 (-564)))))) (-2675 (($ $ $) 253 (|has| |#1| (-473)))) (-2617 (($ $ $) 252 (|has| |#1| (-473)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-948 |#1|)) 251 (|has| |#1| (-1045))) (($ (-407 (-948 |#1|))) 235 (|has| |#1| (-556))) (($ (-407 (-948 (-407 |#1|)))) 231 (|has| |#1| (-556))) (($ (-948 (-407 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 |#1|)) 229 (|has| |#1| (-556))) (($ (-1119 |#1| (-610 $))) 215 (|has| |#1| (-1045))) (($ |#1|) 197) (($ (-1170)) 188) (($ (-610 $)) 139)) (-2409 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-1389 (($ (-641 $)) 155) (($ $) 154)) (-1646 (((-112) (-114)) 166)) (-4024 (((-112) $ $) 40)) (-2731 (($ (-1170) (-641 $)) 205) (($ (-1170) $ $ $ $) 204) (($ (-1170) $ $ $) 203) (($ (-1170) $ $) 202) (($ (-1170) $) 201)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1170)) 244 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 243 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 242 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) 241 (|has| |#1| (-1045)))) (-2977 (((-112) $ $) 133)) (-2953 (((-112) $ $) 132)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 134)) (-2942 (((-112) $ $) 131)) (-3034 (($ $ $) 66) (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 228 (|has| |#1| (-556)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172))))) +(((-29 |#1|) (-140) (-13 (-846) (-556))) (T -29)) +((-1627 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556))))) (-3308 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556))))) (-3308 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) (-3914 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556))))) (-2435 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-3914 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556))))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -1627 ($ $)) (-15 -3308 ((-641 $) $)) (-15 -1627 ($ $ (-1170))) (-15 -3308 ((-641 $) $ (-1170))) (-15 -3914 ($ $)) (-15 -2435 ((-641 $) $)) (-15 -3914 ($ $ (-1170))) (-15 -2435 ((-641 $) $ (-1170))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-948 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) ((-637 |#1|) |has| |#1| (-1045)) ((-713 #0#) . T) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-896 (-1170)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-564))) -2789 (|has| |#1| (-1034 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) ((-1034 #1#) |has| |#1| (-556)) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T) ((-1213) . T)) +((-1441 (((-1088 (-225)) $) NIL)) (-1428 (((-1088 (-225)) $) NIL)) (-2346 (($ $ (-225)) 167)) (-4042 (($ (-948 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564)))) 102)) (-2529 (((-641 (-641 (-939 (-225)))) $) 183)) (-2322 (((-858) $) 197))) +(((-30) (-13 (-951) (-10 -8 (-15 -4042 ($ (-948 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2346 ($ $ (-225)))))) (T -30)) +((-4042 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-948 (-564))) (-5 *3 (-1170)) (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))) (-2346 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-951) (-10 -8 (-15 -4042 ($ (-948 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2346 ($ $ (-225))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-1129) $) 11)) (-2610 (((-1129) $) 9)) (-2921 (((-112) $ $) NIL))) +(((-31) (-13 (-1077) (-10 -8 (-15 -2610 ((-1129) $)) (-15 -2433 ((-1129) $))))) (T -31)) +((-2610 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))) +(-13 (-1077) (-10 -8 (-15 -2610 ((-1129) $)) (-15 -2433 ((-1129) $)))) +((-1627 ((|#2| (-1166 |#2|) (-1170)) 46)) (-3523 (((-114) (-114)) 60)) (-1445 (((-1166 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1034 (-564))))) (-1684 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1034 (-564))))) (-4103 ((|#2| (-1166 |#2|) |#2|) 29)) (-4185 (((-858) (-641 |#2|)) 88)) (-2400 ((|#2| |#2|) 146 (|has| |#1| (-1034 (-564))))) (-1646 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1034 (-564)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1627 (|#2| (-1166 |#2|) (-1170))) (-15 -3523 ((-114) (-114))) (-15 -1646 ((-112) (-114))) (-15 -4103 (|#2| (-1166 |#2|) |#2|)) (-15 -4185 ((-858) (-641 |#2|))) (IF (|has| |#1| (-1034 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -1445 ((-1166 |#2|) (-610 |#2|))) (-15 -2400 (|#2| |#2|)) (-15 -1684 (|#2| |#1| (-564)))) |%noBranch|)) (-13 (-846) (-556)) (-430 |#1|)) (T -32)) +((-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-556))))) (-2400 (*1 *2 *2) (-12 (-4 *3 (-1034 (-564))) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-564))) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1034 (-564))) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))) (-4103 (*1 *2 *3 *2) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-32 *4 *2)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-556)))))) +(-10 -7 (-15 -1627 (|#2| (-1166 |#2|) (-1170))) (-15 -3523 ((-114) (-114))) (-15 -1646 ((-112) (-114))) (-15 -4103 (|#2| (-1166 |#2|) |#2|)) (-15 -4185 ((-858) (-641 |#2|))) (IF (|has| |#1| (-1034 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -1445 ((-1166 |#2|) (-610 |#2|))) (-15 -2400 (|#2| |#2|)) (-15 -1684 (|#2| |#1| (-564)))) |%noBranch|)) +((-2318 (((-112) $ (-767)) 19)) (-4157 (($) 10)) (-1751 (((-112) $ (-767)) 18)) (-1681 (((-112) $ (-767)) 17)) (-3652 (((-112) $ $) 8)) (-3282 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -4157 (|#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767))) (-15 -3282 ((-112) |#1|)) (-15 -3652 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -4157 (|#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767))) (-15 -3282 ((-112) |#1|)) (-15 -3652 ((-112) |#1| |#1|))) +((-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-1751 (((-112) $ (-767)) 9)) (-1681 (((-112) $ (-767)) 10)) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3772 (($ $) 13)) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-34) (-140)) (T -34)) -((-3565 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1991 (*1 *1 *1) (-4 *1 (-34))) (-4012 (*1 *1) (-4 *1 (-34))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1713 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2324 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-4010 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-1778 (*1 *1) (-4 *1 (-34))) (-2828 (*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-34)) (-5 *2 (-768))))) -(-13 (-1209) (-10 -8 (-15 -3565 ((-112) $ $)) (-15 -1991 ($ $)) (-15 -4012 ($)) (-15 -4284 ((-112) $)) (-15 -1713 ((-112) $ (-768))) (-15 -2324 ((-112) $ (-768))) (-15 -4010 ((-112) $ (-768))) (-15 -1778 ($) -1809) (IF (|has| $ (-6 -4406)) (-15 -2828 ((-768) $)) |%noBranch|))) +((-3652 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3772 (*1 *1 *1) (-4 *1 (-34))) (-2348 (*1 *1) (-4 *1 (-34))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-1751 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-2318 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-4157 (*1 *1) (-4 *1 (-34))) (-2059 (*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-34)) (-5 *2 (-767))))) +(-13 (-1209) (-10 -8 (-15 -3652 ((-112) $ $)) (-15 -3772 ($ $)) (-15 -2348 ($)) (-15 -3282 ((-112) $)) (-15 -1681 ((-112) $ (-767))) (-15 -1751 ((-112) $ (-767))) (-15 -2318 ((-112) $ (-767))) (-15 -4157 ($) -2255) (IF (|has| $ (-6 -4406)) (-15 -2059 ((-767) $)) |%noBranch|))) (((-1209) . T)) -((-3427 (($ $) 11)) (-3406 (($ $) 10)) (-3450 (($ $) 9)) (-2315 (($ $) 8)) (-3439 (($ $) 7)) (-3416 (($ $) 6))) +((-2672 (($ $) 11)) (-3849 (($ $) 10)) (-2695 (($ $) 9)) (-1511 (($ $) 8)) (-2684 (($ $) 7)) (-2660 (($ $) 6))) (((-35) (-140)) (T -35)) -((-3427 (*1 *1 *1) (-4 *1 (-35))) (-3406 (*1 *1 *1) (-4 *1 (-35))) (-3450 (*1 *1 *1) (-4 *1 (-35))) (-2315 (*1 *1 *1) (-4 *1 (-35))) (-3439 (*1 *1 *1) (-4 *1 (-35))) (-3416 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3416 ($ $)) (-15 -3439 ($ $)) (-15 -2315 ($ $)) (-15 -3450 ($ $)) (-15 -3406 ($ $)) (-15 -3427 ($ $)))) -((-1817 (((-112) $ $) 19 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-1522 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 125)) (-3149 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 148)) (-4045 (($ $) 146)) (-3639 (($) 72) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 71)) (-1956 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4407))) (((-1264) $ (-564) (-564)) 178 (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) 159 (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2573 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 200 (|has| $ (-6 -4407))) (($ $) 199 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-4010 (((-112) $ (-768)) 8)) (-2373 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 134 (|has| $ (-6 -4407)))) (-3653 (($ $ $) 155 (|has| $ (-6 -4407)))) (-3881 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 157 (|has| $ (-6 -4407)))) (-2923 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 153 (|has| $ (-6 -4407)))) (-1970 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 189 (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-1226 (-564)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 160 (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "last" (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 158 (|has| $ (-6 -4407))) (($ $ "rest" $) 156 (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "first" (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 154 (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "value" (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 133 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 132 (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 45 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 216)) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 55 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 175 (|has| $ (-6 -4406)))) (-3137 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 147)) (-1725 (((-3 |#2| "failed") |#1| $) 61)) (-1778 (($) 7 T CONST)) (-4325 (($ $) 201 (|has| $ (-6 -4407)))) (-3919 (($ $) 211)) (-3314 (($ $ (-768)) 142) (($ $) 140)) (-4341 (($ $) 214 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-3337 (($ $) 58 (-4078 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406))) (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 46 (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 220) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 215 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 54 (|has| $ (-6 -4406))) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 174 (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 56 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 53 (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 52 (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 176 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 173 (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 172 (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 190 (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) 88) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) 188)) (-1346 (((-112) $) 192)) (-3360 (((-564) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 208) (((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 207 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) (((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) 206 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 30 (|has| $ (-6 -4406))) (((-641 |#2|) $) 79 (|has| $ (-6 -4406))) (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 114 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 123)) (-4376 (((-112) $ $) 131 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-3654 (($ (-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 169)) (-2324 (((-112) $ (-768)) 9)) (-3100 ((|#1| $) 96 (|has| |#1| (-847))) (((-564) $) 180 (|has| (-564) (-847)))) (-1925 (($ $ $) 198 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2429 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-3956 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 29 (|has| $ (-6 -4406))) (((-641 |#2|) $) 80 (|has| $ (-6 -4406))) (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 115 (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406)))) (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-3440 ((|#1| $) 95 (|has| |#1| (-847))) (((-564) $) 181 (|has| (-564) (-847)))) (-3375 (($ $ $) 197 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 34 (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4407))) (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 110 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 109)) (-3176 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 225)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 128)) (-2033 (((-112) $) 124)) (-2723 (((-1152) $) 22 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-2598 (($ $ (-768)) 145) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 143)) (-2945 (((-641 |#1|) $) 63)) (-2554 (((-112) |#1| $) 64)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 39)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 40) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) 219) (($ $ $ (-564)) 218)) (-3652 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) 162) (($ $ $ (-564)) 161)) (-3883 (((-641 |#1|) $) 93) (((-641 (-564)) $) 183)) (-4336 (((-112) |#1| $) 92) (((-112) (-564) $) 184)) (-2780 (((-1114) $) 21 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3303 ((|#2| $) 97 (|has| |#1| (-847))) (($ $ (-768)) 139) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 137)) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 51) (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 171)) (-4253 (($ $ |#2|) 98 (|has| $ (-6 -4407))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 179 (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 41)) (-4337 (((-112) $) 191)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 32 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 112 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) 26 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 25 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 24 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 23 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 121 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 120 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 119 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) 118 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 182 (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-1794 (((-641 |#2|) $) 91) (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 185)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 187) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) 186) (($ $ (-1226 (-564))) 165) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "first") 138) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "value") 126)) (-4190 (((-564) $ $) 129)) (-4232 (($) 49) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 48)) (-2087 (($ $ (-564)) 222) (($ $ (-1226 (-564))) 221)) (-2126 (($ $ (-564)) 164) (($ $ (-1226 (-564))) 163)) (-1899 (((-112) $) 127)) (-2034 (($ $) 151)) (-3292 (($ $) 152 (|has| $ (-6 -4407)))) (-1724 (((-768) $) 150)) (-3910 (($ $) 149)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 31 (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 113 (|has| $ (-6 -4406)))) (-3623 (($ $ $ (-564)) 202 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536)))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 50) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 170)) (-2460 (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 224) (($ $ $) 223)) (-3043 (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 168) (($ (-641 $)) 167) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 136) (($ $ $) 135)) (-1831 (((-859) $) 18 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859)))))) (-2926 (((-641 $) $) 122)) (-2054 (((-112) $ $) 130 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 42)) (-2604 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") |#1| $) 108)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 33 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 111 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 195 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-1737 (((-112) $ $) 194 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-1702 (((-112) $ $) 20 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-1749 (((-112) $ $) 196 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-1723 (((-112) $ $) 193 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2672 (*1 *1 *1) (-4 *1 (-35))) (-3849 (*1 *1 *1) (-4 *1 (-35))) (-2695 (*1 *1 *1) (-4 *1 (-35))) (-1511 (*1 *1 *1) (-4 *1 (-35))) (-2684 (*1 *1 *1) (-4 *1 (-35))) (-2660 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2660 ($ $)) (-15 -2684 ($ $)) (-15 -1511 ($ $)) (-15 -2695 ($ $)) (-15 -3849 ($ $)) (-15 -2672 ($ $)))) +((-2310 (((-112) $ $) 19 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-2053 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 125)) (-3678 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 148)) (-3284 (($ $) 146)) (-4108 (($) 72) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 71)) (-2246 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4407))) (((-1264) $ (-564) (-564)) 178 (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) 159 (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2441 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 200 (|has| $ (-6 -4407))) (($ $) 199 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2318 (((-112) $ (-767)) 8)) (-4159 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 134 (|has| $ (-6 -4407)))) (-3238 (($ $ $) 155 (|has| $ (-6 -4407)))) (-3468 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 157 (|has| $ (-6 -4407)))) (-2822 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 153 (|has| $ (-6 -4407)))) (-3750 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 189 (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-1226 (-564)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 160 (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "last" (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 158 (|has| $ (-6 -4407))) (($ $ "rest" $) 156 (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "first" (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 154 (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "value" (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 133 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 132 (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 45 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 216)) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 55 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 175 (|has| $ (-6 -4406)))) (-3667 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 147)) (-2227 (((-3 |#2| "failed") |#1| $) 61)) (-4157 (($) 7 T CONST)) (-2443 (($ $) 201 (|has| $ (-6 -4407)))) (-2493 (($ $) 211)) (-2008 (($ $ (-767)) 142) (($ $) 140)) (-2596 (($ $) 214 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-2027 (($ $) 58 (-2789 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406))) (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 46 (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 220) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 215 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 54 (|has| $ (-6 -4406))) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 174 (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 56 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 53 (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 52 (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 176 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 173 (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 172 (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 190 (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) 88) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) 188)) (-3524 (((-112) $) 192)) (-3847 (((-564) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 208) (((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 207 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) (((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) 206 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 30 (|has| $ (-6 -4406))) (((-641 |#2|) $) 79 (|has| $ (-6 -4406))) (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 114 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 123)) (-1634 (((-112) $ $) 131 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-4121 (($ (-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 169)) (-1751 (((-112) $ (-767)) 9)) (-1913 ((|#1| $) 96 (|has| |#1| (-846))) (((-564) $) 180 (|has| (-564) (-846)))) (-1501 (($ $ $) 198 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-3471 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2988 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 29 (|has| $ (-6 -4406))) (((-641 |#2|) $) 80 (|has| $ (-6 -4406))) (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 115 (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406)))) (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-1785 ((|#1| $) 95 (|has| |#1| (-846))) (((-564) $) 181 (|has| (-564) (-846)))) (-2622 (($ $ $) 197 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 34 (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4407))) (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 110 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 109)) (-1870 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 225)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 128)) (-1808 (((-112) $) 124)) (-1418 (((-1152) $) 22 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3649 (($ $ (-767)) 145) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 143)) (-2843 (((-641 |#1|) $) 63)) (-2237 (((-112) |#1| $) 64)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 39)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 40) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) 219) (($ $ $ (-564)) 218)) (-4116 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) 162) (($ $ $ (-564)) 161)) (-3487 (((-641 |#1|) $) 93) (((-641 (-564)) $) 183)) (-2550 (((-112) |#1| $) 92) (((-112) (-564) $) 184)) (-3840 (((-1114) $) 21 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-1995 ((|#2| $) 97 (|has| |#1| (-846))) (($ $ (-767)) 139) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 137)) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 51) (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 171)) (-2981 (($ $ |#2|) 98 (|has| $ (-6 -4407))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 179 (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 41)) (-2562 (((-112) $) 191)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 32 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 112 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) 26 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 25 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 24 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 23 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 121 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 120 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 119 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) 118 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 182 (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-4324 (((-641 |#2|) $) 91) (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 185)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 187) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) 186) (($ $ (-1226 (-564))) 165) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "first") 138) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "value") 126)) (-3526 (((-564) $ $) 129)) (-3977 (($) 49) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 48)) (-4277 (($ $ (-564)) 222) (($ $ (-1226 (-564))) 221)) (-1996 (($ $ (-564)) 164) (($ $ (-1226 (-564))) 163)) (-2911 (((-112) $) 127)) (-1819 (($ $) 151)) (-3051 (($ $) 152 (|has| $ (-6 -4407)))) (-1793 (((-767) $) 150)) (-3743 (($ $) 149)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 31 (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 113 (|has| $ (-6 -4406)))) (-3000 (($ $ $ (-564)) 202 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536)))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 50) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 170)) (-3783 (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 224) (($ $ $) 223)) (-3533 (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 168) (($ (-641 $)) 167) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 136) (($ $ $) 135)) (-2322 (((-858) $) 18 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858)))))) (-1591 (((-641 $) $) 122)) (-2040 (((-112) $ $) 130 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 42)) (-3660 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") |#1| $) 108)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 33 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 111 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 195 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2953 (((-112) $ $) 194 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2921 (((-112) $ $) 20 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-2964 (((-112) $ $) 196 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2942 (((-112) $ $) 193 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-36 |#1| |#2|) (-140) (-1094) (-1094)) (T -36)) -((-2604 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -2568 *3) (|:| -1389 *4)))))) -(-13 (-1185 |t#1| |t#2|) (-662 (-2 (|:| -2568 |t#1|) (|:| -1389 |t#2|))) (-10 -8 (-15 -2604 ((-3 (-2 (|:| -2568 |t#1|) (|:| -1389 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((-102) -4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847))) ((-611 (-859)) -4078 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859)))) ((-151 #1=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-647 #1#) . T) ((-662 #1#) . T) ((-847) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)) ((-1007 #1#) . T) ((-1094) -4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847))) ((-1143 #1#) . T) ((-1185 |#1| |#2|) . T) ((-1209) . T) ((-1247 #1#) . T)) -((-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3660 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -3076 *3) (|:| -2511 *4)))))) +(-13 (-1185 |t#1| |t#2|) (-662 (-2 (|:| -3076 |t#1|) (|:| -2511 |t#2|))) (-10 -8 (-15 -3660 ((-3 (-2 (|:| -3076 |t#1|) (|:| -2511 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((-102) -2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846))) ((-611 (-858)) -2789 (|has| |#2| (-1094)) (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858)))) ((-151 #1=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-647 #1#) . T) ((-662 #1#) . T) ((-846) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)) ((-1006 #1#) . T) ((-1094) -2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846))) ((-1143 #1#) . T) ((-1185 |#1| |#2|) . T) ((-1209) . T) ((-1247 #1#) . T)) +((-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-38 |#1|) (-140) (-172)) (T -38)) NIL -(-13 (-1046) (-714 |t#1|) (-614 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-3838 (((-418 |#1|) |#1|) 41)) (-3070 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-641 (-48))) 33)) (-3865 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -3070 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3838 ((-418 |#1|) |#1|)) (-15 -3865 ((-112) |#1|))) (-1235 (-48))) (T -39)) -((-3865 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3838 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3070 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))) -(-10 -7 (-15 -3070 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3838 ((-418 |#1|) |#1|)) (-15 -3865 ((-112) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2084 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1537 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1932 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3390 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-2713 (((-407 |#2|) $) NIL)) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3399 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3554 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3267 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-2927 (((-112)) NIL)) (-2135 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3624 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 61) (($ (-1259 |#2|) |#2|) 135)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1449 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4206 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-4107 (((-1259 $) (-1259 $)) NIL)) (-1988 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3733 (((-3 $ "failed") $) NIL)) (-3238 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-4349 (((-112) |#1| |#1|) NIL)) (-3531 (((-918)) NIL)) (-2900 (($) NIL (|has| (-407 |#2|) (-368)))) (-3272 (((-112)) NIL)) (-3260 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1424 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-3031 (($ $) NIL)) (-1830 (($) NIL (|has| (-407 |#2|) (-349)))) (-4282 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3340 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1420 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2155 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-2949 (((-112) $) NIL)) (-4002 (((-768)) NIL)) (-1388 (((-1259 $) (-1259 $)) 111)) (-3797 (((-407 |#2|) $) NIL)) (-3099 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-2619 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3774 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1811 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-1977 ((|#3| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2723 (((-1152) $) NIL)) (-2447 (((-1264) (-768)) 88)) (-3105 (((-685 (-407 |#2|))) 56)) (-1835 (((-685 (-407 |#2|))) 49)) (-3315 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4101 (($ (-1259 |#2|) |#2|) 136)) (-3749 (((-685 (-407 |#2|))) 50)) (-3093 (((-685 (-407 |#2|))) 48)) (-3485 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-1777 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 68)) (-1718 (((-1259 $)) 47)) (-2359 (((-1259 $)) 46)) (-1978 (((-112) $) NIL)) (-3683 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2884 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1468 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-4105 (((-3 |#2| "failed")) NIL)) (-2780 (((-1114) $) NIL)) (-3878 (((-768)) NIL)) (-1426 (($) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2777 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-3070 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1403 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3920 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-1350 ((|#1| $ |#1| |#1|) NIL)) (-1759 (((-3 |#2| "failed")) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3190 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 44)) (-1820 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3534 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-4027 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3019 ((|#3|) 55)) (-3297 (($) NIL (|has| (-407 |#2|) (-349)))) (-2467 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 62) (((-685 (-407 |#2|)) (-1259 $)) 112)) (-2511 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-3562 (((-1259 $) (-1259 $)) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4078 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4018 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1349 ((|#3| $) NIL)) (-2219 (((-768)) NIL T CONST)) (-2368 (((-112)) 42)) (-4147 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3331 (((-1259 $)) 102)) (-3939 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2806 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3487 (((-112)) NIL)) (-1293 (($) 17 T CONST)) (-1300 (($) 27 T CONST)) (-3435 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -2447 ((-1264) (-768))))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) |#3|) (T -40)) -((-2447 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6)))) -(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -2447 ((-1264) (-768))))) -((-1664 ((|#2| |#2|) 48)) (-2144 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-3965 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-3463 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-2267 ((|#2| (-114) |#2| (-768)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-3973 (((-1166 |#2|) |#2|) 45)) (-2329 ((|#2| |#2| (-641 (-610 |#2|))) 18) ((|#2| |#2| (-641 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1664 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| |#2|)) (-15 -2329 (|#2| |#2| (-641 |#2|))) (-15 -2329 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -3973 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3463 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -2267 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 |#1| (-610 $)) $)) (-15 -3693 ((-1119 |#1| (-610 $)) $)) (-15 -1831 ($ (-1119 |#1| (-610 $))))))) (T -41)) -((-2267 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847)) (-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *5 (-610 $)) $)) (-15 -3693 ((-1119 *5 (-610 $)) $)) (-15 -1831 ($ (-1119 *5 (-610 $))))))))) (-2144 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) (-15 -3693 ((-1119 *3 (-610 $)) $)) (-15 -1831 ($ (-1119 *3 (-610 $))))))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) (-15 -3693 ((-1119 *3 (-610 $)) $)) (-15 -1831 ($ (-1119 *3 (-610 $))))))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) (-15 -3693 ((-1119 *3 (-610 $)) $)) (-15 -1831 ($ (-1119 *3 (-610 $))))))))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *4 (-610 $)) $)) (-15 -3693 ((-1119 *4 (-610 $)) $)) (-15 -1831 ($ (-1119 *4 (-610 $))))))))) (-2329 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *4 (-610 $)) $)) (-15 -3693 ((-1119 *4 (-610 $)) $)) (-15 -1831 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-2329 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *4 (-610 $)) $)) (-15 -3693 ((-1119 *4 (-610 $)) $)) (-15 -1831 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-2329 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) (-15 -3693 ((-1119 *3 (-610 $)) $)) (-15 -1831 ($ (-1119 *3 (-610 $))))))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) (-15 -3693 ((-1119 *3 (-610 $)) $)) (-15 -1831 ($ (-1119 *3 (-610 $))))))))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) (-15 -3693 ((-1119 *3 (-610 $)) $)) (-15 -1831 ($ (-1119 *3 (-610 $)))))))))) -(-10 -7 (-15 -1664 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| |#2|)) (-15 -2329 (|#2| |#2| (-641 |#2|))) (-15 -2329 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -3973 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3463 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -2267 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3070 (((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))) 23) (((-418 |#3|) |#3| (-641 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3070 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -3070 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) (-847) (-790) (-946 (-48) |#2| |#1|)) (T -42)) -((-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5))))) -(-10 -7 (-15 -3070 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -3070 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) -((-3046 (((-768) |#2|) 72)) (-4097 (((-768) |#2|) 76)) (-1758 (((-641 |#2|)) 39)) (-2895 (((-768) |#2|) 75)) (-1398 (((-768) |#2|) 71)) (-3038 (((-768) |#2|) 74)) (-3856 (((-641 (-685 |#1|))) 67)) (-2181 (((-641 |#2|)) 62)) (-2701 (((-641 |#2|) |#2|) 50)) (-2428 (((-641 |#2|)) 64)) (-3258 (((-641 |#2|)) 63)) (-2556 (((-641 (-685 |#1|))) 55)) (-1770 (((-641 |#2|)) 61)) (-1452 (((-641 |#2|) |#2|) 49)) (-2283 (((-641 |#2|)) 57)) (-1672 (((-641 (-685 |#1|))) 68)) (-1997 (((-641 |#2|)) 66)) (-3331 (((-1259 |#2|) (-1259 |#2|)) 100 (|has| |#1| (-307))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2895 ((-768) |#2|)) (-15 -4097 ((-768) |#2|)) (-15 -1398 ((-768) |#2|)) (-15 -3046 ((-768) |#2|)) (-15 -3038 ((-768) |#2|)) (-15 -2283 ((-641 |#2|))) (-15 -1452 ((-641 |#2|) |#2|)) (-15 -2701 ((-641 |#2|) |#2|)) (-15 -1770 ((-641 |#2|))) (-15 -2181 ((-641 |#2|))) (-15 -3258 ((-641 |#2|))) (-15 -2428 ((-641 |#2|))) (-15 -1997 ((-641 |#2|))) (-15 -2556 ((-641 (-685 |#1|)))) (-15 -3856 ((-641 (-685 |#1|)))) (-15 -1672 ((-641 (-685 |#1|)))) (-15 -1758 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -3331 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43)) -((-3331 (*1 *2 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-1758 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1672 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3856 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2556 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1997 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2428 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3258 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2181 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1770 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2283 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3038 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3046 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1398 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2895 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) -(-10 -7 (-15 -2895 ((-768) |#2|)) (-15 -4097 ((-768) |#2|)) (-15 -1398 ((-768) |#2|)) (-15 -3046 ((-768) |#2|)) (-15 -3038 ((-768) |#2|)) (-15 -2283 ((-641 |#2|))) (-15 -1452 ((-641 |#2|) |#2|)) (-15 -2701 ((-641 |#2|) |#2|)) (-15 -1770 ((-641 |#2|))) (-15 -2181 ((-641 |#2|))) (-15 -3258 ((-641 |#2|))) (-15 -2428 ((-641 |#2|))) (-15 -1997 ((-641 |#2|))) (-15 -2556 ((-641 (-685 |#1|)))) (-15 -3856 ((-641 (-685 |#1|)))) (-15 -1672 ((-641 (-685 |#1|)))) (-15 -1758 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -3331 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1674 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1546 (((-1259 (-685 |#1|)) (-1259 $)) NIL) (((-1259 (-685 |#1|))) 24)) (-2294 (((-1259 $)) 55)) (-1778 (($) NIL T CONST)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-3868 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-1911 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-2825 ((|#1| $) NIL)) (-2050 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2767 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-2232 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-4221 (($ $ (-918)) NIL)) (-2166 ((|#1| $) NIL)) (-2878 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-1476 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-1475 (((-1166 |#1|) $) NIL)) (-2103 (((-112)) 102)) (-3624 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-3733 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-3531 (((-918)) 56)) (-3628 (((-112)) NIL)) (-2482 (($ $ (-918)) NIL)) (-3001 (((-112)) NIL)) (-3261 (((-112)) NIL)) (-2130 (((-112)) 104)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-2302 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-2510 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3385 ((|#1| $) NIL)) (-2289 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3874 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-1402 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-2839 (($ $ (-918)) NIL)) (-2873 ((|#1| $) NIL)) (-4146 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-3525 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-2582 (((-1166 |#1|) $) NIL)) (-2628 (((-112)) 101)) (-2723 (((-1152) $) NIL)) (-3582 (((-112)) 109)) (-2317 (((-112)) 108)) (-2241 (((-112)) 110)) (-2780 (((-1114) $) NIL)) (-3740 (((-112)) 103)) (-1350 ((|#1| $ (-564)) 58)) (-2467 (((-1259 |#1|) $ (-1259 $)) 53) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 28) (((-685 |#1|) (-1259 $)) NIL)) (-2511 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL)) (-2852 (((-641 (-949 |#1|)) (-1259 $)) NIL) (((-641 (-949 |#1|))) NIL)) (-1992 (($ $ $) NIL)) (-2595 (((-112)) 98)) (-1831 (((-859) $) 75) (($ (-1259 |#1|)) 22)) (-3331 (((-1259 $)) 49)) (-1488 (((-641 (-1259 |#1|))) NIL (|has| |#1| (-556)))) (-2611 (($ $ $ $) NIL)) (-1604 (((-112)) 94)) (-3246 (($ (-685 |#1|) $) 18)) (-1656 (($ $ $) NIL)) (-3830 (((-112)) 100)) (-3335 (((-112)) 95)) (-2921 (((-112)) 93)) (-1293 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1136 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -1831 ($ (-1259 |#1|))))) (-363) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -44)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))))) -(-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -1831 ($ (-1259 |#1|))))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1522 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3149 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4045 (($ $) NIL)) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407))) (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2573 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847))))) (-2861 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-2373 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407)))) (-3653 (($ $ $) 33 (|has| $ (-6 -4407)))) (-3881 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407)))) (-2923 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 35 (|has| $ (-6 -4407)))) (-1970 ((|#2| $ |#1| |#2|) 52) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-1226 (-564)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "last" (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407))) (($ $ "rest" $) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "first" (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "value" (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3137 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-1725 (((-3 |#2| "failed") |#1| $) 43)) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3314 (($ $ (-768)) NIL) (($ $) 29)) (-4341 (($ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 55) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) NIL)) (-1346 (((-112) $) NIL)) (-3360 (((-564) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) (((-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 20 (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 20 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-3654 (($ (-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 38 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2429 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-3956 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 40 (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-3176 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-4119 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-2033 (((-112) $) NIL)) (-2723 (((-1152) $) 48 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2598 (($ $ (-768)) NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2945 (((-641 |#1|) $) 22)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3652 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 |#1|) $) NIL) (((-641 (-564)) $) NIL)) (-4336 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847))) (($ $ (-768)) NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 27)) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4337 (((-112) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-1794 (((-641 |#2|) $) NIL) (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 19)) (-4284 (((-112) $) 18)) (-4012 (($) 14)) (-1350 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "first") NIL) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $ "value") NIL)) (-4190 (((-564) $ $) NIL)) (-4232 (($) 13) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2087 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-1899 (((-112) $) NIL)) (-2034 (($ $) NIL)) (-3292 (($ $) NIL (|has| $ (-6 -4407)))) (-1724 (((-768) $) NIL)) (-3910 (($ $) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2460 (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL) (($ $ $) NIL)) (-3043 (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL) (($ (-641 $)) NIL) (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 31) (($ $ $) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2604 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") |#1| $) 50)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1749 (((-112) $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-847)))) (-2828 (((-768) $) 25 (|has| $ (-6 -4406))))) +(-13 (-1045) (-713 |t#1|) (-614 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-4302 (((-418 |#1|) |#1|) 41)) (-2375 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-641 (-48))) 33)) (-1464 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -2375 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -4302 ((-418 |#1|) |#1|)) (-15 -1464 ((-112) |#1|))) (-1235 (-48))) (T -39)) +((-1464 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4302 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))) +(-10 -7 (-15 -2375 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -4302 ((-418 |#1|) |#1|)) (-15 -1464 ((-112) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-4246 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-3622 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3247 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2586 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3770 (((-407 |#2|) $) NIL)) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2657 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3547 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1959 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1603 (((-112)) NIL)) (-3493 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3013 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 61) (($ (-1259 |#2|) |#2|) 135)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2574 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3689 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-2045 (((-1259 $) (-1259 $)) NIL)) (-3239 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-2689 (((-3 $ "failed") $) NIL)) (-3787 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-2678 (((-112) |#1| |#1|) NIL)) (-3105 (((-917)) NIL)) (-3860 (($) NIL (|has| (-407 |#2|) (-368)))) (-2882 (((-112)) NIL)) (-2800 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2552 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2520 (($ $) NIL)) (-3422 (($) NIL (|has| (-407 |#2|) (-349)))) (-3261 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-2180 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-4229 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3717 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-1828 (((-112) $) NIL)) (-2232 (((-767)) NIL)) (-1535 (((-1259 $) (-1259 $)) 111)) (-2019 (((-407 |#2|) $) NIL)) (-1899 (((-641 (-948 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1790 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1368 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-3228 ((|#3| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1418 (((-1152) $) NIL)) (-3641 (((-1264) (-767)) 88)) (-1956 (((-685 (-407 |#2|))) 56)) (-3461 (((-685 (-407 |#2|))) 49)) (-2639 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1983 (($ (-1259 |#2|) |#2|) 136)) (-1572 (((-685 (-407 |#2|))) 50)) (-1831 (((-685 (-407 |#2|))) 48)) (-4111 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-4146 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 68)) (-1737 (((-1259 $)) 47)) (-2112 (((-1259 $)) 46)) (-2471 (((-112) $) NIL)) (-2247 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3346 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1998 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-2021 (((-3 |#2| "failed")) NIL)) (-3840 (((-1114) $) NIL)) (-3447 (((-767)) NIL)) (-4095 (($) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-3235 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-2375 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2526 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3844 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-4353 ((|#1| $ |#1| |#1|) NIL)) (-3995 (((-3 |#2| "failed")) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3392 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 44)) (-3337 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-1343 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2516 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-2400 ((|#3|) 55)) (-3107 (($) NIL (|has| (-407 |#2|) (-349)))) (-3864 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 62) (((-685 (-407 |#2|)) (-1259 $)) 112)) (-3172 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-3619 (((-1259 $) (-1259 $)) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2789 (|has| (-407 |#2|) (-1034 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2409 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2117 ((|#3| $) NIL)) (-3179 (((-767)) NIL T CONST)) (-4099 (((-112)) 42)) (-4350 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3342 (((-1259 $)) 102)) (-4024 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2876 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4135 (((-112)) NIL)) (-2389 (($) 17 T CONST)) (-2403 (($) 27 T CONST)) (-3917 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3641 ((-1264) (-767))))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) |#3|) (T -40)) +((-3641 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6)))) +(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3641 ((-1264) (-767))))) +((-2466 ((|#2| |#2|) 48)) (-3592 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-564)))))) (-3088 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-564)))))) (-2010 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-564)))))) (-2380 ((|#2| (-114) |#2| (-767)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-564)))))) (-3167 (((-1166 |#2|) |#2|) 45)) (-1804 ((|#2| |#2| (-641 (-610 |#2|))) 18) ((|#2| |#2| (-641 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2466 (|#2| |#2|)) (-15 -1804 (|#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -1804 (|#2| |#2| (-641 |#2|))) (-15 -1804 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -3167 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2010 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -2380 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 |#1| (-610 $)) $)) (-15 -4201 ((-1119 |#1| (-610 $)) $)) (-15 -2322 ($ (-1119 |#1| (-610 $))))))) (T -41)) +((-2380 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) (-4 *5 (-1034 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *5 (-610 $)) $)) (-15 -4201 ((-1119 *5 (-610 $)) $)) (-15 -2322 ($ (-1119 *5 (-610 $))))))))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) (-15 -4201 ((-1119 *3 (-610 $)) $)) (-15 -2322 ($ (-1119 *3 (-610 $))))))))) (-3088 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) (-15 -4201 ((-1119 *3 (-610 $)) $)) (-15 -2322 ($ (-1119 *3 (-610 $))))))))) (-2010 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) (-15 -4201 ((-1119 *3 (-610 $)) $)) (-15 -2322 ($ (-1119 *3 (-610 $))))))))) (-3167 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *4 (-610 $)) $)) (-15 -4201 ((-1119 *4 (-610 $)) $)) (-15 -2322 ($ (-1119 *4 (-610 $))))))))) (-1804 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *4 (-610 $)) $)) (-15 -4201 ((-1119 *4 (-610 $)) $)) (-15 -2322 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1804 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *4 (-610 $)) $)) (-15 -4201 ((-1119 *4 (-610 $)) $)) (-15 -2322 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1804 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) (-15 -4201 ((-1119 *3 (-610 $)) $)) (-15 -2322 ($ (-1119 *3 (-610 $))))))))) (-1804 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) (-15 -4201 ((-1119 *3 (-610 $)) $)) (-15 -2322 ($ (-1119 *3 (-610 $))))))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) (-15 -4201 ((-1119 *3 (-610 $)) $)) (-15 -2322 ($ (-1119 *3 (-610 $)))))))))) +(-10 -7 (-15 -2466 (|#2| |#2|)) (-15 -1804 (|#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -1804 (|#2| |#2| (-641 |#2|))) (-15 -1804 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -3167 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2010 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -2380 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2375 (((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))) 23) (((-418 |#3|) |#3| (-641 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2375 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -2375 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) (-846) (-789) (-945 (-48) |#2| |#1|)) (T -42)) +((-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5))))) +(-10 -7 (-15 -2375 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -2375 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) +((-2661 (((-767) |#2|) 72)) (-1938 (((-767) |#2|) 76)) (-3984 (((-641 |#2|)) 39)) (-2515 (((-767) |#2|) 75)) (-4029 (((-767) |#2|) 71)) (-2590 (((-767) |#2|) 74)) (-1385 (((-641 (-685 |#1|))) 67)) (-2808 (((-641 |#2|)) 62)) (-4301 (((-641 |#2|) |#2|) 50)) (-3462 (((-641 |#2|)) 64)) (-2776 (((-641 |#2|)) 63)) (-2258 (((-641 (-685 |#1|))) 55)) (-4087 (((-641 |#2|)) 61)) (-4052 (((-641 |#2|) |#2|) 49)) (-2575 (((-641 |#2|)) 57)) (-2539 (((-641 (-685 |#1|))) 68)) (-2673 (((-641 |#2|)) 66)) (-3342 (((-1259 |#2|) (-1259 |#2|)) 100 (|has| |#1| (-307))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2515 ((-767) |#2|)) (-15 -1938 ((-767) |#2|)) (-15 -4029 ((-767) |#2|)) (-15 -2661 ((-767) |#2|)) (-15 -2590 ((-767) |#2|)) (-15 -2575 ((-641 |#2|))) (-15 -4052 ((-641 |#2|) |#2|)) (-15 -4301 ((-641 |#2|) |#2|)) (-15 -4087 ((-641 |#2|))) (-15 -2808 ((-641 |#2|))) (-15 -2776 ((-641 |#2|))) (-15 -3462 ((-641 |#2|))) (-15 -2673 ((-641 |#2|))) (-15 -2258 ((-641 (-685 |#1|)))) (-15 -1385 ((-641 (-685 |#1|)))) (-15 -2539 ((-641 (-685 |#1|)))) (-15 -3984 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -3342 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43)) +((-3342 (*1 *2 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-3984 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2539 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1385 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2258 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2673 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3462 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2776 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2808 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4087 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4301 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2575 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2590 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2661 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) +(-10 -7 (-15 -2515 ((-767) |#2|)) (-15 -1938 ((-767) |#2|)) (-15 -4029 ((-767) |#2|)) (-15 -2661 ((-767) |#2|)) (-15 -2590 ((-767) |#2|)) (-15 -2575 ((-641 |#2|))) (-15 -4052 ((-641 |#2|) |#2|)) (-15 -4301 ((-641 |#2|) |#2|)) (-15 -4087 ((-641 |#2|))) (-15 -2808 ((-641 |#2|))) (-15 -2776 ((-641 |#2|))) (-15 -3462 ((-641 |#2|))) (-15 -2673 ((-641 |#2|))) (-15 -2258 ((-641 (-685 |#1|)))) (-15 -1385 ((-641 (-685 |#1|)))) (-15 -2539 ((-641 (-685 |#1|)))) (-15 -3984 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -3342 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2563 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3727 (((-1259 (-685 |#1|)) (-1259 $)) NIL) (((-1259 (-685 |#1|))) 24)) (-2691 (((-1259 $)) 55)) (-4157 (($) NIL T CONST)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-1485 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3035 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3063 ((|#1| $) NIL)) (-1991 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3706 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3294 (((-1166 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-3865 (($ $ (-917)) NIL)) (-3845 ((|#1| $) NIL)) (-2331 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-4287 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-4276 (((-1166 |#1|) $) NIL)) (-1335 (((-112)) 102)) (-3013 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-2689 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-3105 (((-917)) 56)) (-3055 (((-112)) NIL)) (-3996 (($ $ (-917)) NIL)) (-2235 (((-112)) NIL)) (-2809 (((-112)) NIL)) (-3457 (((-112)) 104)) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-1523 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3065 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-2528 ((|#1| $) NIL)) (-2645 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-1529 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-4060 (((-1166 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-3200 (($ $ (-917)) NIL)) (-2276 ((|#1| $) NIL)) (-4339 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-1400 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-2536 (((-1166 |#1|) $) NIL)) (-1723 (((-112)) 101)) (-1418 (((-1152) $) NIL)) (-3816 (((-112)) 109)) (-1671 (((-112)) 108)) (-3353 (((-112)) 110)) (-3840 (((-1114) $) NIL)) (-2753 (((-112)) 103)) (-4353 ((|#1| $ (-564)) 58)) (-3864 (((-1259 |#1|) $ (-1259 $)) 53) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 28) (((-685 |#1|) (-1259 $)) NIL)) (-3172 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL)) (-3328 (((-641 (-948 |#1|)) (-1259 $)) NIL) (((-641 (-948 |#1|))) NIL)) (-2617 (($ $ $) NIL)) (-2676 (((-112)) 98)) (-2322 (((-858) $) 75) (($ (-1259 |#1|)) 22)) (-3342 (((-1259 $)) 49)) (-1296 (((-641 (-1259 |#1|))) NIL (|has| |#1| (-556)))) (-1553 (($ $ $ $) NIL)) (-3148 (((-112)) 94)) (-1937 (($ (-685 |#1|) $) 18)) (-2366 (($ $ $) NIL)) (-4232 (((-112)) 100)) (-2145 (((-112)) 95)) (-2803 (((-112)) 93)) (-2389 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1136 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -2322 ($ (-1259 |#1|))))) (-363) (-917) (-641 (-1170)) (-1259 (-685 |#1|))) (T -44)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-641 (-1170)))))) +(-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -2322 ($ (-1259 |#1|))))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2053 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3678 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3284 (($ $) NIL)) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407))) (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2441 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846))))) (-3811 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-4159 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407)))) (-3238 (($ $ $) 33 (|has| $ (-6 -4407)))) (-3468 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407)))) (-2822 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 35 (|has| $ (-6 -4407)))) (-3750 ((|#2| $ |#1| |#2|) 52) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-1226 (-564)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "last" (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407))) (($ $ "rest" $) NIL (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "first" (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "value" (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3667 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2227 (((-3 |#2| "failed") |#1| $) 43)) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2008 (($ $ (-767)) NIL) (($ $) 29)) (-2596 (($ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 55) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) NIL)) (-3524 (((-112) $) NIL)) (-3847 (((-564) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) (((-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 20 (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 20 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-4121 (($ (-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846))) (((-564) $) 38 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-3471 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2988 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846))) (((-564) $) 40 (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1870 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1502 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1808 (((-112) $) NIL)) (-1418 (((-1152) $) 48 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3649 (($ $ (-767)) NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2843 (((-641 |#1|) $) 22)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4116 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 |#1|) $) NIL) (((-641 (-564)) $) NIL)) (-2550 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846))) (($ $ (-767)) NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 27)) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2562 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-4324 (((-641 |#2|) $) NIL) (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 19)) (-3282 (((-112) $) 18)) (-2348 (($) 14)) (-4353 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "first") NIL) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $ "value") NIL)) (-3526 (((-564) $ $) NIL)) (-3977 (($) 13) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-4277 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2911 (((-112) $) NIL)) (-1819 (($ $) NIL)) (-3051 (($ $) NIL (|has| $ (-6 -4407)))) (-1793 (((-767) $) NIL)) (-3743 (($ $) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3783 (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL) (($ $ $) NIL)) (-3533 (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL) (($ (-641 $)) NIL) (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 31) (($ $ $) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3660 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") |#1| $) 50)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2964 (((-112) $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-846)))) (-2059 (((-767) $) 25 (|has| $ (-6 -4406))))) (((-45 |#1| |#2|) (-36 |#1| |#2|) (-1094) (-1094)) (T -45)) NIL (-36 |#1| |#2|) -((-2003 (((-112) $) 12)) (-2449 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-47 |#2| |#3|) (-1046) (-789)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2003 (((-112) $) 65)) (-3186 (($ |#1| |#2|) 64)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-1619 ((|#2| $) 67)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-2742 ((|#1| $ |#2|) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-47 |#1| |#2|) (-140) (-1046) (-789)) (T -47)) -((-3370 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-3186 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-2742 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-1823 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-363))))) -(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (-15 -3370 (|t#1| $)) (-15 -3356 ($ $)) (-15 -1619 (|t#2| $)) (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (-15 -2003 ((-112) $)) (-15 -3186 ($ |t#1| |t#2|)) (-15 -3396 ($ $)) (-15 -2742 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -1823 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-2271 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2474 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-1615 (((-112) $) 11)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-2956 (((-641 (-610 $)) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3574 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3083 (($ $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-1938 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2929 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2347 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2237 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1449 (($ $ $) NIL)) (-4050 (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1988 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-3352 (($ $) NIL) (($ (-641 $)) NIL)) (-4095 (((-641 (-114)) $) NIL)) (-1841 (((-114) (-114)) NIL)) (-2949 (((-112) $) 14)) (-4301 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-3678 (((-1119 (-564) (-610 $)) $) NIL)) (-2915 (($ $ (-564)) NIL)) (-3797 (((-1166 $) (-1166 $) (-610 $)) NIL) (((-1166 $) (-1166 $) (-641 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-641 (-610 $))) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4168 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 $ $) (-610 $)) NIL)) (-1802 (((-3 (-610 $) "failed") $) NIL)) (-2740 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3026 (((-641 (-610 $)) $) NIL)) (-3755 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-1657 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3315 (($ $) NIL)) (-3926 (((-768) $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2417 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1492 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2633 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3920 (((-768) $) NIL)) (-1350 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3467 (($ $) NIL) (($ $ $) NIL)) (-3534 (($ $ (-768)) NIL) (($ $) NIL)) (-3693 (((-1119 (-564) (-610 $)) $) NIL)) (-3019 (($ $) NIL (|has| $ (-1046)))) (-2511 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-1831 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) NIL)) (-2219 (((-768)) NIL T CONST)) (-4264 (($ $) NIL) (($ (-641 $)) NIL)) (-1322 (((-112) (-114)) NIL)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 7 T CONST)) (-1300 (($) 12 T CONST)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 16)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL)) (-1808 (($ $ $) 15) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) -(((-48) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1831 ($ (-1119 (-564) (-610 $)))) (-15 -3678 ((-1119 (-564) (-610 $)) $)) (-15 -3693 ((-1119 (-564) (-610 $)) $)) (-15 -1988 ($ $)) (-15 -3797 ((-1166 $) (-1166 $) (-610 $))) (-15 -3797 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3797 ($ $ (-610 $))) (-15 -3797 ($ $ (-641 (-610 $))))))) (T -48)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1988 (*1 *1 *1) (-5 *1 (-48))) (-3797 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48))))) -(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1831 ($ (-1119 (-564) (-610 $)))) (-15 -3678 ((-1119 (-564) (-610 $)) $)) (-15 -3693 ((-1119 (-564) (-610 $)) $)) (-15 -1988 ($ $)) (-15 -3797 ((-1166 $) (-1166 $) (-610 $))) (-15 -3797 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3797 ($ $ (-610 $))) (-15 -3797 ($ $ (-641 (-610 $)))))) -((-1817 (((-112) $ $) NIL)) (-1740 (((-641 (-506)) $) 17)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 7)) (-1328 (((-1175) $) 18)) (-1702 (((-112) $ $) NIL))) -(((-49) (-13 (-1094) (-10 -8 (-15 -1740 ((-641 (-506)) $)) (-15 -1328 ((-1175) $))))) (T -49)) -((-1740 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49))))) -(-13 (-1094) (-10 -8 (-15 -1740 ((-641 (-506)) $)) (-15 -1328 ((-1175) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 87)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-1384 (((-112) $) 30)) (-2347 (((-3 |#1| "failed") $) 33)) (-2237 ((|#1| $) 34)) (-3396 (($ $) 40)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3370 ((|#1| $) 31)) (-3518 (($ $) 76)) (-2723 (((-1152) $) NIL)) (-1505 (((-112) $) 43)) (-2780 (((-1114) $) NIL)) (-1426 (($ (-768)) 74)) (-4326 (($ (-641 (-564))) 75)) (-1619 (((-768) $) 44)) (-1831 (((-859) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-2742 ((|#1| $ $) 28)) (-2219 (((-768)) 73 T CONST)) (-1293 (($) 45 T CONST)) (-1300 (($) 17 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 66)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -3370 (|#1| $)) (-15 -3518 ($ $)) (-15 -3396 ($ $)) (-15 -2742 (|#1| $ $)) (-15 -1426 ($ (-768))) (-15 -4326 ($ (-641 (-564)))) (-15 -1505 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1619 ((-768) $)) (-15 -2449 ($ (-1 |#1| |#1|) $)))) (-1046) (-641 (-1170))) (T -50)) -((-3370 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-2742 (*1 *2 *1 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-4326 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170)))))) -(-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -3370 (|#1| $)) (-15 -3518 ($ $)) (-15 -3396 ($ $)) (-15 -2742 (|#1| $ $)) (-15 -1426 ($ (-768))) (-15 -4326 ($ (-641 (-564)))) (-15 -1505 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1619 ((-768) $)) (-15 -2449 ($ (-1 |#1| |#1|) $)))) -((-1384 (((-112) (-52)) 13)) (-2347 (((-3 |#1| "failed") (-52)) 21)) (-2237 ((|#1| (-52)) 22)) (-1831 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -1831 ((-52) |#1|)) (-15 -2347 ((-3 |#1| "failed") (-52))) (-15 -1384 ((-112) (-52))) (-15 -2237 (|#1| (-52)))) (-1209)) (T -51)) -((-2237 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) (-2347 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209))))) -(-10 -7 (-15 -1831 ((-52) |#1|)) (-15 -2347 ((-3 |#1| "failed") (-52))) (-15 -1384 ((-112) (-52))) (-15 -2237 (|#1| (-52)))) -((-1817 (((-112) $ $) NIL)) (-1299 (((-1152) (-112)) 26)) (-2475 (((-859) $) 25)) (-3117 (((-771) $) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3658 (((-859) $) 17)) (-3861 (((-1098) $) 15)) (-1831 (((-859) $) 35)) (-1320 (($ (-1098) (-771)) 36)) (-1702 (((-112) $ $) 19))) -(((-52) (-13 (-1094) (-10 -8 (-15 -1320 ($ (-1098) (-771))) (-15 -3658 ((-859) $)) (-15 -2475 ((-859) $)) (-15 -3861 ((-1098) $)) (-15 -3117 ((-771) $)) (-15 -1299 ((-1152) (-112)))))) (T -52)) -((-1320 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52)))) (-1299 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52))))) -(-13 (-1094) (-10 -8 (-15 -1320 ($ (-1098) (-771))) (-15 -3658 ((-859) $)) (-15 -2475 ((-859) $)) (-15 -3861 ((-1098) $)) (-15 -3117 ((-771) $)) (-15 -1299 ((-1152) (-112))))) -((-3246 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3246 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1046) (-644 |#1|) (-849 |#1|)) (T -53)) -((-3246 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5))))) -(-10 -7 (-15 -3246 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2587 ((|#3| |#3| (-641 (-1170))) 46)) (-4138 ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918)) 32) ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4138 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -4138 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -2587 (|#3| |#3| (-641 (-1170))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -54)) -((-2587 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-4138 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094)) (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5)))) (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4138 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4138 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -4138 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -2587 (|#3| |#3| (-641 (-1170))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 14)) (-2347 (((-3 (-768) "failed") $) 34)) (-2237 (((-768) $) NIL)) (-2949 (((-112) $) 16)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) 18)) (-1831 (((-859) $) 23) (($ (-768)) 29)) (-3808 (($) 11 T CONST)) (-1702 (((-112) $ $) 20))) -(((-55) (-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -3808 ($) -1809) (-15 -1615 ((-112) $)) (-15 -2949 ((-112) $))))) (T -55)) -((-3808 (*1 *1) (-5 *1 (-55))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -3808 ($) -1809) (-15 -1615 ((-112) $)) (-15 -2949 ((-112) $)))) -((-4010 (((-112) $ (-768)) 27)) (-3251 (($ $ (-564) |#3|) 64)) (-3436 (($ $ (-564) |#4|) 68)) (-3751 ((|#3| $ (-564)) 77)) (-1433 (((-641 |#2|) $) 45)) (-2324 (((-112) $ (-768)) 30)) (-2516 (((-112) |#2| $) 72)) (-2250 (($ (-1 |#2| |#2|) $) 53)) (-2449 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-1713 (((-112) $ (-768)) 29)) (-4253 (($ $ |#2|) 50)) (-4077 (((-112) (-1 (-112) |#2|) $) 21)) (-1350 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-2791 (((-768) (-1 (-112) |#2|) $) 39) (((-768) |#2| $) 74)) (-1991 (($ $) 49)) (-3065 ((|#4| $ (-564)) 80)) (-1831 (((-859) $) 86)) (-1963 (((-112) (-1 (-112) |#2|) $) 20)) (-1702 (((-112) $ $) 71)) (-2828 (((-768) $) 31))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3436 (|#1| |#1| (-564) |#4|)) (-15 -3251 (|#1| |#1| (-564) |#3|)) (-15 -1433 ((-641 |#2|) |#1|)) (-15 -3065 (|#4| |#1| (-564))) (-15 -3751 (|#3| |#1| (-564))) (-15 -1350 (|#2| |#1| (-564) (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) (-564))) (-15 -4253 (|#1| |#1| |#2|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2516 ((-112) |#2| |#1|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768))) (-15 -1991 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1209) (-373 |#2|) (-373 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3436 (|#1| |#1| (-564) |#4|)) (-15 -3251 (|#1| |#1| (-564) |#3|)) (-15 -1433 ((-641 |#2|) |#1|)) (-15 -3065 (|#4| |#1| (-564))) (-15 -3751 (|#3| |#1| (-564))) (-15 -1350 (|#2| |#1| (-564) (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) (-564))) (-15 -4253 (|#1| |#1| |#2|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2516 ((-112) |#2| |#1|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768))) (-15 -1991 (|#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) (-564) |#1|) 44)) (-3251 (($ $ (-564) |#2|) 42)) (-3436 (($ $ (-564) |#3|) 41)) (-1778 (($) 7 T CONST)) (-3751 ((|#2| $ (-564)) 46)) (-2261 ((|#1| $ (-564) (-564) |#1|) 43)) (-2190 ((|#1| $ (-564) (-564)) 48)) (-1433 (((-641 |#1|) $) 30)) (-1745 (((-768) $) 51)) (-3654 (($ (-768) (-768) |#1|) 57)) (-1757 (((-768) $) 50)) (-2324 (((-112) $ (-768)) 9)) (-2904 (((-564) $) 55)) (-2015 (((-564) $) 53)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2381 (((-564) $) 54)) (-2821 (((-564) $) 52)) (-2250 (($ (-1 |#1| |#1|) $) 34)) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) 56)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-3065 ((|#3| $ (-564)) 45)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-1492 (((-112) $) 12)) (-3123 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-47 |#2| |#3|) (-1045) (-788)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1492 (((-112) $) 65)) (-2507 (($ |#1| |#2|) 64)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2073 ((|#2| $) 67)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3467 ((|#1| $ |#2|) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-47 |#1| |#2|) (-140) (-1045) (-788)) (T -47)) +((-2686 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-2674 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2507 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-3467 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363))))) +(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (-15 -2686 (|t#1| $)) (-15 -2674 ($ $)) (-15 -2073 (|t#2| $)) (-15 -3123 ($ (-1 |t#1| |t#1|) $)) (-15 -1492 ((-112) $)) (-15 -2507 ($ |t#1| |t#2|)) (-15 -2710 ($ $)) (-15 -3467 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -3034 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-2435 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-3914 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-3264 (((-112) $) 11)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2244 (((-641 (-610 $)) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2523 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2387 (($ $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-3308 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-1627 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-3032 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-1781 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2574 (($ $ $) NIL)) (-2750 (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-3239 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2252 (($ $) NIL) (($ (-641 $)) NIL)) (-1921 (((-641 (-114)) $) NIL)) (-3523 (((-114) (-114)) NIL)) (-1828 (((-112) $) 14)) (-3415 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-4189 (((-1119 (-564) (-610 $)) $) NIL)) (-2739 (($ $ (-564)) NIL)) (-2019 (((-1166 $) (-1166 $) (-610 $)) NIL) (((-1166 $) (-1166 $) (-641 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-641 (-610 $))) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1445 (((-1166 $) (-610 $)) NIL (|has| $ (-1045)))) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 $ $) (-610 $)) NIL)) (-1301 (((-3 (-610 $) "failed") $) NIL)) (-3202 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-2324 (((-641 (-610 $)) $) NIL)) (-3059 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-2379 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-2639 (($ $) NIL)) (-3162 (((-767) $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1473 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1333 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3100 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3844 (((-767) $) NIL)) (-4353 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-2054 (($ $) NIL) (($ $ $) NIL)) (-1343 (($ $ (-767)) NIL) (($ $) NIL)) (-4201 (((-1119 (-564) (-610 $)) $) NIL)) (-2400 (($ $) NIL (|has| $ (-1045)))) (-3172 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-2322 (((-858) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) NIL)) (-3179 (((-767)) NIL T CONST)) (-1389 (($ $) NIL) (($ (-641 $)) NIL)) (-1646 (((-112) (-114)) NIL)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 7 T CONST)) (-2403 (($) 12 T CONST)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 16)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3021 (($ $ $) 15) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-48) (-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2322 ($ (-1119 (-564) (-610 $)))) (-15 -4189 ((-1119 (-564) (-610 $)) $)) (-15 -4201 ((-1119 (-564) (-610 $)) $)) (-15 -3239 ($ $)) (-15 -2019 ((-1166 $) (-1166 $) (-610 $))) (-15 -2019 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2019 ($ $ (-610 $))) (-15 -2019 ($ $ (-641 (-610 $))))))) (T -48)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-3239 (*1 *1 *1) (-5 *1 (-48))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48))))) +(-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2322 ($ (-1119 (-564) (-610 $)))) (-15 -4189 ((-1119 (-564) (-610 $)) $)) (-15 -4201 ((-1119 (-564) (-610 $)) $)) (-15 -3239 ($ $)) (-15 -2019 ((-1166 $) (-1166 $) (-610 $))) (-15 -2019 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2019 ($ $ (-610 $))) (-15 -2019 ($ $ (-641 (-610 $)))))) +((-2310 (((-112) $ $) NIL)) (-3002 (((-641 (-506)) $) 17)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 7)) (-2433 (((-1175) $) 18)) (-2921 (((-112) $ $) NIL))) +(((-49) (-13 (-1094) (-10 -8 (-15 -3002 ((-641 (-506)) $)) (-15 -2433 ((-1175) $))))) (T -49)) +((-3002 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49))))) +(-13 (-1094) (-10 -8 (-15 -3002 ((-641 (-506)) $)) (-15 -2433 ((-1175) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 87)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-4156 (((-112) $) 30)) (-3032 (((-3 |#1| "failed") $) 33)) (-1781 ((|#1| $) 34)) (-2710 (($ $) 40)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2686 ((|#1| $) 31)) (-1341 (($ $) 76)) (-1418 (((-1152) $) NIL)) (-3332 (((-112) $) 43)) (-3840 (((-1114) $) NIL)) (-4095 (($ (-767)) 74)) (-3571 (($ (-641 (-564))) 75)) (-2073 (((-767) $) 44)) (-2322 (((-858) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-3467 ((|#1| $ $) 28)) (-3179 (((-767)) 73 T CONST)) (-2389 (($) 45 T CONST)) (-2403 (($) 17 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1034 |#1|) (-10 -8 (-15 -2686 (|#1| $)) (-15 -1341 ($ $)) (-15 -2710 ($ $)) (-15 -3467 (|#1| $ $)) (-15 -4095 ($ (-767))) (-15 -3571 ($ (-641 (-564)))) (-15 -3332 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2073 ((-767) $)) (-15 -3123 ($ (-1 |#1| |#1|) $)))) (-1045) (-641 (-1170))) (T -50)) +((-2686 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-1341 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))))) (-3467 (*1 *2 *1 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-3571 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170)))))) +(-13 (-618 |#1|) (-1034 |#1|) (-10 -8 (-15 -2686 (|#1| $)) (-15 -1341 ($ $)) (-15 -2710 ($ $)) (-15 -3467 (|#1| $ $)) (-15 -4095 ($ (-767))) (-15 -3571 ($ (-641 (-564)))) (-15 -3332 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2073 ((-767) $)) (-15 -3123 ($ (-1 |#1| |#1|) $)))) +((-4156 (((-112) (-52)) 13)) (-3032 (((-3 |#1| "failed") (-52)) 21)) (-1781 ((|#1| (-52)) 22)) (-2322 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -2322 ((-52) |#1|)) (-15 -3032 ((-3 |#1| "failed") (-52))) (-15 -4156 ((-112) (-52))) (-15 -1781 (|#1| (-52)))) (-1209)) (T -51)) +((-1781 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) (-3032 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209))))) +(-10 -7 (-15 -2322 ((-52) |#1|)) (-15 -3032 ((-3 |#1| "failed") (-52))) (-15 -4156 ((-112) (-52))) (-15 -1781 (|#1| (-52)))) +((-2310 (((-112) $ $) NIL)) (-2012 (((-1152) (-112)) 26)) (-3927 (((-858) $) 25)) (-2396 (((-770) $) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3257 (((-858) $) 17)) (-4345 (((-1098) $) 15)) (-2322 (((-858) $) 35)) (-1555 (($ (-1098) (-770)) 36)) (-2921 (((-112) $ $) 19))) +(((-52) (-13 (-1094) (-10 -8 (-15 -1555 ($ (-1098) (-770))) (-15 -3257 ((-858) $)) (-15 -3927 ((-858) $)) (-15 -4345 ((-1098) $)) (-15 -2396 ((-770) $)) (-15 -2012 ((-1152) (-112)))))) (T -52)) +((-1555 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-770)) (-5 *1 (-52)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52))))) +(-13 (-1094) (-10 -8 (-15 -1555 ($ (-1098) (-770))) (-15 -3257 ((-858) $)) (-15 -3927 ((-858) $)) (-15 -4345 ((-1098) $)) (-15 -2396 ((-770) $)) (-15 -2012 ((-1152) (-112))))) +((-1937 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1937 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1045) (-644 |#1|) (-848 |#1|)) (T -53)) +((-1937 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1045)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5))))) +(-10 -7 (-15 -1937 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2591 ((|#3| |#3| (-641 (-1170))) 46)) (-4254 ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-917)) 32) ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4254 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -4254 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-917))) (-15 -2591 (|#3| |#3| (-641 (-1170))))) (-1094) (-13 (-1045) (-882 |#1|) (-846) (-612 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-612 (-888 |#1|)))) (T -54)) +((-2591 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) (-4254 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1094)) (-4 *6 (-13 (-1045) (-882 *5) (-846) (-612 (-888 *5)))) (-4 *2 (-13 (-430 *6) (-882 *5) (-612 (-888 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4254 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -4254 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -4254 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-917))) (-15 -2591 (|#3| |#3| (-641 (-1170))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 14)) (-3032 (((-3 (-767) "failed") $) 34)) (-1781 (((-767) $) NIL)) (-1828 (((-112) $) 16)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) 18)) (-2322 (((-858) $) 23) (($ (-767)) 29)) (-2126 (($) 11 T CONST)) (-2921 (((-112) $ $) 20))) +(((-55) (-13 (-1094) (-1034 (-767)) (-10 -8 (-15 -2126 ($) -2255) (-15 -3264 ((-112) $)) (-15 -1828 ((-112) $))))) (T -55)) +((-2126 (*1 *1) (-5 *1 (-55))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1094) (-1034 (-767)) (-10 -8 (-15 -2126 ($) -2255) (-15 -3264 ((-112) $)) (-15 -1828 ((-112) $)))) +((-2318 (((-112) $ (-767)) 27)) (-3909 (($ $ (-564) |#3|) 64)) (-1748 (($ $ (-564) |#4|) 68)) (-1597 ((|#3| $ (-564)) 77)) (-3534 (((-641 |#2|) $) 45)) (-1751 (((-112) $ (-767)) 30)) (-3114 (((-112) |#2| $) 72)) (-1456 (($ (-1 |#2| |#2|) $) 53)) (-3123 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-1681 (((-112) $ (-767)) 29)) (-2981 (($ $ |#2|) 50)) (-1763 (((-112) (-1 (-112) |#2|) $) 21)) (-4353 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-3852 (((-767) (-1 (-112) |#2|) $) 39) (((-767) |#2| $) 74)) (-3772 (($ $) 49)) (-1582 ((|#4| $ (-564)) 80)) (-2322 (((-858) $) 86)) (-2313 (((-112) (-1 (-112) |#2|) $) 20)) (-2921 (((-112) $ $) 71)) (-2059 (((-767) $) 31))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1748 (|#1| |#1| (-564) |#4|)) (-15 -3909 (|#1| |#1| (-564) |#3|)) (-15 -3534 ((-641 |#2|) |#1|)) (-15 -1582 (|#4| |#1| (-564))) (-15 -1597 (|#3| |#1| (-564))) (-15 -4353 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) (-564))) (-15 -2981 (|#1| |#1| |#2|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -3114 ((-112) |#2| |#1|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767))) (-15 -3772 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1209) (-373 |#2|) (-373 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1748 (|#1| |#1| (-564) |#4|)) (-15 -3909 (|#1| |#1| (-564) |#3|)) (-15 -3534 ((-641 |#2|) |#1|)) (-15 -1582 (|#4| |#1| (-564))) (-15 -1597 (|#3| |#1| (-564))) (-15 -4353 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) (-564))) (-15 -2981 (|#1| |#1| |#2|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -3114 ((-112) |#2| |#1|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767))) (-15 -3772 (|#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) (-564) |#1|) 44)) (-3909 (($ $ (-564) |#2|) 42)) (-1748 (($ $ (-564) |#3|) 41)) (-4157 (($) 7 T CONST)) (-1597 ((|#2| $ (-564)) 46)) (-1466 ((|#1| $ (-564) (-564) |#1|) 43)) (-1407 ((|#1| $ (-564) (-564)) 48)) (-3534 (((-641 |#1|) $) 30)) (-3835 (((-767) $) 51)) (-4121 (($ (-767) (-767) |#1|) 57)) (-3848 (((-767) $) 50)) (-1751 (((-112) $ (-767)) 9)) (-2615 (((-564) $) 55)) (-1607 (((-564) $) 53)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-4253 (((-564) $) 54)) (-3020 (((-564) $) 52)) (-1456 (($ (-1 |#1| |#1|) $) 34)) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) 56)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-1582 ((|#3| $ (-564)) 45)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-57 |#1| |#2| |#3|) (-140) (-1209) (-373 |t#1|) (-373 |t#1|)) (T -57)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3654 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4253 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-1350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-2190 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-1350 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3751 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) (-1970 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2261 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3251 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-3436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-2250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2449 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2449 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(-13 (-489 |t#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -3654 ($ (-768) (-768) |t#1|)) (-15 -4253 ($ $ |t#1|)) (-15 -2904 ((-564) $)) (-15 -2381 ((-564) $)) (-15 -2015 ((-564) $)) (-15 -2821 ((-564) $)) (-15 -1745 ((-768) $)) (-15 -1757 ((-768) $)) (-15 -1350 (|t#1| $ (-564) (-564))) (-15 -2190 (|t#1| $ (-564) (-564))) (-15 -1350 (|t#1| $ (-564) (-564) |t#1|)) (-15 -3751 (|t#2| $ (-564))) (-15 -3065 (|t#3| $ (-564))) (-15 -1433 ((-641 |t#1|) $)) (-15 -1970 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2261 (|t#1| $ (-564) (-564) |t#1|)) (-15 -3251 ($ $ (-564) |t#2|)) (-15 -3436 ($ $ (-564) |t#3|)) (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (-15 -2250 ($ (-1 |t#1| |t#1|) $)) (-15 -2449 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2449 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1694 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1988 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2449 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1694 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2449 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1209) (-1209)) (T -58)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1694 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2449 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3537 (($ (-641 |#1|)) 11) (($ (-768) |#1|) 14)) (-3654 (($ (-768) |#1|) 13)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 10)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3537 ($ (-641 |#1|))) (-15 -3537 ($ (-768) |#1|)))) (-1209)) (T -59)) -((-3537 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))) (-3537 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3537 ($ (-641 |#1|))) (-15 -3537 ($ (-768) |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3251 (($ $ (-564) (-59 |#1|)) NIL)) (-3436 (($ $ (-564) (-59 |#1|)) NIL)) (-1778 (($) NIL T CONST)) (-3751 (((-59 |#1|) $ (-564)) NIL)) (-2261 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2190 ((|#1| $ (-564) (-564)) NIL)) (-1433 (((-641 |#1|) $) NIL)) (-1745 (((-768) $) NIL)) (-3654 (($ (-768) (-768) |#1|) NIL)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-2904 (((-564) $) NIL)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2381 (((-564) $) NIL)) (-2821 (((-564) $) NIL)) (-2250 (($ (-1 |#1| |#1|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-3065 (((-59 |#1|) $ (-564)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4121 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2981 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-1407 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-4353 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) (-3750 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1466 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3909 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-1748 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-1456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3123 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3123 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(-13 (-489 |t#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -4121 ($ (-767) (-767) |t#1|)) (-15 -2981 ($ $ |t#1|)) (-15 -2615 ((-564) $)) (-15 -4253 ((-564) $)) (-15 -1607 ((-564) $)) (-15 -3020 ((-564) $)) (-15 -3835 ((-767) $)) (-15 -3848 ((-767) $)) (-15 -4353 (|t#1| $ (-564) (-564))) (-15 -1407 (|t#1| $ (-564) (-564))) (-15 -4353 (|t#1| $ (-564) (-564) |t#1|)) (-15 -1597 (|t#2| $ (-564))) (-15 -1582 (|t#3| $ (-564))) (-15 -3534 ((-641 |t#1|) $)) (-15 -3750 (|t#1| $ (-564) (-564) |t#1|)) (-15 -1466 (|t#1| $ (-564) (-564) |t#1|)) (-15 -3909 ($ $ (-564) |t#2|)) (-15 -1748 ($ $ (-564) |t#3|)) (-15 -3123 ($ (-1 |t#1| |t#1|) $)) (-15 -1456 ($ (-1 |t#1| |t#1|) $)) (-15 -3123 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3123 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-1514 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3239 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3123 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -1514 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3123 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1209) (-1209)) (T -58)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) (-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -1514 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3123 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1488 (($ (-641 |#1|)) 11) (($ (-767) |#1|) 14)) (-4121 (($ (-767) |#1|) 13)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 10)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1488 ($ (-641 |#1|))) (-15 -1488 ($ (-767) |#1|)))) (-1209)) (T -59)) +((-1488 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1209))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1488 ($ (-641 |#1|))) (-15 -1488 ($ (-767) |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3909 (($ $ (-564) (-59 |#1|)) NIL)) (-1748 (($ $ (-564) (-59 |#1|)) NIL)) (-4157 (($) NIL T CONST)) (-1597 (((-59 |#1|) $ (-564)) NIL)) (-1466 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1407 ((|#1| $ (-564) (-564)) NIL)) (-3534 (((-641 |#1|) $) NIL)) (-3835 (((-767) $) NIL)) (-4121 (($ (-767) (-767) |#1|) NIL)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-2615 (((-564) $) NIL)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4253 (((-564) $) NIL)) (-3020 (((-564) $) NIL)) (-1456 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-1582 (((-59 |#1|) $ (-564)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4407))) (-1209)) (T -60)) NIL (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4407))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 74) (((-3 $ "failed") (-1259 (-316 (-564)))) 63) (((-3 $ "failed") (-1259 (-949 (-379)))) 94) (((-3 $ "failed") (-1259 (-949 (-564)))) 84) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 52) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 39)) (-2237 (($ (-1259 (-316 (-379)))) 70) (($ (-1259 (-316 (-564)))) 59) (($ (-1259 (-949 (-379)))) 90) (($ (-1259 (-949 (-564)))) 80) (($ (-1259 (-407 (-949 (-379))))) 48) (($ (-1259 (-407 (-949 (-564))))) 32)) (-3069 (((-1264) $) 127)) (-1831 (((-859) $) 121) (($ (-641 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 101) (($ (-1259 (-339 (-1842 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1842) (-695)))) 31))) -(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1842) (-695))))))) (-1170)) (T -61)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1842) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1842) (-695))))))) -((-3069 (((-1264) $) 54) (((-1264)) 55)) (-1831 (((-859) $) 51))) -(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -3069 ((-1264))))) (-1170)) (T -62)) -((-3069 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170))))) -(-13 (-395) (-10 -7 (-15 -3069 ((-1264))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 154) (((-3 $ "failed") (-1259 (-316 (-564)))) 144) (((-3 $ "failed") (-1259 (-949 (-379)))) 174) (((-3 $ "failed") (-1259 (-949 (-564)))) 164) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 133) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 121)) (-2237 (($ (-1259 (-316 (-379)))) 150) (($ (-1259 (-316 (-564)))) 140) (($ (-1259 (-949 (-379)))) 170) (($ (-1259 (-949 (-564)))) 160) (($ (-1259 (-407 (-949 (-379))))) 129) (($ (-1259 (-407 (-949 (-564))))) 114)) (-3069 (((-1264) $) 107)) (-1831 (((-859) $) 101) (($ (-641 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 33) (($ (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695)))) 99))) -(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695))))))) (-1170)) (T -63)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695))))))) -((-2347 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-949 (-379))) 50) (((-3 $ "failed") (-949 (-564))) 54) (((-3 $ "failed") (-407 (-949 (-379)))) 36) (((-3 $ "failed") (-407 (-949 (-564)))) 29)) (-2237 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-949 (-379))) 48) (($ (-949 (-564))) 52) (($ (-407 (-949 (-379)))) 34) (($ (-407 (-949 (-564)))) 26)) (-3069 (((-1264) $) 76)) (-1831 (((-859) $) 69) (($ (-641 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 64) (($ (-339 (-1842 (QUOTE X)) (-1842) (-695))) 25))) -(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842 (QUOTE X)) (-1842) (-695)))))) (-1170)) (T -64)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-339 (-1842 (QUOTE X)) (-1842) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170))))) -(-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842 (QUOTE X)) (-1842) (-695)))))) -((-2347 (((-3 $ "failed") (-685 (-316 (-379)))) 114) (((-3 $ "failed") (-685 (-316 (-564)))) 102) (((-3 $ "failed") (-685 (-949 (-379)))) 136) (((-3 $ "failed") (-685 (-949 (-564)))) 125) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 90) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 76)) (-2237 (($ (-685 (-316 (-379)))) 110) (($ (-685 (-316 (-564)))) 98) (($ (-685 (-949 (-379)))) 132) (($ (-685 (-949 (-564)))) 121) (($ (-685 (-407 (-949 (-379))))) 86) (($ (-685 (-407 (-949 (-564))))) 69)) (-3069 (((-1264) $) 144)) (-1831 (((-859) $) 138) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 32) (($ (-685 (-339 (-1842) (-1842 (QUOTE X) (QUOTE HESS)) (-695)))) 59))) -(((-65 |#1|) (-13 (-384) (-614 (-685 (-339 (-1842) (-1842 (QUOTE X) (QUOTE HESS)) (-695))))) (-1170)) (T -65)) -NIL -(-13 (-384) (-614 (-685 (-339 (-1842) (-1842 (QUOTE X) (QUOTE HESS)) (-695))))) -((-2347 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-949 (-379))) 69) (((-3 $ "failed") (-949 (-564))) 73) (((-3 $ "failed") (-407 (-949 (-379)))) 55) (((-3 $ "failed") (-407 (-949 (-564)))) 48)) (-2237 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-949 (-379))) 67) (($ (-949 (-564))) 71) (($ (-407 (-949 (-379)))) 53) (($ (-407 (-949 (-564)))) 45)) (-3069 (((-1264) $) 82)) (-1831 (((-859) $) 76) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 32) (($ (-339 (-1842) (-1842 (QUOTE XC)) (-695))) 40))) -(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842) (-1842 (QUOTE XC)) (-695)))))) (-1170)) (T -66)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-339 (-1842) (-1842 (QUOTE XC)) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170))))) -(-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842) (-1842 (QUOTE XC)) (-695)))))) -((-3069 (((-1264) $) 68)) (-1831 (((-859) $) 62) (($ (-685 (-695))) 54) (($ (-641 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 58))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 74) (((-3 $ "failed") (-1259 (-316 (-564)))) 63) (((-3 $ "failed") (-1259 (-948 (-379)))) 94) (((-3 $ "failed") (-1259 (-948 (-564)))) 84) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 52) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 39)) (-1781 (($ (-1259 (-316 (-379)))) 70) (($ (-1259 (-316 (-564)))) 59) (($ (-1259 (-948 (-379)))) 90) (($ (-1259 (-948 (-564)))) 80) (($ (-1259 (-407 (-948 (-379))))) 48) (($ (-1259 (-407 (-948 (-564))))) 32)) (-4308 (((-1264) $) 127)) (-2322 (((-858) $) 121) (($ (-641 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 101) (($ (-1259 (-339 (-2335 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2335) (-695)))) 31))) +(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2335) (-695))))))) (-1170)) (T -61)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2335) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2335) (-695))))))) +((-4308 (((-1264) $) 54) (((-1264)) 55)) (-2322 (((-858) $) 51))) +(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -4308 ((-1264))))) (-1170)) (T -62)) +((-4308 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170))))) +(-13 (-395) (-10 -7 (-15 -4308 ((-1264))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 154) (((-3 $ "failed") (-1259 (-316 (-564)))) 144) (((-3 $ "failed") (-1259 (-948 (-379)))) 174) (((-3 $ "failed") (-1259 (-948 (-564)))) 164) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 133) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 121)) (-1781 (($ (-1259 (-316 (-379)))) 150) (($ (-1259 (-316 (-564)))) 140) (($ (-1259 (-948 (-379)))) 170) (($ (-1259 (-948 (-564)))) 160) (($ (-1259 (-407 (-948 (-379))))) 129) (($ (-1259 (-407 (-948 (-564))))) 114)) (-4308 (((-1264) $) 107)) (-2322 (((-858) $) 101) (($ (-641 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 33) (($ (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695)))) 99))) +(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695))))))) (-1170)) (T -63)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695))))))) +((-3032 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-948 (-379))) 50) (((-3 $ "failed") (-948 (-564))) 54) (((-3 $ "failed") (-407 (-948 (-379)))) 36) (((-3 $ "failed") (-407 (-948 (-564)))) 29)) (-1781 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-948 (-379))) 48) (($ (-948 (-564))) 52) (($ (-407 (-948 (-379)))) 34) (($ (-407 (-948 (-564)))) 26)) (-4308 (((-1264) $) 76)) (-2322 (((-858) $) 69) (($ (-641 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 64) (($ (-339 (-2335 (QUOTE X)) (-2335) (-695))) 25))) +(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335 (QUOTE X)) (-2335) (-695)))))) (-1170)) (T -64)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-339 (-2335 (QUOTE X)) (-2335) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335 (QUOTE X)) (-2335) (-695)))))) +((-3032 (((-3 $ "failed") (-685 (-316 (-379)))) 114) (((-3 $ "failed") (-685 (-316 (-564)))) 102) (((-3 $ "failed") (-685 (-948 (-379)))) 136) (((-3 $ "failed") (-685 (-948 (-564)))) 125) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 90) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 76)) (-1781 (($ (-685 (-316 (-379)))) 110) (($ (-685 (-316 (-564)))) 98) (($ (-685 (-948 (-379)))) 132) (($ (-685 (-948 (-564)))) 121) (($ (-685 (-407 (-948 (-379))))) 86) (($ (-685 (-407 (-948 (-564))))) 69)) (-4308 (((-1264) $) 144)) (-2322 (((-858) $) 138) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 32) (($ (-685 (-339 (-2335) (-2335 (QUOTE X) (QUOTE HESS)) (-695)))) 59))) +(((-65 |#1|) (-13 (-384) (-614 (-685 (-339 (-2335) (-2335 (QUOTE X) (QUOTE HESS)) (-695))))) (-1170)) (T -65)) +NIL +(-13 (-384) (-614 (-685 (-339 (-2335) (-2335 (QUOTE X) (QUOTE HESS)) (-695))))) +((-3032 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-948 (-379))) 69) (((-3 $ "failed") (-948 (-564))) 73) (((-3 $ "failed") (-407 (-948 (-379)))) 55) (((-3 $ "failed") (-407 (-948 (-564)))) 48)) (-1781 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-948 (-379))) 67) (($ (-948 (-564))) 71) (($ (-407 (-948 (-379)))) 53) (($ (-407 (-948 (-564)))) 45)) (-4308 (((-1264) $) 82)) (-2322 (((-858) $) 76) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 32) (($ (-339 (-2335) (-2335 (QUOTE XC)) (-695))) 40))) +(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335) (-2335 (QUOTE XC)) (-695)))))) (-1170)) (T -66)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-339 (-2335) (-2335 (QUOTE XC)) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335) (-2335 (QUOTE XC)) (-695)))))) +((-4308 (((-1264) $) 68)) (-2322 (((-858) $) 62) (($ (-685 (-695))) 54) (($ (-641 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 58))) (((-67 |#1|) (-383) (-1170)) (T -67)) NIL (-383) -((-3069 (((-1264) $) 69)) (-1831 (((-859) $) 63) (($ (-685 (-695))) 55) (($ (-641 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 60))) +((-4308 (((-1264) $) 69)) (-2322 (((-858) $) 63) (($ (-685 (-695))) 55) (($ (-641 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 60))) (((-68 |#1|) (-383) (-1170)) (T -68)) NIL (-383) -((-3069 (((-1264) $) NIL) (((-1264)) 33)) (-1831 (((-859) $) NIL))) -(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -3069 ((-1264))))) (-1170)) (T -69)) -((-3069 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170))))) -(-13 (-395) (-10 -7 (-15 -3069 ((-1264))))) -((-3069 (((-1264) $) 75)) (-1831 (((-859) $) 69) (($ (-685 (-695))) 61) (($ (-641 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 60))) +((-4308 (((-1264) $) NIL) (((-1264)) 33)) (-2322 (((-858) $) NIL))) +(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -4308 ((-1264))))) (-1170)) (T -69)) +((-4308 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170))))) +(-13 (-395) (-10 -7 (-15 -4308 ((-1264))))) +((-4308 (((-1264) $) 75)) (-2322 (((-858) $) 69) (($ (-685 (-695))) 61) (($ (-641 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 60))) (((-70 |#1|) (-383) (-1170)) (T -70)) NIL (-383) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 111) (((-3 $ "failed") (-1259 (-316 (-564)))) 100) (((-3 $ "failed") (-1259 (-949 (-379)))) 131) (((-3 $ "failed") (-1259 (-949 (-564)))) 121) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 76)) (-2237 (($ (-1259 (-316 (-379)))) 107) (($ (-1259 (-316 (-564)))) 96) (($ (-1259 (-949 (-379)))) 127) (($ (-1259 (-949 (-564)))) 117) (($ (-1259 (-407 (-949 (-379))))) 85) (($ (-1259 (-407 (-949 (-564))))) 69)) (-3069 (((-1264) $) 144)) (-1831 (((-859) $) 138) (($ (-641 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 61) (($ (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695)))) 62))) -(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695))))))) (-1170)) (T -71)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695))))))) -((-3069 (((-1264) $) 33) (((-1264)) 32)) (-1831 (((-859) $) 36))) -(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -3069 ((-1264))))) (-1170)) (T -72)) -((-3069 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170))))) -(-13 (-395) (-10 -7 (-15 -3069 ((-1264))))) -((-3069 (((-1264) $) 65)) (-1831 (((-859) $) 59) (($ (-685 (-695))) 51) (($ (-641 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 50))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 111) (((-3 $ "failed") (-1259 (-316 (-564)))) 100) (((-3 $ "failed") (-1259 (-948 (-379)))) 131) (((-3 $ "failed") (-1259 (-948 (-564)))) 121) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 76)) (-1781 (($ (-1259 (-316 (-379)))) 107) (($ (-1259 (-316 (-564)))) 96) (($ (-1259 (-948 (-379)))) 127) (($ (-1259 (-948 (-564)))) 117) (($ (-1259 (-407 (-948 (-379))))) 85) (($ (-1259 (-407 (-948 (-564))))) 69)) (-4308 (((-1264) $) 144)) (-2322 (((-858) $) 138) (($ (-641 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 61) (($ (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695)))) 62))) +(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695))))))) (-1170)) (T -71)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695))))))) +((-4308 (((-1264) $) 33) (((-1264)) 32)) (-2322 (((-858) $) 36))) +(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -4308 ((-1264))))) (-1170)) (T -72)) +((-4308 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170))))) +(-13 (-395) (-10 -7 (-15 -4308 ((-1264))))) +((-4308 (((-1264) $) 65)) (-2322 (((-858) $) 59) (($ (-685 (-695))) 51) (($ (-641 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 50))) (((-73 |#1|) (-383) (-1170)) (T -73)) NIL (-383) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 130) (((-3 $ "failed") (-1259 (-316 (-564)))) 120) (((-3 $ "failed") (-1259 (-949 (-379)))) 150) (((-3 $ "failed") (-1259 (-949 (-564)))) 140) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 110) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 98)) (-2237 (($ (-1259 (-316 (-379)))) 126) (($ (-1259 (-316 (-564)))) 116) (($ (-1259 (-949 (-379)))) 146) (($ (-1259 (-949 (-564)))) 136) (($ (-1259 (-407 (-949 (-379))))) 106) (($ (-1259 (-407 (-949 (-564))))) 91)) (-3069 (((-1264) $) 83)) (-1831 (((-859) $) 28) (($ (-641 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 76) (($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695)))) 70))) -(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695))))))) (-1170)) (T -74)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695))))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 135) (((-3 $ "failed") (-1259 (-316 (-564)))) 124) (((-3 $ "failed") (-1259 (-949 (-379)))) 155) (((-3 $ "failed") (-1259 (-949 (-564)))) 145) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 113) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 100)) (-2237 (($ (-1259 (-316 (-379)))) 131) (($ (-1259 (-316 (-564)))) 120) (($ (-1259 (-949 (-379)))) 151) (($ (-1259 (-949 (-564)))) 141) (($ (-1259 (-407 (-949 (-379))))) 109) (($ (-1259 (-407 (-949 (-564))))) 93)) (-3069 (((-1264) $) 85)) (-1831 (((-859) $) 77) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) NIL) (($ (-1259 (-339 (-1842 (QUOTE X) (QUOTE EPS)) (-1842 (QUOTE -4290)) (-695)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X) (QUOTE EPS)) (-1842 (QUOTE -4290)) (-695))))))) (-1170) (-1170) (-1170)) (T -75)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE X) (QUOTE EPS)) (-1842 (QUOTE -4290)) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X) (QUOTE EPS)) (-1842 (QUOTE -4290)) (-695))))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 141) (((-3 $ "failed") (-1259 (-316 (-564)))) 130) (((-3 $ "failed") (-1259 (-949 (-379)))) 161) (((-3 $ "failed") (-1259 (-949 (-564)))) 151) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 119) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 106)) (-2237 (($ (-1259 (-316 (-379)))) 137) (($ (-1259 (-316 (-564)))) 126) (($ (-1259 (-949 (-379)))) 157) (($ (-1259 (-949 (-564)))) 147) (($ (-1259 (-407 (-949 (-379))))) 115) (($ (-1259 (-407 (-949 (-564))))) 99)) (-3069 (((-1264) $) 91)) (-1831 (((-859) $) 83) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) NIL) (($ (-1259 (-339 (-1842 (QUOTE EPS)) (-1842 (QUOTE YA) (QUOTE YB)) (-695)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE EPS)) (-1842 (QUOTE YA) (QUOTE YB)) (-695))))))) (-1170) (-1170) (-1170)) (T -76)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE EPS)) (-1842 (QUOTE YA) (QUOTE YB)) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE EPS)) (-1842 (QUOTE YA) (QUOTE YB)) (-695))))))) -((-2347 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-949 (-379))) 92) (((-3 $ "failed") (-949 (-564))) 96) (((-3 $ "failed") (-407 (-949 (-379)))) 78) (((-3 $ "failed") (-407 (-949 (-564)))) 71)) (-2237 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-949 (-379))) 90) (($ (-949 (-564))) 94) (($ (-407 (-949 (-379)))) 76) (($ (-407 (-949 (-564)))) 68)) (-3069 (((-1264) $) 63)) (-1831 (((-859) $) 51) (($ (-641 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 55) (($ (-339 (-1842) (-1842 (QUOTE X)) (-695))) 48))) -(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842) (-1842 (QUOTE X)) (-695)))))) (-1170)) (T -77)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-339 (-1842) (-1842 (QUOTE X)) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170))))) -(-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842) (-1842 (QUOTE X)) (-695)))))) -((-2347 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-949 (-379))) 56) (((-3 $ "failed") (-949 (-564))) 60) (((-3 $ "failed") (-407 (-949 (-379)))) 42) (((-3 $ "failed") (-407 (-949 (-564)))) 35)) (-2237 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-949 (-379))) 54) (($ (-949 (-564))) 58) (($ (-407 (-949 (-379)))) 40) (($ (-407 (-949 (-564)))) 32)) (-3069 (((-1264) $) 81)) (-1831 (((-859) $) 75) (($ (-641 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 70) (($ (-339 (-1842) (-1842 (QUOTE X)) (-695))) 31))) -(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842) (-1842 (QUOTE X)) (-695)))))) (-1170)) (T -78)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-339 (-1842) (-1842 (QUOTE X)) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170))))) -(-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842) (-1842 (QUOTE X)) (-695)))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 90) (((-3 $ "failed") (-1259 (-316 (-564)))) 79) (((-3 $ "failed") (-1259 (-949 (-379)))) 110) (((-3 $ "failed") (-1259 (-949 (-564)))) 100) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 68) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 55)) (-2237 (($ (-1259 (-316 (-379)))) 86) (($ (-1259 (-316 (-564)))) 75) (($ (-1259 (-949 (-379)))) 106) (($ (-1259 (-949 (-564)))) 96) (($ (-1259 (-407 (-949 (-379))))) 64) (($ (-1259 (-407 (-949 (-564))))) 48)) (-3069 (((-1264) $) 126)) (-1831 (((-859) $) 120) (($ (-641 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 116) (($ (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695)))) 39))) -(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695))))))) (-1170)) (T -79)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE XC)) (-695))))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 158) (((-3 $ "failed") (-1259 (-316 (-564)))) 148) (((-3 $ "failed") (-1259 (-949 (-379)))) 178) (((-3 $ "failed") (-1259 (-949 (-564)))) 168) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 138) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 126)) (-2237 (($ (-1259 (-316 (-379)))) 154) (($ (-1259 (-316 (-564)))) 144) (($ (-1259 (-949 (-379)))) 174) (($ (-1259 (-949 (-564)))) 164) (($ (-1259 (-407 (-949 (-379))))) 134) (($ (-1259 (-407 (-949 (-564))))) 119)) (-3069 (((-1264) $) 112)) (-1831 (((-859) $) 106) (($ (-641 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 102) (($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695)))) 98))) -(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695))))))) (-1170)) (T -80)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695))))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 79) (((-3 $ "failed") (-1259 (-316 (-564)))) 68) (((-3 $ "failed") (-1259 (-949 (-379)))) 99) (((-3 $ "failed") (-1259 (-949 (-564)))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 57) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 44)) (-2237 (($ (-1259 (-316 (-379)))) 75) (($ (-1259 (-316 (-564)))) 64) (($ (-1259 (-949 (-379)))) 95) (($ (-1259 (-949 (-564)))) 85) (($ (-1259 (-407 (-949 (-379))))) 53) (($ (-1259 (-407 (-949 (-564))))) 37)) (-3069 (((-1264) $) 125)) (-1831 (((-859) $) 119) (($ (-641 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 114) (($ (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695)))) 36))) -(((-81 |#1|) (-13 (-441) (-614 (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695))))) (-1170)) (T -81)) -NIL -(-13 (-441) (-614 (-1259 (-339 (-1842) (-1842 (QUOTE X)) (-695))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 98) (((-3 $ "failed") (-1259 (-316 (-564)))) 87) (((-3 $ "failed") (-1259 (-949 (-379)))) 118) (((-3 $ "failed") (-1259 (-949 (-564)))) 108) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 76) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 63)) (-2237 (($ (-1259 (-316 (-379)))) 94) (($ (-1259 (-316 (-564)))) 83) (($ (-1259 (-949 (-379)))) 114) (($ (-1259 (-949 (-564)))) 104) (($ (-1259 (-407 (-949 (-379))))) 72) (($ (-1259 (-407 (-949 (-564))))) 56)) (-3069 (((-1264) $) 48)) (-1831 (((-859) $) 42) (($ (-641 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 38) (($ (-1259 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695)))) 33))) -(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695))))))) (-1170)) (T -82)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695))))))) -((-2347 (((-3 $ "failed") (-685 (-316 (-379)))) 118) (((-3 $ "failed") (-685 (-316 (-564)))) 107) (((-3 $ "failed") (-685 (-949 (-379)))) 140) (((-3 $ "failed") (-685 (-949 (-564)))) 129) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 96) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 83)) (-2237 (($ (-685 (-316 (-379)))) 114) (($ (-685 (-316 (-564)))) 103) (($ (-685 (-949 (-379)))) 136) (($ (-685 (-949 (-564)))) 125) (($ (-685 (-407 (-949 (-379))))) 92) (($ (-685 (-407 (-949 (-564))))) 76)) (-3069 (((-1264) $) 66)) (-1831 (((-859) $) 53) (($ (-641 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 58) (($ (-685 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695)))) 50))) -(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -1831 ($ (-685 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695))))))) (-1170)) (T -83)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170))))) -(-13 (-384) (-10 -8 (-15 -1831 ($ (-685 (-339 (-1842 (QUOTE X) (QUOTE -4290)) (-1842) (-695))))))) -((-2347 (((-3 $ "failed") (-685 (-316 (-379)))) 113) (((-3 $ "failed") (-685 (-316 (-564)))) 101) (((-3 $ "failed") (-685 (-949 (-379)))) 135) (((-3 $ "failed") (-685 (-949 (-564)))) 124) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 75)) (-2237 (($ (-685 (-316 (-379)))) 109) (($ (-685 (-316 (-564)))) 97) (($ (-685 (-949 (-379)))) 131) (($ (-685 (-949 (-564)))) 120) (($ (-685 (-407 (-949 (-379))))) 85) (($ (-685 (-407 (-949 (-564))))) 68)) (-3069 (((-1264) $) 60)) (-1831 (((-859) $) 54) (($ (-641 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 45) (($ (-685 (-339 (-1842 (QUOTE X)) (-1842) (-695)))) 46))) -(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -1831 ($ (-685 (-339 (-1842 (QUOTE X)) (-1842) (-695))))))) (-1170)) (T -84)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-1842 (QUOTE X)) (-1842) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170))))) -(-13 (-384) (-10 -8 (-15 -1831 ($ (-685 (-339 (-1842 (QUOTE X)) (-1842) (-695))))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 105) (((-3 $ "failed") (-1259 (-316 (-564)))) 94) (((-3 $ "failed") (-1259 (-949 (-379)))) 125) (((-3 $ "failed") (-1259 (-949 (-564)))) 115) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 83) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 70)) (-2237 (($ (-1259 (-316 (-379)))) 101) (($ (-1259 (-316 (-564)))) 90) (($ (-1259 (-949 (-379)))) 121) (($ (-1259 (-949 (-564)))) 111) (($ (-1259 (-407 (-949 (-379))))) 79) (($ (-1259 (-407 (-949 (-564))))) 63)) (-3069 (((-1264) $) 47)) (-1831 (((-859) $) 41) (($ (-641 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 53) (($ (-1259 (-339 (-1842 (QUOTE X)) (-1842) (-695)))) 38))) -(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X)) (-1842) (-695))))))) (-1170)) (T -85)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE X)) (-1842) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X)) (-1842) (-695))))))) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 80) (((-3 $ "failed") (-1259 (-316 (-564)))) 69) (((-3 $ "failed") (-1259 (-949 (-379)))) 100) (((-3 $ "failed") (-1259 (-949 (-564)))) 90) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 58) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 45)) (-2237 (($ (-1259 (-316 (-379)))) 76) (($ (-1259 (-316 (-564)))) 65) (($ (-1259 (-949 (-379)))) 96) (($ (-1259 (-949 (-564)))) 86) (($ (-1259 (-407 (-949 (-379))))) 54) (($ (-1259 (-407 (-949 (-564))))) 38)) (-3069 (((-1264) $) 126)) (-1831 (((-859) $) 120) (($ (-641 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 115) (($ (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695)))) 37))) -(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695))))))) (-1170)) (T -86)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170))))) -(-13 (-441) (-10 -8 (-15 -1831 ($ (-1259 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695))))))) -((-2347 (((-3 $ "failed") (-685 (-316 (-379)))) 117) (((-3 $ "failed") (-685 (-316 (-564)))) 105) (((-3 $ "failed") (-685 (-949 (-379)))) 139) (((-3 $ "failed") (-685 (-949 (-564)))) 128) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 93) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 79)) (-2237 (($ (-685 (-316 (-379)))) 113) (($ (-685 (-316 (-564)))) 101) (($ (-685 (-949 (-379)))) 135) (($ (-685 (-949 (-564)))) 124) (($ (-685 (-407 (-949 (-379))))) 89) (($ (-685 (-407 (-949 (-564))))) 72)) (-3069 (((-1264) $) 63)) (-1831 (((-859) $) 57) (($ (-641 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 52) (($ (-685 (-339 (-1842 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1842) (-695)))) 48))) -(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -1831 ($ (-685 (-339 (-1842 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1842) (-695))))))) (-1170)) (T -87)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-1842 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1842) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170))))) -(-13 (-384) (-10 -8 (-15 -1831 ($ (-685 (-339 (-1842 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1842) (-695))))))) -((-3069 (((-1264) $) 45)) (-1831 (((-859) $) 39) (($ (-1259 (-695))) 101) (($ (-641 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 34))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 130) (((-3 $ "failed") (-1259 (-316 (-564)))) 120) (((-3 $ "failed") (-1259 (-948 (-379)))) 150) (((-3 $ "failed") (-1259 (-948 (-564)))) 140) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 110) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 98)) (-1781 (($ (-1259 (-316 (-379)))) 126) (($ (-1259 (-316 (-564)))) 116) (($ (-1259 (-948 (-379)))) 146) (($ (-1259 (-948 (-564)))) 136) (($ (-1259 (-407 (-948 (-379))))) 106) (($ (-1259 (-407 (-948 (-564))))) 91)) (-4308 (((-1264) $) 83)) (-2322 (((-858) $) 28) (($ (-641 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 76) (($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695)))) 70))) +(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695))))))) (-1170)) (T -74)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695))))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 135) (((-3 $ "failed") (-1259 (-316 (-564)))) 124) (((-3 $ "failed") (-1259 (-948 (-379)))) 155) (((-3 $ "failed") (-1259 (-948 (-564)))) 145) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 113) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 100)) (-1781 (($ (-1259 (-316 (-379)))) 131) (($ (-1259 (-316 (-564)))) 120) (($ (-1259 (-948 (-379)))) 151) (($ (-1259 (-948 (-564)))) 141) (($ (-1259 (-407 (-948 (-379))))) 109) (($ (-1259 (-407 (-948 (-564))))) 93)) (-4308 (((-1264) $) 85)) (-2322 (((-858) $) 77) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) NIL) (($ (-1259 (-339 (-2335 (QUOTE X) (QUOTE EPS)) (-2335 (QUOTE -2266)) (-695)))) 72))) +(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X) (QUOTE EPS)) (-2335 (QUOTE -2266)) (-695))))))) (-1170) (-1170) (-1170)) (T -75)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE X) (QUOTE EPS)) (-2335 (QUOTE -2266)) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X) (QUOTE EPS)) (-2335 (QUOTE -2266)) (-695))))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 141) (((-3 $ "failed") (-1259 (-316 (-564)))) 130) (((-3 $ "failed") (-1259 (-948 (-379)))) 161) (((-3 $ "failed") (-1259 (-948 (-564)))) 151) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 119) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 106)) (-1781 (($ (-1259 (-316 (-379)))) 137) (($ (-1259 (-316 (-564)))) 126) (($ (-1259 (-948 (-379)))) 157) (($ (-1259 (-948 (-564)))) 147) (($ (-1259 (-407 (-948 (-379))))) 115) (($ (-1259 (-407 (-948 (-564))))) 99)) (-4308 (((-1264) $) 91)) (-2322 (((-858) $) 83) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) NIL) (($ (-1259 (-339 (-2335 (QUOTE EPS)) (-2335 (QUOTE YA) (QUOTE YB)) (-695)))) 78))) +(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE EPS)) (-2335 (QUOTE YA) (QUOTE YB)) (-695))))))) (-1170) (-1170) (-1170)) (T -76)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE EPS)) (-2335 (QUOTE YA) (QUOTE YB)) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE EPS)) (-2335 (QUOTE YA) (QUOTE YB)) (-695))))))) +((-3032 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-948 (-379))) 92) (((-3 $ "failed") (-948 (-564))) 96) (((-3 $ "failed") (-407 (-948 (-379)))) 78) (((-3 $ "failed") (-407 (-948 (-564)))) 71)) (-1781 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-948 (-379))) 90) (($ (-948 (-564))) 94) (($ (-407 (-948 (-379)))) 76) (($ (-407 (-948 (-564)))) 68)) (-4308 (((-1264) $) 63)) (-2322 (((-858) $) 51) (($ (-641 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 55) (($ (-339 (-2335) (-2335 (QUOTE X)) (-695))) 48))) +(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335) (-2335 (QUOTE X)) (-695)))))) (-1170)) (T -77)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-339 (-2335) (-2335 (QUOTE X)) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335) (-2335 (QUOTE X)) (-695)))))) +((-3032 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-948 (-379))) 56) (((-3 $ "failed") (-948 (-564))) 60) (((-3 $ "failed") (-407 (-948 (-379)))) 42) (((-3 $ "failed") (-407 (-948 (-564)))) 35)) (-1781 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-948 (-379))) 54) (($ (-948 (-564))) 58) (($ (-407 (-948 (-379)))) 40) (($ (-407 (-948 (-564)))) 32)) (-4308 (((-1264) $) 81)) (-2322 (((-858) $) 75) (($ (-641 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 70) (($ (-339 (-2335) (-2335 (QUOTE X)) (-695))) 31))) +(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335) (-2335 (QUOTE X)) (-695)))))) (-1170)) (T -78)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-339 (-2335) (-2335 (QUOTE X)) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335) (-2335 (QUOTE X)) (-695)))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 90) (((-3 $ "failed") (-1259 (-316 (-564)))) 79) (((-3 $ "failed") (-1259 (-948 (-379)))) 110) (((-3 $ "failed") (-1259 (-948 (-564)))) 100) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 68) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 55)) (-1781 (($ (-1259 (-316 (-379)))) 86) (($ (-1259 (-316 (-564)))) 75) (($ (-1259 (-948 (-379)))) 106) (($ (-1259 (-948 (-564)))) 96) (($ (-1259 (-407 (-948 (-379))))) 64) (($ (-1259 (-407 (-948 (-564))))) 48)) (-4308 (((-1264) $) 126)) (-2322 (((-858) $) 120) (($ (-641 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 116) (($ (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695)))) 39))) +(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695))))))) (-1170)) (T -79)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE XC)) (-695))))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 158) (((-3 $ "failed") (-1259 (-316 (-564)))) 148) (((-3 $ "failed") (-1259 (-948 (-379)))) 178) (((-3 $ "failed") (-1259 (-948 (-564)))) 168) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 138) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 126)) (-1781 (($ (-1259 (-316 (-379)))) 154) (($ (-1259 (-316 (-564)))) 144) (($ (-1259 (-948 (-379)))) 174) (($ (-1259 (-948 (-564)))) 164) (($ (-1259 (-407 (-948 (-379))))) 134) (($ (-1259 (-407 (-948 (-564))))) 119)) (-4308 (((-1264) $) 112)) (-2322 (((-858) $) 106) (($ (-641 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 102) (($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695)))) 98))) +(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695))))))) (-1170)) (T -80)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695))))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 79) (((-3 $ "failed") (-1259 (-316 (-564)))) 68) (((-3 $ "failed") (-1259 (-948 (-379)))) 99) (((-3 $ "failed") (-1259 (-948 (-564)))) 89) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 57) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 44)) (-1781 (($ (-1259 (-316 (-379)))) 75) (($ (-1259 (-316 (-564)))) 64) (($ (-1259 (-948 (-379)))) 95) (($ (-1259 (-948 (-564)))) 85) (($ (-1259 (-407 (-948 (-379))))) 53) (($ (-1259 (-407 (-948 (-564))))) 37)) (-4308 (((-1264) $) 125)) (-2322 (((-858) $) 119) (($ (-641 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 114) (($ (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695)))) 36))) +(((-81 |#1|) (-13 (-441) (-614 (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695))))) (-1170)) (T -81)) +NIL +(-13 (-441) (-614 (-1259 (-339 (-2335) (-2335 (QUOTE X)) (-695))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 98) (((-3 $ "failed") (-1259 (-316 (-564)))) 87) (((-3 $ "failed") (-1259 (-948 (-379)))) 118) (((-3 $ "failed") (-1259 (-948 (-564)))) 108) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 76) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 63)) (-1781 (($ (-1259 (-316 (-379)))) 94) (($ (-1259 (-316 (-564)))) 83) (($ (-1259 (-948 (-379)))) 114) (($ (-1259 (-948 (-564)))) 104) (($ (-1259 (-407 (-948 (-379))))) 72) (($ (-1259 (-407 (-948 (-564))))) 56)) (-4308 (((-1264) $) 48)) (-2322 (((-858) $) 42) (($ (-641 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 38) (($ (-1259 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695)))) 33))) +(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695))))))) (-1170)) (T -82)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695))))))) +((-3032 (((-3 $ "failed") (-685 (-316 (-379)))) 118) (((-3 $ "failed") (-685 (-316 (-564)))) 107) (((-3 $ "failed") (-685 (-948 (-379)))) 140) (((-3 $ "failed") (-685 (-948 (-564)))) 129) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 96) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 83)) (-1781 (($ (-685 (-316 (-379)))) 114) (($ (-685 (-316 (-564)))) 103) (($ (-685 (-948 (-379)))) 136) (($ (-685 (-948 (-564)))) 125) (($ (-685 (-407 (-948 (-379))))) 92) (($ (-685 (-407 (-948 (-564))))) 76)) (-4308 (((-1264) $) 66)) (-2322 (((-858) $) 53) (($ (-641 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 58) (($ (-685 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695)))) 50))) +(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -2322 ($ (-685 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695))))))) (-1170)) (T -83)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170))))) +(-13 (-384) (-10 -8 (-15 -2322 ($ (-685 (-339 (-2335 (QUOTE X) (QUOTE -2266)) (-2335) (-695))))))) +((-3032 (((-3 $ "failed") (-685 (-316 (-379)))) 113) (((-3 $ "failed") (-685 (-316 (-564)))) 101) (((-3 $ "failed") (-685 (-948 (-379)))) 135) (((-3 $ "failed") (-685 (-948 (-564)))) 124) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 75)) (-1781 (($ (-685 (-316 (-379)))) 109) (($ (-685 (-316 (-564)))) 97) (($ (-685 (-948 (-379)))) 131) (($ (-685 (-948 (-564)))) 120) (($ (-685 (-407 (-948 (-379))))) 85) (($ (-685 (-407 (-948 (-564))))) 68)) (-4308 (((-1264) $) 60)) (-2322 (((-858) $) 54) (($ (-641 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 45) (($ (-685 (-339 (-2335 (QUOTE X)) (-2335) (-695)))) 46))) +(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -2322 ($ (-685 (-339 (-2335 (QUOTE X)) (-2335) (-695))))))) (-1170)) (T -84)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-2335 (QUOTE X)) (-2335) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170))))) +(-13 (-384) (-10 -8 (-15 -2322 ($ (-685 (-339 (-2335 (QUOTE X)) (-2335) (-695))))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 105) (((-3 $ "failed") (-1259 (-316 (-564)))) 94) (((-3 $ "failed") (-1259 (-948 (-379)))) 125) (((-3 $ "failed") (-1259 (-948 (-564)))) 115) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 83) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 70)) (-1781 (($ (-1259 (-316 (-379)))) 101) (($ (-1259 (-316 (-564)))) 90) (($ (-1259 (-948 (-379)))) 121) (($ (-1259 (-948 (-564)))) 111) (($ (-1259 (-407 (-948 (-379))))) 79) (($ (-1259 (-407 (-948 (-564))))) 63)) (-4308 (((-1264) $) 47)) (-2322 (((-858) $) 41) (($ (-641 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 53) (($ (-1259 (-339 (-2335 (QUOTE X)) (-2335) (-695)))) 38))) +(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X)) (-2335) (-695))))))) (-1170)) (T -85)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE X)) (-2335) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X)) (-2335) (-695))))))) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 80) (((-3 $ "failed") (-1259 (-316 (-564)))) 69) (((-3 $ "failed") (-1259 (-948 (-379)))) 100) (((-3 $ "failed") (-1259 (-948 (-564)))) 90) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 58) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 45)) (-1781 (($ (-1259 (-316 (-379)))) 76) (($ (-1259 (-316 (-564)))) 65) (($ (-1259 (-948 (-379)))) 96) (($ (-1259 (-948 (-564)))) 86) (($ (-1259 (-407 (-948 (-379))))) 54) (($ (-1259 (-407 (-948 (-564))))) 38)) (-4308 (((-1264) $) 126)) (-2322 (((-858) $) 120) (($ (-641 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 115) (($ (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695)))) 37))) +(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695))))))) (-1170)) (T -86)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -2322 ($ (-1259 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695))))))) +((-3032 (((-3 $ "failed") (-685 (-316 (-379)))) 117) (((-3 $ "failed") (-685 (-316 (-564)))) 105) (((-3 $ "failed") (-685 (-948 (-379)))) 139) (((-3 $ "failed") (-685 (-948 (-564)))) 128) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 93) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 79)) (-1781 (($ (-685 (-316 (-379)))) 113) (($ (-685 (-316 (-564)))) 101) (($ (-685 (-948 (-379)))) 135) (($ (-685 (-948 (-564)))) 124) (($ (-685 (-407 (-948 (-379))))) 89) (($ (-685 (-407 (-948 (-564))))) 72)) (-4308 (((-1264) $) 63)) (-2322 (((-858) $) 57) (($ (-641 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 52) (($ (-685 (-339 (-2335 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2335) (-695)))) 48))) +(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -2322 ($ (-685 (-339 (-2335 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2335) (-695))))))) (-1170)) (T -87)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-2335 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2335) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170))))) +(-13 (-384) (-10 -8 (-15 -2322 ($ (-685 (-339 (-2335 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2335) (-695))))))) +((-4308 (((-1264) $) 45)) (-2322 (((-858) $) 39) (($ (-1259 (-695))) 101) (($ (-641 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 34))) (((-88 |#1|) (-440) (-1170)) (T -88)) NIL (-440) -((-2347 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-949 (-379))) 57) (((-3 $ "failed") (-949 (-564))) 61) (((-3 $ "failed") (-407 (-949 (-379)))) 43) (((-3 $ "failed") (-407 (-949 (-564)))) 36)) (-2237 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-949 (-379))) 55) (($ (-949 (-564))) 59) (($ (-407 (-949 (-379)))) 41) (($ (-407 (-949 (-564)))) 33)) (-3069 (((-1264) $) 91)) (-1831 (((-859) $) 85) (($ (-641 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 77) (($ (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695))) 32))) -(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695)))))) (-1170)) (T -89)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170))))) -(-13 (-396) (-10 -8 (-15 -1831 ($ (-339 (-1842 (QUOTE X)) (-1842 (QUOTE -4290)) (-695)))))) -((-3539 (((-1259 (-685 |#1|)) (-685 |#1|)) 65)) (-1341 (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918)) 54)) (-4226 (((-2 (|:| |minor| (-641 (-918))) (|:| -4252 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918)) 76 (|has| |#1| (-363))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1341 ((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -3539 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -4226 ((-2 (|:| |minor| (-641 (-918))) (|:| -4252 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|)) (-556) (-652 |#1|)) (T -90)) -((-4226 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-641 (-918))) (|:| -4252 *3) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))) (-3539 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))) (-1341 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -2394 (-685 *5)) (|:| |vec| (-1259 (-641 (-918)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5))))) -(-10 -7 (-15 -1341 ((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -3539 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -4226 ((-2 (|:| |minor| (-641 (-918))) (|:| -4252 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3155 ((|#1| $) 42)) (-4010 (((-112) $ (-768)) NIL)) (-1778 (($) NIL T CONST)) (-4120 ((|#1| |#1| $) 37)) (-3923 ((|#1| $) 35)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2401 ((|#1| $) NIL)) (-2783 (($ |#1| $) 38)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4153 ((|#1| $) 36)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 18)) (-4012 (($) 46)) (-2950 (((-768) $) 33)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 17)) (-1831 (((-859) $) 32 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) NIL)) (-1451 (($ (-641 |#1|)) 44)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 15 (|has| |#1| (-1094)))) (-2828 (((-768) $) 12 (|has| $ (-6 -4406))))) -(((-91 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -1451 ($ (-641 |#1|))))) (-1094)) (T -91)) -((-1451 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3))))) -(-13 (-1115 |#1|) (-10 -8 (-15 -1451 ($ (-641 |#1|))))) -((-1831 (((-859) $) 13) (($ (-1175)) 9) (((-1175) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -1831 ((-1175) |#1|)) (-15 -1831 (|#1| (-1175))) (-15 -1831 ((-859) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -1831 ((-1175) |#1|)) (-15 -1831 (|#1| (-1175))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1702 (((-112) $ $) 6))) +((-3032 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-948 (-379))) 57) (((-3 $ "failed") (-948 (-564))) 61) (((-3 $ "failed") (-407 (-948 (-379)))) 43) (((-3 $ "failed") (-407 (-948 (-564)))) 36)) (-1781 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-948 (-379))) 55) (($ (-948 (-564))) 59) (($ (-407 (-948 (-379)))) 41) (($ (-407 (-948 (-564)))) 33)) (-4308 (((-1264) $) 91)) (-2322 (((-858) $) 85) (($ (-641 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 77) (($ (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695))) 32))) +(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695)))))) (-1170)) (T -89)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -2322 ($ (-339 (-2335 (QUOTE X)) (-2335 (QUOTE -2266)) (-695)))))) +((-3403 (((-1259 (-685 |#1|)) (-685 |#1|)) 65)) (-1847 (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-917))))) |#2| (-917)) 54)) (-3918 (((-2 (|:| |minor| (-641 (-917))) (|:| -3482 |#2|) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 |#2|))) |#2| (-917)) 76 (|has| |#1| (-363))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1847 ((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-917))))) |#2| (-917))) (-15 -3403 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3918 ((-2 (|:| |minor| (-641 (-917))) (|:| -3482 |#2|) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 |#2|))) |#2| (-917))) |%noBranch|)) (-556) (-652 |#1|)) (T -90)) +((-3918 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-641 (-917))) (|:| -3482 *3) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5)))) (-3403 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))) (-1847 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -4379 (-685 *5)) (|:| |vec| (-1259 (-641 (-917)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5))))) +(-10 -7 (-15 -1847 ((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-917))))) |#2| (-917))) (-15 -3403 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3918 ((-2 (|:| |minor| (-641 (-917))) (|:| -3482 |#2|) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 |#2|))) |#2| (-917))) |%noBranch|)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1846 ((|#1| $) 42)) (-2318 (((-112) $ (-767)) NIL)) (-4157 (($) NIL T CONST)) (-2165 ((|#1| |#1| $) 37)) (-3880 ((|#1| $) 35)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1340 ((|#1| $) NIL)) (-3861 (($ |#1| $) 38)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1313 ((|#1| $) 36)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 18)) (-2348 (($) 46)) (-1413 (((-767) $) 33)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 17)) (-2322 (((-858) $) 32 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) NIL)) (-4043 (($ (-641 |#1|)) 44)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 15 (|has| |#1| (-1094)))) (-2059 (((-767) $) 12 (|has| $ (-6 -4406))))) +(((-91 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -4043 ($ (-641 |#1|))))) (-1094)) (T -91)) +((-4043 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3))))) +(-13 (-1115 |#1|) (-10 -8 (-15 -4043 ($ (-641 |#1|))))) +((-2322 (((-858) $) 13) (($ (-1175)) 9) (((-1175) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -2322 ((-1175) |#1|)) (-15 -2322 (|#1| (-1175))) (-15 -2322 ((-858) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2322 ((-1175) |#1|)) (-15 -2322 (|#1| (-1175))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-2921 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL (-13 (-1094) (-490 (-1175))) -(((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) -((-3302 (($ $) 10)) (-3316 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3316 (|#1| |#1|)) (-15 -3302 (|#1| |#1|))) (-95)) (T -94)) +(((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) +((-3757 (($ $) 10)) (-3768 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3768 (|#1| |#1|)) (-15 -3757 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3316 (|#1| |#1|)) (-15 -3302 (|#1| |#1|))) -((-3276 (($ $) 11)) (-3254 (($ $) 10)) (-3302 (($ $) 9)) (-3316 (($ $) 8)) (-3287 (($ $) 7)) (-3265 (($ $) 6))) +(-10 -8 (-15 -3768 (|#1| |#1|)) (-15 -3757 (|#1| |#1|))) +((-3732 (($ $) 11)) (-3708 (($ $) 10)) (-3757 (($ $) 9)) (-3768 (($ $) 8)) (-3746 (($ $) 7)) (-3720 (($ $) 6))) (((-95) (-140)) (T -95)) -((-3276 (*1 *1 *1) (-4 *1 (-95))) (-3254 (*1 *1 *1) (-4 *1 (-95))) (-3302 (*1 *1 *1) (-4 *1 (-95))) (-3316 (*1 *1 *1) (-4 *1 (-95))) (-3287 (*1 *1 *1) (-4 *1 (-95))) (-3265 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3265 ($ $)) (-15 -3287 ($ $)) (-15 -3316 ($ $)) (-15 -3302 ($ $)) (-15 -3254 ($ $)) (-15 -3276 ($ $)))) -((-1817 (((-112) $ $) NIL)) (-1316 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-96) (-13 (-1077) (-10 -8 (-15 -1316 ((-1129) $))))) (T -96)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96))))) -(-13 (-1077) (-10 -8 (-15 -1316 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-2162 (((-379) (-1152) (-379)) 45) (((-379) (-1152) (-1152) (-379)) 43)) (-4013 (((-379) (-379)) 35)) (-4071 (((-1264)) 38)) (-2723 (((-1152) $) NIL)) (-4173 (((-379) (-1152) (-1152)) 49) (((-379) (-1152)) 51)) (-2780 (((-1114) $) NIL)) (-3490 (((-379) (-1152) (-1152)) 50)) (-3289 (((-379) (-1152) (-1152)) 52) (((-379) (-1152)) 53)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-97) (-13 (-1094) (-10 -7 (-15 -4173 ((-379) (-1152) (-1152))) (-15 -4173 ((-379) (-1152))) (-15 -3289 ((-379) (-1152) (-1152))) (-15 -3289 ((-379) (-1152))) (-15 -3490 ((-379) (-1152) (-1152))) (-15 -4071 ((-1264))) (-15 -4013 ((-379) (-379))) (-15 -2162 ((-379) (-1152) (-379))) (-15 -2162 ((-379) (-1152) (-1152) (-379))) (-6 -4406)))) (T -97)) -((-4173 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3289 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3490 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4071 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-2162 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) (-2162 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))) -(-13 (-1094) (-10 -7 (-15 -4173 ((-379) (-1152) (-1152))) (-15 -4173 ((-379) (-1152))) (-15 -3289 ((-379) (-1152) (-1152))) (-15 -3289 ((-379) (-1152))) (-15 -3490 ((-379) (-1152) (-1152))) (-15 -4071 ((-1264))) (-15 -4013 ((-379) (-379))) (-15 -2162 ((-379) (-1152) (-379))) (-15 -2162 ((-379) (-1152) (-1152) (-379))) (-6 -4406))) +((-3732 (*1 *1 *1) (-4 *1 (-95))) (-3708 (*1 *1 *1) (-4 *1 (-95))) (-3757 (*1 *1 *1) (-4 *1 (-95))) (-3768 (*1 *1 *1) (-4 *1 (-95))) (-3746 (*1 *1 *1) (-4 *1 (-95))) (-3720 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3720 ($ $)) (-15 -3746 ($ $)) (-15 -3768 ($ $)) (-15 -3757 ($ $)) (-15 -3708 ($ $)) (-15 -3732 ($ $)))) +((-2310 (((-112) $ $) NIL)) (-2420 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-96) (-13 (-1077) (-10 -8 (-15 -2420 ((-1129) $))))) (T -96)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96))))) +(-13 (-1077) (-10 -8 (-15 -2420 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-3798 (((-379) (-1152) (-379)) 45) (((-379) (-1152) (-1152) (-379)) 43)) (-2358 (((-379) (-379)) 35)) (-1707 (((-1264)) 38)) (-1418 (((-1152) $) NIL)) (-1490 (((-379) (-1152) (-1152)) 49) (((-379) (-1152)) 51)) (-3840 (((-1114) $) NIL)) (-4169 (((-379) (-1152) (-1152)) 50)) (-3017 (((-379) (-1152) (-1152)) 52) (((-379) (-1152)) 53)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-97) (-13 (-1094) (-10 -7 (-15 -1490 ((-379) (-1152) (-1152))) (-15 -1490 ((-379) (-1152))) (-15 -3017 ((-379) (-1152) (-1152))) (-15 -3017 ((-379) (-1152))) (-15 -4169 ((-379) (-1152) (-1152))) (-15 -1707 ((-1264))) (-15 -2358 ((-379) (-379))) (-15 -3798 ((-379) (-1152) (-379))) (-15 -3798 ((-379) (-1152) (-1152) (-379))) (-6 -4406)))) (T -97)) +((-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3017 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4169 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1707 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-3798 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) (-3798 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))) +(-13 (-1094) (-10 -7 (-15 -1490 ((-379) (-1152) (-1152))) (-15 -1490 ((-379) (-1152))) (-15 -3017 ((-379) (-1152) (-1152))) (-15 -3017 ((-379) (-1152))) (-15 -4169 ((-379) (-1152) (-1152))) (-15 -1707 ((-1264))) (-15 -2358 ((-379) (-379))) (-15 -3798 ((-379) (-1152) (-379))) (-15 -3798 ((-379) (-1152) (-1152) (-379))) (-6 -4406))) NIL (((-98) (-140)) (T -98)) NIL (-13 (-10 -7 (-6 -4406) (-6 (-4408 "*")) (-6 -4407) (-6 -4403) (-6 -4401) (-6 -4400) (-6 -4399) (-6 -4404) (-6 -4398) (-6 -4397) (-6 -4396) (-6 -4395) (-6 -4394) (-6 -4402) (-6 -4405) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4393))) -((-1817 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-4333 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 16)) (-2780 (((-1114) $) NIL)) (-1350 ((|#1| $ |#1|) 13)) (-3047 (($ $ $) NIL)) (-1992 (($ $ $) NIL)) (-1831 (((-859) $) 22)) (-1300 (($) 8 T CONST)) (-1702 (((-112) $ $) 10)) (-1823 (($ $ $) NIL)) (** (($ $ (-918)) 34) (($ $ (-768)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4333 ($ (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1| (-564)))))) (-1046)) (T -99)) -((-4333 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-4333 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3))))) -(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4333 ($ (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1| (-564)))))) -((-2535 (((-418 |#2|) |#2| (-641 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -2535 ((-418 |#2|) |#2| |#2|)) (-15 -2535 ((-418 |#2|) |#2| (-641 |#2|)))) (-13 (-452) (-147)) (-1235 |#1|)) (T -100)) -((-2535 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-2535 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -2535 ((-418 |#2|) |#2| |#2|)) (-15 -2535 ((-418 |#2|) |#2| (-641 |#2|)))) -((-1817 (((-112) $ $) 9))) -(((-101 |#1|) (-10 -8 (-15 -1817 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -1817 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1702 (((-112) $ $) 6))) +((-2310 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-2510 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 16)) (-3840 (((-1114) $) NIL)) (-4353 ((|#1| $ |#1|) 13)) (-2675 (($ $ $) NIL)) (-2617 (($ $ $) NIL)) (-2322 (((-858) $) 22)) (-2403 (($) 8 T CONST)) (-2921 (((-112) $ $) 10)) (-3034 (($ $ $) NIL)) (** (($ $ (-917)) 34) (($ $ (-767)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2510 ($ (-1 |#1| |#1|))) (-15 -2510 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2510 ($ (-1 |#1| |#1| (-564)))))) (-1045)) (T -99)) +((-2510 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-2510 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-2510 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-99 *3))))) +(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2510 ($ (-1 |#1| |#1|))) (-15 -2510 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2510 ($ (-1 |#1| |#1| (-564)))))) +((-3290 (((-418 |#2|) |#2| (-641 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3290 ((-418 |#2|) |#2| |#2|)) (-15 -3290 ((-418 |#2|) |#2| (-641 |#2|)))) (-13 (-452) (-147)) (-1235 |#1|)) (T -100)) +((-3290 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-3290 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -3290 ((-418 |#2|) |#2| |#2|)) (-15 -3290 ((-418 |#2|) |#2| (-641 |#2|)))) +((-2310 (((-112) $ $) 9))) +(((-101 |#1|) (-10 -8 (-15 -2310 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2310 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-2921 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-1817 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1702 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -1702 ((-112) $ $)) (-15 -1817 ((-112) $ $)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) 24 (|has| $ (-6 -4407)))) (-2127 (($ $ $) NIL (|has| $ (-6 -4407)))) (-1793 (($ $ $) NIL (|has| $ (-6 -4407)))) (-2638 (($ $ (-641 |#1|)) 34)) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-3777 (($ $) 12)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3675 (($ $ |#1| $) 36)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1858 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-4298 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)) 53)) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-3766 (($ $) 11)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) 13)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 9)) (-4012 (($) 35)) (-1350 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4190 (((-564) $ $) NIL)) (-1899 (((-112) $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3754 (($ (-768) |#1|) 37)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -3754 ($ (-768) |#1|)) (-15 -2638 ($ $ (-641 |#1|))) (-15 -1858 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1858 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4298 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4298 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103)) -((-3754 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-2638 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-1858 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-1858 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-4298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-4298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -3754 ($ (-768) |#1|)) (-15 -2638 ($ $ (-641 |#1|))) (-15 -1858 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1858 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4298 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4298 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) -((-4084 ((|#3| |#2| |#2|) 35)) (-1529 ((|#1| |#2| |#2|) 52 (|has| |#1| (-6 (-4408 "*"))))) (-3761 ((|#3| |#2| |#2|) 37)) (-2680 ((|#1| |#2|) 57 (|has| |#1| (-6 (-4408 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4084 (|#3| |#2| |#2|)) (-15 -3761 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4408 "*"))) (PROGN (-15 -1529 (|#1| |#2| |#2|)) (-15 -2680 (|#1| |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-683 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104)) -((-2680 (*1 *2 *3) (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-1529 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-3761 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-4084 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))))) -(-10 -7 (-15 -4084 (|#3| |#2| |#2|)) (-15 -3761 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4408 "*"))) (PROGN (-15 -1529 (|#1| |#2| |#2|)) (-15 -2680 (|#1| |#2|))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-3054 (((-641 (-1170))) 37)) (-3451 (((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170)) 39)) (-1702 (((-112) $ $) NIL))) -(((-105) (-13 (-1094) (-10 -7 (-15 -3054 ((-641 (-1170)))) (-15 -3451 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4406)))) (T -105)) -((-3054 (*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225))))) (-5 *1 (-105))))) -(-13 (-1094) (-10 -7 (-15 -3054 ((-641 (-1170)))) (-15 -3451 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4406))) -((-2321 (($ (-641 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -2321 (|#1| (-641 |#2|)))) (-107 |#2|) (-1209)) (T -106)) -NIL -(-10 -8 (-15 -2321 (|#1| (-641 |#2|)))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2310 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2921 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2921 ((-112) $ $)) (-15 -2310 ((-112) $ $)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) 24 (|has| $ (-6 -4407)))) (-3426 (($ $ $) NIL (|has| $ (-6 -4407)))) (-4314 (($ $ $) NIL (|has| $ (-6 -4407)))) (-1810 (($ $ (-641 |#1|)) 34)) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-4250 (($ $) 12)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3565 (($ $ |#1| $) 36)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3686 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3389 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)) 53)) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-4237 (($ $) 11)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) 13)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 9)) (-2348 (($) 35)) (-4353 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3526 (((-564) $ $) NIL)) (-2911 (((-112) $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1619 (($ (-767) |#1|) 37)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -1619 ($ (-767) |#1|)) (-15 -1810 ($ $ (-641 |#1|))) (-15 -3686 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3686 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3389 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3389 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103)) +((-1619 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-3686 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3389 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-3389 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -1619 ($ (-767) |#1|)) (-15 -1810 ($ $ (-641 |#1|))) (-15 -3686 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3686 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3389 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3389 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) +((-1816 ((|#3| |#2| |#2|) 35)) (-3541 ((|#1| |#2| |#2|) 52 (|has| |#1| (-6 (-4408 "*"))))) (-1676 ((|#3| |#2| |#2|) 37)) (-4107 ((|#1| |#2|) 57 (|has| |#1| (-6 (-4408 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1816 (|#3| |#2| |#2|)) (-15 -1676 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4408 "*"))) (PROGN (-15 -3541 (|#1| |#2| |#2|)) (-15 -4107 (|#1| |#2|))) |%noBranch|)) (-1045) (-1235 |#1|) (-683 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104)) +((-4107 (*1 *2 *3) (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-3541 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-1676 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-1816 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))))) +(-10 -7 (-15 -1816 (|#3| |#2| |#2|)) (-15 -1676 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4408 "*"))) (PROGN (-15 -3541 (|#1| |#2| |#2|)) (-15 -4107 (|#1| |#2|))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-1499 (((-641 (-1170))) 37)) (-1895 (((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170)) 39)) (-2921 (((-112) $ $) NIL))) +(((-105) (-13 (-1094) (-10 -7 (-15 -1499 ((-641 (-1170)))) (-15 -1895 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4406)))) (T -105)) +((-1499 (*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225))))) (-5 *1 (-105))))) +(-13 (-1094) (-10 -7 (-15 -1499 ((-641 (-1170)))) (-15 -1895 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4406))) +((-1717 (($ (-641 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1717 (|#1| (-641 |#2|)))) (-107 |#2|) (-1209)) (T -106)) +NIL +(-10 -8 (-15 -1717 (|#1| (-641 |#2|)))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-107 |#1|) (-140) (-1209)) (T -107)) -((-2321 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2783 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) -(-13 (-489 |t#1|) (-10 -8 (-6 -4407) (-15 -2321 ($ (-641 |t#1|))) (-15 -4153 (|t#1| $)) (-15 -2783 ($ |t#1| $)) (-15 -2401 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-564) $) NIL (|has| (-564) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-564) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2237 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-564) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| (-564) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-564) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2607 (((-112) $) NIL (|has| (-564) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-564) (-847)))) (-2449 (($ (-1 (-564) (-564)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-564) (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-1818 (((-564) $) NIL (|has| (-564) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-564) $) NIL)) (-2511 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 2) $) 10)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 (((-564) $) NIL (|has| (-564) (-545)))) (-1603 (($ (-407 (-564))) 9)) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL (|has| (-564) (-817)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1823 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) -(((-108) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -1603 ($ (-407 (-564))))))) (T -108)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-1603 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))) -(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -1603 ($ (-407 (-564)))))) -((-1665 (((-641 (-962)) $) 14)) (-1316 (((-1170) $) 10)) (-1831 (((-859) $) 23)) (-2902 (($ (-1170) (-641 (-962))) 15))) -(((-109) (-13 (-611 (-859)) (-10 -8 (-15 -1316 ((-1170) $)) (-15 -1665 ((-641 (-962)) $)) (-15 -2902 ($ (-1170) (-641 (-962))))))) (T -109)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109)))) (-2902 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109))))) -(-13 (-611 (-859)) (-10 -8 (-15 -1316 ((-1170) $)) (-15 -1665 ((-641 (-962)) $)) (-15 -2902 ($ (-1170) (-641 (-962)))))) -((-1817 (((-112) $ $) NIL)) (-1644 (($ $) NIL)) (-4366 (($ $ $) NIL)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2573 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2861 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-1970 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4407))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-2576 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1988 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-2261 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4407)))) (-2190 (((-112) $ (-564)) NIL)) (-3360 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-1433 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-4358 (($ $ $) NIL)) (-4338 (($ $) NIL)) (-3311 (($ $ $) NIL)) (-3654 (($ (-768) (-112)) 10)) (-3842 (($ $ $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL)) (-3956 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2640 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL)) (-2250 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3652 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-112) $) NIL (|has| (-564) (-847)))) (-3995 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4253 (($ $ (-112)) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1794 (((-641 (-112)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2126 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2791 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-1842 (($ (-641 (-112))) NIL)) (-3043 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1831 (((-859) $) NIL)) (-2432 (($ (-768) (-112)) 11)) (-1963 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-4348 (($ $ $) NIL)) (-3705 (($ $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-3694 (($ $ $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-110) (-13 (-123) (-10 -8 (-15 -2432 ($ (-768) (-112)))))) (T -110)) -((-2432 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -2432 ($ (-768) (-112))))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-140) (-1046) (-1046)) (T -111)) -NIL -(-13 (-644 |t#1|) (-1052 |t#2|) (-10 -7 (-6 -4401) (-6 -4400))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-1052 |#2|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1644 (($ $) 13)) (-4366 (($ $ $) 18)) (-3955 (($) 7 T CONST)) (-3004 (($ $) 6)) (-3267 (((-768)) 26)) (-2900 (($) 34)) (-4358 (($ $ $) 16)) (-4338 (($ $) 9)) (-3311 (($ $ $) 19)) (-3842 (($ $ $) 20)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) 32)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) 30)) (-2957 (($ $ $) 22)) (-2780 (((-1114) $) NIL)) (-2788 (($) 8 T CONST)) (-4134 (($ $ $) 23)) (-2511 (((-536) $) 36)) (-1831 (((-859) $) 38)) (-4348 (($ $ $) 14)) (-3705 (($ $ $) 17)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 21)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 24)) (-3694 (($ $ $) 15))) -(((-112) (-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3955 ($) -1809) (-15 -2788 ($) -1809) (-15 -4366 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -3004 ($ $))))) (T -112)) -((-3955 (*1 *1) (-5 *1 (-112))) (-2788 (*1 *1) (-5 *1 (-112))) (-4366 (*1 *1 *1 *1) (-5 *1 (-112))) (-3842 (*1 *1 *1 *1) (-5 *1 (-112))) (-3311 (*1 *1 *1 *1) (-5 *1 (-112))) (-3004 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3955 ($) -1809) (-15 -2788 ($) -1809) (-15 -4366 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -3004 ($ $)))) -((-3157 (((-3 (-1 |#1| (-641 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-641 |#1|))) 11) (((-3 |#1| "failed") (-114) (-641 |#1|)) 21)) (-4379 (((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-641 (-1 |#1| (-641 |#1|)))) 26)) (-1554 (((-114) |#1|) 56 (|has| |#1| (-847)))) (-2981 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-847))))) -(((-113 |#1|) (-10 -7 (-15 -3157 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3157 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3157 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3157 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -4379 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -4379 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4379 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1554 ((-114) |#1|)) (-15 -2981 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1094)) (T -113)) -((-2981 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-113 *2)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-4379 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-4379 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-4379 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3157 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-3157 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3157 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1094))))) -(-10 -7 (-15 -3157 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3157 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3157 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3157 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -4379 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -4379 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4379 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1554 ((-114) |#1|)) (-15 -2981 ((-3 |#1| "failed") (-114)))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-4129 (((-768) $) 86) (($ $ (-768)) 37)) (-2872 (((-112) $) 41)) (-3471 (($ $ (-1152) (-771)) 33) (($ $ (-506) (-771)) 58)) (-3821 (($ $ (-45 (-1152) (-771))) 16)) (-2483 (((-3 (-771) "failed") $ (-1152)) 27) (((-687 (-771)) $ (-506)) 32)) (-1665 (((-45 (-1152) (-771)) $) 15)) (-1841 (($ (-1170)) 20) (($ (-1170) (-768)) 23) (($ (-1170) (-55)) 24)) (-4211 (((-112) $) 39)) (-3769 (((-112) $) 43)) (-1316 (((-1170) $) 8)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-1657 (((-112) $ (-1170)) 11)) (-3763 (($ $ (-1 (-536) (-641 (-536)))) 64) (((-3 (-1 (-536) (-641 (-536))) "failed") $) 68)) (-2780 (((-1114) $) NIL)) (-4245 (((-112) $ (-1152)) 36)) (-2669 (($ $ (-1 (-112) $ $)) 45)) (-3712 (((-3 (-1 (-859) (-641 (-859))) "failed") $) 66) (($ $ (-1 (-859) (-641 (-859)))) 51) (($ $ (-1 (-859) (-859))) 53)) (-1399 (($ $ (-1152)) 55) (($ $ (-506)) 56)) (-1991 (($ $) 74)) (-1884 (($ $ (-1 (-112) $ $)) 46)) (-1831 (((-859) $) 60)) (-2058 (($ $ (-1152)) 34)) (-2450 (((-55) $) 69)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 84)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 97))) -(((-114) (-13 (-847) (-832 (-1170)) (-10 -8 (-15 -1665 ((-45 (-1152) (-771)) $)) (-15 -1991 ($ $)) (-15 -1841 ($ (-1170))) (-15 -1841 ($ (-1170) (-768))) (-15 -1841 ($ (-1170) (-55))) (-15 -4211 ((-112) $)) (-15 -2872 ((-112) $)) (-15 -3769 ((-112) $)) (-15 -4129 ((-768) $)) (-15 -4129 ($ $ (-768))) (-15 -2669 ($ $ (-1 (-112) $ $))) (-15 -1884 ($ $ (-1 (-112) $ $))) (-15 -3712 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3712 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3712 ($ $ (-1 (-859) (-859)))) (-15 -3763 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3763 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -1657 ((-112) $ (-1170))) (-15 -4245 ((-112) $ (-1152))) (-15 -2058 ($ $ (-1152))) (-15 -1399 ($ $ (-1152))) (-15 -1399 ($ $ (-506))) (-15 -2483 ((-3 (-771) "failed") $ (-1152))) (-15 -2483 ((-687 (-771)) $ (-506))) (-15 -3471 ($ $ (-1152) (-771))) (-15 -3471 ($ $ (-506) (-771))) (-15 -3821 ($ $ (-45 (-1152) (-771))))))) (T -114)) -((-1665 (*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))) (-1991 (*1 *1 *1) (-5 *1 (-114))) (-1841 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-1841 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114)))) (-1841 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-55)) (-5 *1 (-114)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3712 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-3763 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) (-4245 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-1399 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-1399 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-2483 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-771))) (-5 *1 (-114)))) (-3471 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114)))) (-3471 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-771)) (-5 *1 (-114)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114))))) -(-13 (-847) (-832 (-1170)) (-10 -8 (-15 -1665 ((-45 (-1152) (-771)) $)) (-15 -1991 ($ $)) (-15 -1841 ($ (-1170))) (-15 -1841 ($ (-1170) (-768))) (-15 -1841 ($ (-1170) (-55))) (-15 -4211 ((-112) $)) (-15 -2872 ((-112) $)) (-15 -3769 ((-112) $)) (-15 -4129 ((-768) $)) (-15 -4129 ($ $ (-768))) (-15 -2669 ($ $ (-1 (-112) $ $))) (-15 -1884 ($ $ (-1 (-112) $ $))) (-15 -3712 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3712 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3712 ($ $ (-1 (-859) (-859)))) (-15 -3763 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3763 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -1657 ((-112) $ (-1170))) (-15 -4245 ((-112) $ (-1152))) (-15 -2058 ($ $ (-1152))) (-15 -1399 ($ $ (-1152))) (-15 -1399 ($ $ (-506))) (-15 -2483 ((-3 (-771) "failed") $ (-1152))) (-15 -2483 ((-687 (-771)) $ (-506))) (-15 -3471 ($ $ (-1152) (-771))) (-15 -3471 ($ $ (-506) (-771))) (-15 -3821 ($ $ (-45 (-1152) (-771)))))) -((-2390 (((-564) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -2390 ((-564) |#2|))) (-13 (-363) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -115)) -((-2390 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -2390 ((-564) |#2|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $ (-564)) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-4317 (($ (-1166 (-564)) (-564)) NIL)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2905 (($ $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-2155 (((-768) $) NIL)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1691 (((-564)) NIL)) (-1822 (((-564) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3951 (($ $ (-564)) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-2422 (((-1150 (-564)) $) NIL)) (-4037 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-2508 (((-564) $ (-564)) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-866 |#1|) (-564)) (T -116)) -NIL -(-866 |#1|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-116 |#1|) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-2237 (((-116 |#1|) $) NIL) (((-1170) $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-3588 (($ $) NIL) (($ (-564) $) NIL)) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-116 |#1|))) (|:| |vec| (-1259 (-116 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-116 |#1|)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-116 |#1|) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-116 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-116 |#1|) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-116 |#1|) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1145)))) (-2607 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-3375 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-2449 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-116 |#1|) (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-1818 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-116 |#1|)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-1170)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|)))) (($ $ (-1170) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-116 |#1|) $) NIL)) (-2511 (((-889 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1019))) (((-225) $) NIL (|has| (-116 |#1|) (-1019)))) (-4355 (((-174 (-407 (-564))) $) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1170)) NIL (|has| (-116 |#1|) (-1035 (-1170))))) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))) (|has| (-116 |#1|) (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3939 (((-112) $ $) NIL)) (-2508 (((-407 (-564)) $ (-564)) NIL)) (-1849 (($ $) NIL (|has| (-116 |#1|) (-817)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1823 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2508 ((-407 (-564)) $ (-564))) (-15 -4355 ((-174 (-407 (-564))) $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)))) (-564)) (T -117)) -((-2508 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-3588 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2508 ((-407 (-564)) $ (-564))) (-15 -4355 ((-174 (-407 (-564))) $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)))) -((-1970 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 60) (($ $ "right" $) 62)) (-3128 (((-641 $) $) 31)) (-4376 (((-112) $ $) 36)) (-2516 (((-112) |#2| $) 40)) (-4119 (((-641 |#2|) $) 25)) (-2033 (((-112) $) 18)) (-1350 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1899 (((-112) $) 57)) (-1831 (((-859) $) 47)) (-2926 (((-641 $) $) 32)) (-1702 (((-112) $ $) 38)) (-2828 (((-768) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -1970 (|#1| |#1| "right" |#1|)) (-15 -1970 (|#1| |#1| "left" |#1|)) (-15 -1350 (|#1| |#1| "right")) (-15 -1350 (|#1| |#1| "left")) (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -4376 ((-112) |#1| |#1|)) (-15 -4119 ((-641 |#2|) |#1|)) (-15 -1899 ((-112) |#1|)) (-15 -1350 (|#2| |#1| "value")) (-15 -2033 ((-112) |#1|)) (-15 -3128 ((-641 |#1|) |#1|)) (-15 -2926 ((-641 |#1|) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2516 ((-112) |#2| |#1|)) (-15 -2828 ((-768) |#1|))) (-119 |#2|) (-1209)) (T -118)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -1970 (|#1| |#1| "right" |#1|)) (-15 -1970 (|#1| |#1| "left" |#1|)) (-15 -1350 (|#1| |#1| "right")) (-15 -1350 (|#1| |#1| "left")) (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -4376 ((-112) |#1| |#1|)) (-15 -4119 ((-641 |#2|) |#1|)) (-15 -1899 ((-112) |#1|)) (-15 -1350 (|#2| |#1| "value")) (-15 -2033 ((-112) |#1|)) (-15 -3128 ((-641 |#1|) |#1|)) (-15 -2926 ((-641 |#1|) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2516 ((-112) |#2| |#1|)) (-15 -2828 ((-768) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-2127 (($ $ $) 52 (|has| $ (-6 -4407)))) (-1793 (($ $ $) 54 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) (($ $ "left" $) 55 (|has| $ (-6 -4407))) (($ $ "right" $) 53 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-1778 (($) 7 T CONST)) (-3777 (($ $) 57)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-3766 (($ $) 59)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4190 (((-564) $ $) 44)) (-1899 (((-112) $) 46)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-1717 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-3861 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) +(-13 (-489 |t#1|) (-10 -8 (-6 -4407) (-15 -1717 ($ (-641 |t#1|))) (-15 -1313 (|t#1| $)) (-15 -3861 ($ |t#1| $)) (-15 -1340 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-564) $) NIL (|has| (-564) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-564) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1034 (-564))))) (-1781 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-564) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| (-564) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-564) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2783 (((-112) $) NIL (|has| (-564) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-564) (-846)))) (-3123 (($ (-1 (-564) (-564)) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-564) (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-1421 (((-564) $) NIL (|has| (-564) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-564) $) NIL)) (-3172 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL) (((-1000 2) $) 10)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 (((-564) $) NIL (|has| (-564) (-545)))) (-3138 (($ (-407 (-564))) 9)) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL (|has| (-564) (-816)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3034 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) +(((-108) (-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 2)) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -3138 ($ (-407 (-564))))))) (T -108)) +((-3399 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))) +(-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 2)) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -3138 ($ (-407 (-564)))))) +((-2129 (((-641 (-961)) $) 14)) (-2420 (((-1170) $) 10)) (-2322 (((-858) $) 23)) (-2588 (($ (-1170) (-641 (-961))) 15))) +(((-109) (-13 (-611 (-858)) (-10 -8 (-15 -2420 ((-1170) $)) (-15 -2129 ((-641 (-961)) $)) (-15 -2588 ($ (-1170) (-641 (-961))))))) (T -109)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-641 (-961))) (-5 *1 (-109)))) (-2588 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-961))) (-5 *1 (-109))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2420 ((-1170) $)) (-15 -2129 ((-641 (-961)) $)) (-15 -2588 ($ (-1170) (-641 (-961)))))) +((-2310 (((-112) $ $) NIL)) (-4173 (($ $) NIL)) (-2364 (($ $ $) NIL)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2441 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3811 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-3750 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4407))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-3628 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-3239 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1466 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4407)))) (-1407 (((-112) $ (-564)) NIL)) (-3847 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3534 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-2353 (($ $ $) NIL)) (-2329 (($ $) NIL)) (-3198 (($ $ $) NIL)) (-4121 (($ (-767) (-112)) 10)) (-4343 (($ $ $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL)) (-2988 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1834 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL)) (-1456 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-4116 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-112) $) NIL (|has| (-564) (-846)))) (-3393 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2981 (($ $ (-112)) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-4324 (((-641 (-112)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-1996 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3852 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2335 (($ (-641 (-112))) NIL)) (-3533 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2322 (((-858) $) NIL)) (-3503 (($ (-767) (-112)) 11)) (-2313 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-2342 (($ $ $) NIL)) (-3497 (($ $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3485 (($ $ $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-110) (-13 (-123) (-10 -8 (-15 -3503 ($ (-767) (-112)))))) (T -110)) +((-3503 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -3503 ($ (-767) (-112))))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-140) (-1045) (-1045)) (T -111)) +NIL +(-13 (-644 |t#1|) (-1051 |t#2|) (-10 -7 (-6 -4401) (-6 -4400))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-1051 |#2|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-4173 (($ $) 13)) (-2364 (($ $ $) 18)) (-1904 (($) 7 T CONST)) (-3450 (($ $) 6)) (-1959 (((-767)) 26)) (-3860 (($) 34)) (-2353 (($ $ $) 16)) (-2329 (($ $) 9)) (-3198 (($ $ $) 19)) (-4343 (($ $ $) 20)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) 32)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) 30)) (-1897 (($ $ $) 22)) (-3840 (((-1114) $) NIL)) (-3246 (($) 8 T CONST)) (-4208 (($ $ $) 23)) (-3172 (((-536) $) 36)) (-2322 (((-858) $) 38)) (-2342 (($ $ $) 14)) (-3497 (($ $ $) 17)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 21)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 24)) (-3485 (($ $ $) 15))) +(((-112) (-13 (-840) (-657) (-963) (-612 (-536)) (-10 -8 (-15 -1904 ($) -2255) (-15 -3246 ($) -2255) (-15 -2364 ($ $ $)) (-15 -4343 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -3450 ($ $))))) (T -112)) +((-1904 (*1 *1) (-5 *1 (-112))) (-3246 (*1 *1) (-5 *1 (-112))) (-2364 (*1 *1 *1 *1) (-5 *1 (-112))) (-4343 (*1 *1 *1 *1) (-5 *1 (-112))) (-3198 (*1 *1 *1 *1) (-5 *1 (-112))) (-3450 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-840) (-657) (-963) (-612 (-536)) (-10 -8 (-15 -1904 ($) -2255) (-15 -3246 ($) -2255) (-15 -2364 ($ $ $)) (-15 -4343 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -3450 ($ $)))) +((-4331 (((-3 (-1 |#1| (-641 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-641 |#1|))) 11) (((-3 |#1| "failed") (-114) (-641 |#1|)) 21)) (-1656 (((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-641 (-1 |#1| (-641 |#1|)))) 26)) (-3819 (((-114) |#1|) 56 (|has| |#1| (-846)))) (-2146 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-846))))) +(((-113 |#1|) (-10 -7 (-15 -4331 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -4331 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -4331 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4331 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -1656 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -1656 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1656 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -3819 ((-114) |#1|)) (-15 -2146 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1094)) (T -113)) +((-2146 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-846)) (-5 *1 (-113 *2)))) (-3819 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))) (-1656 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-4331 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-4331 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-4331 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-4331 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1094))))) +(-10 -7 (-15 -4331 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -4331 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -4331 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4331 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -1656 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -1656 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1656 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -3819 ((-114) |#1|)) (-15 -2146 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-4145 (((-767) $) 86) (($ $ (-767)) 37)) (-2264 (((-112) $) 41)) (-2092 (($ $ (-1152) (-770)) 33) (($ $ (-506) (-770)) 58)) (-4143 (($ $ (-45 (-1152) (-770))) 16)) (-2992 (((-3 (-770) "failed") $ (-1152)) 27) (((-687 (-770)) $ (-506)) 32)) (-2129 (((-45 (-1152) (-770)) $) 15)) (-3523 (($ (-1170)) 20) (($ (-1170) (-767)) 23) (($ (-1170) (-55)) 24)) (-3751 (((-112) $) 39)) (-1734 (((-112) $) 43)) (-2420 (((-1170) $) 8)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-2379 (((-112) $ (-1170)) 11)) (-1682 (($ $ (-1 (-536) (-641 (-536)))) 64) (((-3 (-1 (-536) (-641 (-536))) "failed") $) 68)) (-3840 (((-1114) $) NIL)) (-2914 (((-112) $ (-1152)) 36)) (-2108 (($ $ (-1 (-112) $ $)) 45)) (-1624 (((-3 (-1 (-858) (-641 (-858))) "failed") $) 66) (($ $ (-1 (-858) (-641 (-858)))) 51) (($ $ (-1 (-858) (-858))) 53)) (-4041 (($ $ (-1152)) 55) (($ $ (-506)) 56)) (-3772 (($ $) 74)) (-2771 (($ $ (-1 (-112) $ $)) 46)) (-2322 (((-858) $) 60)) (-2545 (($ $ (-1152)) 34)) (-3663 (((-55) $) 69)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 84)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 97))) +(((-114) (-13 (-846) (-831 (-1170)) (-10 -8 (-15 -2129 ((-45 (-1152) (-770)) $)) (-15 -3772 ($ $)) (-15 -3523 ($ (-1170))) (-15 -3523 ($ (-1170) (-767))) (-15 -3523 ($ (-1170) (-55))) (-15 -3751 ((-112) $)) (-15 -2264 ((-112) $)) (-15 -1734 ((-112) $)) (-15 -4145 ((-767) $)) (-15 -4145 ($ $ (-767))) (-15 -2108 ($ $ (-1 (-112) $ $))) (-15 -2771 ($ $ (-1 (-112) $ $))) (-15 -1624 ((-3 (-1 (-858) (-641 (-858))) "failed") $)) (-15 -1624 ($ $ (-1 (-858) (-641 (-858))))) (-15 -1624 ($ $ (-1 (-858) (-858)))) (-15 -1682 ($ $ (-1 (-536) (-641 (-536))))) (-15 -1682 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -2379 ((-112) $ (-1170))) (-15 -2914 ((-112) $ (-1152))) (-15 -2545 ($ $ (-1152))) (-15 -4041 ($ $ (-1152))) (-15 -4041 ($ $ (-506))) (-15 -2992 ((-3 (-770) "failed") $ (-1152))) (-15 -2992 ((-687 (-770)) $ (-506))) (-15 -2092 ($ $ (-1152) (-770))) (-15 -2092 ($ $ (-506) (-770))) (-15 -4143 ($ $ (-45 (-1152) (-770))))))) (T -114)) +((-2129 (*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114)))) (-3772 (*1 *1 *1) (-5 *1 (-114))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-3523 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *1 (-114)))) (-3523 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-55)) (-5 *1 (-114)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2771 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114)))) (-1624 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114)))) (-1624 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-1682 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-2379 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-4041 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-4041 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-2992 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-770)) (-5 *1 (-114)))) (-2992 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-770))) (-5 *1 (-114)))) (-2092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-770)) (-5 *1 (-114)))) (-2092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-770)) (-5 *1 (-114)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114))))) +(-13 (-846) (-831 (-1170)) (-10 -8 (-15 -2129 ((-45 (-1152) (-770)) $)) (-15 -3772 ($ $)) (-15 -3523 ($ (-1170))) (-15 -3523 ($ (-1170) (-767))) (-15 -3523 ($ (-1170) (-55))) (-15 -3751 ((-112) $)) (-15 -2264 ((-112) $)) (-15 -1734 ((-112) $)) (-15 -4145 ((-767) $)) (-15 -4145 ($ $ (-767))) (-15 -2108 ($ $ (-1 (-112) $ $))) (-15 -2771 ($ $ (-1 (-112) $ $))) (-15 -1624 ((-3 (-1 (-858) (-641 (-858))) "failed") $)) (-15 -1624 ($ $ (-1 (-858) (-641 (-858))))) (-15 -1624 ($ $ (-1 (-858) (-858)))) (-15 -1682 ($ $ (-1 (-536) (-641 (-536))))) (-15 -1682 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -2379 ((-112) $ (-1170))) (-15 -2914 ((-112) $ (-1152))) (-15 -2545 ($ $ (-1152))) (-15 -4041 ($ $ (-1152))) (-15 -4041 ($ $ (-506))) (-15 -2992 ((-3 (-770) "failed") $ (-1152))) (-15 -2992 ((-687 (-770)) $ (-506))) (-15 -2092 ($ $ (-1152) (-770))) (-15 -2092 ($ $ (-506) (-770))) (-15 -4143 ($ $ (-45 (-1152) (-770)))))) +((-4336 (((-564) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -4336 ((-564) |#2|))) (-13 (-363) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -115)) +((-4336 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -4336 ((-564) |#2|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $ (-564)) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2343 (($ (-1166 (-564)) (-564)) NIL)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2627 (($ $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3717 (((-767) $) NIL)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1487 (((-564)) NIL)) (-3358 (((-564) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2941 (($ $ (-564)) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3413 (((-1150 (-564)) $) NIL)) (-2614 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL)) (-3564 (((-564) $ (-564)) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-865 |#1|) (-564)) (T -116)) +NIL +(-865 |#1|) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-116 |#1|) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-564))))) (-1781 (((-116 |#1|) $) NIL) (((-1170) $) NIL (|has| (-116 |#1|) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1034 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1034 (-564))))) (-3884 (($ $) NIL) (($ (-564) $) NIL)) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-116 |#1|))) (|:| |vec| (-1259 (-116 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-116 |#1|)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-116 |#1|) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-116 |#1|) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-116 |#1|) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-116 |#1|) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1145)))) (-2783 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-2622 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-3123 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-116 |#1|) (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-1421 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-116 |#1|)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-1170)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|)))) (($ $ (-1170) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-116 |#1|) $) NIL)) (-3172 (((-888 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1018))) (((-225) $) NIL (|has| (-116 |#1|) (-1018)))) (-2735 (((-174 (-407 (-564))) $) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1170)) NIL (|has| (-116 |#1|) (-1034 (-1170))))) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))) (|has| (-116 |#1|) (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-4024 (((-112) $ $) NIL)) (-3564 (((-407 (-564)) $ (-564)) NIL)) (-3598 (($ $) NIL (|has| (-116 |#1|) (-816)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-3034 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-988 (-116 |#1|)) (-10 -8 (-15 -3564 ((-407 (-564)) $ (-564))) (-15 -2735 ((-174 (-407 (-564))) $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)))) (-564)) (T -117)) +((-3564 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-3884 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-988 (-116 |#1|)) (-10 -8 (-15 -3564 ((-407 (-564)) $ (-564))) (-15 -2735 ((-174 (-407 (-564))) $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)))) +((-3750 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 60) (($ $ "right" $) 62)) (-4074 (((-641 $) $) 31)) (-1634 (((-112) $ $) 36)) (-3114 (((-112) |#2| $) 40)) (-1502 (((-641 |#2|) $) 25)) (-1808 (((-112) $) 18)) (-4353 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2911 (((-112) $) 57)) (-2322 (((-858) $) 47)) (-1591 (((-641 $) $) 32)) (-2921 (((-112) $ $) 38)) (-2059 (((-767) $) 50))) +(((-118 |#1| |#2|) (-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -3750 (|#1| |#1| "right" |#1|)) (-15 -3750 (|#1| |#1| "left" |#1|)) (-15 -4353 (|#1| |#1| "right")) (-15 -4353 (|#1| |#1| "left")) (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -1634 ((-112) |#1| |#1|)) (-15 -1502 ((-641 |#2|) |#1|)) (-15 -2911 ((-112) |#1|)) (-15 -4353 (|#2| |#1| "value")) (-15 -1808 ((-112) |#1|)) (-15 -4074 ((-641 |#1|) |#1|)) (-15 -1591 ((-641 |#1|) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -3114 ((-112) |#2| |#1|)) (-15 -2059 ((-767) |#1|))) (-119 |#2|) (-1209)) (T -118)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -3750 (|#1| |#1| "right" |#1|)) (-15 -3750 (|#1| |#1| "left" |#1|)) (-15 -4353 (|#1| |#1| "right")) (-15 -4353 (|#1| |#1| "left")) (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -1634 ((-112) |#1| |#1|)) (-15 -1502 ((-641 |#2|) |#1|)) (-15 -2911 ((-112) |#1|)) (-15 -4353 (|#2| |#1| "value")) (-15 -1808 ((-112) |#1|)) (-15 -4074 ((-641 |#1|) |#1|)) (-15 -1591 ((-641 |#1|) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -3114 ((-112) |#2| |#1|)) (-15 -2059 ((-767) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3426 (($ $ $) 52 (|has| $ (-6 -4407)))) (-4314 (($ $ $) 54 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) (($ $ "left" $) 55 (|has| $ (-6 -4407))) (($ $ "right" $) 53 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-4157 (($) 7 T CONST)) (-4250 (($ $) 57)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-4237 (($ $) 59)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3526 (((-564) $ $) 44)) (-2911 (((-112) $) 46)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-119 |#1|) (-140) (-1209)) (T -119)) -((-3766 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-1970 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-1793 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-1970 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-2127 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) -(-13 (-1007 |t#1|) (-10 -8 (-15 -3766 ($ $)) (-15 -1350 ($ $ "left")) (-15 -3777 ($ $)) (-15 -1350 ($ $ "right")) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1970 ($ $ "left" $)) (-15 -1793 ($ $ $)) (-15 -1970 ($ $ "right" $)) (-15 -2127 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-3306 (((-112) |#1|) 29)) (-1864 (((-768) (-768)) 28) (((-768)) 27)) (-3428 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -3428 ((-112) |#1|)) (-15 -3428 ((-112) |#1| (-112))) (-15 -1864 ((-768))) (-15 -1864 ((-768) (-768))) (-15 -3306 ((-112) |#1|))) (-1235 (-564))) (T -120)) -((-3306 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-1864 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3428 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3428 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) -(-10 -7 (-15 -3428 ((-112) |#1|)) (-15 -3428 ((-112) |#1| (-112))) (-15 -1864 ((-768))) (-15 -1864 ((-768) (-768))) (-15 -3306 ((-112) |#1|))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) 18)) (-3838 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2127 (($ $ $) 21 (|has| $ (-6 -4407)))) (-1793 (($ $ $) 23 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-3777 (($ $) 20)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3675 (($ $ |#1| $) 26)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-3766 (($ $) 22)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1472 (($ |#1| $) 27)) (-2783 (($ |#1| $) 15)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 17)) (-4012 (($) 11)) (-1350 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4190 (((-564) $ $) NIL)) (-1899 (((-112) $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2874 (($ (-641 |#1|)) 16)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2874 ($ (-641 |#1|))) (-15 -2783 ($ |#1| $)) (-15 -1472 ($ |#1| $)) (-15 -3838 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-847)) (T -121)) -((-2874 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3)))) (-2783 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-1472 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-3838 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-847))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2874 ($ (-641 |#1|))) (-15 -2783 ($ |#1| $)) (-15 -1472 ($ |#1| $)) (-15 -3838 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1644 (($ $) 12)) (-4338 (($ $) 10)) (-3311 (($ $ $) 22)) (-3842 (($ $ $) 20)) (-3705 (($ $ $) 18)) (-3694 (($ $ $) 16))) -(((-122 |#1|) (-10 -8 (-15 -3311 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -4338 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -3311 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -4338 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1644 (($ $) 103)) (-4366 (($ $ $) 25)) (-1956 (((-1264) $ (-564) (-564)) 66 (|has| $ (-6 -4407)))) (-2386 (((-112) $) 98 (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2573 (($ $) 102 (-12 (|has| (-112) (-847)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4407)))) (-2861 (($ $) 97 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-4010 (((-112) $ (-768)) 37)) (-1970 (((-112) $ (-1226 (-564)) (-112)) 88 (|has| $ (-6 -4407))) (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4406)))) (-1778 (($) 38 T CONST)) (-4325 (($ $) 100 (|has| $ (-6 -4407)))) (-3919 (($ $) 90)) (-3337 (($ $) 68 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4406))) (($ (-112) $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-1988 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-2261 (((-112) $ (-564) (-112)) 53 (|has| $ (-6 -4407)))) (-2190 (((-112) $ (-564)) 55)) (-3360 (((-564) (-112) $ (-564)) 95 (|has| (-112) (-1094))) (((-564) (-112) $) 94 (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) 93)) (-1433 (((-641 (-112)) $) 45 (|has| $ (-6 -4406)))) (-4358 (($ $ $) 26)) (-4338 (($ $) 30)) (-3311 (($ $ $) 28)) (-3654 (($ (-768) (-112)) 77)) (-3842 (($ $ $) 29)) (-2324 (((-112) $ (-768)) 36)) (-3100 (((-564) $) 63 (|has| (-564) (-847)))) (-1925 (($ $ $) 13)) (-3956 (($ $ $) 96 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2640 (((-641 (-112)) $) 46 (|has| $ (-6 -4406)))) (-2516 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 62 (|has| (-564) (-847)))) (-3375 (($ $ $) 14)) (-2250 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-1713 (((-112) $ (-768)) 35)) (-2723 (((-1152) $) 9)) (-3652 (($ $ $ (-564)) 87) (($ (-112) $ (-564)) 86)) (-3883 (((-641 (-564)) $) 60)) (-4336 (((-112) (-564) $) 59)) (-2780 (((-1114) $) 10)) (-3303 (((-112) $) 64 (|has| (-564) (-847)))) (-3995 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4253 (($ $ (-112)) 65 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-112)) (-641 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3565 (((-112) $ $) 31)) (-3561 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1794 (((-641 (-112)) $) 58)) (-4284 (((-112) $) 34)) (-4012 (($) 33)) (-1350 (($ $ (-1226 (-564))) 83) (((-112) $ (-564)) 57) (((-112) $ (-564) (-112)) 56)) (-2126 (($ $ (-1226 (-564))) 85) (($ $ (-564)) 84)) (-2791 (((-768) (-112) $) 47 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4406)))) (-3623 (($ $ $ (-564)) 99 (|has| $ (-6 -4407)))) (-1991 (($ $) 32)) (-2511 (((-536) $) 67 (|has| (-112) (-612 (-536))))) (-1842 (($ (-641 (-112))) 76)) (-3043 (($ (-641 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1831 (((-859) $) 11)) (-1963 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4406)))) (-4348 (($ $ $) 27)) (-3705 (($ $ $) 105)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-3694 (($ $ $) 104)) (-2828 (((-768) $) 39 (|has| $ (-6 -4406))))) +((-4237 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-4250 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3750 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-4314 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-3750 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3426 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -4237 ($ $)) (-15 -4353 ($ $ "left")) (-15 -4250 ($ $)) (-15 -4353 ($ $ "right")) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3750 ($ $ "left" $)) (-15 -4314 ($ $ $)) (-15 -3750 ($ $ "right" $)) (-15 -3426 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3158 (((-112) |#1|) 29)) (-3758 (((-767) (-767)) 28) (((-767)) 27)) (-1670 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -1670 ((-112) |#1|)) (-15 -1670 ((-112) |#1| (-112))) (-15 -3758 ((-767))) (-15 -3758 ((-767) (-767))) (-15 -3158 ((-112) |#1|))) (-1235 (-564))) (T -120)) +((-3158 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3758 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-1670 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-1670 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) +(-10 -7 (-15 -1670 ((-112) |#1|)) (-15 -1670 ((-112) |#1| (-112))) (-15 -3758 ((-767))) (-15 -3758 ((-767) (-767))) (-15 -3158 ((-112) |#1|))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) 18)) (-4302 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3426 (($ $ $) 21 (|has| $ (-6 -4407)))) (-4314 (($ $ $) 23 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-4250 (($ $) 20)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3565 (($ $ |#1| $) 26)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-4237 (($ $) 22)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4245 (($ |#1| $) 27)) (-3861 (($ |#1| $) 15)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 17)) (-2348 (($) 11)) (-4353 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3526 (((-564) $ $) NIL)) (-2911 (((-112) $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2287 (($ (-641 |#1|)) 16)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2287 ($ (-641 |#1|))) (-15 -3861 ($ |#1| $)) (-15 -4245 ($ |#1| $)) (-15 -4302 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-846)) (T -121)) +((-2287 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))) (-3861 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-4245 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-4302 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-846))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2287 ($ (-641 |#1|))) (-15 -3861 ($ |#1| $)) (-15 -4245 ($ |#1| $)) (-15 -4302 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-4173 (($ $) 12)) (-2329 (($ $) 10)) (-3198 (($ $ $) 22)) (-4343 (($ $ $) 20)) (-3497 (($ $ $) 18)) (-3485 (($ $ $) 16))) +(((-122 |#1|) (-10 -8 (-15 -3198 (|#1| |#1| |#1|)) (-15 -4343 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -4173 (|#1| |#1|)) (-15 -3485 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -3198 (|#1| |#1| |#1|)) (-15 -4343 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -4173 (|#1| |#1|)) (-15 -3485 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-4173 (($ $) 103)) (-2364 (($ $ $) 25)) (-2246 (((-1264) $ (-564) (-564)) 66 (|has| $ (-6 -4407)))) (-4294 (((-112) $) 98 (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2441 (($ $) 102 (-12 (|has| (-112) (-846)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4407)))) (-3811 (($ $) 97 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2318 (((-112) $ (-767)) 37)) (-3750 (((-112) $ (-1226 (-564)) (-112)) 88 (|has| $ (-6 -4407))) (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4406)))) (-4157 (($) 38 T CONST)) (-2443 (($ $) 100 (|has| $ (-6 -4407)))) (-2493 (($ $) 90)) (-2027 (($ $) 68 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4406))) (($ (-112) $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-3239 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-1466 (((-112) $ (-564) (-112)) 53 (|has| $ (-6 -4407)))) (-1407 (((-112) $ (-564)) 55)) (-3847 (((-564) (-112) $ (-564)) 95 (|has| (-112) (-1094))) (((-564) (-112) $) 94 (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) 93)) (-3534 (((-641 (-112)) $) 45 (|has| $ (-6 -4406)))) (-2353 (($ $ $) 26)) (-2329 (($ $) 30)) (-3198 (($ $ $) 28)) (-4121 (($ (-767) (-112)) 77)) (-4343 (($ $ $) 29)) (-1751 (((-112) $ (-767)) 36)) (-1913 (((-564) $) 63 (|has| (-564) (-846)))) (-1501 (($ $ $) 13)) (-2988 (($ $ $) 96 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1834 (((-641 (-112)) $) 46 (|has| $ (-6 -4406)))) (-3114 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 62 (|has| (-564) (-846)))) (-2622 (($ $ $) 14)) (-1456 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-1681 (((-112) $ (-767)) 35)) (-1418 (((-1152) $) 9)) (-4116 (($ $ $ (-564)) 87) (($ (-112) $ (-564)) 86)) (-3487 (((-641 (-564)) $) 60)) (-2550 (((-112) (-564) $) 59)) (-3840 (((-1114) $) 10)) (-1995 (((-112) $) 64 (|has| (-564) (-846)))) (-3393 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2981 (($ $ (-112)) 65 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-112)) (-641 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3652 (((-112) $ $) 31)) (-3608 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-4324 (((-641 (-112)) $) 58)) (-3282 (((-112) $) 34)) (-2348 (($) 33)) (-4353 (($ $ (-1226 (-564))) 83) (((-112) $ (-564)) 57) (((-112) $ (-564) (-112)) 56)) (-1996 (($ $ (-1226 (-564))) 85) (($ $ (-564)) 84)) (-3852 (((-767) (-112) $) 47 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4406)))) (-3000 (($ $ $ (-564)) 99 (|has| $ (-6 -4407)))) (-3772 (($ $) 32)) (-3172 (((-536) $) 67 (|has| (-112) (-612 (-536))))) (-2335 (($ (-641 (-112))) 76)) (-3533 (($ (-641 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-2322 (((-858) $) 11)) (-2313 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4406)))) (-2342 (($ $ $) 27)) (-3497 (($ $ $) 105)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3485 (($ $ $) 104)) (-2059 (((-767) $) 39 (|has| $ (-6 -4406))))) (((-123) (-140)) (T -123)) -((-4338 (*1 *1 *1) (-4 *1 (-123))) (-3842 (*1 *1 *1 *1) (-4 *1 (-123))) (-3311 (*1 *1 *1 *1) (-4 *1 (-123))) (-4348 (*1 *1 *1 *1) (-4 *1 (-123))) (-4358 (*1 *1 *1 *1) (-4 *1 (-123))) (-4366 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-847) (-657) (-19 (-112)) (-10 -8 (-15 -4338 ($ $)) (-15 -3842 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -4348 ($ $ $)) (-15 -4358 ($ $ $)) (-15 -4366 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-647 #0#) . T) ((-657) . T) ((-19 #0#) . T) ((-847) . T) ((-1094) . T) ((-1209) . T)) -((-2250 (($ (-1 |#2| |#2|) $) 22)) (-1991 (($ $) 16)) (-2828 (((-768) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -1991 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124)) -NIL -(-10 -8 (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -1991 (|#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-2127 (($ $ $) 52 (|has| $ (-6 -4407)))) (-1793 (($ $ $) 54 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) (($ $ "left" $) 55 (|has| $ (-6 -4407))) (($ $ "right" $) 53 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-1778 (($) 7 T CONST)) (-3777 (($ $) 57)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3675 (($ $ |#1| $) 60)) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-3766 (($ $) 59)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4190 (((-564) $ $) 44)) (-1899 (((-112) $) 46)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2329 (*1 *1 *1) (-4 *1 (-123))) (-4343 (*1 *1 *1 *1) (-4 *1 (-123))) (-3198 (*1 *1 *1 *1) (-4 *1 (-123))) (-2342 (*1 *1 *1 *1) (-4 *1 (-123))) (-2353 (*1 *1 *1 *1) (-4 *1 (-123))) (-2364 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-846) (-657) (-19 (-112)) (-10 -8 (-15 -2329 ($ $)) (-15 -4343 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -2342 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -2364 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-647 #0#) . T) ((-657) . T) ((-19 #0#) . T) ((-846) . T) ((-1094) . T) ((-1209) . T)) +((-1456 (($ (-1 |#2| |#2|) $) 22)) (-3772 (($ $) 16)) (-2059 (((-767) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -3772 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124)) +NIL +(-10 -8 (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -3772 (|#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3426 (($ $ $) 52 (|has| $ (-6 -4407)))) (-4314 (($ $ $) 54 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) (($ $ "left" $) 55 (|has| $ (-6 -4407))) (($ $ "right" $) 53 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-4157 (($) 7 T CONST)) (-4250 (($ $) 57)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3565 (($ $ |#1| $) 60)) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-4237 (($ $) 59)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3526 (((-564) $ $) 44)) (-2911 (((-112) $) 46)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-125 |#1|) (-140) (-1094)) (T -125)) -((-3675 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -3675 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) 18)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) 22 (|has| $ (-6 -4407)))) (-2127 (($ $ $) 23 (|has| $ (-6 -4407)))) (-1793 (($ $ $) 21 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-3777 (($ $) 24)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3675 (($ $ |#1| $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-3766 (($ $) NIL)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2783 (($ |#1| $) 15)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 17)) (-4012 (($) 11)) (-1350 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4190 (((-564) $ $) NIL)) (-1899 (((-112) $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 20)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4263 (($ (-641 |#1|)) 16)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4407) (-15 -4263 ($ (-641 |#1|))) (-15 -2783 ($ |#1| $)))) (-847)) (T -126)) -((-4263 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3)))) (-2783 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4407) (-15 -4263 ($ (-641 |#1|))) (-15 -2783 ($ |#1| $)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) 30)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) 32 (|has| $ (-6 -4407)))) (-2127 (($ $ $) 36 (|has| $ (-6 -4407)))) (-1793 (($ $ $) 34 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-3777 (($ $) 23)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3675 (($ $ |#1| $) 16)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-3766 (($ $) 22)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) 25)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 20)) (-4012 (($) 11)) (-1350 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4190 (((-564) $ $) NIL)) (-1899 (((-112) $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2663 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2663 ($ |#1|)) (-15 -2663 ($ $ |#1| $)))) (-1094)) (T -127)) -((-2663 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-2663 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))) -(-13 (-125 |#1|) (-10 -8 (-15 -2663 ($ |#1|)) (-15 -2663 ($ $ |#1| $)))) -((-1817 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-847)))) (-2573 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-847))))) (-2861 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4407))) (((-129) $ (-1226 (-564)) (-129)) NIL (|has| $ (-6 -4407)))) (-3437 (((-768) $ (-768)) 34)) (-3752 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-2576 (($ (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4406))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4406)))) (-2261 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4407)))) (-2190 (((-129) $ (-564)) 20)) (-3360 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1094))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1094)))) (-1433 (((-641 (-129)) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) (-129)) 14)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 27 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| (-129) (-847)))) (-3956 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-847)))) (-2640 (((-641 (-129)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-3440 (((-564) $) 30 (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-129) (-847)))) (-2250 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| (-129) (-1094)))) (-3652 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| (-129) (-1094)))) (-3303 (((-129) $) NIL (|has| (-564) (-847)))) (-3995 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4253 (($ $ (-129)) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-641 (-129)) (-641 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-1794 (((-641 (-129)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 12)) (-1350 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1226 (-564))) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406))) (((-768) (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-1842 (($ (-641 (-129))) 47)) (-3043 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-641 $)) NIL)) (-1831 (((-955 (-129)) $) 35) (((-1152) $) 44) (((-859) $) NIL (|has| (-129) (-611 (-859))))) (-2639 (((-768) $) 18)) (-4189 (($ (-768)) 8)) (-1963 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1702 (((-112) $ $) 32 (|has| (-129) (-1094)))) (-1749 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-129) (-847)))) (-2828 (((-768) $) 15 (|has| $ (-6 -4406))))) -(((-128) (-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -4189 ($ (-768))) (-15 -2639 ((-768) $)) (-15 -3437 ((-768) $ (-768))) (-6 -4406)))) (T -128)) -((-4189 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-3437 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -4189 ($ (-768))) (-15 -2639 ((-768) $)) (-15 -3437 ((-768) $ (-768))) (-6 -4406))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) 12 T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) 22 T CONST)) (-3375 (($ $ $) NIL) (($) 23 T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2096 (($ (-768)) 8)) (-4186 (($ $ $) 25)) (-4177 (($ $ $) 24)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 19)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 20))) -(((-129) (-13 (-841) (-490 (-144)) (-10 -8 (-15 -2096 ($ (-768))) (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809)))) (T -129)) -((-2096 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129)))) (-4177 (*1 *1 *1 *1) (-5 *1 (-129))) (-4186 (*1 *1 *1 *1) (-5 *1 (-129))) (-1778 (*1 *1) (-5 *1 (-129)))) -(-13 (-841) (-490 (-144)) (-10 -8 (-15 -2096 ($ (-768))) (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) +((-3565 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -3565 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) 18)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) 22 (|has| $ (-6 -4407)))) (-3426 (($ $ $) 23 (|has| $ (-6 -4407)))) (-4314 (($ $ $) 21 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-4250 (($ $) 24)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3565 (($ $ |#1| $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-4237 (($ $) NIL)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3861 (($ |#1| $) 15)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 17)) (-2348 (($) 11)) (-4353 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3526 (((-564) $ $) NIL)) (-2911 (((-112) $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 20)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3084 (($ (-641 |#1|)) 16)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4407) (-15 -3084 ($ (-641 |#1|))) (-15 -3861 ($ |#1| $)))) (-846)) (T -126)) +((-3084 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))) (-3861 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4407) (-15 -3084 ($ (-641 |#1|))) (-15 -3861 ($ |#1| $)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) 30)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) 32 (|has| $ (-6 -4407)))) (-3426 (($ $ $) 36 (|has| $ (-6 -4407)))) (-4314 (($ $ $) 34 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-4250 (($ $) 23)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3565 (($ $ |#1| $) 16)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-4237 (($ $) 22)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) 25)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 20)) (-2348 (($) 11)) (-4353 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3526 (((-564) $ $) NIL)) (-2911 (((-112) $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2049 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2049 ($ |#1|)) (-15 -2049 ($ $ |#1| $)))) (-1094)) (T -127)) +((-2049 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-2049 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))) +(-13 (-125 |#1|) (-10 -8 (-15 -2049 ($ |#1|)) (-15 -2049 ($ $ |#1| $)))) +((-2310 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-846)))) (-2441 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-846))))) (-3811 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4407))) (((-129) $ (-1226 (-564)) (-129)) NIL (|has| $ (-6 -4407)))) (-1759 (((-767) $ (-767)) 34)) (-2957 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-3628 (($ (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4406))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4406)))) (-1466 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4407)))) (-1407 (((-129) $ (-564)) 20)) (-3847 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1094))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1094)))) (-3534 (((-641 (-129)) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) (-129)) 14)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 27 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| (-129) (-846)))) (-2988 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-846)))) (-1834 (((-641 (-129)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-1785 (((-564) $) 30 (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-129) (-846)))) (-1456 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| (-129) (-1094)))) (-4116 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| (-129) (-1094)))) (-1995 (((-129) $) NIL (|has| (-564) (-846)))) (-3393 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2981 (($ $ (-129)) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-641 (-129)) (-641 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-4324 (((-641 (-129)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 12)) (-4353 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1226 (-564))) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406))) (((-767) (-129) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-129) (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-2335 (($ (-641 (-129))) 47)) (-3533 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-641 $)) NIL)) (-2322 (((-954 (-129)) $) 35) (((-1152) $) 44) (((-858) $) NIL (|has| (-129) (-611 (-858))))) (-1820 (((-767) $) 18)) (-3514 (($ (-767)) 8)) (-2313 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2921 (((-112) $ $) 32 (|has| (-129) (-1094)))) (-2964 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2059 (((-767) $) 15 (|has| $ (-6 -4406))))) +(((-128) (-13 (-19 (-129)) (-611 (-954 (-129))) (-611 (-1152)) (-10 -8 (-15 -3514 ($ (-767))) (-15 -1820 ((-767) $)) (-15 -1759 ((-767) $ (-767))) (-6 -4406)))) (T -128)) +((-3514 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-1759 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-611 (-954 (-129))) (-611 (-1152)) (-10 -8 (-15 -3514 ($ (-767))) (-15 -1820 ((-767) $)) (-15 -1759 ((-767) $ (-767))) (-6 -4406))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) 12 T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) 22 T CONST)) (-2622 (($ $ $) NIL) (($) 23 T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-3348 (($ (-767)) 8)) (-2153 (($ $ $) 25)) (-2141 (($ $ $) 24)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 19)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 20))) +(((-129) (-13 (-840) (-490 (-144)) (-10 -8 (-15 -3348 ($ (-767))) (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255)))) (T -129)) +((-3348 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-2141 (*1 *1 *1 *1) (-5 *1 (-129))) (-2153 (*1 *1 *1 *1) (-5 *1 (-129))) (-4157 (*1 *1) (-5 *1 (-129)))) +(-13 (-840) (-490 (-144)) (-10 -8 (-15 -3348 ($ (-767))) (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) ((|NonNegativeInteger|) (< |#1| 256)) -((-1817 (((-112) $ $) NIL)) (-2652 (($) 6 T CONST)) (-2502 (($) 7 T CONST)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 14)) (-3852 (($) 8 T CONST)) (-1702 (((-112) $ $) 10))) -(((-130) (-13 (-1094) (-10 -8 (-15 -2502 ($) -1809) (-15 -3852 ($) -1809) (-15 -2652 ($) -1809)))) (T -130)) -((-2502 (*1 *1) (-5 *1 (-130))) (-3852 (*1 *1) (-5 *1 (-130))) (-2652 (*1 *1) (-5 *1 (-130)))) -(-13 (-1094) (-10 -8 (-15 -2502 ($) -1809) (-15 -3852 ($) -1809) (-15 -2652 ($) -1809))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) +((-2310 (((-112) $ $) NIL)) (-1954 (($) 6 T CONST)) (-2989 (($) 7 T CONST)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 14)) (-1347 (($) 8 T CONST)) (-2921 (((-112) $ $) 10))) +(((-130) (-13 (-1094) (-10 -8 (-15 -2989 ($) -2255) (-15 -1347 ($) -2255) (-15 -1954 ($) -2255)))) (T -130)) +((-2989 (*1 *1) (-5 *1 (-130))) (-1347 (*1 *1) (-5 *1 (-130))) (-1954 (*1 *1) (-5 *1 (-130)))) +(-13 (-1094) (-10 -8 (-15 -2989 ($) -2255) (-15 -1347 ($) -2255) (-15 -1954 ($) -2255))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) (((-131) (-140)) (T -131)) -((-4088 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -4088 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-2919 (((-1264) $ (-768)) 19)) (-3360 (((-768) $) 20)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) +((-1862 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -1862 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-2779 (((-1264) $ (-767)) 19)) (-3847 (((-767) $) 20)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18))) (((-132) (-140)) (T -132)) -((-3360 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768)))) (-2919 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264))))) -(-13 (-847) (-10 -8 (-15 -3360 ((-768) $)) (-15 -2919 ((-1264) $ (-768))))) -(((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-641 (-1129)) $) 10)) (-1702 (((-112) $ $) NIL))) -(((-133) (-13 (-1077) (-10 -8 (-15 -1328 ((-641 (-1129)) $))))) (T -133)) -((-1328 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133))))) -(-13 (-1077) (-10 -8 (-15 -1328 ((-641 (-1129)) $)))) -((-1817 (((-112) $ $) 47)) (-1615 (((-112) $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-768) "failed") $) 56)) (-2237 (((-768) $) 54)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) 36)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3323 (((-112)) 57)) (-3379 (((-112) (-112)) 59)) (-2334 (((-112) $) 30)) (-4116 (((-112) $) 53)) (-1831 (((-859) $) 28) (($ (-768)) 20)) (-1293 (($) 18 T CONST)) (-1300 (($) 19 T CONST)) (-2671 (($ (-768)) 21)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 32)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 34)) (-1808 (((-3 $ "failed") $ $) 40)) (-1797 (($ $ $) 37)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ $) 52)) (* (($ (-768) $) 46) (($ (-918) $) NIL) (($ $ $) 43))) -(((-134) (-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4408 "*")) (-15 -1808 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2671 ($ (-768))) (-15 -2334 ((-112) $)) (-15 -4116 ((-112) $)) (-15 -3323 ((-112))) (-15 -3379 ((-112) (-112)))))) (T -134)) -((-1808 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2671 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3323 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4408 "*")) (-15 -1808 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2671 ($ (-768))) (-15 -2334 ((-112) $)) (-15 -4116 ((-112) $)) (-15 -3323 ((-112))) (-15 -3379 ((-112) (-112))))) -((-1319 (((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2449 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1319 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2449 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-768) (-172) (-172)) (T -135)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -1319 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2449 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-1817 (((-112) $ $) NIL)) (-3172 (($ (-641 |#3|)) 63)) (-2775 (($ $) 125) (($ $ (-564) (-564)) 124)) (-1778 (($) 20)) (-2347 (((-3 |#3| "failed") $) 85)) (-2237 ((|#3| $) NIL)) (-2080 (($ $ (-641 (-564))) 126)) (-1306 (((-641 |#3|) $) 58)) (-3531 (((-768) $) 68)) (-4049 (($ $ $) 119)) (-2399 (($) 67)) (-2723 (((-1152) $) NIL)) (-2112 (($) 19)) (-2780 (((-1114) $) NIL)) (-1350 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-641 (-564))) 75)) (-1619 (((-768) $) 69)) (-2069 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-1831 (((-859) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1136 |#2| |#3|)) 104) (($ (-641 |#3|)) 76) (($ (-641 $)) 82)) (-1293 (($) 95 T CONST)) (-1300 (($) 96 T CONST)) (-1702 (((-112) $ $) 106)) (-1808 (($ $) 112) (($ $ $) 110)) (-1797 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121))) -(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -1831 ($ (-240 |#2| |#3|))) (-15 -1831 ($ (-1136 |#2| |#3|))) (-15 -1831 ($ (-641 |#3|))) (-15 -1831 ($ (-641 $))) (-15 -3531 ((-768) $)) (-15 -1350 (|#3| $)) (-15 -1350 (|#3| $ (-564))) (-15 -1350 (|#3| $ (-564) (-564))) (-15 -1350 (|#3| $ (-564) (-564) (-564))) (-15 -1350 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -1350 (|#3| $ (-641 (-564)))) (-15 -4049 ($ $ $)) (-15 * ($ $ $)) (-15 -2069 ($ $ (-564) $ (-564))) (-15 -2069 ($ $ (-564) (-564))) (-15 -2775 ($ $)) (-15 -2775 ($ $ (-564) (-564))) (-15 -2080 ($ $ (-641 (-564)))) (-15 -2112 ($)) (-15 -2399 ($)) (-15 -1306 ((-641 |#3|) $)) (-15 -3172 ($ (-641 |#3|))) (-15 -1778 ($)))) (-564) (-768) (-172)) (T -136)) -((-4049 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-1350 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-768)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-1350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-1350 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-1350 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-768)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2069 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2069 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2775 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2775 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2080 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-2112 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2399 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-1778 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172))))) -(-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -1831 ($ (-240 |#2| |#3|))) (-15 -1831 ($ (-1136 |#2| |#3|))) (-15 -1831 ($ (-641 |#3|))) (-15 -1831 ($ (-641 $))) (-15 -3531 ((-768) $)) (-15 -1350 (|#3| $)) (-15 -1350 (|#3| $ (-564))) (-15 -1350 (|#3| $ (-564) (-564))) (-15 -1350 (|#3| $ (-564) (-564) (-564))) (-15 -1350 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -1350 (|#3| $ (-641 (-564)))) (-15 -4049 ($ $ $)) (-15 * ($ $ $)) (-15 -2069 ($ $ (-564) $ (-564))) (-15 -2069 ($ $ (-564) (-564))) (-15 -2775 ($ $)) (-15 -2775 ($ $ (-564) (-564))) (-15 -2080 ($ $ (-641 (-564)))) (-15 -2112 ($)) (-15 -2399 ($)) (-15 -1306 ((-641 |#3|) $)) (-15 -3172 ($ (-641 |#3|))) (-15 -1778 ($)))) -((-1817 (((-112) $ $) NIL)) (-4383 (((-1129) $) 11)) (-4372 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-137) (-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $))))) (T -137)) -((-4372 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))) -(-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3568 (((-186) $) 10)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-641 (-1129)) $) 13)) (-1702 (((-112) $ $) NIL))) -(((-138) (-13 (-1077) (-10 -8 (-15 -3568 ((-186) $)) (-15 -1328 ((-641 (-1129)) $))))) (T -138)) -((-3568 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138))))) -(-13 (-1077) (-10 -8 (-15 -3568 ((-186) $)) (-15 -1328 ((-641 (-1129)) $)))) -((-1817 (((-112) $ $) NIL)) (-3641 (((-641 (-862)) $) NIL)) (-1316 (((-506) $) NIL)) (-2723 (((-1152) $) NIL)) (-3568 (((-186) $) NIL)) (-2780 (((-1114) $) NIL)) (-2831 (((-641 (-112)) $) NIL)) (-1831 (((-859) $) NIL) (((-187) $) 6)) (-2450 (((-55) $) NIL)) (-1702 (((-112) $ $) NIL))) +((-3847 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) (-2779 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1264))))) +(-13 (-846) (-10 -8 (-15 -3847 ((-767) $)) (-15 -2779 ((-1264) $ (-767))))) +(((-102) . T) ((-611 (-858)) . T) ((-846) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-641 (-1129)) $) 10)) (-2921 (((-112) $ $) NIL))) +(((-133) (-13 (-1077) (-10 -8 (-15 -2433 ((-641 (-1129)) $))))) (T -133)) +((-2433 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133))))) +(-13 (-1077) (-10 -8 (-15 -2433 ((-641 (-1129)) $)))) +((-2310 (((-112) $ $) 47)) (-3264 (((-112) $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-767) "failed") $) 56)) (-1781 (((-767) $) 54)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) 36)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3293 (((-112)) 57)) (-2488 (((-112) (-112)) 59)) (-1861 (((-112) $) 30)) (-2133 (((-112) $) 53)) (-2322 (((-858) $) 28) (($ (-767)) 20)) (-2389 (($) 18 T CONST)) (-2403 (($) 19 T CONST)) (-2127 (($ (-767)) 21)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 32)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 34)) (-3021 (((-3 $ "failed") $ $) 40)) (-3011 (($ $ $) 37)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ $) 52)) (* (($ (-767) $) 46) (($ (-917) $) NIL) (($ $ $) 43))) +(((-134) (-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4408 "*")) (-15 -3021 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2127 ($ (-767))) (-15 -1861 ((-112) $)) (-15 -2133 ((-112) $)) (-15 -3293 ((-112))) (-15 -2488 ((-112) (-112)))))) (T -134)) +((-3021 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3293 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4408 "*")) (-15 -3021 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2127 ($ (-767))) (-15 -1861 ((-112) $)) (-15 -2133 ((-112) $)) (-15 -3293 ((-112))) (-15 -2488 ((-112) (-112))))) +((-1836 (((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3123 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1836 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3123 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-767) (-172) (-172)) (T -135)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -1836 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3123 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) +((-2310 (((-112) $ $) NIL)) (-1364 (($ (-641 |#3|)) 63)) (-3789 (($ $) 125) (($ $ (-564) (-564)) 124)) (-4157 (($) 20)) (-3032 (((-3 |#3| "failed") $) 85)) (-1781 ((|#3| $) NIL)) (-4198 (($ $ (-641 (-564))) 126)) (-1822 (((-641 |#3|) $) 58)) (-3105 (((-767) $) 68)) (-2740 (($ $ $) 119)) (-1320 (($) 67)) (-1418 (((-1152) $) NIL)) (-1402 (($) 19)) (-3840 (((-1114) $) NIL)) (-4353 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-641 (-564))) 75)) (-2073 (((-767) $) 69)) (-4073 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-2322 (((-858) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1136 |#2| |#3|)) 104) (($ (-641 |#3|)) 76) (($ (-641 $)) 82)) (-2389 (($) 95 T CONST)) (-2403 (($) 96 T CONST)) (-2921 (((-112) $ $) 106)) (-3021 (($ $) 112) (($ $ $) 110)) (-3011 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121))) +(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-767)) (-470 (-564) (-767)) (-10 -8 (-15 -2322 ($ (-240 |#2| |#3|))) (-15 -2322 ($ (-1136 |#2| |#3|))) (-15 -2322 ($ (-641 |#3|))) (-15 -2322 ($ (-641 $))) (-15 -3105 ((-767) $)) (-15 -4353 (|#3| $)) (-15 -4353 (|#3| $ (-564))) (-15 -4353 (|#3| $ (-564) (-564))) (-15 -4353 (|#3| $ (-564) (-564) (-564))) (-15 -4353 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4353 (|#3| $ (-641 (-564)))) (-15 -2740 ($ $ $)) (-15 * ($ $ $)) (-15 -4073 ($ $ (-564) $ (-564))) (-15 -4073 ($ $ (-564) (-564))) (-15 -3789 ($ $)) (-15 -3789 ($ $ (-564) (-564))) (-15 -4198 ($ $ (-641 (-564)))) (-15 -1402 ($)) (-15 -1320 ($)) (-15 -1822 ((-641 |#3|) $)) (-15 -1364 ($ (-641 |#3|))) (-15 -4157 ($)))) (-564) (-767) (-172)) (T -136)) +((-2740 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-767)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4353 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4353 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-767)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-4073 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-4073 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3789 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1402 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1320 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)))) (-4157 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172))))) +(-13 (-465 |#3| (-767)) (-470 (-564) (-767)) (-10 -8 (-15 -2322 ($ (-240 |#2| |#3|))) (-15 -2322 ($ (-1136 |#2| |#3|))) (-15 -2322 ($ (-641 |#3|))) (-15 -2322 ($ (-641 $))) (-15 -3105 ((-767) $)) (-15 -4353 (|#3| $)) (-15 -4353 (|#3| $ (-564))) (-15 -4353 (|#3| $ (-564) (-564))) (-15 -4353 (|#3| $ (-564) (-564) (-564))) (-15 -4353 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4353 (|#3| $ (-641 (-564)))) (-15 -2740 ($ $ $)) (-15 * ($ $ $)) (-15 -4073 ($ $ (-564) $ (-564))) (-15 -4073 ($ $ (-564) (-564))) (-15 -3789 ($ $)) (-15 -3789 ($ $ (-564) (-564))) (-15 -4198 ($ $ (-641 (-564)))) (-15 -1402 ($)) (-15 -1320 ($)) (-15 -1822 ((-641 |#3|) $)) (-15 -1364 ($ (-641 |#3|))) (-15 -4157 ($)))) +((-2310 (((-112) $ $) NIL)) (-3725 (((-1129) $) 11)) (-3713 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-137) (-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $))))) (T -137)) +((-3713 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))) +(-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-1505 (((-186) $) 10)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-641 (-1129)) $) 13)) (-2921 (((-112) $ $) NIL))) +(((-138) (-13 (-1077) (-10 -8 (-15 -1505 ((-186) $)) (-15 -2433 ((-641 (-1129)) $))))) (T -138)) +((-1505 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138))))) +(-13 (-1077) (-10 -8 (-15 -1505 ((-186) $)) (-15 -2433 ((-641 (-1129)) $)))) +((-2310 (((-112) $ $) NIL)) (-4244 (((-641 (-861)) $) NIL)) (-2420 (((-506) $) NIL)) (-1418 (((-1152) $) NIL)) (-1505 (((-186) $) NIL)) (-3840 (((-1114) $) NIL)) (-3117 (((-641 (-112)) $) NIL)) (-2322 (((-858) $) NIL) (((-187) $) 6)) (-3663 (((-55) $) NIL)) (-2921 (((-112) $ $) NIL))) (((-139) (-13 (-185) (-611 (-187)))) (T -139)) NIL (-13 (-185) (-611 (-187))) -((-1994 (((-641 (-183)) $) 13)) (-2407 (((-641 (-183)) $) 14)) (-3963 (((-641 (-835)) $) 10)) (-4015 (((-139) $) 7)) (-1831 (((-859) $) 16))) -(((-140) (-13 (-611 (-859)) (-10 -8 (-15 -4015 ((-139) $)) (-15 -3963 ((-641 (-835)) $)) (-15 -1994 ((-641 (-183)) $)) (-15 -2407 ((-641 (-183)) $))))) (T -140)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) -(-13 (-611 (-859)) (-10 -8 (-15 -4015 ((-139) $)) (-15 -3963 ((-641 (-835)) $)) (-15 -1994 ((-641 (-183)) $)) (-15 -2407 ((-641 (-183)) $)))) -((-1817 (((-112) $ $) NIL)) (-3129 (($) 17 T CONST)) (-3002 (($) NIL (|has| (-144) (-368)))) (-3650 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2396 (($ $ $) NIL)) (-2172 (((-112) $ $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| (-144) (-368)))) (-3810 (($) NIL) (($ (-641 (-144))) NIL)) (-4145 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3644 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (($ (-144) $) 61 (|has| $ (-6 -4406)))) (-2576 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1988 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-2900 (($) NIL (|has| (-144) (-368)))) (-1433 (((-641 (-144)) $) 70 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-1925 (((-144) $) NIL (|has| (-144) (-847)))) (-2640 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3375 (((-144) $) NIL (|has| (-144) (-847)))) (-2250 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-144) (-144)) $) 65)) (-1573 (($) 18 T CONST)) (-1811 (((-918) $) NIL (|has| (-144) (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3425 (($ $ $) 30)) (-2401 (((-144) $) 62)) (-2783 (($ (-144) $) 60)) (-1468 (($ (-918)) NIL (|has| (-144) (-368)))) (-4345 (($) 16 T CONST)) (-2780 (((-1114) $) NIL)) (-3995 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4153 (((-144) $) 63)) (-4077 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 58)) (-2561 (($) 15 T CONST)) (-3405 (($ $ $) 32) (($ $ (-144)) NIL)) (-4232 (($ (-641 (-144))) NIL) (($) NIL)) (-2791 (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-1152) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-641 (-144)) $) 35)) (-1842 (($ (-641 (-144))) NIL)) (-3028 (($ $) 33 (|has| (-144) (-368)))) (-1831 (((-859) $) 55)) (-1788 (($ (-1152)) 14) (($ (-641 (-144))) 52)) (-3434 (((-768) $) NIL)) (-3131 (($) 59) (($ (-641 (-144))) NIL)) (-2321 (($ (-641 (-144))) NIL)) (-1963 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3424 (($) 21 T CONST)) (-2220 (($) 20 T CONST)) (-1702 (((-112) $ $) 24)) (-2828 (((-768) $) 57 (|has| $ (-6 -4406))))) -(((-141) (-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -1788 ($ (-1152))) (-15 -1788 ($ (-641 (-144)))) (-15 -2561 ($) -1809) (-15 -4345 ($) -1809) (-15 -3129 ($) -1809) (-15 -1573 ($) -1809) (-15 -2220 ($) -1809) (-15 -3424 ($) -1809)))) (T -141)) -((-1788 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) (-2561 (*1 *1) (-5 *1 (-141))) (-4345 (*1 *1) (-5 *1 (-141))) (-3129 (*1 *1) (-5 *1 (-141))) (-1573 (*1 *1) (-5 *1 (-141))) (-2220 (*1 *1) (-5 *1 (-141))) (-3424 (*1 *1) (-5 *1 (-141)))) -(-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -1788 ($ (-1152))) (-15 -1788 ($ (-641 (-144)))) (-15 -2561 ($) -1809) (-15 -4345 ($) -1809) (-15 -3129 ($) -1809) (-15 -1573 ($) -1809) (-15 -2220 ($) -1809) (-15 -3424 ($) -1809))) -((-2203 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2980 ((|#1| |#3|) 9)) (-1648 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2980 (|#1| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -2203 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-373 |#2|)) (T -142)) -((-2203 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-2980 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4))))) -(-10 -7 (-15 -2980 (|#1| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -2203 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2163 (($ $ $) 8)) (-3839 (($ $) 7)) (-4254 (($ $ $) 6))) +((-2638 (((-641 (-183)) $) 13)) (-3875 (((-641 (-183)) $) 14)) (-3062 (((-641 (-834)) $) 10)) (-1403 (((-139) $) 7)) (-2322 (((-858) $) 16))) +(((-140) (-13 (-611 (-858)) (-10 -8 (-15 -1403 ((-139) $)) (-15 -3062 ((-641 (-834)) $)) (-15 -2638 ((-641 (-183)) $)) (-15 -3875 ((-641 (-183)) $))))) (T -140)) +((-1403 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-641 (-834))) (-5 *1 (-140)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) +(-13 (-611 (-858)) (-10 -8 (-15 -1403 ((-139) $)) (-15 -3062 ((-641 (-834)) $)) (-15 -2638 ((-641 (-183)) $)) (-15 -3875 ((-641 (-183)) $)))) +((-2310 (((-112) $ $) NIL)) (-4084 (($) 17 T CONST)) (-2245 (($) NIL (|has| (-144) (-368)))) (-1565 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-1294 (($ $ $) NIL)) (-3910 (((-112) $ $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| (-144) (-368)))) (-1740 (($) NIL) (($ (-641 (-144))) NIL)) (-4328 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3175 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (($ (-144) $) 61 (|has| $ (-6 -4406)))) (-3628 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3239 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3860 (($) NIL (|has| (-144) (-368)))) (-3534 (((-641 (-144)) $) 70 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1501 (((-144) $) NIL (|has| (-144) (-846)))) (-1834 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-2622 (((-144) $) NIL (|has| (-144) (-846)))) (-1456 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-144) (-144)) $) 65)) (-2828 (($) 18 T CONST)) (-1368 (((-917) $) NIL (|has| (-144) (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-1648 (($ $ $) 30)) (-1340 (((-144) $) 62)) (-3861 (($ (-144) $) 60)) (-1998 (($ (-917)) NIL (|has| (-144) (-368)))) (-2643 (($) 16 T CONST)) (-3840 (((-1114) $) NIL)) (-3393 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1313 (((-144) $) 63)) (-1763 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 58)) (-2312 (($) 15 T CONST)) (-2727 (($ $ $) 32) (($ $ (-144)) NIL)) (-3977 (($ (-641 (-144))) NIL) (($) NIL)) (-3852 (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-1152) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-641 (-144)) $) 35)) (-2335 (($ (-641 (-144))) NIL)) (-2482 (($ $) 33 (|has| (-144) (-368)))) (-2322 (((-858) $) 55)) (-4261 (($ (-1152)) 14) (($ (-641 (-144))) 52)) (-1738 (((-767) $) NIL)) (-2451 (($) 59) (($ (-641 (-144))) NIL)) (-1717 (($ (-641 (-144))) NIL)) (-2313 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1636 (($) 21 T CONST)) (-3188 (($) 20 T CONST)) (-2921 (((-112) $ $) 24)) (-2059 (((-767) $) 57 (|has| $ (-6 -4406))))) +(((-141) (-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -4261 ($ (-1152))) (-15 -4261 ($ (-641 (-144)))) (-15 -2312 ($) -2255) (-15 -2643 ($) -2255) (-15 -4084 ($) -2255) (-15 -2828 ($) -2255) (-15 -3188 ($) -2255) (-15 -1636 ($) -2255)))) (T -141)) +((-4261 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))) (-4261 (*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) (-2312 (*1 *1) (-5 *1 (-141))) (-2643 (*1 *1) (-5 *1 (-141))) (-4084 (*1 *1) (-5 *1 (-141))) (-2828 (*1 *1) (-5 *1 (-141))) (-3188 (*1 *1) (-5 *1 (-141))) (-1636 (*1 *1) (-5 *1 (-141)))) +(-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -4261 ($ (-1152))) (-15 -4261 ($ (-641 (-144)))) (-15 -2312 ($) -2255) (-15 -2643 ($) -2255) (-15 -4084 ($) -2255) (-15 -2828 ($) -2255) (-15 -3188 ($) -2255) (-15 -1636 ($) -2255))) +((-3018 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2135 ((|#1| |#3|) 9)) (-2284 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2135 (|#1| |#3|)) (-15 -2284 (|#3| |#3|)) (-15 -3018 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-988 |#1|) (-373 |#2|)) (T -142)) +((-3018 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-2284 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4))))) +(-10 -7 (-15 -2135 (|#1| |#3|)) (-15 -2284 (|#3| |#3|)) (-15 -3018 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3808 (($ $ $) 8)) (-4312 (($ $) 7)) (-2994 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-2163 (*1 *1 *1 *1) (-4 *1 (-143))) (-3839 (*1 *1 *1) (-4 *1 (-143))) (-4254 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -4254 ($ $ $)) (-15 -3839 ($ $)) (-15 -2163 ($ $ $)))) -((-1817 (((-112) $ $) NIL)) (-2676 (((-112) $) 36)) (-3129 (($ $) 52)) (-2641 (($) 23)) (-3267 (((-768)) 10)) (-2900 (($) 22)) (-2801 (($) 24)) (-2300 (((-768) $) 18)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-3899 (((-112) $) 38)) (-1573 (($ $) 53)) (-1811 (((-918) $) 20)) (-2723 (((-1152) $) 46)) (-1468 (($ (-918)) 17)) (-2024 (((-112) $) 34)) (-2780 (((-1114) $) NIL)) (-1905 (($) 25)) (-3453 (((-112) $) 32)) (-1831 (((-859) $) 27)) (-2239 (($ (-768)) 16) (($ (-1152)) 51)) (-3516 (((-112) $) 42)) (-3560 (((-112) $) 40)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 7)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 8))) -(((-144) (-13 (-841) (-10 -8 (-15 -2300 ((-768) $)) (-15 -2239 ($ (-768))) (-15 -2239 ($ (-1152))) (-15 -2641 ($)) (-15 -2801 ($)) (-15 -1905 ($)) (-15 -3129 ($ $)) (-15 -1573 ($ $)) (-15 -3453 ((-112) $)) (-15 -2024 ((-112) $)) (-15 -3560 ((-112) $)) (-15 -2676 ((-112) $)) (-15 -3899 ((-112) $)) (-15 -3516 ((-112) $))))) (T -144)) -((-2300 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) (-2641 (*1 *1) (-5 *1 (-144))) (-2801 (*1 *1) (-5 *1 (-144))) (-1905 (*1 *1) (-5 *1 (-144))) (-3129 (*1 *1 *1) (-5 *1 (-144))) (-1573 (*1 *1 *1) (-5 *1 (-144))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-841) (-10 -8 (-15 -2300 ((-768) $)) (-15 -2239 ($ (-768))) (-15 -2239 ($ (-1152))) (-15 -2641 ($)) (-15 -2801 ($)) (-15 -1905 ($)) (-15 -3129 ($ $)) (-15 -1573 ($ $)) (-15 -3453 ((-112) $)) (-15 -2024 ((-112) $)) (-15 -3560 ((-112) $)) (-15 -2676 ((-112) $)) (-15 -3899 ((-112) $)) (-15 -3516 ((-112) $)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-4018 (((-3 $ "failed") $) 35)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-3808 (*1 *1 *1 *1) (-4 *1 (-143))) (-4312 (*1 *1 *1) (-4 *1 (-143))) (-2994 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -2994 ($ $ $)) (-15 -4312 ($ $)) (-15 -3808 ($ $ $)))) +((-2310 (((-112) $ $) NIL)) (-4065 (((-112) $) 36)) (-4084 (($ $) 52)) (-1842 (($) 23)) (-1959 (((-767)) 10)) (-3860 (($) 22)) (-4025 (($) 24)) (-2758 (((-767) $) 18)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-3637 (((-112) $) 38)) (-2828 (($ $) 53)) (-1368 (((-917) $) 20)) (-1418 (((-1152) $) 46)) (-1998 (($ (-917)) 17)) (-1709 (((-112) $) 34)) (-3840 (((-1114) $) NIL)) (-2978 (($) 25)) (-2517 (((-112) $) 32)) (-2322 (((-858) $) 27)) (-2741 (($ (-767)) 16) (($ (-1152)) 51)) (-1321 (((-112) $) 42)) (-3599 (((-112) $) 40)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 7)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 8))) +(((-144) (-13 (-840) (-10 -8 (-15 -2758 ((-767) $)) (-15 -2741 ($ (-767))) (-15 -2741 ($ (-1152))) (-15 -1842 ($)) (-15 -4025 ($)) (-15 -2978 ($)) (-15 -4084 ($ $)) (-15 -2828 ($ $)) (-15 -2517 ((-112) $)) (-15 -1709 ((-112) $)) (-15 -3599 ((-112) $)) (-15 -4065 ((-112) $)) (-15 -3637 ((-112) $)) (-15 -1321 ((-112) $))))) (T -144)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-2741 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-2741 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) (-1842 (*1 *1) (-5 *1 (-144))) (-4025 (*1 *1) (-5 *1 (-144))) (-2978 (*1 *1) (-5 *1 (-144))) (-4084 (*1 *1 *1) (-5 *1 (-144))) (-2828 (*1 *1 *1) (-5 *1 (-144))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-840) (-10 -8 (-15 -2758 ((-767) $)) (-15 -2741 ($ (-767))) (-15 -2741 ($ (-1152))) (-15 -1842 ($)) (-15 -4025 ($)) (-15 -2978 ($)) (-15 -4084 ($ $)) (-15 -2828 ($ $)) (-15 -2517 ((-112) $)) (-15 -1709 ((-112) $)) (-15 -3599 ((-112) $)) (-15 -4065 ((-112) $)) (-15 -3637 ((-112) $)) (-15 -1321 ((-112) $)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-2409 (((-3 $ "failed") $) 35)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-145) (-140)) (T -145)) -((-4018 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1046) (-10 -8 (-15 -4018 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1349 ((|#1| (-685 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -1349 (|#1| (-685 |#1|) |#1|))) (-172)) (T -146)) -((-1349 (*1 *2 *3 *2) (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -1349 (|#1| (-685 |#1|) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-2409 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1045) (-10 -8 (-15 -2409 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2117 ((|#1| (-685 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -2117 (|#1| (-685 |#1|) |#1|))) (-172)) (T -146)) +((-2117 (*1 *2 *3 *2) (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -2117 (|#1| (-685 |#1|) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-147) (-140)) (T -147)) NIL -(-13 (-1046)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2183 (((-2 (|:| -1558 (-768)) (|:| -2860 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768)) 75)) (-3605 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|) 55)) (-1421 (((-2 (|:| -2860 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 40)) (-1366 ((|#1| |#3| |#3|) 43)) (-2633 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-1764 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|) 52))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1421 ((-2 (|:| -2860 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3605 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -2183 ((-2 (|:| -1558 (-768)) (|:| -2860 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -1366 (|#1| |#3| |#3|)) (-15 -2633 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1764 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|))) (T -148)) -((-1764 (*1 *2 *3 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-2633 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) (-1366 (*1 *2 *3 *3) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-2183 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3)))) (-3605 (*1 *2 *3) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2860 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) -(-10 -7 (-15 -1421 ((-2 (|:| -2860 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3605 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -2183 ((-2 (|:| -1558 (-768)) (|:| -2860 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -1366 (|#1| |#3| |#3|)) (-15 -2633 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1764 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|))) -((-2601 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 34))) -(((-149 |#1| |#2|) (-10 -7 (-15 -2601 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) (-545) (-166 |#1|)) (T -149)) -((-2601 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -2601 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) -((-3752 (($ (-1 (-112) |#2|) $) 35)) (-3337 (($ $) 42)) (-2576 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1988 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3995 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-4077 (((-112) (-1 (-112) |#2|) $) 22)) (-2791 (((-768) (-1 (-112) |#2|) $) 18) (((-768) |#2| $) NIL)) (-1963 (((-112) (-1 (-112) |#2|) $) 21)) (-2828 (((-768) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -3337 (|#1| |#1|)) (-15 -2576 (|#1| |#2| |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3995 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2828 ((-768) |#1|))) (-151 |#2|) (-1209)) (T -150)) -NIL -(-10 -8 (-15 -3337 (|#1| |#1|)) (-15 -2576 (|#1| |#2| |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3995 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2828 ((-768) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-3752 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-3337 (($ $) 41 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406))) (($ |#1| $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 40 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 49)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +(-13 (-1045)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2829 (((-2 (|:| -3866 (-767)) (|:| -3139 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767)) 75)) (-2841 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|) 55)) (-4242 (((-2 (|:| -3139 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 40)) (-3419 ((|#1| |#3| |#3|) 43)) (-3100 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-4037 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|) 52))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -4242 ((-2 (|:| -3139 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2841 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -2829 ((-2 (|:| -3866 (-767)) (|:| -3139 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -3419 (|#1| |#3| |#3|)) (-15 -3100 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -4037 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|))) (T -148)) +((-4037 (*1 *2 *3 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-3100 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) (-3419 (*1 *2 *3 *3) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1235 *3)))) (-2841 (*1 *2 *3) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-4242 (*1 *2 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3139 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(-10 -7 (-15 -4242 ((-2 (|:| -3139 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2841 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -2829 ((-2 (|:| -3866 (-767)) (|:| -3139 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -3419 (|#1| |#3| |#3|)) (-15 -3100 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -4037 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) +((-2732 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 34))) +(((-149 |#1| |#2|) (-10 -7 (-15 -2732 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) (-545) (-166 |#1|)) (T -149)) +((-2732 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -2732 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) +((-2957 (($ (-1 (-112) |#2|) $) 35)) (-2027 (($ $) 42)) (-3628 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3239 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3393 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-1763 (((-112) (-1 (-112) |#2|) $) 22)) (-3852 (((-767) (-1 (-112) |#2|) $) 18) (((-767) |#2| $) NIL)) (-2313 (((-112) (-1 (-112) |#2|) $) 21)) (-2059 (((-767) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -2027 (|#1| |#1|)) (-15 -3628 (|#1| |#2| |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2957 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3393 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2059 ((-767) |#1|))) (-151 |#2|) (-1209)) (T -150)) +NIL +(-10 -8 (-15 -2027 (|#1| |#1|)) (-15 -3628 (|#1| |#2| |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2957 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3393 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2059 ((-767) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-2957 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2027 (($ $) 41 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406))) (($ |#1| $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 40 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 49)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-151 |#1|) (-140) (-1209)) (T -151)) -((-1842 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) (-3995 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1988 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1988 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-3752 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-1988 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2576 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-3337 (*1 *1 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))) -(-13 (-489 |t#1|) (-10 -8 (-15 -1842 ($ (-641 |t#1|))) (-15 -3995 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4406)) (PROGN (-15 -1988 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1988 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2576 ($ (-1 (-112) |t#1|) $)) (-15 -3752 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1988 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2576 ($ |t#1| $)) (-15 -3337 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) 113)) (-2949 (((-112) $) NIL)) (-3186 (($ |#2| (-641 (-918))) 73)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2727 (($ (-918)) 61)) (-3548 (((-134)) 26)) (-1831 (((-859) $) 88) (($ (-564)) 57) (($ |#2|) 58)) (-2742 ((|#2| $ (-641 (-918))) 76)) (-2219 (((-768)) 23 T CONST)) (-1293 (($) 51 T CONST)) (-1300 (($) 55 T CONST)) (-1702 (((-112) $ $) 37)) (-1823 (($ $ |#2|) NIL)) (-1808 (($ $) 46) (($ $ $) 44)) (-1797 (($ $ $) 42)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -2727 ($ (-918))) (-15 -3186 ($ |#2| (-641 (-918)))) (-15 -2742 (|#2| $ (-641 (-918)))) (-15 -3733 ((-3 $ "failed") $)))) (-918) (-363) (-990 |#1| |#2|)) (T -152)) -((-3733 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363)) (-14 *4 (-990 *2 *3)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-990 *3 *4)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-4 *2 (-363)) (-14 *5 (-990 *4 *2)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-14 *5 (-990 *4 *2))))) -(-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -2727 ($ (-918))) (-15 -3186 ($ |#2| (-641 (-918)))) (-15 -2742 (|#2| $ (-641 (-918)))) (-15 -3733 ((-3 $ "failed") $)))) -((-3914 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225)) 60)) (-4003 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 97) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 98)) (-1638 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225))))) 101) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225)))) 100) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 93) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 94))) -(((-153) (-10 -7 (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -4003 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -4003 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -3914 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))))))) (T -153)) -((-1638 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225))))))) (-1638 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225)))))) (-3914 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 *4)))) (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4)))))) (-4003 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-1638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -4003 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -4003 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -3914 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -1638 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225))))))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3880 (((-641 (-1129)) $) 20)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-1129) $) 9)) (-1702 (((-112) $ $) NIL))) -(((-154) (-13 (-1077) (-10 -8 (-15 -3880 ((-641 (-1129)) $)) (-15 -1328 ((-1129) $))))) (T -154)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))) -(-13 (-1077) (-10 -8 (-15 -3880 ((-641 (-1129)) $)) (-15 -1328 ((-1129) $)))) -((-2466 (((-641 (-169 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -2466 ((-641 (-169 |#2|)) |#1| |#2|))) (-1235 (-169 (-564))) (-13 (-363) (-845))) (T -155)) -((-2466 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845)))))) -(-10 -7 (-15 -2466 ((-641 (-169 |#2|)) |#1| |#2|))) -((-1817 (((-112) $ $) NIL)) (-4383 (((-1208) $) 12)) (-4372 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-156) (-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1208) $))))) (T -156)) -((-4372 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))) -(-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1208) $)))) -((-1817 (((-112) $ $) NIL)) (-2083 (($) 40)) (-4112 (($) 39)) (-1526 (((-918)) 45)) (-2723 (((-1152) $) NIL)) (-3018 (((-564) $) 43)) (-2780 (((-1114) $) NIL)) (-2651 (($) 41)) (-2092 (($ (-564)) 46)) (-1831 (((-859) $) 52)) (-2255 (($) 42)) (-1702 (((-112) $ $) 37)) (-1797 (($ $ $) 34)) (* (($ (-918) $) 44) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1797 ($ $ $)) (-15 -4112 ($)) (-15 -2083 ($)) (-15 -2651 ($)) (-15 -2255 ($)) (-15 -3018 ((-564) $)) (-15 -1526 ((-918))) (-15 -2092 ($ (-564)))))) (T -157)) -((-1797 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-4112 (*1 *1) (-5 *1 (-157))) (-2083 (*1 *1) (-5 *1 (-157))) (-2651 (*1 *1) (-5 *1 (-157))) (-2255 (*1 *1) (-5 *1 (-157))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-1526 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1797 ($ $ $)) (-15 -4112 ($)) (-15 -2083 ($)) (-15 -2651 ($)) (-15 -2255 ($)) (-15 -3018 ((-564) $)) (-15 -1526 ((-918))) (-15 -2092 ($ (-564))))) -((-3660 ((|#2| |#2| (-1086 |#2|)) 98) ((|#2| |#2| (-1170)) 75)) (-4049 ((|#2| |#2| (-1086 |#2|)) 97) ((|#2| |#2| (-1170)) 74)) (-2163 ((|#2| |#2| |#2|) 25)) (-1841 (((-114) (-114)) 111)) (-2998 ((|#2| (-641 |#2|)) 130)) (-3078 ((|#2| (-641 |#2|)) 151)) (-2200 ((|#2| (-641 |#2|)) 138)) (-4149 ((|#2| |#2|) 136)) (-1791 ((|#2| (-641 |#2|)) 124)) (-1380 ((|#2| (-641 |#2|)) 125)) (-1914 ((|#2| (-641 |#2|)) 149)) (-3882 ((|#2| |#2| (-1170)) 63) ((|#2| |#2|) 62)) (-3839 ((|#2| |#2|) 21)) (-4254 ((|#2| |#2| |#2|) 24)) (-1322 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4254 (|#2| |#2| |#2|)) (-15 -2163 (|#2| |#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -3882 (|#2| |#2| (-1170))) (-15 -3660 (|#2| |#2| (-1170))) (-15 -3660 (|#2| |#2| (-1086 |#2|))) (-15 -4049 (|#2| |#2| (-1170))) (-15 -4049 (|#2| |#2| (-1086 |#2|))) (-15 -4149 (|#2| |#2|)) (-15 -1914 (|#2| (-641 |#2|))) (-15 -2200 (|#2| (-641 |#2|))) (-15 -3078 (|#2| (-641 |#2|))) (-15 -1791 (|#2| (-641 |#2|))) (-15 -1380 (|#2| (-641 |#2|))) (-15 -2998 (|#2| (-641 |#2|)))) (-13 (-847) (-556)) (-430 |#1|)) (T -158)) -((-2998 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1914 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4049 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-4049 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3660 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-3660 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3882 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2163 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4254 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))) -(-10 -7 (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4254 (|#2| |#2| |#2|)) (-15 -2163 (|#2| |#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -3882 (|#2| |#2| (-1170))) (-15 -3660 (|#2| |#2| (-1170))) (-15 -3660 (|#2| |#2| (-1086 |#2|))) (-15 -4049 (|#2| |#2| (-1170))) (-15 -4049 (|#2| |#2| (-1086 |#2|))) (-15 -4149 (|#2| |#2|)) (-15 -1914 (|#2| (-641 |#2|))) (-15 -2200 (|#2| (-641 |#2|))) (-15 -3078 (|#2| (-641 |#2|))) (-15 -1791 (|#2| (-641 |#2|))) (-15 -1380 (|#2| (-641 |#2|))) (-15 -2998 (|#2| (-641 |#2|)))) -((-3429 ((|#1| |#1| |#1|) 65)) (-1698 ((|#1| |#1| |#1|) 62)) (-2163 ((|#1| |#1| |#1|) 56)) (-1983 ((|#1| |#1|) 45)) (-3691 ((|#1| |#1| (-641 |#1|)) 53)) (-3839 ((|#1| |#1|) 47)) (-4254 ((|#1| |#1| |#1|) 50))) -(((-159 |#1|) (-10 -7 (-15 -4254 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3691 (|#1| |#1| (-641 |#1|))) (-15 -1983 (|#1| |#1|)) (-15 -2163 (|#1| |#1| |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|))) (-545)) (T -159)) -((-3429 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1698 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2163 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1983 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3691 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-3839 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-4254 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(-10 -7 (-15 -4254 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3691 (|#1| |#1| (-641 |#1|))) (-15 -1983 (|#1| |#1|)) (-15 -2163 (|#1| |#1| |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|))) -((-3660 (($ $ (-1170)) 12) (($ $ (-1086 $)) 11)) (-4049 (($ $ (-1170)) 10) (($ $ (-1086 $)) 9)) (-2163 (($ $ $) 8)) (-3882 (($ $) 14) (($ $ (-1170)) 13)) (-3839 (($ $) 7)) (-4254 (($ $ $) 6))) +((-2335 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) (-3393 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-3239 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-3239 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-3628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-3239 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-3628 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2027 (*1 *1 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))) +(-13 (-489 |t#1|) (-10 -8 (-15 -2335 ($ (-641 |t#1|))) (-15 -3393 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4406)) (PROGN (-15 -3239 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3239 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3628 ($ (-1 (-112) |t#1|) $)) (-15 -2957 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3239 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3628 ($ |t#1| $)) (-15 -2027 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) 113)) (-1828 (((-112) $) NIL)) (-2507 (($ |#2| (-641 (-917))) 73)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3223 (($ (-917)) 61)) (-3480 (((-134)) 26)) (-2322 (((-858) $) 88) (($ (-564)) 57) (($ |#2|) 58)) (-3467 ((|#2| $ (-641 (-917))) 76)) (-3179 (((-767)) 23 T CONST)) (-2389 (($) 51 T CONST)) (-2403 (($) 55 T CONST)) (-2921 (((-112) $ $) 37)) (-3034 (($ $ |#2|) NIL)) (-3021 (($ $) 46) (($ $ $) 44)) (-3011 (($ $ $) 42)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1045) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -3223 ($ (-917))) (-15 -2507 ($ |#2| (-641 (-917)))) (-15 -3467 (|#2| $ (-641 (-917)))) (-15 -2689 ((-3 $ "failed") $)))) (-917) (-363) (-989 |#1| |#2|)) (T -152)) +((-2689 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) (-14 *4 (-989 *2 *3)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))) (-2507 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-989 *4 *2))))) +(-13 (-1045) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -3223 ($ (-917))) (-15 -2507 ($ |#2| (-641 (-917)))) (-15 -3467 (|#2| $ (-641 (-917)))) (-15 -2689 ((-3 $ "failed") $)))) +((-3785 (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))) (-225) (-225) (-225) (-225)) 60)) (-2242 (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564))) 97) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923)) 98)) (-2228 (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225))))) 101) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-939 (-225)))) 100) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564))) 93) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923)) 94))) +(((-153) (-10 -7 (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -2242 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -2242 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -3785 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-939 (-225))))) (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))))))) (T -153)) +((-2228 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 (-225))))))) (-2228 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-939 (-225)))))) (-3785 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 *4)))) (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 *4)))))) (-2242 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2228 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -2242 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -2242 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -3785 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-939 (-225))))) (-15 -2228 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225))))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3265 (((-641 (-1129)) $) 20)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-1129) $) 9)) (-2921 (((-112) $ $) NIL))) +(((-154) (-13 (-1077) (-10 -8 (-15 -3265 ((-641 (-1129)) $)) (-15 -2433 ((-1129) $))))) (T -154)) +((-3265 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))) +(-13 (-1077) (-10 -8 (-15 -3265 ((-641 (-1129)) $)) (-15 -2433 ((-1129) $)))) +((-3850 (((-641 (-169 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -3850 ((-641 (-169 |#2|)) |#1| |#2|))) (-1235 (-169 (-564))) (-13 (-363) (-844))) (T -155)) +((-3850 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -3850 ((-641 (-169 |#2|)) |#1| |#2|))) +((-2310 (((-112) $ $) NIL)) (-3725 (((-1208) $) 12)) (-3713 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-156) (-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1208) $))))) (T -156)) +((-3713 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))) +(-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1208) $)))) +((-2310 (((-112) $ $) NIL)) (-4231 (($) 40)) (-2095 (($) 39)) (-3506 (((-917)) 45)) (-1418 (((-1152) $) NIL)) (-2386 (((-564) $) 43)) (-3840 (((-1114) $) NIL)) (-1947 (($) 41)) (-4332 (($ (-564)) 46)) (-2322 (((-858) $) 52)) (-2253 (($) 42)) (-2921 (((-112) $ $) 37)) (-3011 (($ $ $) 34)) (* (($ (-917) $) 44) (($ (-225) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -3011 ($ $ $)) (-15 -2095 ($)) (-15 -4231 ($)) (-15 -1947 ($)) (-15 -2253 ($)) (-15 -2386 ((-564) $)) (-15 -3506 ((-917))) (-15 -4332 ($ (-564)))))) (T -157)) +((-3011 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-2095 (*1 *1) (-5 *1 (-157))) (-4231 (*1 *1) (-5 *1 (-157))) (-1947 (*1 *1) (-5 *1 (-157))) (-2253 (*1 *1) (-5 *1 (-157))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-3506 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (-4332 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -3011 ($ $ $)) (-15 -2095 ($)) (-15 -4231 ($)) (-15 -1947 ($)) (-15 -2253 ($)) (-15 -2386 ((-564) $)) (-15 -3506 ((-917))) (-15 -4332 ($ (-564))))) +((-3280 ((|#2| |#2| (-1086 |#2|)) 98) ((|#2| |#2| (-1170)) 75)) (-2740 ((|#2| |#2| (-1086 |#2|)) 97) ((|#2| |#2| (-1170)) 74)) (-3808 ((|#2| |#2| |#2|) 25)) (-3523 (((-114) (-114)) 111)) (-2202 ((|#2| (-641 |#2|)) 130)) (-1698 ((|#2| (-641 |#2|)) 151)) (-2996 ((|#2| (-641 |#2|)) 138)) (-4371 ((|#2| |#2|) 136)) (-4292 ((|#2| (-641 |#2|)) 124)) (-2074 ((|#2| (-641 |#2|)) 125)) (-3064 ((|#2| (-641 |#2|)) 149)) (-3476 ((|#2| |#2| (-1170)) 63) ((|#2| |#2|) 62)) (-4312 ((|#2| |#2|) 21)) (-2994 ((|#2| |#2| |#2|) 24)) (-1646 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2994 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -4312 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3476 (|#2| |#2| (-1170))) (-15 -3280 (|#2| |#2| (-1170))) (-15 -3280 (|#2| |#2| (-1086 |#2|))) (-15 -2740 (|#2| |#2| (-1170))) (-15 -2740 (|#2| |#2| (-1086 |#2|))) (-15 -4371 (|#2| |#2|)) (-15 -3064 (|#2| (-641 |#2|))) (-15 -2996 (|#2| (-641 |#2|))) (-15 -1698 (|#2| (-641 |#2|))) (-15 -4292 (|#2| (-641 |#2|))) (-15 -2074 (|#2| (-641 |#2|))) (-15 -2202 (|#2| (-641 |#2|)))) (-13 (-846) (-556)) (-430 |#1|)) (T -158)) +((-2202 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2740 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)))) (-2740 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3476 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4312 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2994 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))) +(-10 -7 (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2994 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -4312 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3476 (|#2| |#2| (-1170))) (-15 -3280 (|#2| |#2| (-1170))) (-15 -3280 (|#2| |#2| (-1086 |#2|))) (-15 -2740 (|#2| |#2| (-1170))) (-15 -2740 (|#2| |#2| (-1086 |#2|))) (-15 -4371 (|#2| |#2|)) (-15 -3064 (|#2| (-641 |#2|))) (-15 -2996 (|#2| (-641 |#2|))) (-15 -1698 (|#2| (-641 |#2|))) (-15 -4292 (|#2| (-641 |#2|))) (-15 -2074 (|#2| (-641 |#2|))) (-15 -2202 (|#2| (-641 |#2|)))) +((-1680 ((|#1| |#1| |#1|) 65)) (-1537 ((|#1| |#1| |#1|) 62)) (-3808 ((|#1| |#1| |#1|) 56)) (-2533 ((|#1| |#1|) 45)) (-2291 ((|#1| |#1| (-641 |#1|)) 53)) (-4312 ((|#1| |#1|) 47)) (-2994 ((|#1| |#1| |#1|) 50))) +(((-159 |#1|) (-10 -7 (-15 -2994 (|#1| |#1| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 -2291 (|#1| |#1| (-641 |#1|))) (-15 -2533 (|#1| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1| |#1|))) (-545)) (T -159)) +((-1680 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1537 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2533 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2291 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-4312 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2994 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(-10 -7 (-15 -2994 (|#1| |#1| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 -2291 (|#1| |#1| (-641 |#1|))) (-15 -2533 (|#1| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1| |#1|))) +((-3280 (($ $ (-1170)) 12) (($ $ (-1086 $)) 11)) (-2740 (($ $ (-1170)) 10) (($ $ (-1086 $)) 9)) (-3808 (($ $ $) 8)) (-3476 (($ $) 14) (($ $ (-1170)) 13)) (-4312 (($ $) 7)) (-2994 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-3882 (*1 *1 *1) (-4 *1 (-160))) (-3882 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3660 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3660 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) (-4049 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -3882 ($ $)) (-15 -3882 ($ $ (-1170))) (-15 -3660 ($ $ (-1170))) (-15 -3660 ($ $ (-1086 $))) (-15 -4049 ($ $ (-1170))) (-15 -4049 ($ $ (-1086 $))))) +((-3476 (*1 *1 *1) (-4 *1 (-160))) (-3476 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3280 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) (-2740 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-2740 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -3476 ($ $)) (-15 -3476 ($ $ (-1170))) (-15 -3280 ($ $ (-1170))) (-15 -3280 ($ $ (-1086 $))) (-15 -2740 ($ $ (-1170))) (-15 -2740 ($ $ (-1086 $))))) (((-143) . T)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-641 (-1129)) $) 10)) (-1702 (((-112) $ $) NIL))) -(((-161) (-13 (-1077) (-10 -8 (-15 -1328 ((-641 (-1129)) $))))) (T -161)) -((-1328 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161))))) -(-13 (-1077) (-10 -8 (-15 -1328 ((-641 (-1129)) $)))) -((-1817 (((-112) $ $) NIL)) (-2341 (($ (-564)) 14) (($ $ $) 15)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 18)) (-1702 (((-112) $ $) 9))) -(((-162) (-13 (-1094) (-10 -8 (-15 -2341 ($ (-564))) (-15 -2341 ($ $ $))))) (T -162)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-2341 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1094) (-10 -8 (-15 -2341 ($ (-564))) (-15 -2341 ($ $ $)))) -((-1841 (((-114) (-1170)) 102))) -(((-163) (-10 -7 (-15 -1841 ((-114) (-1170))))) (T -163)) -((-1841 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -1841 ((-114) (-1170)))) -((-2770 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2770 (|#3| |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|)) (T -164)) -((-2770 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1235 *4))))) -(-10 -7 (-15 -2770 (|#3| |#3|))) -((-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 225)) (-2713 ((|#2| $) 102)) (-3357 (($ $) 256)) (-3210 (($ $) 250)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-3330 (($ $) 254)) (-3187 (($ $) 248)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 147)) (-2237 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 145)) (-1449 (($ $ $) 231)) (-4050 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 161) (((-685 |#2|) (-685 $)) 155)) (-1988 (($ (-1166 |#2|)) 126) (((-3 $ "failed") (-407 (-1166 |#2|))) NIL)) (-3733 (((-3 $ "failed") $) 217)) (-2078 (((-3 (-407 (-564)) "failed") $) 207)) (-2272 (((-112) $) 202)) (-3036 (((-407 (-564)) $) 205)) (-3531 (((-918)) 95)) (-1424 (($ $ $) 233)) (-2702 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-3714 (($) 245)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 194) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 199)) (-3797 ((|#2| $) 100)) (-3774 (((-1166 |#2|) $) 128)) (-2449 (($ (-1 |#2| |#2|) $) 108)) (-2358 (($ $) 247)) (-1977 (((-1166 |#2|) $) 127)) (-3315 (($ $) 210)) (-2774 (($) 103)) (-1469 (((-418 (-1166 $)) (-1166 $)) 94)) (-2165 (((-418 (-1166 $)) (-1166 $)) 59)) (-1403 (((-3 $ "failed") $ |#2|) 212) (((-3 $ "failed") $ $) 215)) (-4326 (($ $) 246)) (-3920 (((-768) $) 228)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 238)) (-3190 ((|#2| (-1259 $)) NIL) ((|#2|) 97)) (-3534 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3019 (((-1166 |#2|)) 121)) (-3344 (($ $) 255)) (-3199 (($ $) 249)) (-2467 (((-1259 |#2|) $ (-1259 $)) 137) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 117) (((-685 |#2|) (-1259 $)) NIL)) (-2511 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-889 (-564)) $) 185) (((-889 (-379)) $) 189) (((-169 (-379)) $) 173) (((-169 (-225)) $) 168) (((-536) $) 181)) (-3047 (($ $) 104)) (-1831 (((-859) $) 144) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-1349 (((-1166 |#2|) $) 26)) (-2219 (((-768)) 106)) (-3427 (($ $) 259)) (-3276 (($ $) 253)) (-3406 (($ $) 257)) (-3254 (($ $) 251)) (-2562 ((|#2| $) 242)) (-3416 (($ $) 258)) (-3265 (($ $) 252)) (-1849 (($ $) 163)) (-1702 (((-112) $ $) 111)) (-1723 (((-112) $ $) 201)) (-1808 (($ $) 113) (($ $ $) NIL)) (-1797 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) 277) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 119) (($ $ $) 148) (($ $ |#2|) NIL) (($ |#2| $) 115) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -1831 (|#1| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3784 ((-2 (|:| -1674 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3920 ((-768) |#1|)) (-15 -1922 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -1424 (|#1| |#1| |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2511 ((-169 (-225)) |#1|)) (-15 -2511 ((-169 (-379)) |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -4326 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3714 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2165 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1469 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -2702 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2562 (|#2| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3047 (|#1| |#1|)) (-15 -2774 (|#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -1988 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1977 ((-1166 |#2|) |#1|)) (-15 -2511 (|#1| (-1166 |#2|))) (-15 -1988 (|#1| (-1166 |#2|))) (-15 -3019 ((-1166 |#2|))) (-15 -4050 ((-685 |#2|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2511 ((-1166 |#2|) |#1|)) (-15 -3190 (|#2|)) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -3774 ((-1166 |#2|) |#1|)) (-15 -1349 ((-1166 |#2|) |#1|)) (-15 -3190 (|#2| (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3797 (|#2| |#1|)) (-15 -2713 (|#2| |#1|)) (-15 -3531 ((-918))) (-15 -1831 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-2219 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3531 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3190 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3019 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -1831 (|#1| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3784 ((-2 (|:| -1674 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3920 ((-768) |#1|)) (-15 -1922 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -1424 (|#1| |#1| |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2511 ((-169 (-225)) |#1|)) (-15 -2511 ((-169 (-379)) |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -4326 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3714 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2165 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1469 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -2702 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2562 (|#2| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3047 (|#1| |#1|)) (-15 -2774 (|#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -1988 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1977 ((-1166 |#2|) |#1|)) (-15 -2511 (|#1| (-1166 |#2|))) (-15 -1988 (|#1| (-1166 |#2|))) (-15 -3019 ((-1166 |#2|))) (-15 -4050 ((-685 |#2|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2511 ((-1166 |#2|) |#1|)) (-15 -3190 (|#2|)) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -3774 ((-1166 |#2|) |#1|)) (-15 -1349 ((-1166 |#2|) |#1|)) (-15 -3190 (|#2| (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3797 (|#2| |#1|)) (-15 -2713 (|#2| |#1|)) (-15 -3531 ((-918))) (-15 -1831 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 93 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1537 (($ $) 94 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1932 (((-112) $) 96 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3390 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-2713 ((|#1| $) 53)) (-3357 (($ $) 227 (|has| |#1| (-1194)))) (-3210 (($ $) 210 (|has| |#1| (-1194)))) (-3967 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-4088 (((-3 $ "failed") $ $) 19)) (-2345 (((-418 (-1166 $)) (-1166 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2427 (($ $) 113 (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3399 (((-418 $) $) 114 (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3083 (($ $) 240 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3554 (((-112) $ $) 104 (|has| |#1| (-307)))) (-3267 (((-768)) 87 (|has| |#1| (-368)))) (-3330 (($ $) 226 (|has| |#1| (-1194)))) (-3187 (($ $) 211 (|has| |#1| (-1194)))) (-3384 (($ $) 225 (|has| |#1| (-1194)))) (-3233 (($ $) 212 (|has| |#1| (-1194)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2237 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-3624 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1449 (($ $ $) 108 (|has| |#1| (-307)))) (-4206 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-4050 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-1988 (($ (-1166 |#1|)) 157) (((-3 $ "failed") (-407 (-1166 |#1|))) 154 (|has| |#1| (-363)))) (-3733 (((-3 $ "failed") $) 33)) (-3092 ((|#1| $) 252)) (-2078 (((-3 (-407 (-564)) "failed") $) 245 (|has| |#1| (-545)))) (-2272 (((-112) $) 247 (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) 246 (|has| |#1| (-545)))) (-3531 (((-918)) 55)) (-2900 (($) 90 (|has| |#1| (-368)))) (-1424 (($ $ $) 107 (|has| |#1| (-307)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 102 (|has| |#1| (-307)))) (-1830 (($) 148 (|has| |#1| (-349)))) (-4282 (((-112) $) 149 (|has| |#1| (-349)))) (-3340 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-1420 (((-112) $) 115 (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2702 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-3714 (($) 237 (|has| |#1| (-1194)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 260 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 259 (|has| |#1| (-883 (-379))))) (-2155 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 239 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-3797 ((|#1| $) 52)) (-2619 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-307)))) (-3774 (((-1166 |#1|) $) 45 (|has| |#1| (-363)))) (-1925 (($ $ $) 206 (|has| |#1| (-847)))) (-3375 (($ $ $) 205 (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) 261)) (-1811 (((-918) $) 89 (|has| |#1| (-368)))) (-2358 (($ $) 234 (|has| |#1| (-1194)))) (-1977 (((-1166 |#1|) $) 155)) (-2740 (($ (-641 $)) 100 (-4078 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 99 (-4078 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2723 (((-1152) $) 9)) (-3315 (($ $) 116 (|has| |#1| (-363)))) (-2884 (($) 142 (|has| |#1| (-349)) CONST)) (-1468 (($ (-918)) 88 (|has| |#1| (-368)))) (-2774 (($) 256)) (-3102 ((|#1| $) 253)) (-2780 (((-1114) $) 10)) (-1426 (($) 159)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 101 (-4078 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2777 (($ (-641 $)) 98 (-4078 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 97 (-4078 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 145 (|has| |#1| (-349)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2165 (((-418 (-1166 $)) (-1166 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3070 (((-418 $) $) 112 (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 109 (|has| |#1| (-307)))) (-1403 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 92 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-307)))) (-4326 (($ $) 235 (|has| |#1| (-1194)))) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 263 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 262 (|has| |#1| (-514 (-1170) |#1|)))) (-3920 (((-768) $) 105 (|has| |#1| (-307)))) (-1350 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 106 (|has| |#1| (-307)))) (-3190 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-1820 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-3534 (($ $ (-1 |#1| |#1|) (-768)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-641 (-1170)) (-641 (-768))) 129 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 130 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 131 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 132 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 134 (-4078 (-4348 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4348 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-4078 (-4348 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4348 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-4027 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3019 (((-1166 |#1|)) 158)) (-3395 (($ $) 224 (|has| |#1| (-1194)))) (-3245 (($ $) 213 (|has| |#1| (-1194)))) (-3297 (($) 147 (|has| |#1| (-349)))) (-3371 (($ $) 223 (|has| |#1| (-1194)))) (-3221 (($ $) 214 (|has| |#1| (-1194)))) (-3344 (($ $) 222 (|has| |#1| (-1194)))) (-3199 (($ $) 215 (|has| |#1| (-1194)))) (-2467 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2511 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) (((-1166 |#1|) $) 170) (($ (-1166 |#1|)) 156) (((-889 (-564)) $) 258 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 257 (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1019))) (((-169 (-225)) $) 208 (|has| |#1| (-1019))) (((-536) $) 207 (|has| |#1| (-612 (-536))))) (-3047 (($ $) 255)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 144 (-4078 (-4348 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-349))))) (-2522 (($ |#1| |#1|) 254)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 86 (-4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) 91 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-4018 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-4078 (-4348 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-145))))) (-1349 (((-1166 |#1|) $) 46)) (-2219 (((-768)) 28 T CONST)) (-3331 (((-1259 $)) 68)) (-3427 (($ $) 233 (|has| |#1| (-1194)))) (-3276 (($ $) 221 (|has| |#1| (-1194)))) (-3939 (((-112) $ $) 95 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3406 (($ $) 232 (|has| |#1| (-1194)))) (-3254 (($ $) 220 (|has| |#1| (-1194)))) (-3450 (($ $) 231 (|has| |#1| (-1194)))) (-3302 (($ $) 219 (|has| |#1| (-1194)))) (-2562 ((|#1| $) 249 (|has| |#1| (-1194)))) (-2315 (($ $) 230 (|has| |#1| (-1194)))) (-3316 (($ $) 218 (|has| |#1| (-1194)))) (-3439 (($ $) 229 (|has| |#1| (-1194)))) (-3287 (($ $) 217 (|has| |#1| (-1194)))) (-3416 (($ $) 228 (|has| |#1| (-1194)))) (-3265 (($ $) 216 (|has| |#1| (-1194)))) (-1849 (($ $) 250 (|has| |#1| (-1055)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1 |#1| |#1|) (-768)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-641 (-1170)) (-641 (-768))) 125 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 126 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 127 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 128 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 133 (-4078 (-4348 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4348 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-4078 (-4348 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4348 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1762 (((-112) $ $) 203 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 202 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 204 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 201 (|has| |#1| (-847)))) (-1823 (($ $ $) 120 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-407 (-564))) 238 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) 236 (|has| |#1| (-1194))) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-641 (-1129)) $) 10)) (-2921 (((-112) $ $) NIL))) +(((-161) (-13 (-1077) (-10 -8 (-15 -2433 ((-641 (-1129)) $))))) (T -161)) +((-2433 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161))))) +(-13 (-1077) (-10 -8 (-15 -2433 ((-641 (-1129)) $)))) +((-2310 (((-112) $ $) NIL)) (-1940 (($ (-564)) 14) (($ $ $) 15)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 18)) (-2921 (((-112) $ $) 9))) +(((-162) (-13 (-1094) (-10 -8 (-15 -1940 ($ (-564))) (-15 -1940 ($ $ $))))) (T -162)) +((-1940 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-1940 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1094) (-10 -8 (-15 -1940 ($ (-564))) (-15 -1940 ($ $ $)))) +((-3523 (((-114) (-1170)) 102))) +(((-163) (-10 -7 (-15 -3523 ((-114) (-1170))))) (T -163)) +((-3523 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163))))) +(-10 -7 (-15 -3523 ((-114) (-1170)))) +((-3742 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#3| |#3|))) (-1045) (-1235 |#1|) (-1235 |#2|)) (T -164)) +((-3742 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1235 *4))))) +(-10 -7 (-15 -3742 (|#3| |#3|))) +((-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 225)) (-3770 ((|#2| $) 102)) (-3802 (($ $) 256)) (-3661 (($ $) 250)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-3779 (($ $) 254)) (-3639 (($ $) 248)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 147)) (-1781 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 145)) (-2574 (($ $ $) 231)) (-2750 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 161) (((-685 |#2|) (-685 $)) 155)) (-3239 (($ (-1166 |#2|)) 126) (((-3 $ "failed") (-407 (-1166 |#2|))) NIL)) (-2689 (((-3 $ "failed") $) 217)) (-4175 (((-3 (-407 (-564)) "failed") $) 207)) (-2446 (((-112) $) 202)) (-2569 (((-407 (-564)) $) 205)) (-3105 (((-917)) 95)) (-2552 (($ $ $) 233)) (-4313 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-4223 (($) 245)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 194) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 199)) (-2019 ((|#2| $) 100)) (-1790 (((-1166 |#2|) $) 128)) (-3123 (($ (-1 |#2| |#2|) $) 108)) (-3439 (($ $) 247)) (-3228 (((-1166 |#2|) $) 127)) (-2639 (($ $) 210)) (-3777 (($) 103)) (-4209 (((-418 (-1166 $)) (-1166 $)) 94)) (-3832 (((-418 (-1166 $)) (-1166 $)) 59)) (-2526 (((-3 $ "failed") $ |#2|) 212) (((-3 $ "failed") $ $) 215)) (-3571 (($ $) 246)) (-3844 (((-767) $) 228)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 238)) (-3392 ((|#2| (-1259 $)) NIL) ((|#2|) 97)) (-1343 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2400 (((-1166 |#2|)) 121)) (-3792 (($ $) 255)) (-3650 (($ $) 249)) (-3864 (((-1259 |#2|) $ (-1259 $)) 137) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 117) (((-685 |#2|) (-1259 $)) NIL)) (-3172 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-888 (-564)) $) 185) (((-888 (-379)) $) 189) (((-169 (-379)) $) 173) (((-169 (-225)) $) 168) (((-536) $) 181)) (-2675 (($ $) 104)) (-2322 (((-858) $) 144) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2117 (((-1166 |#2|) $) 26)) (-3179 (((-767)) 106)) (-2672 (($ $) 259)) (-3732 (($ $) 253)) (-3849 (($ $) 257)) (-3708 (($ $) 251)) (-2328 ((|#2| $) 242)) (-2660 (($ $) 258)) (-3720 (($ $) 252)) (-3598 (($ $) 163)) (-2921 (((-112) $ $) 111)) (-2942 (((-112) $ $) 201)) (-3021 (($ $) 113) (($ $ $) NIL)) (-3011 (($ $ $) 112)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-564))) 277) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 119) (($ $ $) 148) (($ $ |#2|) NIL) (($ |#2| $) 115) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -2322 (|#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1864 ((-2 (|:| -2563 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3844 ((-767) |#1|)) (-15 -3153 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2639 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3172 ((-169 (-225)) |#1|)) (-15 -3172 ((-169 (-379)) |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -3720 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -3732 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4223 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3832 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -4313 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2328 (|#2| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2675 (|#1| |#1|)) (-15 -3777 (|#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3239 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -3228 ((-1166 |#2|) |#1|)) (-15 -3172 (|#1| (-1166 |#2|))) (-15 -3239 (|#1| (-1166 |#2|))) (-15 -2400 ((-1166 |#2|))) (-15 -2750 ((-685 |#2|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3172 ((-1166 |#2|) |#1|)) (-15 -3392 (|#2|)) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -1790 ((-1166 |#2|) |#1|)) (-15 -2117 ((-1166 |#2|) |#1|)) (-15 -3392 (|#2| (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2019 (|#2| |#1|)) (-15 -3770 (|#2| |#1|)) (-15 -3105 ((-917))) (-15 -2322 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-3179 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3105 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3392 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2400 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -2322 (|#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1864 ((-2 (|:| -2563 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3844 ((-767) |#1|)) (-15 -3153 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2639 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3172 ((-169 (-225)) |#1|)) (-15 -3172 ((-169 (-379)) |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -3720 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -3732 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4223 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3832 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -4313 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2328 (|#2| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2675 (|#1| |#1|)) (-15 -3777 (|#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3239 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -3228 ((-1166 |#2|) |#1|)) (-15 -3172 (|#1| (-1166 |#2|))) (-15 -3239 (|#1| (-1166 |#2|))) (-15 -2400 ((-1166 |#2|))) (-15 -2750 ((-685 |#2|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3172 ((-1166 |#2|) |#1|)) (-15 -3392 (|#2|)) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -1790 ((-1166 |#2|) |#1|)) (-15 -2117 ((-1166 |#2|) |#1|)) (-15 -3392 (|#2| (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2019 (|#2| |#1|)) (-15 -3770 (|#2| |#1|)) (-15 -3105 ((-917))) (-15 -2322 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 93 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3622 (($ $) 94 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3247 (((-112) $) 96 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2586 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3770 ((|#1| $) 53)) (-3802 (($ $) 227 (|has| |#1| (-1194)))) (-3661 (($ $) 210 (|has| |#1| (-1194)))) (-3109 (((-1182 (-917) (-767)) (-564)) 146 (|has| |#1| (-349)))) (-1862 (((-3 $ "failed") $ $) 19)) (-1986 (((-418 (-1166 $)) (-1166 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3453 (($ $) 113 (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2657 (((-418 $) $) 114 (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2387 (($ $) 240 (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3547 (((-112) $ $) 104 (|has| |#1| (-307)))) (-1959 (((-767)) 87 (|has| |#1| (-368)))) (-3779 (($ $) 226 (|has| |#1| (-1194)))) (-3639 (($ $) 211 (|has| |#1| (-1194)))) (-3825 (($ $) 225 (|has| |#1| (-1194)))) (-3684 (($ $) 212 (|has| |#1| (-1194)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-1781 (((-564) $) 168 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 165)) (-3013 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-2574 (($ $ $) 108 (|has| |#1| (-307)))) (-3689 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-2750 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-3239 (($ (-1166 |#1|)) 157) (((-3 $ "failed") (-407 (-1166 |#1|))) 154 (|has| |#1| (-363)))) (-2689 (((-3 $ "failed") $) 33)) (-2401 ((|#1| $) 252)) (-4175 (((-3 (-407 (-564)) "failed") $) 245 (|has| |#1| (-545)))) (-2446 (((-112) $) 247 (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) 246 (|has| |#1| (-545)))) (-3105 (((-917)) 55)) (-3860 (($) 90 (|has| |#1| (-368)))) (-2552 (($ $ $) 107 (|has| |#1| (-307)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 102 (|has| |#1| (-307)))) (-3422 (($) 148 (|has| |#1| (-349)))) (-3261 (((-112) $) 149 (|has| |#1| (-349)))) (-2180 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4229 (((-112) $) 115 (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-4313 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1054)) (|has| |#1| (-1194))))) (-4223 (($) 237 (|has| |#1| (-1194)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 260 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 259 (|has| |#1| (-882 (-379))))) (-3717 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 239 (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-2019 ((|#1| $) 52)) (-1620 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-307)))) (-1790 (((-1166 |#1|) $) 45 (|has| |#1| (-363)))) (-1501 (($ $ $) 206 (|has| |#1| (-846)))) (-2622 (($ $ $) 205 (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) 261)) (-1368 (((-917) $) 89 (|has| |#1| (-368)))) (-3439 (($ $) 234 (|has| |#1| (-1194)))) (-3228 (((-1166 |#1|) $) 155)) (-3202 (($ (-641 $)) 100 (-2789 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 99 (-2789 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1418 (((-1152) $) 9)) (-2639 (($ $) 116 (|has| |#1| (-363)))) (-3346 (($) 142 (|has| |#1| (-349)) CONST)) (-1998 (($ (-917)) 88 (|has| |#1| (-368)))) (-3777 (($) 256)) (-2415 ((|#1| $) 253)) (-3840 (((-1114) $) 10)) (-4095 (($) 159)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 101 (-2789 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3235 (($ (-641 $)) 98 (-2789 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 97 (-2789 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 145 (|has| |#1| (-349)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3832 (((-418 (-1166 $)) (-1166 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2375 (((-418 $) $) 112 (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 109 (|has| |#1| (-307)))) (-2526 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 92 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-307)))) (-3571 (($ $) 235 (|has| |#1| (-1194)))) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 263 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 262 (|has| |#1| (-514 (-1170) |#1|)))) (-3844 (((-767) $) 105 (|has| |#1| (-307)))) (-4353 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 106 (|has| |#1| (-307)))) (-3392 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-3337 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-1343 (($ $ (-1 |#1| |#1|) (-767)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-641 (-1170)) (-641 (-767))) 129 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 130 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 131 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 132 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 134 (-2789 (-2342 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2342 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-2789 (-2342 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2342 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2516 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-2400 (((-1166 |#1|)) 158)) (-3836 (($ $) 224 (|has| |#1| (-1194)))) (-3697 (($ $) 213 (|has| |#1| (-1194)))) (-3107 (($) 147 (|has| |#1| (-349)))) (-3814 (($ $) 223 (|has| |#1| (-1194)))) (-3672 (($ $) 214 (|has| |#1| (-1194)))) (-3792 (($ $) 222 (|has| |#1| (-1194)))) (-3650 (($ $) 215 (|has| |#1| (-1194)))) (-3864 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-3172 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) (((-1166 |#1|) $) 170) (($ (-1166 |#1|)) 156) (((-888 (-564)) $) 258 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 257 (|has| |#1| (-612 (-888 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1018))) (((-169 (-225)) $) 208 (|has| |#1| (-1018))) (((-536) $) 207 (|has| |#1| (-612 (-536))))) (-2675 (($ $) 255)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 144 (-2789 (-2342 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-349))))) (-3570 (($ |#1| |#1|) 254)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 86 (-2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) 91 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2409 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-2789 (-2342 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-145))))) (-2117 (((-1166 |#1|) $) 46)) (-3179 (((-767)) 28 T CONST)) (-3342 (((-1259 $)) 68)) (-2672 (($ $) 233 (|has| |#1| (-1194)))) (-3732 (($ $) 221 (|has| |#1| (-1194)))) (-4024 (((-112) $ $) 95 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3849 (($ $) 232 (|has| |#1| (-1194)))) (-3708 (($ $) 220 (|has| |#1| (-1194)))) (-2695 (($ $) 231 (|has| |#1| (-1194)))) (-3757 (($ $) 219 (|has| |#1| (-1194)))) (-2328 ((|#1| $) 249 (|has| |#1| (-1194)))) (-1511 (($ $) 230 (|has| |#1| (-1194)))) (-3768 (($ $) 218 (|has| |#1| (-1194)))) (-2684 (($ $) 229 (|has| |#1| (-1194)))) (-3746 (($ $) 217 (|has| |#1| (-1194)))) (-2660 (($ $) 228 (|has| |#1| (-1194)))) (-3720 (($ $) 216 (|has| |#1| (-1194)))) (-3598 (($ $) 250 (|has| |#1| (-1054)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1 |#1| |#1|) (-767)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-641 (-1170)) (-641 (-767))) 125 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 126 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 127 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 128 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 133 (-2789 (-2342 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2342 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-2789 (-2342 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2342 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2977 (((-112) $ $) 203 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 202 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 204 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 201 (|has| |#1| (-846)))) (-3034 (($ $ $) 120 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-407 (-564))) 238 (-12 (|has| |#1| (-998)) (|has| |#1| (-1194)))) (($ $ $) 236 (|has| |#1| (-1194))) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363))))) (((-166 |#1|) (-140) (-172)) (T -166)) -((-3797 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2774 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3047 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2522 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1403 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1849 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2078 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) -(-13 (-721 |t#1| (-1166 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-881 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -2522) (-15 -2774 ($)) (-15 -3047 ($ $)) (-15 -2522 ($ |t#1| |t#1|)) (-15 -3102 (|t#1| $)) (-15 -3092 (|t#1| $)) (-15 -3797 (|t#1| $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -1403 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#1| (-6 -4402)) (-6 -4402) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1019)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -1849 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1194)) (PROGN (-6 (-1194)) (-15 -2562 (|t#1| $)) (IF (|has| |t#1| (-999)) (-6 (-999)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2702 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-906)) (IF (|has| |t#1| (-307)) (-6 (-906)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1194)) ((-95) |has| |#1| (-1194)) ((-102) . T) ((-111 #0# #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4078 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-859)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1019)) ((-612 (-169 (-379))) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-612 #1=(-1166 |#1|)) . T) ((-231 |#1|) . T) ((-233) -4078 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1194)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4078 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -4078 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4078 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -4078 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1194)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -4078 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-721 |#1| #1#) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) -12 (|has| |#1| (-307)) (|has| |#1| (-906))) ((-917) -4078 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-999) -12 (|has| |#1| (-999)) (|has| |#1| (-1194))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1194) |has| |#1| (-1194)) ((-1197) |has| |#1| (-1194)) ((-1209) . T) ((-1213) -4078 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) -((-3070 (((-418 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -3070 ((-418 |#2|) |#2|))) (-307) (-1235 (-169 |#1|))) (T -167)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) -(-10 -7 (-15 -3070 ((-418 |#2|) |#2|))) -((-2449 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -2449 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -2449 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 34)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1537 (($ $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1932 (((-112) $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3390 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-2713 ((|#1| $) NIL)) (-3357 (($ $) NIL (|has| |#1| (-1194)))) (-3210 (($ $) NIL (|has| |#1| (-1194)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2427 (($ $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3399 (((-418 $) $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3083 (($ $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-307)))) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-3330 (($ $) NIL (|has| |#1| (-1194)))) (-3187 (($ $) NIL (|has| |#1| (-1194)))) (-3384 (($ $) NIL (|has| |#1| (-1194)))) (-3233 (($ $) NIL (|has| |#1| (-1194)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3624 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1449 (($ $ $) NIL (|has| |#1| (-307)))) (-4206 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1988 (($ (-1166 |#1|)) NIL) (((-3 $ "failed") (-407 (-1166 |#1|))) NIL (|has| |#1| (-363)))) (-3733 (((-3 $ "failed") $) NIL)) (-3092 ((|#1| $) 13)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2272 (((-112) $) NIL (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3531 (((-918)) NIL)) (-2900 (($) NIL (|has| |#1| (-368)))) (-1424 (($ $ $) NIL (|has| |#1| (-307)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-307)))) (-1830 (($) NIL (|has| |#1| (-349)))) (-4282 (((-112) $) NIL (|has| |#1| (-349)))) (-3340 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1420 (((-112) $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2702 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-3714 (($) NIL (|has| |#1| (-1194)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-2155 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-2949 (((-112) $) 36)) (-2915 (($ $ (-564)) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-3797 ((|#1| $) 47)) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-3774 (((-1166 |#1|) $) NIL (|has| |#1| (-363)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-2358 (($ $) NIL (|has| |#1| (-1194)))) (-1977 (((-1166 |#1|) $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-2884 (($) NIL (|has| |#1| (-349)) CONST)) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-2774 (($) NIL)) (-3102 ((|#1| $) 15)) (-2780 (((-1114) $) NIL)) (-1426 (($) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-307)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| |#1| (-349)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3070 (((-418 $) $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-307)))) (-1403 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-4326 (($ $) NIL (|has| |#1| (-1194)))) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3920 (((-768) $) NIL (|has| |#1| (-307)))) (-1350 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-307)))) (-3190 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-1820 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-3534 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-4027 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3019 (((-1166 |#1|)) NIL)) (-3395 (($ $) NIL (|has| |#1| (-1194)))) (-3245 (($ $) NIL (|has| |#1| (-1194)))) (-3297 (($) NIL (|has| |#1| (-349)))) (-3371 (($ $) NIL (|has| |#1| (-1194)))) (-3221 (($ $) NIL (|has| |#1| (-1194)))) (-3344 (($ $) NIL (|has| |#1| (-1194)))) (-3199 (($ $) NIL (|has| |#1| (-1194)))) (-2467 (((-1259 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2511 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1019))) (((-169 (-225)) $) NIL (|has| |#1| (-1019))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3047 (($ $) 46)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-349))))) (-2522 (($ |#1| |#1|) 38)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-4018 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1349 (((-1166 |#1|) $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL)) (-3427 (($ $) NIL (|has| |#1| (-1194)))) (-3276 (($ $) NIL (|has| |#1| (-1194)))) (-3939 (((-112) $ $) NIL (-4078 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3406 (($ $) NIL (|has| |#1| (-1194)))) (-3254 (($ $) NIL (|has| |#1| (-1194)))) (-3450 (($ $) NIL (|has| |#1| (-1194)))) (-3302 (($ $) NIL (|has| |#1| (-1194)))) (-2562 ((|#1| $) NIL (|has| |#1| (-1194)))) (-2315 (($ $) NIL (|has| |#1| (-1194)))) (-3316 (($ $) NIL (|has| |#1| (-1194)))) (-3439 (($ $) NIL (|has| |#1| (-1194)))) (-3287 (($ $) NIL (|has| |#1| (-1194)))) (-3416 (($ $) NIL (|has| |#1| (-1194)))) (-3265 (($ $) NIL (|has| |#1| (-1194)))) (-1849 (($ $) NIL (|has| |#1| (-1055)))) (-1293 (($) 28 T CONST)) (-1300 (($) 30 T CONST)) (-3213 (((-1152) $) 23 (|has| |#1| (-825))) (((-1152) $ (-112)) 25 (|has| |#1| (-825))) (((-1264) (-819) $) 26 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 27 (|has| |#1| (-825)))) (-3435 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 40)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) NIL (|has| |#1| (-1194))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) -(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-172)) (T -169)) -NIL -(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) -((-2511 (((-889 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2511 ((-889 |#1|) |#3|))) (-1094) (-13 (-612 (-889 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-2511 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -2511 ((-889 |#1|) |#3|))) -((-1817 (((-112) $ $) NIL)) (-2856 (((-112) $) 9)) (-3366 (((-112) $ (-112)) 11)) (-3654 (($) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1991 (($ $) 14)) (-1831 (((-859) $) 18)) (-4382 (((-112) $) 8)) (-3689 (((-112) $ (-112)) 10)) (-1702 (((-112) $ $) NIL))) -(((-171) (-13 (-1094) (-10 -8 (-15 -3654 ($)) (-15 -4382 ((-112) $)) (-15 -2856 ((-112) $)) (-15 -3689 ((-112) $ (-112))) (-15 -3366 ((-112) $ (-112))) (-15 -1991 ($ $))))) (T -171)) -((-3654 (*1 *1) (-5 *1 (-171))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3689 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3366 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1991 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1094) (-10 -8 (-15 -3654 ($)) (-15 -4382 ((-112) $)) (-15 -2856 ((-112) $)) (-15 -3689 ((-112) $ (-112))) (-15 -3366 ((-112) $ (-112))) (-15 -1991 ($ $)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-2019 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3777 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2675 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3570 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2526 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1194)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-4175 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) +(-13 (-720 |t#1| (-1166 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-880 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -3570) (-15 -3777 ($)) (-15 -2675 ($ $)) (-15 -3570 ($ |t#1| |t#1|)) (-15 -2415 (|t#1| $)) (-15 -2401 (|t#1| $)) (-15 -2019 (|t#1| $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -2526 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#1| (-6 -4402)) (-6 -4402) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3598 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1194)) (PROGN (-6 (-1194)) (-15 -2328 (|t#1| $)) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -4313 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-905)) (IF (|has| |t#1| (-307)) (-6 (-905)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1194)) ((-95) |has| |#1| (-1194)) ((-102) . T) ((-111 #0# #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2789 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-858)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1018)) ((-612 (-169 (-379))) |has| |#1| (-1018)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-612 #1=(-1166 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2789 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1194)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2789 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -2789 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2789 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -2789 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1194)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -2789 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-720 |#1| #1#) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-905) -12 (|has| |#1| (-307)) (|has| |#1| (-905))) ((-916) -2789 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-998) -12 (|has| |#1| (-998)) (|has| |#1| (-1194))) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1194) |has| |#1| (-1194)) ((-1197) |has| |#1| (-1194)) ((-1209) . T) ((-1213) -2789 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) +((-2375 (((-418 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -2375 ((-418 |#2|) |#2|))) (-307) (-1235 (-169 |#1|))) (T -167)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(-10 -7 (-15 -2375 ((-418 |#2|) |#2|))) +((-3123 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3123 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -3123 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 34)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-3622 (($ $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-3247 (((-112) $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-2586 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3770 ((|#1| $) NIL)) (-3802 (($ $) NIL (|has| |#1| (-1194)))) (-3661 (($ $) NIL (|has| |#1| (-1194)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-349)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3453 (($ $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2657 (((-418 $) $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2387 (($ $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-307)))) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-3779 (($ $) NIL (|has| |#1| (-1194)))) (-3639 (($ $) NIL (|has| |#1| (-1194)))) (-3825 (($ $) NIL (|has| |#1| (-1194)))) (-3684 (($ $) NIL (|has| |#1| (-1194)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-3013 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2574 (($ $ $) NIL (|has| |#1| (-307)))) (-3689 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3239 (($ (-1166 |#1|)) NIL) (((-3 $ "failed") (-407 (-1166 |#1|))) NIL (|has| |#1| (-363)))) (-2689 (((-3 $ "failed") $) NIL)) (-2401 ((|#1| $) 13)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2446 (((-112) $) NIL (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3105 (((-917)) NIL)) (-3860 (($) NIL (|has| |#1| (-368)))) (-2552 (($ $ $) NIL (|has| |#1| (-307)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-307)))) (-3422 (($) NIL (|has| |#1| (-349)))) (-3261 (((-112) $) NIL (|has| |#1| (-349)))) (-2180 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4229 (((-112) $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-4313 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1054)) (|has| |#1| (-1194))))) (-4223 (($) NIL (|has| |#1| (-1194)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-3717 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-1828 (((-112) $) 36)) (-2739 (($ $ (-564)) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-2019 ((|#1| $) 47)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-1790 (((-1166 |#1|) $) NIL (|has| |#1| (-363)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-3439 (($ $) NIL (|has| |#1| (-1194)))) (-3228 (((-1166 |#1|) $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3346 (($) NIL (|has| |#1| (-349)) CONST)) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-3777 (($) NIL)) (-2415 ((|#1| $) 15)) (-3840 (((-1114) $) NIL)) (-4095 (($) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-307)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| |#1| (-349)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2375 (((-418 $) $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-307)))) (-2526 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-3571 (($ $) NIL (|has| |#1| (-1194)))) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3844 (((-767) $) NIL (|has| |#1| (-307)))) (-4353 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-307)))) (-3392 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-3337 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-1343 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2516 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2400 (((-1166 |#1|)) NIL)) (-3836 (($ $) NIL (|has| |#1| (-1194)))) (-3697 (($ $) NIL (|has| |#1| (-1194)))) (-3107 (($) NIL (|has| |#1| (-349)))) (-3814 (($ $) NIL (|has| |#1| (-1194)))) (-3672 (($ $) NIL (|has| |#1| (-1194)))) (-3792 (($ $) NIL (|has| |#1| (-1194)))) (-3650 (($ $) NIL (|has| |#1| (-1194)))) (-3864 (((-1259 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-3172 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-888 (-564)) $) NIL (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#1| (-612 (-888 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1018))) (((-169 (-225)) $) NIL (|has| |#1| (-1018))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2675 (($ $) 46)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-349))))) (-3570 (($ |#1| |#1|) 38)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-2409 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-2117 (((-1166 |#1|) $) NIL)) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL)) (-2672 (($ $) NIL (|has| |#1| (-1194)))) (-3732 (($ $) NIL (|has| |#1| (-1194)))) (-4024 (((-112) $ $) NIL (-2789 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-3849 (($ $) NIL (|has| |#1| (-1194)))) (-3708 (($ $) NIL (|has| |#1| (-1194)))) (-2695 (($ $) NIL (|has| |#1| (-1194)))) (-3757 (($ $) NIL (|has| |#1| (-1194)))) (-2328 ((|#1| $) NIL (|has| |#1| (-1194)))) (-1511 (($ $) NIL (|has| |#1| (-1194)))) (-3768 (($ $) NIL (|has| |#1| (-1194)))) (-2684 (($ $) NIL (|has| |#1| (-1194)))) (-3746 (($ $) NIL (|has| |#1| (-1194)))) (-2660 (($ $) NIL (|has| |#1| (-1194)))) (-3720 (($ $) NIL (|has| |#1| (-1194)))) (-3598 (($ $) NIL (|has| |#1| (-1054)))) (-2389 (($) 28 T CONST)) (-2403 (($) 30 T CONST)) (-3552 (((-1152) $) 23 (|has| |#1| (-824))) (((-1152) $ (-112)) 25 (|has| |#1| (-824))) (((-1264) (-818) $) 26 (|has| |#1| (-824))) (((-1264) (-818) $ (-112)) 27 (|has| |#1| (-824)))) (-3917 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1194)))) (($ $ $) NIL (|has| |#1| (-1194))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) +(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-172)) (T -169)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) +((-3172 (((-888 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3172 ((-888 |#1|) |#3|))) (-1094) (-13 (-612 (-888 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-3172 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-888 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -3172 ((-888 |#1|) |#3|))) +((-2310 (((-112) $ $) NIL)) (-3355 (((-112) $) 9)) (-2381 (((-112) $ (-112)) 11)) (-4121 (($) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3772 (($ $) 14)) (-2322 (((-858) $) 18)) (-1690 (((-112) $) 8)) (-1600 (((-112) $ (-112)) 10)) (-2921 (((-112) $ $) NIL))) +(((-171) (-13 (-1094) (-10 -8 (-15 -4121 ($)) (-15 -1690 ((-112) $)) (-15 -3355 ((-112) $)) (-15 -1600 ((-112) $ (-112))) (-15 -2381 ((-112) $ (-112))) (-15 -3772 ($ $))))) (T -171)) +((-4121 (*1 *1) (-5 *1 (-171))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1600 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2381 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3772 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1094) (-10 -8 (-15 -4121 ($)) (-15 -1690 ((-112) $)) (-15 -3355 ((-112) $)) (-15 -1600 ((-112) $ (-112))) (-15 -2381 ((-112) $ (-112))) (-15 -3772 ($ $)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-172) (-140)) (T -172)) NIL -(-13 (-1046) (-111 $ $) (-10 -7 (-6 (-4408 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1846 (($ $) 6))) +(-13 (-1045) (-111 $ $) (-10 -7 (-6 (-4408 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3566 (($ $) 6))) (((-173) (-140)) (T -173)) -((-1846 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -1846 ($ $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 ((|#1| $) 80)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL)) (-2888 (($ $) 21)) (-2140 (($ |#1| (-1150 |#1|)) 49)) (-3733 (((-3 $ "failed") $) 122)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1566 (((-1150 |#1|) $) 87)) (-2736 (((-1150 |#1|) $) 84)) (-3546 (((-1150 |#1|) $) 85)) (-2949 (((-112) $) NIL)) (-2486 (((-1150 |#1|) $) 93)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2740 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-3951 (($ $ (-564)) 96)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3136 (((-1150 |#1|) $) 94)) (-3957 (((-1150 (-407 |#1|)) $) 14)) (-4355 (($ (-407 |#1|)) 17) (($ |#1| (-1150 |#1|) (-1150 |#1|)) 39)) (-4037 (($ $) 98)) (-1831 (((-859) $) 139) (($ (-564)) 52) (($ |#1|) 53) (($ (-407 |#1|)) 37) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2219 (((-768)) 69 T CONST)) (-3939 (((-112) $ $) NIL)) (-2342 (((-1150 (-407 |#1|)) $) 20)) (-1293 (($) 27 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 36)) (-1823 (($ $ $) 120)) (-1808 (($ $) 111) (($ $ $) 108)) (-1797 (($ $ $) 106)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 118) (($ $ $) 113) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-407 |#1|) $) 116) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -4355 ($ (-407 |#1|))) (-15 -4355 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -2140 ($ |#1| (-1150 |#1|))) (-15 -2736 ((-1150 |#1|) $)) (-15 -3546 ((-1150 |#1|) $)) (-15 -1566 ((-1150 |#1|) $)) (-15 -3423 (|#1| $)) (-15 -2888 ($ $)) (-15 -2342 ((-1150 (-407 |#1|)) $)) (-15 -3957 ((-1150 (-407 |#1|)) $)) (-15 -2486 ((-1150 |#1|) $)) (-15 -3136 ((-1150 |#1|) $)) (-15 -3951 ($ $ (-564))) (-15 -4037 ($ $)))) (-307)) (T -174)) -((-4355 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-4355 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3423 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2888 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4037 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) -(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -4355 ($ (-407 |#1|))) (-15 -4355 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -2140 ($ |#1| (-1150 |#1|))) (-15 -2736 ((-1150 |#1|) $)) (-15 -3546 ((-1150 |#1|) $)) (-15 -1566 ((-1150 |#1|) $)) (-15 -3423 (|#1| $)) (-15 -2888 ($ $)) (-15 -2342 ((-1150 (-407 |#1|)) $)) (-15 -3957 ((-1150 (-407 |#1|)) $)) (-15 -2486 ((-1150 |#1|) $)) (-15 -3136 ((-1150 |#1|) $)) (-15 -3951 ($ $ (-564))) (-15 -4037 ($ $)))) -((-2353 (($ (-109) $) 15)) (-3055 (((-687 (-109)) (-1170) $) 14)) (-1831 (((-859) $) 18)) (-4000 (((-641 (-109)) $) 8))) -(((-175) (-13 (-611 (-859)) (-10 -8 (-15 -4000 ((-641 (-109)) $)) (-15 -2353 ($ (-109) $)) (-15 -3055 ((-687 (-109)) (-1170) $))))) (T -175)) -((-4000 (*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))) (-2353 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3055 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175))))) -(-13 (-611 (-859)) (-10 -8 (-15 -4000 ((-641 (-109)) $)) (-15 -2353 ($ (-109) $)) (-15 -3055 ((-687 (-109)) (-1170) $)))) -((-3718 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 40)) (-1715 (((-940 |#1|) (-940 |#1|)) 24)) (-1442 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 36)) (-4075 (((-940 |#1|) (-940 |#1|)) 22)) (-2937 (((-940 |#1|) (-940 |#1|)) 30)) (-3358 (((-940 |#1|) (-940 |#1|)) 29)) (-2146 (((-940 |#1|) (-940 |#1|)) 28)) (-4208 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 37)) (-3692 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 35)) (-1759 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 34)) (-2818 (((-940 |#1|) (-940 |#1|)) 23)) (-2210 (((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|) 43)) (-3121 (((-940 |#1|) (-940 |#1|)) 8)) (-3432 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 39)) (-1915 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 38))) -(((-176 |#1|) (-10 -7 (-15 -3121 ((-940 |#1|) (-940 |#1|))) (-15 -4075 ((-940 |#1|) (-940 |#1|))) (-15 -2818 ((-940 |#1|) (-940 |#1|))) (-15 -1715 ((-940 |#1|) (-940 |#1|))) (-15 -2146 ((-940 |#1|) (-940 |#1|))) (-15 -3358 ((-940 |#1|) (-940 |#1|))) (-15 -2937 ((-940 |#1|) (-940 |#1|))) (-15 -1759 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3692 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1442 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -4208 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1915 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3432 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3718 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2210 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|))) (-13 (-363) (-1194) (-999))) (T -176)) -((-2210 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3718 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-4208 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3692 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3358 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-4075 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3121 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -3121 ((-940 |#1|) (-940 |#1|))) (-15 -4075 ((-940 |#1|) (-940 |#1|))) (-15 -2818 ((-940 |#1|) (-940 |#1|))) (-15 -1715 ((-940 |#1|) (-940 |#1|))) (-15 -2146 ((-940 |#1|) (-940 |#1|))) (-15 -3358 ((-940 |#1|) (-940 |#1|))) (-15 -2937 ((-940 |#1|) (-940 |#1|))) (-15 -1759 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3692 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1442 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -4208 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1915 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3432 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3718 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2210 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|))) -((-1349 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -1349 (|#2| |#3|))) (-172) (-1235 |#1|) (-721 |#1| |#2|)) (T -177)) -((-1349 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-721 *4 *2))))) -(-10 -7 (-15 -1349 (|#2| |#3|))) -((-2131 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 49 (|has| (-949 |#2|) (-883 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -2131 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-883 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5)) (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -2131 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|)) -((-3944 (((-641 |#1|) (-641 |#1|) |#1|) 41)) (-2707 (((-641 |#1|) |#1| (-641 |#1|)) 20)) (-3274 (((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|)) 36) ((|#1| (-641 |#1|) (-641 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -2707 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -3274 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -3274 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -3944 ((-641 |#1|) (-641 |#1|) |#1|))) (-307)) (T -179)) -((-3944 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-3274 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-2707 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -2707 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -3274 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -3274 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -3944 ((-641 |#1|) (-641 |#1|) |#1|))) -((-1817 (((-112) $ $) NIL)) (-4352 (((-1208) $) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3877 (((-1129) $) 10)) (-1831 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-180) (-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4352 ((-1208) $))))) (T -180)) -((-3877 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))) -(-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4352 ((-1208) $)))) -((-4265 (((-2 (|:| |start| |#2|) (|:| -3840 (-418 |#2|))) |#2|) 66)) (-4304 ((|#1| |#1|) 58)) (-2645 (((-169 |#1|) |#2|) 91)) (-2838 ((|#1| |#2|) 145) ((|#1| |#2| |#1|) 89)) (-4370 ((|#2| |#2|) 90)) (-2351 (((-418 |#2|) |#2| |#1|) 128) (((-418 |#2|) |#2| |#1| (-112)) 87)) (-3797 ((|#1| |#2|) 127)) (-2042 ((|#2| |#2|) 140)) (-3070 (((-418 |#2|) |#2|) 162) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 161)) (-3987 (((-641 (-2 (|:| -3840 (-641 |#2|)) (|:| -2044 |#1|))) |#2| |#2|) 160) (((-641 (-2 (|:| -3840 (-641 |#2|)) (|:| -2044 |#1|))) |#2| |#2| (-112)) 81)) (-2466 (((-641 (-169 |#1|)) |#2| |#1|) 42) (((-641 (-169 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -2466 ((-641 (-169 |#1|)) |#2|)) (-15 -2466 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3987 ((-641 (-2 (|:| -3840 (-641 |#2|)) (|:| -2044 |#1|))) |#2| |#2| (-112))) (-15 -3987 ((-641 (-2 (|:| -3840 (-641 |#2|)) (|:| -2044 |#1|))) |#2| |#2|)) (-15 -3070 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3070 ((-418 |#2|) |#2| |#1|)) (-15 -3070 ((-418 |#2|) |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -3797 (|#1| |#2|)) (-15 -2351 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2351 ((-418 |#2|) |#2| |#1|)) (-15 -4370 (|#2| |#2|)) (-15 -2838 (|#1| |#2| |#1|)) (-15 -2838 (|#1| |#2|)) (-15 -2645 ((-169 |#1|) |#2|)) (-15 -4304 (|#1| |#1|)) (-15 -4265 ((-2 (|:| |start| |#2|) (|:| -3840 (-418 |#2|))) |#2|))) (-13 (-363) (-845)) (-1235 (-169 |#1|))) (T -181)) -((-4265 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-2 (|:| |start| *3) (|:| -3840 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4304 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2645 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2)))) (-2838 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2838 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-2351 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2351 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3797 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3070 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3987 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -3840 (-641 *3)) (|:| -2044 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -3840 (-641 *3)) (|:| -2044 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) (-2466 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) -(-10 -7 (-15 -2466 ((-641 (-169 |#1|)) |#2|)) (-15 -2466 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3987 ((-641 (-2 (|:| -3840 (-641 |#2|)) (|:| -2044 |#1|))) |#2| |#2| (-112))) (-15 -3987 ((-641 (-2 (|:| -3840 (-641 |#2|)) (|:| -2044 |#1|))) |#2| |#2|)) (-15 -3070 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3070 ((-418 |#2|) |#2| |#1|)) (-15 -3070 ((-418 |#2|) |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -3797 (|#1| |#2|)) (-15 -2351 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2351 ((-418 |#2|) |#2| |#1|)) (-15 -4370 (|#2| |#2|)) (-15 -2838 (|#1| |#2| |#1|)) (-15 -2838 (|#1| |#2|)) (-15 -2645 ((-169 |#1|) |#2|)) (-15 -4304 (|#1| |#1|)) (-15 -4265 ((-2 (|:| |start| |#2|) (|:| -3840 (-418 |#2|))) |#2|))) -((-2071 (((-3 |#2| "failed") |#2|) 20)) (-4024 (((-768) |#2|) 23)) (-2326 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -2071 ((-3 |#2| "failed") |#2|)) (-15 -4024 ((-768) |#2|)) (-15 -2326 (|#2| |#2| |#2|))) (-1209) (-670 |#1|)) (T -182)) -((-2326 (*1 *2 *2 *2) (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))) (-4024 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3)) (-4 *3 (-670 *4)))) (-2071 (*1 *2 *2) (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3))))) -(-10 -7 (-15 -2071 ((-3 |#2| "failed") |#2|)) (-15 -4024 ((-768) |#2|)) (-15 -2326 (|#2| |#2| |#2|))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-4015 (((-187) $) 7)) (-1831 (((-859) $) 14)) (-3514 (((-641 (-1175)) $) 10)) (-1702 (((-112) $ $) 12))) -(((-183) (-13 (-1094) (-10 -8 (-15 -4015 ((-187) $)) (-15 -3514 ((-641 (-1175)) $))))) (T -183)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183))))) -(-13 (-1094) (-10 -8 (-15 -4015 ((-187) $)) (-15 -3514 ((-641 (-1175)) $)))) -((-3641 (((-641 (-862)) $) 16)) (-3568 (((-186) $) 8)) (-2831 (((-641 (-112)) $) 13)) (-2450 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -3641 ((-641 (-862)) |#1|)) (-15 -2831 ((-641 (-112)) |#1|)) (-15 -3568 ((-186) |#1|)) (-15 -2450 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -3641 ((-641 (-862)) |#1|)) (-15 -2831 ((-641 (-112)) |#1|)) (-15 -3568 ((-186) |#1|)) (-15 -2450 ((-55) |#1|))) -((-1817 (((-112) $ $) 7)) (-3641 (((-641 (-862)) $) 17)) (-1316 (((-506) $) 14)) (-2723 (((-1152) $) 9)) (-3568 (((-186) $) 19)) (-2780 (((-1114) $) 10)) (-2831 (((-641 (-112)) $) 18)) (-1831 (((-859) $) 11)) (-2450 (((-55) $) 13)) (-1702 (((-112) $ $) 6))) +((-3566 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -3566 ($ $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 ((|#1| $) 80)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL)) (-2447 (($ $) 21)) (-3551 (($ |#1| (-1150 |#1|)) 49)) (-2689 (((-3 $ "failed") $) 122)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2757 (((-1150 |#1|) $) 87)) (-1528 (((-1150 |#1|) $) 84)) (-3470 (((-1150 |#1|) $) 85)) (-1828 (((-112) $) NIL)) (-2834 (((-1150 |#1|) $) 93)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3202 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2941 (($ $ (-564)) 96)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-4152 (((-1150 |#1|) $) 94)) (-2998 (((-1150 (-407 |#1|)) $) 14)) (-2735 (($ (-407 |#1|)) 17) (($ |#1| (-1150 |#1|) (-1150 |#1|)) 39)) (-2614 (($ $) 98)) (-2322 (((-858) $) 139) (($ (-564)) 52) (($ |#1|) 53) (($ (-407 |#1|)) 37) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3179 (((-767)) 69 T CONST)) (-4024 (((-112) $ $) NIL)) (-1948 (((-1150 (-407 |#1|)) $) 20)) (-2389 (($) 27 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 36)) (-3034 (($ $ $) 120)) (-3021 (($ $) 111) (($ $ $) 108)) (-3011 (($ $ $) 106)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 118) (($ $ $) 113) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-407 |#1|) $) 116) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2735 ($ (-407 |#1|))) (-15 -2735 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -3551 ($ |#1| (-1150 |#1|))) (-15 -1528 ((-1150 |#1|) $)) (-15 -3470 ((-1150 |#1|) $)) (-15 -2757 ((-1150 |#1|) $)) (-15 -1625 (|#1| $)) (-15 -2447 ($ $)) (-15 -1948 ((-1150 (-407 |#1|)) $)) (-15 -2998 ((-1150 (-407 |#1|)) $)) (-15 -2834 ((-1150 |#1|) $)) (-15 -4152 ((-1150 |#1|) $)) (-15 -2941 ($ $ (-564))) (-15 -2614 ($ $)))) (-307)) (T -174)) +((-2735 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-2735 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3551 (*1 *1 *2 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1625 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2447 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2614 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) +(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2735 ($ (-407 |#1|))) (-15 -2735 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -3551 ($ |#1| (-1150 |#1|))) (-15 -1528 ((-1150 |#1|) $)) (-15 -3470 ((-1150 |#1|) $)) (-15 -2757 ((-1150 |#1|) $)) (-15 -1625 (|#1| $)) (-15 -2447 ($ $)) (-15 -1948 ((-1150 (-407 |#1|)) $)) (-15 -2998 ((-1150 (-407 |#1|)) $)) (-15 -2834 ((-1150 |#1|) $)) (-15 -4152 ((-1150 |#1|) $)) (-15 -2941 ($ $ (-564))) (-15 -2614 ($ $)))) +((-2065 (($ (-109) $) 15)) (-1508 (((-687 (-109)) (-1170) $) 14)) (-2322 (((-858) $) 18)) (-2209 (((-641 (-109)) $) 8))) +(((-175) (-13 (-611 (-858)) (-10 -8 (-15 -2209 ((-641 (-109)) $)) (-15 -2065 ($ (-109) $)) (-15 -1508 ((-687 (-109)) (-1170) $))))) (T -175)) +((-2209 (*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-1508 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2209 ((-641 (-109)) $)) (-15 -2065 ($ (-109) $)) (-15 -1508 ((-687 (-109)) (-1170) $)))) +((-2548 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 40)) (-1704 (((-939 |#1|) (-939 |#1|)) 24)) (-3960 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 36)) (-1741 (((-939 |#1|) (-939 |#1|)) 22)) (-1708 (((-939 |#1|) (-939 |#1|)) 30)) (-2295 (((-939 |#1|) (-939 |#1|)) 29)) (-3613 (((-939 |#1|) (-939 |#1|)) 28)) (-3712 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 37)) (-2302 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 35)) (-3995 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 34)) (-2999 (((-939 |#1|) (-939 |#1|)) 23)) (-3094 (((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|) 43)) (-4001 (((-939 |#1|) (-939 |#1|)) 8)) (-1718 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 39)) (-3077 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 38))) +(((-176 |#1|) (-10 -7 (-15 -4001 ((-939 |#1|) (-939 |#1|))) (-15 -1741 ((-939 |#1|) (-939 |#1|))) (-15 -2999 ((-939 |#1|) (-939 |#1|))) (-15 -1704 ((-939 |#1|) (-939 |#1|))) (-15 -3613 ((-939 |#1|) (-939 |#1|))) (-15 -2295 ((-939 |#1|) (-939 |#1|))) (-15 -1708 ((-939 |#1|) (-939 |#1|))) (-15 -3995 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2302 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3960 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3712 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3077 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1718 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2548 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3094 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) (-13 (-363) (-1194) (-998))) (T -176)) +((-3094 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-2548 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-1718 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3077 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3712 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3960 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3995 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -4001 ((-939 |#1|) (-939 |#1|))) (-15 -1741 ((-939 |#1|) (-939 |#1|))) (-15 -2999 ((-939 |#1|) (-939 |#1|))) (-15 -1704 ((-939 |#1|) (-939 |#1|))) (-15 -3613 ((-939 |#1|) (-939 |#1|))) (-15 -2295 ((-939 |#1|) (-939 |#1|))) (-15 -1708 ((-939 |#1|) (-939 |#1|))) (-15 -3995 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2302 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3960 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3712 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3077 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1718 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2548 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3094 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) +((-2117 ((|#2| |#3|) 28))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2117 (|#2| |#3|))) (-172) (-1235 |#1|) (-720 |#1| |#2|)) (T -177)) +((-2117 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-720 *4 *2))))) +(-10 -7 (-15 -2117 (|#2| |#3|))) +((-3466 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 49 (|has| (-948 |#2|) (-882 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -3466 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-882 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -3466 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) +((-2875 (((-641 |#1|) (-641 |#1|) |#1|) 41)) (-4362 (((-641 |#1|) |#1| (-641 |#1|)) 20)) (-2905 (((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|)) 36) ((|#1| (-641 |#1|) (-641 |#1|)) 32))) +(((-179 |#1|) (-10 -7 (-15 -4362 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2905 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2905 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -2875 ((-641 |#1|) (-641 |#1|) |#1|))) (-307)) (T -179)) +((-2875 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2905 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2905 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-4362 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -4362 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2905 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2905 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -2875 ((-641 |#1|) (-641 |#1|) |#1|))) +((-2310 (((-112) $ $) NIL)) (-1767 (((-1208) $) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4366 (((-1129) $) 10)) (-2322 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-180) (-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -1767 ((-1208) $))))) (T -180)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))) +(-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -1767 ((-1208) $)))) +((-3093 (((-2 (|:| |start| |#2|) (|:| -4322 (-418 |#2|))) |#2|) 66)) (-3443 ((|#1| |#1|) 58)) (-1889 (((-169 |#1|) |#2|) 91)) (-3190 ((|#1| |#2|) 145) ((|#1| |#2| |#1|) 89)) (-2844 ((|#2| |#2|) 90)) (-2043 (((-418 |#2|) |#2| |#1|) 128) (((-418 |#2|) |#2| |#1| (-112)) 87)) (-2019 ((|#1| |#2|) 127)) (-1911 ((|#2| |#2|) 140)) (-2375 (((-418 |#2|) |#2|) 162) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 161)) (-3313 (((-641 (-2 (|:| -4322 (-641 |#2|)) (|:| -2532 |#1|))) |#2| |#2|) 160) (((-641 (-2 (|:| -4322 (-641 |#2|)) (|:| -2532 |#1|))) |#2| |#2| (-112)) 81)) (-3850 (((-641 (-169 |#1|)) |#2| |#1|) 42) (((-641 (-169 |#1|)) |#2|) 43))) +(((-181 |#1| |#2|) (-10 -7 (-15 -3850 ((-641 (-169 |#1|)) |#2|)) (-15 -3850 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3313 ((-641 (-2 (|:| -4322 (-641 |#2|)) (|:| -2532 |#1|))) |#2| |#2| (-112))) (-15 -3313 ((-641 (-2 (|:| -4322 (-641 |#2|)) (|:| -2532 |#1|))) |#2| |#2|)) (-15 -2375 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2375 ((-418 |#2|) |#2| |#1|)) (-15 -2375 ((-418 |#2|) |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -2019 (|#1| |#2|)) (-15 -2043 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2043 ((-418 |#2|) |#2| |#1|)) (-15 -2844 (|#2| |#2|)) (-15 -3190 (|#1| |#2| |#1|)) (-15 -3190 (|#1| |#2|)) (-15 -1889 ((-169 |#1|) |#2|)) (-15 -3443 (|#1| |#1|)) (-15 -3093 ((-2 (|:| |start| |#2|) (|:| -4322 (-418 |#2|))) |#2|))) (-13 (-363) (-844)) (-1235 (-169 |#1|))) (T -181)) +((-3093 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-2 (|:| |start| *3) (|:| -4322 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3443 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1889 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1235 *2)))) (-3190 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3190 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-2043 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2043 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2019 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1911 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2375 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2375 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3313 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-2 (|:| -4322 (-641 *3)) (|:| -2532 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3313 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) (-5 *2 (-641 (-2 (|:| -4322 (-641 *3)) (|:| -2532 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) (-3850 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(-10 -7 (-15 -3850 ((-641 (-169 |#1|)) |#2|)) (-15 -3850 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3313 ((-641 (-2 (|:| -4322 (-641 |#2|)) (|:| -2532 |#1|))) |#2| |#2| (-112))) (-15 -3313 ((-641 (-2 (|:| -4322 (-641 |#2|)) (|:| -2532 |#1|))) |#2| |#2|)) (-15 -2375 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2375 ((-418 |#2|) |#2| |#1|)) (-15 -2375 ((-418 |#2|) |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -2019 (|#1| |#2|)) (-15 -2043 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2043 ((-418 |#2|) |#2| |#1|)) (-15 -2844 (|#2| |#2|)) (-15 -3190 (|#1| |#2| |#1|)) (-15 -3190 (|#1| |#2|)) (-15 -1889 ((-169 |#1|) |#2|)) (-15 -3443 (|#1| |#1|)) (-15 -3093 ((-2 (|:| |start| |#2|) (|:| -4322 (-418 |#2|))) |#2|))) +((-4092 (((-3 |#2| "failed") |#2|) 20)) (-2479 (((-767) |#2|) 23)) (-1773 ((|#2| |#2| |#2|) 25))) +(((-182 |#1| |#2|) (-10 -7 (-15 -4092 ((-3 |#2| "failed") |#2|)) (-15 -2479 ((-767) |#2|)) (-15 -1773 (|#2| |#2| |#2|))) (-1209) (-670 |#1|)) (T -182)) +((-1773 (*1 *2 *2 *2) (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))) (-2479 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-670 *4)))) (-4092 (*1 *2 *2) (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3))))) +(-10 -7 (-15 -4092 ((-3 |#2| "failed") |#2|)) (-15 -2479 ((-767) |#2|)) (-15 -1773 (|#2| |#2| |#2|))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1403 (((-187) $) 7)) (-2322 (((-858) $) 14)) (-1586 (((-641 (-1175)) $) 10)) (-2921 (((-112) $ $) 12))) +(((-183) (-13 (-1094) (-10 -8 (-15 -1403 ((-187) $)) (-15 -1586 ((-641 (-1175)) $))))) (T -183)) +((-1403 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183))))) +(-13 (-1094) (-10 -8 (-15 -1403 ((-187) $)) (-15 -1586 ((-641 (-1175)) $)))) +((-4244 (((-641 (-861)) $) 16)) (-1505 (((-186) $) 8)) (-3117 (((-641 (-112)) $) 13)) (-3663 (((-55) $) 10))) +(((-184 |#1|) (-10 -8 (-15 -4244 ((-641 (-861)) |#1|)) (-15 -3117 ((-641 (-112)) |#1|)) (-15 -1505 ((-186) |#1|)) (-15 -3663 ((-55) |#1|))) (-185)) (T -184)) +NIL +(-10 -8 (-15 -4244 ((-641 (-861)) |#1|)) (-15 -3117 ((-641 (-112)) |#1|)) (-15 -1505 ((-186) |#1|)) (-15 -3663 ((-55) |#1|))) +((-2310 (((-112) $ $) 7)) (-4244 (((-641 (-861)) $) 17)) (-2420 (((-506) $) 14)) (-1418 (((-1152) $) 9)) (-1505 (((-186) $) 19)) (-3840 (((-1114) $) 10)) (-3117 (((-641 (-112)) $) 18)) (-2322 (((-858) $) 11)) (-3663 (((-55) $) 13)) (-2921 (((-112) $ $) 6))) (((-185) (-140)) (T -185)) -((-3568 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862)))))) -(-13 (-832 (-506)) (-10 -8 (-15 -3568 ((-186) $)) (-15 -2831 ((-641 (-112)) $)) (-15 -3641 ((-641 (-862)) $)))) -(((-102) . T) ((-611 (-859)) . T) ((-832 (-506)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-8 (($) 7 T CONST)) (-1831 (((-859) $) 12)) (-9 (($) 6 T CONST)) (-1702 (((-112) $ $) 10))) -(((-186) (-13 (-1094) (-10 -8 (-15 -9 ($) -1809) (-15 -8 ($) -1809) (-15 -7 ($) -1809)))) (T -186)) +((-1505 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-861)))))) +(-13 (-831 (-506)) (-10 -8 (-15 -1505 ((-186) $)) (-15 -3117 ((-641 (-112)) $)) (-15 -4244 ((-641 (-861)) $)))) +(((-102) . T) ((-611 (-858)) . T) ((-831 (-506)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-8 (($) 7 T CONST)) (-2322 (((-858) $) 12)) (-9 (($) 6 T CONST)) (-2921 (((-112) $ $) 10))) +(((-186) (-13 (-1094) (-10 -8 (-15 -9 ($) -2255) (-15 -8 ($) -2255) (-15 -7 ($) -2255)))) (T -186)) ((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1094) (-10 -8 (-15 -9 ($) -1809) (-15 -8 ($) -1809) (-15 -7 ($) -1809))) -((-1817 (((-112) $ $) NIL)) (-3641 (((-641 (-862)) $) NIL)) (-1316 (((-506) $) 8)) (-2723 (((-1152) $) NIL)) (-3568 (((-186) $) 10)) (-2780 (((-1114) $) NIL)) (-2684 (((-687 $) (-506)) 17)) (-2831 (((-641 (-112)) $) NIL)) (-1831 (((-859) $) NIL)) (-2450 (((-55) $) 12)) (-1702 (((-112) $ $) NIL))) -(((-187) (-13 (-185) (-10 -8 (-15 -2684 ((-687 $) (-506)))))) (T -187)) -((-2684 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187))))) -(-13 (-185) (-10 -8 (-15 -2684 ((-687 $) (-506))))) -((-3731 ((|#2| |#2|) 28)) (-2020 (((-112) |#2|) 19)) (-3092 (((-316 |#1|) |#2|) 12)) (-3102 (((-316 |#1|) |#2|) 14)) (-1684 ((|#2| |#2| (-1170)) 70) ((|#2| |#2|) 71)) (-3322 (((-169 (-316 |#1|)) |#2|) 10)) (-2041 ((|#2| |#2| (-1170)) 67) ((|#2| |#2|) 61))) -(((-188 |#1| |#2|) (-10 -7 (-15 -1684 (|#2| |#2|)) (-15 -1684 (|#2| |#2| (-1170))) (-15 -2041 (|#2| |#2|)) (-15 -2041 (|#2| |#2| (-1170))) (-15 -3092 ((-316 |#1|) |#2|)) (-15 -3102 ((-316 |#1|) |#2|)) (-15 -2020 ((-112) |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -3322 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-847) (-1035 (-564))) (-13 (-27) (-1194) (-430 (-169 |#1|)))) (T -188)) -((-3322 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2041 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-1684 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))) -(-10 -7 (-15 -1684 (|#2| |#2|)) (-15 -1684 (|#2| |#2| (-1170))) (-15 -2041 (|#2| |#2|)) (-15 -2041 (|#2| |#2| (-1170))) (-15 -3092 ((-316 |#1|) |#2|)) (-15 -3102 ((-316 |#1|) |#2|)) (-15 -2020 ((-112) |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -3322 ((-169 (-316 |#1|)) |#2|))) -((-2262 (((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|))) 26)) (-1831 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -2262 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -1831 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))))) (-172)) (T -189)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -2262 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -1831 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))))) -((-1819 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 89)) (-2869 (((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))) 99)) (-1570 (((-1172 (-407 (-564))) (-564)) 56)) (-4323 (((-1172 (-407 (-564))) (-564)) 75)) (-2633 (((-407 (-564)) (-1172 (-407 (-564)))) 85)) (-2939 (((-1172 (-407 (-564))) (-564)) 37)) (-4367 (((-1172 (-407 (-564))) (-564)) 68)) (-3664 (((-1172 (-407 (-564))) (-564)) 62)) (-2439 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 83)) (-4037 (((-1172 (-407 (-564))) (-564)) 29)) (-4198 (((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 87)) (-1624 (((-1172 (-407 (-564))) (-564)) 35)) (-3041 (((-1172 (-407 (-564))) (-641 (-564))) 96))) -(((-190) (-10 -7 (-15 -4037 ((-1172 (-407 (-564))) (-564))) (-15 -1570 ((-1172 (-407 (-564))) (-564))) (-15 -2939 ((-1172 (-407 (-564))) (-564))) (-15 -1624 ((-1172 (-407 (-564))) (-564))) (-15 -3664 ((-1172 (-407 (-564))) (-564))) (-15 -4367 ((-1172 (-407 (-564))) (-564))) (-15 -4323 ((-1172 (-407 (-564))) (-564))) (-15 -4198 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2439 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2633 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -1819 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3041 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -2869 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))) (T -190)) -((-2869 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2439 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-4198 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-4323 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-4367 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3664 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2939 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1570 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-4037 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(-10 -7 (-15 -4037 ((-1172 (-407 (-564))) (-564))) (-15 -1570 ((-1172 (-407 (-564))) (-564))) (-15 -2939 ((-1172 (-407 (-564))) (-564))) (-15 -1624 ((-1172 (-407 (-564))) (-564))) (-15 -3664 ((-1172 (-407 (-564))) (-564))) (-15 -4367 ((-1172 (-407 (-564))) (-564))) (-15 -4323 ((-1172 (-407 (-564))) (-564))) (-15 -4198 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2439 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2633 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -1819 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3041 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -2869 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))))) -((-1485 (((-418 (-1166 (-564))) (-564)) 38)) (-3388 (((-641 (-1166 (-564))) (-564)) 33)) (-4235 (((-1166 (-564)) (-564)) 28))) -(((-191) (-10 -7 (-15 -3388 ((-641 (-1166 (-564))) (-564))) (-15 -4235 ((-1166 (-564)) (-564))) (-15 -1485 ((-418 (-1166 (-564))) (-564))))) (T -191)) -((-1485 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-4235 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-3388 (*1 *2 *3) (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) -(-10 -7 (-15 -3388 ((-641 (-1166 (-564))) (-564))) (-15 -4235 ((-1166 (-564)) (-564))) (-15 -1485 ((-418 (-1166 (-564))) (-564)))) -((-3785 (((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-2930 (((-641 (-1152)) (-1150 (-225))) NIL)) (-2906 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-2549 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) NIL)) (-2453 (((-641 (-1152)) (-641 (-225))) NIL)) (-2871 (((-225) (-1088 (-840 (-225)))) 31)) (-3981 (((-225) (-1088 (-840 (-225)))) 32)) (-1373 (((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2621 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3367 (((-1152) (-225)) NIL)) (-2689 (((-1152) (-641 (-1152))) 27)) (-2477 (((-1032) (-1170) (-1170) (-1032)) 13))) -(((-192) (-10 -7 (-15 -2906 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2621 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2871 ((-225) (-1088 (-840 (-225))))) (-15 -3981 ((-225) (-1088 (-840 (-225))))) (-15 -1373 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2549 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -3785 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3367 ((-1152) (-225))) (-15 -2453 ((-641 (-1152)) (-641 (-225)))) (-15 -2930 ((-641 (-1152)) (-1150 (-225)))) (-15 -2689 ((-1152) (-641 (-1152)))) (-15 -2477 ((-1032) (-1170) (-1170) (-1032))))) (T -192)) -((-2477 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) (-2549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -2906 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2621 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2871 ((-225) (-1088 (-840 (-225))))) (-15 -3981 ((-225) (-1088 (-840 (-225))))) (-15 -1373 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2549 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -3785 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3367 ((-1152) (-225))) (-15 -2453 ((-641 (-1152)) (-641 (-225)))) (-15 -2930 ((-641 (-1152)) (-1150 (-225)))) (-15 -2689 ((-1152) (-641 (-1152)))) (-15 -2477 ((-1032) (-1170) (-1170) (-1032)))) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 61) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-193) (-784)) (T -193)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 66) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-194) (-784)) (T -194)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 81) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-195) (-784)) (T -195)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 63) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-196) (-784)) (T -196)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-197) (-784)) (T -197)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-198) (-784)) (T -198)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-199) (-784)) (T -199)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 77) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-200) (-784)) (T -200)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 78)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-201) (-784)) (T -201)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 79)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-202) (-784)) (T -202)) -NIL -(-784) -((-1817 (((-112) $ $) NIL)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 105) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-203) (-784)) (T -203)) -NIL -(-784) -((-3169 (((-3 (-2 (|:| -3581 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-4273 (((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-3800 (((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92))) -(((-204) (-10 -7 (-15 -3169 ((-3 (-2 (|:| -3581 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3800 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4273 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-4273 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-3800 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-204)))) (-3169 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3581 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -3169 ((-3 (-2 (|:| -3581 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3800 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4273 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-4324 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-3591 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 157)) (-3746 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225)))) 109)) (-2198 (((-379) (-685 (-316 (-225)))) 137)) (-4215 (((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170))) 133)) (-3095 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-2720 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2633 (((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225)))) 122)) (-3966 (((-379) (-379) (-641 (-379))) 130) (((-379) (-379) (-379)) 125)) (-2581 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -3966 ((-379) (-379) (-379))) (-15 -3966 ((-379) (-379) (-641 (-379)))) (-15 -2198 ((-379) (-685 (-316 (-225))))) (-15 -4215 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2633 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -3746 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -3591 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4324 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2720 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2581 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3095 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-3095 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2720 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-2633 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3966 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3966 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))) -(-10 -7 (-15 -3966 ((-379) (-379) (-379))) (-15 -3966 ((-379) (-379) (-641 (-379)))) (-15 -2198 ((-379) (-685 (-316 (-225))))) (-15 -4215 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2633 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -3746 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -3591 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4324 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2720 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2581 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3095 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-1817 (((-112) $ $) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-3231 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-1702 (((-112) $ $) NIL))) -(((-206) (-797)) (T -206)) -NIL -(-797) -((-1817 (((-112) $ $) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-3231 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-1702 (((-112) $ $) NIL))) -(((-207) (-797)) (T -207)) -NIL -(-797) -((-1817 (((-112) $ $) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-3231 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-1702 (((-112) $ $) NIL))) -(((-208) (-797)) (T -208)) -NIL -(-797) -((-1817 (((-112) $ $) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-3231 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-1702 (((-112) $ $) NIL))) -(((-209) (-797)) (T -209)) -NIL -(-797) -((-2412 (((-641 (-1170)) (-1170) (-768)) 24)) (-1608 (((-316 (-225)) (-316 (-225))) 33)) (-2699 (((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 88)) (-2718 (((-112) (-225) (-225) (-641 (-316 (-225)))) 48))) -(((-210) (-10 -7 (-15 -2412 ((-641 (-1170)) (-1170) (-768))) (-15 -1608 ((-316 (-225)) (-316 (-225)))) (-15 -2718 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -2699 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) (T -210)) -((-2699 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2718 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) (-5 *3 (-1170))))) -(-10 -7 (-15 -2412 ((-641 (-1170)) (-1170) (-768))) (-15 -1608 ((-316 (-225)) (-316 (-225)))) (-15 -2718 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -2699 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))))) -((-1817 (((-112) $ $) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 28)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1810 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 70)) (-1702 (((-112) $ $) NIL))) -(((-211) (-892)) (T -211)) -NIL -(-892) -((-1817 (((-112) $ $) NIL)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 24)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1810 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) NIL)) (-1702 (((-112) $ $) NIL))) -(((-212) (-892)) (T -212)) -NIL -(-892) -((-1817 (((-112) $ $) NIL)) (-2201 ((|#2| $ (-768) |#2|) 11)) (-2190 ((|#2| $ (-768)) 10)) (-3654 (($) 8)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 26)) (-1702 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3654 ($)) (-15 -2190 (|#2| $ (-768))) (-15 -2201 (|#2| $ (-768) |#2|)))) (-918) (-1094)) (T -213)) -((-3654 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094)))) (-2190 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)))) (-2201 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)) (-4 *2 (-1094))))) -(-13 (-1094) (-10 -8 (-15 -3654 ($)) (-15 -2190 (|#2| $ (-768))) (-15 -2201 (|#2| $ (-768) |#2|)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3595 (((-1264) $) 37) (((-1264) $ (-918) (-918)) 44)) (-1350 (($ $ (-986)) 19) (((-245 (-1152)) $ (-1170)) 15)) (-3712 (((-1264) $) 35)) (-1831 (((-859) $) 32) (($ (-641 |#1|)) 8)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $ $) 27)) (-1797 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -1350 ($ $ (-986))) (-15 -1350 ((-245 (-1152)) $ (-1170))) (-15 -1797 ($ $ $)) (-15 -1808 ($ $ $)) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $)) (-15 -3595 ((-1264) $ (-918) (-918))))) (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $))))) (T -214)) -((-1350 (*1 *1 *1 *2) (-12 (-5 *2 (-986)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $))))))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ *3)) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $))))))) (-1797 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $))))))) (-1808 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $))))))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 (*2 $)) (-15 -3595 (*2 $))))))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 (*2 $)) (-15 -3595 (*2 $))))))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 (*2 $)) (-15 -3595 (*2 $)))))))) -(-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -1350 ($ $ (-986))) (-15 -1350 ((-245 (-1152)) $ (-1170))) (-15 -1797 ($ $ $)) (-15 -1808 ($ $ $)) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $)) (-15 -3595 ((-1264) $ (-918) (-918))))) -((-4030 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4030 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215)) -((-4030 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6))))) -(-10 -7 (-15 -4030 (|#2| |#4| (-1 |#2| |#2|)))) -((-4036 ((|#2| |#2| (-768) |#2|) 58)) (-3168 ((|#2| |#2| (-768) |#2|) 54)) (-1843 (((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -1565 |#2|)))) 81)) (-1962 (((-641 (-2 (|:| |deg| (-768)) (|:| -1565 |#2|))) |#2|) 75)) (-3212 (((-112) |#2|) 73)) (-2999 (((-418 |#2|) |#2|) 101)) (-3070 (((-418 |#2|) |#2|) 100)) (-2173 ((|#2| |#2| (-768) |#2|) 52)) (-1968 (((-2 (|:| |cont| |#1|) (|:| -3840 (-641 (-2 (|:| |irr| |#2|) (|:| -1874 (-564)))))) |#2| (-112)) 93))) -(((-216 |#1| |#2|) (-10 -7 (-15 -3070 ((-418 |#2|) |#2|)) (-15 -2999 ((-418 |#2|) |#2|)) (-15 -1968 ((-2 (|:| |cont| |#1|) (|:| -3840 (-641 (-2 (|:| |irr| |#2|) (|:| -1874 (-564)))))) |#2| (-112))) (-15 -1962 ((-641 (-2 (|:| |deg| (-768)) (|:| -1565 |#2|))) |#2|)) (-15 -1843 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -1565 |#2|))))) (-15 -2173 (|#2| |#2| (-768) |#2|)) (-15 -3168 (|#2| |#2| (-768) |#2|)) (-15 -4036 (|#2| |#2| (-768) |#2|)) (-15 -3212 ((-112) |#2|))) (-349) (-1235 |#1|)) (T -216)) -((-3212 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-4036 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3168 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2173 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -1565 *5)))) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) (-5 *1 (-216 *4 *5)))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -1565 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -3070 ((-418 |#2|) |#2|)) (-15 -2999 ((-418 |#2|) |#2|)) (-15 -1968 ((-2 (|:| |cont| |#1|) (|:| -3840 (-641 (-2 (|:| |irr| |#2|) (|:| -1874 (-564)))))) |#2| (-112))) (-15 -1962 ((-641 (-2 (|:| |deg| (-768)) (|:| -1565 |#2|))) |#2|)) (-15 -1843 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -1565 |#2|))))) (-15 -2173 (|#2| |#2| (-768) |#2|)) (-15 -3168 (|#2| |#2| (-768) |#2|)) (-15 -4036 (|#2| |#2| (-768) |#2|)) (-15 -3212 ((-112) |#2|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-564) $) NIL (|has| (-564) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-564) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2237 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-564) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| (-564) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-564) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2607 (((-112) $) NIL (|has| (-564) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-564) (-847)))) (-2449 (($ (-1 (-564) (-564)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-564) (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-1818 (((-564) $) NIL (|has| (-564) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-564) $) NIL)) (-2851 (($ (-407 (-564))) 9)) (-2511 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 10) $) 10)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 (((-564) $) NIL (|has| (-564) (-545)))) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL (|has| (-564) (-817)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1823 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) -(((-217) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -2851 ($ (-407 (-564))))))) (T -217)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) -(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -2851 ($ (-407 (-564)))))) -((-1817 (((-112) $ $) NIL)) (-3080 (((-1112) $) 13)) (-2723 (((-1152) $) NIL)) (-4202 (((-483) $) 10)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 23) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-1129) $) 15)) (-1702 (((-112) $ $) NIL))) -(((-218) (-13 (-1077) (-10 -8 (-15 -4202 ((-483) $)) (-15 -3080 ((-1112) $)) (-15 -1328 ((-1129) $))))) (T -218)) -((-4202 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218))))) -(-13 (-1077) (-10 -8 (-15 -4202 ((-483) $)) (-15 -3080 ((-1112) $)) (-15 -1328 ((-1129) $)))) -((-3907 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152)) 29) (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|))) 25)) (-2992 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -3907 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -3907 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -2992 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -219)) -((-2992 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1170)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1194) (-956) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 *3))) (-5 *5 (-1152)) (-4 *3 (-13 (-1194) (-956) (-29 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -3907 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -3907 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -2992 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)))) -((-3907 (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)) 49) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|))))) 46) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152)) 50) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (T -220)) -((-3907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *6))))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *5))))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1086 (-840 (-316 *6)))) (-5 *5 (-1152)) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1086 (-840 (-316 *5)))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -3907 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)))) -((-1988 (((-2 (|:| -3194 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|)) 26)) (-3723 (((-641 (-316 |#2|)) (-316 |#2|) (-918)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -1988 ((-2 (|:| -3194 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -3723 ((-641 (-316 |#2|)) (-316 |#2|) (-918)))) (-1046) (-13 (-556) (-847))) (T -221)) -((-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847))) (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1046)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-2 (|:| -3194 (-1166 *4)) (|:| |deg| (-918)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847)))))) -(-10 -7 (-15 -1988 ((-2 (|:| -3194 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -3723 ((-641 (-316 |#2|)) (-316 |#2|) (-918)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3954 ((|#1| $) NIL)) (-3155 ((|#1| $) 30)) (-4010 (((-112) $ (-768)) NIL)) (-1778 (($) NIL T CONST)) (-1411 (($ $) NIL)) (-4325 (($ $) 39)) (-4120 ((|#1| |#1| $) NIL)) (-3923 ((|#1| $) NIL)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-1502 (((-768) $) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2401 ((|#1| $) NIL)) (-1332 ((|#1| |#1| $) 35)) (-4187 ((|#1| |#1| $) 37)) (-2783 (($ |#1| $) NIL)) (-3926 (((-768) $) 33)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1480 ((|#1| $) NIL)) (-1381 ((|#1| $) 31)) (-3587 ((|#1| $) 29)) (-4153 ((|#1| $) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3477 ((|#1| |#1| $) NIL)) (-4284 (((-112) $) 9)) (-4012 (($) NIL)) (-4371 ((|#1| $) NIL)) (-2545 (($) NIL) (($ (-641 |#1|)) 16)) (-2950 (((-768) $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2028 ((|#1| $) 13)) (-2321 (($ (-641 |#1|)) NIL)) (-4361 ((|#1| $) NIL)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -2545 ($ (-641 |#1|))))) (-1094)) (T -222)) -((-2545 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))) -(-13 (-254 |#1|) (-10 -8 (-15 -2545 ($ (-641 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2968 (($ (-316 |#1|)) 27)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-1384 (((-112) $) NIL)) (-2347 (((-3 (-316 |#1|) "failed") $) NIL)) (-2237 (((-316 |#1|) $) NIL)) (-3396 (($ $) 35)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-2449 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-3370 (((-316 |#1|) $) NIL)) (-3518 (($ $) 34)) (-2723 (((-1152) $) NIL)) (-1505 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1426 (($ (-768)) NIL)) (-3498 (($ $) 36)) (-1619 (((-564) $) NIL)) (-1831 (((-859) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-2742 (((-316 |#1|) $ $) NIL)) (-2219 (((-768)) NIL T CONST)) (-1293 (($) 29 T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) 32)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -3370 ((-316 |#1|) $)) (-15 -3518 ($ $)) (-15 -3396 ($ $)) (-15 -2742 ((-316 |#1|) $ $)) (-15 -1426 ($ (-768))) (-15 -1505 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1619 ((-564) $)) (-15 -2449 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -2968 ($ (-316 |#1|))) (-15 -3498 ($ $)))) (-13 (-1046) (-847)) (-641 (-1170))) (T -223)) -((-3370 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-3498 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170)))))) -(-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -3370 ((-316 |#1|) $)) (-15 -3518 ($ $)) (-15 -3396 ($ $)) (-15 -2742 ((-316 |#1|) $ $)) (-15 -1426 ($ (-768))) (-15 -1505 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1619 ((-564) $)) (-15 -2449 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -2968 ($ (-316 |#1|))) (-15 -3498 ($ $)))) -((-1446 (((-112) (-1152)) 25)) (-2012 (((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112)) 35)) (-2577 (((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)) 84) (((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -1446 ((-112) (-1152))) (-15 -2012 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -2577 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -2577 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -224)) -((-2577 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6)) (-4 *6 (-13 (-1194) (-29 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-2577 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170)) (-5 *5 (-840 *7)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2012 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1194) (-29 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4)))))) -(-10 -7 (-15 -1446 ((-112) (-1152))) (-15 -2012 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -2577 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -2577 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 96)) (-3423 (((-564) $) 36)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-3220 (($ $) NIL)) (-3357 (($ $) 85)) (-3210 (($ $) 73)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3083 (($ $) 64)) (-3554 (((-112) $ $) NIL)) (-3330 (($ $) 83)) (-3187 (($ $) 71)) (-1598 (((-564) $) 126)) (-3384 (($ $) 88)) (-3233 (($ $) 75)) (-1778 (($) NIL T CONST)) (-3015 (($ $) NIL)) (-2347 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-2237 (((-564) $) 123) (((-407 (-564)) $) 120)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) 101)) (-3702 (((-407 (-564)) $ (-768)) 115) (((-407 (-564)) $ (-768) (-768)) 114)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-4292 (((-918)) 29) (((-918) (-918)) NIL (|has| $ (-6 -4397)))) (-1569 (((-112) $) NIL)) (-3714 (($) 47)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-2155 (((-564) $) 43)) (-2949 (((-112) $) 97)) (-2915 (($ $ (-564)) NIL)) (-3797 (($ $) NIL)) (-2607 (((-112) $) 95)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) 61) (($) 39 (-12 (-4338 (|has| $ (-6 -4389))) (-4338 (|has| $ (-6 -4397)))))) (-3375 (($ $ $) 60) (($) 38 (-12 (-4338 (|has| $ (-6 -4389))) (-4338 (|has| $ (-6 -4397)))))) (-2935 (((-564) $) 27)) (-2793 (($ $) 34)) (-4167 (($ $) 65)) (-2358 (($ $) 70)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-4094 (((-918) (-564)) NIL (|has| $ (-6 -4397)))) (-2780 (((-1114) $) 99)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL)) (-1818 (($ $) NIL)) (-2293 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) 108)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1558 (((-564) $) 28)) (-2343 (($) 46)) (-4326 (($ $) 69)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-2422 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4397)))) (-3534 (($ $ (-768)) NIL) (($ $) 102)) (-4169 (((-918) (-564)) NIL (|has| $ (-6 -4397)))) (-3395 (($ $) 86)) (-3245 (($ $) 76)) (-3371 (($ $) 87)) (-3221 (($ $) 74)) (-3344 (($ $) 84)) (-3199 (($ $) 72)) (-2511 (((-379) $) 111) (((-225) $) 14) (((-889 (-379)) $) NIL) (((-536) $) 53)) (-1831 (((-859) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-2219 (((-768)) NIL T CONST)) (-4150 (($ $) NIL)) (-2432 (((-918)) 37) (((-918) (-918)) NIL (|has| $ (-6 -4397)))) (-3655 (((-918)) 25)) (-3427 (($ $) 91)) (-3276 (($ $) 79) (($ $ $) 118)) (-3939 (((-112) $ $) NIL)) (-3406 (($ $) 89)) (-3254 (($ $) 77)) (-3450 (($ $) 94)) (-3302 (($ $) 82)) (-2315 (($ $) 92)) (-3316 (($ $) 80)) (-3439 (($ $) 93)) (-3287 (($ $) 81)) (-3416 (($ $) 90)) (-3265 (($ $) 78)) (-1849 (($ $) 117)) (-1293 (($) 23 T CONST)) (-1300 (($) 44 T CONST)) (-3213 (((-1152) $) 18) (((-1152) $ (-112)) 20) (((-1264) (-819) $) 21) (((-1264) (-819) $ (-112)) 22)) (-2591 (($ $) 105)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-2496 (($ $ $) 107)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 62)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 54)) (-1823 (($ $ $) 45) (($ $ (-564)) 63)) (-1808 (($ $) 55) (($ $ $) 57)) (-1797 (($ $ $) 56)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-918) $) 35) (($ (-768) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-225) (-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1823 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2343 ($)) (-15 -2793 ($ $)) (-15 -4167 ($ $)) (-15 -3276 ($ $ $)) (-15 -2591 ($ $)) (-15 -2496 ($ $ $)) (-15 -3702 ((-407 (-564)) $ (-768))) (-15 -3702 ((-407 (-564)) $ (-768) (-768)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-1823 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-2343 (*1 *1) (-5 *1 (-225))) (-2793 (*1 *1 *1) (-5 *1 (-225))) (-4167 (*1 *1 *1) (-5 *1 (-225))) (-3276 (*1 *1 *1 *1) (-5 *1 (-225))) (-2591 (*1 *1 *1) (-5 *1 (-225))) (-2496 (*1 *1 *1 *1) (-5 *1 (-225))) (-3702 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-3702 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))) -(-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1823 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2343 ($)) (-15 -2793 ($ $)) (-15 -4167 ($ $)) (-15 -3276 ($ $ $)) (-15 -2591 ($ $)) (-15 -2496 ($ $ $)) (-15 -3702 ((-407 (-564)) $ (-768))) (-15 -3702 ((-407 (-564)) $ (-768) (-768))))) -((-1827 (((-169 (-225)) (-768) (-169 (-225))) 11) (((-225) (-768) (-225)) 12)) (-3924 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3223 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1888 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3573 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-1551 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-4296 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2773 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-4288 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-4354 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-2591 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2496 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -2591 ((-225) (-225))) (-15 -2591 ((-169 (-225)) (-169 (-225)))) (-15 -2496 ((-225) (-225) (-225))) (-15 -2496 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3924 ((-225) (-225))) (-15 -3924 ((-169 (-225)) (-169 (-225)))) (-15 -1888 ((-225) (-225))) (-15 -1888 ((-169 (-225)) (-169 (-225)))) (-15 -1827 ((-225) (-768) (-225))) (-15 -1827 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -4296 ((-225) (-225) (-225))) (-15 -4296 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3573 ((-225) (-225) (-225))) (-15 -3573 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2773 ((-225) (-225) (-225))) (-15 -2773 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1551 ((-225) (-225) (-225))) (-15 -1551 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4354 ((-169 (-225)) (-169 (-225)))) (-15 -4354 ((-225) (-225))) (-15 -4288 ((-225) (-225))) (-15 -4288 ((-169 (-225)) (-169 (-225)))) (-15 -3223 ((-225) (-225) (-225))) (-15 -3223 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) -((-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4354 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4354 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2773 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2773 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3573 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3573 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4296 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4296 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1827 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226)))) (-1827 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2496 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2496 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -2591 ((-225) (-225))) (-15 -2591 ((-169 (-225)) (-169 (-225)))) (-15 -2496 ((-225) (-225) (-225))) (-15 -2496 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3924 ((-225) (-225))) (-15 -3924 ((-169 (-225)) (-169 (-225)))) (-15 -1888 ((-225) (-225))) (-15 -1888 ((-169 (-225)) (-169 (-225)))) (-15 -1827 ((-225) (-768) (-225))) (-15 -1827 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -4296 ((-225) (-225) (-225))) (-15 -4296 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3573 ((-225) (-225) (-225))) (-15 -3573 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2773 ((-225) (-225) (-225))) (-15 -2773 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1551 ((-225) (-225) (-225))) (-15 -1551 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4354 ((-169 (-225)) (-169 (-225)))) (-15 -4354 ((-225) (-225))) (-15 -4288 ((-225) (-225))) (-15 -4288 ((-169 (-225)) (-169 (-225)))) (-15 -3223 ((-225) (-225) (-225))) (-15 -3223 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1463 (($ (-768) (-768)) NIL)) (-1516 (($ $ $) NIL)) (-2775 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-1676 (($ |#1| |#1| |#1|) 33)) (-1512 (((-112) $) NIL)) (-1990 (($ $ (-564) (-564)) NIL)) (-3649 (($ $ (-564) (-564)) NIL)) (-3812 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3252 (($ $) NIL)) (-2385 (((-112) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-1353 (($ $ (-564) (-564) $) NIL)) (-1970 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-3251 (($ $ (-564) (-1259 |#1|)) NIL)) (-3436 (($ $ (-564) (-1259 |#1|)) NIL)) (-3982 (($ |#1| |#1| |#1|) 32)) (-2899 (($ (-768) |#1|) NIL)) (-1778 (($) NIL T CONST)) (-3543 (($ $) NIL (|has| |#1| (-307)))) (-3751 (((-1259 |#1|) $ (-564)) NIL)) (-3052 (($ |#1|) 31)) (-1710 (($ |#1|) 30)) (-1407 (($ |#1|) 29)) (-3531 (((-768) $) NIL (|has| |#1| (-556)))) (-2261 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2190 ((|#1| $ (-564) (-564)) NIL)) (-1433 (((-641 |#1|) $) NIL)) (-3408 (((-768) $) NIL (|has| |#1| (-556)))) (-3540 (((-641 (-1259 |#1|)) $) NIL (|has| |#1| (-556)))) (-1745 (((-768) $) NIL)) (-3654 (($ (-768) (-768) |#1|) NIL)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3508 ((|#1| $) NIL (|has| |#1| (-6 (-4408 "*"))))) (-2904 (((-564) $) NIL)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2381 (((-564) $) NIL)) (-2821 (((-564) $) NIL)) (-4309 (($ (-641 (-641 |#1|))) 11)) (-2250 (($ (-1 |#1| |#1|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4217 (((-641 (-641 |#1|)) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1861 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2911 (($) 12)) (-2435 (($ $ $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-2088 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-1302 (((-112) $) NIL)) (-2876 ((|#1| $) NIL (|has| |#1| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-3065 (((-1259 |#1|) $ (-564)) NIL)) (-1831 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4320 (((-112) $) NIL)) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) 15) (((-1259 |#1|) (-1259 |#1|) $) NIL) (((-940 |#1|) $ (-940 |#1|)) 21)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-227 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -2911 ($)) (-15 -1407 ($ |#1|)) (-15 -1710 ($ |#1|)) (-15 -3052 ($ |#1|)) (-15 -3982 ($ |#1| |#1| |#1|)) (-15 -1676 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1194))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194))) (-5 *1 (-227 *3)))) (-2911 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1407 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1710 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3052 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3982 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1676 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) -(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -2911 ($)) (-15 -1407 ($ |#1|)) (-15 -1710 ($ |#1|)) (-15 -3052 ($ |#1|)) (-15 -3982 ($ |#1| |#1| |#1|)) (-15 -1676 ($ |#1| |#1| |#1|)))) -((-4145 (($ (-1 (-112) |#2|) $) 15)) (-3644 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 26)) (-4232 (($) NIL) (($ (-641 |#2|)) 11)) (-1702 (((-112) $ $) 24))) -(((-228 |#1| |#2|) (-10 -8 (-15 -4145 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3644 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -4232 (|#1| (-641 |#2|))) (-15 -4232 (|#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228)) -NIL -(-10 -8 (-15 -4145 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3644 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -4232 (|#1| (-641 |#2|))) (-15 -4232 (|#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-4145 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-3337 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4232 (($) 49) (($ (-641 |#1|)) 48)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 50)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +(-13 (-1094) (-10 -8 (-15 -9 ($) -2255) (-15 -8 ($) -2255) (-15 -7 ($) -2255))) +((-2310 (((-112) $ $) NIL)) (-4244 (((-641 (-861)) $) NIL)) (-2420 (((-506) $) 8)) (-1418 (((-1152) $) NIL)) (-1505 (((-186) $) 10)) (-3840 (((-1114) $) NIL)) (-4144 (((-687 $) (-506)) 17)) (-3117 (((-641 (-112)) $) NIL)) (-2322 (((-858) $) NIL)) (-3663 (((-55) $) 12)) (-2921 (((-112) $ $) NIL))) +(((-187) (-13 (-185) (-10 -8 (-15 -4144 ((-687 $) (-506)))))) (T -187)) +((-4144 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187))))) +(-13 (-185) (-10 -8 (-15 -4144 ((-687 $) (-506))))) +((-2665 ((|#2| |#2|) 28)) (-1664 (((-112) |#2|) 19)) (-2401 (((-316 |#1|) |#2|) 12)) (-2415 (((-316 |#1|) |#2|) 14)) (-2655 ((|#2| |#2| (-1170)) 70) ((|#2| |#2|) 71)) (-3286 (((-169 (-316 |#1|)) |#2|) 10)) (-1901 ((|#2| |#2| (-1170)) 67) ((|#2| |#2|) 61))) +(((-188 |#1| |#2|) (-10 -7 (-15 -2655 (|#2| |#2|)) (-15 -2655 (|#2| |#2| (-1170))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1170))) (-15 -2401 ((-316 |#1|) |#2|)) (-15 -2415 ((-316 |#1|) |#2|)) (-15 -1664 ((-112) |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -3286 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-846) (-1034 (-564))) (-13 (-27) (-1194) (-430 (-169 |#1|)))) (T -188)) +((-3286 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2401 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-2655 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))) +(-10 -7 (-15 -2655 (|#2| |#2|)) (-15 -2655 (|#2| |#2| (-1170))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1170))) (-15 -2401 ((-316 |#1|) |#2|)) (-15 -2415 ((-316 |#1|) |#2|)) (-15 -1664 ((-112) |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -3286 ((-169 (-316 |#1|)) |#2|))) +((-2320 (((-1259 (-685 (-948 |#1|))) (-1259 (-685 |#1|))) 26)) (-2322 (((-1259 (-685 (-407 (-948 |#1|)))) (-1259 (-685 |#1|))) 37))) +(((-189 |#1|) (-10 -7 (-15 -2320 ((-1259 (-685 (-948 |#1|))) (-1259 (-685 |#1|)))) (-15 -2322 ((-1259 (-685 (-407 (-948 |#1|)))) (-1259 (-685 |#1|))))) (-172)) (T -189)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-948 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -2320 ((-1259 (-685 (-948 |#1|))) (-1259 (-685 |#1|)))) (-15 -2322 ((-1259 (-685 (-407 (-948 |#1|)))) (-1259 (-685 |#1|))))) +((-1430 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 89)) (-2231 (((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))) 99)) (-2799 (((-1172 (-407 (-564))) (-564)) 56)) (-2418 (((-1172 (-407 (-564))) (-564)) 75)) (-3100 (((-407 (-564)) (-1172 (-407 (-564)))) 85)) (-1730 (((-1172 (-407 (-564))) (-564)) 37)) (-2827 (((-1172 (-407 (-564))) (-564)) 68)) (-3320 (((-1172 (-407 (-564))) (-564)) 62)) (-3579 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 83)) (-2614 (((-1172 (-407 (-564))) (-564)) 29)) (-3610 (((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 87)) (-2110 (((-1172 (-407 (-564))) (-564)) 35)) (-2616 (((-1172 (-407 (-564))) (-641 (-564))) 96))) +(((-190) (-10 -7 (-15 -2614 ((-1172 (-407 (-564))) (-564))) (-15 -2799 ((-1172 (-407 (-564))) (-564))) (-15 -1730 ((-1172 (-407 (-564))) (-564))) (-15 -2110 ((-1172 (-407 (-564))) (-564))) (-15 -3320 ((-1172 (-407 (-564))) (-564))) (-15 -2827 ((-1172 (-407 (-564))) (-564))) (-15 -2418 ((-1172 (-407 (-564))) (-564))) (-15 -3610 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3579 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3100 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -1430 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2616 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -2231 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))) (T -190)) +((-2231 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-1430 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-3579 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3610 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2418 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2827 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3320 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2110 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1730 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2614 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(-10 -7 (-15 -2614 ((-1172 (-407 (-564))) (-564))) (-15 -2799 ((-1172 (-407 (-564))) (-564))) (-15 -1730 ((-1172 (-407 (-564))) (-564))) (-15 -2110 ((-1172 (-407 (-564))) (-564))) (-15 -3320 ((-1172 (-407 (-564))) (-564))) (-15 -2827 ((-1172 (-407 (-564))) (-564))) (-15 -2418 ((-1172 (-407 (-564))) (-564))) (-15 -3610 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3579 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3100 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -1430 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2616 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -2231 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))))) +((-4372 (((-418 (-1166 (-564))) (-564)) 38)) (-2564 (((-641 (-1166 (-564))) (-564)) 33)) (-4007 (((-1166 (-564)) (-564)) 28))) +(((-191) (-10 -7 (-15 -2564 ((-641 (-1166 (-564))) (-564))) (-15 -4007 ((-1166 (-564)) (-564))) (-15 -4372 ((-418 (-1166 (-564))) (-564))))) (T -191)) +((-4372 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-4007 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-2564 (*1 *2 *3) (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) +(-10 -7 (-15 -2564 ((-641 (-1166 (-564))) (-564))) (-15 -4007 ((-1166 (-564)) (-564))) (-15 -4372 ((-418 (-1166 (-564))) (-564)))) +((-1878 (((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-1638 (((-641 (-1152)) (-1150 (-225))) NIL)) (-2636 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-2196 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225)))) NIL)) (-3699 (((-641 (-1152)) (-641 (-225))) NIL)) (-2250 (((-225) (-1088 (-839 (-225)))) 31)) (-3251 (((-225) (-1088 (-839 (-225)))) 32)) (-3924 (((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-1640 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-2393 (((-1152) (-225)) NIL)) (-4191 (((-1152) (-641 (-1152))) 27)) (-3947 (((-1031) (-1170) (-1170) (-1031)) 13))) +(((-192) (-10 -7 (-15 -2636 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1640 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2250 ((-225) (-1088 (-839 (-225))))) (-15 -3251 ((-225) (-1088 (-839 (-225))))) (-15 -3924 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2196 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -1878 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2393 ((-1152) (-225))) (-15 -3699 ((-641 (-1152)) (-641 (-225)))) (-15 -1638 ((-641 (-1152)) (-1150 (-225)))) (-15 -4191 ((-1152) (-641 (-1152)))) (-15 -3947 ((-1031) (-1170) (-1170) (-1031))))) (T -192)) +((-3947 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-192)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) (-2196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -2636 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1640 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2250 ((-225) (-1088 (-839 (-225))))) (-15 -3251 ((-225) (-1088 (-839 (-225))))) (-15 -3924 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2196 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -1878 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2393 ((-1152) (-225))) (-15 -3699 ((-641 (-1152)) (-641 (-225)))) (-15 -1638 ((-641 (-1152)) (-1150 (-225)))) (-15 -4191 ((-1152) (-641 (-1152)))) (-15 -3947 ((-1031) (-1170) (-1170) (-1031)))) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 61) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-193) (-783)) (T -193)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 66) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-194) (-783)) (T -194)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 81) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-195) (-783)) (T -195)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 63) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-196) (-783)) (T -196)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 75) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-197) (-783)) (T -197)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-198) (-783)) (T -198)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-199) (-783)) (T -199)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 77) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-200) (-783)) (T -200)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 78)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-201) (-783)) (T -201)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 79)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-202) (-783)) (T -202)) +NIL +(-783) +((-2310 (((-112) $ $) NIL)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 105) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-203) (-783)) (T -203)) +NIL +(-783) +((-1334 (((-3 (-2 (|:| -1513 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-3166 (((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2052 (((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92))) +(((-204) (-10 -7 (-15 -1334 ((-3 (-2 (|:| -1513 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2052 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3166 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-3166 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-2052 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-204)))) (-1334 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1513 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -1334 ((-3 (-2 (|:| -1513 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2052 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3166 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2432 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-3916 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 157)) (-1545 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225)))) 109)) (-2973 (((-379) (-685 (-316 (-225)))) 137)) (-3796 (((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170))) 133)) (-1854 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-1386 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-3100 (((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225)))) 122)) (-3096 (((-379) (-379) (-641 (-379))) 130) (((-379) (-379) (-379)) 125)) (-2521 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) +(((-205) (-10 -7 (-15 -3096 ((-379) (-379) (-379))) (-15 -3096 ((-379) (-379) (-641 (-379)))) (-15 -2973 ((-379) (-685 (-316 (-225))))) (-15 -3796 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -3100 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -1545 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -3916 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2432 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1386 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2521 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1854 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-1854 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3100 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3096 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))) +(-10 -7 (-15 -3096 ((-379) (-379) (-379))) (-15 -3096 ((-379) (-379) (-641 (-379)))) (-15 -2973 ((-379) (-685 (-316 (-225))))) (-15 -3796 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -3100 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -1545 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -3916 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2432 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1386 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2521 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1854 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2310 (((-112) $ $) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-3729 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2921 (((-112) $ $) NIL))) +(((-206) (-796)) (T -206)) +NIL +(-796) +((-2310 (((-112) $ $) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-3729 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2921 (((-112) $ $) NIL))) +(((-207) (-796)) (T -207)) +NIL +(-796) +((-2310 (((-112) $ $) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-3729 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2921 (((-112) $ $) NIL))) +(((-208) (-796)) (T -208)) +NIL +(-796) +((-2310 (((-112) $ $) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-3729 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2921 (((-112) $ $) NIL))) +(((-209) (-796)) (T -209)) +NIL +(-796) +((-2966 (((-641 (-1170)) (-1170) (-767)) 24)) (-3187 (((-316 (-225)) (-316 (-225))) 33)) (-4279 (((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 88)) (-1366 (((-112) (-225) (-225) (-641 (-316 (-225)))) 48))) +(((-210) (-10 -7 (-15 -2966 ((-641 (-1170)) (-1170) (-767))) (-15 -3187 ((-316 (-225)) (-316 (-225)))) (-15 -1366 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -4279 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) (T -210)) +((-4279 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1366 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-2966 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) (-5 *3 (-1170))))) +(-10 -7 (-15 -2966 ((-641 (-1170)) (-1170) (-767))) (-15 -3187 ((-316 (-225)) (-316 (-225)))) (-15 -1366 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -4279 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))))) +((-2310 (((-112) $ $) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 28)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-1358 (((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 70)) (-2921 (((-112) $ $) NIL))) +(((-211) (-891)) (T -211)) +NIL +(-891) +((-2310 (((-112) $ $) NIL)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 24)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-1358 (((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) NIL)) (-2921 (((-112) $ $) NIL))) +(((-212) (-891)) (T -212)) +NIL +(-891) +((-2310 (((-112) $ $) NIL)) (-1414 ((|#2| $ (-767) |#2|) 11)) (-1407 ((|#2| $ (-767)) 10)) (-4121 (($) 8)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 26)) (-2921 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -4121 ($)) (-15 -1407 (|#2| $ (-767))) (-15 -1414 (|#2| $ (-767) |#2|)))) (-917) (-1094)) (T -213)) +((-4121 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1094)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)))) (-1414 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) (-4 *2 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -4121 ($)) (-15 -1407 (|#2| $ (-767))) (-15 -1414 (|#2| $ (-767) |#2|)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3948 (((-1264) $) 37) (((-1264) $ (-917) (-917)) 44)) (-4353 (($ $ (-985)) 19) (((-245 (-1152)) $ (-1170)) 15)) (-1624 (((-1264) $) 35)) (-2322 (((-858) $) 32) (($ (-641 |#1|)) 8)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $ $) 27)) (-3011 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4353 ($ $ (-985))) (-15 -4353 ((-245 (-1152)) $ (-1170))) (-15 -3011 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $)) (-15 -3948 ((-1264) $ (-917) (-917))))) (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $))))) (T -214)) +((-4353 (*1 *1 *1 *2) (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $))))))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ *3)) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $))))))) (-3011 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $))))))) (-3021 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $))))))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 (*2 $)) (-15 -3948 (*2 $))))))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 (*2 $)) (-15 -3948 (*2 $))))))) (-3948 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 (*2 $)) (-15 -3948 (*2 $)))))))) +(-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4353 ($ $ (-985))) (-15 -4353 ((-245 (-1152)) $ (-1170))) (-15 -3011 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $)) (-15 -3948 ((-1264) $ (-917) (-917))))) +((-2556 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2556 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215)) +((-2556 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6))))) +(-10 -7 (-15 -2556 (|#2| |#4| (-1 |#2| |#2|)))) +((-2601 ((|#2| |#2| (-767) |#2|) 58)) (-1324 ((|#2| |#2| (-767) |#2|) 54)) (-3536 (((-641 |#2|) (-641 (-2 (|:| |deg| (-767)) (|:| -2747 |#2|)))) 81)) (-2299 (((-641 (-2 (|:| |deg| (-767)) (|:| -2747 |#2|))) |#2|) 75)) (-3542 (((-112) |#2|) 73)) (-2212 (((-418 |#2|) |#2|) 101)) (-2375 (((-418 |#2|) |#2|) 100)) (-3921 ((|#2| |#2| (-767) |#2|) 52)) (-2371 (((-2 (|:| |cont| |#1|) (|:| -4322 (-641 (-2 (|:| |irr| |#2|) (|:| -3871 (-564)))))) |#2| (-112)) 93))) +(((-216 |#1| |#2|) (-10 -7 (-15 -2375 ((-418 |#2|) |#2|)) (-15 -2212 ((-418 |#2|) |#2|)) (-15 -2371 ((-2 (|:| |cont| |#1|) (|:| -4322 (-641 (-2 (|:| |irr| |#2|) (|:| -3871 (-564)))))) |#2| (-112))) (-15 -2299 ((-641 (-2 (|:| |deg| (-767)) (|:| -2747 |#2|))) |#2|)) (-15 -3536 ((-641 |#2|) (-641 (-2 (|:| |deg| (-767)) (|:| -2747 |#2|))))) (-15 -3921 (|#2| |#2| (-767) |#2|)) (-15 -1324 (|#2| |#2| (-767) |#2|)) (-15 -2601 (|#2| |#2| (-767) |#2|)) (-15 -3542 ((-112) |#2|))) (-349) (-1235 |#1|)) (T -216)) +((-3542 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2601 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-1324 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3921 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |deg| (-767)) (|:| -2747 *5)))) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) (-5 *1 (-216 *4 *5)))) (-2299 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -2747 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))) (-2212 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -2375 ((-418 |#2|) |#2|)) (-15 -2212 ((-418 |#2|) |#2|)) (-15 -2371 ((-2 (|:| |cont| |#1|) (|:| -4322 (-641 (-2 (|:| |irr| |#2|) (|:| -3871 (-564)))))) |#2| (-112))) (-15 -2299 ((-641 (-2 (|:| |deg| (-767)) (|:| -2747 |#2|))) |#2|)) (-15 -3536 ((-641 |#2|) (-641 (-2 (|:| |deg| (-767)) (|:| -2747 |#2|))))) (-15 -3921 (|#2| |#2| (-767) |#2|)) (-15 -1324 (|#2| |#2| (-767) |#2|)) (-15 -2601 (|#2| |#2| (-767) |#2|)) (-15 -3542 ((-112) |#2|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-564) $) NIL (|has| (-564) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-564) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1034 (-564))))) (-1781 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-564) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| (-564) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-564) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2783 (((-112) $) NIL (|has| (-564) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-564) (-846)))) (-3123 (($ (-1 (-564) (-564)) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-564) (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-1421 (((-564) $) NIL (|has| (-564) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-564) $) NIL)) (-3317 (($ (-407 (-564))) 9)) (-3172 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL) (((-1000 10) $) 10)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 (((-564) $) NIL (|has| (-564) (-545)))) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL (|has| (-564) (-816)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3034 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) +(((-217) (-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 10)) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -3317 ($ (-407 (-564))))))) (T -217)) +((-3399 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) +(-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 10)) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -3317 ($ (-407 (-564)))))) +((-2310 (((-112) $ $) NIL)) (-3685 (((-1112) $) 13)) (-1418 (((-1152) $) NIL)) (-3654 (((-483) $) 10)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 23) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-1129) $) 15)) (-2921 (((-112) $ $) NIL))) +(((-218) (-13 (-1077) (-10 -8 (-15 -3654 ((-483) $)) (-15 -3685 ((-1112) $)) (-15 -2433 ((-1129) $))))) (T -218)) +((-3654 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218))))) +(-13 (-1077) (-10 -8 (-15 -3654 ((-483) $)) (-15 -3685 ((-1112) $)) (-15 -2433 ((-1129) $)))) +((-3719 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)) (-1152)) 29) (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|))) 25)) (-2148 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-839 |#2|) (-839 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -3719 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)))) (-15 -3719 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)) (-1152))) (-15 -2148 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-29 |#1|))) (T -219)) +((-2148 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1170)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1194) (-955) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-839 *3))) (-5 *5 (-1152)) (-4 *3 (-13 (-1194) (-955) (-29 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-839 *3))) (-4 *3 (-13 (-1194) (-955) (-29 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -3719 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)))) (-15 -3719 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)) (-1152))) (-15 -2148 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-839 |#2|) (-839 |#2|) (-112)))) +((-3719 (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))) (-1152)) 49) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|))))) 46) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))) (-1152)) 50) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|)))) 22))) +(((-220 |#1|) (-10 -7 (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))))) (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))) (-1152))) (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))))) (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))) (-1152)))) (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (T -220)) +((-3719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-839 (-407 (-948 *6))))) (-5 *5 (-1152)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1086 (-839 (-316 *6)))) (-5 *5 (-1152)) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1086 (-839 (-316 *5)))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))))) (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))) (-1152))) (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))))) (-15 -3719 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))) (-1152)))) +((-3239 (((-2 (|:| -3429 (-1166 |#1|)) (|:| |deg| (-917))) (-1166 |#1|)) 26)) (-2925 (((-641 (-316 |#2|)) (-316 |#2|) (-917)) 54))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3239 ((-2 (|:| -3429 (-1166 |#1|)) (|:| |deg| (-917))) (-1166 |#1|))) (-15 -2925 ((-641 (-316 |#2|)) (-316 |#2|) (-917)))) (-1045) (-13 (-556) (-846))) (T -221)) +((-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-13 (-556) (-846))) (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1045)))) (-3239 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -3429 (-1166 *4)) (|:| |deg| (-917)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-846)))))) +(-10 -7 (-15 -3239 ((-2 (|:| -3429 (-1166 |#1|)) (|:| |deg| (-917))) (-1166 |#1|))) (-15 -2925 ((-641 (-316 |#2|)) (-316 |#2|) (-917)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2975 ((|#1| $) NIL)) (-1846 ((|#1| $) 30)) (-2318 (((-112) $ (-767)) NIL)) (-4157 (($) NIL T CONST)) (-4149 (($ $) NIL)) (-2443 (($ $) 39)) (-2165 ((|#1| |#1| $) NIL)) (-3880 ((|#1| $) NIL)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1750 (((-767) $) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1340 ((|#1| $) NIL)) (-1747 ((|#1| |#1| $) 35)) (-3492 ((|#1| |#1| $) 37)) (-3861 (($ |#1| $) NIL)) (-3162 (((-767) $) 33)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4319 ((|#1| $) NIL)) (-2084 ((|#1| $) 31)) (-3872 ((|#1| $) 29)) (-1313 ((|#1| $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-4040 ((|#1| |#1| $) NIL)) (-3282 (((-112) $) 9)) (-2348 (($) NIL)) (-2853 ((|#1| $) NIL)) (-3387 (($) NIL) (($ (-641 |#1|)) 16)) (-1413 (((-767) $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1754 ((|#1| $) 13)) (-1717 (($ (-641 |#1|)) NIL)) (-2785 ((|#1| $) NIL)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -3387 ($ (-641 |#1|))))) (-1094)) (T -222)) +((-3387 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))) +(-13 (-254 |#1|) (-10 -8 (-15 -3387 ($ (-641 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2014 (($ (-316 |#1|)) 27)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-4156 (((-112) $) NIL)) (-3032 (((-3 (-316 |#1|) "failed") $) NIL)) (-1781 (((-316 |#1|) $) NIL)) (-2710 (($ $) 35)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-3123 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-2686 (((-316 |#1|) $) NIL)) (-1341 (($ $) 34)) (-1418 (((-1152) $) NIL)) (-3332 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4095 (($ (-767)) NIL)) (-4252 (($ $) 36)) (-2073 (((-564) $) NIL)) (-2322 (((-858) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-3467 (((-316 |#1|) $ $) NIL)) (-3179 (((-767)) NIL T CONST)) (-2389 (($) 29 T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) 32)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22))) +(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -2686 ((-316 |#1|) $)) (-15 -1341 ($ $)) (-15 -2710 ($ $)) (-15 -3467 ((-316 |#1|) $ $)) (-15 -4095 ($ (-767))) (-15 -3332 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2073 ((-564) $)) (-15 -3123 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -2014 ($ (-316 |#1|))) (-15 -4252 ($ $)))) (-13 (-1045) (-846)) (-641 (-1170))) (T -223)) +((-2686 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-1341 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-641 (-1170))))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-641 (-1170))))) (-3467 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-4252 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-641 (-1170)))))) +(-13 (-618 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -2686 ((-316 |#1|) $)) (-15 -1341 ($ $)) (-15 -2710 ($ $)) (-15 -3467 ((-316 |#1|) $ $)) (-15 -4095 ($ (-767))) (-15 -3332 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2073 ((-564) $)) (-15 -3123 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -2014 ($ (-316 |#1|))) (-15 -4252 ($ $)))) +((-4000 (((-112) (-1152)) 25)) (-1569 (((-3 (-839 |#2|) "failed") (-610 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112)) 35)) (-2473 (((-3 (-112) "failed") (-1166 |#2|) (-839 |#2|) (-839 |#2|) (-112)) 84) (((-3 (-112) "failed") (-948 |#1|) (-1170) (-839 |#2|) (-839 |#2|) (-112)) 85))) +(((-224 |#1| |#2|) (-10 -7 (-15 -4000 ((-112) (-1152))) (-15 -1569 ((-3 (-839 |#2|) "failed") (-610 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -2473 ((-3 (-112) "failed") (-948 |#1|) (-1170) (-839 |#2|) (-839 |#2|) (-112))) (-15 -2473 ((-3 (-112) "failed") (-1166 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-452) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -224)) +((-2473 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-839 *6)) (-4 *6 (-13 (-1194) (-29 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-2473 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1170)) (-5 *5 (-839 *7)) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-1569 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1194) (-29 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4)))))) +(-10 -7 (-15 -4000 ((-112) (-1152))) (-15 -1569 ((-3 (-839 |#2|) "failed") (-610 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -2473 ((-3 (-112) "failed") (-948 |#1|) (-1170) (-839 |#2|) (-839 |#2|) (-112))) (-15 -2473 ((-3 (-112) "failed") (-1166 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 96)) (-1625 (((-564) $) 36)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-3624 (($ $) NIL)) (-3802 (($ $) 85)) (-3661 (($ $) 73)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2387 (($ $) 64)) (-3547 (((-112) $ $) NIL)) (-3779 (($ $) 83)) (-3639 (($ $) 71)) (-3085 (((-564) $) 126)) (-3825 (($ $) 88)) (-3684 (($ $) 75)) (-4157 (($) NIL T CONST)) (-2362 (($ $) NIL)) (-3032 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-1781 (((-564) $) 123) (((-407 (-564)) $) 120)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) 101)) (-2398 (((-407 (-564)) $ (-767)) 115) (((-407 (-564)) $ (-767) (-767)) 114)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-1442 (((-917)) 29) (((-917) (-917)) NIL (|has| $ (-6 -4397)))) (-2786 (((-112) $) NIL)) (-4223 (($) 47)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3717 (((-564) $) 43)) (-1828 (((-112) $) 97)) (-2739 (($ $ (-564)) NIL)) (-2019 (($ $) NIL)) (-2783 (((-112) $) 95)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) 61) (($) 39 (-12 (-2329 (|has| $ (-6 -4389))) (-2329 (|has| $ (-6 -4397)))))) (-2622 (($ $ $) 60) (($) 38 (-12 (-2329 (|has| $ (-6 -4389))) (-2329 (|has| $ (-6 -4397)))))) (-3537 (((-564) $) 27)) (-3942 (($ $) 34)) (-2128 (($ $) 65)) (-3439 (($ $) 70)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-1910 (((-917) (-564)) NIL (|has| $ (-6 -4397)))) (-3840 (((-1114) $) 99)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL)) (-1421 (($ $) NIL)) (-2793 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-917)) 108)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3866 (((-564) $) 28)) (-1960 (($) 46)) (-3571 (($ $) 69)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3413 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4397)))) (-1343 (($ $ (-767)) NIL) (($ $) 102)) (-1454 (((-917) (-564)) NIL (|has| $ (-6 -4397)))) (-3836 (($ $) 86)) (-3697 (($ $) 76)) (-3814 (($ $) 87)) (-3672 (($ $) 74)) (-3792 (($ $) 84)) (-3650 (($ $) 72)) (-3172 (((-379) $) 111) (((-225) $) 14) (((-888 (-379)) $) NIL) (((-536) $) 53)) (-2322 (((-858) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-3179 (((-767)) NIL T CONST)) (-4381 (($ $) NIL)) (-3503 (((-917)) 37) (((-917) (-917)) NIL (|has| $ (-6 -4397)))) (-2610 (((-917)) 25)) (-2672 (($ $) 91)) (-3732 (($ $) 79) (($ $ $) 118)) (-4024 (((-112) $ $) NIL)) (-3849 (($ $) 89)) (-3708 (($ $) 77)) (-2695 (($ $) 94)) (-3757 (($ $) 82)) (-1511 (($ $) 92)) (-3768 (($ $) 80)) (-2684 (($ $) 93)) (-3746 (($ $) 81)) (-2660 (($ $) 90)) (-3720 (($ $) 78)) (-3598 (($ $) 117)) (-2389 (($) 23 T CONST)) (-2403 (($) 44 T CONST)) (-3552 (((-1152) $) 18) (((-1152) $ (-112)) 20) (((-1264) (-818) $) 21) (((-1264) (-818) $ (-112)) 22)) (-2630 (($ $) 105)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2934 (($ $ $) 107)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 62)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 54)) (-3034 (($ $ $) 45) (($ $ (-564)) 63)) (-3021 (($ $) 55) (($ $ $) 57)) (-3011 (($ $ $) 56)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-917) $) 35) (($ (-767) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-225) (-13 (-404) (-233) (-824) (-1194) (-612 (-536)) (-10 -8 (-15 -3034 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -1960 ($)) (-15 -3942 ($ $)) (-15 -2128 ($ $)) (-15 -3732 ($ $ $)) (-15 -2630 ($ $)) (-15 -2934 ($ $ $)) (-15 -2398 ((-407 (-564)) $ (-767))) (-15 -2398 ((-407 (-564)) $ (-767) (-767)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-1960 (*1 *1) (-5 *1 (-225))) (-3942 (*1 *1 *1) (-5 *1 (-225))) (-2128 (*1 *1 *1) (-5 *1 (-225))) (-3732 (*1 *1 *1 *1) (-5 *1 (-225))) (-2630 (*1 *1 *1) (-5 *1 (-225))) (-2934 (*1 *1 *1 *1) (-5 *1 (-225))) (-2398 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-2398 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))) +(-13 (-404) (-233) (-824) (-1194) (-612 (-536)) (-10 -8 (-15 -3034 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -1960 ($)) (-15 -3942 ($ $)) (-15 -2128 ($ $)) (-15 -3732 ($ $ $)) (-15 -2630 ($ $)) (-15 -2934 ($ $ $)) (-15 -2398 ((-407 (-564)) $ (-767))) (-15 -2398 ((-407 (-564)) $ (-767) (-767))))) +((-3395 (((-169 (-225)) (-767) (-169 (-225))) 11) (((-225) (-767) (-225)) 12)) (-3890 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3635 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-2813 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3736 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3786 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3369 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3766 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3322 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2724 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-2630 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2934 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) +(((-226) (-10 -7 (-15 -2630 ((-225) (-225))) (-15 -2630 ((-169 (-225)) (-169 (-225)))) (-15 -2934 ((-225) (-225) (-225))) (-15 -2934 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3890 ((-225) (-225))) (-15 -3890 ((-169 (-225)) (-169 (-225)))) (-15 -2813 ((-225) (-225))) (-15 -2813 ((-169 (-225)) (-169 (-225)))) (-15 -3395 ((-225) (-767) (-225))) (-15 -3395 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -3369 ((-225) (-225) (-225))) (-15 -3369 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3736 ((-225) (-225) (-225))) (-15 -3736 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3766 ((-225) (-225) (-225))) (-15 -3766 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3786 ((-225) (-225) (-225))) (-15 -3786 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2724 ((-169 (-225)) (-169 (-225)))) (-15 -2724 ((-225) (-225))) (-15 -3322 ((-225) (-225))) (-15 -3322 ((-169 (-225)) (-169 (-225)))) (-15 -3635 ((-225) (-225) (-225))) (-15 -3635 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) +((-3635 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3635 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3786 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3786 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3766 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3766 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3736 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3736 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3369 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3369 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3395 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) (-3395 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -2630 ((-225) (-225))) (-15 -2630 ((-169 (-225)) (-169 (-225)))) (-15 -2934 ((-225) (-225) (-225))) (-15 -2934 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3890 ((-225) (-225))) (-15 -3890 ((-169 (-225)) (-169 (-225)))) (-15 -2813 ((-225) (-225))) (-15 -2813 ((-169 (-225)) (-169 (-225)))) (-15 -3395 ((-225) (-767) (-225))) (-15 -3395 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -3369 ((-225) (-225) (-225))) (-15 -3369 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3736 ((-225) (-225) (-225))) (-15 -3736 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3766 ((-225) (-225) (-225))) (-15 -3766 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3786 ((-225) (-225) (-225))) (-15 -3786 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2724 ((-169 (-225)) (-169 (-225)))) (-15 -2724 ((-225) (-225))) (-15 -3322 ((-225) (-225))) (-15 -3322 ((-169 (-225)) (-169 (-225)))) (-15 -3635 ((-225) (-225) (-225))) (-15 -3635 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3991 (($ (-767) (-767)) NIL)) (-3416 (($ $ $) NIL)) (-3789 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-2143 (($ |#1| |#1| |#1|) 33)) (-3390 (((-112) $) NIL)) (-2604 (($ $ (-564) (-564)) NIL)) (-3216 (($ $ (-564) (-564)) NIL)) (-2150 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3920 (($ $) NIL)) (-4283 (((-112) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2182 (($ $ (-564) (-564) $) NIL)) (-3750 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-3909 (($ $ (-564) (-1259 |#1|)) NIL)) (-1748 (($ $ (-564) (-1259 |#1|)) NIL)) (-3268 (($ |#1| |#1| |#1|) 32)) (-2567 (($ (-767) |#1|) NIL)) (-4157 (($) NIL T CONST)) (-3442 (($ $) NIL (|has| |#1| (-307)))) (-1597 (((-1259 |#1|) $ (-564)) NIL)) (-1483 (($ |#1|) 31)) (-1647 (($ |#1|) 30)) (-4101 (($ |#1|) 29)) (-3105 (((-767) $) NIL (|has| |#1| (-556)))) (-1466 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1407 ((|#1| $ (-564) (-564)) NIL)) (-3534 (((-641 |#1|) $) NIL)) (-2748 (((-767) $) NIL (|has| |#1| (-556)))) (-3414 (((-641 (-1259 |#1|)) $) NIL (|has| |#1| (-556)))) (-3835 (((-767) $) NIL)) (-4121 (($ (-767) (-767) |#1|) NIL)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-4360 ((|#1| $) NIL (|has| |#1| (-6 (-4408 "*"))))) (-2615 (((-564) $) NIL)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4253 (((-564) $) NIL)) (-3020 (((-564) $) NIL)) (-4187 (($ (-641 (-641 |#1|))) 11)) (-1456 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3818 (((-641 (-641 |#1|)) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3721 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2693 (($) 12)) (-3535 (($ $ $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-4289 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-2037 (((-112) $) NIL)) (-2311 ((|#1| $) NIL (|has| |#1| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-1582 (((-1259 |#1|) $ (-564)) NIL)) (-2322 (($ (-1259 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2378 (((-112) $) NIL)) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) 15) (((-1259 |#1|) (-1259 |#1|) $) NIL) (((-939 |#1|) $ (-939 |#1|)) 21)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-227 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -2693 ($)) (-15 -4101 ($ |#1|)) (-15 -1647 ($ |#1|)) (-15 -1483 ($ |#1|)) (-15 -3268 ($ |#1| |#1| |#1|)) (-15 -2143 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1194))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194))) (-5 *1 (-227 *3)))) (-2693 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-4101 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1647 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1483 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3268 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2143 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -2693 ($)) (-15 -4101 ($ |#1|)) (-15 -1647 ($ |#1|)) (-15 -1483 ($ |#1|)) (-15 -3268 ($ |#1| |#1| |#1|)) (-15 -2143 ($ |#1| |#1| |#1|)))) +((-4328 (($ (-1 (-112) |#2|) $) 15)) (-3175 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 26)) (-3977 (($) NIL) (($ (-641 |#2|)) 11)) (-2921 (((-112) $ $) 24))) +(((-228 |#1| |#2|) (-10 -8 (-15 -4328 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3175 (|#1| |#2| |#1|)) (-15 -3977 (|#1| (-641 |#2|))) (-15 -3977 (|#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228)) +NIL +(-10 -8 (-15 -4328 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3175 (|#1| |#2| |#1|)) (-15 -3977 (|#1| (-641 |#2|))) (-15 -3977 (|#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4328 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2027 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3977 (($) 49) (($ (-641 |#1|)) 48)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 50)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-229 |#1|) (-140) (-1094)) (T -229)) NIL (-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-3534 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) 14) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 22) (($ $ (-768)) NIL) (($ $) 19)) (-3435 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-768)) 17) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3435 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3435 (|#1| |#1| (-1170))) (-15 -3435 (|#1| |#1| (-641 (-1170)))) (-15 -3435 (|#1| |#1| (-1170) (-768))) (-15 -3435 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3435 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3435 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1046)) (T -230)) -NIL -(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3435 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3435 (|#1| |#1| (-1170))) (-15 -3435 (|#1| |#1| (-641 (-1170)))) (-15 -3435 (|#1| |#1| (-1170) (-768))) (-15 -3435 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3435 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3435 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3534 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-231 |#1|) (-140) (-1046)) (T -231)) -((-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-3534 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-3435 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046))))) -(-13 (-1046) (-10 -8 (-15 -3534 ($ $ (-1 |t#1| |t#1|))) (-15 -3534 ($ $ (-1 |t#1| |t#1|) (-768))) (-15 -3435 ($ $ (-1 |t#1| |t#1|))) (-15 -3435 ($ $ (-1 |t#1| |t#1|) (-768))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-233) |has| |#1| (-233)) ((-644 $) . T) ((-723) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-3534 (($ $) NIL) (($ $ (-768)) 13)) (-3435 (($ $) 8) (($ $ (-768)) 15))) -(((-232 |#1|) (-10 -8 (-15 -3435 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3435 (|#1| |#1|)) (-15 -3534 (|#1| |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -3435 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3435 (|#1| |#1|)) (-15 -3534 (|#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3534 (($ $) 38) (($ $ (-768)) 36)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $) 37) (($ $ (-768)) 35)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-1343 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) 14) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 22) (($ $ (-767)) NIL) (($ $) 19)) (-3917 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-767)) 17) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -3917 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3917 (|#1| |#1| (-1170))) (-15 -3917 (|#1| |#1| (-641 (-1170)))) (-15 -3917 (|#1| |#1| (-1170) (-767))) (-15 -3917 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3917 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3917 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1045)) (T -230)) +NIL +(-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -3917 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3917 (|#1| |#1| (-1170))) (-15 -3917 (|#1| |#1| (-641 (-1170)))) (-15 -3917 (|#1| |#1| (-1170) (-767))) (-15 -3917 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3917 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3917 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1343 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-767)) 51) (($ $ (-641 (-1170)) (-641 (-767))) 44 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 43 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 41 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-767)) 49) (($ $ (-641 (-1170)) (-641 (-767))) 48 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 47 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 45 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-231 |#1|) (-140) (-1045)) (T -231)) +((-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-3917 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -1343 ($ $ (-1 |t#1| |t#1|))) (-15 -1343 ($ $ (-1 |t#1| |t#1|) (-767))) (-15 -3917 ($ $ (-1 |t#1| |t#1|))) (-15 -3917 ($ $ (-1 |t#1| |t#1|) (-767))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-233) |has| |#1| (-233)) ((-644 $) . T) ((-722) . T) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-1343 (($ $) NIL) (($ $ (-767)) 13)) (-3917 (($ $) 8) (($ $ (-767)) 15))) +(((-232 |#1|) (-10 -8 (-15 -3917 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-767))) (-15 -3917 (|#1| |#1|)) (-15 -1343 (|#1| |#1|))) (-233)) (T -232)) +NIL +(-10 -8 (-15 -3917 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-767))) (-15 -3917 (|#1| |#1|)) (-15 -1343 (|#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1343 (($ $) 38) (($ $ (-767)) 36)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $) 37) (($ $ (-767)) 35)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-233) (-140)) (T -233)) -((-3534 (*1 *1 *1) (-4 *1 (-233))) (-3435 (*1 *1 *1) (-4 *1 (-233))) (-3534 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) (-3435 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768))))) -(-13 (-1046) (-10 -8 (-15 -3534 ($ $)) (-15 -3435 ($ $)) (-15 -3534 ($ $ (-768))) (-15 -3435 ($ $ (-768))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-4232 (($) 12) (($ (-641 |#2|)) NIL)) (-1991 (($ $) 14)) (-1842 (($ (-641 |#2|)) 10)) (-1831 (((-859) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -4232 (|#1| (-641 |#2|))) (-15 -4232 (|#1|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -1991 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -4232 (|#1| (-641 |#2|))) (-15 -4232 (|#1|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -1991 (|#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-4145 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-3337 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4232 (($) 49) (($ (-641 |#1|)) 48)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 50)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-1343 (*1 *1 *1) (-4 *1 (-233))) (-3917 (*1 *1 *1) (-4 *1 (-233))) (-1343 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) (-3917 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))) +(-13 (-1045) (-10 -8 (-15 -1343 ($ $)) (-15 -3917 ($ $)) (-15 -1343 ($ $ (-767))) (-15 -3917 ($ $ (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3977 (($) 12) (($ (-641 |#2|)) NIL)) (-3772 (($ $) 14)) (-2335 (($ (-641 |#2|)) 10)) (-2322 (((-858) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -3977 (|#1| (-641 |#2|))) (-15 -3977 (|#1|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -3772 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -3977 (|#1| (-641 |#2|))) (-15 -3977 (|#1|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -3772 (|#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4328 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2027 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3977 (($) 49) (($ (-641 |#1|)) 48)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 50)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-235 |#1|) (-140) (-1094)) (T -235)) -((-4232 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-3644 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3644 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) (-4 *3 (-1094))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -4232 ($)) (-15 -4232 ($ (-641 |t#1|))) (IF (|has| $ (-6 -4406)) (PROGN (-15 -3644 ($ |t#1| $)) (-15 -3644 ($ (-1 (-112) |t#1|) $)) (-15 -4145 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-4139 (((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564)))) 42))) -(((-236) (-10 -7 (-15 -4139 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564))))))) (T -236)) -((-4139 (*1 *2 *3) (-12 (-5 *3 (-294 (-949 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -4139 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564)))))) -((-3267 (((-768)) 56)) (-4050 (((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 53) (((-685 |#3|) (-685 $)) 44) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3548 (((-134)) 62)) (-3534 (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-1831 (((-1259 |#3|) $) NIL) (($ |#3|) NIL) (((-859) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-2219 (((-768)) 15)) (-1823 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|)) (-15 -2219 ((-768))) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -1831 (|#1| |#3|)) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -4050 ((-685 |#3|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3267 ((-768))) (-15 -1823 (|#1| |#1| |#3|)) (-15 -3548 ((-134))) (-15 -1831 ((-1259 |#3|) |#1|))) (-238 |#2| |#3|) (-768) (-1209)) (T -237)) -((-3548 (*1 *2) (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3267 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2219 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|)) (-15 -2219 ((-768))) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -1831 (|#1| |#3|)) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -4050 ((-685 |#3|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3267 ((-768))) (-15 -1823 (|#1| |#1| |#3|)) (-15 -3548 ((-134))) (-15 -1831 ((-1259 |#3|) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-1615 (((-112) $) 72 (|has| |#2| (-131)))) (-1575 (($ (-918)) 125 (|has| |#2| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-1986 (($ $ $) 121 (|has| |#2| (-790)))) (-4088 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-4010 (((-112) $ (-768)) 8)) (-3267 (((-768)) 107 (|has| |#2| (-368)))) (-1598 (((-564) $) 119 (|has| |#2| (-845)))) (-1970 ((|#2| $ (-564) |#2|) 52 (|has| $ (-6 -4407)))) (-1778 (($) 7 T CONST)) (-2347 (((-3 (-564) "failed") $) 67 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) 64 (-4348 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1094)))) (-2237 (((-564) $) 66 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) 63 (-4348 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 62 (|has| |#2| (-1094)))) (-4050 (((-685 (-564)) (-685 $)) 106 (-4348 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 105 (-4348 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 104 (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) 103 (|has| |#2| (-1046)))) (-3733 (((-3 $ "failed") $) 79 (|has| |#2| (-723)))) (-2900 (($) 110 (|has| |#2| (-368)))) (-2261 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#2| $ (-564)) 51)) (-1569 (((-112) $) 117 (|has| |#2| (-845)))) (-1433 (((-641 |#2|) $) 30 (|has| $ (-6 -4406)))) (-2949 (((-112) $) 81 (|has| |#2| (-723)))) (-2607 (((-112) $) 118 (|has| |#2| (-845)))) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 116 (-4078 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-2640 (((-641 |#2|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 115 (-4078 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-2250 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2|) $) 35)) (-1811 (((-918) $) 109 (|has| |#2| (-368)))) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-1468 (($ (-918)) 108 (|has| |#2| (-368)))) (-2780 (((-1114) $) 21 (|has| |#2| (-1094)))) (-3303 ((|#2| $) 42 (|has| (-564) (-847)))) (-4253 (($ $ |#2|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#2| $ (-564) |#2|) 50) ((|#2| $ (-564)) 49)) (-3032 ((|#2| $ $) 124 (|has| |#2| (-1046)))) (-3112 (($ (-1259 |#2|)) 126)) (-3548 (((-134)) 123 (|has| |#2| (-363)))) (-3534 (($ $) 98 (-4348 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 96 (-4348 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 94 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 93 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 92 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 91 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 84 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1046)))) (-2791 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4406))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-1259 |#2|) $) 127) (($ (-564)) 68 (-4078 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) 65 (-4348 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 60 (|has| |#2| (-1094))) (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-2219 (((-768)) 102 (|has| |#2| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4406)))) (-1849 (($ $) 120 (|has| |#2| (-845)))) (-1293 (($) 71 (|has| |#2| (-131)) CONST)) (-1300 (($) 82 (|has| |#2| (-723)) CONST)) (-3435 (($ $) 97 (-4348 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 95 (-4348 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 90 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 89 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 88 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 87 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 86 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1046)))) (-1762 (((-112) $ $) 113 (-4078 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1737 (((-112) $ $) 112 (-4078 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1702 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-1749 (((-112) $ $) 114 (-4078 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1723 (((-112) $ $) 111 (-4078 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1823 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-1808 (($ $ $) 100 (|has| |#2| (-1046))) (($ $) 99 (|has| |#2| (-1046)))) (-1797 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-768)) 80 (|has| |#2| (-723))) (($ $ (-918)) 77 (|has| |#2| (-723)))) (* (($ (-564) $) 101 (|has| |#2| (-1046))) (($ $ $) 78 (|has| |#2| (-723))) (($ $ |#2|) 76 (|has| |#2| (-723))) (($ |#2| $) 75 (|has| |#2| (-723))) (($ (-768) $) 73 (|has| |#2| (-131))) (($ (-918) $) 70 (|has| |#2| (-25)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-238 |#1| |#2|) (-140) (-768) (-1209)) (T -238)) -((-3112 (*1 *1 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046)) (-4 *4 (-1209)))) (-3032 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))) -(-13 (-602 (-564) |t#2|) (-611 (-1259 |t#2|)) (-10 -8 (-6 -4406) (-15 -3112 ($ (-1259 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1046)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -1575 ($ (-918))) (-15 -3032 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-723)) (PROGN (-6 (-723)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |t#2| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#2| (-790)) (-6 (-790)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1266 |t#2|)) |%noBranch|))) -(((-21) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -4078 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4078 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-614 (-564)) -4078 (|has| |#2| (-1046)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-614 |#2|) -4078 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-611 (-859)) -4078 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-859))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1259 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1046)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1046))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1046)) ((-411 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) -4078 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))) ((-637 |#2|) |has| |#2| (-1046)) ((-714 |#2|) -4078 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-723) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-788) |has| |#2| (-845)) ((-789) -4078 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-790) |has| |#2| (-790)) ((-791) -4078 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-792) -4078 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-845) |has| |#2| (-845)) ((-847) -4078 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-897 (-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046))) ((-1035 #0#) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-1035 (-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) ((-1035 |#2|) |has| |#2| (-1094)) ((-1052 |#2|) -4078 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1052 $) |has| |#2| (-172)) ((-1046) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1053) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1106) -4078 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-1094) -4078 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1209) . T) ((-1266 |#2|) |has| |#2| (-363))) -((-1694 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1988 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2449 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1694 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1988 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2449 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-768) (-1209) (-1209)) (T -239)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -1694 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1988 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2449 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) -((-1817 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1615 (((-112) $) NIL (|has| |#2| (-131)))) (-1575 (($ (-918)) 65 (|has| |#2| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1986 (($ $ $) 69 (|has| |#2| (-790)))) (-4088 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-4010 (((-112) $ (-768)) 17)) (-3267 (((-768)) NIL (|has| |#2| (-368)))) (-1598 (((-564) $) NIL (|has| |#2| (-845)))) (-1970 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1094)))) (-2237 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 32 (|has| |#2| (-1094)))) (-4050 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-3733 (((-3 $ "failed") $) 61 (|has| |#2| (-723)))) (-2900 (($) NIL (|has| |#2| (-368)))) (-2261 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ (-564)) 59)) (-1569 (((-112) $) NIL (|has| |#2| (-845)))) (-1433 (((-641 |#2|) $) 15 (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL (|has| |#2| (-723)))) (-2607 (((-112) $) NIL (|has| |#2| (-845)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 20 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2640 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 (((-564) $) 58 (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2250 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2|) $) 47)) (-1811 (((-918) $) NIL (|has| |#2| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-1468 (($ (-918)) NIL (|has| |#2| (-368)))) (-2780 (((-1114) $) NIL (|has| |#2| (-1094)))) (-3303 ((|#2| $) NIL (|has| (-564) (-847)))) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-3032 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-3112 (($ (-1259 |#2|)) 18)) (-3548 (((-134)) NIL (|has| |#2| (-363)))) (-3534 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-2791 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1259 |#2|) $) 10) (($ (-564)) NIL (-4078 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-2219 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1849 (($ $) NIL (|has| |#2| (-845)))) (-1293 (($) 40 (|has| |#2| (-131)) CONST)) (-1300 (($) 44 (|has| |#2| (-723)) CONST)) (-3435 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1762 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1702 (((-112) $ $) 31 (|has| |#2| (-1094)))) (-1749 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1723 (((-112) $ $) 67 (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1797 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) 50 (|has| |#2| (-723))) (($ $ |#2|) 48 (|has| |#2| (-723))) (($ |#2| $) 49 (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-240 |#1| |#2|) (-238 |#1| |#2|) (-768) (-1209)) (T -240)) +((-3977 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-3175 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) (-4 *3 (-1094))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3977 ($)) (-15 -3977 ($ (-641 |t#1|))) (IF (|has| $ (-6 -4406)) (PROGN (-15 -3175 ($ |t#1| $)) (-15 -3175 ($ (-1 (-112) |t#1|) $)) (-15 -4328 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-4264 (((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767))))) (-294 (-948 (-564)))) 42))) +(((-236) (-10 -7 (-15 -4264 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767))))) (-294 (-948 (-564))))))) (T -236)) +((-4264 (*1 *2 *3) (-12 (-5 *3 (-294 (-948 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -4264 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767))))) (-294 (-948 (-564)))))) +((-1959 (((-767)) 56)) (-2750 (((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 53) (((-685 |#3|) (-685 $)) 44) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3480 (((-134)) 62)) (-1343 (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2322 (((-1259 |#3|) $) NIL) (($ |#3|) NIL) (((-858) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-3179 (((-767)) 15)) (-3034 (($ $ |#3|) 59))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|)) (-15 -3179 ((-767))) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2322 (|#1| |#3|)) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -2750 ((-685 |#3|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -1959 ((-767))) (-15 -3034 (|#1| |#1| |#3|)) (-15 -3480 ((-134))) (-15 -2322 ((-1259 |#3|) |#1|))) (-238 |#2| |#3|) (-767) (-1209)) (T -237)) +((-3480 (*1 *2) (-12 (-14 *4 (-767)) (-4 *5 (-1209)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1959 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3179 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|)) (-15 -3179 ((-767))) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2322 (|#1| |#3|)) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -2750 ((-685 |#3|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -1959 ((-767))) (-15 -3034 (|#1| |#1| |#3|)) (-15 -3480 ((-134))) (-15 -2322 ((-1259 |#3|) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-3264 (((-112) $) 72 (|has| |#2| (-131)))) (-2845 (($ (-917)) 125 (|has| |#2| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2568 (($ $ $) 121 (|has| |#2| (-789)))) (-1862 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-2318 (((-112) $ (-767)) 8)) (-1959 (((-767)) 107 (|has| |#2| (-368)))) (-3085 (((-564) $) 119 (|has| |#2| (-844)))) (-3750 ((|#2| $ (-564) |#2|) 52 (|has| $ (-6 -4407)))) (-4157 (($) 7 T CONST)) (-3032 (((-3 (-564) "failed") $) 67 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) 64 (-2342 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1094)))) (-1781 (((-564) $) 66 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) 63 (-2342 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 62 (|has| |#2| (-1094)))) (-2750 (((-685 (-564)) (-685 $)) 106 (-2342 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 105 (-2342 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 104 (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) 103 (|has| |#2| (-1045)))) (-2689 (((-3 $ "failed") $) 79 (|has| |#2| (-722)))) (-3860 (($) 110 (|has| |#2| (-368)))) (-1466 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#2| $ (-564)) 51)) (-2786 (((-112) $) 117 (|has| |#2| (-844)))) (-3534 (((-641 |#2|) $) 30 (|has| $ (-6 -4406)))) (-1828 (((-112) $) 81 (|has| |#2| (-722)))) (-2783 (((-112) $) 118 (|has| |#2| (-844)))) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 116 (-2789 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1834 (((-641 |#2|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 115 (-2789 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1456 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2|) $) 35)) (-1368 (((-917) $) 109 (|has| |#2| (-368)))) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-1998 (($ (-917)) 108 (|has| |#2| (-368)))) (-3840 (((-1114) $) 21 (|has| |#2| (-1094)))) (-1995 ((|#2| $) 42 (|has| (-564) (-846)))) (-2981 (($ $ |#2|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#2| $ (-564) |#2|) 50) ((|#2| $ (-564)) 49)) (-2535 ((|#2| $ $) 124 (|has| |#2| (-1045)))) (-2427 (($ (-1259 |#2|)) 126)) (-3480 (((-134)) 123 (|has| |#2| (-363)))) (-1343 (($ $) 98 (-2342 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 96 (-2342 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) 94 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) 93 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) 92 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) 91 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 84 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1045)))) (-3852 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4406))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-1259 |#2|) $) 127) (($ (-564)) 68 (-2789 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) 65 (-2342 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 60 (|has| |#2| (-1094))) (((-858) $) 18 (|has| |#2| (-611 (-858))))) (-3179 (((-767)) 102 (|has| |#2| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4406)))) (-3598 (($ $) 120 (|has| |#2| (-844)))) (-2389 (($) 71 (|has| |#2| (-131)) CONST)) (-2403 (($) 82 (|has| |#2| (-722)) CONST)) (-3917 (($ $) 97 (-2342 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 95 (-2342 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) 90 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) 89 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) 88 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) 87 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 86 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1045)))) (-2977 (((-112) $ $) 113 (-2789 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2953 (((-112) $ $) 112 (-2789 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2921 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2964 (((-112) $ $) 114 (-2789 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2942 (((-112) $ $) 111 (-2789 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3034 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-3021 (($ $ $) 100 (|has| |#2| (-1045))) (($ $) 99 (|has| |#2| (-1045)))) (-3011 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-767)) 80 (|has| |#2| (-722))) (($ $ (-917)) 77 (|has| |#2| (-722)))) (* (($ (-564) $) 101 (|has| |#2| (-1045))) (($ $ $) 78 (|has| |#2| (-722))) (($ $ |#2|) 76 (|has| |#2| (-722))) (($ |#2| $) 75 (|has| |#2| (-722))) (($ (-767) $) 73 (|has| |#2| (-131))) (($ (-917) $) 70 (|has| |#2| (-25)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-238 |#1| |#2|) (-140) (-767) (-1209)) (T -238)) +((-2427 (*1 *1 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1209)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722))))) +(-13 (-602 (-564) |t#2|) (-611 (-1259 |t#2|)) (-10 -8 (-6 -4406) (-15 -2427 ($ (-1259 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1045)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -2845 ($ (-917))) (-15 -2535 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-722)) (PROGN (-6 (-722)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |t#2| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#2| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1266 |t#2|)) |%noBranch|))) +(((-21) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2789 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2789 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))) ((-614 (-564)) -2789 (|has| |#2| (-1045)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-614 |#2|) -2789 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-611 (-858)) -2789 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-858))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1259 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1045)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1045))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1045)) ((-411 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) -2789 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045))) ((-637 |#2|) |has| |#2| (-1045)) ((-713 |#2|) -2789 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-722) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-787) |has| |#2| (-844)) ((-788) -2789 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-789) |has| |#2| (-789)) ((-790) -2789 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-791) -2789 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-844) |has| |#2| (-844)) ((-846) -2789 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-896 (-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045))) ((-1034 #0#) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))) ((-1034 (-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) ((-1034 |#2|) |has| |#2| (-1094)) ((-1051 |#2|) -2789 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1045) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1052) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1106) -2789 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-1094) -2789 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1209) . T) ((-1266 |#2|) |has| |#2| (-363))) +((-1514 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-3239 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3123 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1514 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3239 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3123 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-767) (-1209) (-1209)) (T -239)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) (-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) +(-10 -7 (-15 -1514 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3239 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3123 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-2310 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3264 (((-112) $) NIL (|has| |#2| (-131)))) (-2845 (($ (-917)) 65 (|has| |#2| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2568 (($ $ $) 69 (|has| |#2| (-789)))) (-1862 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2318 (((-112) $ (-767)) 17)) (-1959 (((-767)) NIL (|has| |#2| (-368)))) (-3085 (((-564) $) NIL (|has| |#2| (-844)))) (-3750 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1094)))) (-1781 (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 32 (|has| |#2| (-1094)))) (-2750 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1045)))) (-2689 (((-3 $ "failed") $) 61 (|has| |#2| (-722)))) (-3860 (($) NIL (|has| |#2| (-368)))) (-1466 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ (-564)) 59)) (-2786 (((-112) $) NIL (|has| |#2| (-844)))) (-3534 (((-641 |#2|) $) 15 (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL (|has| |#2| (-722)))) (-2783 (((-112) $) NIL (|has| |#2| (-844)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 20 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1834 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 (((-564) $) 58 (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1456 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2|) $) 47)) (-1368 (((-917) $) NIL (|has| |#2| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-1998 (($ (-917)) NIL (|has| |#2| (-368)))) (-3840 (((-1114) $) NIL (|has| |#2| (-1094)))) (-1995 ((|#2| $) NIL (|has| (-564) (-846)))) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-2535 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2427 (($ (-1259 |#2|)) 18)) (-3480 (((-134)) NIL (|has| |#2| (-363)))) (-1343 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3852 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1259 |#2|) $) 10) (($ (-564)) NIL (-2789 (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-858) $) NIL (|has| |#2| (-611 (-858))))) (-3179 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3598 (($ $) NIL (|has| |#2| (-844)))) (-2389 (($) 40 (|has| |#2| (-131)) CONST)) (-2403 (($) 44 (|has| |#2| (-722)) CONST)) (-3917 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2977 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2921 (((-112) $ $) 31 (|has| |#2| (-1094)))) (-2964 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2942 (((-112) $ $) 67 (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3011 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-564) $) NIL (|has| |#2| (-1045))) (($ $ $) 50 (|has| |#2| (-722))) (($ $ |#2|) 48 (|has| |#2| (-722))) (($ |#2| $) 49 (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-240 |#1| |#2|) (-238 |#1| |#2|) (-767) (-1209)) (T -240)) NIL (-238 |#1| |#2|) -((-2984 (((-564) (-641 (-1152))) 34) (((-564) (-1152)) 28)) (-2231 (((-1264) (-641 (-1152))) 39) (((-1264) (-1152)) 38)) (-2578 (((-1152)) 16)) (-2339 (((-1152) (-564) (-1152)) 23)) (-2513 (((-641 (-1152)) (-641 (-1152)) (-564) (-1152)) 35) (((-1152) (-1152) (-564) (-1152)) 33)) (-1950 (((-641 (-1152)) (-641 (-1152))) 15) (((-641 (-1152)) (-1152)) 11))) -(((-241) (-10 -7 (-15 -1950 ((-641 (-1152)) (-1152))) (-15 -1950 ((-641 (-1152)) (-641 (-1152)))) (-15 -2578 ((-1152))) (-15 -2339 ((-1152) (-564) (-1152))) (-15 -2513 ((-1152) (-1152) (-564) (-1152))) (-15 -2513 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -2231 ((-1264) (-1152))) (-15 -2231 ((-1264) (-641 (-1152)))) (-15 -2984 ((-564) (-1152))) (-15 -2984 ((-564) (-641 (-1152)))))) (T -241)) -((-2984 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2513 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *1 (-241)))) (-2513 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2339 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2578 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) (-1950 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152))))) -(-10 -7 (-15 -1950 ((-641 (-1152)) (-1152))) (-15 -1950 ((-641 (-1152)) (-641 (-1152)))) (-15 -2578 ((-1152))) (-15 -2339 ((-1152) (-564) (-1152))) (-15 -2513 ((-1152) (-1152) (-564) (-1152))) (-15 -2513 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -2231 ((-1264) (-1152))) (-15 -2231 ((-1264) (-641 (-1152)))) (-15 -2984 ((-564) (-1152))) (-15 -2984 ((-564) (-641 (-1152))))) -((** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL))) -(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-243)) (T -242)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 40)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 44)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 41)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 43) (($ $ (-407 (-564))) 42))) +((-2173 (((-564) (-641 (-1152))) 34) (((-564) (-1152)) 28)) (-2726 (((-1264) (-641 (-1152))) 39) (((-1264) (-1152)) 38)) (-2484 (((-1152)) 16)) (-1919 (((-1152) (-564) (-1152)) 23)) (-2965 (((-641 (-1152)) (-641 (-1152)) (-564) (-1152)) 35) (((-1152) (-1152) (-564) (-1152)) 33)) (-3048 (((-641 (-1152)) (-641 (-1152))) 15) (((-641 (-1152)) (-1152)) 11))) +(((-241) (-10 -7 (-15 -3048 ((-641 (-1152)) (-1152))) (-15 -3048 ((-641 (-1152)) (-641 (-1152)))) (-15 -2484 ((-1152))) (-15 -1919 ((-1152) (-564) (-1152))) (-15 -2965 ((-1152) (-1152) (-564) (-1152))) (-15 -2965 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -2726 ((-1264) (-1152))) (-15 -2726 ((-1264) (-641 (-1152)))) (-15 -2173 ((-564) (-1152))) (-15 -2173 ((-564) (-641 (-1152)))))) (T -241)) +((-2173 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2965 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *1 (-241)))) (-2965 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-1919 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2484 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))) (-3048 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152))))) +(-10 -7 (-15 -3048 ((-641 (-1152)) (-1152))) (-15 -3048 ((-641 (-1152)) (-641 (-1152)))) (-15 -2484 ((-1152))) (-15 -1919 ((-1152) (-564) (-1152))) (-15 -2965 ((-1152) (-1152) (-564) (-1152))) (-15 -2965 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -2726 ((-1264) (-1152))) (-15 -2726 ((-1264) (-641 (-1152)))) (-15 -2173 ((-564) (-1152))) (-15 -2173 ((-564) (-641 (-1152))))) +((** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 20)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL))) +(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-243)) (T -242)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 40)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 44)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 41)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 43) (($ $ (-407 (-564))) 42))) (((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-3315 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -3315 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-723) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-4045 (($ $) 57)) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-4277 (($ $ $) 53 (|has| $ (-6 -4407)))) (-3828 (($ $ $) 52 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-1778 (($) 7 T CONST)) (-3779 (($ $) 56)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3938 (($ $) 55)) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2598 ((|#1| $) 59)) (-4202 (($ $) 58)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47)) (-4190 (((-564) $ $) 44)) (-1899 (((-112) $) 46)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2460 (($ $ $) 54 (|has| $ (-6 -4407)))) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-2639 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -2639 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-722) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-3284 (($ $) 57)) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3206 (($ $ $) 53 (|has| $ (-6 -4407)))) (-4212 (($ $ $) 52 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-4157 (($) 7 T CONST)) (-2734 (($ $) 56)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1435 (($ $) 55)) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3649 ((|#1| $) 59)) (-3654 (($ $) 58)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47)) (-3526 (((-564) $ $) 44)) (-2911 (((-112) $) 46)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3783 (($ $ $) 54 (|has| $ (-6 -4407)))) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-244 |#1|) (-140) (-1209)) (T -244)) -((-2598 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4045 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3779 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2460 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4277 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3828 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) -(-13 (-1007 |t#1|) (-10 -8 (-15 -2598 (|t#1| $)) (-15 -4202 ($ $)) (-15 -4045 ($ $)) (-15 -3779 ($ $)) (-15 -3938 ($ $)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -2460 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -3828 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) NIL)) (-3149 ((|#1| $) NIL)) (-4045 (($ $) NIL)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2573 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2861 (($ $) 10 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3653 (($ $ $) NIL (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "rest" $) NIL (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) |#1|) $) NIL)) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3137 ((|#1| $) NIL)) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3314 (($ $) NIL) (($ $ (-768)) NIL)) (-4341 (($ $) NIL (|has| |#1| (-1094)))) (-3337 (($ $) 7 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2576 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-1346 (((-112) $) NIL)) (-3360 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-2429 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3956 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3176 (($ |#1|) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2598 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2783 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3652 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4337 (((-112) $) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-768) $ "count") 16)) (-4190 (((-564) $ $) NIL)) (-2087 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2126 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-4072 (($ (-641 |#1|)) 22)) (-1899 (((-112) $) NIL)) (-2034 (($ $) NIL)) (-3292 (($ $) NIL (|has| $ (-6 -4407)))) (-1724 (((-768) $) NIL)) (-3910 (($ $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) NIL)) (-2460 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-1831 (($ (-641 |#1|)) 17) (((-641 |#1|) $) 18) (((-859) $) 21 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) 14 (|has| $ (-6 -4406))))) -(((-245 |#1|) (-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -4072 ($ (-641 |#1|))) (-15 -1350 ($ $ "unique")) (-15 -1350 ($ $ "sort")) (-15 -1350 ((-768) $ "count")))) (-847)) (T -245)) -((-4072 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847))))) -(-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -4072 ($ (-641 |#1|))) (-15 -1350 ($ $ "unique")) (-15 -1350 ($ $ "sort")) (-15 -1350 ((-768) $ "count")))) -((-4303 (((-3 (-768) "failed") |#1| |#1| (-768)) 42))) -(((-246 |#1|) (-10 -7 (-15 -4303 ((-3 (-768) "failed") |#1| |#1| (-768)))) (-13 (-723) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246)) -((-4303 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-768)) (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -4303 ((-3 (-768) "failed") |#1| |#1| (-768)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-861 |#1|)) $) NIL)) (-3040 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1537 (($ $) NIL (|has| |#2| (-556)))) (-1932 (((-112) $) NIL (|has| |#2| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2427 (($ $) NIL (|has| |#2| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-1357 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3240 (($ $ (-641 (-564))) NIL)) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-906)))) (-2055 (($ $ |#2| (-240 (-2828 |#1|) (-768)) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#2| (-240 (-2828 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-861 |#1|)) NIL)) (-1826 (((-240 (-2828 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-1925 (($ $ $) NIL (|has| |#2| (-847)))) (-3375 (($ $ $) NIL (|has| |#2| (-847)))) (-2546 (($ (-1 (-240 (-2828 |#1|) (-768)) (-240 (-2828 |#1|) (-768))) $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2169 (((-3 (-861 |#1|) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#2| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -1558 (-768))) "failed") $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#2| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-3190 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3534 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1619 (((-240 (-2828 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3008 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-240 (-2828 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-946 |#2| (-240 (-2828 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3240 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -247)) -((-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))) -(-13 (-946 |#2| (-240 (-2828 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3240 ($ $ (-641 (-564)))))) -((-1817 (((-112) $ $) NIL)) (-2661 (((-1264) $) 17)) (-3324 (((-183) $) 11)) (-2075 (($ (-183)) 12)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-4015 (((-249) $) 7)) (-1831 (((-859) $) 9)) (-1702 (((-112) $ $) 15))) -(((-248) (-13 (-1094) (-10 -8 (-15 -4015 ((-249) $)) (-15 -3324 ((-183) $)) (-15 -2075 ($ (-183))) (-15 -2661 ((-1264) $))))) (T -248)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2075 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248))))) -(-13 (-1094) (-10 -8 (-15 -4015 ((-249) $)) (-15 -3324 ((-183) $)) (-15 -2075 ($ (-183))) (-15 -2661 ((-1264) $)))) -((-1817 (((-112) $ $) NIL)) (-3641 (((-641 (-862)) $) NIL)) (-1316 (((-506) $) NIL)) (-2723 (((-1152) $) NIL)) (-3568 (((-186) $) NIL)) (-2780 (((-1114) $) NIL)) (-2831 (((-641 (-112)) $) NIL)) (-1831 (((-859) $) NIL) (((-187) $) 6)) (-2450 (((-55) $) NIL)) (-1702 (((-112) $ $) NIL))) +((-3649 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3654 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2734 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1435 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3783 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3206 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4212 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -3649 (|t#1| $)) (-15 -3654 ($ $)) (-15 -3284 ($ $)) (-15 -2734 ($ $)) (-15 -1435 ($ $)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3783 ($ $ $)) (-15 -3206 ($ $ $)) (-15 -4212 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) NIL)) (-3678 ((|#1| $) NIL)) (-3284 (($ $) NIL)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2441 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3811 (($ $) 10 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3238 (($ $ $) NIL (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "rest" $) NIL (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) |#1|) $) NIL)) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3667 ((|#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2008 (($ $) NIL) (($ $ (-767)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-1094)))) (-2027 (($ $) 7 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3628 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3524 (((-112) $) NIL)) (-3847 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-3471 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2988 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1870 (($ |#1|) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3649 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3861 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4116 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-2562 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-767) $ "count") 16)) (-3526 (((-564) $ $) NIL)) (-4277 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1996 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3278 (($ (-641 |#1|)) 22)) (-2911 (((-112) $) NIL)) (-1819 (($ $) NIL)) (-3051 (($ $) NIL (|has| $ (-6 -4407)))) (-1793 (((-767) $) NIL)) (-3743 (($ $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) NIL)) (-3783 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3533 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-2322 (($ (-641 |#1|)) 17) (((-641 |#1|) $) 18) (((-858) $) 21 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) 14 (|has| $ (-6 -4406))))) +(((-245 |#1|) (-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -3278 ($ (-641 |#1|))) (-15 -4353 ($ $ "unique")) (-15 -4353 ($ $ "sort")) (-15 -4353 ((-767) $ "count")))) (-846)) (T -245)) +((-3278 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846))))) +(-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -3278 ($ (-641 |#1|))) (-15 -4353 ($ $ "unique")) (-15 -4353 ($ $ "sort")) (-15 -4353 ((-767) $ "count")))) +((-3433 (((-3 (-767) "failed") |#1| |#1| (-767)) 42))) +(((-246 |#1|) (-10 -7 (-15 -3433 ((-3 (-767) "failed") |#1| |#1| (-767)))) (-13 (-722) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246)) +((-3433 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-767)) (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -3433 ((-3 (-767) "failed") |#1| |#1| (-767)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-860 |#1|)) $) NIL)) (-2340 (((-1166 $) $ (-860 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3622 (($ $) NIL (|has| |#2| (-556)))) (-3247 (((-112) $) NIL (|has| |#2| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-860 |#1|))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3453 (($ $) NIL (|has| |#2| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2595 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3810 (($ $ (-641 (-564))) NIL)) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#2| (-905)))) (-2050 (($ $ |#2| (-240 (-2059 |#1|) (-767)) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#2|) (-860 |#1|)) NIL) (($ (-1166 $) (-860 |#1|)) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#2| (-240 (-2059 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-860 |#1|)) NIL)) (-3386 (((-240 (-2059 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1501 (($ $ $) NIL (|has| |#2| (-846)))) (-2622 (($ $ $) NIL (|has| |#2| (-846)))) (-2168 (($ (-1 (-240 (-2059 |#1|) (-767)) (-240 (-2059 |#1|) (-767))) $) NIL)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-3878 (((-3 (-860 |#1|) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#2| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3866 (-767))) "failed") $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#2| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-641 (-860 |#1|)) (-641 $)) NIL)) (-3392 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1343 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2073 (((-240 (-2059 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2290 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-240 (-2059 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-945 |#2| (-240 (-2059 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3810 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1045)) (T -247)) +((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1045))))) +(-13 (-945 |#2| (-240 (-2059 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3810 ($ $ (-641 (-564)))))) +((-2310 (((-112) $ $) NIL)) (-2372 (((-1264) $) 17)) (-3303 (((-183) $) 11)) (-4139 (($ (-183)) 12)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1403 (((-249) $) 7)) (-2322 (((-858) $) 9)) (-2921 (((-112) $ $) 15))) +(((-248) (-13 (-1094) (-10 -8 (-15 -1403 ((-249) $)) (-15 -3303 ((-183) $)) (-15 -4139 ($ (-183))) (-15 -2372 ((-1264) $))))) (T -248)) +((-1403 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-4139 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248))))) +(-13 (-1094) (-10 -8 (-15 -1403 ((-249) $)) (-15 -3303 ((-183) $)) (-15 -4139 ($ (-183))) (-15 -2372 ((-1264) $)))) +((-2310 (((-112) $ $) NIL)) (-4244 (((-641 (-861)) $) NIL)) (-2420 (((-506) $) NIL)) (-1418 (((-1152) $) NIL)) (-1505 (((-186) $) NIL)) (-3840 (((-1114) $) NIL)) (-3117 (((-641 (-112)) $) NIL)) (-2322 (((-858) $) NIL) (((-187) $) 6)) (-3663 (((-55) $) NIL)) (-2921 (((-112) $ $) NIL))) (((-249) (-13 (-185) (-611 (-187)))) (T -249)) NIL (-13 (-185) (-611 (-187))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1575 (($ (-918)) NIL (|has| |#4| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1986 (($ $ $) NIL (|has| |#4| (-790)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| |#4| (-368)))) (-1598 (((-564) $) NIL (|has| |#4| (-845)))) (-1970 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-2237 ((|#4| $) NIL (|has| |#4| (-1094))) (((-564) $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-4050 (((-2 (|:| -2394 (-685 |#4|)) (|:| |vec| (-1259 |#4|))) (-685 $) (-1259 $)) NIL (|has| |#4| (-1046))) (((-685 |#4|) (-685 $)) NIL (|has| |#4| (-1046))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))))) (-3733 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2900 (($) NIL (|has| |#4| (-368)))) (-2261 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#4| $ (-564)) NIL)) (-1569 (((-112) $) NIL (|has| |#4| (-845)))) (-1433 (((-641 |#4|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL (-4078 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2607 (((-112) $) NIL (|has| |#4| (-845)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (-4078 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-2640 (((-641 |#4|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (-4078 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-2250 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#4| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-1468 (($ (-918)) NIL (|has| |#4| (-368)))) (-2780 (((-1114) $) NIL)) (-3303 ((|#4| $) NIL (|has| (-564) (-847)))) (-4253 (($ $ |#4|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1794 (((-641 |#4|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-3032 ((|#4| $ $) NIL (|has| |#4| (-1046)))) (-3112 (($ (-1259 |#4|)) NIL)) (-3548 (((-134)) NIL (|has| |#4| (-363)))) (-3534 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-2791 (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1259 |#4|) $) NIL) (((-859) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-564)) NIL (-4078 (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-2219 (((-768)) NIL (|has| |#4| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1849 (($ $) NIL (|has| |#4| (-845)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL (-4078 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) CONST)) (-3435 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-1762 (((-112) $ $) NIL (-4078 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-4078 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1723 (((-112) $ $) NIL (-4078 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1823 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4078 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046))))) (($ $ (-918)) NIL (-4078 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-723))) (($ |#4| $) NIL (|has| |#4| (-723))) (($ $ $) NIL (-4078 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) (-918) (-1046) (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-644 |#2|)) (T -250)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2845 (($ (-917)) NIL (|has| |#4| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2568 (($ $ $) NIL (|has| |#4| (-789)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| |#4| (-368)))) (-3085 (((-564) $) NIL (|has| |#4| (-844)))) (-3750 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))) (-1781 ((|#4| $) NIL (|has| |#4| (-1094))) (((-564) $) NIL (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))) (-2750 (((-2 (|:| -4379 (-685 |#4|)) (|:| |vec| (-1259 |#4|))) (-685 $) (-1259 $)) NIL (|has| |#4| (-1045))) (((-685 |#4|) (-685 $)) NIL (|has| |#4| (-1045))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))))) (-2689 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (-3860 (($) NIL (|has| |#4| (-368)))) (-1466 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#4| $ (-564)) NIL)) (-2786 (((-112) $) NIL (|has| |#4| (-844)))) (-3534 (((-641 |#4|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL (-2789 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (-2783 (((-112) $) NIL (|has| |#4| (-844)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (-2789 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1834 (((-641 |#4|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (-2789 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1456 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#4| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-1998 (($ (-917)) NIL (|has| |#4| (-368)))) (-3840 (((-1114) $) NIL)) (-1995 ((|#4| $) NIL (|has| (-564) (-846)))) (-2981 (($ $ |#4|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-4324 (((-641 |#4|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-2535 ((|#4| $ $) NIL (|has| |#4| (-1045)))) (-2427 (($ (-1259 |#4|)) NIL)) (-3480 (((-134)) NIL (|has| |#4| (-363)))) (-1343 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-3852 (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1259 |#4|) $) NIL) (((-858) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-564)) NIL (-2789 (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))) (-3179 (((-767)) NIL (|has| |#4| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3598 (($ $) NIL (|has| |#4| (-844)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL (-2789 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) CONST)) (-3917 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-2977 (((-112) $ $) NIL (-2789 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2789 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2942 (((-112) $ $) NIL (-2789 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3034 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-2789 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045))))) (($ $ (-917)) NIL (-2789 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-722))) (($ |#4| $) NIL (|has| |#4| (-722))) (($ $ $) NIL (-2789 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) (-917) (-1045) (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-644 |#2|)) (T -250)) NIL (-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1575 (($ (-918)) NIL (|has| |#3| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1986 (($ $ $) NIL (|has| |#3| (-790)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| |#3| (-368)))) (-1598 (((-564) $) NIL (|has| |#3| (-845)))) (-1970 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-2237 ((|#3| $) NIL (|has| |#3| (-1094))) (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-4050 (((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))))) (-3733 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2900 (($) NIL (|has| |#3| (-368)))) (-2261 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#3| $ (-564)) NIL)) (-1569 (((-112) $) NIL (|has| |#3| (-845)))) (-1433 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL (-4078 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2607 (((-112) $) NIL (|has| |#3| (-845)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2640 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2250 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#3| |#3|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#3| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-1468 (($ (-918)) NIL (|has| |#3| (-368)))) (-2780 (((-1114) $) NIL)) (-3303 ((|#3| $) NIL (|has| (-564) (-847)))) (-4253 (($ $ |#3|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-1794 (((-641 |#3|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-3032 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-3112 (($ (-1259 |#3|)) NIL)) (-3548 (((-134)) NIL (|has| |#3| (-363)))) (-3534 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-2791 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1259 |#3|) $) NIL) (((-859) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-564)) NIL (-4078 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-2219 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-1849 (($ $) NIL (|has| |#3| (-845)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL (-4078 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) CONST)) (-3435 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-1762 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1723 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1823 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4078 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046))))) (($ $ (-918)) NIL (-4078 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ $ $) NIL (-4078 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-644 |#2|)) (-768) (-1046) (-644 |#2|)) (T -251)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2845 (($ (-917)) NIL (|has| |#3| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2568 (($ $ $) NIL (|has| |#3| (-789)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| |#3| (-368)))) (-3085 (((-564) $) NIL (|has| |#3| (-844)))) (-3750 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))) (-1781 ((|#3| $) NIL (|has| |#3| (-1094))) (((-564) $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))) (-2750 (((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1045))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1045))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))))) (-2689 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (-3860 (($) NIL (|has| |#3| (-368)))) (-1466 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#3| $ (-564)) NIL)) (-2786 (((-112) $) NIL (|has| |#3| (-844)))) (-3534 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL (-2789 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (-2783 (((-112) $) NIL (|has| |#3| (-844)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1834 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1456 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#3| |#3|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#3| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-1998 (($ (-917)) NIL (|has| |#3| (-368)))) (-3840 (((-1114) $) NIL)) (-1995 ((|#3| $) NIL (|has| (-564) (-846)))) (-2981 (($ $ |#3|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-4324 (((-641 |#3|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-2535 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2427 (($ (-1259 |#3|)) NIL)) (-3480 (((-134)) NIL (|has| |#3| (-363)))) (-1343 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-3852 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1259 |#3|) $) NIL) (((-858) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-564)) NIL (-2789 (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))) (-3179 (((-767)) NIL (|has| |#3| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-3598 (($ $) NIL (|has| |#3| (-844)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL (-2789 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) CONST)) (-3917 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-2977 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2942 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3034 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-2789 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045))))) (($ $ (-917)) NIL (-2789 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ $ $) NIL (-2789 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-644 |#2|)) (-767) (-1045) (-644 |#2|)) (T -251)) NIL (-13 (-238 |#1| |#3|) (-644 |#2|)) -((-2408 (((-641 (-768)) $) 56) (((-641 (-768)) $ |#3|) 59)) (-4129 (((-768) $) 58) (((-768) $ |#3|) 61)) (-2946 (($ $) 76)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2155 (((-768) $ |#3|) 43) (((-768) $) 38)) (-2243 (((-1 $ (-768)) |#3|) 15) (((-1 $ (-768)) $) 88)) (-4103 ((|#4| $) 69)) (-2194 (((-112) $) 67)) (-1434 (($ $) 75)) (-2633 (($ $ (-641 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-641 |#3|) (-641 |#2|)) 100)) (-3534 (($ $ |#4|) NIL) (($ $ (-641 |#4|)) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) NIL) (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2722 (((-641 |#3|) $) 86)) (-1619 ((|#5| $) NIL) (((-768) $ |#4|) NIL) (((-641 (-768)) $ (-641 |#4|)) NIL) (((-768) $ |#3|) 49)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL))) -(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1831 (|#1| |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2633 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#3| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#3| |#1|)) (-15 -2243 ((-1 |#1| (-768)) |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -4103 (|#4| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -4129 ((-768) |#1| |#3|)) (-15 -2408 ((-641 (-768)) |#1| |#3|)) (-15 -4129 ((-768) |#1|)) (-15 -2408 ((-641 (-768)) |#1|)) (-15 -1619 ((-768) |#1| |#3|)) (-15 -2155 ((-768) |#1|)) (-15 -2155 ((-768) |#1| |#3|)) (-15 -2722 ((-641 |#3|) |#1|)) (-15 -2243 ((-1 |#1| (-768)) |#3|)) (-15 -1831 (|#1| |#3|)) (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -1619 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -1619 ((-768) |#1| |#4|)) (-15 -1831 (|#1| |#4|)) (-15 -2347 ((-3 |#4| "failed") |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#4| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#4| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1619 (|#5| |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -3534 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3534 (|#1| |#1| |#4| (-768))) (-15 -3534 (|#1| |#1| (-641 |#4|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1046) (-847) (-266 |#3|) (-790)) (T -252)) -NIL -(-10 -8 (-15 -1831 (|#1| |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2633 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#3| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#3| |#1|)) (-15 -2243 ((-1 |#1| (-768)) |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -4103 (|#4| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -4129 ((-768) |#1| |#3|)) (-15 -2408 ((-641 (-768)) |#1| |#3|)) (-15 -4129 ((-768) |#1|)) (-15 -2408 ((-641 (-768)) |#1|)) (-15 -1619 ((-768) |#1| |#3|)) (-15 -2155 ((-768) |#1|)) (-15 -2155 ((-768) |#1| |#3|)) (-15 -2722 ((-641 |#3|) |#1|)) (-15 -2243 ((-1 |#1| (-768)) |#3|)) (-15 -1831 (|#1| |#3|)) (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -1619 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -1619 ((-768) |#1| |#4|)) (-15 -1831 (|#1| |#4|)) (-15 -2347 ((-3 |#4| "failed") |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#4| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#4| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1619 (|#5| |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -3534 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3534 (|#1| |#1| |#4| (-768))) (-15 -3534 (|#1| |#1| (-641 |#4|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2408 (((-641 (-768)) $) 214) (((-641 (-768)) $ |#2|) 212)) (-4129 (((-768) $) 213) (((-768) $ |#2|) 211)) (-3209 (((-641 |#3|) $) 110)) (-3040 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1537 (($ $) 88 (|has| |#1| (-556)))) (-1932 (((-112) $) 90 (|has| |#1| (-556)))) (-2291 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-4088 (((-3 $ "failed") $ $) 19)) (-2345 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2427 (($ $) 98 (|has| |#1| (-452)))) (-3399 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-2946 (($ $) 207)) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2237 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) ((|#2| $) 222)) (-1357 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-3396 (($ $) 154)) (-4050 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3733 (((-3 $ "failed") $) 33)) (-3031 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3383 (((-641 $) $) 109)) (-1420 (((-112) $) 96 (|has| |#1| (-906)))) (-2055 (($ $ |#1| |#4| $) 172)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2155 (((-768) $ |#2|) 217) (((-768) $) 216)) (-2949 (((-112) $) 31)) (-4128 (((-768) $) 169)) (-3198 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-3802 (((-641 $) $) 126)) (-2003 (((-112) $) 152)) (-3186 (($ |#1| |#4|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#3|) 120)) (-1826 ((|#4| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-1925 (($ $ $) 79 (|has| |#1| (-847)))) (-3375 (($ $ $) 78 (|has| |#1| (-847)))) (-2546 (($ (-1 |#4| |#4|) $) 171)) (-2449 (($ (-1 |#1| |#1|) $) 151)) (-2243 (((-1 $ (-768)) |#2|) 219) (((-1 $ (-768)) $) 206 (|has| |#1| (-233)))) (-2169 (((-3 |#3| "failed") $) 123)) (-3356 (($ $) 149)) (-3370 ((|#1| $) 148)) (-4103 ((|#3| $) 209)) (-2740 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2723 (((-1152) $) 9)) (-2194 (((-112) $) 210)) (-2955 (((-3 (-641 $) "failed") $) 114)) (-2512 (((-3 (-641 $) "failed") $) 115)) (-4059 (((-3 (-2 (|:| |var| |#3|) (|:| -1558 (-768))) "failed") $) 113)) (-1434 (($ $) 208)) (-2780 (((-1114) $) 10)) (-3326 (((-112) $) 166)) (-3341 ((|#1| $) 167)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2777 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-3070 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) 202 (|has| |#1| (-233)))) (-3190 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-3534 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-768)) 236 (|has| |#1| (-233))) (($ $ (-1170)) 234 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 233 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 232 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 231 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2722 (((-641 |#2|) $) 218)) (-1619 ((|#4| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129) (((-768) $ |#2|) 215)) (-2511 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4348 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-564))) 72 (-4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) 168)) (-2742 ((|#1| $ |#4|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4018 (((-3 $ "failed") $) 73 (-4078 (-4348 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) 28 T CONST)) (-3154 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3939 (((-112) $ $) 89 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-768)) 235 (|has| |#1| (-233))) (($ $ (-1170)) 230 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 229 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 228 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 227 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1762 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1823 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-253 |#1| |#2| |#3| |#4|) (-140) (-1046) (-847) (-266 |t#2|) (-790)) (T -253)) -((-2243 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4)))) (-2155 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-1619 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2408 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-4129 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-790)) (-4 *2 (-266 *4)))) (-1434 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-2946 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-2243 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6))))) -(-13 (-946 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1035 |t#2|) (-10 -8 (-15 -2243 ((-1 $ (-768)) |t#2|)) (-15 -2722 ((-641 |t#2|) $)) (-15 -2155 ((-768) $ |t#2|)) (-15 -2155 ((-768) $)) (-15 -1619 ((-768) $ |t#2|)) (-15 -2408 ((-641 (-768)) $)) (-15 -4129 ((-768) $)) (-15 -2408 ((-641 (-768)) $ |t#2|)) (-15 -4129 ((-768) $ |t#2|)) (-15 -2194 ((-112) $)) (-15 -4103 (|t#3| $)) (-15 -1434 ($ $)) (-15 -2946 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -2243 ((-1 $ (-768)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4078 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#4| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#2|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3954 ((|#1| $) 54)) (-3155 ((|#1| $) 44)) (-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-1411 (($ $) 60)) (-4325 (($ $) 48)) (-4120 ((|#1| |#1| $) 46)) (-3923 ((|#1| $) 45)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-1502 (((-768) $) 61)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-1332 ((|#1| |#1| $) 52)) (-4187 ((|#1| |#1| $) 51)) (-2783 (($ |#1| $) 40)) (-3926 (((-768) $) 55)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1480 ((|#1| $) 62)) (-1381 ((|#1| $) 50)) (-3587 ((|#1| $) 49)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3477 ((|#1| |#1| $) 58)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4371 ((|#1| $) 59)) (-2545 (($) 57) (($ (-641 |#1|)) 56)) (-2950 (((-768) $) 43)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2028 ((|#1| $) 53)) (-2321 (($ (-641 |#1|)) 42)) (-4361 ((|#1| $) 63)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-1399 (((-641 (-767)) $) 56) (((-641 (-767)) $ |#3|) 59)) (-4145 (((-767) $) 58) (((-767) $ |#3|) 61)) (-1796 (($ $) 76)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3717 (((-767) $ |#3|) 43) (((-767) $) 38)) (-2144 (((-1 $ (-767)) |#3|) 15) (((-1 $ (-767)) $) 88)) (-3938 ((|#4| $) 69)) (-2928 (((-112) $) 67)) (-1917 (($ $) 75)) (-3100 (($ $ (-641 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-641 |#3|) (-641 |#2|)) 100)) (-1343 (($ $ |#4|) NIL) (($ $ (-641 |#4|)) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-641 |#4|) (-641 (-767))) NIL) (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1404 (((-641 |#3|) $) 86)) (-2073 ((|#5| $) NIL) (((-767) $ |#4|) NIL) (((-641 (-767)) $ (-641 |#4|)) NIL) (((-767) $ |#3|) 49)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL))) +(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2322 (|#1| |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3100 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#3| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#3| |#1|)) (-15 -2144 ((-1 |#1| (-767)) |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1917 (|#1| |#1|)) (-15 -3938 (|#4| |#1|)) (-15 -2928 ((-112) |#1|)) (-15 -4145 ((-767) |#1| |#3|)) (-15 -1399 ((-641 (-767)) |#1| |#3|)) (-15 -4145 ((-767) |#1|)) (-15 -1399 ((-641 (-767)) |#1|)) (-15 -2073 ((-767) |#1| |#3|)) (-15 -3717 ((-767) |#1|)) (-15 -3717 ((-767) |#1| |#3|)) (-15 -1404 ((-641 |#3|) |#1|)) (-15 -2144 ((-1 |#1| (-767)) |#3|)) (-15 -2322 (|#1| |#3|)) (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -2073 ((-641 (-767)) |#1| (-641 |#4|))) (-15 -2073 ((-767) |#1| |#4|)) (-15 -2322 (|#1| |#4|)) (-15 -3032 ((-3 |#4| "failed") |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#4| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#4| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2073 (|#5| |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -1343 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -1343 (|#1| |#1| |#4| (-767))) (-15 -1343 (|#1| |#1| (-641 |#4|))) (-15 -1343 (|#1| |#1| |#4|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1045) (-846) (-266 |#3|) (-789)) (T -252)) +NIL +(-10 -8 (-15 -2322 (|#1| |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3100 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#3| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#3| |#1|)) (-15 -2144 ((-1 |#1| (-767)) |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1917 (|#1| |#1|)) (-15 -3938 (|#4| |#1|)) (-15 -2928 ((-112) |#1|)) (-15 -4145 ((-767) |#1| |#3|)) (-15 -1399 ((-641 (-767)) |#1| |#3|)) (-15 -4145 ((-767) |#1|)) (-15 -1399 ((-641 (-767)) |#1|)) (-15 -2073 ((-767) |#1| |#3|)) (-15 -3717 ((-767) |#1|)) (-15 -3717 ((-767) |#1| |#3|)) (-15 -1404 ((-641 |#3|) |#1|)) (-15 -2144 ((-1 |#1| (-767)) |#3|)) (-15 -2322 (|#1| |#3|)) (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -2073 ((-641 (-767)) |#1| (-641 |#4|))) (-15 -2073 ((-767) |#1| |#4|)) (-15 -2322 (|#1| |#4|)) (-15 -3032 ((-3 |#4| "failed") |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#4| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#4| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2073 (|#5| |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -1343 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -1343 (|#1| |#1| |#4| (-767))) (-15 -1343 (|#1| |#1| (-641 |#4|))) (-15 -1343 (|#1| |#1| |#4|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1399 (((-641 (-767)) $) 214) (((-641 (-767)) $ |#2|) 212)) (-4145 (((-767) $) 213) (((-767) $ |#2|) 211)) (-2534 (((-641 |#3|) $) 110)) (-2340 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-3622 (($ $) 88 (|has| |#1| (-556)))) (-3247 (((-112) $) 90 (|has| |#1| (-556)))) (-2669 (((-767) $) 112) (((-767) $ (-641 |#3|)) 111)) (-1862 (((-3 $ "failed") $ $) 19)) (-1986 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-905)))) (-3453 (($ $) 98 (|has| |#1| (-452)))) (-2657 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-905)))) (-1796 (($ $) 207)) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1781 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1034 (-564)))) ((|#3| $) 137) ((|#2| $) 222)) (-2595 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-2710 (($ $) 154)) (-2750 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-2689 (((-3 $ "failed") $) 33)) (-2520 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2697 (((-641 $) $) 109)) (-4229 (((-112) $) 96 (|has| |#1| (-905)))) (-2050 (($ $ |#1| |#4| $) 172)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 83 (-12 (|has| |#3| (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3717 (((-767) $ |#2|) 217) (((-767) $) 216)) (-1828 (((-112) $) 31)) (-4137 (((-767) $) 169)) (-2519 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-2071 (((-641 $) $) 126)) (-1492 (((-112) $) 152)) (-2507 (($ |#1| |#4|) 153) (($ $ |#3| (-767)) 119) (($ $ (-641 |#3|) (-641 (-767))) 118)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#3|) 120)) (-3386 ((|#4| $) 170) (((-767) $ |#3|) 122) (((-641 (-767)) $ (-641 |#3|)) 121)) (-1501 (($ $ $) 79 (|has| |#1| (-846)))) (-2622 (($ $ $) 78 (|has| |#1| (-846)))) (-2168 (($ (-1 |#4| |#4|) $) 171)) (-3123 (($ (-1 |#1| |#1|) $) 151)) (-2144 (((-1 $ (-767)) |#2|) 219) (((-1 $ (-767)) $) 206 (|has| |#1| (-233)))) (-3878 (((-3 |#3| "failed") $) 123)) (-2674 (($ $) 149)) (-2686 ((|#1| $) 148)) (-3938 ((|#3| $) 209)) (-3202 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1418 (((-1152) $) 9)) (-2928 (((-112) $) 210)) (-1888 (((-3 (-641 $) "failed") $) 114)) (-3081 (((-3 (-641 $) "failed") $) 115)) (-1580 (((-3 (-2 (|:| |var| |#3|) (|:| -3866 (-767))) "failed") $) 113)) (-1917 (($ $) 208)) (-3840 (((-1114) $) 10)) (-2649 (((-112) $) 166)) (-2662 ((|#1| $) 167)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-3235 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-905)))) (-2375 (((-418 $) $) 99 (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) 202 (|has| |#1| (-233)))) (-3392 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-1343 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-641 |#3|) (-641 (-767))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-767)) 236 (|has| |#1| (-233))) (($ $ (-1170)) 234 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 233 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 232 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 231 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1404 (((-641 |#2|) $) 218)) (-2073 ((|#4| $) 150) (((-767) $ |#3|) 130) (((-641 (-767)) $ (-641 |#3|)) 129) (((-767) $ |#2|) 215)) (-3172 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 81 (-12 (|has| |#3| (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 104 (-2342 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-564))) 72 (-2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) 168)) (-3467 ((|#1| $ |#4|) 155) (($ $ |#3| (-767)) 128) (($ $ (-641 |#3|) (-641 (-767))) 127)) (-2409 (((-3 $ "failed") $) 73 (-2789 (-2342 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) 28 T CONST)) (-4310 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-4024 (((-112) $ $) 89 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-641 |#3|) (-641 (-767))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-767)) 235 (|has| |#1| (-233))) (($ $ (-1170)) 230 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 229 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 228 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 227 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2977 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3034 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-253 |#1| |#2| |#3| |#4|) (-140) (-1045) (-846) (-266 |t#2|) (-789)) (T -253)) +((-2144 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 *4)))) (-3717 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2073 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 (-767))))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1399 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-641 (-767))))) (-4145 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789)) (-4 *2 (-266 *4)))) (-1917 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-2144 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6))))) +(-13 (-945 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1034 |t#2|) (-10 -8 (-15 -2144 ((-1 $ (-767)) |t#2|)) (-15 -1404 ((-641 |t#2|) $)) (-15 -3717 ((-767) $ |t#2|)) (-15 -3717 ((-767) $)) (-15 -2073 ((-767) $ |t#2|)) (-15 -1399 ((-641 (-767)) $)) (-15 -4145 ((-767) $)) (-15 -1399 ((-641 (-767)) $ |t#2|)) (-15 -4145 ((-767) $ |t#2|)) (-15 -2928 ((-112) $)) (-15 -3938 (|t#3| $)) (-15 -1917 ($ $)) (-15 -1796 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -2144 ((-1 $ (-767)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2789 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) ((-945 |#1| |#4| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1034 |#2|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-905))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2975 ((|#1| $) 54)) (-1846 ((|#1| $) 44)) (-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-4149 (($ $) 60)) (-2443 (($ $) 48)) (-2165 ((|#1| |#1| $) 46)) (-3880 ((|#1| $) 45)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1750 (((-767) $) 61)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-1747 ((|#1| |#1| $) 52)) (-3492 ((|#1| |#1| $) 51)) (-3861 (($ |#1| $) 40)) (-3162 (((-767) $) 55)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4319 ((|#1| $) 62)) (-2084 ((|#1| $) 50)) (-3872 ((|#1| $) 49)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-4040 ((|#1| |#1| $) 58)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-2853 ((|#1| $) 59)) (-3387 (($) 57) (($ (-641 |#1|)) 56)) (-1413 (((-767) $) 43)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1754 ((|#1| $) 53)) (-1717 (($ (-641 |#1|)) 42)) (-2785 ((|#1| $) 63)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-254 |#1|) (-140) (-1209)) (T -254)) -((-2545 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2545 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1332 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4187 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4325 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(-13 (-1115 |t#1|) (-992 |t#1|) (-10 -8 (-15 -2545 ($)) (-15 -2545 ($ (-641 |t#1|))) (-15 -3926 ((-768) $)) (-15 -3954 (|t#1| $)) (-15 -2028 (|t#1| $)) (-15 -1332 (|t#1| |t#1| $)) (-15 -4187 (|t#1| |t#1| $)) (-15 -1381 (|t#1| $)) (-15 -3587 (|t#1| $)) (-15 -4325 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-992 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1115 |#1|) . T) ((-1209) . T)) -((-3857 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-2840 (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 172) (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 170) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 175) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 171) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 163) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 162) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 144) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 142) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379))) 143) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 140)) (-3767 (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 174) (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 173) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 177) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 176) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 165) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 164) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 150) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 149) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379))) 148) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 147) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379))) 112) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 111) (((-1260) (-1 (-225) (-225)) (-1088 (-379))) 106) (((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263))) 104))) -(((-255) (-10 -7 (-15 -3767 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -3767 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3767 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -3767 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3767 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3857 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255)) -((-3857 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-2840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255))))) -(-10 -7 (-15 -3767 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -3767 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3767 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -3767 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3767 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -2840 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3857 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-3767 (((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))) 101))) -(((-256 |#1| |#2|) (-10 -7 (-15 -3767 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|)) (T -256)) -((-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-1260)) (-5 *1 (-256 *6 *7))))) -(-10 -7 (-15 -3767 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) -((-3270 (((-564) (-564)) 73)) (-1685 (((-564) (-564)) 74)) (-3456 (((-225) (-225)) 75)) (-3224 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225))) 72)) (-2615 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112)) 70))) -(((-257) (-10 -7 (-15 -2615 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -3224 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -3270 ((-564) (-564))) (-15 -1685 ((-564) (-564))) (-15 -3456 ((-225) (-225))))) (T -257)) -((-3456 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-3224 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *2 (-1261)) (-5 *1 (-257)))) (-2615 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257))))) -(-10 -7 (-15 -2615 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -3224 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -3270 ((-564) (-564))) (-15 -1685 ((-564) (-564))) (-15 -3456 ((-225) (-225)))) -((-1831 (((-1086 (-379)) (-1086 (-316 |#1|))) 16))) -(((-258 |#1|) (-10 -7 (-15 -1831 ((-1086 (-379)) (-1086 (-316 |#1|))))) (-13 (-847) (-556) (-612 (-379)))) (T -258)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4))))) -(-10 -7 (-15 -1831 ((-1086 (-379)) (-1086 (-316 |#1|))))) -((-2840 (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 75) (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 74) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379))) 65) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 64) (((-1127 (-225)) (-876 |#1|) (-1086 (-379))) 56) (((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 55)) (-3767 (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 78) (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 77) (((-1261) |#1| (-1086 (-379)) (-1086 (-379))) 68) (((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 67) (((-1261) (-876 |#1|) (-1086 (-379))) 60) (((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 59) (((-1260) (-874 |#1|) (-1086 (-379))) 47) (((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263))) 46) (((-1260) |#1| (-1086 (-379))) 38) (((-1260) |#1| (-1086 (-379)) (-641 (-263))) 36))) -(((-259 |#1|) (-10 -7 (-15 -3767 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) |#1| (-1086 (-379)))) (-15 -3767 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -3767 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -2840 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -3767 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -2840 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -3767 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -2840 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))))) (-13 (-612 (-536)) (-1094))) (T -259)) -((-2840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-2840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-2840 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-2840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-2840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *5)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *6)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094)))))) -(-10 -7 (-15 -3767 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) |#1| (-1086 (-379)))) (-15 -3767 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -3767 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -2840 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -3767 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -2840 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -3767 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3767 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -2840 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -2840 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))))) -((-3767 (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))) 23) (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225))) 24) (((-1260) (-641 (-940 (-225))) (-641 (-263))) 16) (((-1260) (-641 (-940 (-225)))) 17) (((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263))) 20) (((-1260) (-641 (-225)) (-641 (-225))) 21))) -(((-260) (-10 -7 (-15 -3767 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -3767 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -3767 ((-1260) (-641 (-940 (-225))))) (-15 -3767 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -3767 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -3767 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))) (T -260)) -((-3767 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-3767 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-3767 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-3767 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260))))) -(-10 -7 (-15 -3767 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -3767 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -3767 ((-1260) (-641 (-940 (-225))))) (-15 -3767 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -3767 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -3767 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))))) -((-1768 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3771 (((-918) (-641 (-263)) (-918)) 52)) (-4300 (((-918) (-641 (-263)) (-918)) 51)) (-2521 (((-641 (-379)) (-641 (-263)) (-641 (-379))) 68)) (-3980 (((-379) (-641 (-263)) (-379)) 57)) (-2102 (((-918) (-641 (-263)) (-918)) 53)) (-2160 (((-112) (-641 (-263)) (-112)) 27)) (-2696 (((-1152) (-641 (-263)) (-1152)) 19)) (-3242 (((-1152) (-641 (-263)) (-1152)) 26)) (-2641 (((-1127 (-225)) (-641 (-263))) 46)) (-2654 (((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379)))) 40)) (-3283 (((-871) (-641 (-263)) (-871)) 32)) (-3719 (((-871) (-641 (-263)) (-871)) 33)) (-2894 (((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225)))) 63)) (-2533 (((-112) (-641 (-263)) (-112)) 14)) (-3572 (((-112) (-641 (-263)) (-112)) 13))) -(((-261) (-10 -7 (-15 -3572 ((-112) (-641 (-263)) (-112))) (-15 -2533 ((-112) (-641 (-263)) (-112))) (-15 -1768 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2696 ((-1152) (-641 (-263)) (-1152))) (-15 -3242 ((-1152) (-641 (-263)) (-1152))) (-15 -2160 ((-112) (-641 (-263)) (-112))) (-15 -3283 ((-871) (-641 (-263)) (-871))) (-15 -3719 ((-871) (-641 (-263)) (-871))) (-15 -2654 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -4300 ((-918) (-641 (-263)) (-918))) (-15 -3771 ((-918) (-641 (-263)) (-918))) (-15 -2641 ((-1127 (-225)) (-641 (-263)))) (-15 -2102 ((-918) (-641 (-263)) (-918))) (-15 -3980 ((-379) (-641 (-263)) (-379))) (-15 -2894 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -2521 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))) (T -261)) -((-2521 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2894 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2102 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4300 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2654 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3283 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2160 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3242 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2696 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1768 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) -(-10 -7 (-15 -3572 ((-112) (-641 (-263)) (-112))) (-15 -2533 ((-112) (-641 (-263)) (-112))) (-15 -1768 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2696 ((-1152) (-641 (-263)) (-1152))) (-15 -3242 ((-1152) (-641 (-263)) (-1152))) (-15 -2160 ((-112) (-641 (-263)) (-112))) (-15 -3283 ((-871) (-641 (-263)) (-871))) (-15 -3719 ((-871) (-641 (-263)) (-871))) (-15 -2654 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -4300 ((-918) (-641 (-263)) (-918))) (-15 -3771 ((-918) (-641 (-263)) (-918))) (-15 -2641 ((-1127 (-225)) (-641 (-263)))) (-15 -2102 ((-918) (-641 (-263)) (-918))) (-15 -3980 ((-379) (-641 (-263)) (-379))) (-15 -2894 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -2521 ((-641 (-379)) (-641 (-263)) (-641 (-379))))) -((-4032 (((-3 |#1| "failed") (-641 (-263)) (-1170)) 17))) -(((-262 |#1|) (-10 -7 (-15 -4032 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) (-1209)) (T -262)) -((-4032 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *1 (-262 *2)) (-4 *2 (-1209))))) -(-10 -7 (-15 -4032 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) -((-1817 (((-112) $ $) NIL)) (-1768 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3771 (($ (-918)) 80)) (-4300 (($ (-918)) 79)) (-1674 (($ (-641 (-379))) 86)) (-3980 (($ (-379)) 66)) (-2102 (($ (-918)) 81)) (-2160 (($ (-112)) 33)) (-2696 (($ (-1152)) 28)) (-3242 (($ (-1152)) 29)) (-2641 (($ (-1127 (-225))) 75)) (-2654 (($ (-641 (-1088 (-379)))) 71)) (-4133 (($ (-641 (-1088 (-379)))) 67) (($ (-641 (-1088 (-407 (-564))))) 70)) (-2118 (($ (-379)) 38) (($ (-871)) 42)) (-4227 (((-112) (-641 $) (-1170)) 99)) (-4032 (((-3 (-52) "failed") (-641 $) (-1170)) 101)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2413 (($ (-379)) 43) (($ (-871)) 44)) (-2467 (($ (-1 (-940 (-225)) (-940 (-225)))) 65)) (-2894 (($ (-1 (-940 (-225)) (-940 (-225)))) 82)) (-1652 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-1831 (((-859) $) 92)) (-1638 (($ (-112)) 34) (($ (-641 (-1088 (-379)))) 60)) (-3572 (($ (-112)) 35)) (-1702 (((-112) $ $) 96))) -(((-263) (-13 (-1094) (-10 -8 (-15 -3572 ($ (-112))) (-15 -1638 ($ (-112))) (-15 -1768 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2696 ($ (-1152))) (-15 -3242 ($ (-1152))) (-15 -2160 ($ (-112))) (-15 -1638 ($ (-641 (-1088 (-379))))) (-15 -2467 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -2118 ($ (-379))) (-15 -2118 ($ (-871))) (-15 -2413 ($ (-379))) (-15 -2413 ($ (-871))) (-15 -1652 ($ (-1 (-225) (-225)))) (-15 -1652 ($ (-1 (-225) (-225) (-225)))) (-15 -1652 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3980 ($ (-379))) (-15 -4133 ($ (-641 (-1088 (-379))))) (-15 -4133 ($ (-641 (-1088 (-407 (-564)))))) (-15 -2654 ($ (-641 (-1088 (-379))))) (-15 -2641 ($ (-1127 (-225)))) (-15 -4300 ($ (-918))) (-15 -3771 ($ (-918))) (-15 -2102 ($ (-918))) (-15 -2894 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -1674 ($ (-641 (-379)))) (-15 -4032 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -4227 ((-112) (-641 $) (-1170)))))) (T -263)) -((-3572 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-2696 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4133 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-4133 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-1674 (*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) (-4032 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) (-5 *1 (-263)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) (-5 *1 (-263))))) -(-13 (-1094) (-10 -8 (-15 -3572 ($ (-112))) (-15 -1638 ($ (-112))) (-15 -1768 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2696 ($ (-1152))) (-15 -3242 ($ (-1152))) (-15 -2160 ($ (-112))) (-15 -1638 ($ (-641 (-1088 (-379))))) (-15 -2467 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -2118 ($ (-379))) (-15 -2118 ($ (-871))) (-15 -2413 ($ (-379))) (-15 -2413 ($ (-871))) (-15 -1652 ($ (-1 (-225) (-225)))) (-15 -1652 ($ (-1 (-225) (-225) (-225)))) (-15 -1652 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3980 ($ (-379))) (-15 -4133 ($ (-641 (-1088 (-379))))) (-15 -4133 ($ (-641 (-1088 (-407 (-564)))))) (-15 -2654 ($ (-641 (-1088 (-379))))) (-15 -2641 ($ (-1127 (-225)))) (-15 -4300 ($ (-918))) (-15 -3771 ($ (-918))) (-15 -2102 ($ (-918))) (-15 -2894 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -1674 ($ (-641 (-379)))) (-15 -4032 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -4227 ((-112) (-641 $) (-1170))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2408 (((-641 (-768)) $) NIL) (((-641 (-768)) $ |#2|) NIL)) (-4129 (((-768) $) NIL) (((-768) $ |#2|) NIL)) (-3209 (((-641 |#3|) $) NIL)) (-3040 (((-1166 $) $ |#3|) NIL) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 |#3|)) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2946 (($ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1119 |#1| |#2|) "failed") $) 23)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1119 |#1| |#2|) $) NIL)) (-1357 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-531 |#3|) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))))) (-2155 (((-768) $ |#2|) NIL) (((-768) $) 10)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#1|) |#3|) NIL) (($ (-1166 $) |#3|) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#3|) NIL)) (-1826 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2243 (((-1 $ (-768)) |#2|) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2169 (((-3 |#3| "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-4103 ((|#3| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2194 (((-112) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| |#3|) (|:| -1558 (-768))) "failed") $) NIL)) (-1434 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-641 |#3|) (-641 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-3190 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3534 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2722 (((-641 |#2|) $) NIL)) (-1619 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL) (((-768) $ |#2|) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-3008 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1119 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1035 (-1119 |#1| |#2|))) (-1046) (-847) (-266 |#2|)) (T -264)) -NIL -(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1035 (-1119 |#1| |#2|))) -((-4129 (((-768) $) 37)) (-2347 (((-3 |#2| "failed") $) 22)) (-2237 ((|#2| $) 33)) (-3534 (($ $) 14) (($ $ (-768)) 18)) (-1831 (((-859) $) 32) (($ |#2|) 11)) (-1702 (((-112) $ $) 26)) (-1723 (((-112) $ $) 36))) -(((-265 |#1| |#2|) (-10 -8 (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -4129 ((-768) |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-266 |#2|) (-847)) (T -265)) -NIL -(-10 -8 (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -4129 ((-768) |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-4129 (((-768) $) 22)) (-3871 ((|#1| $) 23)) (-2347 (((-3 |#1| "failed") $) 27)) (-2237 ((|#1| $) 28)) (-2155 (((-768) $) 24)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2243 (($ |#1| (-768)) 25)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3534 (($ $) 21) (($ $ (-768)) 20)) (-1831 (((-859) $) 11) (($ |#1|) 26)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) -(((-266 |#1|) (-140) (-847)) (T -266)) -((-1831 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-2243 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847))))) -(-13 (-847) (-1035 |t#1|) (-10 -8 (-15 -2243 ($ |t#1| (-768))) (-15 -2155 ((-768) $)) (-15 -3871 (|t#1| $)) (-15 -4129 ((-768) $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ (-768))) (-15 -1831 ($ |t#1|)))) -(((-102) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-847) . T) ((-1035 |#1|) . T) ((-1094) . T)) -((-3209 (((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 54)) (-2412 (((-641 (-1170)) (-316 (-225)) (-768)) 96)) (-2224 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-1437 (((-316 (-225)) (-316 (-225))) 82)) (-3725 (((-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 39)) (-3816 (((-112) (-641 (-316 (-225)))) 106)) (-4377 (((-112) (-316 (-225))) 37)) (-2258 (((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))))) 133)) (-3295 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 109)) (-3179 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 108)) (-1834 (((-685 (-225)) (-641 (-316 (-225))) (-768)) 121)) (-2392 (((-112) (-316 (-225))) 32) (((-112) (-641 (-316 (-225)))) 107)) (-3780 (((-641 (-225)) (-641 (-840 (-225))) (-225)) 15)) (-2824 (((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 127)) (-2858 (((-1032) (-1170) (-1032)) 47))) -(((-267) (-10 -7 (-15 -3780 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -3725 ((-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -2224 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1437 ((-316 (-225)) (-316 (-225)))) (-15 -3816 ((-112) (-641 (-316 (-225))))) (-15 -2392 ((-112) (-641 (-316 (-225))))) (-15 -2392 ((-112) (-316 (-225)))) (-15 -1834 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -3179 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3295 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -4377 ((-112) (-316 (-225)))) (-15 -3209 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -2412 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -2858 ((-1032) (-1170) (-1032))) (-15 -2824 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -2258 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))))))) (T -267)) -((-2258 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))))) (-5 *2 (-641 (-1152))) (-5 *1 (-267)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-2858 (*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-267)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-2224 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-267)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) (-5 *1 (-267))))) -(-10 -7 (-15 -3780 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -3725 ((-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -2224 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1437 ((-316 (-225)) (-316 (-225)))) (-15 -3816 ((-112) (-641 (-316 (-225))))) (-15 -2392 ((-112) (-641 (-316 (-225))))) (-15 -2392 ((-112) (-316 (-225)))) (-15 -1834 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -3179 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3295 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -4377 ((-112) (-316 (-225)))) (-15 -3209 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -2412 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -2858 ((-1032) (-1170) (-1032))) (-15 -2824 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -2258 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))))))) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-268) (-836)) (T -268)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 66)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 47)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-269) (-836)) (T -269)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 91) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 86)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 67)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-270) (-836)) (T -270)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 73)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-271) (-836)) (T -271)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 65)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 31) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-272) (-836)) (T -272)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 90)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 33) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-273) (-836)) (T -273)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 95)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-274) (-836)) (T -274)) -NIL -(-836) -((-1817 (((-112) $ $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1886 (((-641 (-564)) $) 28)) (-1619 (((-768) $) 26)) (-1831 (((-859) $) 35) (($ (-641 (-564))) 22)) (-3977 (($ (-768)) 32)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 9)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 16))) -(((-275) (-13 (-847) (-10 -8 (-15 -1831 ($ (-641 (-564)))) (-15 -1619 ((-768) $)) (-15 -1886 ((-641 (-564)) $)) (-15 -3977 ($ (-768)))))) (T -275)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-275)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275))))) -(-13 (-847) (-10 -8 (-15 -1831 ($ (-641 (-564)))) (-15 -1619 ((-768) $)) (-15 -1886 ((-641 (-564)) $)) (-15 -3977 ($ (-768))))) -((-3357 ((|#2| |#2|) 77)) (-3210 ((|#2| |#2|) 65)) (-1435 (((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3330 ((|#2| |#2|) 75)) (-3187 ((|#2| |#2|) 63)) (-3384 ((|#2| |#2|) 79)) (-3233 ((|#2| |#2|) 67)) (-3714 ((|#2|) 46)) (-1841 (((-114) (-114)) 100)) (-2358 ((|#2| |#2|) 61)) (-2138 (((-112) |#2|) 147)) (-1832 ((|#2| |#2|) 195)) (-1462 ((|#2| |#2|) 171)) (-2142 ((|#2|) 59)) (-3762 ((|#2|) 58)) (-3988 ((|#2| |#2|) 191)) (-4098 ((|#2| |#2|) 167)) (-3903 ((|#2| |#2|) 199)) (-2958 ((|#2| |#2|) 175)) (-1946 ((|#2| |#2|) 163)) (-3592 ((|#2| |#2|) 165)) (-1564 ((|#2| |#2|) 201)) (-1902 ((|#2| |#2|) 177)) (-4291 ((|#2| |#2|) 197)) (-3063 ((|#2| |#2|) 173)) (-2388 ((|#2| |#2|) 193)) (-2268 ((|#2| |#2|) 169)) (-1875 ((|#2| |#2|) 207)) (-3820 ((|#2| |#2|) 183)) (-2948 ((|#2| |#2|) 203)) (-2000 ((|#2| |#2|) 179)) (-2134 ((|#2| |#2|) 211)) (-1693 ((|#2| |#2|) 187)) (-4271 ((|#2| |#2|) 213)) (-1877 ((|#2| |#2|) 189)) (-1755 ((|#2| |#2|) 209)) (-2187 ((|#2| |#2|) 185)) (-3235 ((|#2| |#2|) 205)) (-3230 ((|#2| |#2|) 181)) (-4326 ((|#2| |#2|) 62)) (-3395 ((|#2| |#2|) 80)) (-3245 ((|#2| |#2|) 68)) (-3371 ((|#2| |#2|) 78)) (-3221 ((|#2| |#2|) 66)) (-3344 ((|#2| |#2|) 76)) (-3199 ((|#2| |#2|) 64)) (-1322 (((-112) (-114)) 98)) (-3427 ((|#2| |#2|) 83)) (-3276 ((|#2| |#2|) 71)) (-3406 ((|#2| |#2|) 81)) (-3254 ((|#2| |#2|) 69)) (-3450 ((|#2| |#2|) 85)) (-3302 ((|#2| |#2|) 73)) (-2315 ((|#2| |#2|) 86)) (-3316 ((|#2| |#2|) 74)) (-3439 ((|#2| |#2|) 84)) (-3287 ((|#2| |#2|) 72)) (-3416 ((|#2| |#2|) 82)) (-3265 ((|#2| |#2|) 70))) -(((-276 |#1| |#2|) (-10 -7 (-15 -4326 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3199 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -3316 (|#2| |#2|)) (-15 -3330 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -3384 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3406 (|#2| |#2|)) (-15 -3416 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -3714 (|#2|)) (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -3762 (|#2|)) (-15 -2142 (|#2|)) (-15 -3592 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -2268 (|#2| |#2|)) (-15 -1462 (|#2| |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -2000 (|#2| |#2|)) (-15 -3230 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -4291 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -1875 (|#2| |#2|)) (-15 -1755 (|#2| |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -4271 (|#2| |#2|)) (-15 -1435 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2138 ((-112) |#2|))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999))) (T -276)) -((-2138 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-999))))) (-1435 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-276 *4 *2)))) (-4271 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2134 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1755 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3235 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4291 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3230 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2000 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1462 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2268 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2142 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-3762 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-999))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999))))) (-3714 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3416 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3406 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3316 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3199 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4326 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999)))))) -(-10 -7 (-15 -4326 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3199 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -3316 (|#2| |#2|)) (-15 -3330 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -3384 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3406 (|#2| |#2|)) (-15 -3416 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -3714 (|#2|)) (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -3762 (|#2|)) (-15 -2142 (|#2|)) (-15 -3592 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -2268 (|#2| |#2|)) (-15 -1462 (|#2| |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -2000 (|#2| |#2|)) (-15 -3230 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -4291 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -1875 (|#2| |#2|)) (-15 -1755 (|#2| |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -4271 (|#2| |#2|)) (-15 -1435 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2138 ((-112) |#2|))) -((-4143 (((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170)) 154)) (-1431 ((|#2| (-407 (-564)) |#2|) 51)) (-2881 ((|#2| |#2| (-610 |#2|)) 147)) (-2789 (((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170)) 146)) (-1853 ((|#2| |#2| (-1170)) 20) ((|#2| |#2|) 23)) (-2374 ((|#2| |#2| (-1170)) 160) ((|#2| |#2|) 158))) -(((-277 |#1| |#2|) (-10 -7 (-15 -2374 (|#2| |#2|)) (-15 -2374 (|#2| |#2| (-1170))) (-15 -2789 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -1853 (|#2| |#2|)) (-15 -1853 (|#2| |#2| (-1170))) (-15 -4143 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -2881 (|#2| |#2| (-610 |#2|))) (-15 -1431 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -277)) -((-1431 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2881 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-4143 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-1853 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2789 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) (|:| |vals| (-641 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2374 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) -(-10 -7 (-15 -2374 (|#2| |#2|)) (-15 -2374 (|#2| |#2| (-1170))) (-15 -2789 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -1853 (|#2| |#2|)) (-15 -1853 (|#2| |#2| (-1170))) (-15 -4143 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -2881 (|#2| |#2| (-610 |#2|))) (-15 -1431 (|#2| (-407 (-564)) |#2|))) -((-3017 (((-3 |#3| "failed") |#3|) 121)) (-3357 ((|#3| |#3|) 143)) (-4019 (((-3 |#3| "failed") |#3|) 89)) (-3210 ((|#3| |#3|) 133)) (-1425 (((-3 |#3| "failed") |#3|) 65)) (-3330 ((|#3| |#3|) 141)) (-2569 (((-3 |#3| "failed") |#3|) 53)) (-3187 ((|#3| |#3|) 131)) (-2438 (((-3 |#3| "failed") |#3|) 123)) (-3384 ((|#3| |#3|) 145)) (-3701 (((-3 |#3| "failed") |#3|) 91)) (-3233 ((|#3| |#3|) 135)) (-3215 (((-3 |#3| "failed") |#3| (-768)) 41)) (-2778 (((-3 |#3| "failed") |#3|) 81)) (-2358 ((|#3| |#3|) 130)) (-3431 (((-3 |#3| "failed") |#3|) 51)) (-4326 ((|#3| |#3|) 129)) (-1891 (((-3 |#3| "failed") |#3|) 124)) (-3395 ((|#3| |#3|) 146)) (-3804 (((-3 |#3| "failed") |#3|) 92)) (-3245 ((|#3| |#3|) 136)) (-2311 (((-3 |#3| "failed") |#3|) 122)) (-3371 ((|#3| |#3|) 144)) (-2501 (((-3 |#3| "failed") |#3|) 90)) (-3221 ((|#3| |#3|) 134)) (-1750 (((-3 |#3| "failed") |#3|) 67)) (-3344 ((|#3| |#3|) 142)) (-3445 (((-3 |#3| "failed") |#3|) 55)) (-3199 ((|#3| |#3|) 132)) (-3942 (((-3 |#3| "failed") |#3|) 73)) (-3427 ((|#3| |#3|) 149)) (-3470 (((-3 |#3| "failed") |#3|) 115)) (-3276 ((|#3| |#3|) 155)) (-2943 (((-3 |#3| "failed") |#3|) 69)) (-3406 ((|#3| |#3|) 147)) (-3202 (((-3 |#3| "failed") |#3|) 57)) (-3254 ((|#3| |#3|) 137)) (-4171 (((-3 |#3| "failed") |#3|) 77)) (-3450 ((|#3| |#3|) 151)) (-1563 (((-3 |#3| "failed") |#3|) 61)) (-3302 ((|#3| |#3|) 139)) (-1716 (((-3 |#3| "failed") |#3|) 79)) (-2315 ((|#3| |#3|) 152)) (-1405 (((-3 |#3| "failed") |#3|) 63)) (-3316 ((|#3| |#3|) 140)) (-2986 (((-3 |#3| "failed") |#3|) 75)) (-3439 ((|#3| |#3|) 150)) (-4016 (((-3 |#3| "failed") |#3|) 118)) (-3287 ((|#3| |#3|) 156)) (-1901 (((-3 |#3| "failed") |#3|) 71)) (-3416 ((|#3| |#3|) 148)) (-3727 (((-3 |#3| "failed") |#3|) 59)) (-3265 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363))))) -(((-278 |#1| |#2| |#3|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4326 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3199 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3233 (|#3| |#3|)) (-15 -3245 (|#3| |#3|)) (-15 -3254 (|#3| |#3|)) (-15 -3265 (|#3| |#3|)) (-15 -3276 (|#3| |#3|)) (-15 -3287 (|#3| |#3|)) (-15 -3302 (|#3| |#3|)) (-15 -3316 (|#3| |#3|)) (-15 -3330 (|#3| |#3|)) (-15 -3344 (|#3| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -3371 (|#3| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3406 (|#3| |#3|)) (-15 -3416 (|#3| |#3|)) (-15 -3427 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3450 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)))) (-38 (-407 (-564))) (-1250 |#1|) (-1221 |#1| |#2|)) (T -278)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) (-4326 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3199 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3316 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3406 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3416 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))) -(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4326 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3199 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3233 (|#3| |#3|)) (-15 -3245 (|#3| |#3|)) (-15 -3254 (|#3| |#3|)) (-15 -3265 (|#3| |#3|)) (-15 -3276 (|#3| |#3|)) (-15 -3287 (|#3| |#3|)) (-15 -3302 (|#3| |#3|)) (-15 -3316 (|#3| |#3|)) (-15 -3330 (|#3| |#3|)) (-15 -3344 (|#3| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -3371 (|#3| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3406 (|#3| |#3|)) (-15 -3416 (|#3| |#3|)) (-15 -3427 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3450 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)))) -((-3017 (((-3 |#3| "failed") |#3|) 70)) (-3357 ((|#3| |#3|) 137)) (-4019 (((-3 |#3| "failed") |#3|) 54)) (-3210 ((|#3| |#3|) 125)) (-1425 (((-3 |#3| "failed") |#3|) 66)) (-3330 ((|#3| |#3|) 135)) (-2569 (((-3 |#3| "failed") |#3|) 50)) (-3187 ((|#3| |#3|) 123)) (-2438 (((-3 |#3| "failed") |#3|) 74)) (-3384 ((|#3| |#3|) 139)) (-3701 (((-3 |#3| "failed") |#3|) 58)) (-3233 ((|#3| |#3|) 127)) (-3215 (((-3 |#3| "failed") |#3| (-768)) 38)) (-2778 (((-3 |#3| "failed") |#3|) 48)) (-2358 ((|#3| |#3|) 111)) (-3431 (((-3 |#3| "failed") |#3|) 46)) (-4326 ((|#3| |#3|) 122)) (-1891 (((-3 |#3| "failed") |#3|) 76)) (-3395 ((|#3| |#3|) 140)) (-3804 (((-3 |#3| "failed") |#3|) 60)) (-3245 ((|#3| |#3|) 128)) (-2311 (((-3 |#3| "failed") |#3|) 72)) (-3371 ((|#3| |#3|) 138)) (-2501 (((-3 |#3| "failed") |#3|) 56)) (-3221 ((|#3| |#3|) 126)) (-1750 (((-3 |#3| "failed") |#3|) 68)) (-3344 ((|#3| |#3|) 136)) (-3445 (((-3 |#3| "failed") |#3|) 52)) (-3199 ((|#3| |#3|) 124)) (-3942 (((-3 |#3| "failed") |#3|) 78)) (-3427 ((|#3| |#3|) 143)) (-3470 (((-3 |#3| "failed") |#3|) 62)) (-3276 ((|#3| |#3|) 131)) (-2943 (((-3 |#3| "failed") |#3|) 112)) (-3406 ((|#3| |#3|) 141)) (-3202 (((-3 |#3| "failed") |#3|) 100)) (-3254 ((|#3| |#3|) 129)) (-4171 (((-3 |#3| "failed") |#3|) 116)) (-3450 ((|#3| |#3|) 145)) (-1563 (((-3 |#3| "failed") |#3|) 107)) (-3302 ((|#3| |#3|) 133)) (-1716 (((-3 |#3| "failed") |#3|) 117)) (-2315 ((|#3| |#3|) 146)) (-1405 (((-3 |#3| "failed") |#3|) 109)) (-3316 ((|#3| |#3|) 134)) (-2986 (((-3 |#3| "failed") |#3|) 80)) (-3439 ((|#3| |#3|) 144)) (-4016 (((-3 |#3| "failed") |#3|) 64)) (-3287 ((|#3| |#3|) 132)) (-1901 (((-3 |#3| "failed") |#3|) 113)) (-3416 ((|#3| |#3|) 142)) (-3727 (((-3 |#3| "failed") |#3|) 103)) (-3265 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363))))) -(((-279 |#1| |#2| |#3| |#4|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4326 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3199 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3233 (|#3| |#3|)) (-15 -3245 (|#3| |#3|)) (-15 -3254 (|#3| |#3|)) (-15 -3265 (|#3| |#3|)) (-15 -3276 (|#3| |#3|)) (-15 -3287 (|#3| |#3|)) (-15 -3302 (|#3| |#3|)) (-15 -3316 (|#3| |#3|)) (-15 -3330 (|#3| |#3|)) (-15 -3344 (|#3| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -3371 (|#3| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3406 (|#3| |#3|)) (-15 -3416 (|#3| |#3|)) (-15 -3427 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3450 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)))) (-38 (-407 (-564))) (-1219 |#1|) (-1242 |#1| |#2|) (-980 |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) (-4 *6 (-980 *5)))) (-4326 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3199 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3316 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3406 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3416 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))) -(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4326 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -3187 (|#3| |#3|)) (-15 -3199 (|#3| |#3|)) (-15 -3210 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3233 (|#3| |#3|)) (-15 -3245 (|#3| |#3|)) (-15 -3254 (|#3| |#3|)) (-15 -3265 (|#3| |#3|)) (-15 -3276 (|#3| |#3|)) (-15 -3287 (|#3| |#3|)) (-15 -3302 (|#3| |#3|)) (-15 -3316 (|#3| |#3|)) (-15 -3330 (|#3| |#3|)) (-15 -3344 (|#3| |#3|)) (-15 -3357 (|#3| |#3|)) (-15 -3371 (|#3| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3406 (|#3| |#3|)) (-15 -3416 (|#3| |#3|)) (-15 -3427 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3450 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)))) -((-1519 (((-112) $) 19)) (-1699 (((-183) $) 7)) (-2812 (((-3 (-506) "failed") $) 14)) (-1952 (((-3 (-641 $) "failed") $) NIL)) (-3325 (((-3 (-506) "failed") $) 20)) (-2354 (((-3 (-1098) "failed") $) 18)) (-3859 (((-112) $) 16)) (-1831 (((-859) $) NIL)) (-4042 (((-112) $) 9))) -(((-280) (-13 (-611 (-859)) (-10 -8 (-15 -1699 ((-183) $)) (-15 -3859 ((-112) $)) (-15 -2354 ((-3 (-1098) "failed") $)) (-15 -1519 ((-112) $)) (-15 -3325 ((-3 (-506) "failed") $)) (-15 -4042 ((-112) $)) (-15 -2812 ((-3 (-506) "failed") $)) (-15 -1952 ((-3 (-641 $) "failed") $))))) (T -280)) -((-1699 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2354 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3325 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2812 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-1952 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280))))) -(-13 (-611 (-859)) (-10 -8 (-15 -1699 ((-183) $)) (-15 -3859 ((-112) $)) (-15 -2354 ((-3 (-1098) "failed") $)) (-15 -1519 ((-112) $)) (-15 -3325 ((-3 (-506) "failed") $)) (-15 -4042 ((-112) $)) (-15 -2812 ((-3 (-506) "failed") $)) (-15 -1952 ((-3 (-641 $) "failed") $)))) -((-3752 (($ (-1 (-112) |#2|) $) 24)) (-3337 (($ $) 38)) (-3644 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2576 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2429 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-3652 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2126 (($ $ (-564)) 11) (($ $ (-1226 (-564))) 14)) (-2460 (($ $ |#2|) 32) (($ $ $) NIL)) (-3043 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-641 $)) NIL))) -(((-281 |#1| |#2|) (-10 -8 (-15 -2429 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -2429 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3644 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2460 (|#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -2126 (|#1| |#1| (-1226 (-564)))) (-15 -2126 (|#1| |#1| (-564))) (-15 -3043 (|#1| (-641 |#1|))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -2576 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2576 (|#1| |#2| |#1|)) (-15 -3337 (|#1| |#1|))) (-282 |#2|) (-1209)) (T -281)) -NIL -(-10 -8 (-15 -2429 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -2429 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3644 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2460 (|#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -2126 (|#1| |#1| (-1226 (-564)))) (-15 -2126 (|#1| |#1| (-564))) (-15 -3043 (|#1| (-641 |#1|))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -2576 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2576 (|#1| |#2| |#1|)) (-15 -3337 (|#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) |#1|) $) 85)) (-3752 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4341 (($ $) 83 (|has| |#1| (-1094)))) (-3337 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1094)))) (-2576 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 51)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-2429 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2783 (($ |#1| $ (-564)) 88) (($ $ $ (-564)) 87)) (-3652 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 42 (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4253 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2087 (($ $ (-564)) 91) (($ $ (-1226 (-564))) 90)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 70)) (-2460 (($ $ |#1|) 93) (($ $ $) 92)) (-3043 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3387 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3387 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1747 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3492 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(-13 (-1115 |t#1|) (-991 |t#1|) (-10 -8 (-15 -3387 ($)) (-15 -3387 ($ (-641 |t#1|))) (-15 -3162 ((-767) $)) (-15 -2975 (|t#1| $)) (-15 -1754 (|t#1| $)) (-15 -1747 (|t#1| |t#1| $)) (-15 -3492 (|t#1| |t#1| $)) (-15 -2084 (|t#1| $)) (-15 -3872 (|t#1| $)) (-15 -2443 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-991 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1115 |#1|) . T) ((-1209) . T)) +((-1396 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-3118 (((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 172) (((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 170) (((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 175) (((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 171) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 163) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 162) (((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379))) 144) (((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 142) (((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379))) 143) (((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 140)) (-3070 (((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 174) (((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 173) (((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 177) (((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 176) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 165) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 164) (((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379))) 150) (((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 149) (((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379))) 148) (((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 147) (((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379))) 112) (((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 111) (((-1260) (-1 (-225) (-225)) (-1088 (-379))) 106) (((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263))) 104))) +(((-255) (-10 -7 (-15 -3070 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -3070 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3070 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -3070 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3070 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1396 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255)) +((-1396 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3118 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255))))) +(-10 -7 (-15 -3070 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -3070 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3070 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -3070 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -3070 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3118 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1396 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-3070 (((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))) 101))) +(((-256 |#1| |#2|) (-10 -7 (-15 -3070 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) (-13 (-556) (-846) (-1034 (-564))) (-430 |#1|)) (T -256)) +((-3070 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-1260)) (-5 *1 (-256 *6 *7))))) +(-10 -7 (-15 -3070 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) +((-2864 (((-564) (-564)) 73)) (-2667 (((-564) (-564)) 74)) (-1929 (((-225) (-225)) 75)) (-3645 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225))) 72)) (-1571 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112)) 70))) +(((-257) (-10 -7 (-15 -1571 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -3645 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2864 ((-564) (-564))) (-15 -2667 ((-564) (-564))) (-15 -1929 ((-225) (-225))))) (T -257)) +((-1929 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-2864 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-3645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *2 (-1261)) (-5 *1 (-257)))) (-1571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257))))) +(-10 -7 (-15 -1571 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -3645 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2864 ((-564) (-564))) (-15 -2667 ((-564) (-564))) (-15 -1929 ((-225) (-225)))) +((-2322 (((-1086 (-379)) (-1086 (-316 |#1|))) 16))) +(((-258 |#1|) (-10 -7 (-15 -2322 ((-1086 (-379)) (-1086 (-316 |#1|))))) (-13 (-846) (-556) (-612 (-379)))) (T -258)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) (-4 *4 (-13 (-846) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4))))) +(-10 -7 (-15 -2322 ((-1086 (-379)) (-1086 (-316 |#1|))))) +((-3118 (((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379))) 75) (((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 74) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379))) 65) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 64) (((-1127 (-225)) (-875 |#1|) (-1086 (-379))) 56) (((-1127 (-225)) (-875 |#1|) (-1086 (-379)) (-641 (-263))) 55)) (-3070 (((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379))) 78) (((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 77) (((-1261) |#1| (-1086 (-379)) (-1086 (-379))) 68) (((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 67) (((-1261) (-875 |#1|) (-1086 (-379))) 60) (((-1261) (-875 |#1|) (-1086 (-379)) (-641 (-263))) 59) (((-1260) (-873 |#1|) (-1086 (-379))) 47) (((-1260) (-873 |#1|) (-1086 (-379)) (-641 (-263))) 46) (((-1260) |#1| (-1086 (-379))) 38) (((-1260) |#1| (-1086 (-379)) (-641 (-263))) 36))) +(((-259 |#1|) (-10 -7 (-15 -3070 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) |#1| (-1086 (-379)))) (-15 -3070 ((-1260) (-873 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) (-873 |#1|) (-1086 (-379)))) (-15 -3070 ((-1261) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-875 |#1|) (-1086 (-379)))) (-15 -3118 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)))) (-15 -3070 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -3118 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -3070 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -3118 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379))))) (-13 (-612 (-536)) (-1094))) (T -259)) +((-3118 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-3118 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-3070 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-3118 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3118 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3070 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-3118 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *5)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *6)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094)))))) +(-10 -7 (-15 -3070 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) |#1| (-1086 (-379)))) (-15 -3070 ((-1260) (-873 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1260) (-873 |#1|) (-1086 (-379)))) (-15 -3070 ((-1261) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-875 |#1|) (-1086 (-379)))) (-15 -3118 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)))) (-15 -3070 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -3118 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -3070 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3070 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -3118 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -3118 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379))))) +((-3070 (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))) 23) (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225))) 24) (((-1260) (-641 (-939 (-225))) (-641 (-263))) 16) (((-1260) (-641 (-939 (-225)))) 17) (((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263))) 20) (((-1260) (-641 (-225)) (-641 (-225))) 21))) +(((-260) (-10 -7 (-15 -3070 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -3070 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -3070 ((-1260) (-641 (-939 (-225))))) (-15 -3070 ((-1260) (-641 (-939 (-225))) (-641 (-263)))) (-15 -3070 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -3070 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))) (T -260)) +((-3070 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-3070 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-3070 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-3070 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260))))) +(-10 -7 (-15 -3070 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -3070 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -3070 ((-1260) (-641 (-939 (-225))))) (-15 -3070 ((-1260) (-641 (-939 (-225))) (-641 (-263)))) (-15 -3070 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -3070 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))))) +((-4077 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1756 (((-917) (-641 (-263)) (-917)) 52)) (-3405 (((-917) (-641 (-263)) (-917)) 51)) (-3026 (((-641 (-379)) (-641 (-263)) (-641 (-379))) 68)) (-3244 (((-379) (-641 (-263)) (-379)) 57)) (-1325 (((-917) (-641 (-263)) (-917)) 53)) (-3775 (((-112) (-641 (-263)) (-112)) 27)) (-3195 (((-1152) (-641 (-263)) (-1152)) 19)) (-3831 (((-1152) (-641 (-263)) (-1152)) 26)) (-1842 (((-1127 (-225)) (-641 (-263))) 46)) (-1981 (((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379)))) 40)) (-2985 (((-870) (-641 (-263)) (-870)) 32)) (-2560 (((-870) (-641 (-263)) (-870)) 33)) (-2504 (((-1 (-939 (-225)) (-939 (-225))) (-641 (-263)) (-1 (-939 (-225)) (-939 (-225)))) 63)) (-3270 (((-112) (-641 (-263)) (-112)) 14)) (-3723 (((-112) (-641 (-263)) (-112)) 13))) +(((-261) (-10 -7 (-15 -3723 ((-112) (-641 (-263)) (-112))) (-15 -3270 ((-112) (-641 (-263)) (-112))) (-15 -4077 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3195 ((-1152) (-641 (-263)) (-1152))) (-15 -3831 ((-1152) (-641 (-263)) (-1152))) (-15 -3775 ((-112) (-641 (-263)) (-112))) (-15 -2985 ((-870) (-641 (-263)) (-870))) (-15 -2560 ((-870) (-641 (-263)) (-870))) (-15 -1981 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3405 ((-917) (-641 (-263)) (-917))) (-15 -1756 ((-917) (-641 (-263)) (-917))) (-15 -1842 ((-1127 (-225)) (-641 (-263)))) (-15 -1325 ((-917) (-641 (-263)) (-917))) (-15 -3244 ((-379) (-641 (-263)) (-379))) (-15 -2504 ((-1 (-939 (-225)) (-939 (-225))) (-641 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3026 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))) (T -261)) +((-3026 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2504 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3244 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1325 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) (-1756 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3405 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1981 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2560 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2985 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3775 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3831 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3195 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4077 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3270 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3723 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(-10 -7 (-15 -3723 ((-112) (-641 (-263)) (-112))) (-15 -3270 ((-112) (-641 (-263)) (-112))) (-15 -4077 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3195 ((-1152) (-641 (-263)) (-1152))) (-15 -3831 ((-1152) (-641 (-263)) (-1152))) (-15 -3775 ((-112) (-641 (-263)) (-112))) (-15 -2985 ((-870) (-641 (-263)) (-870))) (-15 -2560 ((-870) (-641 (-263)) (-870))) (-15 -1981 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3405 ((-917) (-641 (-263)) (-917))) (-15 -1756 ((-917) (-641 (-263)) (-917))) (-15 -1842 ((-1127 (-225)) (-641 (-263)))) (-15 -1325 ((-917) (-641 (-263)) (-917))) (-15 -3244 ((-379) (-641 (-263)) (-379))) (-15 -2504 ((-1 (-939 (-225)) (-939 (-225))) (-641 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3026 ((-641 (-379)) (-641 (-263)) (-641 (-379))))) +((-1420 (((-3 |#1| "failed") (-641 (-263)) (-1170)) 17))) +(((-262 |#1|) (-10 -7 (-15 -1420 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) (-1209)) (T -262)) +((-1420 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *1 (-262 *2)) (-4 *2 (-1209))))) +(-10 -7 (-15 -1420 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) +((-2310 (((-112) $ $) NIL)) (-4077 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-1756 (($ (-917)) 80)) (-3405 (($ (-917)) 79)) (-2563 (($ (-641 (-379))) 86)) (-3244 (($ (-379)) 66)) (-1325 (($ (-917)) 81)) (-3775 (($ (-112)) 33)) (-3195 (($ (-1152)) 28)) (-3831 (($ (-1152)) 29)) (-1842 (($ (-1127 (-225))) 75)) (-1981 (($ (-641 (-1088 (-379)))) 71)) (-4195 (($ (-641 (-1088 (-379)))) 67) (($ (-641 (-1088 (-407 (-564))))) 70)) (-1465 (($ (-379)) 38) (($ (-870)) 42)) (-3929 (((-112) (-641 $) (-1170)) 99)) (-1420 (((-3 (-52) "failed") (-641 $) (-1170)) 101)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1431 (($ (-379)) 43) (($ (-870)) 44)) (-3864 (($ (-1 (-939 (-225)) (-939 (-225)))) 65)) (-2504 (($ (-1 (-939 (-225)) (-939 (-225)))) 82)) (-2319 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2322 (((-858) $) 92)) (-2228 (($ (-112)) 34) (($ (-641 (-1088 (-379)))) 60)) (-3723 (($ (-112)) 35)) (-2921 (((-112) $ $) 96))) +(((-263) (-13 (-1094) (-10 -8 (-15 -3723 ($ (-112))) (-15 -2228 ($ (-112))) (-15 -4077 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3195 ($ (-1152))) (-15 -3831 ($ (-1152))) (-15 -3775 ($ (-112))) (-15 -2228 ($ (-641 (-1088 (-379))))) (-15 -3864 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1465 ($ (-379))) (-15 -1465 ($ (-870))) (-15 -1431 ($ (-379))) (-15 -1431 ($ (-870))) (-15 -2319 ($ (-1 (-225) (-225)))) (-15 -2319 ($ (-1 (-225) (-225) (-225)))) (-15 -2319 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3244 ($ (-379))) (-15 -4195 ($ (-641 (-1088 (-379))))) (-15 -4195 ($ (-641 (-1088 (-407 (-564)))))) (-15 -1981 ($ (-641 (-1088 (-379))))) (-15 -1842 ($ (-1127 (-225)))) (-15 -3405 ($ (-917))) (-15 -1756 ($ (-917))) (-15 -1325 ($ (-917))) (-15 -2504 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2563 ($ (-641 (-379)))) (-15 -1420 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -3929 ((-112) (-641 $) (-1170)))))) (T -263)) +((-3723 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-3864 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) (-1981 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))) (-3405 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-1756 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) (-1420 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) (-5 *1 (-263)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) (-5 *1 (-263))))) +(-13 (-1094) (-10 -8 (-15 -3723 ($ (-112))) (-15 -2228 ($ (-112))) (-15 -4077 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3195 ($ (-1152))) (-15 -3831 ($ (-1152))) (-15 -3775 ($ (-112))) (-15 -2228 ($ (-641 (-1088 (-379))))) (-15 -3864 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1465 ($ (-379))) (-15 -1465 ($ (-870))) (-15 -1431 ($ (-379))) (-15 -1431 ($ (-870))) (-15 -2319 ($ (-1 (-225) (-225)))) (-15 -2319 ($ (-1 (-225) (-225) (-225)))) (-15 -2319 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3244 ($ (-379))) (-15 -4195 ($ (-641 (-1088 (-379))))) (-15 -4195 ($ (-641 (-1088 (-407 (-564)))))) (-15 -1981 ($ (-641 (-1088 (-379))))) (-15 -1842 ($ (-1127 (-225)))) (-15 -3405 ($ (-917))) (-15 -1756 ($ (-917))) (-15 -1325 ($ (-917))) (-15 -2504 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2563 ($ (-641 (-379)))) (-15 -1420 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -3929 ((-112) (-641 $) (-1170))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1399 (((-641 (-767)) $) NIL) (((-641 (-767)) $ |#2|) NIL)) (-4145 (((-767) $) NIL) (((-767) $ |#2|) NIL)) (-2534 (((-641 |#3|) $) NIL)) (-2340 (((-1166 $) $ |#3|) NIL) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 |#3|)) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1796 (($ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1119 |#1| |#2|) "failed") $) 23)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1119 |#1| |#2|) $) NIL)) (-2595 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-531 |#3|) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))))) (-3717 (((-767) $ |#2|) NIL) (((-767) $) 10)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#1|) |#3|) NIL) (($ (-1166 $) |#3|) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#3|) NIL)) (-3386 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-641 (-767)) $ (-641 |#3|)) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2144 (((-1 $ (-767)) |#2|) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3878 (((-3 |#3| "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3938 ((|#3| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-2928 (((-112) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| |#3|) (|:| -3866 (-767))) "failed") $) NIL)) (-1917 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-641 |#3|) (-641 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-3392 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1343 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1404 (((-641 |#2|) $) NIL)) (-2073 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-641 (-767)) $ (-641 |#3|)) NIL) (((-767) $ |#2|) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-2290 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1119 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1119 |#1| |#2|))) (-1045) (-846) (-266 |#2|)) (T -264)) +NIL +(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1119 |#1| |#2|))) +((-4145 (((-767) $) 37)) (-3032 (((-3 |#2| "failed") $) 22)) (-1781 ((|#2| $) 33)) (-1343 (($ $) 14) (($ $ (-767)) 18)) (-2322 (((-858) $) 32) (($ |#2|) 11)) (-2921 (((-112) $ $) 26)) (-2942 (((-112) $ $) 36))) +(((-265 |#1| |#2|) (-10 -8 (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -4145 ((-767) |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-266 |#2|) (-846)) (T -265)) +NIL +(-10 -8 (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -4145 ((-767) |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-4145 (((-767) $) 22)) (-3256 ((|#1| $) 23)) (-3032 (((-3 |#1| "failed") $) 27)) (-1781 ((|#1| $) 28)) (-3717 (((-767) $) 24)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-2144 (($ |#1| (-767)) 25)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1343 (($ $) 21) (($ $ (-767)) 20)) (-2322 (((-858) $) 11) (($ |#1|) 26)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18))) +(((-266 |#1|) (-140) (-846)) (T -266)) +((-2322 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-2144 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-1343 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846))))) +(-13 (-846) (-1034 |t#1|) (-10 -8 (-15 -2144 ($ |t#1| (-767))) (-15 -3717 ((-767) $)) (-15 -3256 (|t#1| $)) (-15 -4145 ((-767) $)) (-15 -1343 ($ $)) (-15 -1343 ($ $ (-767))) (-15 -2322 ($ |t#1|)))) +(((-102) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-846) . T) ((-1034 |#1|) . T) ((-1094) . T)) +((-2534 (((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 54)) (-2966 (((-641 (-1170)) (-316 (-225)) (-767)) 96)) (-3231 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-3919 (((-316 (-225)) (-316 (-225))) 82)) (-2603 (((-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 39)) (-4081 (((-112) (-641 (-316 (-225)))) 106)) (-1645 (((-112) (-316 (-225))) 37)) (-2283 (((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))))) 133)) (-3086 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 109)) (-1415 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 108)) (-3451 (((-685 (-225)) (-641 (-316 (-225))) (-767)) 121)) (-4359 (((-112) (-316 (-225))) 32) (((-112) (-641 (-316 (-225)))) 107)) (-1821 (((-641 (-225)) (-641 (-839 (-225))) (-225)) 15)) (-3052 (((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 127)) (-3373 (((-1031) (-1170) (-1031)) 47))) +(((-267) (-10 -7 (-15 -1821 ((-641 (-225)) (-641 (-839 (-225))) (-225))) (-15 -2603 ((-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -3231 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3919 ((-316 (-225)) (-316 (-225)))) (-15 -4081 ((-112) (-641 (-316 (-225))))) (-15 -4359 ((-112) (-641 (-316 (-225))))) (-15 -4359 ((-112) (-316 (-225)))) (-15 -3451 ((-685 (-225)) (-641 (-316 (-225))) (-767))) (-15 -1415 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3086 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -1645 ((-112) (-316 (-225)))) (-15 -2534 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2966 ((-641 (-1170)) (-316 (-225)) (-767))) (-15 -3373 ((-1031) (-1170) (-1031))) (-15 -3052 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2283 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))))))) (T -267)) +((-2283 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))))) (-5 *2 (-641 (-1152))) (-5 *1 (-267)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-3373 (*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-267)))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-767)) (-5 *2 (-685 (-225))) (-5 *1 (-267)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3231 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *1 (-267)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) (-5 *1 (-267))))) +(-10 -7 (-15 -1821 ((-641 (-225)) (-641 (-839 (-225))) (-225))) (-15 -2603 ((-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -3231 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3919 ((-316 (-225)) (-316 (-225)))) (-15 -4081 ((-112) (-641 (-316 (-225))))) (-15 -4359 ((-112) (-641 (-316 (-225))))) (-15 -4359 ((-112) (-316 (-225)))) (-15 -3451 ((-685 (-225)) (-641 (-316 (-225))) (-767))) (-15 -1415 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3086 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -1645 ((-112) (-316 (-225)))) (-15 -2534 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2966 ((-641 (-1170)) (-316 (-225)) (-767))) (-15 -3373 ((-1031) (-1170) (-1031))) (-15 -3052 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2283 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))))))) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 56)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 32) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-268) (-835)) (T -268)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 75) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 66)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 45) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 47)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-269) (-835)) (T -269)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 91) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 86)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 56) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 67)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-270) (-835)) (T -270)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 73)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 45) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-271) (-835)) (T -271)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 65)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 31) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-272) (-835)) (T -272)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 90)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 33) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-273) (-835)) (T -273)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 95)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 32) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-274) (-835)) (T -274)) +NIL +(-835) +((-2310 (((-112) $ $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2794 (((-641 (-564)) $) 28)) (-2073 (((-767) $) 26)) (-2322 (((-858) $) 35) (($ (-641 (-564))) 22)) (-3207 (($ (-767)) 32)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 9)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 16))) +(((-275) (-13 (-846) (-10 -8 (-15 -2322 ($ (-641 (-564)))) (-15 -2073 ((-767) $)) (-15 -2794 ((-641 (-564)) $)) (-15 -3207 ($ (-767)))))) (T -275)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-3207 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275))))) +(-13 (-846) (-10 -8 (-15 -2322 ($ (-641 (-564)))) (-15 -2073 ((-767) $)) (-15 -2794 ((-641 (-564)) $)) (-15 -3207 ($ (-767))))) +((-3802 ((|#2| |#2|) 77)) (-3661 ((|#2| |#2|) 65)) (-4349 (((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3779 ((|#2| |#2|) 75)) (-3639 ((|#2| |#2|) 63)) (-3825 ((|#2| |#2|) 79)) (-3684 ((|#2| |#2|) 67)) (-4223 ((|#2|) 46)) (-3523 (((-114) (-114)) 100)) (-3439 ((|#2| |#2|) 61)) (-3527 (((-112) |#2|) 147)) (-3430 ((|#2| |#2|) 195)) (-4162 ((|#2| |#2|) 171)) (-3572 ((|#2|) 59)) (-1688 ((|#2|) 58)) (-3327 ((|#2| |#2|) 191)) (-1950 ((|#2| |#2|) 167)) (-3670 ((|#2| |#2|) 199)) (-1909 ((|#2| |#2|) 175)) (-2159 ((|#2| |#2|) 163)) (-3928 ((|#2| |#2|) 165)) (-2736 ((|#2| |#2|) 201)) (-2943 ((|#2| |#2|) 177)) (-3331 ((|#2| |#2|) 197)) (-1560 ((|#2| |#2|) 173)) (-4315 ((|#2| |#2|) 193)) (-2392 ((|#2| |#2|) 169)) (-3881 ((|#2| |#2|) 207)) (-4131 ((|#2| |#2|) 183)) (-1817 ((|#2| |#2|) 203)) (-2707 ((|#2| |#2|) 179)) (-3483 ((|#2| |#2|) 211)) (-1506 ((|#2| |#2|) 187)) (-3147 ((|#2| |#2|) 213)) (-3901 ((|#2| |#2|) 189)) (-3965 ((|#2| |#2|) 209)) (-2865 ((|#2| |#2|) 185)) (-3753 ((|#2| |#2|) 205)) (-3716 ((|#2| |#2|) 181)) (-3571 ((|#2| |#2|) 62)) (-3836 ((|#2| |#2|) 80)) (-3697 ((|#2| |#2|) 68)) (-3814 ((|#2| |#2|) 78)) (-3672 ((|#2| |#2|) 66)) (-3792 ((|#2| |#2|) 76)) (-3650 ((|#2| |#2|) 64)) (-1646 (((-112) (-114)) 98)) (-2672 ((|#2| |#2|) 83)) (-3732 ((|#2| |#2|) 71)) (-3849 ((|#2| |#2|) 81)) (-3708 ((|#2| |#2|) 69)) (-2695 ((|#2| |#2|) 85)) (-3757 ((|#2| |#2|) 73)) (-1511 ((|#2| |#2|) 86)) (-3768 ((|#2| |#2|) 74)) (-2684 ((|#2| |#2|) 84)) (-3746 ((|#2| |#2|) 72)) (-2660 ((|#2| |#2|) 82)) (-3720 ((|#2| |#2|) 70))) +(((-276 |#1| |#2|) (-10 -7 (-15 -3571 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -3697 (|#2| |#2|)) (-15 -3708 (|#2| |#2|)) (-15 -3720 (|#2| |#2|)) (-15 -3732 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3768 (|#2| |#2|)) (-15 -3779 (|#2| |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -2660 (|#2| |#2|)) (-15 -2672 (|#2| |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -4223 (|#2|)) (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -1688 (|#2|)) (-15 -3572 (|#2|)) (-15 -3928 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -1950 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -1560 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2943 (|#2| |#2|)) (-15 -2707 (|#2| |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -4315 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -3331 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3753 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -4349 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3527 ((-112) |#2|))) (-13 (-846) (-556)) (-13 (-430 |#1|) (-998))) (T -276)) +((-3527 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-998))))) (-4349 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-276 *4 *2)))) (-3147 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3881 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2736 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3331 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4315 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3327 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2707 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2943 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1560 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4162 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1950 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3572 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-556))))) (-1688 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-556))))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-998))))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) (-4223 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-556))))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2684 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2672 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3779 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3732 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3708 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3697 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998)))))) +(-10 -7 (-15 -3571 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -3697 (|#2| |#2|)) (-15 -3708 (|#2| |#2|)) (-15 -3720 (|#2| |#2|)) (-15 -3732 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3768 (|#2| |#2|)) (-15 -3779 (|#2| |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -2660 (|#2| |#2|)) (-15 -2672 (|#2| |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -4223 (|#2|)) (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -1688 (|#2|)) (-15 -3572 (|#2|)) (-15 -3928 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -1950 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -1560 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2943 (|#2| |#2|)) (-15 -2707 (|#2| |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -4315 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -3331 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3753 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -4349 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3527 ((-112) |#2|))) +((-4306 (((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170)) 154)) (-4327 ((|#2| (-407 (-564)) |#2|) 51)) (-2369 ((|#2| |#2| (-610 |#2|)) 147)) (-3911 (((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170)) 146)) (-3630 ((|#2| |#2| (-1170)) 20) ((|#2| |#2|) 23)) (-4170 ((|#2| |#2| (-1170)) 160) ((|#2| |#2|) 158))) +(((-277 |#1| |#2|) (-10 -7 (-15 -4170 (|#2| |#2|)) (-15 -4170 (|#2| |#2| (-1170))) (-15 -3911 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -3630 (|#2| |#2|)) (-15 -3630 (|#2| |#2| (-1170))) (-15 -4306 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -2369 (|#2| |#2| (-610 |#2|))) (-15 -4327 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -277)) +((-4327 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2369 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-4306 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3911 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) (|:| |vals| (-641 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4170 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(-10 -7 (-15 -4170 (|#2| |#2|)) (-15 -4170 (|#2| |#2| (-1170))) (-15 -3911 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -3630 (|#2| |#2|)) (-15 -3630 (|#2| |#2| (-1170))) (-15 -4306 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -2369 (|#2| |#2| (-610 |#2|))) (-15 -4327 (|#2| (-407 (-564)) |#2|))) +((-2374 (((-3 |#3| "failed") |#3|) 121)) (-3802 ((|#3| |#3|) 143)) (-2425 (((-3 |#3| "failed") |#3|) 89)) (-3661 ((|#3| |#3|) 133)) (-4275 (((-3 |#3| "failed") |#3|) 65)) (-3779 ((|#3| |#3|) 141)) (-2402 (((-3 |#3| "failed") |#3|) 53)) (-3639 ((|#3| |#3|) 131)) (-3567 (((-3 |#3| "failed") |#3|) 123)) (-3825 ((|#3| |#3|) 145)) (-2385 (((-3 |#3| "failed") |#3|) 91)) (-3684 ((|#3| |#3|) 135)) (-3575 (((-3 |#3| "failed") |#3| (-767)) 41)) (-3812 (((-3 |#3| "failed") |#3|) 81)) (-3439 ((|#3| |#3|) 130)) (-1705 (((-3 |#3| "failed") |#3|) 51)) (-3571 ((|#3| |#3|) 129)) (-2840 (((-3 |#3| "failed") |#3|) 124)) (-3836 ((|#3| |#3|) 146)) (-2090 (((-3 |#3| "failed") |#3|) 92)) (-3697 ((|#3| |#3|) 136)) (-1613 (((-3 |#3| "failed") |#3|) 122)) (-3814 ((|#3| |#3|) 144)) (-2980 (((-3 |#3| "failed") |#3|) 90)) (-3672 ((|#3| |#3|) 134)) (-2022 (((-3 |#3| "failed") |#3|) 67)) (-3792 ((|#3| |#3|) 142)) (-1838 (((-3 |#3| "failed") |#3|) 55)) (-3650 ((|#3| |#3|) 132)) (-2858 (((-3 |#3| "failed") |#3|) 73)) (-2672 ((|#3| |#3|) 149)) (-2086 (((-3 |#3| "failed") |#3|) 115)) (-3732 ((|#3| |#3|) 155)) (-1775 (((-3 |#3| "failed") |#3|) 69)) (-3849 ((|#3| |#3|) 147)) (-3475 (((-3 |#3| "failed") |#3|) 57)) (-3708 ((|#3| |#3|) 137)) (-1475 (((-3 |#3| "failed") |#3|) 77)) (-2695 ((|#3| |#3|) 151)) (-2725 (((-3 |#3| "failed") |#3|) 61)) (-3757 ((|#3| |#3|) 139)) (-1716 (((-3 |#3| "failed") |#3|) 79)) (-1511 ((|#3| |#3|) 152)) (-4080 (((-3 |#3| "failed") |#3|) 63)) (-3768 ((|#3| |#3|) 140)) (-2183 (((-3 |#3| "failed") |#3|) 75)) (-2684 ((|#3| |#3|) 150)) (-2383 (((-3 |#3| "failed") |#3|) 118)) (-3746 ((|#3| |#3|) 156)) (-2933 (((-3 |#3| "failed") |#3|) 71)) (-2660 ((|#3| |#3|) 148)) (-2620 (((-3 |#3| "failed") |#3|) 59)) (-3720 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363))))) +(((-278 |#1| |#2| |#3|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3697 (|#3| |#3|)) (-15 -3708 (|#3| |#3|)) (-15 -3720 (|#3| |#3|)) (-15 -3732 (|#3| |#3|)) (-15 -3746 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3779 (|#3| |#3|)) (-15 -3792 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2672 (|#3| |#3|)) (-15 -2684 (|#3| |#3|)) (-15 -2695 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)))) (-38 (-407 (-564))) (-1250 |#1|) (-1221 |#1| |#2|)) (T -278)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3697 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3708 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3732 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3779 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2672 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2684 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))) +(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3697 (|#3| |#3|)) (-15 -3708 (|#3| |#3|)) (-15 -3720 (|#3| |#3|)) (-15 -3732 (|#3| |#3|)) (-15 -3746 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3779 (|#3| |#3|)) (-15 -3792 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2672 (|#3| |#3|)) (-15 -2684 (|#3| |#3|)) (-15 -2695 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)))) +((-2374 (((-3 |#3| "failed") |#3|) 70)) (-3802 ((|#3| |#3|) 137)) (-2425 (((-3 |#3| "failed") |#3|) 54)) (-3661 ((|#3| |#3|) 125)) (-4275 (((-3 |#3| "failed") |#3|) 66)) (-3779 ((|#3| |#3|) 135)) (-2402 (((-3 |#3| "failed") |#3|) 50)) (-3639 ((|#3| |#3|) 123)) (-3567 (((-3 |#3| "failed") |#3|) 74)) (-3825 ((|#3| |#3|) 139)) (-2385 (((-3 |#3| "failed") |#3|) 58)) (-3684 ((|#3| |#3|) 127)) (-3575 (((-3 |#3| "failed") |#3| (-767)) 38)) (-3812 (((-3 |#3| "failed") |#3|) 48)) (-3439 ((|#3| |#3|) 111)) (-1705 (((-3 |#3| "failed") |#3|) 46)) (-3571 ((|#3| |#3|) 122)) (-2840 (((-3 |#3| "failed") |#3|) 76)) (-3836 ((|#3| |#3|) 140)) (-2090 (((-3 |#3| "failed") |#3|) 60)) (-3697 ((|#3| |#3|) 128)) (-1613 (((-3 |#3| "failed") |#3|) 72)) (-3814 ((|#3| |#3|) 138)) (-2980 (((-3 |#3| "failed") |#3|) 56)) (-3672 ((|#3| |#3|) 126)) (-2022 (((-3 |#3| "failed") |#3|) 68)) (-3792 ((|#3| |#3|) 136)) (-1838 (((-3 |#3| "failed") |#3|) 52)) (-3650 ((|#3| |#3|) 124)) (-2858 (((-3 |#3| "failed") |#3|) 78)) (-2672 ((|#3| |#3|) 143)) (-2086 (((-3 |#3| "failed") |#3|) 62)) (-3732 ((|#3| |#3|) 131)) (-1775 (((-3 |#3| "failed") |#3|) 112)) (-3849 ((|#3| |#3|) 141)) (-3475 (((-3 |#3| "failed") |#3|) 100)) (-3708 ((|#3| |#3|) 129)) (-1475 (((-3 |#3| "failed") |#3|) 116)) (-2695 ((|#3| |#3|) 145)) (-2725 (((-3 |#3| "failed") |#3|) 107)) (-3757 ((|#3| |#3|) 133)) (-1716 (((-3 |#3| "failed") |#3|) 117)) (-1511 ((|#3| |#3|) 146)) (-4080 (((-3 |#3| "failed") |#3|) 109)) (-3768 ((|#3| |#3|) 134)) (-2183 (((-3 |#3| "failed") |#3|) 80)) (-2684 ((|#3| |#3|) 144)) (-2383 (((-3 |#3| "failed") |#3|) 64)) (-3746 ((|#3| |#3|) 132)) (-2933 (((-3 |#3| "failed") |#3|) 113)) (-2660 ((|#3| |#3|) 142)) (-2620 (((-3 |#3| "failed") |#3|) 103)) (-3720 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363))))) +(((-279 |#1| |#2| |#3| |#4|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3697 (|#3| |#3|)) (-15 -3708 (|#3| |#3|)) (-15 -3720 (|#3| |#3|)) (-15 -3732 (|#3| |#3|)) (-15 -3746 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3779 (|#3| |#3|)) (-15 -3792 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2672 (|#3| |#3|)) (-15 -2684 (|#3| |#3|)) (-15 -2695 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)))) (-38 (-407 (-564))) (-1219 |#1|) (-1242 |#1| |#2|) (-979 |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) (-4 *6 (-979 *5)))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3697 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3708 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3732 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3779 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-2672 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-2684 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))) +(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3650 (|#3| |#3|)) (-15 -3661 (|#3| |#3|)) (-15 -3672 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3697 (|#3| |#3|)) (-15 -3708 (|#3| |#3|)) (-15 -3720 (|#3| |#3|)) (-15 -3732 (|#3| |#3|)) (-15 -3746 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3779 (|#3| |#3|)) (-15 -3792 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2672 (|#3| |#3|)) (-15 -2684 (|#3| |#3|)) (-15 -2695 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)))) +((-3444 (((-112) $) 19)) (-2816 (((-183) $) 7)) (-2940 (((-3 (-506) "failed") $) 14)) (-2203 (((-3 (-641 $) "failed") $) NIL)) (-3315 (((-3 (-506) "failed") $) 20)) (-2075 (((-3 (-1098) "failed") $) 18)) (-1419 (((-112) $) 16)) (-2322 (((-858) $) NIL)) (-2670 (((-112) $) 9))) +(((-280) (-13 (-611 (-858)) (-10 -8 (-15 -2816 ((-183) $)) (-15 -1419 ((-112) $)) (-15 -2075 ((-3 (-1098) "failed") $)) (-15 -3444 ((-112) $)) (-15 -3315 ((-3 (-506) "failed") $)) (-15 -2670 ((-112) $)) (-15 -2940 ((-3 (-506) "failed") $)) (-15 -2203 ((-3 (-641 $) "failed") $))))) (T -280)) +((-2816 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2075 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3315 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2940 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-2203 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2816 ((-183) $)) (-15 -1419 ((-112) $)) (-15 -2075 ((-3 (-1098) "failed") $)) (-15 -3444 ((-112) $)) (-15 -3315 ((-3 (-506) "failed") $)) (-15 -2670 ((-112) $)) (-15 -2940 ((-3 (-506) "failed") $)) (-15 -2203 ((-3 (-641 $) "failed") $)))) +((-2957 (($ (-1 (-112) |#2|) $) 24)) (-2027 (($ $) 38)) (-3175 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3628 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3471 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4116 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-1996 (($ $ (-564)) 11) (($ $ (-1226 (-564))) 14)) (-3783 (($ $ |#2|) 32) (($ $ $) NIL)) (-3533 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-641 $)) NIL))) +(((-281 |#1| |#2|) (-10 -8 (-15 -3471 (|#1| |#1| |#1|)) (-15 -3175 (|#1| |#2| |#1|)) (-15 -3471 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3783 (|#1| |#1| |#1|)) (-15 -3783 (|#1| |#1| |#2|)) (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -1996 (|#1| |#1| (-1226 (-564)))) (-15 -1996 (|#1| |#1| (-564))) (-15 -3533 (|#1| (-641 |#1|))) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -3628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2957 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3628 (|#1| |#2| |#1|)) (-15 -2027 (|#1| |#1|))) (-282 |#2|) (-1209)) (T -281)) +NIL +(-10 -8 (-15 -3471 (|#1| |#1| |#1|)) (-15 -3175 (|#1| |#2| |#1|)) (-15 -3471 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3783 (|#1| |#1| |#1|)) (-15 -3783 (|#1| |#1| |#2|)) (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -1996 (|#1| |#1| (-1226 (-564)))) (-15 -1996 (|#1| |#1| (-564))) (-15 -3533 (|#1| (-641 |#1|))) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -3628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2957 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3628 (|#1| |#2| |#1|)) (-15 -2027 (|#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) |#1|) $) 85)) (-2957 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2596 (($ $) 83 (|has| |#1| (-1094)))) (-2027 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1094)))) (-3628 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 51)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-3471 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3861 (($ |#1| $ (-564)) 88) (($ $ $ (-564)) 87)) (-4116 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 42 (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2981 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-4277 (($ $ (-564)) 91) (($ $ (-1226 (-564))) 90)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 70)) (-3783 (($ $ |#1|) 93) (($ $ $) 92)) (-3533 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-282 |#1|) (-140) (-1209)) (T -282)) -((-2460 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2460 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3644 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2783 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2783 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2429 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3644 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-4341 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2429 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))) -(-13 (-647 |t#1|) (-10 -8 (-6 -4407) (-15 -2460 ($ $ |t#1|)) (-15 -2460 ($ $ $)) (-15 -2087 ($ $ (-564))) (-15 -2087 ($ $ (-1226 (-564)))) (-15 -3644 ($ (-1 (-112) |t#1|) $)) (-15 -2783 ($ |t#1| $ (-564))) (-15 -2783 ($ $ $ (-564))) (-15 -2429 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4145 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3644 ($ |t#1| $)) (-15 -4341 ($ $))) |%noBranch|) (IF (|has| |t#1| (-847)) (-15 -2429 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3783 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-3783 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3861 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-3861 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3471 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3175 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2596 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-3471 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-846))))) +(-13 (-647 |t#1|) (-10 -8 (-6 -4407) (-15 -3783 ($ $ |t#1|)) (-15 -3783 ($ $ $)) (-15 -4277 ($ $ (-564))) (-15 -4277 ($ $ (-1226 (-564)))) (-15 -3175 ($ (-1 (-112) |t#1|) $)) (-15 -3861 ($ |t#1| $ (-564))) (-15 -3861 ($ $ $ (-564))) (-15 -3471 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4328 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3175 ($ |t#1| $)) (-15 -2596 ($ $))) |%noBranch|) (IF (|has| |t#1| (-846)) (-15 -3471 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) ((** (($ $ $) 10))) (((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2358 (($ $) 6)) (-4326 (($ $) 7)) (** (($ $ $) 8))) +((-3439 (($ $) 6)) (-3571 (($ $) 7)) (** (($ $ $) 8))) (((-284) (-140)) (T -284)) -((** (*1 *1 *1 *1) (-4 *1 (-284))) (-4326 (*1 *1 *1) (-4 *1 (-284))) (-2358 (*1 *1 *1) (-4 *1 (-284)))) -(-13 (-10 -8 (-15 -2358 ($ $)) (-15 -4326 ($ $)) (-15 ** ($ $ $)))) -((-2479 (((-641 (-1150 |#1|)) (-1150 |#1|) |#1|) 35)) (-3677 ((|#2| |#2| |#1|) 39)) (-3182 ((|#2| |#2| |#1|) 41)) (-2739 ((|#2| |#2| |#1|) 40))) -(((-285 |#1| |#2|) (-10 -7 (-15 -3677 (|#2| |#2| |#1|)) (-15 -2739 (|#2| |#2| |#1|)) (-15 -3182 (|#2| |#2| |#1|)) (-15 -2479 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) (-363) (-1250 |#1|)) (T -285)) -((-2479 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))) (-3182 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-2739 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-3677 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) -(-10 -7 (-15 -3677 (|#2| |#2| |#1|)) (-15 -2739 (|#2| |#2| |#1|)) (-15 -3182 (|#2| |#2| |#1|)) (-15 -2479 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) -((-1350 ((|#2| $ |#1|) 6))) +((** (*1 *1 *1 *1) (-4 *1 (-284))) (-3571 (*1 *1 *1) (-4 *1 (-284))) (-3439 (*1 *1 *1) (-4 *1 (-284)))) +(-13 (-10 -8 (-15 -3439 ($ $)) (-15 -3571 ($ $)) (-15 ** ($ $ $)))) +((-3966 (((-641 (-1150 |#1|)) (-1150 |#1|) |#1|) 35)) (-2195 ((|#2| |#2| |#1|) 39)) (-1446 ((|#2| |#2| |#1|) 41)) (-2579 ((|#2| |#2| |#1|) 40))) +(((-285 |#1| |#2|) (-10 -7 (-15 -2195 (|#2| |#2| |#1|)) (-15 -2579 (|#2| |#2| |#1|)) (-15 -1446 (|#2| |#2| |#1|)) (-15 -3966 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) (-363) (-1250 |#1|)) (T -285)) +((-3966 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))) (-1446 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-2579 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-2195 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) +(-10 -7 (-15 -2195 (|#2| |#2| |#1|)) (-15 -2579 (|#2| |#2| |#1|)) (-15 -1446 (|#2| |#2| |#1|)) (-15 -3966 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) +((-4353 ((|#2| $ |#1|) 6))) (((-286 |#1| |#2|) (-140) (-1094) (-1209)) (T -286)) -((-1350 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))) -(-13 (-10 -8 (-15 -1350 (|t#2| $ |t#1|)))) -((-2261 ((|#3| $ |#2| |#3|) 12)) (-2190 ((|#3| $ |#2|) 10))) -(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -2261 (|#3| |#1| |#2| |#3|)) (-15 -2190 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1209)) (T -287)) +((-4353 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -4353 (|t#2| $ |t#1|)))) +((-1466 ((|#3| $ |#2| |#3|) 12)) (-1407 ((|#3| $ |#2|) 10))) +(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -1466 (|#3| |#1| |#2| |#3|)) (-15 -1407 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1209)) (T -287)) NIL -(-10 -8 (-15 -2261 (|#3| |#1| |#2| |#3|)) (-15 -2190 (|#3| |#1| |#2|))) -((-1970 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4407)))) (-2261 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) 11)) (-1350 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(-10 -8 (-15 -1466 (|#3| |#1| |#2| |#3|)) (-15 -1407 (|#3| |#1| |#2|))) +((-3750 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4407)))) (-1466 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) 11)) (-4353 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) (((-288 |#1| |#2|) (-140) (-1094) (-1209)) (T -288)) -((-1350 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2190 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-1970 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2261 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))) -(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -1350 (|t#2| $ |t#1| |t#2|)) (-15 -2190 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1970 (|t#2| $ |t#1| |t#2|)) (-15 -2261 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((-4353 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-1407 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3750 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-1466 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))) +(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4353 (|t#2| $ |t#1| |t#2|)) (-15 -1407 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3750 (|t#2| $ |t#1| |t#2|)) (-15 -1466 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-286 |#1| |#2|) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 37)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 44)) (-1537 (($ $) 41)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) 35)) (-1988 (($ |#2| |#3|) 18)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1691 ((|#3| $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 19)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3807 (((-3 $ "failed") $ $) NIL)) (-3920 (((-768) $) 36)) (-1350 ((|#2| $ |#2|) 46)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 23)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 31 T CONST)) (-1300 (($) 39 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40))) -(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -1691 (|#3| $)) (-15 -1831 (|#2| $)) (-15 -1988 ($ |#2| |#3|)) (-15 -3807 ((-3 $ "failed") $ $)) (-15 -3733 ((-3 $ "failed") $)) (-15 -3315 ($ $)) (-15 -1350 (|#2| $ |#2|)))) (-172) (-1235 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289)) -((-3733 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1691 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1831 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1988 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3807 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3315 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1350 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-307) (-10 -8 (-15 -1691 (|#3| $)) (-15 -1831 (|#2| $)) (-15 -1988 ($ |#2| |#3|)) (-15 -3807 ((-3 $ "failed") $ $)) (-15 -3733 ((-3 $ "failed") $)) (-15 -3315 ($ $)) (-15 -1350 (|#2| $ |#2|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 37)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 44)) (-3622 (($ $) 41)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) 35)) (-3239 (($ |#2| |#3|) 18)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1487 ((|#3| $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 19)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2118 (((-3 $ "failed") $ $) NIL)) (-3844 (((-767) $) 36)) (-4353 ((|#2| $ |#2|) 46)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 23)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 31 T CONST)) (-2403 (($) 39 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 40))) +(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -1487 (|#3| $)) (-15 -2322 (|#2| $)) (-15 -3239 ($ |#2| |#3|)) (-15 -2118 ((-3 $ "failed") $ $)) (-15 -2689 ((-3 $ "failed") $)) (-15 -2639 ($ $)) (-15 -4353 (|#2| $ |#2|)))) (-172) (-1235 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289)) +((-2689 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1487 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2322 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3239 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2118 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2639 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4353 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-307) (-10 -8 (-15 -1487 (|#3| $)) (-15 -2322 (|#2| $)) (-15 -3239 ($ |#2| |#3|)) (-15 -2118 ((-3 $ "failed") $ $)) (-15 -2689 ((-3 $ "failed") $)) (-15 -2639 ($ $)) (-15 -4353 (|#2| $ |#2|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-290) (-140)) (T -290)) NIL -(-13 (-1046) (-111 $ $) (-10 -7 (-6 -4399))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-3549 (($ (-1170) (-1170) (-1098) $) 19)) (-2785 (($ (-1170) (-641 (-962)) $) 23)) (-4026 (((-641 (-1079)) $) 10)) (-3391 (($) 25)) (-1331 (((-687 (-1098)) (-1170) (-1170) $) 18)) (-1903 (((-641 (-962)) (-1170) $) 22)) (-4012 (($) 7)) (-2854 (($) 24)) (-1831 (((-859) $) 29)) (-4319 (($) 26))) -(((-291) (-13 (-611 (-859)) (-10 -8 (-15 -4012 ($)) (-15 -4026 ((-641 (-1079)) $)) (-15 -1331 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -3549 ($ (-1170) (-1170) (-1098) $)) (-15 -1903 ((-641 (-962)) (-1170) $)) (-15 -2785 ($ (-1170) (-641 (-962)) $)) (-15 -2854 ($)) (-15 -3391 ($)) (-15 -4319 ($))))) (T -291)) -((-4012 (*1 *1) (-5 *1 (-291))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))) (-1331 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))) (-3549 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))) (-1903 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291)))) (-2785 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291)))) (-2854 (*1 *1) (-5 *1 (-291))) (-3391 (*1 *1) (-5 *1 (-291))) (-4319 (*1 *1) (-5 *1 (-291)))) -(-13 (-611 (-859)) (-10 -8 (-15 -4012 ($)) (-15 -4026 ((-641 (-1079)) $)) (-15 -1331 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -3549 ($ (-1170) (-1170) (-1098) $)) (-15 -1903 ((-641 (-962)) (-1170) $)) (-15 -2785 ($ (-1170) (-641 (-962)) $)) (-15 -2854 ($)) (-15 -3391 ($)) (-15 -4319 ($)))) -((-1804 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 105)) (-1944 (((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|)))) 100) (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768)) 41)) (-2124 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 102)) (-3447 (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|)))) 77)) (-1711 (((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|)))) 76)) (-1349 (((-949 |#1|) (-685 (-407 (-949 |#1|)))) 57) (((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170)) 58))) -(((-292 |#1|) (-10 -7 (-15 -1349 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -1349 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -1711 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -3447 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -1944 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -1944 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -1804 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -2124 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))))) (-452)) (T -292)) -((-2124 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-1944 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-1944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6)))) (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6)))))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452)) (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))) (-5 *1 (-292 *4)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170)) (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))) -(-10 -7 (-15 -1349 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -1349 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -1711 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -3447 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -1944 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -1944 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -1804 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -2124 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))))) -((-2449 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) -(((-293 |#1| |#2|) (-10 -7 (-15 -2449 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1209) (-1209)) (T -293)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))) -(-10 -7 (-15 -2449 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1615 (((-112) $) NIL (|has| |#1| (-21)))) (-2770 (($ $) 12)) (-4088 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3574 (($ $ $) 95 (|has| |#1| (-302)))) (-1778 (($) NIL (-4078 (|has| |#1| (-21)) (|has| |#1| (-723))) CONST)) (-3673 (($ $) 51 (|has| |#1| (-21)))) (-3805 (((-3 $ "failed") $) 62 (|has| |#1| (-723)))) (-4383 ((|#1| $) 11)) (-3733 (((-3 $ "failed") $) 60 (|has| |#1| (-723)))) (-2949 (((-112) $) NIL (|has| |#1| (-723)))) (-2449 (($ (-1 |#1| |#1|) $) 14)) (-4372 ((|#1| $) 10)) (-4380 (($ $) 50 (|has| |#1| (-21)))) (-3618 (((-3 $ "failed") $) 61 (|has| |#1| (-723)))) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3315 (($ $) 64 (-4078 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2605 (((-641 $) $) 85 (|has| |#1| (-556)))) (-2633 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 21 (|has| |#1| (-514 (-1170) |#1|)))) (-2772 (($ |#1| |#1|) 9)) (-3548 (((-134)) 90 (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 87 (|has| |#1| (-897 (-1170))))) (-3047 (($ $ $) NIL (|has| |#1| (-473)))) (-1992 (($ $ $) NIL (|has| |#1| (-473)))) (-1831 (($ (-564)) NIL (|has| |#1| (-1046))) (((-112) $) 37 (|has| |#1| (-1094))) (((-859) $) 36 (|has| |#1| (-1094)))) (-2219 (((-768)) 67 (|has| |#1| (-1046)) CONST)) (-1293 (($) 47 (|has| |#1| (-21)) CONST)) (-1300 (($) 57 (|has| |#1| (-723)) CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170))))) (-1702 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1094)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-4078 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1808 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-1797 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-768)) NIL (|has| |#1| (-723))) (($ $ (-918)) NIL (|has| |#1| (-1106)))) (* (($ $ |#1|) 55 (|has| |#1| (-1106))) (($ |#1| $) 54 (|has| |#1| (-1106))) (($ $ $) 53 (|has| |#1| (-1106))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-25))))) -(((-294 |#1|) (-13 (-1209) (-10 -8 (-15 -1702 ($ |#1| |#1|)) (-15 -2772 ($ |#1| |#1|)) (-15 -2770 ($ $)) (-15 -4372 (|#1| $)) (-15 -4383 (|#1| $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2633 ($ $ $)) (-15 -2633 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1797 ($ |#1| $)) (-15 -1797 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4380 ($ $)) (-15 -3673 ($ $)) (-15 -1808 ($ |#1| $)) (-15 -1808 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -3618 ((-3 $ "failed") $)) (-15 -3805 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -3618 ((-3 $ "failed") $)) (-15 -3805 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2605 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1823 ($ $ $)) (-15 -3315 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -3574 ($ $ $)) |%noBranch|))) (-1209)) (T -294)) -((-1702 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2772 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2770 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-4372 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-4383 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-2633 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) (-5 *1 (-294 *2)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-1797 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1797 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1808 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3618 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-3805 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1209)))) (-3574 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (-1823 (*1 *1 *1 *1) (-4078 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) (-3315 (*1 *1 *1) (-4078 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))) -(-13 (-1209) (-10 -8 (-15 -1702 ($ |#1| |#1|)) (-15 -2772 ($ |#1| |#1|)) (-15 -2770 ($ $)) (-15 -4372 (|#1| $)) (-15 -4383 (|#1| $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2633 ($ $ $)) (-15 -2633 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1797 ($ |#1| $)) (-15 -1797 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4380 ($ $)) (-15 -3673 ($ $)) (-15 -1808 ($ |#1| $)) (-15 -1808 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -3618 ((-3 $ "failed") $)) (-15 -3805 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -3618 ((-3 $ "failed") $)) (-15 -3805 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2605 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1823 ($ $ $)) (-15 -3315 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -3574 ($ $ $)) |%noBranch|))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#2| $ |#1| |#2|) NIL)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2945 (((-641 |#1|) $) NIL)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3883 (((-641 |#1|) $) NIL)) (-4336 (((-112) |#1| $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +(-13 (-1045) (-111 $ $) (-10 -7 (-6 -4399))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3490 (($ (-1170) (-1170) (-1098) $) 19)) (-3879 (($ (-1170) (-641 (-961)) $) 23)) (-2503 (((-641 (-1079)) $) 10)) (-2599 (($) 25)) (-1736 (((-687 (-1098)) (-1170) (-1170) $) 18)) (-2954 (((-641 (-961)) (-1170) $) 22)) (-2348 (($) 7)) (-3133 (($) 24)) (-2322 (((-858) $) 29)) (-2365 (($) 26))) +(((-291) (-13 (-611 (-858)) (-10 -8 (-15 -2348 ($)) (-15 -2503 ((-641 (-1079)) $)) (-15 -1736 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -3490 ($ (-1170) (-1170) (-1098) $)) (-15 -2954 ((-641 (-961)) (-1170) $)) (-15 -3879 ($ (-1170) (-641 (-961)) $)) (-15 -3133 ($)) (-15 -2599 ($)) (-15 -2365 ($))))) (T -291)) +((-2348 (*1 *1) (-5 *1 (-291))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))) (-1736 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))) (-3490 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))) (-2954 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-961))) (-5 *1 (-291)))) (-3879 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-961))) (-5 *1 (-291)))) (-3133 (*1 *1) (-5 *1 (-291))) (-2599 (*1 *1) (-5 *1 (-291))) (-2365 (*1 *1) (-5 *1 (-291)))) +(-13 (-611 (-858)) (-10 -8 (-15 -2348 ($)) (-15 -2503 ((-641 (-1079)) $)) (-15 -1736 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -3490 ($ (-1170) (-1170) (-1098) $)) (-15 -2954 ((-641 (-961)) (-1170) $)) (-15 -3879 ($ (-1170) (-641 (-961)) $)) (-15 -3133 ($)) (-15 -2599 ($)) (-15 -2365 ($)))) +((-1319 (((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))) 105)) (-2136 (((-641 (-685 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|)))))) (-685 (-407 (-948 |#1|)))) 100) (((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))) (-767) (-767)) 41)) (-3407 (((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))) 102)) (-1860 (((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|)))) 77)) (-1658 (((-641 (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (-685 (-407 (-948 |#1|)))) 76)) (-2117 (((-948 |#1|) (-685 (-407 (-948 |#1|)))) 57) (((-948 |#1|) (-685 (-407 (-948 |#1|))) (-1170)) 58))) +(((-292 |#1|) (-10 -7 (-15 -2117 ((-948 |#1|) (-685 (-407 (-948 |#1|))) (-1170))) (-15 -2117 ((-948 |#1|) (-685 (-407 (-948 |#1|))))) (-15 -1658 ((-641 (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (-685 (-407 (-948 |#1|))))) (-15 -1860 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))))) (-15 -2136 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))) (-767) (-767))) (-15 -2136 ((-641 (-685 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|)))))) (-685 (-407 (-948 |#1|))))) (-15 -1319 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|))))) (-15 -3407 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))))) (-452)) (T -292)) +((-3407 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4)))))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4)))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 *4)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5)))))) (-2136 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1159 (-1170) (-948 *6)))) (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-948 *6)))))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5)))))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-4 *4 (-452)) (-5 *2 (-641 (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4))))) (-5 *1 (-292 *4)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-5 *2 (-948 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-2117 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-948 *5)))) (-5 *4 (-1170)) (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))) +(-10 -7 (-15 -2117 ((-948 |#1|) (-685 (-407 (-948 |#1|))) (-1170))) (-15 -2117 ((-948 |#1|) (-685 (-407 (-948 |#1|))))) (-15 -1658 ((-641 (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (-685 (-407 (-948 |#1|))))) (-15 -1860 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))))) (-15 -2136 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))) (-767) (-767))) (-15 -2136 ((-641 (-685 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|)))))) (-685 (-407 (-948 |#1|))))) (-15 -1319 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|))))) (-15 -3407 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))))) +((-3123 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) +(((-293 |#1| |#2|) (-10 -7 (-15 -3123 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1209) (-1209)) (T -293)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))) +(-10 -7 (-15 -3123 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3264 (((-112) $) NIL (|has| |#1| (-21)))) (-3742 (($ $) 12)) (-1862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2523 (($ $ $) 95 (|has| |#1| (-302)))) (-4157 (($) NIL (-2789 (|has| |#1| (-21)) (|has| |#1| (-722))) CONST)) (-2177 (($ $) 51 (|has| |#1| (-21)))) (-2098 (((-3 $ "failed") $) 62 (|has| |#1| (-722)))) (-3725 ((|#1| $) 11)) (-2689 (((-3 $ "failed") $) 60 (|has| |#1| (-722)))) (-1828 (((-112) $) NIL (|has| |#1| (-722)))) (-3123 (($ (-1 |#1| |#1|) $) 14)) (-3713 ((|#1| $) 10)) (-1667 (($ $) 50 (|has| |#1| (-21)))) (-2955 (((-3 $ "failed") $) 61 (|has| |#1| (-722)))) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2639 (($ $) 64 (-2789 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2764 (((-641 $) $) 85 (|has| |#1| (-556)))) (-3100 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 21 (|has| |#1| (-514 (-1170) |#1|)))) (-1866 (($ |#1| |#1|) 9)) (-3480 (((-134)) 90 (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 87 (|has| |#1| (-896 (-1170))))) (-2675 (($ $ $) NIL (|has| |#1| (-473)))) (-2617 (($ $ $) NIL (|has| |#1| (-473)))) (-2322 (($ (-564)) NIL (|has| |#1| (-1045))) (((-112) $) 37 (|has| |#1| (-1094))) (((-858) $) 36 (|has| |#1| (-1094)))) (-3179 (((-767)) 67 (|has| |#1| (-1045)) CONST)) (-2389 (($) 47 (|has| |#1| (-21)) CONST)) (-2403 (($) 57 (|has| |#1| (-722)) CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170))))) (-2921 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1094)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-2789 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3021 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3011 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-767)) NIL (|has| |#1| (-722))) (($ $ (-917)) NIL (|has| |#1| (-1106)))) (* (($ $ |#1|) 55 (|has| |#1| (-1106))) (($ |#1| $) 54 (|has| |#1| (-1106))) (($ $ $) 53 (|has| |#1| (-1106))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-25))))) +(((-294 |#1|) (-13 (-1209) (-10 -8 (-15 -2921 ($ |#1| |#1|)) (-15 -1866 ($ |#1| |#1|)) (-15 -3742 ($ $)) (-15 -3713 (|#1| $)) (-15 -3725 (|#1| $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3100 ($ $ $)) (-15 -3100 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3011 ($ |#1| $)) (-15 -3011 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1667 ($ $)) (-15 -2177 ($ $)) (-15 -3021 ($ |#1| $)) (-15 -3021 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -2955 ((-3 $ "failed") $)) (-15 -2098 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2955 ((-3 $ "failed") $)) (-15 -2098 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2764 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -3034 ($ $ $)) (-15 -2639 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2523 ($ $ $)) |%noBranch|))) (-1209)) (T -294)) +((-2921 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-1866 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3713 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3725 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-3100 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) (-5 *1 (-294 *2)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-3011 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1667 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3021 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-2955 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209)))) (-2098 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1209)))) (-2523 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (-3034 (*1 *1 *1 *1) (-2789 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) (-2639 (*1 *1 *1) (-2789 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))) +(-13 (-1209) (-10 -8 (-15 -2921 ($ |#1| |#1|)) (-15 -1866 ($ |#1| |#1|)) (-15 -3742 ($ $)) (-15 -3713 (|#1| $)) (-15 -3725 (|#1| $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3100 ($ $ $)) (-15 -3100 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3011 ($ |#1| $)) (-15 -3011 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1667 ($ $)) (-15 -2177 ($ $)) (-15 -3021 ($ |#1| $)) (-15 -3021 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -2955 ((-3 $ "failed") $)) (-15 -2098 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2955 ((-3 $ "failed") $)) (-15 -2098 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2764 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -3034 ($ $ $)) (-15 -2639 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2523 ($ $ $)) |%noBranch|))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#2| $ |#1| |#2|) NIL)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2843 (((-641 |#1|) $) NIL)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3487 (((-641 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-295 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) (-1094) (-1094)) (T -295)) NIL (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) -((-2044 (((-312) (-1152) (-641 (-1152))) 17) (((-312) (-1152) (-1152)) 16) (((-312) (-641 (-1152))) 15) (((-312) (-1152)) 14))) -(((-296) (-10 -7 (-15 -2044 ((-312) (-1152))) (-15 -2044 ((-312) (-641 (-1152)))) (-15 -2044 ((-312) (-1152) (-1152))) (-15 -2044 ((-312) (-1152) (-641 (-1152)))))) (T -296)) -((-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-2044 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))) -(-10 -7 (-15 -2044 ((-312) (-1152))) (-15 -2044 ((-312) (-641 (-1152)))) (-15 -2044 ((-312) (-1152) (-1152))) (-15 -2044 ((-312) (-1152) (-641 (-1152))))) -((-2449 ((|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)) 18))) -(((-297 |#1| |#2|) (-10 -7 (-15 -2449 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) (-302) (-1209)) (T -297)) -((-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2))))) -(-10 -7 (-15 -2449 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) -((-2449 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -2449 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))) -(-10 -7 (-15 -2449 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) -((-2653 (((-112) (-225)) 12))) -(((-299 |#1| |#2|) (-10 -7 (-15 -2653 ((-112) (-225)))) (-225) (-225)) (T -299)) -((-2653 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2653 ((-112) (-225)))) -((-2271 (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 118)) (-3785 (((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225)))) 135) (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 72)) (-2930 (((-641 (-1152)) (-1150 (-225))) NIL)) (-2549 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) 69)) (-2008 (((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225)))) 59)) (-2453 (((-641 (-1152)) (-641 (-225))) NIL)) (-2871 (((-225) (-1088 (-840 (-225)))) 29)) (-3981 (((-225) (-1088 (-840 (-225)))) 30)) (-3281 (((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3367 (((-1152) (-225)) NIL))) -(((-300) (-10 -7 (-15 -2871 ((-225) (-1088 (-840 (-225))))) (-15 -3981 ((-225) (-1088 (-840 (-225))))) (-15 -3281 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2549 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2271 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -3785 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -3785 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2008 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -3367 ((-1152) (-225))) (-15 -2453 ((-641 (-1152)) (-641 (-225)))) (-15 -2930 ((-641 (-1152)) (-1150 (-225)))))) (T -300)) -((-2930 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))) -(-10 -7 (-15 -2871 ((-225) (-1088 (-840 (-225))))) (-15 -3981 ((-225) (-1088 (-840 (-225))))) (-15 -3281 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2549 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2271 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -3785 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -3785 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2008 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -3367 ((-1152) (-225))) (-15 -2453 ((-641 (-1152)) (-641 (-225)))) (-15 -2930 ((-641 (-1152)) (-1150 (-225))))) -((-2956 (((-641 (-610 $)) $) 31)) (-3574 (($ $ (-294 $)) 82) (($ $ (-641 (-294 $))) 138) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2347 (((-3 (-610 $) "failed") $) 126)) (-2237 (((-610 $) $) 125)) (-3352 (($ $) 19) (($ (-641 $)) 57)) (-4095 (((-641 (-114)) $) 39)) (-1841 (((-114) (-114)) 92)) (-4301 (((-112) $) 149)) (-2449 (($ (-1 $ $) (-610 $)) 90)) (-1802 (((-3 (-610 $) "failed") $) 98)) (-3755 (($ (-114) $) 62) (($ (-114) (-641 $)) 109)) (-1657 (((-112) $ (-114)) 131) (((-112) $ (-1170)) 130)) (-3926 (((-768) $) 48)) (-2417 (((-112) $ $) 60) (((-112) $ (-1170)) 52)) (-1492 (((-112) $) 147)) (-2633 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) 136) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 85) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) 70) (($ $ (-1170) (-1 $ $)) 76) (($ $ (-641 (-114)) (-641 (-1 $ $))) 84) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 86) (($ $ (-114) (-1 $ (-641 $))) 72) (($ $ (-114) (-1 $ $)) 78)) (-1350 (($ (-114) $) 63) (($ (-114) $ $) 64) (($ (-114) $ $ $) 65) (($ (-114) $ $ $ $) 66) (($ (-114) (-641 $)) 122)) (-3467 (($ $) 54) (($ $ $) 134)) (-4264 (($ $) 17) (($ (-641 $)) 56)) (-1322 (((-112) (-114)) 23))) -(((-301 |#1|) (-10 -8 (-15 -4301 ((-112) |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2417 ((-112) |#1| (-1170))) (-15 -2417 ((-112) |#1| |#1|)) (-15 -2449 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -3755 (|#1| (-114) (-641 |#1|))) (-15 -3755 (|#1| (-114) |#1|)) (-15 -1657 ((-112) |#1| (-1170))) (-15 -1657 ((-112) |#1| (-114))) (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -4095 ((-641 (-114)) |#1|)) (-15 -2956 ((-641 (-610 |#1|)) |#1|)) (-15 -1802 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3926 ((-768) |#1|)) (-15 -3467 (|#1| |#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3352 (|#1| (-641 |#1|))) (-15 -3352 (|#1| |#1|)) (-15 -4264 (|#1| (-641 |#1|))) (-15 -4264 (|#1| |#1|)) (-15 -3574 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3574 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3574 (|#1| |#1| (-294 |#1|))) (-15 -1350 (|#1| (-114) (-641 |#1|))) (-15 -1350 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2633 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2347 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2237 ((-610 |#1|) |#1|))) (-302)) (T -301)) -((-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))) -(-10 -8 (-15 -4301 ((-112) |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2417 ((-112) |#1| (-1170))) (-15 -2417 ((-112) |#1| |#1|)) (-15 -2449 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -3755 (|#1| (-114) (-641 |#1|))) (-15 -3755 (|#1| (-114) |#1|)) (-15 -1657 ((-112) |#1| (-1170))) (-15 -1657 ((-112) |#1| (-114))) (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -4095 ((-641 (-114)) |#1|)) (-15 -2956 ((-641 (-610 |#1|)) |#1|)) (-15 -1802 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3926 ((-768) |#1|)) (-15 -3467 (|#1| |#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3352 (|#1| (-641 |#1|))) (-15 -3352 (|#1| |#1|)) (-15 -4264 (|#1| (-641 |#1|))) (-15 -4264 (|#1| |#1|)) (-15 -3574 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3574 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3574 (|#1| |#1| (-294 |#1|))) (-15 -1350 (|#1| (-114) (-641 |#1|))) (-15 -1350 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2633 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2347 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2237 ((-610 |#1|) |#1|))) -((-1817 (((-112) $ $) 7)) (-2956 (((-641 (-610 $)) $) 44)) (-3574 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-2347 (((-3 (-610 $) "failed") $) 69)) (-2237 (((-610 $) $) 70)) (-3352 (($ $) 51) (($ (-641 $)) 50)) (-4095 (((-641 (-114)) $) 43)) (-1841 (((-114) (-114)) 42)) (-4301 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-4168 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2449 (($ (-1 $ $) (-610 $)) 36)) (-1802 (((-3 (-610 $) "failed") $) 46)) (-2723 (((-1152) $) 9)) (-3026 (((-641 (-610 $)) $) 45)) (-3755 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-1657 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-3926 (((-768) $) 47)) (-2780 (((-1114) $) 10)) (-2417 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-1492 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2633 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-1350 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-3467 (($ $) 49) (($ $ $) 48)) (-3019 (($ $) 24 (|has| $ (-1046)))) (-1831 (((-859) $) 11) (($ (-610 $)) 68)) (-4264 (($ $) 53) (($ (-641 $)) 52)) (-1322 (((-112) (-114)) 41)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) +((-2532 (((-312) (-1152) (-641 (-1152))) 17) (((-312) (-1152) (-1152)) 16) (((-312) (-641 (-1152))) 15) (((-312) (-1152)) 14))) +(((-296) (-10 -7 (-15 -2532 ((-312) (-1152))) (-15 -2532 ((-312) (-641 (-1152)))) (-15 -2532 ((-312) (-1152) (-1152))) (-15 -2532 ((-312) (-1152) (-641 (-1152)))))) (T -296)) +((-2532 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-2532 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))) +(-10 -7 (-15 -2532 ((-312) (-1152))) (-15 -2532 ((-312) (-641 (-1152)))) (-15 -2532 ((-312) (-1152) (-1152))) (-15 -2532 ((-312) (-1152) (-641 (-1152))))) +((-3123 ((|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)) 18))) +(((-297 |#1| |#2|) (-10 -7 (-15 -3123 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) (-302) (-1209)) (T -297)) +((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2))))) +(-10 -7 (-15 -3123 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) +((-3123 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17))) +(((-298 |#1| |#2|) (-10 -7 (-15 -3123 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))) +(-10 -7 (-15 -3123 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) +((-1970 (((-112) (-225)) 12))) +(((-299 |#1| |#2|) (-10 -7 (-15 -1970 ((-112) (-225)))) (-225) (-225)) (T -299)) +((-1970 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1970 ((-112) (-225)))) +((-2435 (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225)))) 118)) (-1878 (((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-839 (-225)))) 135) (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225)))) 72)) (-1638 (((-641 (-1152)) (-1150 (-225))) NIL)) (-2196 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225)))) 69)) (-1534 (((-641 (-225)) (-948 (-407 (-564))) (-1170) (-1088 (-839 (-225)))) 59)) (-3699 (((-641 (-1152)) (-641 (-225))) NIL)) (-2250 (((-225) (-1088 (-839 (-225)))) 29)) (-3251 (((-225) (-1088 (-839 (-225)))) 30)) (-2960 (((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-2393 (((-1152) (-225)) NIL))) +(((-300) (-10 -7 (-15 -2250 ((-225) (-1088 (-839 (-225))))) (-15 -3251 ((-225) (-1088 (-839 (-225))))) (-15 -2960 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2196 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -2435 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1878 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1878 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1534 ((-641 (-225)) (-948 (-407 (-564))) (-1170) (-1088 (-839 (-225))))) (-15 -2393 ((-1152) (-225))) (-15 -3699 ((-641 (-1152)) (-641 (-225)))) (-15 -1638 ((-641 (-1152)) (-1150 (-225)))))) (T -300)) +((-1638 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) (-1534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *4 (-1170)) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-1878 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-1878 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2435 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))) +(-10 -7 (-15 -2250 ((-225) (-1088 (-839 (-225))))) (-15 -3251 ((-225) (-1088 (-839 (-225))))) (-15 -2960 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2196 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -2435 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1878 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1878 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1534 ((-641 (-225)) (-948 (-407 (-564))) (-1170) (-1088 (-839 (-225))))) (-15 -2393 ((-1152) (-225))) (-15 -3699 ((-641 (-1152)) (-641 (-225)))) (-15 -1638 ((-641 (-1152)) (-1150 (-225))))) +((-2244 (((-641 (-610 $)) $) 31)) (-2523 (($ $ (-294 $)) 82) (($ $ (-641 (-294 $))) 138) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-3032 (((-3 (-610 $) "failed") $) 126)) (-1781 (((-610 $) $) 125)) (-2252 (($ $) 19) (($ (-641 $)) 57)) (-1921 (((-641 (-114)) $) 39)) (-3523 (((-114) (-114)) 92)) (-3415 (((-112) $) 149)) (-3123 (($ (-1 $ $) (-610 $)) 90)) (-1301 (((-3 (-610 $) "failed") $) 98)) (-3059 (($ (-114) $) 62) (($ (-114) (-641 $)) 109)) (-2379 (((-112) $ (-114)) 131) (((-112) $ (-1170)) 130)) (-3162 (((-767) $) 48)) (-1473 (((-112) $ $) 60) (((-112) $ (-1170)) 52)) (-1333 (((-112) $) 147)) (-3100 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) 136) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 85) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) 70) (($ $ (-1170) (-1 $ $)) 76) (($ $ (-641 (-114)) (-641 (-1 $ $))) 84) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 86) (($ $ (-114) (-1 $ (-641 $))) 72) (($ $ (-114) (-1 $ $)) 78)) (-4353 (($ (-114) $) 63) (($ (-114) $ $) 64) (($ (-114) $ $ $) 65) (($ (-114) $ $ $ $) 66) (($ (-114) (-641 $)) 122)) (-2054 (($ $) 54) (($ $ $) 134)) (-1389 (($ $) 17) (($ (-641 $)) 56)) (-1646 (((-112) (-114)) 23))) +(((-301 |#1|) (-10 -8 (-15 -3415 ((-112) |#1|)) (-15 -1333 ((-112) |#1|)) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1473 ((-112) |#1| (-1170))) (-15 -1473 ((-112) |#1| |#1|)) (-15 -3123 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -3059 (|#1| (-114) (-641 |#1|))) (-15 -3059 (|#1| (-114) |#1|)) (-15 -2379 ((-112) |#1| (-1170))) (-15 -2379 ((-112) |#1| (-114))) (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -1921 ((-641 (-114)) |#1|)) (-15 -2244 ((-641 (-610 |#1|)) |#1|)) (-15 -1301 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3162 ((-767) |#1|)) (-15 -2054 (|#1| |#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2252 (|#1| (-641 |#1|))) (-15 -2252 (|#1| |#1|)) (-15 -1389 (|#1| (-641 |#1|))) (-15 -1389 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2523 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2523 (|#1| |#1| (-294 |#1|))) (-15 -4353 (|#1| (-114) (-641 |#1|))) (-15 -4353 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3100 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -3032 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1781 ((-610 |#1|) |#1|))) (-302)) (T -301)) +((-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))) +(-10 -8 (-15 -3415 ((-112) |#1|)) (-15 -1333 ((-112) |#1|)) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1473 ((-112) |#1| (-1170))) (-15 -1473 ((-112) |#1| |#1|)) (-15 -3123 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -3059 (|#1| (-114) (-641 |#1|))) (-15 -3059 (|#1| (-114) |#1|)) (-15 -2379 ((-112) |#1| (-1170))) (-15 -2379 ((-112) |#1| (-114))) (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -1921 ((-641 (-114)) |#1|)) (-15 -2244 ((-641 (-610 |#1|)) |#1|)) (-15 -1301 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3162 ((-767) |#1|)) (-15 -2054 (|#1| |#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2252 (|#1| (-641 |#1|))) (-15 -2252 (|#1| |#1|)) (-15 -1389 (|#1| (-641 |#1|))) (-15 -1389 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2523 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2523 (|#1| |#1| (-294 |#1|))) (-15 -4353 (|#1| (-114) (-641 |#1|))) (-15 -4353 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3100 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -3032 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1781 ((-610 |#1|) |#1|))) +((-2310 (((-112) $ $) 7)) (-2244 (((-641 (-610 $)) $) 44)) (-2523 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-3032 (((-3 (-610 $) "failed") $) 69)) (-1781 (((-610 $) $) 70)) (-2252 (($ $) 51) (($ (-641 $)) 50)) (-1921 (((-641 (-114)) $) 43)) (-3523 (((-114) (-114)) 42)) (-3415 (((-112) $) 22 (|has| $ (-1034 (-564))))) (-1445 (((-1166 $) (-610 $)) 25 (|has| $ (-1045)))) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-3123 (($ (-1 $ $) (-610 $)) 36)) (-1301 (((-3 (-610 $) "failed") $) 46)) (-1418 (((-1152) $) 9)) (-2324 (((-641 (-610 $)) $) 45)) (-3059 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-2379 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-3162 (((-767) $) 47)) (-3840 (((-1114) $) 10)) (-1473 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-1333 (((-112) $) 23 (|has| $ (-1034 (-564))))) (-3100 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-4353 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-2054 (($ $) 49) (($ $ $) 48)) (-2400 (($ $) 24 (|has| $ (-1045)))) (-2322 (((-858) $) 11) (($ (-610 $)) 68)) (-1389 (($ $) 53) (($ (-641 $)) 52)) (-1646 (((-112) (-114)) 41)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18))) (((-302) (-140)) (T -302)) -((-1350 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1350 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1350 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1350 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) (-3574 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-4264 (*1 *1 *1) (-4 *1 (-302))) (-4264 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-3352 (*1 *1 *1) (-4 *1 (-302))) (-3352 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-3467 (*1 *1 *1) (-4 *1 (-302))) (-3467 (*1 *1 *1 *1) (-4 *1 (-302))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768)))) (-1802 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))) (-1841 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1322 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1657 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1657 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-3755 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2449 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-2417 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2417 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302)) (-5 *2 (-1166 *1)))) (-3019 (*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))) -(-13 (-847) (-1035 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -1350 ($ (-114) $)) (-15 -1350 ($ (-114) $ $)) (-15 -1350 ($ (-114) $ $ $)) (-15 -1350 ($ (-114) $ $ $ $)) (-15 -1350 ($ (-114) (-641 $))) (-15 -3574 ($ $ (-294 $))) (-15 -3574 ($ $ (-641 (-294 $)))) (-15 -3574 ($ $ (-641 (-610 $)) (-641 $))) (-15 -4264 ($ $)) (-15 -4264 ($ (-641 $))) (-15 -3352 ($ $)) (-15 -3352 ($ (-641 $))) (-15 -3467 ($ $)) (-15 -3467 ($ $ $)) (-15 -3926 ((-768) $)) (-15 -1802 ((-3 (-610 $) "failed") $)) (-15 -3026 ((-641 (-610 $)) $)) (-15 -2956 ((-641 (-610 $)) $)) (-15 -4095 ((-641 (-114)) $)) (-15 -1841 ((-114) (-114))) (-15 -1322 ((-112) (-114))) (-15 -1657 ((-112) $ (-114))) (-15 -1657 ((-112) $ (-1170))) (-15 -3755 ($ (-114) $)) (-15 -3755 ($ (-114) (-641 $))) (-15 -2449 ($ (-1 $ $) (-610 $))) (-15 -2417 ((-112) $ $)) (-15 -2417 ((-112) $ (-1170))) (-15 -2633 ($ $ (-641 (-1170)) (-641 (-1 $ $)))) (-15 -2633 ($ $ (-641 (-1170)) (-641 (-1 $ (-641 $))))) (-15 -2633 ($ $ (-1170) (-1 $ (-641 $)))) (-15 -2633 ($ $ (-1170) (-1 $ $))) (-15 -2633 ($ $ (-641 (-114)) (-641 (-1 $ $)))) (-15 -2633 ($ $ (-641 (-114)) (-641 (-1 $ (-641 $))))) (-15 -2633 ($ $ (-114) (-1 $ (-641 $)))) (-15 -2633 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1046)) (PROGN (-15 -4168 ((-1166 $) (-610 $))) (-15 -3019 ($ $))) |%noBranch|) (IF (|has| $ (-1035 (-564))) (PROGN (-15 -1492 ((-112) $)) (-15 -4301 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-859)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-847) . T) ((-1035 #0#) . T) ((-1094) . T)) -((-3009 (((-641 |#1|) (-641 |#1|)) 10))) -(((-303 |#1|) (-10 -7 (-15 -3009 ((-641 |#1|) (-641 |#1|)))) (-845)) (T -303)) -((-3009 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3))))) -(-10 -7 (-15 -3009 ((-641 |#1|) (-641 |#1|)))) -((-2449 (((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)) 17))) -(((-304 |#1| |#2|) (-10 -7 (-15 -2449 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) (-1046) (-1046)) (T -304)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6))))) -(-10 -7 (-15 -2449 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) -((-1409 (((-1259 (-316 (-379))) (-1259 (-316 (-225)))) 112)) (-2234 (((-1088 (-840 (-225))) (-1088 (-840 (-379)))) 45)) (-2930 (((-641 (-1152)) (-1150 (-225))) 94)) (-3082 (((-316 (-379)) (-949 (-225))) 55)) (-4285 (((-225) (-949 (-225))) 51)) (-4131 (((-1152) (-379)) 196)) (-1738 (((-840 (-225)) (-840 (-379))) 39)) (-1360 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225)))) 165)) (-1971 (((-1032) (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) 208) (((-1032) (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) 206)) (-2394 (((-685 (-225)) (-641 (-225)) (-768)) 21)) (-2717 (((-1259 (-695)) (-641 (-225))) 101)) (-2453 (((-641 (-1152)) (-641 (-225))) 81)) (-3875 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-2653 (((-112) (-225) (-1088 (-840 (-225)))) 118)) (-2498 (((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-2871 (((-225) (-1088 (-840 (-225)))) 114)) (-3981 (((-225) (-1088 (-840 (-225)))) 115)) (-3667 (((-225) (-407 (-564))) 33)) (-1428 (((-1152) (-379)) 79)) (-2307 (((-225) (-379)) 24)) (-2824 (((-379) (-1259 (-316 (-225)))) 178)) (-2022 (((-316 (-225)) (-316 (-379))) 30)) (-1837 (((-407 (-564)) (-316 (-225))) 58)) (-3243 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-3681 (((-316 (-379)) (-316 (-225))) 105)) (-1955 (((-225) (-316 (-225))) 59)) (-1534 (((-641 (-225)) (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) 70)) (-2708 (((-1088 (-840 (-225))) (-1088 (-840 (-225)))) 67)) (-3367 (((-1152) (-225)) 78)) (-3444 (((-695) (-225)) 97)) (-1919 (((-407 (-564)) (-225)) 60)) (-3098 (((-316 (-379)) (-225)) 54)) (-2511 (((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379))))) 48)) (-3043 (((-1032) (-641 (-1032))) 192) (((-1032) (-1032) (-1032)) 186)) (-2866 (((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222))) -(((-305) (-10 -7 (-15 -2307 ((-225) (-379))) (-15 -2022 ((-316 (-225)) (-316 (-379)))) (-15 -1738 ((-840 (-225)) (-840 (-379)))) (-15 -2234 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2511 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -1919 ((-407 (-564)) (-225))) (-15 -1837 ((-407 (-564)) (-316 (-225)))) (-15 -1955 ((-225) (-316 (-225)))) (-15 -3875 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2824 ((-379) (-1259 (-316 (-225))))) (-15 -1360 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -3243 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -2708 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -1534 ((-641 (-225)) (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) (-15 -3444 ((-695) (-225))) (-15 -2717 ((-1259 (-695)) (-641 (-225)))) (-15 -3681 ((-316 (-379)) (-316 (-225)))) (-15 -1409 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -2653 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -3367 ((-1152) (-225))) (-15 -1428 ((-1152) (-379))) (-15 -2453 ((-641 (-1152)) (-641 (-225)))) (-15 -2930 ((-641 (-1152)) (-1150 (-225)))) (-15 -2871 ((-225) (-1088 (-840 (-225))))) (-15 -3981 ((-225) (-1088 (-840 (-225))))) (-15 -3043 ((-1032) (-1032) (-1032))) (-15 -3043 ((-1032) (-641 (-1032)))) (-15 -4131 ((-1152) (-379))) (-15 -1971 ((-1032) (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -1971 ((-1032) (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -2866 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2498 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3082 ((-316 (-379)) (-949 (-225)))) (-15 -4285 ((-225) (-949 (-225)))) (-15 -3098 ((-316 (-379)) (-225))) (-15 -3667 ((-225) (-407 (-564)))) (-15 -2394 ((-685 (-225)) (-641 (-225)) (-768))))) (T -305)) -((-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-305)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-3043 (*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) (-5 *1 (-305)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *2 (-641 (-225))) (-5 *1 (-305)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-3875 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-641 (-1088 (-840 (-379))))) (-5 *2 (-641 (-1088 (-840 (-225))))) (-5 *1 (-305)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) -(-10 -7 (-15 -2307 ((-225) (-379))) (-15 -2022 ((-316 (-225)) (-316 (-379)))) (-15 -1738 ((-840 (-225)) (-840 (-379)))) (-15 -2234 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2511 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -1919 ((-407 (-564)) (-225))) (-15 -1837 ((-407 (-564)) (-316 (-225)))) (-15 -1955 ((-225) (-316 (-225)))) (-15 -3875 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2824 ((-379) (-1259 (-316 (-225))))) (-15 -1360 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -3243 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -2708 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -1534 ((-641 (-225)) (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) (-15 -3444 ((-695) (-225))) (-15 -2717 ((-1259 (-695)) (-641 (-225)))) (-15 -3681 ((-316 (-379)) (-316 (-225)))) (-15 -1409 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -2653 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -3367 ((-1152) (-225))) (-15 -1428 ((-1152) (-379))) (-15 -2453 ((-641 (-1152)) (-641 (-225)))) (-15 -2930 ((-641 (-1152)) (-1150 (-225)))) (-15 -2871 ((-225) (-1088 (-840 (-225))))) (-15 -3981 ((-225) (-1088 (-840 (-225))))) (-15 -3043 ((-1032) (-1032) (-1032))) (-15 -3043 ((-1032) (-641 (-1032)))) (-15 -4131 ((-1152) (-379))) (-15 -1971 ((-1032) (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -1971 ((-1032) (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -2866 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2498 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3082 ((-316 (-379)) (-949 (-225)))) (-15 -4285 ((-225) (-949 (-225)))) (-15 -3098 ((-316 (-379)) (-225))) (-15 -3667 ((-225) (-407 (-564)))) (-15 -2394 ((-685 (-225)) (-641 (-225)) (-768)))) -((-3554 (((-112) $ $) 14)) (-1449 (($ $ $) 18)) (-1424 (($ $ $) 17)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 49)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 64)) (-2777 (($ $ $) 24) (($ (-641 $)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 34) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 39)) (-1403 (((-3 $ "failed") $ $) 21)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 52))) -(((-306 |#1|) (-10 -8 (-15 -2993 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3380 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3380 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1426 |#1|)) |#1| |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1424 (|#1| |#1| |#1|)) (-15 -3554 ((-112) |#1| |#1|)) (-15 -2106 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3300 ((-2 (|:| -2860 (-641 |#1|)) (|:| -1426 |#1|)) (-641 |#1|))) (-15 -2777 (|#1| (-641 |#1|))) (-15 -2777 (|#1| |#1| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306)) -NIL -(-10 -8 (-15 -2993 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3380 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3380 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1426 |#1|)) |#1| |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1424 (|#1| |#1| |#1|)) (-15 -3554 ((-112) |#1| |#1|)) (-15 -2106 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3300 ((-2 (|:| -2860 (-641 |#1|)) (|:| -1426 |#1|)) (-641 |#1|))) (-15 -2777 (|#1| (-641 |#1|))) (-15 -2777 (|#1| |#1| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-2949 (((-112) $) 31)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-4353 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4353 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4353 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4353 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) (-2523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-1389 (*1 *1 *1) (-4 *1 (-302))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-2252 (*1 *1 *1) (-4 *1 (-302))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-2054 (*1 *1 *1) (-4 *1 (-302))) (-2054 (*1 *1 *1 *1) (-4 *1 (-302))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) (-1301 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))) (-3523 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1646 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2379 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2379 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-3059 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3059 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-3123 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-1473 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-1473 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) (-5 *2 (-1166 *1)))) (-2400 (*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))) +(-13 (-846) (-1034 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4353 ($ (-114) $)) (-15 -4353 ($ (-114) $ $)) (-15 -4353 ($ (-114) $ $ $)) (-15 -4353 ($ (-114) $ $ $ $)) (-15 -4353 ($ (-114) (-641 $))) (-15 -2523 ($ $ (-294 $))) (-15 -2523 ($ $ (-641 (-294 $)))) (-15 -2523 ($ $ (-641 (-610 $)) (-641 $))) (-15 -1389 ($ $)) (-15 -1389 ($ (-641 $))) (-15 -2252 ($ $)) (-15 -2252 ($ (-641 $))) (-15 -2054 ($ $)) (-15 -2054 ($ $ $)) (-15 -3162 ((-767) $)) (-15 -1301 ((-3 (-610 $) "failed") $)) (-15 -2324 ((-641 (-610 $)) $)) (-15 -2244 ((-641 (-610 $)) $)) (-15 -1921 ((-641 (-114)) $)) (-15 -3523 ((-114) (-114))) (-15 -1646 ((-112) (-114))) (-15 -2379 ((-112) $ (-114))) (-15 -2379 ((-112) $ (-1170))) (-15 -3059 ($ (-114) $)) (-15 -3059 ($ (-114) (-641 $))) (-15 -3123 ($ (-1 $ $) (-610 $))) (-15 -1473 ((-112) $ $)) (-15 -1473 ((-112) $ (-1170))) (-15 -3100 ($ $ (-641 (-1170)) (-641 (-1 $ $)))) (-15 -3100 ($ $ (-641 (-1170)) (-641 (-1 $ (-641 $))))) (-15 -3100 ($ $ (-1170) (-1 $ (-641 $)))) (-15 -3100 ($ $ (-1170) (-1 $ $))) (-15 -3100 ($ $ (-641 (-114)) (-641 (-1 $ $)))) (-15 -3100 ($ $ (-641 (-114)) (-641 (-1 $ (-641 $))))) (-15 -3100 ($ $ (-114) (-1 $ (-641 $)))) (-15 -3100 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1045)) (PROGN (-15 -1445 ((-1166 $) (-610 $))) (-15 -2400 ($ $))) |%noBranch|) (IF (|has| $ (-1034 (-564))) (PROGN (-15 -1333 ((-112) $)) (-15 -3415 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-858)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-846) . T) ((-1034 #0#) . T) ((-1094) . T)) +((-2300 (((-641 |#1|) (-641 |#1|)) 10))) +(((-303 |#1|) (-10 -7 (-15 -2300 ((-641 |#1|) (-641 |#1|)))) (-844)) (T -303)) +((-2300 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3))))) +(-10 -7 (-15 -2300 ((-641 |#1|) (-641 |#1|)))) +((-3123 (((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)) 17))) +(((-304 |#1| |#2|) (-10 -7 (-15 -3123 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) (-1045) (-1045)) (T -304)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6))))) +(-10 -7 (-15 -3123 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) +((-4126 (((-1259 (-316 (-379))) (-1259 (-316 (-225)))) 112)) (-3316 (((-1088 (-839 (-225))) (-1088 (-839 (-379)))) 45)) (-1638 (((-641 (-1152)) (-1150 (-225))) 94)) (-1732 (((-316 (-379)) (-948 (-225))) 55)) (-3292 (((-225) (-948 (-225))) 51)) (-4171 (((-1152) (-379)) 196)) (-1918 (((-839 (-225)) (-839 (-379))) 39)) (-3690 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225)))) 165)) (-2397 (((-1031) (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) 208) (((-1031) (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) 206)) (-4379 (((-685 (-225)) (-641 (-225)) (-767)) 21)) (-1356 (((-1259 (-695)) (-641 (-225))) 101)) (-3699 (((-641 (-1152)) (-641 (-225))) 81)) (-3111 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-1970 (((-112) (-225) (-1088 (-839 (-225)))) 118)) (-2944 (((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-2250 (((-225) (-1088 (-839 (-225)))) 114)) (-3251 (((-225) (-1088 (-839 (-225)))) 115)) (-3349 (((-225) (-407 (-564))) 33)) (-4293 (((-1152) (-379)) 79)) (-1567 (((-225) (-379)) 24)) (-3052 (((-379) (-1259 (-316 (-225)))) 178)) (-1686 (((-316 (-225)) (-316 (-379))) 30)) (-3478 (((-407 (-564)) (-316 (-225))) 58)) (-3842 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-2225 (((-316 (-379)) (-316 (-225))) 105)) (-2234 (((-225) (-316 (-225))) 59)) (-3591 (((-641 (-225)) (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) 70)) (-4373 (((-1088 (-839 (-225))) (-1088 (-839 (-225)))) 67)) (-2393 (((-1152) (-225)) 78)) (-1826 (((-695) (-225)) 97)) (-3124 (((-407 (-564)) (-225)) 60)) (-1890 (((-316 (-379)) (-225)) 54)) (-3172 (((-641 (-1088 (-839 (-225)))) (-641 (-1088 (-839 (-379))))) 48)) (-3533 (((-1031) (-641 (-1031))) 192) (((-1031) (-1031) (-1031)) 186)) (-2200 (((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222))) +(((-305) (-10 -7 (-15 -1567 ((-225) (-379))) (-15 -1686 ((-316 (-225)) (-316 (-379)))) (-15 -1918 ((-839 (-225)) (-839 (-379)))) (-15 -3316 ((-1088 (-839 (-225))) (-1088 (-839 (-379))))) (-15 -3172 ((-641 (-1088 (-839 (-225)))) (-641 (-1088 (-839 (-379)))))) (-15 -3124 ((-407 (-564)) (-225))) (-15 -3478 ((-407 (-564)) (-316 (-225)))) (-15 -2234 ((-225) (-316 (-225)))) (-15 -3111 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3052 ((-379) (-1259 (-316 (-225))))) (-15 -3690 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -3842 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -4373 ((-1088 (-839 (-225))) (-1088 (-839 (-225))))) (-15 -3591 ((-641 (-225)) (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) (-15 -1826 ((-695) (-225))) (-15 -1356 ((-1259 (-695)) (-641 (-225)))) (-15 -2225 ((-316 (-379)) (-316 (-225)))) (-15 -4126 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -1970 ((-112) (-225) (-1088 (-839 (-225))))) (-15 -2393 ((-1152) (-225))) (-15 -4293 ((-1152) (-379))) (-15 -3699 ((-641 (-1152)) (-641 (-225)))) (-15 -1638 ((-641 (-1152)) (-1150 (-225)))) (-15 -2250 ((-225) (-1088 (-839 (-225))))) (-15 -3251 ((-225) (-1088 (-839 (-225))))) (-15 -3533 ((-1031) (-1031) (-1031))) (-15 -3533 ((-1031) (-641 (-1031)))) (-15 -4171 ((-1152) (-379))) (-15 -2397 ((-1031) (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -2397 ((-1031) (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))) (-15 -2200 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2944 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -1732 ((-316 (-379)) (-948 (-225)))) (-15 -3292 ((-225) (-948 (-225)))) (-15 -1890 ((-316 (-379)) (-225))) (-15 -3349 ((-225) (-407 (-564)))) (-15 -4379 ((-685 (-225)) (-641 (-225)) (-767))))) (T -305)) +((-4379 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-767)) (-5 *2 (-685 (-225))) (-5 *1 (-305)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-641 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3533 (*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *4 (-1088 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) (-5 *1 (-305)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *2 (-641 (-225))) (-5 *1 (-305)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-1088 (-839 (-225)))) (-5 *1 (-305)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-3111 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-641 (-1088 (-839 (-379))))) (-5 *2 (-641 (-1088 (-839 (-225))))) (-5 *1 (-305)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-379)))) (-5 *2 (-1088 (-839 (-225)))) (-5 *1 (-305)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) +(-10 -7 (-15 -1567 ((-225) (-379))) (-15 -1686 ((-316 (-225)) (-316 (-379)))) (-15 -1918 ((-839 (-225)) (-839 (-379)))) (-15 -3316 ((-1088 (-839 (-225))) (-1088 (-839 (-379))))) (-15 -3172 ((-641 (-1088 (-839 (-225)))) (-641 (-1088 (-839 (-379)))))) (-15 -3124 ((-407 (-564)) (-225))) (-15 -3478 ((-407 (-564)) (-316 (-225)))) (-15 -2234 ((-225) (-316 (-225)))) (-15 -3111 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3052 ((-379) (-1259 (-316 (-225))))) (-15 -3690 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -3842 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -4373 ((-1088 (-839 (-225))) (-1088 (-839 (-225))))) (-15 -3591 ((-641 (-225)) (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) (-15 -1826 ((-695) (-225))) (-15 -1356 ((-1259 (-695)) (-641 (-225)))) (-15 -2225 ((-316 (-379)) (-316 (-225)))) (-15 -4126 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -1970 ((-112) (-225) (-1088 (-839 (-225))))) (-15 -2393 ((-1152) (-225))) (-15 -4293 ((-1152) (-379))) (-15 -3699 ((-641 (-1152)) (-641 (-225)))) (-15 -1638 ((-641 (-1152)) (-1150 (-225)))) (-15 -2250 ((-225) (-1088 (-839 (-225))))) (-15 -3251 ((-225) (-1088 (-839 (-225))))) (-15 -3533 ((-1031) (-1031) (-1031))) (-15 -3533 ((-1031) (-641 (-1031)))) (-15 -4171 ((-1152) (-379))) (-15 -2397 ((-1031) (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -2397 ((-1031) (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))) (-15 -2200 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2944 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -1732 ((-316 (-379)) (-948 (-225)))) (-15 -3292 ((-225) (-948 (-225)))) (-15 -1890 ((-316 (-379)) (-225))) (-15 -3349 ((-225) (-407 (-564)))) (-15 -4379 ((-685 (-225)) (-641 (-225)) (-767)))) +((-3547 (((-112) $ $) 14)) (-2574 (($ $ $) 18)) (-2552 (($ $ $) 17)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 49)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 64)) (-3235 (($ $ $) 24) (($ (-641 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 34) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 39)) (-2526 (((-3 $ "failed") $ $) 21)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 52))) +(((-306 |#1|) (-10 -8 (-15 -2160 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2501 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4095 |#1|)) |#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1|)) (-15 -3547 ((-112) |#1| |#1|)) (-15 -1355 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3121 ((-2 (|:| -3139 (-641 |#1|)) (|:| -4095 |#1|)) (-641 |#1|))) (-15 -3235 (|#1| (-641 |#1|))) (-15 -3235 (|#1| |#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306)) +NIL +(-10 -8 (-15 -2160 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2501 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4095 |#1|)) |#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1|)) (-15 -3547 ((-112) |#1| |#1|)) (-15 -1355 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3121 ((-2 (|:| -3139 (-641 |#1|)) (|:| -4095 |#1|)) (-641 |#1|))) (-15 -3235 (|#1| (-641 |#1|))) (-15 -3235 (|#1| |#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-1828 (((-112) $) 31)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-307) (-140)) (T -307)) -((-3554 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768)))) (-1922 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-307)))) (-1424 (*1 *1 *1 *1) (-4 *1 (-307))) (-1449 (*1 *1 *1 *1) (-4 *1 (-307))) (-3380 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1426 *1))) (-4 *1 (-307)))) (-3380 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-2993 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307))))) -(-13 (-917) (-10 -8 (-15 -3554 ((-112) $ $)) (-15 -3920 ((-768) $)) (-15 -1922 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -1424 ($ $ $)) (-15 -1449 ($ $ $)) (-15 -3380 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $)) (-15 -3380 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2993 ((-3 (-641 $) "failed") (-641 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2633 (($ $ (-641 |#2|) (-641 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-641 (-294 |#2|))) NIL))) -(((-308 |#1| |#2|) (-10 -8 (-15 -2633 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2633 (|#1| |#1| (-294 |#2|))) (-15 -2633 (|#1| |#1| |#2| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) (-309 |#2|) (-1094)) (T -308)) -NIL -(-10 -8 (-15 -2633 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2633 (|#1| |#1| (-294 |#2|))) (-15 -2633 (|#1| |#1| |#2| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) -((-2633 (($ $ (-641 |#1|) (-641 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-641 (-294 |#1|))) 10))) +((-3547 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-307)))) (-2552 (*1 *1 *1 *1) (-4 *1 (-307))) (-2574 (*1 *1 *1 *1) (-4 *1 (-307))) (-2501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4095 *1))) (-4 *1 (-307)))) (-2501 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-2160 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307))))) +(-13 (-916) (-10 -8 (-15 -3547 ((-112) $ $)) (-15 -3844 ((-767) $)) (-15 -3153 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -2552 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -2501 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $)) (-15 -2501 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2160 ((-3 (-641 $) "failed") (-641 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3100 (($ $ (-641 |#2|) (-641 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-641 (-294 |#2|))) NIL))) +(((-308 |#1| |#2|) (-10 -8 (-15 -3100 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3100 (|#1| |#1| (-294 |#2|))) (-15 -3100 (|#1| |#1| |#2| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) (-309 |#2|) (-1094)) (T -308)) +NIL +(-10 -8 (-15 -3100 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3100 (|#1| |#1| (-294 |#2|))) (-15 -3100 (|#1| |#1| |#2| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) +((-3100 (($ $ (-641 |#1|) (-641 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-641 (-294 |#1|))) 10))) (((-309 |#1|) (-140) (-1094)) (T -309)) -((-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094))))) -(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -2633 ($ $ (-294 |t#1|))) (-15 -2633 ($ $ (-641 (-294 |t#1|)))))) +((-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094))))) +(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -3100 ($ $ (-294 |t#1|))) (-15 -3100 ($ $ (-641 (-294 |t#1|)))))) (((-514 |#1| |#1|) . T)) -((-2633 ((|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))) 25))) -(((-310 |#1|) (-10 -7 (-15 -2633 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310)) -((-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564))))))) -(-10 -7 (-15 -2633 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) -((-1817 (((-112) $ $) NIL)) (-4289 (((-564) $) 12)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3877 (((-1129) $) 9)) (-1831 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-311) (-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4289 ((-564) $))))) (T -311)) -((-3877 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))) -(-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4289 ((-564) $)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 7)) (-1702 (((-112) $ $) 9))) +((-3100 ((|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))) 25))) +(((-310 |#1|) (-10 -7 (-15 -3100 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310)) +((-3100 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564))))))) +(-10 -7 (-15 -3100 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) +((-2310 (((-112) $ $) NIL)) (-4150 (((-564) $) 12)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4366 (((-1129) $) 9)) (-2322 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-311) (-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -4150 ((-564) $))))) (T -311)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))) +(-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -4150 ((-564) $)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 7)) (-2921 (((-112) $ $) 9))) (((-312) (-1094)) (T -312)) NIL (-1094) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 67)) (-3423 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-1245 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 26)) (-2237 (((-1245 |#1| |#2| |#3| |#4|) $) NIL) (((-1170) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-1245 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1259 (-1245 |#1| |#2| |#3| |#4|)))) (-685 $) (-1259 $)) NIL) (((-685 (-1245 |#1| |#2| |#3| |#4|)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-1245 |#1| |#2| |#3| |#4|) $) 22)) (-2619 (((-3 $ "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)))) (-2607 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-3375 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-2449 (($ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) $) NIL)) (-3062 (((-3 (-840 |#2|) "failed") $) 87)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-1818 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-1245 |#1| |#2| |#3| |#4|)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-294 (-1245 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-1170)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1170) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-286 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-1245 |#1| |#2| |#3| |#4|) $) 19)) (-2511 (((-889 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019))) (((-225) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1245 |#1| |#2| |#3| |#4|)) 30) (($ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (($ (-1244 |#2| |#3| |#4|)) 37)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-1293 (($) 42 T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1823 (($ $ $) 35) (($ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) 32)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1245 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL))) -(((-313 |#1| |#2| |#3| |#4|) (-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -3062 ((-3 (-840 |#2|) "failed") $)) (-15 -1831 ($ (-1244 |#2| |#3| |#4|))))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -313)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-3062 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4)))) -(-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -3062 ((-3 (-840 |#2|) "failed") $)) (-15 -1831 ($ (-1244 |#2| |#3| |#4|))))) -((-2449 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2449 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-847) (-847)) (T -314)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2449 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) -((-3266 (((-52) |#2| (-294 |#2|) (-768)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-768)) 35) (((-52) |#2|) 33) (((-52) (-1170)) 26)) (-1881 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1170)) 55)) (-3288 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1170)) 50)) (-3277 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1170)) 43))) -(((-315 |#1| |#2|) (-10 -7 (-15 -3266 ((-52) (-1170))) (-15 -3266 ((-52) |#2|)) (-15 -3266 ((-52) |#2| (-768))) (-15 -3266 ((-52) |#2| (-294 |#2|))) (-15 -3266 ((-52) |#2| (-294 |#2|) (-768))) (-15 -3277 ((-52) (-1170))) (-15 -3277 ((-52) |#2|)) (-15 -3277 ((-52) |#2| (-564))) (-15 -3277 ((-52) |#2| (-294 |#2|))) (-15 -3277 ((-52) |#2| (-294 |#2|) (-564))) (-15 -3288 ((-52) (-1170))) (-15 -3288 ((-52) |#2|)) (-15 -3288 ((-52) |#2| (-407 (-564)))) (-15 -3288 ((-52) |#2| (-294 |#2|))) (-15 -3288 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -1881 ((-52) (-1170))) (-15 -1881 ((-52) |#2|)) (-15 -1881 ((-52) |#2| (-407 (-564)))) (-15 -1881 ((-52) |#2| (-294 |#2|))) (-15 -1881 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -315)) -((-1881 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-3288 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3288 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-3277 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-3266 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-768)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))) -(-10 -7 (-15 -3266 ((-52) (-1170))) (-15 -3266 ((-52) |#2|)) (-15 -3266 ((-52) |#2| (-768))) (-15 -3266 ((-52) |#2| (-294 |#2|))) (-15 -3266 ((-52) |#2| (-294 |#2|) (-768))) (-15 -3277 ((-52) (-1170))) (-15 -3277 ((-52) |#2|)) (-15 -3277 ((-52) |#2| (-564))) (-15 -3277 ((-52) |#2| (-294 |#2|))) (-15 -3277 ((-52) |#2| (-294 |#2|) (-564))) (-15 -3288 ((-52) (-1170))) (-15 -3288 ((-52) |#2|)) (-15 -3288 ((-52) |#2| (-407 (-564)))) (-15 -3288 ((-52) |#2| (-294 |#2|))) (-15 -3288 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -1881 ((-52) (-1170))) (-15 -1881 ((-52) |#2|)) (-15 -1881 ((-52) |#2| (-407 (-564)))) (-15 -1881 ((-52) |#2| (-294 |#2|))) (-15 -1881 ((-52) |#2| (-294 |#2|) (-407 (-564))))) -((-1817 (((-112) $ $) NIL)) (-2271 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-2474 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-1615 (((-112) $) 27 (-4078 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-3209 (((-641 (-1170)) $) 367)) (-3040 (((-407 (-1166 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2956 (((-641 (-610 $)) $) NIL)) (-3357 (($ $) 171 (|has| |#1| (-556)))) (-3210 (($ $) 147 (|has| |#1| (-556)))) (-3660 (($ $ (-1086 $)) 232 (|has| |#1| (-556))) (($ $ (-1170)) 228 (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) NIL (-4078 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-3574 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) 385) (($ $ (-641 (-610 $)) (-641 $)) 429)) (-2345 (((-418 (-1166 $)) (-1166 $)) 308 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-2427 (($ $) NIL (|has| |#1| (-556)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-556)))) (-3083 (($ $) NIL (|has| |#1| (-556)))) (-3554 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3330 (($ $) 167 (|has| |#1| (-556)))) (-3187 (($ $) 143 (|has| |#1| (-556)))) (-3586 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-3384 (($ $) 175 (|has| |#1| (-556)))) (-3233 (($ $) 151 (|has| |#1| (-556)))) (-1778 (($) NIL (-4078 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-1938 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-2929 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) 134 (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-2347 (((-3 (-610 $) "failed") $) 18) (((-3 (-1170) "failed") $) NIL) (((-3 |#1| "failed") $) 440) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-949 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) NIL (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 46 (-4078 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2237 (((-610 $) $) 12) (((-1170) $) NIL) ((|#1| $) 420) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-949 |#1|)) $) NIL (|has| |#1| (-556))) (((-949 |#1|) $) NIL (|has| |#1| (-1046))) (((-407 (-564)) $) 319 (-4078 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-1449 (($ $ $) NIL (|has| |#1| (-556)))) (-4050 (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 125 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 115 (|has| |#1| (-1046))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (-1988 (($ $) 96 (|has| |#1| (-556)))) (-3733 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1424 (($ $ $) NIL (|has| |#1| (-556)))) (-4049 (($ $ (-1086 $)) 236 (|has| |#1| (-556))) (($ $ (-1170)) 234 (|has| |#1| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-556)))) (-1420 (((-112) $) NIL (|has| |#1| (-556)))) (-1827 (($ $ $) 202 (|has| |#1| (-556)))) (-3714 (($) 137 (|has| |#1| (-556)))) (-2163 (($ $ $) 222 (|has| |#1| (-556)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 391 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 398 (|has| |#1| (-883 (-379))))) (-3352 (($ $) NIL) (($ (-641 $)) NIL)) (-4095 (((-641 (-114)) $) NIL)) (-1841 (((-114) (-114)) 276)) (-2949 (((-112) $) 25 (-4078 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-4301 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-4157 (($ $) 72 (|has| |#1| (-1046)))) (-3678 (((-1119 |#1| (-610 $)) $) 91 (|has| |#1| (-1046)))) (-1310 (((-112) $) 62 (|has| |#1| (-556)))) (-2915 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-4168 (((-1166 $) (-610 $)) 277 (|has| $ (-1046)))) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 $ $) (-610 $)) 425)) (-1802 (((-3 (-610 $) "failed") $) NIL)) (-2358 (($ $) 141 (|has| |#1| (-556)))) (-4127 (($ $) 247 (|has| |#1| (-556)))) (-2740 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2723 (((-1152) $) NIL)) (-3026 (((-641 (-610 $)) $) 49)) (-3755 (($ (-114) $) NIL) (($ (-114) (-641 $)) 430)) (-2955 (((-3 (-641 $) "failed") $) NIL (|has| |#1| (-1106)))) (-2826 (((-3 (-2 (|:| |val| $) (|:| -1558 (-564))) "failed") $) NIL (|has| |#1| (-1046)))) (-2512 (((-3 (-641 $) "failed") $) 435 (|has| |#1| (-25)))) (-3847 (((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 $))) "failed") $) 439 (|has| |#1| (-25)))) (-4059 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $) NIL (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-1170)) NIL (|has| |#1| (-1046)))) (-1657 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) 51)) (-3315 (($ $) NIL (-4078 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3165 (($ $ (-1170)) 251 (|has| |#1| (-556))) (($ $ (-1086 $)) 253 (|has| |#1| (-556)))) (-3926 (((-768) $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) 43)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 301 (|has| |#1| (-556)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2417 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3882 (($ $ (-1170)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-3839 (($ $) 218 (|has| |#1| (-556)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 306 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-3070 (((-418 $) $) NIL (|has| |#1| (-556)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-556)))) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-4326 (($ $) 139 (|has| |#1| (-556)))) (-1492 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2633 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 424) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) 378) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 364 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) NIL (|has| |#1| (-1046)))) (-3920 (((-768) $) NIL (|has| |#1| (-556)))) (-3142 (($ $) 239 (|has| |#1| (-556)))) (-1350 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-3467 (($ $) NIL) (($ $ $) NIL)) (-3173 (($ $) 249 (|has| |#1| (-556)))) (-1888 (($ $) 200 (|has| |#1| (-556)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-2644 (($ $) 74 (|has| |#1| (-556)))) (-3693 (((-1119 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-3019 (($ $) 317 (|has| $ (-1046)))) (-3395 (($ $) 177 (|has| |#1| (-556)))) (-3245 (($ $) 153 (|has| |#1| (-556)))) (-3371 (($ $) 173 (|has| |#1| (-556)))) (-3221 (($ $) 149 (|has| |#1| (-556)))) (-3344 (($ $) 169 (|has| |#1| (-556)))) (-3199 (($ $) 145 (|has| |#1| (-556)))) (-2511 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 362 (|has| |#1| (-612 (-536))))) (-3047 (($ $ $) NIL (|has| |#1| (-473)))) (-1992 (($ $ $) NIL (|has| |#1| (-473)))) (-1831 (((-859) $) 423) (($ (-610 $)) 414) (($ (-1170)) 380) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 312 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (($ (-1119 |#1| (-610 $))) 95 (|has| |#1| (-1046))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) NIL (|has| |#1| (-556))) (($ (-949 |#1|)) NIL (|has| |#1| (-1046))) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 34 (-4078 (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))))) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL (|has| |#1| (-1046)) CONST)) (-4264 (($ $) NIL) (($ (-641 $)) NIL)) (-4254 (($ $ $) 220 (|has| |#1| (-556)))) (-3573 (($ $ $) 206 (|has| |#1| (-556)))) (-1551 (($ $ $) 210 (|has| |#1| (-556)))) (-4296 (($ $ $) 204 (|has| |#1| (-556)))) (-2773 (($ $ $) 208 (|has| |#1| (-556)))) (-1322 (((-112) (-114)) 10)) (-3427 (($ $) 183 (|has| |#1| (-556)))) (-3276 (($ $) 159 (|has| |#1| (-556)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) 179 (|has| |#1| (-556)))) (-3254 (($ $) 155 (|has| |#1| (-556)))) (-3450 (($ $) 187 (|has| |#1| (-556)))) (-3302 (($ $) 163 (|has| |#1| (-556)))) (-3645 (($ (-1170) $) NIL) (($ (-1170) $ $) NIL) (($ (-1170) $ $ $) NIL) (($ (-1170) $ $ $ $) NIL) (($ (-1170) (-641 $)) NIL)) (-4288 (($ $) 214 (|has| |#1| (-556)))) (-4354 (($ $) 212 (|has| |#1| (-556)))) (-2315 (($ $) 189 (|has| |#1| (-556)))) (-3316 (($ $) 165 (|has| |#1| (-556)))) (-3439 (($ $) 185 (|has| |#1| (-556)))) (-3287 (($ $) 161 (|has| |#1| (-556)))) (-3416 (($ $) 181 (|has| |#1| (-556)))) (-3265 (($ $) 157 (|has| |#1| (-556)))) (-1849 (($ $) 192 (|has| |#1| (-556)))) (-1293 (($) 21 (-4078 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) CONST)) (-3074 (($ $) 243 (|has| |#1| (-556)))) (-1300 (($) 23 (-4078 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-2591 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-1805 (($ $) 241 (|has| |#1| (-556)))) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-2924 (($ $) 245 (|has| |#1| (-556)))) (-2496 (($ $ $) 198 (|has| |#1| (-556)))) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 88)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 86)) (-1823 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-4078 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1808 (($ $ $) 40 (-4078 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ $) 29 (-4078 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-1797 (($ $ $) 38 (-4078 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 314 (|has| |#1| (-556))) (($ $ (-564)) 80 (-4078 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 75 (-4078 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ $ (-918)) 84 (-4078 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-4078 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ (-564) $) 32 (-4078 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-768) $) NIL (-4078 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-918) $) NIL (-4078 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))))) -(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1988 ($ $)) (-15 -1310 ((-112) $)) (-15 -3586 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -2165 ((-418 (-1166 $)) (-1166 $))) (-15 -2345 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|))) (-847)) (T -316)) -((-1988 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847)))) (-1310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-3586 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-2165 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) (-2345 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847))))) -(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1988 ($ $)) (-15 -1310 ((-112) $)) (-15 -3586 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -2165 ((-418 (-1166 $)) (-1166 $))) (-15 -2345 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|))) -((-4242 (((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)) 94) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 90) (((-52) |#2| (-114) (-294 |#2|) |#2|) 92) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 93) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 86) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 88) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 89) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 95) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 91))) -(((-317 |#1| |#2|) (-10 -7 (-15 -4242 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -4242 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4242 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4242 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4242 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4242 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4242 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -4242 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -4242 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -4242 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-556) (-612 (-536))) (-430 |#1|)) (T -317)) -((-4242 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-4242 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-4242 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-4242 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-4242 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-4242 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4242 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-4242 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4242 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4242 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6))))) -(-10 -7 (-15 -4242 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -4242 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4242 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4242 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4242 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4242 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4242 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -4242 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -4242 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -4242 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) -((-3528 (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)) 67) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564)) 68) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152)) 64) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564)) 65)) (-2397 (((-1 (-225) (-225)) (-225)) 66))) -(((-318) (-10 -7 (-15 -2397 ((-1 (-225) (-225)) (-225))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))) (T -318)) -((-3528 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3528 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3528 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3528 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-2397 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) -(-10 -7 (-15 -2397 ((-1 (-225) (-225)) (-225))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -3528 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 26)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) 34)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) NIL)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1601 (((-407 (-564)) $) 17)) (-2579 (($ (-1244 |#1| |#2| |#3|)) 11)) (-1558 (((-1244 |#1| |#2| |#3|) $) 12)) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1619 (((-407 (-564)) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 10)) (-1831 (((-859) $) 40) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) 32)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) NIL)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 28)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 35)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-319 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-789) (-10 -8 (-15 -2579 ($ (-1244 |#1| |#2| |#3|))) (-15 -1558 ((-1244 |#1| |#2| |#3|) $)) (-15 -1601 ((-407 (-564)) $)))) (-13 (-363) (-847)) (-1170) |#1|) (T -319)) -((-2579 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3)))) -(-13 (-1240 |#1|) (-789) (-10 -8 (-15 -2579 ($ (-1244 |#1| |#2| |#3|))) (-15 -1558 ((-1244 |#1| |#2| |#3|) $)) (-15 -1601 ((-407 (-564)) $)))) -((-2915 (((-2 (|:| -1558 (-768)) (|:| -2860 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768)) 35)) (-2358 (((-641 (-2 (|:| -2860 (-768)) (|:| |logand| |#1|))) (-418 |#1|)) 40))) -(((-320 |#1|) (-10 -7 (-15 -2915 ((-2 (|:| -1558 (-768)) (|:| -2860 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2358 ((-641 (-2 (|:| -2860 (-768)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320)) -((-2358 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-641 (-2 (|:| -2860 (-768)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *5) (|:| |radicand| (-641 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-768))))) -(-10 -7 (-15 -2915 ((-2 (|:| -1558 (-768)) (|:| -2860 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2358 ((-641 (-2 (|:| -2860 (-768)) (|:| |logand| |#1|))) (-418 |#1|)))) -((-3209 (((-641 |#2|) (-1166 |#4|)) 44)) (-3612 ((|#3| (-564)) 47)) (-3180 (((-1166 |#4|) (-1166 |#3|)) 30)) (-1311 (((-1166 |#4|) (-1166 |#4|) (-564)) 64)) (-1687 (((-1166 |#3|) (-1166 |#4|)) 21)) (-1619 (((-641 (-768)) (-1166 |#4|) (-641 |#2|)) 41)) (-3682 (((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|)) 35))) -(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -1619 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -3209 ((-641 |#2|) (-1166 |#4|))) (-15 -1687 ((-1166 |#3|) (-1166 |#4|))) (-15 -3180 ((-1166 |#4|) (-1166 |#3|))) (-15 -1311 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -3612 (|#3| (-564)))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|)) (T -321)) -((-3612 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-641 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-847)) (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-790)) (-4 *7 (-1046)) (-5 *2 (-641 (-768))) (-5 *1 (-321 *5 *6 *7 *8)))) (-3682 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) -(-10 -7 (-15 -3682 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -1619 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -3209 ((-641 |#2|) (-1166 |#4|))) (-15 -1687 ((-1166 |#3|) (-1166 |#4|))) (-15 -3180 ((-1166 |#4|) (-1166 |#3|))) (-15 -1311 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -3612 (|#3| (-564)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 19)) (-4163 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-564)))) $) 23)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3267 (((-768) $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-1765 ((|#1| $ (-564)) NIL)) (-2802 (((-564) $ (-564)) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-1934 (($ (-1 |#1| |#1|) $) NIL)) (-1957 (($ (-1 (-564) (-564)) $) 11)) (-2723 (((-1152) $) NIL)) (-3886 (($ $ $) NIL (|has| (-564) (-789)))) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ |#1|) NIL)) (-2742 (((-564) |#1| $) NIL)) (-1293 (($) 21 T CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) 28 (|has| |#1| (-847)))) (-1808 (($ $) 12) (($ $ $) 27)) (-1797 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26))) -(((-322 |#1|) (-13 (-21) (-714 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -322)) -NIL -(-13 (-21) (-714 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4163 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))) $) 27)) (-4088 (((-3 $ "failed") $ $) 19)) (-3267 (((-768) $) 28)) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 32)) (-2237 ((|#1| $) 33)) (-1765 ((|#1| $ (-564)) 25)) (-2802 ((|#2| $ (-564)) 26)) (-1934 (($ (-1 |#1| |#1|) $) 22)) (-1957 (($ (-1 |#2| |#2|) $) 23)) (-2723 (((-1152) $) 9)) (-3886 (($ $ $) 21 (|has| |#2| (-789)))) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ |#1|) 31)) (-2742 ((|#2| |#1| $) 24)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1797 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ |#2| |#1|) 29))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 67)) (-1625 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-1245 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 26)) (-1781 (((-1245 |#1| |#2| |#3| |#4|) $) NIL) (((-1170) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-1245 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1259 (-1245 |#1| |#2| |#3| |#4|)))) (-685 $) (-1259 $)) NIL) (((-685 (-1245 |#1| |#2| |#3| |#4|)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-1245 |#1| |#2| |#3| |#4|) $) 22)) (-1620 (((-3 $ "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)))) (-2783 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-2622 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-3123 (($ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) $) NIL)) (-1552 (((-3 (-839 |#2|) "failed") $) 87)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-1421 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-1245 |#1| |#2| |#3| |#4|)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-294 (-1245 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-1170)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1170) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-286 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-1245 |#1| |#2| |#3| |#4|) $) 19)) (-3172 (((-888 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1018))) (((-225) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1245 |#1| |#2| |#3| |#4|)) 30) (($ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-1170)))) (($ (-1244 |#2| |#3| |#4|)) 37)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-905))) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-2389 (($) 42 T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-3034 (($ $ $) 35) (($ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) 32)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1245 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL))) +(((-313 |#1| |#2| |#3| |#4|) (-13 (-988 (-1245 |#1| |#2| |#3| |#4|)) (-1034 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -1552 ((-3 (-839 |#2|) "failed") $)) (-15 -2322 ($ (-1244 |#2| |#3| |#4|))))) (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -313)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-1552 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4)))) +(-13 (-988 (-1245 |#1| |#2| |#3| |#4|)) (-1034 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -1552 ((-3 (-839 |#2|) "failed") $)) (-15 -2322 ($ (-1244 |#2| |#3| |#4|))))) +((-3123 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) +(((-314 |#1| |#2|) (-10 -7 (-15 -3123 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-846) (-846)) (T -314)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -3123 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) +((-2593 (((-52) |#2| (-294 |#2|) (-767)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-767)) 35) (((-52) |#2|) 33) (((-52) (-1170)) 26)) (-1467 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1170)) 55)) (-2618 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1170)) 50)) (-2606 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1170)) 43))) +(((-315 |#1| |#2|) (-10 -7 (-15 -2593 ((-52) (-1170))) (-15 -2593 ((-52) |#2|)) (-15 -2593 ((-52) |#2| (-767))) (-15 -2593 ((-52) |#2| (-294 |#2|))) (-15 -2593 ((-52) |#2| (-294 |#2|) (-767))) (-15 -2606 ((-52) (-1170))) (-15 -2606 ((-52) |#2|)) (-15 -2606 ((-52) |#2| (-564))) (-15 -2606 ((-52) |#2| (-294 |#2|))) (-15 -2606 ((-52) |#2| (-294 |#2|) (-564))) (-15 -2618 ((-52) (-1170))) (-15 -2618 ((-52) |#2|)) (-15 -2618 ((-52) |#2| (-407 (-564)))) (-15 -2618 ((-52) |#2| (-294 |#2|))) (-15 -2618 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -1467 ((-52) (-1170))) (-15 -1467 ((-52) |#2|)) (-15 -1467 ((-52) |#2| (-407 (-564)))) (-15 -1467 ((-52) |#2| (-294 |#2|))) (-15 -1467 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -315)) +((-1467 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1467 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-2606 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-2593 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2593 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))) +(-10 -7 (-15 -2593 ((-52) (-1170))) (-15 -2593 ((-52) |#2|)) (-15 -2593 ((-52) |#2| (-767))) (-15 -2593 ((-52) |#2| (-294 |#2|))) (-15 -2593 ((-52) |#2| (-294 |#2|) (-767))) (-15 -2606 ((-52) (-1170))) (-15 -2606 ((-52) |#2|)) (-15 -2606 ((-52) |#2| (-564))) (-15 -2606 ((-52) |#2| (-294 |#2|))) (-15 -2606 ((-52) |#2| (-294 |#2|) (-564))) (-15 -2618 ((-52) (-1170))) (-15 -2618 ((-52) |#2|)) (-15 -2618 ((-52) |#2| (-407 (-564)))) (-15 -2618 ((-52) |#2| (-294 |#2|))) (-15 -2618 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -1467 ((-52) (-1170))) (-15 -1467 ((-52) |#2|)) (-15 -1467 ((-52) |#2| (-407 (-564)))) (-15 -1467 ((-52) |#2| (-294 |#2|))) (-15 -1467 ((-52) |#2| (-294 |#2|) (-407 (-564))))) +((-2310 (((-112) $ $) NIL)) (-2435 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-948 $)) NIL (|has| |#1| (-556)))) (-3914 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-948 $)) NIL (|has| |#1| (-556)))) (-3264 (((-112) $) 27 (-2789 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-2534 (((-641 (-1170)) $) 367)) (-2340 (((-407 (-1166 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2244 (((-641 (-610 $)) $) NIL)) (-3802 (($ $) 171 (|has| |#1| (-556)))) (-3661 (($ $) 147 (|has| |#1| (-556)))) (-3280 (($ $ (-1086 $)) 232 (|has| |#1| (-556))) (($ $ (-1170)) 228 (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) NIL (-2789 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-2523 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) 385) (($ $ (-641 (-610 $)) (-641 $)) 429)) (-1986 (((-418 (-1166 $)) (-1166 $)) 308 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-3453 (($ $) NIL (|has| |#1| (-556)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-556)))) (-2387 (($ $) NIL (|has| |#1| (-556)))) (-3547 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3779 (($ $) 167 (|has| |#1| (-556)))) (-3639 (($ $) 143 (|has| |#1| (-556)))) (-3863 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-3825 (($ $) 175 (|has| |#1| (-556)))) (-3684 (($ $) 151 (|has| |#1| (-556)))) (-4157 (($) NIL (-2789 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))) CONST)) (-3308 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-948 $)) NIL (|has| |#1| (-556)))) (-1627 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) 134 (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-948 $)) NIL (|has| |#1| (-556)))) (-3032 (((-3 (-610 $) "failed") $) 18) (((-3 (-1170) "failed") $) NIL) (((-3 |#1| "failed") $) 440) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-948 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-948 |#1|) "failed") $) NIL (|has| |#1| (-1045))) (((-3 (-407 (-564)) "failed") $) 46 (-2789 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-1781 (((-610 $) $) 12) (((-1170) $) NIL) ((|#1| $) 420) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-948 |#1|)) $) NIL (|has| |#1| (-556))) (((-948 |#1|) $) NIL (|has| |#1| (-1045))) (((-407 (-564)) $) 319 (-2789 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-2574 (($ $ $) NIL (|has| |#1| (-556)))) (-2750 (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 125 (|has| |#1| (-1045))) (((-685 |#1|) (-685 $)) 115 (|has| |#1| (-1045))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (-3239 (($ $) 96 (|has| |#1| (-556)))) (-2689 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))))) (-2552 (($ $ $) NIL (|has| |#1| (-556)))) (-2740 (($ $ (-1086 $)) 236 (|has| |#1| (-556))) (($ $ (-1170)) 234 (|has| |#1| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-556)))) (-4229 (((-112) $) NIL (|has| |#1| (-556)))) (-3395 (($ $ $) 202 (|has| |#1| (-556)))) (-4223 (($) 137 (|has| |#1| (-556)))) (-3808 (($ $ $) 222 (|has| |#1| (-556)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 391 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 398 (|has| |#1| (-882 (-379))))) (-2252 (($ $) NIL) (($ (-641 $)) NIL)) (-1921 (((-641 (-114)) $) NIL)) (-3523 (((-114) (-114)) 276)) (-1828 (((-112) $) 25 (-2789 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))))) (-3415 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-1352 (($ $) 72 (|has| |#1| (-1045)))) (-4189 (((-1119 |#1| (-610 $)) $) 91 (|has| |#1| (-1045)))) (-2411 (((-112) $) 62 (|has| |#1| (-556)))) (-2739 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-1445 (((-1166 $) (-610 $)) 277 (|has| $ (-1045)))) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 $ $) (-610 $)) 425)) (-1301 (((-3 (-610 $) "failed") $) NIL)) (-3439 (($ $) 141 (|has| |#1| (-556)))) (-1469 (($ $) 247 (|has| |#1| (-556)))) (-3202 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1418 (((-1152) $) NIL)) (-2324 (((-641 (-610 $)) $) 49)) (-3059 (($ (-114) $) NIL) (($ (-114) (-641 $)) 430)) (-1888 (((-3 (-641 $) "failed") $) NIL (|has| |#1| (-1106)))) (-3074 (((-3 (-2 (|:| |val| $) (|:| -3866 (-564))) "failed") $) NIL (|has| |#1| (-1045)))) (-3081 (((-3 (-641 $) "failed") $) 435 (|has| |#1| (-25)))) (-1299 (((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 $))) "failed") $) 439 (|has| |#1| (-25)))) (-1580 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $) NIL (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-1170)) NIL (|has| |#1| (-1045)))) (-2379 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) 51)) (-2639 (($ $) NIL (-2789 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1306 (($ $ (-1170)) 251 (|has| |#1| (-556))) (($ $ (-1086 $)) 253 (|has| |#1| (-556)))) (-3162 (((-767) $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) 43)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 301 (|has| |#1| (-556)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1473 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3476 (($ $ (-1170)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-4312 (($ $) 218 (|has| |#1| (-556)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 306 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-2375 (((-418 $) $) NIL (|has| |#1| (-556)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-556)))) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-3571 (($ $) 139 (|has| |#1| (-556)))) (-1333 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3100 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 424) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) 378) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 364 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) NIL (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ (-641 $))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ $)) NIL (|has| |#1| (-1045)))) (-3844 (((-767) $) NIL (|has| |#1| (-556)))) (-3597 (($ $) 239 (|has| |#1| (-556)))) (-4353 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-2054 (($ $) NIL) (($ $ $) NIL)) (-3629 (($ $) 249 (|has| |#1| (-556)))) (-2813 (($ $) 200 (|has| |#1| (-556)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1045))) (($ $ (-1170)) NIL (|has| |#1| (-1045)))) (-1881 (($ $) 74 (|has| |#1| (-556)))) (-4201 (((-1119 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-2400 (($ $) 317 (|has| $ (-1045)))) (-3836 (($ $) 177 (|has| |#1| (-556)))) (-3697 (($ $) 153 (|has| |#1| (-556)))) (-3814 (($ $) 173 (|has| |#1| (-556)))) (-3672 (($ $) 149 (|has| |#1| (-556)))) (-3792 (($ $) 169 (|has| |#1| (-556)))) (-3650 (($ $) 145 (|has| |#1| (-556)))) (-3172 (((-888 (-564)) $) NIL (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#1| (-612 (-888 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 362 (|has| |#1| (-612 (-536))))) (-2675 (($ $ $) NIL (|has| |#1| (-473)))) (-2617 (($ $ $) NIL (|has| |#1| (-473)))) (-2322 (((-858) $) 423) (($ (-610 $)) 414) (($ (-1170)) 380) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 312 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) (($ (-1119 |#1| (-610 $))) 95 (|has| |#1| (-1045))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-948 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-948 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-948 |#1|))) NIL (|has| |#1| (-556))) (($ (-948 |#1|)) NIL (|has| |#1| (-1045))) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-556)) (|has| |#1| (-1034 (-407 (-564)))))) (($ (-564)) 34 (-2789 (|has| |#1| (-1034 (-564))) (|has| |#1| (-1045))))) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL (|has| |#1| (-1045)) CONST)) (-1389 (($ $) NIL) (($ (-641 $)) NIL)) (-2994 (($ $ $) 220 (|has| |#1| (-556)))) (-3736 (($ $ $) 206 (|has| |#1| (-556)))) (-3786 (($ $ $) 210 (|has| |#1| (-556)))) (-3369 (($ $ $) 204 (|has| |#1| (-556)))) (-3766 (($ $ $) 208 (|has| |#1| (-556)))) (-1646 (((-112) (-114)) 10)) (-2672 (($ $) 183 (|has| |#1| (-556)))) (-3732 (($ $) 159 (|has| |#1| (-556)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) 179 (|has| |#1| (-556)))) (-3708 (($ $) 155 (|has| |#1| (-556)))) (-2695 (($ $) 187 (|has| |#1| (-556)))) (-3757 (($ $) 163 (|has| |#1| (-556)))) (-2731 (($ (-1170) $) NIL) (($ (-1170) $ $) NIL) (($ (-1170) $ $ $) NIL) (($ (-1170) $ $ $ $) NIL) (($ (-1170) (-641 $)) NIL)) (-3322 (($ $) 214 (|has| |#1| (-556)))) (-2724 (($ $) 212 (|has| |#1| (-556)))) (-1511 (($ $) 189 (|has| |#1| (-556)))) (-3768 (($ $) 165 (|has| |#1| (-556)))) (-2684 (($ $) 185 (|has| |#1| (-556)))) (-3746 (($ $) 161 (|has| |#1| (-556)))) (-2660 (($ $) 181 (|has| |#1| (-556)))) (-3720 (($ $) 157 (|has| |#1| (-556)))) (-3598 (($ $) 192 (|has| |#1| (-556)))) (-2389 (($) 21 (-2789 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) CONST)) (-1663 (($ $) 243 (|has| |#1| (-556)))) (-2403 (($) 23 (-2789 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))) CONST)) (-2630 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-1328 (($ $) 241 (|has| |#1| (-556)))) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1045))) (($ $ (-1170)) NIL (|has| |#1| (-1045)))) (-2831 (($ $) 245 (|has| |#1| (-556)))) (-2934 (($ $ $) 198 (|has| |#1| (-556)))) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 88)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 86)) (-3034 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-2789 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3021 (($ $ $) 40 (-2789 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (($ $) 29 (-2789 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-3011 (($ $ $) 38 (-2789 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 314 (|has| |#1| (-556))) (($ $ (-564)) 80 (-2789 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-767)) 75 (-2789 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106)))) (($ $ (-917)) 84 (-2789 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2789 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106)))) (($ (-564) $) 32 (-2789 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (($ (-767) $) NIL (-2789 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (($ (-917) $) NIL (-2789 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))))) +(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -3239 ($ $)) (-15 -2411 ((-112) $)) (-15 -3863 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -3832 ((-418 (-1166 $)) (-1166 $))) (-15 -1986 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-564))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) (-846)) (T -316)) +((-3239 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-846)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-846)))) (-3863 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-846)))) (-3832 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846)))) (-1986 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846))))) +(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -3239 ($ $)) (-15 -2411 ((-112) $)) (-15 -3863 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -3832 ((-418 (-1166 $)) (-1166 $))) (-15 -1986 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-564))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) +((-2881 (((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)) 94) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 90) (((-52) |#2| (-114) (-294 |#2|) |#2|) 92) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 93) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 86) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 88) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 89) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 95) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 91))) +(((-317 |#1| |#2|) (-10 -7 (-15 -2881 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2881 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -2881 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -2881 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -2881 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -2881 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -2881 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2881 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2881 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2881 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-846) (-556) (-612 (-536))) (-430 |#1|)) (T -317)) +((-2881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-2881 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2881 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2881 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-2881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2881 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2881 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2881 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2881 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6))))) +(-10 -7 (-15 -2881 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2881 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -2881 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -2881 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -2881 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -2881 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -2881 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2881 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2881 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2881 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) +((-1432 (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)) 67) (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564)) 68) (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152)) 64) (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564)) 65)) (-1302 (((-1 (-225) (-225)) (-225)) 66))) +(((-318) (-10 -7 (-15 -1302 ((-1 (-225) (-225)) (-225))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))) (T -318)) +((-1432 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-1432 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-1432 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-1432 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-1302 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) +(-10 -7 (-15 -1302 ((-1 (-225) (-225)) (-225))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -1432 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 26)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) 34)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3719 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194)))))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) NIL)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3119 (((-407 (-564)) $) 17)) (-2497 (($ (-1244 |#1| |#2| |#3|)) 11)) (-3866 (((-1244 |#1| |#2| |#3|) $) 12)) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2073 (((-407 (-564)) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 10)) (-2322 (((-858) $) 40) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) 32)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) NIL)) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 28)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 35)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-319 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-788) (-10 -8 (-15 -2497 ($ (-1244 |#1| |#2| |#3|))) (-15 -3866 ((-1244 |#1| |#2| |#3|) $)) (-15 -3119 ((-407 (-564)) $)))) (-13 (-363) (-846)) (-1170) |#1|) (T -319)) +((-2497 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1170)) (-14 *5 *3))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1170)) (-14 *5 *3)))) +(-13 (-1240 |#1|) (-788) (-10 -8 (-15 -2497 ($ (-1244 |#1| |#2| |#3|))) (-15 -3866 ((-1244 |#1| |#2| |#3|) $)) (-15 -3119 ((-407 (-564)) $)))) +((-2739 (((-2 (|:| -3866 (-767)) (|:| -3139 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-767)) 35)) (-3439 (((-641 (-2 (|:| -3139 (-767)) (|:| |logand| |#1|))) (-418 |#1|)) 40))) +(((-320 |#1|) (-10 -7 (-15 -2739 ((-2 (|:| -3866 (-767)) (|:| -3139 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-767))) (-15 -3439 ((-641 (-2 (|:| -3139 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320)) +((-3439 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-641 (-2 (|:| -3139 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *5) (|:| |radicand| (-641 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-767))))) +(-10 -7 (-15 -2739 ((-2 (|:| -3866 (-767)) (|:| -3139 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-767))) (-15 -3439 ((-641 (-2 (|:| -3139 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) +((-2534 (((-641 |#2|) (-1166 |#4|)) 44)) (-2901 ((|#3| (-564)) 47)) (-1425 (((-1166 |#4|) (-1166 |#3|)) 30)) (-2426 (((-1166 |#4|) (-1166 |#4|) (-564)) 64)) (-1451 (((-1166 |#3|) (-1166 |#4|)) 21)) (-2073 (((-641 (-767)) (-1166 |#4|) (-641 |#2|)) 41)) (-2236 (((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|)) 35))) +(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2236 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -2073 ((-641 (-767)) (-1166 |#4|) (-641 |#2|))) (-15 -2534 ((-641 |#2|) (-1166 |#4|))) (-15 -1451 ((-1166 |#3|) (-1166 |#4|))) (-15 -1425 ((-1166 |#4|) (-1166 |#3|))) (-15 -2426 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -2901 (|#3| (-564)))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|)) (T -321)) +((-2901 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))) (-2426 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1166 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-641 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-846)) (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-641 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) (-2236 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) +(-10 -7 (-15 -2236 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -2073 ((-641 (-767)) (-1166 |#4|) (-641 |#2|))) (-15 -2534 ((-641 |#2|) (-1166 |#4|))) (-15 -1451 ((-1166 |#3|) (-1166 |#4|))) (-15 -1425 ((-1166 |#4|) (-1166 |#3|))) (-15 -2426 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -2901 (|#3| (-564)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 19)) (-1412 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-564)))) $) 23)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1959 (((-767) $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-4047 ((|#1| $ (-564)) NIL)) (-4035 (((-564) $ (-564)) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-3269 (($ (-1 |#1| |#1|) $) NIL)) (-2256 (($ (-1 (-564) (-564)) $) 11)) (-1418 (((-1152) $) NIL)) (-3519 (($ $ $) NIL (|has| (-564) (-788)))) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ |#1|) NIL)) (-3467 (((-564) |#1| $) NIL)) (-2389 (($) 21 T CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) 28 (|has| |#1| (-846)))) (-3021 (($ $) 12) (($ $ $) 27)) (-3011 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26))) +(((-322 |#1|) (-13 (-21) (-713 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1094)) (T -322)) +NIL +(-13 (-21) (-713 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1412 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $) 27)) (-1862 (((-3 $ "failed") $ $) 19)) (-1959 (((-767) $) 28)) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 32)) (-1781 ((|#1| $) 33)) (-4047 ((|#1| $ (-564)) 25)) (-4035 ((|#2| $ (-564)) 26)) (-3269 (($ (-1 |#1| |#1|) $) 22)) (-2256 (($ (-1 |#2| |#2|) $) 23)) (-1418 (((-1152) $) 9)) (-3519 (($ $ $) 21 (|has| |#2| (-788)))) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ |#1|) 31)) (-3467 ((|#2| |#1| $) 24)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3011 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ |#2| |#1|) 29))) (((-323 |#1| |#2|) (-140) (-1094) (-131)) (T -323)) -((-1797 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-768)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 *4)))))) (-2802 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-2742 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-1957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-1934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-3886 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-789))))) -(-13 (-131) (-1035 |t#1|) (-10 -8 (-15 -1797 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3267 ((-768) $)) (-15 -4163 ((-641 (-2 (|:| |gen| |t#1|) (|:| -4326 |t#2|))) $)) (-15 -2802 (|t#2| $ (-564))) (-15 -1765 (|t#1| $ (-564))) (-15 -2742 (|t#2| |t#1| $)) (-15 -1957 ($ (-1 |t#2| |t#2|) $)) (-15 -1934 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-789)) (-15 -3886 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-1035 |#1|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4163 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3267 (((-768) $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-1765 ((|#1| $ (-564)) NIL)) (-2802 (((-768) $ (-564)) NIL)) (-1934 (($ (-1 |#1| |#1|) $) NIL)) (-1957 (($ (-1 (-768) (-768)) $) NIL)) (-2723 (((-1152) $) NIL)) (-3886 (($ $ $) NIL (|has| (-768) (-789)))) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ |#1|) NIL)) (-2742 (((-768) |#1| $) NIL)) (-1293 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1797 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-768) |#1|) NIL))) -(((-324 |#1|) (-323 |#1| (-768)) (-1094)) (T -324)) -NIL -(-323 |#1| (-768)) -((-3031 (($ $) 71)) (-2055 (($ $ |#2| |#3| $) 14)) (-2546 (($ (-1 |#3| |#3|) $) 51)) (-3326 (((-112) $) 42)) (-3341 ((|#2| $) 44)) (-1403 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 63)) (-3008 ((|#2| $) 67)) (-3227 (((-641 |#2|) $) 56)) (-3154 (($ $ $ (-768)) 37)) (-1823 (($ $ |#2|) 60))) -(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -3031 (|#1| |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3154 (|#1| |#1| |#1| (-768))) (-15 -2055 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2546 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3227 ((-641 |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1823 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1046) (-789)) (T -325)) -NIL -(-10 -8 (-15 -3031 (|#1| |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3154 (|#1| |#1| |#1| (-768))) (-15 -2055 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2546 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3227 ((-641 |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1823 (|#1| |#1| |#2|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 91 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 86)) (-2237 (((-564) $) 90 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 88 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 87)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-3031 (($ $) 75 (|has| |#1| (-452)))) (-2055 (($ $ |#1| |#2| $) 79)) (-2949 (((-112) $) 31)) (-4128 (((-768) $) 82)) (-2003 (((-112) $) 65)) (-3186 (($ |#1| |#2|) 64)) (-1826 ((|#2| $) 81)) (-2546 (($ (-1 |#2| |#2|) $) 80)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3326 (((-112) $) 85)) (-3341 ((|#1| $) 84)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-556)))) (-1619 ((|#2| $) 67)) (-3008 ((|#1| $) 76 (|has| |#1| (-452)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50) (($ (-407 (-564))) 60 (-4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3227 (((-641 |#1|) $) 83)) (-2742 ((|#1| $ |#2|) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-3154 (($ $ $ (-768)) 78 (|has| |#1| (-172)))) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-326 |#1| |#2|) (-140) (-1046) (-789)) (T -326)) -((-3326 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-641 *3)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-768)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2055 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3154 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *3 (-172)))) (-1403 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-556)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-3031 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-452))))) -(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -3326 ((-112) $)) (-15 -3341 (|t#1| $)) (-15 -3227 ((-641 |t#1|) $)) (-15 -4128 ((-768) $)) (-15 -1826 (|t#2| $)) (-15 -2546 ($ (-1 |t#2| |t#2|) $)) (-15 -2055 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3154 ($ $ $ (-768))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -1403 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3008 (|t#1| $)) (-15 -3031 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-2759 (((-112) (-112)) NIL)) (-1970 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) |#1|) $) NIL)) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-4341 (($ $) NIL (|has| |#1| (-1094)))) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3698 (($ $ (-564)) NIL)) (-3205 (((-768) $) NIL)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-2429 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2783 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2086 (($ (-641 |#1|)) NIL)) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2087 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) NIL)) (-2460 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2086 ($ (-641 |#1|))) (-15 -3205 ((-768) $)) (-15 -3698 ($ $ (-564))) (-15 -2759 ((-112) (-112))))) (-1209)) (T -327)) -((-2086 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))) -(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2086 ($ (-641 |#1|))) (-15 -3205 ((-768) $)) (-15 -3698 ($ $ (-564))) (-15 -2759 ((-112) (-112))))) -((-4048 (((-112) $) 50)) (-4142 (((-768)) 26)) (-2713 ((|#2| $) 54) (($ $ (-918)) 123)) (-3267 (((-768)) 124)) (-3624 (($ (-1259 |#2|)) 23)) (-2370 (((-112) $) 139)) (-3797 ((|#2| $) 56) (($ $ (-918)) 120)) (-3774 (((-1166 |#2|) $) NIL) (((-1166 $) $ (-918)) 111)) (-3696 (((-1166 |#2|) $) 98)) (-2402 (((-1166 |#2|) $) 94) (((-3 (-1166 |#2|) "failed") $ $) 91)) (-1372 (($ $ (-1166 |#2|)) 62)) (-4085 (((-830 (-918))) 33) (((-918)) 51)) (-3548 (((-134)) 30)) (-1619 (((-830 (-918)) $) 35) (((-918) $) 142)) (-1974 (($) 132)) (-2467 (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $)) 45)) (-4018 (($ $) NIL) (((-3 $ "failed") $) 101)) (-1484 (((-112) $) 48))) -(((-328 |#1| |#2|) (-10 -8 (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -3267 ((-768))) (-15 -4018 (|#1| |#1|)) (-15 -2402 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -2402 ((-1166 |#2|) |#1|)) (-15 -3696 ((-1166 |#2|) |#1|)) (-15 -1372 (|#1| |#1| (-1166 |#2|))) (-15 -2370 ((-112) |#1|)) (-15 -1974 (|#1|)) (-15 -2713 (|#1| |#1| (-918))) (-15 -3797 (|#1| |#1| (-918))) (-15 -3774 ((-1166 |#1|) |#1| (-918))) (-15 -2713 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -1619 ((-918) |#1|)) (-15 -4085 ((-918))) (-15 -3774 ((-1166 |#2|) |#1|)) (-15 -3624 (|#1| (-1259 |#2|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -4142 ((-768))) (-15 -4085 ((-830 (-918)))) (-15 -1619 ((-830 (-918)) |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -1484 ((-112) |#1|)) (-15 -3548 ((-134)))) (-329 |#2|) (-363)) (T -328)) -((-3548 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4085 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4142 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4085 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3267 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))) -(-10 -8 (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -3267 ((-768))) (-15 -4018 (|#1| |#1|)) (-15 -2402 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -2402 ((-1166 |#2|) |#1|)) (-15 -3696 ((-1166 |#2|) |#1|)) (-15 -1372 (|#1| |#1| (-1166 |#2|))) (-15 -2370 ((-112) |#1|)) (-15 -1974 (|#1|)) (-15 -2713 (|#1| |#1| (-918))) (-15 -3797 (|#1| |#1| (-918))) (-15 -3774 ((-1166 |#1|) |#1| (-918))) (-15 -2713 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -1619 ((-918) |#1|)) (-15 -4085 ((-918))) (-15 -3774 ((-1166 |#2|) |#1|)) (-15 -3624 (|#1| (-1259 |#2|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -4142 ((-768))) (-15 -4085 ((-830 (-918)))) (-15 -1619 ((-830 (-918)) |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -1484 ((-112) |#1|)) (-15 -3548 ((-134)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4048 (((-112) $) 95)) (-4142 (((-768)) 91)) (-2713 ((|#1| $) 141) (($ $ (-918)) 138 (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) 123 (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3554 (((-112) $ $) 60)) (-3267 (((-768)) 113 (|has| |#1| (-368)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 102)) (-2237 ((|#1| $) 103)) (-3624 (($ (-1259 |#1|)) 147)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-2900 (($) 110 (|has| |#1| (-368)))) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1830 (($) 125 (|has| |#1| (-368)))) (-4282 (((-112) $) 126 (|has| |#1| (-368)))) (-3340 (($ $ (-768)) 88 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) 72)) (-2155 (((-918) $) 128 (|has| |#1| (-368))) (((-830 (-918)) $) 85 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) 31)) (-4311 (($) 136 (|has| |#1| (-368)))) (-2370 (((-112) $) 135 (|has| |#1| (-368)))) (-3797 ((|#1| $) 142) (($ $ (-918)) 139 (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3774 (((-1166 |#1|) $) 146) (((-1166 $) $ (-918)) 140 (|has| |#1| (-368)))) (-1811 (((-918) $) 111 (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) 132 (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) 133 (|has| |#1| (-368)))) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2884 (($) 115 (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) 112 (|has| |#1| (-368)))) (-1927 (((-112) $) 94)) (-2780 (((-1114) $) 10)) (-1426 (($) 134 (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 122 (|has| |#1| (-368)))) (-3070 (((-418 $) $) 75)) (-4085 (((-830 (-918))) 92) (((-918)) 144)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1820 (((-768) $) 127 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 86 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) 100)) (-3534 (($ $) 119 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) 93) (((-918) $) 143)) (-3019 (((-1166 |#1|)) 145)) (-3297 (($) 124 (|has| |#1| (-368)))) (-1974 (($) 137 (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) 149) (((-685 |#1|) (-1259 $)) 148)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 121 (|has| |#1| (-368)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-4018 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) 28 T CONST)) (-3331 (((-1259 $)) 151) (((-1259 $) (-918)) 150)) (-3939 (((-112) $ $) 40)) (-1484 (((-112) $) 96)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3962 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-3435 (($ $) 118 (|has| |#1| (-368))) (($ $ (-768)) 116 (|has| |#1| (-368)))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 66) (($ $ |#1|) 99)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +((-3011 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-767)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 *4)))))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-3467 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-3269 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-788))))) +(-13 (-131) (-1034 |t#1|) (-10 -8 (-15 -3011 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1959 ((-767) $)) (-15 -1412 ((-641 (-2 (|:| |gen| |t#1|) (|:| -3571 |t#2|))) $)) (-15 -4035 (|t#2| $ (-564))) (-15 -4047 (|t#1| $ (-564))) (-15 -3467 (|t#2| |t#1| $)) (-15 -2256 ($ (-1 |t#2| |t#2|) $)) (-15 -3269 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-788)) (-15 -3519 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-1034 |#1|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1412 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1959 (((-767) $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-4047 ((|#1| $ (-564)) NIL)) (-4035 (((-767) $ (-564)) NIL)) (-3269 (($ (-1 |#1| |#1|) $) NIL)) (-2256 (($ (-1 (-767) (-767)) $) NIL)) (-1418 (((-1152) $) NIL)) (-3519 (($ $ $) NIL (|has| (-767) (-788)))) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ |#1|) NIL)) (-3467 (((-767) |#1| $) NIL)) (-2389 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3011 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-767) |#1|) NIL))) +(((-324 |#1|) (-323 |#1| (-767)) (-1094)) (T -324)) +NIL +(-323 |#1| (-767)) +((-2520 (($ $) 71)) (-2050 (($ $ |#2| |#3| $) 14)) (-2168 (($ (-1 |#3| |#3|) $) 51)) (-2649 (((-112) $) 42)) (-2662 ((|#2| $) 44)) (-2526 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 63)) (-2290 ((|#2| $) 67)) (-3680 (((-641 |#2|) $) 56)) (-4310 (($ $ $ (-767)) 37)) (-3034 (($ $ |#2|) 60))) +(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -2520 (|#1| |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4310 (|#1| |#1| |#1| (-767))) (-15 -2050 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2168 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3680 ((-641 |#2|) |#1|)) (-15 -2662 (|#2| |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3034 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1045) (-788)) (T -325)) +NIL +(-10 -8 (-15 -2520 (|#1| |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4310 (|#1| |#1| |#1| (-767))) (-15 -2050 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2168 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3680 ((-641 |#2|) |#1|)) (-15 -2662 (|#2| |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3034 (|#1| |#1| |#2|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 91 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 86)) (-1781 (((-564) $) 90 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 88 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 87)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2520 (($ $) 75 (|has| |#1| (-452)))) (-2050 (($ $ |#1| |#2| $) 79)) (-1828 (((-112) $) 31)) (-4137 (((-767) $) 82)) (-1492 (((-112) $) 65)) (-2507 (($ |#1| |#2|) 64)) (-3386 ((|#2| $) 81)) (-2168 (($ (-1 |#2| |#2|) $) 80)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2649 (((-112) $) 85)) (-2662 ((|#1| $) 84)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-556)))) (-2073 ((|#2| $) 67)) (-2290 ((|#1| $) 76 (|has| |#1| (-452)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50) (($ (-407 (-564))) 60 (-2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3680 (((-641 |#1|) $) 83)) (-3467 ((|#1| $ |#2|) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-4310 (($ $ $ (-767)) 78 (|has| |#1| (-172)))) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-326 |#1| |#2|) (-140) (-1045) (-788)) (T -326)) +((-2649 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-641 *3)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2168 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-2050 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-4310 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *3 (-172)))) (-2526 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-556)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452))))) +(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -2649 ((-112) $)) (-15 -2662 (|t#1| $)) (-15 -3680 ((-641 |t#1|) $)) (-15 -4137 ((-767) $)) (-15 -3386 (|t#2| $)) (-15 -2168 ($ (-1 |t#2| |t#2|) $)) (-15 -2050 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -4310 ($ $ $ (-767))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -2526 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2290 (|t#1| $)) (-15 -2520 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3638 (((-112) (-112)) NIL)) (-3750 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) |#1|) $) NIL)) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2596 (($ $) NIL (|has| |#1| (-1094)))) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2352 (($ $ (-564)) NIL)) (-3495 (((-767) $) NIL)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-3471 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3861 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4267 (($ (-641 |#1|)) NIL)) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4277 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) NIL)) (-3783 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -4267 ($ (-641 |#1|))) (-15 -3495 ((-767) $)) (-15 -2352 ($ $ (-564))) (-15 -3638 ((-112) (-112))))) (-1209)) (T -327)) +((-4267 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))) +(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -4267 ($ (-641 |#1|))) (-15 -3495 ((-767) $)) (-15 -2352 ($ $ (-564))) (-15 -3638 ((-112) (-112))))) +((-2730 (((-112) $) 50)) (-4297 (((-767)) 26)) (-3770 ((|#2| $) 54) (($ $ (-917)) 123)) (-1959 (((-767)) 124)) (-3013 (($ (-1259 |#2|)) 23)) (-4124 (((-112) $) 139)) (-2019 ((|#2| $) 56) (($ $ (-917)) 120)) (-1790 (((-1166 |#2|) $) NIL) (((-1166 $) $ (-917)) 111)) (-2325 (((-1166 |#2|) $) 98)) (-1350 (((-1166 |#2|) $) 94) (((-3 (-1166 |#2|) "failed") $ $) 91)) (-3696 (($ $ (-1166 |#2|)) 62)) (-1829 (((-829 (-917))) 33) (((-917)) 51)) (-3480 (((-134)) 30)) (-2073 (((-829 (-917)) $) 35) (((-917) $) 142)) (-2439 (($) 132)) (-3864 (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $)) 45)) (-2409 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4363 (((-112) $) 48))) +(((-328 |#1| |#2|) (-10 -8 (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -1959 ((-767))) (-15 -2409 (|#1| |#1|)) (-15 -1350 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -1350 ((-1166 |#2|) |#1|)) (-15 -2325 ((-1166 |#2|) |#1|)) (-15 -3696 (|#1| |#1| (-1166 |#2|))) (-15 -4124 ((-112) |#1|)) (-15 -2439 (|#1|)) (-15 -3770 (|#1| |#1| (-917))) (-15 -2019 (|#1| |#1| (-917))) (-15 -1790 ((-1166 |#1|) |#1| (-917))) (-15 -3770 (|#2| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2073 ((-917) |#1|)) (-15 -1829 ((-917))) (-15 -1790 ((-1166 |#2|) |#1|)) (-15 -3013 (|#1| (-1259 |#2|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -4297 ((-767))) (-15 -1829 ((-829 (-917)))) (-15 -2073 ((-829 (-917)) |#1|)) (-15 -2730 ((-112) |#1|)) (-15 -4363 ((-112) |#1|)) (-15 -3480 ((-134)))) (-329 |#2|) (-363)) (T -328)) +((-3480 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4297 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1959 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))) +(-10 -8 (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -1959 ((-767))) (-15 -2409 (|#1| |#1|)) (-15 -1350 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -1350 ((-1166 |#2|) |#1|)) (-15 -2325 ((-1166 |#2|) |#1|)) (-15 -3696 (|#1| |#1| (-1166 |#2|))) (-15 -4124 ((-112) |#1|)) (-15 -2439 (|#1|)) (-15 -3770 (|#1| |#1| (-917))) (-15 -2019 (|#1| |#1| (-917))) (-15 -1790 ((-1166 |#1|) |#1| (-917))) (-15 -3770 (|#2| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2073 ((-917) |#1|)) (-15 -1829 ((-917))) (-15 -1790 ((-1166 |#2|) |#1|)) (-15 -3013 (|#1| (-1259 |#2|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -4297 ((-767))) (-15 -1829 ((-829 (-917)))) (-15 -2073 ((-829 (-917)) |#1|)) (-15 -2730 ((-112) |#1|)) (-15 -4363 ((-112) |#1|)) (-15 -3480 ((-134)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-2730 (((-112) $) 95)) (-4297 (((-767)) 91)) (-3770 ((|#1| $) 141) (($ $ (-917)) 138 (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) 123 (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-3547 (((-112) $ $) 60)) (-1959 (((-767)) 113 (|has| |#1| (-368)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 102)) (-1781 ((|#1| $) 103)) (-3013 (($ (-1259 |#1|)) 147)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-3860 (($) 110 (|has| |#1| (-368)))) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-3422 (($) 125 (|has| |#1| (-368)))) (-3261 (((-112) $) 126 (|has| |#1| (-368)))) (-2180 (($ $ (-767)) 88 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) 72)) (-3717 (((-917) $) 128 (|has| |#1| (-368))) (((-829 (-917)) $) 85 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) 31)) (-2272 (($) 136 (|has| |#1| (-368)))) (-4124 (((-112) $) 135 (|has| |#1| (-368)))) (-2019 ((|#1| $) 142) (($ $ (-917)) 139 (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1790 (((-1166 |#1|) $) 146) (((-1166 $) $ (-917)) 140 (|has| |#1| (-368)))) (-1368 (((-917) $) 111 (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) 132 (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) 133 (|has| |#1| (-368)))) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3346 (($) 115 (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) 112 (|has| |#1| (-368)))) (-3193 (((-112) $) 94)) (-3840 (((-1114) $) 10)) (-4095 (($) 134 (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 122 (|has| |#1| (-368)))) (-2375 (((-418 $) $) 75)) (-1829 (((-829 (-917))) 92) (((-917)) 144)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3337 (((-767) $) 127 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 86 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) 100)) (-1343 (($ $) 119 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) 93) (((-917) $) 143)) (-2400 (((-1166 |#1|)) 145)) (-3107 (($) 124 (|has| |#1| (-368)))) (-2439 (($) 137 (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) 149) (((-685 |#1|) (-1259 $)) 148)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 121 (|has| |#1| (-368)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-2409 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) 28 T CONST)) (-3342 (((-1259 $)) 151) (((-1259 $) (-917)) 150)) (-4024 (((-112) $ $) 40)) (-4363 (((-112) $) 96)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3053 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-3917 (($ $) 118 (|has| |#1| (-368))) (($ $ (-767)) 116 (|has| |#1| (-368)))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 66) (($ $ |#1|) 99)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) (((-329 |#1|) (-140) (-363)) (T -329)) -((-3331 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *4)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)))) (-3624 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-3019 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-4085 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3774 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) (-4 *1 (-329 *4)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1974 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-4311 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-1426 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-2402 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3))))) -(-13 (-1278 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -3331 ((-1259 $))) (-15 -3331 ((-1259 $) (-918))) (-15 -2467 ((-1259 |t#1|) $)) (-15 -2467 ((-685 |t#1|) (-1259 $))) (-15 -3624 ($ (-1259 |t#1|))) (-15 -3774 ((-1166 |t#1|) $)) (-15 -3019 ((-1166 |t#1|))) (-15 -4085 ((-918))) (-15 -1619 ((-918) $)) (-15 -3797 (|t#1| $)) (-15 -2713 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -3774 ((-1166 $) $ (-918))) (-15 -3797 ($ $ (-918))) (-15 -2713 ($ $ (-918))) (-15 -1974 ($)) (-15 -4311 ($)) (-15 -2370 ((-112) $)) (-15 -1426 ($)) (-15 -1372 ($ $ (-1166 |t#1|))) (-15 -3696 ((-1166 |t#1|) $)) (-15 -2402 ((-1166 |t#1|) $)) (-15 -2402 ((-3 (-1166 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4078 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1278 |#1|) . T) ((-363) . T) ((-402) -4078 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-368)) ((-1213) . T) ((-1266 |#1|) . T)) -((-1817 (((-112) $ $) NIL)) (-2863 (($ (-1169) $) 104)) (-2441 (($) 93)) (-3320 (((-1114) (-1114)) 9)) (-3622 (($) 94)) (-2128 (($) 108) (($ (-316 (-695))) 116) (($ (-316 (-697))) 112) (($ (-316 (-690))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-4247 (($ (-1169) $) 105)) (-2599 (($ (-641 (-859))) 95)) (-2252 (((-1264) $) 91)) (-4362 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2214 (($ (-1114)) 60)) (-1377 (((-1098) $) 32)) (-2298 (($ (-1086 (-949 (-564))) $) 101) (($ (-1086 (-949 (-564))) (-949 (-564)) $) 102)) (-3475 (($ (-1114)) 103)) (-3204 (($ (-1169) $) 133) (($ (-1169) $ $) 134)) (-1415 (($ (-1170) (-641 (-1170))) 92)) (-3164 (($ (-1152)) 98) (($ (-641 (-1152))) 96)) (-1831 (((-859) $) 136)) (-2570 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4284 (-112)) (|:| -1522 (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4133 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -1328 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -1328 $))) (|:| |commonBranch| (-2 (|:| -1316 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $) 51)) (-1440 (($ (-1152)) 205)) (-3873 (($ (-641 $)) 132)) (-4081 (($ (-1170) (-1152)) 138) (($ (-1170) (-316 (-697))) 178) (($ (-1170) (-316 (-695))) 179) (($ (-1170) (-316 (-690))) 180) (($ (-1170) (-685 (-697))) 141) (($ (-1170) (-685 (-695))) 144) (($ (-1170) (-685 (-690))) 147) (($ (-1170) (-1259 (-697))) 150) (($ (-1170) (-1259 (-695))) 153) (($ (-1170) (-1259 (-690))) 156) (($ (-1170) (-685 (-316 (-697)))) 159) (($ (-1170) (-685 (-316 (-695)))) 162) (($ (-1170) (-685 (-316 (-690)))) 165) (($ (-1170) (-1259 (-316 (-697)))) 168) (($ (-1170) (-1259 (-316 (-695)))) 171) (($ (-1170) (-1259 (-316 (-690)))) 174) (($ (-1170) (-641 (-949 (-564))) (-316 (-697))) 175) (($ (-1170) (-641 (-949 (-564))) (-316 (-695))) 176) (($ (-1170) (-641 (-949 (-564))) (-316 (-690))) 177) (($ (-1170) (-316 (-564))) 202) (($ (-1170) (-316 (-379))) 203) (($ (-1170) (-316 (-169 (-379)))) 204) (($ (-1170) (-685 (-316 (-564)))) 183) (($ (-1170) (-685 (-316 (-379)))) 186) (($ (-1170) (-685 (-316 (-169 (-379))))) 189) (($ (-1170) (-1259 (-316 (-564)))) 192) (($ (-1170) (-1259 (-316 (-379)))) 195) (($ (-1170) (-1259 (-316 (-169 (-379))))) 198) (($ (-1170) (-641 (-949 (-564))) (-316 (-564))) 199) (($ (-1170) (-641 (-949 (-564))) (-316 (-379))) 200) (($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379)))) 201)) (-1702 (((-112) $ $) NIL))) -(((-330) (-13 (-1094) (-10 -8 (-15 -2298 ($ (-1086 (-949 (-564))) $)) (-15 -2298 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -2863 ($ (-1169) $)) (-15 -4247 ($ (-1169) $)) (-15 -2214 ($ (-1114))) (-15 -3475 ($ (-1114))) (-15 -3164 ($ (-1152))) (-15 -3164 ($ (-641 (-1152)))) (-15 -1440 ($ (-1152))) (-15 -2128 ($)) (-15 -2128 ($ (-316 (-695)))) (-15 -2128 ($ (-316 (-697)))) (-15 -2128 ($ (-316 (-690)))) (-15 -2128 ($ (-316 (-379)))) (-15 -2128 ($ (-316 (-564)))) (-15 -2128 ($ (-316 (-169 (-379))))) (-15 -3204 ($ (-1169) $)) (-15 -3204 ($ (-1169) $ $)) (-15 -4081 ($ (-1170) (-1152))) (-15 -4081 ($ (-1170) (-316 (-697)))) (-15 -4081 ($ (-1170) (-316 (-695)))) (-15 -4081 ($ (-1170) (-316 (-690)))) (-15 -4081 ($ (-1170) (-685 (-697)))) (-15 -4081 ($ (-1170) (-685 (-695)))) (-15 -4081 ($ (-1170) (-685 (-690)))) (-15 -4081 ($ (-1170) (-1259 (-697)))) (-15 -4081 ($ (-1170) (-1259 (-695)))) (-15 -4081 ($ (-1170) (-1259 (-690)))) (-15 -4081 ($ (-1170) (-685 (-316 (-697))))) (-15 -4081 ($ (-1170) (-685 (-316 (-695))))) (-15 -4081 ($ (-1170) (-685 (-316 (-690))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-697))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-695))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-690))))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -4081 ($ (-1170) (-316 (-564)))) (-15 -4081 ($ (-1170) (-316 (-379)))) (-15 -4081 ($ (-1170) (-316 (-169 (-379))))) (-15 -4081 ($ (-1170) (-685 (-316 (-564))))) (-15 -4081 ($ (-1170) (-685 (-316 (-379))))) (-15 -4081 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-564))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-379))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -3873 ($ (-641 $))) (-15 -2441 ($)) (-15 -3622 ($)) (-15 -2599 ($ (-641 (-859)))) (-15 -1415 ($ (-1170) (-641 (-1170)))) (-15 -4362 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2570 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4284 (-112)) (|:| -1522 (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4133 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -1328 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -1328 $))) (|:| |commonBranch| (-2 (|:| -1316 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -2252 ((-1264) $)) (-15 -1377 ((-1098) $)) (-15 -3320 ((-1114) (-1114)))))) (T -330)) -((-2298 (*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330)))) (-2298 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564))) (-5 *1 (-330)))) (-2863 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-3475 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-2128 (*1 *1) (-5 *1 (-330))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3204 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3204 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-695))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-690))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-4081 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))) (-2441 (*1 *1) (-5 *1 (-330))) (-3622 (*1 *1) (-5 *1 (-330))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330)))) (-1415 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -4284 (-112)) (|:| -1522 (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |blockBranch| (-641 (-330))) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4133 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -1328 (-330)))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -1328 (-330)))) (|:| |commonBranch| (-2 (|:| -1316 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859))))) (-5 *1 (-330)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) -(-13 (-1094) (-10 -8 (-15 -2298 ($ (-1086 (-949 (-564))) $)) (-15 -2298 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -2863 ($ (-1169) $)) (-15 -4247 ($ (-1169) $)) (-15 -2214 ($ (-1114))) (-15 -3475 ($ (-1114))) (-15 -3164 ($ (-1152))) (-15 -3164 ($ (-641 (-1152)))) (-15 -1440 ($ (-1152))) (-15 -2128 ($)) (-15 -2128 ($ (-316 (-695)))) (-15 -2128 ($ (-316 (-697)))) (-15 -2128 ($ (-316 (-690)))) (-15 -2128 ($ (-316 (-379)))) (-15 -2128 ($ (-316 (-564)))) (-15 -2128 ($ (-316 (-169 (-379))))) (-15 -3204 ($ (-1169) $)) (-15 -3204 ($ (-1169) $ $)) (-15 -4081 ($ (-1170) (-1152))) (-15 -4081 ($ (-1170) (-316 (-697)))) (-15 -4081 ($ (-1170) (-316 (-695)))) (-15 -4081 ($ (-1170) (-316 (-690)))) (-15 -4081 ($ (-1170) (-685 (-697)))) (-15 -4081 ($ (-1170) (-685 (-695)))) (-15 -4081 ($ (-1170) (-685 (-690)))) (-15 -4081 ($ (-1170) (-1259 (-697)))) (-15 -4081 ($ (-1170) (-1259 (-695)))) (-15 -4081 ($ (-1170) (-1259 (-690)))) (-15 -4081 ($ (-1170) (-685 (-316 (-697))))) (-15 -4081 ($ (-1170) (-685 (-316 (-695))))) (-15 -4081 ($ (-1170) (-685 (-316 (-690))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-697))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-695))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-690))))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -4081 ($ (-1170) (-316 (-564)))) (-15 -4081 ($ (-1170) (-316 (-379)))) (-15 -4081 ($ (-1170) (-316 (-169 (-379))))) (-15 -4081 ($ (-1170) (-685 (-316 (-564))))) (-15 -4081 ($ (-1170) (-685 (-316 (-379))))) (-15 -4081 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-564))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-379))))) (-15 -4081 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -4081 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -3873 ($ (-641 $))) (-15 -2441 ($)) (-15 -3622 ($)) (-15 -2599 ($ (-641 (-859)))) (-15 -1415 ($ (-1170) (-641 (-1170)))) (-15 -4362 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2570 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4284 (-112)) (|:| -1522 (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4133 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -1328 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -1328 $))) (|:| |commonBranch| (-2 (|:| -1316 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -2252 ((-1264) $)) (-15 -1377 ((-1098) $)) (-15 -3320 ((-1114) (-1114))))) -((-1817 (((-112) $ $) NIL)) (-2686 (((-112) $) 13)) (-3187 (($ |#1|) 10)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3199 (($ |#1|) 12)) (-1831 (((-859) $) 19)) (-2562 ((|#1| $) 14)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 21))) -(((-331 |#1|) (-13 (-847) (-10 -8 (-15 -3187 ($ |#1|)) (-15 -3199 ($ |#1|)) (-15 -2686 ((-112) $)) (-15 -2562 (|#1| $)))) (-847)) (T -331)) -((-3187 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-3199 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847)))) (-2562 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))) -(-13 (-847) (-10 -8 (-15 -3187 ($ |#1|)) (-15 -3199 ($ |#1|)) (-15 -2686 ((-112) $)) (-15 -2562 (|#1| $)))) -((-1609 (((-330) (-1170) (-949 (-564))) 23)) (-3058 (((-330) (-1170) (-949 (-564))) 27)) (-2747 (((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564)))) 26) (((-330) (-1170) (-949 (-564)) (-949 (-564))) 24)) (-2367 (((-330) (-1170) (-949 (-564))) 31))) -(((-332) (-10 -7 (-15 -1609 ((-330) (-1170) (-949 (-564)))) (-15 -2747 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -2747 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -3058 ((-330) (-1170) (-949 (-564)))) (-15 -2367 ((-330) (-1170) (-949 (-564)))))) (T -332)) -((-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332))))) -(-10 -7 (-15 -1609 ((-330) (-1170) (-949 (-564)))) (-15 -2747 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -2747 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -3058 ((-330) (-1170) (-949 (-564)))) (-15 -2367 ((-330) (-1170) (-949 (-564))))) -((-2449 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) -(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2449 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11))))) -(-10 -7 (-15 -2449 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) -((-3905 (((-112) $) 14))) -(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3905 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334)) -NIL -(-10 -8 (-15 -3905 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-1988 (($ $) 26)) (-3905 (((-112) $) 25)) (-2723 (((-1152) $) 9)) (-3884 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-2780 (((-1114) $) 10)) (-1426 (((-3 |#4| "failed") $) 24)) (-1340 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-564)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1295 (((-2 (|:| -1680 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20))) +((-3342 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *4)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-2400 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-1829 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-1790 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) (-4 *1 (-329 *4)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-2439 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2272 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-4095 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3696 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-1350 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3))))) +(-13 (-1278 |t#1|) (-1034 |t#1|) (-10 -8 (-15 -3342 ((-1259 $))) (-15 -3342 ((-1259 $) (-917))) (-15 -3864 ((-1259 |t#1|) $)) (-15 -3864 ((-685 |t#1|) (-1259 $))) (-15 -3013 ($ (-1259 |t#1|))) (-15 -1790 ((-1166 |t#1|) $)) (-15 -2400 ((-1166 |t#1|))) (-15 -1829 ((-917))) (-15 -2073 ((-917) $)) (-15 -2019 (|t#1| $)) (-15 -3770 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -1790 ((-1166 $) $ (-917))) (-15 -2019 ($ $ (-917))) (-15 -3770 ($ $ (-917))) (-15 -2439 ($)) (-15 -2272 ($)) (-15 -4124 ((-112) $)) (-15 -4095 ($)) (-15 -3696 ($ $ (-1166 |t#1|))) (-15 -2325 ((-1166 |t#1|) $)) (-15 -1350 ((-1166 |t#1|) $)) (-15 -1350 ((-3 (-1166 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2789 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1278 |#1|) . T) ((-363) . T) ((-402) -2789 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-368)) ((-1213) . T) ((-1266 |#1|) . T)) +((-2310 (((-112) $ $) NIL)) (-3400 (($ (-1169) $) 104)) (-2915 (($) 93)) (-3263 (((-1114) (-1114)) 9)) (-4046 (($) 94)) (-3435 (($) 108) (($ (-316 (-695))) 116) (($ (-316 (-697))) 112) (($ (-316 (-690))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-2936 (($ (-1169) $) 105)) (-2711 (($ (-641 (-858))) 95)) (-2215 (((-1264) $) 91)) (-2743 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3129 (($ (-1114)) 60)) (-1972 (((-1098) $) 32)) (-2737 (($ (-1086 (-948 (-564))) $) 101) (($ (-1086 (-948 (-564))) (-948 (-564)) $) 102)) (-2138 (($ (-1114)) 103)) (-3824 (($ (-1169) $) 133) (($ (-1169) $ $) 134)) (-1990 (($ (-1170) (-641 (-1170))) 92)) (-2233 (($ (-1152)) 98) (($ (-641 (-1152))) 96)) (-2322 (((-858) $) 136)) (-3080 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3282 (-112)) (|:| -2053 (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4195 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2433 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2433 $))) (|:| |commonBranch| (-2 (|:| -2420 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858)))) $) 51)) (-3896 (($ (-1152)) 205)) (-1520 (($ (-641 $)) 132)) (-1797 (($ (-1170) (-1152)) 138) (($ (-1170) (-316 (-697))) 178) (($ (-1170) (-316 (-695))) 179) (($ (-1170) (-316 (-690))) 180) (($ (-1170) (-685 (-697))) 141) (($ (-1170) (-685 (-695))) 144) (($ (-1170) (-685 (-690))) 147) (($ (-1170) (-1259 (-697))) 150) (($ (-1170) (-1259 (-695))) 153) (($ (-1170) (-1259 (-690))) 156) (($ (-1170) (-685 (-316 (-697)))) 159) (($ (-1170) (-685 (-316 (-695)))) 162) (($ (-1170) (-685 (-316 (-690)))) 165) (($ (-1170) (-1259 (-316 (-697)))) 168) (($ (-1170) (-1259 (-316 (-695)))) 171) (($ (-1170) (-1259 (-316 (-690)))) 174) (($ (-1170) (-641 (-948 (-564))) (-316 (-697))) 175) (($ (-1170) (-641 (-948 (-564))) (-316 (-695))) 176) (($ (-1170) (-641 (-948 (-564))) (-316 (-690))) 177) (($ (-1170) (-316 (-564))) 202) (($ (-1170) (-316 (-379))) 203) (($ (-1170) (-316 (-169 (-379)))) 204) (($ (-1170) (-685 (-316 (-564)))) 183) (($ (-1170) (-685 (-316 (-379)))) 186) (($ (-1170) (-685 (-316 (-169 (-379))))) 189) (($ (-1170) (-1259 (-316 (-564)))) 192) (($ (-1170) (-1259 (-316 (-379)))) 195) (($ (-1170) (-1259 (-316 (-169 (-379))))) 198) (($ (-1170) (-641 (-948 (-564))) (-316 (-564))) 199) (($ (-1170) (-641 (-948 (-564))) (-316 (-379))) 200) (($ (-1170) (-641 (-948 (-564))) (-316 (-169 (-379)))) 201)) (-2921 (((-112) $ $) NIL))) +(((-330) (-13 (-1094) (-10 -8 (-15 -2737 ($ (-1086 (-948 (-564))) $)) (-15 -2737 ($ (-1086 (-948 (-564))) (-948 (-564)) $)) (-15 -3400 ($ (-1169) $)) (-15 -2936 ($ (-1169) $)) (-15 -3129 ($ (-1114))) (-15 -2138 ($ (-1114))) (-15 -2233 ($ (-1152))) (-15 -2233 ($ (-641 (-1152)))) (-15 -3896 ($ (-1152))) (-15 -3435 ($)) (-15 -3435 ($ (-316 (-695)))) (-15 -3435 ($ (-316 (-697)))) (-15 -3435 ($ (-316 (-690)))) (-15 -3435 ($ (-316 (-379)))) (-15 -3435 ($ (-316 (-564)))) (-15 -3435 ($ (-316 (-169 (-379))))) (-15 -3824 ($ (-1169) $)) (-15 -3824 ($ (-1169) $ $)) (-15 -1797 ($ (-1170) (-1152))) (-15 -1797 ($ (-1170) (-316 (-697)))) (-15 -1797 ($ (-1170) (-316 (-695)))) (-15 -1797 ($ (-1170) (-316 (-690)))) (-15 -1797 ($ (-1170) (-685 (-697)))) (-15 -1797 ($ (-1170) (-685 (-695)))) (-15 -1797 ($ (-1170) (-685 (-690)))) (-15 -1797 ($ (-1170) (-1259 (-697)))) (-15 -1797 ($ (-1170) (-1259 (-695)))) (-15 -1797 ($ (-1170) (-1259 (-690)))) (-15 -1797 ($ (-1170) (-685 (-316 (-697))))) (-15 -1797 ($ (-1170) (-685 (-316 (-695))))) (-15 -1797 ($ (-1170) (-685 (-316 (-690))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-697))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-695))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-690))))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-697)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-695)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-690)))) (-15 -1797 ($ (-1170) (-316 (-564)))) (-15 -1797 ($ (-1170) (-316 (-379)))) (-15 -1797 ($ (-1170) (-316 (-169 (-379))))) (-15 -1797 ($ (-1170) (-685 (-316 (-564))))) (-15 -1797 ($ (-1170) (-685 (-316 (-379))))) (-15 -1797 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-564))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-379))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-564)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-379)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-169 (-379))))) (-15 -1520 ($ (-641 $))) (-15 -2915 ($)) (-15 -4046 ($)) (-15 -2711 ($ (-641 (-858)))) (-15 -1990 ($ (-1170) (-641 (-1170)))) (-15 -2743 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3080 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3282 (-112)) (|:| -2053 (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4195 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2433 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2433 $))) (|:| |commonBranch| (-2 (|:| -2420 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858)))) $)) (-15 -2215 ((-1264) $)) (-15 -1972 ((-1098) $)) (-15 -3263 ((-1114) (-1114)))))) (T -330)) +((-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *1 (-330)))) (-2737 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *3 (-948 (-564))) (-5 *1 (-330)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-2936 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3129 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) (-3896 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-3435 (*1 *1) (-5 *1 (-330))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3824 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-695))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-690))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-1797 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))) (-2915 (*1 *1) (-5 *1 (-330))) (-4046 (*1 *1) (-5 *1 (-330))) (-2711 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-330)))) (-1990 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -3282 (-112)) (|:| -2053 (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |blockBranch| (-641 (-330))) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4195 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2433 (-330)))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2433 (-330)))) (|:| |commonBranch| (-2 (|:| -2420 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858))))) (-5 *1 (-330)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(-13 (-1094) (-10 -8 (-15 -2737 ($ (-1086 (-948 (-564))) $)) (-15 -2737 ($ (-1086 (-948 (-564))) (-948 (-564)) $)) (-15 -3400 ($ (-1169) $)) (-15 -2936 ($ (-1169) $)) (-15 -3129 ($ (-1114))) (-15 -2138 ($ (-1114))) (-15 -2233 ($ (-1152))) (-15 -2233 ($ (-641 (-1152)))) (-15 -3896 ($ (-1152))) (-15 -3435 ($)) (-15 -3435 ($ (-316 (-695)))) (-15 -3435 ($ (-316 (-697)))) (-15 -3435 ($ (-316 (-690)))) (-15 -3435 ($ (-316 (-379)))) (-15 -3435 ($ (-316 (-564)))) (-15 -3435 ($ (-316 (-169 (-379))))) (-15 -3824 ($ (-1169) $)) (-15 -3824 ($ (-1169) $ $)) (-15 -1797 ($ (-1170) (-1152))) (-15 -1797 ($ (-1170) (-316 (-697)))) (-15 -1797 ($ (-1170) (-316 (-695)))) (-15 -1797 ($ (-1170) (-316 (-690)))) (-15 -1797 ($ (-1170) (-685 (-697)))) (-15 -1797 ($ (-1170) (-685 (-695)))) (-15 -1797 ($ (-1170) (-685 (-690)))) (-15 -1797 ($ (-1170) (-1259 (-697)))) (-15 -1797 ($ (-1170) (-1259 (-695)))) (-15 -1797 ($ (-1170) (-1259 (-690)))) (-15 -1797 ($ (-1170) (-685 (-316 (-697))))) (-15 -1797 ($ (-1170) (-685 (-316 (-695))))) (-15 -1797 ($ (-1170) (-685 (-316 (-690))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-697))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-695))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-690))))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-697)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-695)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-690)))) (-15 -1797 ($ (-1170) (-316 (-564)))) (-15 -1797 ($ (-1170) (-316 (-379)))) (-15 -1797 ($ (-1170) (-316 (-169 (-379))))) (-15 -1797 ($ (-1170) (-685 (-316 (-564))))) (-15 -1797 ($ (-1170) (-685 (-316 (-379))))) (-15 -1797 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-564))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-379))))) (-15 -1797 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-564)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-379)))) (-15 -1797 ($ (-1170) (-641 (-948 (-564))) (-316 (-169 (-379))))) (-15 -1520 ($ (-641 $))) (-15 -2915 ($)) (-15 -4046 ($)) (-15 -2711 ($ (-641 (-858)))) (-15 -1990 ($ (-1170) (-641 (-1170)))) (-15 -2743 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3080 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3282 (-112)) (|:| -2053 (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4195 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2433 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2433 $))) (|:| |commonBranch| (-2 (|:| -2420 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858)))) $)) (-15 -2215 ((-1264) $)) (-15 -1972 ((-1098) $)) (-15 -3263 ((-1114) (-1114))))) +((-2310 (((-112) $ $) NIL)) (-4154 (((-112) $) 13)) (-3639 (($ |#1|) 10)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3650 (($ |#1|) 12)) (-2322 (((-858) $) 19)) (-2328 ((|#1| $) 14)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 21))) +(((-331 |#1|) (-13 (-846) (-10 -8 (-15 -3639 ($ |#1|)) (-15 -3650 ($ |#1|)) (-15 -4154 ((-112) $)) (-15 -2328 (|#1| $)))) (-846)) (T -331)) +((-3639 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-3650 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))) (-2328 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))) +(-13 (-846) (-10 -8 (-15 -3639 ($ |#1|)) (-15 -3650 ($ |#1|)) (-15 -4154 ((-112) $)) (-15 -2328 (|#1| $)))) +((-3197 (((-330) (-1170) (-948 (-564))) 23)) (-1526 (((-330) (-1170) (-948 (-564))) 27)) (-3520 (((-330) (-1170) (-1086 (-948 (-564))) (-1086 (-948 (-564)))) 26) (((-330) (-1170) (-948 (-564)) (-948 (-564))) 24)) (-4088 (((-330) (-1170) (-948 (-564))) 31))) +(((-332) (-10 -7 (-15 -3197 ((-330) (-1170) (-948 (-564)))) (-15 -3520 ((-330) (-1170) (-948 (-564)) (-948 (-564)))) (-15 -3520 ((-330) (-1170) (-1086 (-948 (-564))) (-1086 (-948 (-564))))) (-15 -1526 ((-330) (-1170) (-948 (-564)))) (-15 -4088 ((-330) (-1170) (-948 (-564)))))) (T -332)) +((-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3520 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-948 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3520 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332))))) +(-10 -7 (-15 -3197 ((-330) (-1170) (-948 (-564)))) (-15 -3520 ((-330) (-1170) (-948 (-564)) (-948 (-564)))) (-15 -3520 ((-330) (-1170) (-1086 (-948 (-564))) (-1086 (-948 (-564))))) (-15 -1526 ((-330) (-1170) (-948 (-564)))) (-15 -4088 ((-330) (-1170) (-948 (-564))))) +((-3123 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) +(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3123 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11))))) +(-10 -7 (-15 -3123 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) +((-3694 (((-112) $) 14))) +(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3694 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334)) +NIL +(-10 -8 (-15 -3694 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3239 (($ $) 26)) (-3694 (((-112) $) 25)) (-1418 (((-1152) $) 9)) (-3499 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-3840 (((-1114) $) 10)) (-4095 (((-3 |#4| "failed") $) 24)) (-1835 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-564)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1965 (((-2 (|:| -4086 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20))) (((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1235 |t#1|) (-1235 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335)) -((-3884 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-1340 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-1340 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-1340 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -1680 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-1988 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-1426 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-1340 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3884 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -1340 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -1340 ($ |t#4|)) (-15 -1340 ($ |t#1| |t#1|)) (-15 -1340 ($ |t#1| |t#1| (-564))) (-15 -1295 ((-2 (|:| -1680 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1988 ($ $)) (-15 -3905 ((-112) $)) (-15 -1426 ((-3 |t#4| "failed") $)) (-15 -1340 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-1988 (($ $) 33)) (-3905 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-2819 (((-1259 |#4|) $) 135)) (-3884 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-2780 (((-1114) $) NIL)) (-1426 (((-3 |#4| "failed") $) 36)) (-1333 (((-1259 |#4|) $) 127)) (-1340 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1295 (((-2 (|:| -1680 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1831 (((-859) $) 17)) (-1293 (($) 14 T CONST)) (-1702 (((-112) $ $) 20)) (-1808 (($ $) 27) (($ $ $) NIL)) (-1797 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 23))) -(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1333 ((-1259 |#4|) $)) (-15 -2819 ((-1259 |#4|) $)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336)) -((-1333 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-2819 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5))))) -(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1333 ((-1259 |#4|) $)) (-15 -2819 ((-1259 |#4|) $)))) -((-2633 (($ $ (-1170) |#2|) NIL) (($ $ (-641 (-1170)) (-641 |#2|)) 20) (($ $ (-641 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-1350 (($ $ |#2|) 11))) -(((-337 |#1| |#2|) (-10 -8 (-15 -1350 (|#1| |#1| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#2| |#2|)) (-15 -2633 (|#1| |#1| (-294 |#2|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2633 (|#1| |#1| (-1170) |#2|))) (-338 |#2|) (-1094)) (T -337)) -NIL -(-10 -8 (-15 -1350 (|#1| |#1| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#2| |#2|)) (-15 -2633 (|#1| |#1| (-294 |#2|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2633 (|#1| |#1| (-1170) |#2|))) -((-2449 (($ (-1 |#1| |#1|) $) 6)) (-2633 (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 16 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-641 |#1|) (-641 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-1350 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|))))) +((-3499 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-1835 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-1835 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-1835 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -4086 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-4095 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-1835 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3499 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -1835 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -1835 ($ |t#4|)) (-15 -1835 ($ |t#1| |t#1|)) (-15 -1835 ($ |t#1| |t#1| (-564))) (-15 -1965 ((-2 (|:| -4086 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3239 ($ $)) (-15 -3694 ((-112) $)) (-15 -4095 ((-3 |t#4| "failed") $)) (-15 -1835 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3239 (($ $) 33)) (-3694 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-3009 (((-1259 |#4|) $) 135)) (-3499 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3840 (((-1114) $) NIL)) (-4095 (((-3 |#4| "failed") $) 36)) (-1758 (((-1259 |#4|) $) 127)) (-1835 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1965 (((-2 (|:| -4086 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2322 (((-858) $) 17)) (-2389 (($) 14 T CONST)) (-2921 (((-112) $ $) 20)) (-3021 (($ $) 27) (($ $ $) NIL)) (-3011 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 23))) +(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1758 ((-1259 |#4|) $)) (-15 -3009 ((-1259 |#4|) $)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336)) +((-1758 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-3009 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5))))) +(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1758 ((-1259 |#4|) $)) (-15 -3009 ((-1259 |#4|) $)))) +((-3100 (($ $ (-1170) |#2|) NIL) (($ $ (-641 (-1170)) (-641 |#2|)) 20) (($ $ (-641 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-4353 (($ $ |#2|) 11))) +(((-337 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#1| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#2| |#2|)) (-15 -3100 (|#1| |#1| (-294 |#2|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -3100 (|#1| |#1| (-1170) |#2|))) (-338 |#2|) (-1094)) (T -337)) +NIL +(-10 -8 (-15 -4353 (|#1| |#1| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#2| |#2|)) (-15 -3100 (|#1| |#1| (-294 |#2|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -3100 (|#1| |#1| (-1170) |#2|))) +((-3123 (($ (-1 |#1| |#1|) $) 6)) (-3100 (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 16 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-641 |#1|) (-641 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4353 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|))))) (((-338 |#1|) (-140) (-1094)) (T -338)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094))))) -(-13 (-10 -8 (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1170) |t#1|)) (-6 (-514 (-1170) |t#1|)) |%noBranch|))) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094))))) +(-13 (-10 -8 (-15 -3123 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1170) |t#1|)) (-6 (-514 (-1170) |t#1|)) |%noBranch|))) (((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1170)) $) NIL)) (-1588 (((-112)) 98) (((-112) (-112)) 99)) (-2956 (((-641 (-610 $)) $) NIL)) (-3357 (($ $) NIL)) (-3210 (($ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3574 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-3083 (($ $) NIL)) (-3330 (($ $) NIL)) (-3187 (($ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 78) (((-3 $ "failed") (-1170)) 104) (((-3 $ "failed") (-316 (-564))) 66 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-407 (-949 (-564)))) 72 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-949 (-564))) 67 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-316 (-379))) 96 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-407 (-949 (-379)))) 90 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-949 (-379))) 85 (|has| |#3| (-1035 (-379))))) (-2237 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 79) (($ (-1170)) 105) (($ (-316 (-564))) 68 (|has| |#3| (-1035 (-564)))) (($ (-407 (-949 (-564)))) 73 (|has| |#3| (-1035 (-564)))) (($ (-949 (-564))) 69 (|has| |#3| (-1035 (-564)))) (($ (-316 (-379))) 97 (|has| |#3| (-1035 (-379)))) (($ (-407 (-949 (-379)))) 91 (|has| |#3| (-1035 (-379)))) (($ (-949 (-379))) 87 (|has| |#3| (-1035 (-379))))) (-3733 (((-3 $ "failed") $) NIL)) (-3714 (($) 10)) (-3352 (($ $) NIL) (($ (-641 $)) NIL)) (-4095 (((-641 (-114)) $) NIL)) (-1841 (((-114) (-114)) NIL)) (-2949 (((-112) $) NIL)) (-4301 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-4168 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 $ $) (-610 $)) NIL)) (-1802 (((-3 (-610 $) "failed") $) NIL)) (-4167 (($ $) 101)) (-2358 (($ $) NIL)) (-2723 (((-1152) $) NIL)) (-3026 (((-641 (-610 $)) $) NIL)) (-3755 (($ (-114) $) 100) (($ (-114) (-641 $)) NIL)) (-1657 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3926 (((-768) $) NIL)) (-2780 (((-1114) $) NIL)) (-2417 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4326 (($ $) NIL)) (-1492 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2633 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1350 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3467 (($ $) NIL) (($ $ $) NIL)) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-3019 (($ $) NIL (|has| $ (-1046)))) (-3344 (($ $) NIL)) (-3199 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 103)) (-2219 (((-768)) NIL T CONST)) (-4264 (($ $) NIL) (($ (-641 $)) NIL)) (-1322 (((-112) (-114)) NIL)) (-3276 (($ $) NIL)) (-3254 (($ $) NIL)) (-3265 (($ $) NIL)) (-1849 (($ $) NIL)) (-1293 (($) 102 T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) -(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2237 ($ (-316 |#3|))) (-15 -2347 ((-3 $ "failed") (-316 |#3|))) (-15 -2237 ($ (-1170))) (-15 -2347 ((-3 $ "failed") (-1170))) (-15 -1831 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2237 ($ (-316 (-564)))) (-15 -2347 ((-3 $ "failed") (-316 (-564)))) (-15 -2237 ($ (-407 (-949 (-564))))) (-15 -2347 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2237 ($ (-949 (-564)))) (-15 -2347 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2237 ($ (-316 (-379)))) (-15 -2347 ((-3 $ "failed") (-316 (-379)))) (-15 -2237 ($ (-407 (-949 (-379))))) (-15 -2347 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2237 ($ (-949 (-379)))) (-15 -2347 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -1849 ($ $)) (-15 -3083 ($ $)) (-15 -4326 ($ $)) (-15 -2358 ($ $)) (-15 -4167 ($ $)) (-15 -3187 ($ $)) (-15 -3199 ($ $)) (-15 -3210 ($ $)) (-15 -3254 ($ $)) (-15 -3265 ($ $)) (-15 -3276 ($ $)) (-15 -3330 ($ $)) (-15 -3344 ($ $)) (-15 -3357 ($ $)) (-15 -3714 ($)) (-15 -3209 ((-641 (-1170)) $)) (-15 -1588 ((-112))) (-15 -1588 ((-112) (-112))))) (-641 (-1170)) (-641 (-1170)) (-387)) (T -339)) -((-2237 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1849 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3083 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4326 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4167 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3187 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3199 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3210 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3254 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3265 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3276 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3330 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3344 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3357 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3714 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-1588 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387))))) -(-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2237 ($ (-316 |#3|))) (-15 -2347 ((-3 $ "failed") (-316 |#3|))) (-15 -2237 ($ (-1170))) (-15 -2347 ((-3 $ "failed") (-1170))) (-15 -1831 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2237 ($ (-316 (-564)))) (-15 -2347 ((-3 $ "failed") (-316 (-564)))) (-15 -2237 ($ (-407 (-949 (-564))))) (-15 -2347 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2237 ($ (-949 (-564)))) (-15 -2347 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2237 ($ (-316 (-379)))) (-15 -2347 ((-3 $ "failed") (-316 (-379)))) (-15 -2237 ($ (-407 (-949 (-379))))) (-15 -2347 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2237 ($ (-949 (-379)))) (-15 -2347 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -1849 ($ $)) (-15 -3083 ($ $)) (-15 -4326 ($ $)) (-15 -2358 ($ $)) (-15 -4167 ($ $)) (-15 -3187 ($ $)) (-15 -3199 ($ $)) (-15 -3210 ($ $)) (-15 -3254 ($ $)) (-15 -3265 ($ $)) (-15 -3276 ($ $)) (-15 -3330 ($ $)) (-15 -3344 ($ $)) (-15 -3357 ($ $)) (-15 -3714 ($)) (-15 -3209 ((-641 (-1170)) $)) (-15 -1588 ((-112))) (-15 -1588 ((-112) (-112))))) -((-2449 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2449 (|#8| (-1 |#5| |#1|) |#4|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9)))))) -(-10 -7 (-15 -2449 (|#8| (-1 |#5| |#1|) |#4|))) -((-2084 (((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) $) 40)) (-3624 (($ (-1259 (-407 |#3|)) (-1259 $)) NIL) (($ (-1259 (-407 |#3|))) NIL) (($ (-1259 |#3|) |#3|) 176)) (-4107 (((-1259 $) (-1259 $)) 160)) (-3238 (((-641 (-641 |#2|))) 129)) (-4349 (((-112) |#2| |#2|) 77)) (-3031 (($ $) 151)) (-4002 (((-768)) 33)) (-1388 (((-1259 $) (-1259 $)) 222)) (-3099 (((-641 (-949 |#2|)) (-1170)) 119)) (-1978 (((-112) $) 173)) (-3683 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-4105 (((-3 |#3| "failed")) 53)) (-3878 (((-768)) 187)) (-1350 ((|#2| $ |#2| |#2|) 143)) (-1759 (((-3 |#3| "failed")) 72)) (-3534 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-768)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3562 (((-1259 $) (-1259 $)) 166)) (-2806 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3487 (((-112)) 35))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3238 ((-641 (-641 |#2|)))) (-15 -3099 ((-641 (-949 |#2|)) (-1170))) (-15 -2806 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4105 ((-3 |#3| "failed"))) (-15 -1759 ((-3 |#3| "failed"))) (-15 -1350 (|#2| |#1| |#2| |#2|)) (-15 -3031 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3683 ((-112) |#1| |#3|)) (-15 -3683 ((-112) |#1| |#2|)) (-15 -3624 (|#1| (-1259 |#3|) |#3|)) (-15 -2084 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4107 ((-1259 |#1|) (-1259 |#1|))) (-15 -1388 ((-1259 |#1|) (-1259 |#1|))) (-15 -3562 ((-1259 |#1|) (-1259 |#1|))) (-15 -3683 ((-112) |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -4349 ((-112) |#2| |#2|)) (-15 -3487 ((-112))) (-15 -3878 ((-768))) (-15 -4002 ((-768))) (-15 -3534 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3534 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -3624 (|#1| (-1259 (-407 |#3|)))) (-15 -3624 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) (-342 |#2| |#3| |#4|) (-1213) (-1235 |#2|) (-1235 (-407 |#3|))) (T -341)) -((-4002 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3878 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3487 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-4349 (*1 *2 *3 *3) (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-1759 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-4105 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-3238 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))) -(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3238 ((-641 (-641 |#2|)))) (-15 -3099 ((-641 (-949 |#2|)) (-1170))) (-15 -2806 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4105 ((-3 |#3| "failed"))) (-15 -1759 ((-3 |#3| "failed"))) (-15 -1350 (|#2| |#1| |#2| |#2|)) (-15 -3031 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3683 ((-112) |#1| |#3|)) (-15 -3683 ((-112) |#1| |#2|)) (-15 -3624 (|#1| (-1259 |#3|) |#3|)) (-15 -2084 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4107 ((-1259 |#1|) (-1259 |#1|))) (-15 -1388 ((-1259 |#1|) (-1259 |#1|))) (-15 -3562 ((-1259 |#1|) (-1259 |#1|))) (-15 -3683 ((-112) |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -4349 ((-112) |#2| |#2|)) (-15 -3487 ((-112))) (-15 -3878 ((-768))) (-15 -4002 ((-768))) (-15 -3534 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3534 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -3624 (|#1| (-1259 (-407 |#3|)))) (-15 -3624 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2084 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 195)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-1537 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-1932 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-3390 (((-685 (-407 |#2|)) (-1259 $)) 47) (((-685 (-407 |#2|))) 62)) (-2713 (((-407 |#2|) $) 53)) (-3967 (((-1182 (-918) (-768)) (-564)) 146 (|has| (-407 |#2|) (-349)))) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-3399 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-3554 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-3267 (((-768)) 87 (|has| (-407 |#2|) (-368)))) (-2927 (((-112)) 212)) (-2135 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 169 (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2237 (((-564) $) 168 (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) 165)) (-3624 (($ (-1259 (-407 |#2|)) (-1259 $)) 49) (($ (-1259 (-407 |#2|))) 65) (($ (-1259 |#2|) |#2|) 194)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-1449 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-4206 (((-685 (-407 |#2|)) $ (-1259 $)) 54) (((-685 (-407 |#2|)) $) 60)) (-4050 (((-685 (-564)) (-685 $)) 163 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) 161) (((-685 (-407 |#2|)) (-685 $)) 160)) (-4107 (((-1259 $) (-1259 $)) 200)) (-1988 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-3733 (((-3 $ "failed") $) 33)) (-3238 (((-641 (-641 |#1|))) 181 (|has| |#1| (-368)))) (-4349 (((-112) |#1| |#1|) 216)) (-3531 (((-918)) 55)) (-2900 (($) 90 (|has| (-407 |#2|) (-368)))) (-3272 (((-112)) 209)) (-3260 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1424 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 102 (|has| (-407 |#2|) (-363)))) (-3031 (($ $) 187)) (-1830 (($) 148 (|has| (-407 |#2|) (-349)))) (-4282 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-3340 (($ $ (-768)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-1420 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-2155 (((-918) $) 151 (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) 137 (|has| (-407 |#2|) (-349)))) (-2949 (((-112) $) 31)) (-4002 (((-768)) 219)) (-1388 (((-1259 $) (-1259 $)) 201)) (-3797 (((-407 |#2|) $) 52)) (-3099 (((-641 (-949 |#1|)) (-1170)) 182 (|has| |#1| (-363)))) (-2619 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| (-407 |#2|) (-363)))) (-3774 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-1811 (((-918) $) 89 (|has| (-407 |#2|) (-368)))) (-1977 ((|#3| $) 155)) (-2740 (($ (-641 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-2723 (((-1152) $) 9)) (-3105 (((-685 (-407 |#2|))) 196)) (-1835 (((-685 (-407 |#2|))) 198)) (-3315 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-4101 (($ (-1259 |#2|) |#2|) 192)) (-3749 (((-685 (-407 |#2|))) 197)) (-3093 (((-685 (-407 |#2|))) 199)) (-3485 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1777 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 193)) (-1718 (((-1259 $)) 205)) (-2359 (((-1259 $)) 206)) (-1978 (((-112) $) 204)) (-3683 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-2884 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-1468 (($ (-918)) 88 (|has| (-407 |#2|) (-368)))) (-4105 (((-3 |#2| "failed")) 184)) (-2780 (((-1114) $) 10)) (-3878 (((-768)) 218)) (-1426 (($) 159)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| (-407 |#2|) (-363)))) (-2777 (($ (-641 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 145 (|has| (-407 |#2|) (-349)))) (-3070 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-1403 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| (-407 |#2|) (-363)))) (-3920 (((-768) $) 105 (|has| (-407 |#2|) (-363)))) (-1350 ((|#1| $ |#1| |#1|) 186)) (-1759 (((-3 |#2| "failed")) 185)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-3190 (((-407 |#2|) (-1259 $)) 48) (((-407 |#2|)) 61)) (-1820 (((-768) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-3534 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 130 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 131 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 132 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 134 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4348 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4348 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-4027 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-3019 ((|#3|) 158)) (-3297 (($) 147 (|has| (-407 |#2|) (-349)))) (-2467 (((-1259 (-407 |#2|)) $ (-1259 $)) 51) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) 50) (((-1259 (-407 |#2|)) $) 67) (((-685 (-407 |#2|)) (-1259 $)) 66)) (-2511 (((-1259 (-407 |#2|)) $) 64) (($ (-1259 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| (-407 |#2|) (-349)))) (-3562 (((-1259 $) (-1259 $)) 202)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-564))) 86 (-4078 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1035 (-407 (-564)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-4018 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-1349 ((|#3| $) 46)) (-2219 (((-768)) 28 T CONST)) (-2368 (((-112)) 215)) (-4147 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3331 (((-1259 $)) 68)) (-3939 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-2806 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3487 (((-112)) 217)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 126 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 127 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 128 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4348 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 133 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4348 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-4078 (-4348 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4348 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-564)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 118 (|has| (-407 |#2|) (-363))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1170)) $) NIL)) (-2983 (((-112)) 98) (((-112) (-112)) 99)) (-2244 (((-641 (-610 $)) $) NIL)) (-3802 (($ $) NIL)) (-3661 (($ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2523 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2387 (($ $) NIL)) (-3779 (($ $) NIL)) (-3639 (($ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 78) (((-3 $ "failed") (-1170)) 104) (((-3 $ "failed") (-316 (-564))) 66 (|has| |#3| (-1034 (-564)))) (((-3 $ "failed") (-407 (-948 (-564)))) 72 (|has| |#3| (-1034 (-564)))) (((-3 $ "failed") (-948 (-564))) 67 (|has| |#3| (-1034 (-564)))) (((-3 $ "failed") (-316 (-379))) 96 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-407 (-948 (-379)))) 90 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-948 (-379))) 85 (|has| |#3| (-1034 (-379))))) (-1781 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 79) (($ (-1170)) 105) (($ (-316 (-564))) 68 (|has| |#3| (-1034 (-564)))) (($ (-407 (-948 (-564)))) 73 (|has| |#3| (-1034 (-564)))) (($ (-948 (-564))) 69 (|has| |#3| (-1034 (-564)))) (($ (-316 (-379))) 97 (|has| |#3| (-1034 (-379)))) (($ (-407 (-948 (-379)))) 91 (|has| |#3| (-1034 (-379)))) (($ (-948 (-379))) 87 (|has| |#3| (-1034 (-379))))) (-2689 (((-3 $ "failed") $) NIL)) (-4223 (($) 10)) (-2252 (($ $) NIL) (($ (-641 $)) NIL)) (-1921 (((-641 (-114)) $) NIL)) (-3523 (((-114) (-114)) NIL)) (-1828 (((-112) $) NIL)) (-3415 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-1445 (((-1166 $) (-610 $)) NIL (|has| $ (-1045)))) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 $ $) (-610 $)) NIL)) (-1301 (((-3 (-610 $) "failed") $) NIL)) (-2128 (($ $) 101)) (-3439 (($ $) NIL)) (-1418 (((-1152) $) NIL)) (-2324 (((-641 (-610 $)) $) NIL)) (-3059 (($ (-114) $) 100) (($ (-114) (-641 $)) NIL)) (-2379 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3162 (((-767) $) NIL)) (-3840 (((-1114) $) NIL)) (-1473 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3571 (($ $) NIL)) (-1333 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3100 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4353 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-2054 (($ $) NIL) (($ $ $) NIL)) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-2400 (($ $) NIL (|has| $ (-1045)))) (-3792 (($ $) NIL)) (-3650 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 103)) (-3179 (((-767)) NIL T CONST)) (-1389 (($ $) NIL) (($ (-641 $)) NIL)) (-1646 (((-112) (-114)) NIL)) (-3732 (($ $) NIL)) (-3708 (($ $) NIL)) (-3720 (($ $) NIL)) (-3598 (($ $) NIL)) (-2389 (($) 102 T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1170)) (-10 -8 (-15 -1781 ($ (-316 |#3|))) (-15 -3032 ((-3 $ "failed") (-316 |#3|))) (-15 -1781 ($ (-1170))) (-15 -3032 ((-3 $ "failed") (-1170))) (-15 -2322 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-564))) (PROGN (-15 -1781 ($ (-316 (-564)))) (-15 -3032 ((-3 $ "failed") (-316 (-564)))) (-15 -1781 ($ (-407 (-948 (-564))))) (-15 -3032 ((-3 $ "failed") (-407 (-948 (-564))))) (-15 -1781 ($ (-948 (-564)))) (-15 -3032 ((-3 $ "failed") (-948 (-564))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -1781 ($ (-316 (-379)))) (-15 -3032 ((-3 $ "failed") (-316 (-379)))) (-15 -1781 ($ (-407 (-948 (-379))))) (-15 -3032 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -1781 ($ (-948 (-379)))) (-15 -3032 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -3598 ($ $)) (-15 -2387 ($ $)) (-15 -3571 ($ $)) (-15 -3439 ($ $)) (-15 -2128 ($ $)) (-15 -3639 ($ $)) (-15 -3650 ($ $)) (-15 -3661 ($ $)) (-15 -3708 ($ $)) (-15 -3720 ($ $)) (-15 -3732 ($ $)) (-15 -3779 ($ $)) (-15 -3792 ($ $)) (-15 -3802 ($ $)) (-15 -4223 ($)) (-15 -2534 ((-641 (-1170)) $)) (-15 -2983 ((-112))) (-15 -2983 ((-112) (-112))))) (-641 (-1170)) (-641 (-1170)) (-387)) (T -339)) +((-1781 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3598 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3571 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3439 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2128 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3650 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3661 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3708 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3720 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3779 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4223 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-2983 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387))))) +(-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1170)) (-10 -8 (-15 -1781 ($ (-316 |#3|))) (-15 -3032 ((-3 $ "failed") (-316 |#3|))) (-15 -1781 ($ (-1170))) (-15 -3032 ((-3 $ "failed") (-1170))) (-15 -2322 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-564))) (PROGN (-15 -1781 ($ (-316 (-564)))) (-15 -3032 ((-3 $ "failed") (-316 (-564)))) (-15 -1781 ($ (-407 (-948 (-564))))) (-15 -3032 ((-3 $ "failed") (-407 (-948 (-564))))) (-15 -1781 ($ (-948 (-564)))) (-15 -3032 ((-3 $ "failed") (-948 (-564))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -1781 ($ (-316 (-379)))) (-15 -3032 ((-3 $ "failed") (-316 (-379)))) (-15 -1781 ($ (-407 (-948 (-379))))) (-15 -3032 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -1781 ($ (-948 (-379)))) (-15 -3032 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -3598 ($ $)) (-15 -2387 ($ $)) (-15 -3571 ($ $)) (-15 -3439 ($ $)) (-15 -2128 ($ $)) (-15 -3639 ($ $)) (-15 -3650 ($ $)) (-15 -3661 ($ $)) (-15 -3708 ($ $)) (-15 -3720 ($ $)) (-15 -3732 ($ $)) (-15 -3779 ($ $)) (-15 -3792 ($ $)) (-15 -3802 ($ $)) (-15 -4223 ($)) (-15 -2534 ((-641 (-1170)) $)) (-15 -2983 ((-112))) (-15 -2983 ((-112) (-112))))) +((-3123 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3123 (|#8| (-1 |#5| |#1|) |#4|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9)))))) +(-10 -7 (-15 -3123 (|#8| (-1 |#5| |#1|) |#4|))) +((-4246 (((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) $) 40)) (-3013 (($ (-1259 (-407 |#3|)) (-1259 $)) NIL) (($ (-1259 (-407 |#3|))) NIL) (($ (-1259 |#3|) |#3|) 176)) (-2045 (((-1259 $) (-1259 $)) 160)) (-3787 (((-641 (-641 |#2|))) 129)) (-2678 (((-112) |#2| |#2|) 77)) (-2520 (($ $) 151)) (-2232 (((-767)) 33)) (-1535 (((-1259 $) (-1259 $)) 222)) (-1899 (((-641 (-948 |#2|)) (-1170)) 119)) (-2471 (((-112) $) 173)) (-2247 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-2021 (((-3 |#3| "failed")) 53)) (-3447 (((-767)) 187)) (-4353 ((|#2| $ |#2| |#2|) 143)) (-3995 (((-3 |#3| "failed")) 72)) (-1343 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-767)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3619 (((-1259 $) (-1259 $)) 166)) (-2876 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-4135 (((-112)) 35))) +(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3787 ((-641 (-641 |#2|)))) (-15 -1899 ((-641 (-948 |#2|)) (-1170))) (-15 -2876 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2021 ((-3 |#3| "failed"))) (-15 -3995 ((-3 |#3| "failed"))) (-15 -4353 (|#2| |#1| |#2| |#2|)) (-15 -2520 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2247 ((-112) |#1| |#3|)) (-15 -2247 ((-112) |#1| |#2|)) (-15 -3013 (|#1| (-1259 |#3|) |#3|)) (-15 -4246 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2045 ((-1259 |#1|) (-1259 |#1|))) (-15 -1535 ((-1259 |#1|) (-1259 |#1|))) (-15 -3619 ((-1259 |#1|) (-1259 |#1|))) (-15 -2247 ((-112) |#1|)) (-15 -2471 ((-112) |#1|)) (-15 -2678 ((-112) |#2| |#2|)) (-15 -4135 ((-112))) (-15 -3447 ((-767))) (-15 -2232 ((-767))) (-15 -1343 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -1343 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3013 (|#1| (-1259 (-407 |#3|)))) (-15 -3013 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) (-342 |#2| |#3| |#4|) (-1213) (-1235 |#2|) (-1235 (-407 |#3|))) (T -341)) +((-2232 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3447 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-4135 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2678 (*1 *2 *3 *3) (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-3995 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-2021 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-948 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-3787 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))) +(-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3787 ((-641 (-641 |#2|)))) (-15 -1899 ((-641 (-948 |#2|)) (-1170))) (-15 -2876 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2021 ((-3 |#3| "failed"))) (-15 -3995 ((-3 |#3| "failed"))) (-15 -4353 (|#2| |#1| |#2| |#2|)) (-15 -2520 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2247 ((-112) |#1| |#3|)) (-15 -2247 ((-112) |#1| |#2|)) (-15 -3013 (|#1| (-1259 |#3|) |#3|)) (-15 -4246 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2045 ((-1259 |#1|) (-1259 |#1|))) (-15 -1535 ((-1259 |#1|) (-1259 |#1|))) (-15 -3619 ((-1259 |#1|) (-1259 |#1|))) (-15 -2247 ((-112) |#1|)) (-15 -2471 ((-112) |#1|)) (-15 -2678 ((-112) |#2| |#2|)) (-15 -4135 ((-112))) (-15 -3447 ((-767))) (-15 -2232 ((-767))) (-15 -1343 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -1343 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3013 (|#1| (-1259 (-407 |#3|)))) (-15 -3013 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-4246 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 195)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-3622 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-3247 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-2586 (((-685 (-407 |#2|)) (-1259 $)) 47) (((-685 (-407 |#2|))) 62)) (-3770 (((-407 |#2|) $) 53)) (-3109 (((-1182 (-917) (-767)) (-564)) 146 (|has| (-407 |#2|) (-349)))) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-2657 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-3547 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-1959 (((-767)) 87 (|has| (-407 |#2|) (-368)))) (-1603 (((-112)) 212)) (-3493 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 169 (|has| (-407 |#2|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 164)) (-1781 (((-564) $) 168 (|has| (-407 |#2|) (-1034 (-564)))) (((-407 (-564)) $) 166 (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-407 |#2|) $) 165)) (-3013 (($ (-1259 (-407 |#2|)) (-1259 $)) 49) (($ (-1259 (-407 |#2|))) 65) (($ (-1259 |#2|) |#2|) 194)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-2574 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-3689 (((-685 (-407 |#2|)) $ (-1259 $)) 54) (((-685 (-407 |#2|)) $) 60)) (-2750 (((-685 (-564)) (-685 $)) 163 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) 161) (((-685 (-407 |#2|)) (-685 $)) 160)) (-2045 (((-1259 $) (-1259 $)) 200)) (-3239 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-2689 (((-3 $ "failed") $) 33)) (-3787 (((-641 (-641 |#1|))) 181 (|has| |#1| (-368)))) (-2678 (((-112) |#1| |#1|) 216)) (-3105 (((-917)) 55)) (-3860 (($) 90 (|has| (-407 |#2|) (-368)))) (-2882 (((-112)) 209)) (-2800 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-2552 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 102 (|has| (-407 |#2|) (-363)))) (-2520 (($ $) 187)) (-3422 (($) 148 (|has| (-407 |#2|) (-349)))) (-3261 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-2180 (($ $ (-767)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-4229 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-3717 (((-917) $) 151 (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) 137 (|has| (-407 |#2|) (-349)))) (-1828 (((-112) $) 31)) (-2232 (((-767)) 219)) (-1535 (((-1259 $) (-1259 $)) 201)) (-2019 (((-407 |#2|) $) 52)) (-1899 (((-641 (-948 |#1|)) (-1170)) 182 (|has| |#1| (-363)))) (-1620 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| (-407 |#2|) (-363)))) (-1790 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-1368 (((-917) $) 89 (|has| (-407 |#2|) (-368)))) (-3228 ((|#3| $) 155)) (-3202 (($ (-641 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-1418 (((-1152) $) 9)) (-1956 (((-685 (-407 |#2|))) 196)) (-3461 (((-685 (-407 |#2|))) 198)) (-2639 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-1983 (($ (-1259 |#2|) |#2|) 192)) (-1572 (((-685 (-407 |#2|))) 197)) (-1831 (((-685 (-407 |#2|))) 199)) (-4111 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-4146 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 193)) (-1737 (((-1259 $)) 205)) (-2112 (((-1259 $)) 206)) (-2471 (((-112) $) 204)) (-2247 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3346 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-1998 (($ (-917)) 88 (|has| (-407 |#2|) (-368)))) (-2021 (((-3 |#2| "failed")) 184)) (-3840 (((-1114) $) 10)) (-3447 (((-767)) 218)) (-4095 (($) 159)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| (-407 |#2|) (-363)))) (-3235 (($ (-641 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 145 (|has| (-407 |#2|) (-349)))) (-2375 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-2526 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| (-407 |#2|) (-363)))) (-3844 (((-767) $) 105 (|has| (-407 |#2|) (-363)))) (-4353 ((|#1| $ |#1| |#1|) 186)) (-3995 (((-3 |#2| "failed")) 185)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-3392 (((-407 |#2|) (-1259 $)) 48) (((-407 |#2|)) 61)) (-3337 (((-767) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-1343 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-641 (-1170)) (-641 (-767))) 129 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-767)) 130 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 131 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 132 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 134 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2342 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2342 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2516 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-2400 ((|#3|) 158)) (-3107 (($) 147 (|has| (-407 |#2|) (-349)))) (-3864 (((-1259 (-407 |#2|)) $ (-1259 $)) 51) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) 50) (((-1259 (-407 |#2|)) $) 67) (((-685 (-407 |#2|)) (-1259 $)) 66)) (-3172 (((-1259 (-407 |#2|)) $) 64) (($ (-1259 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| (-407 |#2|) (-349)))) (-3619 (((-1259 $) (-1259 $)) 202)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-564))) 86 (-2789 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-564)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-2409 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-2117 ((|#3| $) 46)) (-3179 (((-767)) 28 T CONST)) (-4099 (((-112)) 215)) (-4350 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3342 (((-1259 $)) 68)) (-4024 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-2876 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-4135 (((-112)) 217)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-767))) 125 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-767)) 126 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 127 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 128 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2342 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 133 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2342 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-2789 (-2342 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2342 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-564)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 118 (|has| (-407 |#2|) (-363))))) (((-342 |#1| |#2| |#3|) (-140) (-1213) (-1235 |t#1|) (-1235 (-407 |t#2|))) (T -342)) -((-4002 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-3878 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-3487 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4349 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2368 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4147 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4147 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2927 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2135 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2135 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3272 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3260 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3260 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2359 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1718 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-3093 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1835 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3749 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3105 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-4101 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-3031 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-1350 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-1759 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-4105 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-2806 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-641 (-949 *4))))) (-3238 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3)))))) -(-13 (-721 (-407 |t#2|) |t#3|) (-10 -8 (-15 -4002 ((-768))) (-15 -3878 ((-768))) (-15 -3487 ((-112))) (-15 -4349 ((-112) |t#1| |t#1|)) (-15 -2368 ((-112))) (-15 -4147 ((-112) |t#1|)) (-15 -4147 ((-112) |t#2|)) (-15 -2927 ((-112))) (-15 -2135 ((-112) |t#1|)) (-15 -2135 ((-112) |t#2|)) (-15 -3272 ((-112))) (-15 -3260 ((-112) |t#1|)) (-15 -3260 ((-112) |t#2|)) (-15 -2359 ((-1259 $))) (-15 -1718 ((-1259 $))) (-15 -1978 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3562 ((-1259 $) (-1259 $))) (-15 -1388 ((-1259 $) (-1259 $))) (-15 -4107 ((-1259 $) (-1259 $))) (-15 -3093 ((-685 (-407 |t#2|)))) (-15 -1835 ((-685 (-407 |t#2|)))) (-15 -3749 ((-685 (-407 |t#2|)))) (-15 -3105 ((-685 (-407 |t#2|)))) (-15 -2084 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3624 ($ (-1259 |t#2|) |t#2|)) (-15 -1777 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4101 ($ (-1259 |t#2|) |t#2|)) (-15 -3485 ((-2 (|:| |num| (-685 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3683 ((-112) $ |t#1|)) (-15 -3683 ((-112) $ |t#2|)) (-15 -3534 ($ $ (-1 |t#2| |t#2|))) (-15 -3031 ($ $)) (-15 -1350 (|t#1| $ |t#1| |t#1|)) (-15 -1759 ((-3 |t#2| "failed"))) (-15 -4105 ((-3 |t#2| "failed"))) (-15 -2806 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -3099 ((-641 (-949 |t#1|)) (-1170))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -3238 ((-641 (-641 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -4078 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -4078 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -4078 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 $) . T) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-714 #0#) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-714 #1#) . T) ((-714 $) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-721 #1# |#3|) . T) ((-723) . T) ((-897 (-1170)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) ((-917) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1035 (-407 (-564))) |has| (-407 |#2|) (-1035 (-407 (-564)))) ((-1035 #1#) . T) ((-1035 (-564)) |has| (-407 |#2|) (-1035 (-564))) ((-1052 #0#) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| (-407 |#2|) (-349)) ((-1213) -4078 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-907 |#1|) "failed") $) NIL)) (-2237 (((-907 |#1|) $) NIL)) (-3624 (($ (-1259 (-907 |#1|))) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-907 |#1|) (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| (-907 |#1|) (-368)))) (-4282 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| (-907 |#1|) (-368)))) (-2370 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3797 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1811 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-3696 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-2402 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-1372 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-2910 (((-955 (-1114))) NIL)) (-1426 (($) NIL (|has| (-907 |#1|) (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 (-907 |#1|))) NIL)) (-3297 (($) NIL (|has| (-907 |#1|) (-368)))) (-1974 (($) NIL (|has| (-907 |#1|) (-368)))) (-2467 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4018 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3435 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL))) -(((-343 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2910 ((-955 (-1114)))))) (-918) (-918)) (T -343)) -((-2910 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918))))) -(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2910 ((-955 (-1114)))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 59)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) 57 (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 144)) (-2237 ((|#1| $) 115)) (-3624 (($ (-1259 |#1|)) 132)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) 126 (|has| |#1| (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) 162 (|has| |#1| (-368)))) (-4282 (((-112) $) 67 (|has| |#1| (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) 61 (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) 63)) (-4311 (($) 164 (|has| |#1| (-368)))) (-2370 (((-112) $) NIL (|has| |#1| (-368)))) (-3797 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 |#1|) $) 119) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1811 (((-918) $) 174 (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 181)) (-2884 (($) NIL (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) 99 (|has| |#1| (-368)))) (-1927 (((-112) $) 149)) (-2780 (((-1114) $) NIL)) (-2910 (((-955 (-1114))) 58)) (-1426 (($) 160 (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 121 (|has| |#1| (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) 93) (((-918)) 94)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) 163 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 156 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 |#1|)) 124)) (-3297 (($) 161 (|has| |#1| (-368)))) (-1974 (($) 169 (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) 78) (((-685 |#1|) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-4018 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) 171 T CONST)) (-3331 (((-1259 $)) 146) (((-1259 $) (-918)) 101)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) 68 T CONST)) (-1300 (($) 106 T CONST)) (-3962 (($ $) 110 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3435 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1702 (((-112) $ $) 66)) (-1823 (($ $ $) 179) (($ $ |#1|) 180)) (-1808 (($ $) 159) (($ $ $) NIL)) (-1797 (($ $ $) 87)) (** (($ $ (-918)) 183) (($ $ (-768)) 184) (($ $ (-564)) 182)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178))) -(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2910 ((-955 (-1114)))))) (-349) (-1166 |#1|)) (T -344)) -((-2910 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1166 *3))))) -(-13 (-329 |#1|) (-10 -7 (-15 -2910 ((-955 (-1114)))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-3624 (($ (-1259 |#1|)) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| |#1| (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| |#1| (-368)))) (-4282 (((-112) $) NIL (|has| |#1| (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| |#1| (-368)))) (-2370 (((-112) $) NIL (|has| |#1| (-368)))) (-3797 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-2910 (((-955 (-1114))) NIL)) (-1426 (($) NIL (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| |#1| (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 |#1|)) NIL)) (-3297 (($) NIL (|has| |#1| (-368)))) (-1974 (($) NIL (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4018 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3435 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2910 ((-955 (-1114)))))) (-349) (-918)) (T -345)) -((-2910 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918))))) -(-13 (-329 |#1|) (-10 -7 (-15 -2910 ((-955 (-1114)))))) -((-2430 (((-768) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) 61)) (-3632 (((-955 (-1114)) (-1166 |#1|)) 118)) (-1540 (((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) (-1166 |#1|)) 105)) (-2018 (((-685 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) 120)) (-1965 (((-3 (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) "failed") (-918)) 13)) (-3745 (((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) (-918)) 18))) -(((-346 |#1|) (-10 -7 (-15 -3632 ((-955 (-1114)) (-1166 |#1|))) (-15 -1540 ((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) (-1166 |#1|))) (-15 -2018 ((-685 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -2430 ((-768) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -1965 ((-3 (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) "failed") (-918))) (-15 -3745 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) (-918)))) (-349)) (T -346)) -((-3745 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-3 (-1166 *4) (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1965 (*1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-5 *2 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) (-5 *1 (-346 *4)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114))) (-5 *1 (-346 *4))))) -(-10 -7 (-15 -3632 ((-955 (-1114)) (-1166 |#1|))) (-15 -1540 ((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) (-1166 |#1|))) (-15 -2018 ((-685 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -2430 ((-768) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -1965 ((-3 (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) "failed") (-918))) (-15 -3745 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) (-918)))) -((-1831 ((|#1| |#3|) 105) ((|#3| |#1|) 88))) -(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -1831 (|#3| |#1|)) (-15 -1831 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347)) -((-1831 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-1831 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4))))) -(-10 -7 (-15 -1831 (|#3| |#1|)) (-15 -1831 (|#1| |#3|))) -((-4282 (((-112) $) 60)) (-2155 (((-830 (-918)) $) 23) (((-918) $) 66)) (-2619 (((-3 $ "failed") $) 18)) (-2884 (($) 9)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 116)) (-1820 (((-3 (-768) "failed") $ $) 94) (((-768) $) 81)) (-3534 (($ $ (-768)) NIL) (($ $) 8)) (-3297 (($) 53)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 38)) (-4018 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-348 |#1|) (-10 -8 (-15 -2155 ((-918) |#1|)) (-15 -1820 ((-768) |#1|)) (-15 -4282 ((-112) |#1|)) (-15 -3297 (|#1|)) (-15 -4160 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -4018 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -1820 ((-3 (-768) "failed") |#1| |#1|)) (-15 -2155 ((-830 (-918)) |#1|)) (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-349)) (T -348)) -NIL -(-10 -8 (-15 -2155 ((-918) |#1|)) (-15 -1820 ((-768) |#1|)) (-15 -4282 ((-112) |#1|)) (-15 -3297 (|#1|)) (-15 -4160 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -4018 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -1820 ((-3 (-768) "failed") |#1| |#1|)) (-15 -2155 ((-830 (-918)) |#1|)) (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-3967 (((-1182 (-918) (-768)) (-564)) 94)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3554 (((-112) $ $) 60)) (-3267 (((-768)) 104)) (-1778 (($) 17 T CONST)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-2900 (($) 107)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1830 (($) 92)) (-4282 (((-112) $) 91)) (-3340 (($ $) 80) (($ $ (-768)) 79)) (-1420 (((-112) $) 72)) (-2155 (((-830 (-918)) $) 82) (((-918) $) 89)) (-2949 (((-112) $) 31)) (-2619 (((-3 $ "failed") $) 103)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1811 (((-918) $) 106)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2884 (($) 102 T CONST)) (-1468 (($ (-918)) 105)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 95)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1820 (((-3 (-768) "failed") $ $) 81) (((-768) $) 90)) (-3534 (($ $ (-768)) 100) (($ $) 98)) (-3297 (($) 93)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 96)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-4018 (((-3 $ "failed") $) 83) (($ $) 97)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-768)) 101) (($ $) 99)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 66)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +((-2232 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767)))) (-3447 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767)))) (-4135 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2678 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4099 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4350 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4350 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-1603 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3493 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3493 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2882 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2800 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2800 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2112 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1737 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-1831 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3461 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1572 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1956 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-3013 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-1983 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))) (-2247 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2247 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-4353 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-3995 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-2021 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-2876 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-641 (-948 *4))))) (-3787 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3)))))) +(-13 (-720 (-407 |t#2|) |t#3|) (-10 -8 (-15 -2232 ((-767))) (-15 -3447 ((-767))) (-15 -4135 ((-112))) (-15 -2678 ((-112) |t#1| |t#1|)) (-15 -4099 ((-112))) (-15 -4350 ((-112) |t#1|)) (-15 -4350 ((-112) |t#2|)) (-15 -1603 ((-112))) (-15 -3493 ((-112) |t#1|)) (-15 -3493 ((-112) |t#2|)) (-15 -2882 ((-112))) (-15 -2800 ((-112) |t#1|)) (-15 -2800 ((-112) |t#2|)) (-15 -2112 ((-1259 $))) (-15 -1737 ((-1259 $))) (-15 -2471 ((-112) $)) (-15 -2247 ((-112) $)) (-15 -3619 ((-1259 $) (-1259 $))) (-15 -1535 ((-1259 $) (-1259 $))) (-15 -2045 ((-1259 $) (-1259 $))) (-15 -1831 ((-685 (-407 |t#2|)))) (-15 -3461 ((-685 (-407 |t#2|)))) (-15 -1572 ((-685 (-407 |t#2|)))) (-15 -1956 ((-685 (-407 |t#2|)))) (-15 -4246 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3013 ($ (-1259 |t#2|) |t#2|)) (-15 -4146 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1983 ($ (-1259 |t#2|) |t#2|)) (-15 -4111 ((-2 (|:| |num| (-685 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2247 ((-112) $ |t#1|)) (-15 -2247 ((-112) $ |t#2|)) (-15 -1343 ($ $ (-1 |t#2| |t#2|))) (-15 -2520 ($ $)) (-15 -4353 (|t#1| $ |t#1| |t#1|)) (-15 -3995 ((-3 |t#2| "failed"))) (-15 -2021 ((-3 |t#2| "failed"))) (-15 -2876 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1899 ((-641 (-948 |t#1|)) (-1170))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -3787 ((-641 (-641 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -2789 (|has| (-407 |#2|) (-1034 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-858)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -2789 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -2789 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 $) . T) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-713 #0#) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-713 #1#) . T) ((-713 $) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-720 #1# |#3|) . T) ((-722) . T) ((-896 (-1170)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) ((-916) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1034 (-407 (-564))) |has| (-407 |#2|) (-1034 (-407 (-564)))) ((-1034 #1#) . T) ((-1034 (-564)) |has| (-407 |#2|) (-1034 (-564))) ((-1051 #0#) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| (-407 |#2|) (-349)) ((-1213) -2789 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-906 |#1|) (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-906 |#1|) "failed") $) NIL)) (-1781 (((-906 |#1|) $) NIL)) (-3013 (($ (-1259 (-906 |#1|))) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-906 |#1|) (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| (-906 |#1|) (-368)))) (-3261 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| (-906 |#1|) (-368)))) (-4124 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2019 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 (-906 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1368 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2325 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-1350 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1166 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3696 (($ $ (-1166 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-2682 (((-954 (-1114))) NIL)) (-4095 (($) NIL (|has| (-906 |#1|) (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-906 |#1|) (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 (-906 |#1|))) NIL)) (-3107 (($) NIL (|has| (-906 |#1|) (-368)))) (-2439 (($) NIL (|has| (-906 |#1|) (-368)))) (-3864 (((-1259 (-906 |#1|)) $) NIL) (((-685 (-906 |#1|)) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-906 |#1|) (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-906 |#1|)) NIL)) (-2409 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3917 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) +(((-343 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -2682 ((-954 (-1114)))))) (-917) (-917)) (T -343)) +((-2682 (*1 *2) (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -2682 ((-954 (-1114)))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 59)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) 57 (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 144)) (-1781 ((|#1| $) 115)) (-3013 (($ (-1259 |#1|)) 132)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) 126 (|has| |#1| (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) 162 (|has| |#1| (-368)))) (-3261 (((-112) $) 67 (|has| |#1| (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) 61 (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) 63)) (-2272 (($) 164 (|has| |#1| (-368)))) (-4124 (((-112) $) NIL (|has| |#1| (-368)))) (-2019 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 |#1|) $) 119) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1368 (((-917) $) 174 (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 181)) (-3346 (($) NIL (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) 99 (|has| |#1| (-368)))) (-3193 (((-112) $) 149)) (-3840 (((-1114) $) NIL)) (-2682 (((-954 (-1114))) 58)) (-4095 (($) 160 (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 121 (|has| |#1| (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) 93) (((-917)) 94)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) 163 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 156 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 |#1|)) 124)) (-3107 (($) 161 (|has| |#1| (-368)))) (-2439 (($) 169 (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) 78) (((-685 |#1|) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2409 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) 171 T CONST)) (-3342 (((-1259 $)) 146) (((-1259 $) (-917)) 101)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) 68 T CONST)) (-2403 (($) 106 T CONST)) (-3053 (($ $) 110 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3917 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2921 (((-112) $ $) 66)) (-3034 (($ $ $) 179) (($ $ |#1|) 180)) (-3021 (($ $) 159) (($ $ $) NIL)) (-3011 (($ $ $) 87)) (** (($ $ (-917)) 183) (($ $ (-767)) 184) (($ $ (-564)) 182)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178))) +(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2682 ((-954 (-1114)))))) (-349) (-1166 |#1|)) (T -344)) +((-2682 (*1 *2) (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1166 *3))))) +(-13 (-329 |#1|) (-10 -7 (-15 -2682 ((-954 (-1114)))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-3013 (($ (-1259 |#1|)) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| |#1| (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| |#1| (-368)))) (-3261 (((-112) $) NIL (|has| |#1| (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| |#1| (-368)))) (-4124 (((-112) $) NIL (|has| |#1| (-368)))) (-2019 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-2682 (((-954 (-1114))) NIL)) (-4095 (($) NIL (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| |#1| (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 |#1|)) NIL)) (-3107 (($) NIL (|has| |#1| (-368)))) (-2439 (($) NIL (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2409 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3917 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2682 ((-954 (-1114)))))) (-349) (-917)) (T -345)) +((-2682 (*1 *2) (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) +(-13 (-329 |#1|) (-10 -7 (-15 -2682 ((-954 (-1114)))))) +((-3479 (((-767) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) 61)) (-3091 (((-954 (-1114)) (-1166 |#1|)) 118)) (-3655 (((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) (-1166 |#1|)) 105)) (-1641 (((-685 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) 120)) (-2337 (((-3 (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) "failed") (-917)) 13)) (-2795 (((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) (-917)) 18))) +(((-346 |#1|) (-10 -7 (-15 -3091 ((-954 (-1114)) (-1166 |#1|))) (-15 -3655 ((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) (-1166 |#1|))) (-15 -1641 ((-685 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -3479 ((-767) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -2337 ((-3 (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) "failed") (-917))) (-15 -2795 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) (-917)))) (-349)) (T -346)) +((-2795 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1166 *4) (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2337 (*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) (-5 *1 (-346 *4)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1114))) (-5 *1 (-346 *4))))) +(-10 -7 (-15 -3091 ((-954 (-1114)) (-1166 |#1|))) (-15 -3655 ((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) (-1166 |#1|))) (-15 -1641 ((-685 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -3479 ((-767) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -2337 ((-3 (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) "failed") (-917))) (-15 -2795 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) (-917)))) +((-2322 ((|#1| |#3|) 105) ((|#3| |#1|) 88))) +(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -2322 (|#3| |#1|)) (-15 -2322 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347)) +((-2322 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-2322 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4))))) +(-10 -7 (-15 -2322 (|#3| |#1|)) (-15 -2322 (|#1| |#3|))) +((-3261 (((-112) $) 60)) (-3717 (((-829 (-917)) $) 23) (((-917) $) 66)) (-1620 (((-3 $ "failed") $) 18)) (-3346 (($) 9)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 116)) (-3337 (((-3 (-767) "failed") $ $) 94) (((-767) $) 81)) (-1343 (($ $ (-767)) NIL) (($ $) 8)) (-3107 (($) 53)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 38)) (-2409 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-348 |#1|) (-10 -8 (-15 -3717 ((-917) |#1|)) (-15 -3337 ((-767) |#1|)) (-15 -3261 ((-112) |#1|)) (-15 -3107 (|#1|)) (-15 -1381 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2409 (|#1| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -3337 ((-3 (-767) "failed") |#1| |#1|)) (-15 -3717 ((-829 (-917)) |#1|)) (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-349)) (T -348)) +NIL +(-10 -8 (-15 -3717 ((-917) |#1|)) (-15 -3337 ((-767) |#1|)) (-15 -3261 ((-112) |#1|)) (-15 -3107 (|#1|)) (-15 -1381 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2409 (|#1| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -3337 ((-3 (-767) "failed") |#1| |#1|)) (-15 -3717 ((-829 (-917)) |#1|)) (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-3109 (((-1182 (-917) (-767)) (-564)) 94)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-3547 (((-112) $ $) 60)) (-1959 (((-767)) 104)) (-4157 (($) 17 T CONST)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-3860 (($) 107)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-3422 (($) 92)) (-3261 (((-112) $) 91)) (-2180 (($ $) 80) (($ $ (-767)) 79)) (-4229 (((-112) $) 72)) (-3717 (((-829 (-917)) $) 82) (((-917) $) 89)) (-1828 (((-112) $) 31)) (-1620 (((-3 $ "failed") $) 103)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1368 (((-917) $) 106)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3346 (($) 102 T CONST)) (-1998 (($ (-917)) 105)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 95)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3337 (((-3 (-767) "failed") $ $) 81) (((-767) $) 90)) (-1343 (($ $ (-767)) 100) (($ $) 98)) (-3107 (($) 93)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 96)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-2409 (((-3 $ "failed") $) 83) (($ $) 97)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-767)) 101) (($ $) 99)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 66)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-349) (-140)) (T -349)) -((-4018 (*1 *1 *1) (-4 *1 (-349))) (-4160 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) (-1520 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))))) (-3967 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768))))) (-3297 (*1 *1) (-4 *1 (-349))) (-1830 (*1 *1) (-4 *1 (-349))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918)))) (-2870 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-402) (-368) (-1145) (-233) (-10 -8 (-15 -4018 ($ $)) (-15 -4160 ((-3 (-1259 $) "failed") (-685 $))) (-15 -1520 ((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564)))))) (-15 -3967 ((-1182 (-918) (-768)) (-564))) (-15 -3297 ($)) (-15 -1830 ($)) (-15 -4282 ((-112) $)) (-15 -1820 ((-768) $)) (-15 -2155 ((-918) $)) (-15 -2870 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T)) -((-1509 (((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|) 57)) (-2359 (((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 55))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -2359 ((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -1509 ((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -350)) -((-1509 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2359 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(-10 -7 (-15 -2359 ((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -1509 ((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2430 (((-768)) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-907 |#1|) "failed") $) NIL)) (-2237 (((-907 |#1|) $) NIL)) (-3624 (($ (-1259 (-907 |#1|))) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-907 |#1|) (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| (-907 |#1|) (-368)))) (-4282 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| (-907 |#1|) (-368)))) (-2370 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3797 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1811 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-3696 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-2402 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-1372 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1792 (((-1259 (-641 (-2 (|:| -1522 (-907 |#1|)) (|:| -1468 (-1114)))))) NIL)) (-2616 (((-685 (-907 |#1|))) NIL)) (-1426 (($) NIL (|has| (-907 |#1|) (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 (-907 |#1|))) NIL)) (-3297 (($) NIL (|has| (-907 |#1|) (-368)))) (-1974 (($) NIL (|has| (-907 |#1|) (-368)))) (-2467 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4018 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3435 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL))) -(((-351 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -1792 ((-1259 (-641 (-2 (|:| -1522 (-907 |#1|)) (|:| -1468 (-1114))))))) (-15 -2616 ((-685 (-907 |#1|)))) (-15 -2430 ((-768))))) (-918) (-918)) (T -351)) -((-1792 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1522 (-907 *3)) (|:| -1468 (-1114)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2616 (*1 *2) (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2430 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918))))) -(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -1792 ((-1259 (-641 (-2 (|:| -1522 (-907 |#1|)) (|:| -1468 (-1114))))))) (-15 -2616 ((-685 (-907 |#1|)))) (-15 -2430 ((-768))))) -((-1817 (((-112) $ $) 76)) (-1615 (((-112) $) 90)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 ((|#1| $) 108) (($ $ (-918)) 106 (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) 177 (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2430 (((-768)) 105)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) 193 (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 130)) (-2237 ((|#1| $) 107)) (-3624 (($ (-1259 |#1|)) 74)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) 189 (|has| |#1| (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) 178 (|has| |#1| (-368)))) (-4282 (((-112) $) NIL (|has| |#1| (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) 116 (|has| |#1| (-368)))) (-2370 (((-112) $) 206 (|has| |#1| (-368)))) (-3797 ((|#1| $) 110) (($ $ (-918)) 109 (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 |#1|) $) 220) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1811 (((-918) $) 154 (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) 89 (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) 85 (|has| |#1| (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 224)) (-2884 (($) NIL (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) 157 (|has| |#1| (-368)))) (-1927 (((-112) $) 126)) (-2780 (((-1114) $) NIL)) (-1792 (((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) 99)) (-2616 (((-685 |#1|)) 103)) (-1426 (($) 112 (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 180 (|has| |#1| (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) 181)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) 78)) (-3019 (((-1166 |#1|)) 182)) (-3297 (($) 153 (|has| |#1| (-368)))) (-1974 (($) NIL (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) 124) (((-685 |#1|) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-4018 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) 187 T CONST)) (-3331 (((-1259 $)) 203) (((-1259 $) (-918)) 119)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) 140 T CONST)) (-1300 (($) 44 T CONST)) (-3962 (($ $) 125 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-3435 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1702 (((-112) $ $) 214)) (-1823 (($ $ $) 122) (($ $ |#1|) 123)) (-1808 (($ $) 208) (($ $ $) 212)) (-1797 (($ $ $) 210)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 159)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) -(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1792 ((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -2616 ((-685 |#1|))) (-15 -2430 ((-768))))) (-349) (-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (T -352)) -((-1792 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) (-2616 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114))))))))) (-2430 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114)))))))))) -(-13 (-329 |#1|) (-10 -7 (-15 -1792 ((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -2616 ((-685 |#1|))) (-15 -2430 ((-768))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2430 (((-768)) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-3624 (($ (-1259 |#1|)) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| |#1| (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| |#1| (-368)))) (-4282 (((-112) $) NIL (|has| |#1| (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| |#1| (-368)))) (-2370 (((-112) $) NIL (|has| |#1| (-368)))) (-3797 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1792 (((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114)))))) NIL)) (-2616 (((-685 |#1|)) NIL)) (-1426 (($) NIL (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| |#1| (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 |#1|)) NIL)) (-3297 (($) NIL (|has| |#1| (-368)))) (-1974 (($) NIL (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4018 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3435 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1792 ((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -2616 ((-685 |#1|))) (-15 -2430 ((-768))))) (-349) (-918)) (T -353)) -((-1792 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-2616 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-2430 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918))))) -(-13 (-329 |#1|) (-10 -7 (-15 -1792 ((-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))))) (-15 -2616 ((-685 |#1|))) (-15 -2430 ((-768))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-907 |#1|) "failed") $) NIL)) (-2237 (((-907 |#1|) $) NIL)) (-3624 (($ (-1259 (-907 |#1|))) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-907 |#1|) (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| (-907 |#1|) (-368)))) (-4282 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| (-907 |#1|) (-368)))) (-2370 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3797 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1811 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-3696 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-2402 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-1372 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1426 (($) NIL (|has| (-907 |#1|) (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 (-907 |#1|))) NIL)) (-3297 (($) NIL (|has| (-907 |#1|) (-368)))) (-1974 (($) NIL (|has| (-907 |#1|) (-368)))) (-2467 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4018 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3435 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-329 (-907 |#1|)) (-918) (-918)) (T -354)) -NIL -(-329 (-907 |#1|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) 135 (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) 164 (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 109)) (-2237 ((|#1| $) 106)) (-3624 (($ (-1259 |#1|)) 101)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) 98 (|has| |#1| (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) 51 (|has| |#1| (-368)))) (-4282 (((-112) $) NIL (|has| |#1| (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) 136 (|has| |#1| (-368)))) (-2370 (((-112) $) 90 (|has| |#1| (-368)))) (-3797 ((|#1| $) 47) (($ $ (-918)) 52 (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 |#1|) $) 79) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1811 (((-918) $) 113 (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) 111 (|has| |#1| (-368)))) (-1927 (((-112) $) 166)) (-2780 (((-1114) $) NIL)) (-1426 (($) 44 (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 130 (|has| |#1| (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) 163)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) 71)) (-3019 (((-1166 |#1|)) 104)) (-3297 (($) 141 (|has| |#1| (-368)))) (-1974 (($) NIL (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) 66) (((-685 |#1|) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) 162) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-4018 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) 168 T CONST)) (-3331 (((-1259 $)) 125) (((-1259 $) (-918)) 60)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) 127 T CONST)) (-1300 (($) 40 T CONST)) (-3962 (($ $) 82 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3435 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1702 (((-112) $ $) 123)) (-1823 (($ $ $) 115) (($ $ |#1|) 116)) (-1808 (($ $) 96) (($ $ $) 121)) (-1797 (($ $ $) 119)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55) (($ $ (-564)) 145)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) +((-2409 (*1 *1 *1) (-4 *1 (-349))) (-1381 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) (-3456 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))))) (-3109 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-917) (-767))))) (-3107 (*1 *1) (-4 *1 (-349))) (-3422 (*1 *1) (-4 *1 (-349))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) (-2243 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-402) (-368) (-1145) (-233) (-10 -8 (-15 -2409 ($ $)) (-15 -1381 ((-3 (-1259 $) "failed") (-685 $))) (-15 -3456 ((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564)))))) (-15 -3109 ((-1182 (-917) (-767)) (-564))) (-15 -3107 ($)) (-15 -3422 ($)) (-15 -3261 ((-112) $)) (-15 -3337 ((-767) $)) (-15 -3717 ((-917) $)) (-15 -2243 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T)) +((-3370 (((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|) 57)) (-2112 (((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 55))) +(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -2112 ((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -3370 ((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -350)) +((-3370 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2112 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(-10 -7 (-15 -2112 ((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -3370 ((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-906 |#1|) (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3479 (((-767)) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-906 |#1|) "failed") $) NIL)) (-1781 (((-906 |#1|) $) NIL)) (-3013 (($ (-1259 (-906 |#1|))) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-906 |#1|) (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| (-906 |#1|) (-368)))) (-3261 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| (-906 |#1|) (-368)))) (-4124 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2019 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 (-906 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1368 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2325 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-1350 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1166 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3696 (($ $ (-1166 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4303 (((-1259 (-641 (-2 (|:| -2053 (-906 |#1|)) (|:| -1998 (-1114)))))) NIL)) (-1583 (((-685 (-906 |#1|))) NIL)) (-4095 (($) NIL (|has| (-906 |#1|) (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-906 |#1|) (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 (-906 |#1|))) NIL)) (-3107 (($) NIL (|has| (-906 |#1|) (-368)))) (-2439 (($) NIL (|has| (-906 |#1|) (-368)))) (-3864 (((-1259 (-906 |#1|)) $) NIL) (((-685 (-906 |#1|)) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-906 |#1|) (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-906 |#1|)) NIL)) (-2409 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3917 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) +(((-351 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -4303 ((-1259 (-641 (-2 (|:| -2053 (-906 |#1|)) (|:| -1998 (-1114))))))) (-15 -1583 ((-685 (-906 |#1|)))) (-15 -3479 ((-767))))) (-917) (-917)) (T -351)) +((-4303 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2053 (-906 *3)) (|:| -1998 (-1114)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1583 (*1 *2) (-12 (-5 *2 (-685 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3479 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -4303 ((-1259 (-641 (-2 (|:| -2053 (-906 |#1|)) (|:| -1998 (-1114))))))) (-15 -1583 ((-685 (-906 |#1|)))) (-15 -3479 ((-767))))) +((-2310 (((-112) $ $) 76)) (-3264 (((-112) $) 90)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 ((|#1| $) 108) (($ $ (-917)) 106 (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) 177 (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3479 (((-767)) 105)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) 193 (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 130)) (-1781 ((|#1| $) 107)) (-3013 (($ (-1259 |#1|)) 74)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) 189 (|has| |#1| (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) 178 (|has| |#1| (-368)))) (-3261 (((-112) $) NIL (|has| |#1| (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) 116 (|has| |#1| (-368)))) (-4124 (((-112) $) 206 (|has| |#1| (-368)))) (-2019 ((|#1| $) 110) (($ $ (-917)) 109 (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 |#1|) $) 220) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1368 (((-917) $) 154 (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) 89 (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) 85 (|has| |#1| (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 224)) (-3346 (($) NIL (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) 157 (|has| |#1| (-368)))) (-3193 (((-112) $) 126)) (-3840 (((-1114) $) NIL)) (-4303 (((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) 99)) (-1583 (((-685 |#1|)) 103)) (-4095 (($) 112 (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 180 (|has| |#1| (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) 181)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) 78)) (-2400 (((-1166 |#1|)) 182)) (-3107 (($) 153 (|has| |#1| (-368)))) (-2439 (($) NIL (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) 124) (((-685 |#1|) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-2409 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) 187 T CONST)) (-3342 (((-1259 $)) 203) (((-1259 $) (-917)) 119)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) 140 T CONST)) (-2403 (($) 44 T CONST)) (-3053 (($ $) 125 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-3917 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2921 (((-112) $ $) 214)) (-3034 (($ $ $) 122) (($ $ |#1|) 123)) (-3021 (($ $) 208) (($ $ $) 212)) (-3011 (($ $ $) 210)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 159)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) +(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -4303 ((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -1583 ((-685 |#1|))) (-15 -3479 ((-767))))) (-349) (-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (T -352)) +((-4303 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) (-1583 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114))))))))) (-3479 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114)))))))))) +(-13 (-329 |#1|) (-10 -7 (-15 -4303 ((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -1583 ((-685 |#1|))) (-15 -3479 ((-767))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3479 (((-767)) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-3013 (($ (-1259 |#1|)) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| |#1| (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| |#1| (-368)))) (-3261 (((-112) $) NIL (|has| |#1| (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| |#1| (-368)))) (-4124 (((-112) $) NIL (|has| |#1| (-368)))) (-2019 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4303 (((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114)))))) NIL)) (-1583 (((-685 |#1|)) NIL)) (-4095 (($) NIL (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| |#1| (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 |#1|)) NIL)) (-3107 (($) NIL (|has| |#1| (-368)))) (-2439 (($) NIL (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2409 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3917 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -4303 ((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -1583 ((-685 |#1|))) (-15 -3479 ((-767))))) (-349) (-917)) (T -353)) +((-4303 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-1583 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-3479 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) +(-13 (-329 |#1|) (-10 -7 (-15 -4303 ((-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))))) (-15 -1583 ((-685 |#1|))) (-15 -3479 ((-767))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-906 |#1|) (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-906 |#1|) "failed") $) NIL)) (-1781 (((-906 |#1|) $) NIL)) (-3013 (($ (-1259 (-906 |#1|))) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-906 |#1|) (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| (-906 |#1|) (-368)))) (-3261 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| (-906 |#1|) (-368)))) (-4124 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2019 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 (-906 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1368 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2325 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-1350 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1166 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3696 (($ $ (-1166 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4095 (($) NIL (|has| (-906 |#1|) (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-906 |#1|) (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 (-906 |#1|))) NIL)) (-3107 (($) NIL (|has| (-906 |#1|) (-368)))) (-2439 (($) NIL (|has| (-906 |#1|) (-368)))) (-3864 (((-1259 (-906 |#1|)) $) NIL) (((-685 (-906 |#1|)) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-906 |#1|) (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-906 |#1|)) NIL)) (-2409 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3917 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-329 (-906 |#1|)) (-917) (-917)) (T -354)) +NIL +(-329 (-906 |#1|)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) 135 (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) 164 (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 109)) (-1781 ((|#1| $) 106)) (-3013 (($ (-1259 |#1|)) 101)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) 98 (|has| |#1| (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) 51 (|has| |#1| (-368)))) (-3261 (((-112) $) NIL (|has| |#1| (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) 136 (|has| |#1| (-368)))) (-4124 (((-112) $) 90 (|has| |#1| (-368)))) (-2019 ((|#1| $) 47) (($ $ (-917)) 52 (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 |#1|) $) 79) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1368 (((-917) $) 113 (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) 111 (|has| |#1| (-368)))) (-3193 (((-112) $) 166)) (-3840 (((-1114) $) NIL)) (-4095 (($) 44 (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 130 (|has| |#1| (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) 163)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) 71)) (-2400 (((-1166 |#1|)) 104)) (-3107 (($) 141 (|has| |#1| (-368)))) (-2439 (($) NIL (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) 66) (((-685 |#1|) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) 162) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2409 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) 168 T CONST)) (-3342 (((-1259 $)) 125) (((-1259 $) (-917)) 60)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) 127 T CONST)) (-2403 (($) 40 T CONST)) (-3053 (($ $) 82 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3917 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2921 (((-112) $ $) 123)) (-3034 (($ $ $) 115) (($ $ |#1|) 116)) (-3021 (($ $) 96) (($ $ $) 121)) (-3011 (($ $ $) 119)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55) (($ $ (-564)) 145)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) (((-355 |#1| |#2|) (-329 |#1|) (-349) (-1166 |#1|)) (T -355)) NIL (-329 |#1|) -((-2389 ((|#1| (-1166 |#2|)) 65))) -(((-356 |#1| |#2|) (-10 -7 (-15 -2389 (|#1| (-1166 |#2|)))) (-13 (-402) (-10 -7 (-15 -1831 (|#1| |#2|)) (-15 -1811 ((-918) |#1|)) (-15 -3331 ((-1259 |#1|) (-918))) (-15 -3962 (|#1| |#1|)))) (-349)) (T -356)) -((-2389 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -1831 (*2 *4)) (-15 -1811 ((-918) *2)) (-15 -3331 ((-1259 *2) (-918))) (-15 -3962 (*2 *2))))) (-5 *1 (-356 *2 *4))))) -(-10 -7 (-15 -2389 (|#1| (-1166 |#2|)))) -((-3278 (((-955 (-1166 |#1|)) (-1166 |#1|)) 53)) (-2900 (((-1166 |#1|) (-918) (-918)) 164) (((-1166 |#1|) (-918)) 161)) (-4282 (((-112) (-1166 |#1|)) 119)) (-3783 (((-918) (-918)) 98)) (-1432 (((-918) (-918)) 105)) (-3400 (((-918) (-918)) 96)) (-2370 (((-112) (-1166 |#1|)) 123)) (-2886 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 146)) (-2346 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 151)) (-2552 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 150)) (-1708 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 149)) (-2179 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 142)) (-3836 (((-1166 |#1|) (-1166 |#1|)) 84)) (-2635 (((-1166 |#1|) (-918)) 156)) (-3841 (((-1166 |#1|) (-918)) 159)) (-1650 (((-1166 |#1|) (-918)) 158)) (-2254 (((-1166 |#1|) (-918)) 157)) (-2442 (((-1166 |#1|) (-918)) 154))) -(((-357 |#1|) (-10 -7 (-15 -4282 ((-112) (-1166 |#1|))) (-15 -2370 ((-112) (-1166 |#1|))) (-15 -3400 ((-918) (-918))) (-15 -3783 ((-918) (-918))) (-15 -1432 ((-918) (-918))) (-15 -2442 ((-1166 |#1|) (-918))) (-15 -2635 ((-1166 |#1|) (-918))) (-15 -2254 ((-1166 |#1|) (-918))) (-15 -1650 ((-1166 |#1|) (-918))) (-15 -3841 ((-1166 |#1|) (-918))) (-15 -2179 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2886 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1708 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2552 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2346 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2900 ((-1166 |#1|) (-918))) (-15 -2900 ((-1166 |#1|) (-918) (-918))) (-15 -3836 ((-1166 |#1|) (-1166 |#1|))) (-15 -3278 ((-955 (-1166 |#1|)) (-1166 |#1|)))) (-349)) (T -357)) -((-3278 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1166 *4)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2900 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2346 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2552 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1708 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2886 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2179 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -4282 ((-112) (-1166 |#1|))) (-15 -2370 ((-112) (-1166 |#1|))) (-15 -3400 ((-918) (-918))) (-15 -3783 ((-918) (-918))) (-15 -1432 ((-918) (-918))) (-15 -2442 ((-1166 |#1|) (-918))) (-15 -2635 ((-1166 |#1|) (-918))) (-15 -2254 ((-1166 |#1|) (-918))) (-15 -1650 ((-1166 |#1|) (-918))) (-15 -3841 ((-1166 |#1|) (-918))) (-15 -2179 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2886 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1708 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2552 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2346 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2900 ((-1166 |#1|) (-918))) (-15 -2900 ((-1166 |#1|) (-918) (-918))) (-15 -3836 ((-1166 |#1|) (-1166 |#1|))) (-15 -3278 ((-955 (-1166 |#1|)) (-1166 |#1|)))) -((-2601 (((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|) 40))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2601 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -358)) -((-2601 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))) -(-10 -7 (-15 -2601 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-3624 (($ (-1259 |#1|)) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| |#1| (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| |#1| (-368)))) (-4282 (((-112) $) NIL (|has| |#1| (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| |#1| (-368)))) (-2370 (((-112) $) NIL (|has| |#1| (-368)))) (-3797 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-3696 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2402 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1372 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| |#1| (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1426 (($) NIL (|has| |#1| (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| |#1| (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 |#1|)) NIL)) (-3297 (($) NIL (|has| |#1| (-368)))) (-1974 (($) NIL (|has| |#1| (-368)))) (-2467 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4018 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3435 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-359 |#1| |#2|) (-329 |#1|) (-349) (-918)) (T -359)) +((-4325 ((|#1| (-1166 |#2|)) 65))) +(((-356 |#1| |#2|) (-10 -7 (-15 -4325 (|#1| (-1166 |#2|)))) (-13 (-402) (-10 -7 (-15 -2322 (|#1| |#2|)) (-15 -1368 ((-917) |#1|)) (-15 -3342 ((-1259 |#1|) (-917))) (-15 -3053 (|#1| |#1|)))) (-349)) (T -356)) +((-4325 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -2322 (*2 *4)) (-15 -1368 ((-917) *2)) (-15 -3342 ((-1259 *2) (-917))) (-15 -3053 (*2 *2))))) (-5 *1 (-356 *2 *4))))) +(-10 -7 (-15 -4325 (|#1| (-1166 |#2|)))) +((-2929 (((-954 (-1166 |#1|)) (-1166 |#1|)) 53)) (-3860 (((-1166 |#1|) (-917) (-917)) 164) (((-1166 |#1|) (-917)) 161)) (-3261 (((-112) (-1166 |#1|)) 119)) (-1856 (((-917) (-917)) 98)) (-4338 (((-917) (-917)) 105)) (-2668 (((-917) (-917)) 96)) (-4124 (((-112) (-1166 |#1|)) 123)) (-2424 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 146)) (-1997 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 151)) (-2226 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 150)) (-1623 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 149)) (-2787 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 142)) (-4290 (((-1166 |#1|) (-1166 |#1|)) 84)) (-1777 (((-1166 |#1|) (-917)) 156)) (-4333 (((-1166 |#1|) (-917)) 159)) (-2294 (((-1166 |#1|) (-917)) 158)) (-2240 (((-1166 |#1|) (-917)) 157)) (-3600 (((-1166 |#1|) (-917)) 154))) +(((-357 |#1|) (-10 -7 (-15 -3261 ((-112) (-1166 |#1|))) (-15 -4124 ((-112) (-1166 |#1|))) (-15 -2668 ((-917) (-917))) (-15 -1856 ((-917) (-917))) (-15 -4338 ((-917) (-917))) (-15 -3600 ((-1166 |#1|) (-917))) (-15 -1777 ((-1166 |#1|) (-917))) (-15 -2240 ((-1166 |#1|) (-917))) (-15 -2294 ((-1166 |#1|) (-917))) (-15 -4333 ((-1166 |#1|) (-917))) (-15 -2787 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2424 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1623 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2226 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1997 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3860 ((-1166 |#1|) (-917))) (-15 -3860 ((-1166 |#1|) (-917) (-917))) (-15 -4290 ((-1166 |#1|) (-1166 |#1|))) (-15 -2929 ((-954 (-1166 |#1|)) (-1166 |#1|)))) (-349)) (T -357)) +((-2929 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1166 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1166 *4)))) (-4290 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3860 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1997 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2226 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1623 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2424 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2787 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4333 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -3261 ((-112) (-1166 |#1|))) (-15 -4124 ((-112) (-1166 |#1|))) (-15 -2668 ((-917) (-917))) (-15 -1856 ((-917) (-917))) (-15 -4338 ((-917) (-917))) (-15 -3600 ((-1166 |#1|) (-917))) (-15 -1777 ((-1166 |#1|) (-917))) (-15 -2240 ((-1166 |#1|) (-917))) (-15 -2294 ((-1166 |#1|) (-917))) (-15 -4333 ((-1166 |#1|) (-917))) (-15 -2787 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2424 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1623 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2226 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1997 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3860 ((-1166 |#1|) (-917))) (-15 -3860 ((-1166 |#1|) (-917) (-917))) (-15 -4290 ((-1166 |#1|) (-1166 |#1|))) (-15 -2929 ((-954 (-1166 |#1|)) (-1166 |#1|)))) +((-2732 (((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|) 40))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2732 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -358)) +((-2732 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))) +(-10 -7 (-15 -2732 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-3013 (($ (-1259 |#1|)) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| |#1| (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| |#1| (-368)))) (-3261 (((-112) $) NIL (|has| |#1| (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| |#1| (-368)))) (-4124 (((-112) $) NIL (|has| |#1| (-368)))) (-2019 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-2325 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-1350 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3696 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| |#1| (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4095 (($) NIL (|has| |#1| (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| |#1| (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 |#1|)) NIL)) (-3107 (($) NIL (|has| |#1| (-368)))) (-2439 (($) NIL (|has| |#1| (-368)))) (-3864 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2409 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3917 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-359 |#1| |#2|) (-329 |#1|) (-349) (-917)) (T -359)) NIL (-329 |#1|) -((-1628 (((-112) (-641 (-949 |#1|))) 40)) (-4385 (((-641 (-949 |#1|)) (-641 (-949 |#1|))) 52)) (-3109 (((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|))) 47))) -(((-360 |#1| |#2|) (-10 -7 (-15 -1628 ((-112) (-641 (-949 |#1|)))) (-15 -3109 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -4385 ((-641 (-949 |#1|)) (-641 (-949 |#1|))))) (-452) (-641 (-1170))) (T -360)) -((-4385 (*1 *2 *2) (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-3109 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170)))))) -(-10 -7 (-15 -1628 ((-112) (-641 (-949 |#1|)))) (-15 -3109 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -4385 ((-641 (-949 |#1|)) (-641 (-949 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768) $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) 17)) (-1765 ((|#1| $ (-564)) NIL)) (-1767 (((-564) $ (-564)) NIL)) (-1934 (($ (-1 |#1| |#1|) $) 34)) (-3228 (($ (-1 (-564) (-564)) $) 26)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 28)) (-2780 (((-1114) $) NIL)) (-3840 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-564)))) $) 30)) (-3047 (($ $ $) NIL)) (-1992 (($ $ $) NIL)) (-1831 (((-859) $) 40) (($ |#1|) NIL)) (-1300 (($) 11 T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-361 |#1|) (-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -3267 ((-768) $)) (-15 -1767 ((-564) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3228 ($ (-1 (-564) (-564)) $)) (-15 -1934 ($ (-1 |#1| |#1|) $)) (-15 -3840 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-564)))) $)))) (-1094)) (T -361)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-1767 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-3228 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-1934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))) -(-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -3267 ((-768) $)) (-15 -1767 ((-564) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3228 ($ (-1 (-564) (-564)) $)) (-15 -1934 ($ (-1 |#1| |#1|) $)) (-15 -3840 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-564)))) $)))) -((-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 13)) (-1537 (($ $) 14)) (-3399 (((-418 $) $) 33)) (-1420 (((-112) $) 29)) (-3315 (($ $) 18)) (-2777 (($ $ $) 24) (($ (-641 $)) NIL)) (-3070 (((-418 $) $) 34)) (-1403 (((-3 $ "failed") $ $) 23)) (-3920 (((-768) $) 27)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 38)) (-3939 (((-112) $ $) 15)) (-1823 (($ $ $) 36))) -(((-362 |#1|) (-10 -8 (-15 -1823 (|#1| |#1| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -1922 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3920 ((-768) |#1|)) (-15 -2777 (|#1| (-641 |#1|))) (-15 -2777 (|#1| |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|)) (-15 -1537 (|#1| |#1|)) (-15 -3784 ((-2 (|:| -1674 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362)) -NIL -(-10 -8 (-15 -1823 (|#1| |#1| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -1922 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3920 ((-768) |#1|)) (-15 -2777 (|#1| (-641 |#1|))) (-15 -2777 (|#1| |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|)) (-15 -1537 (|#1| |#1|)) (-15 -3784 ((-2 (|:| -1674 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1420 (((-112) $) 72)) (-2949 (((-112) $) 31)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 66)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +((-2130 (((-112) (-641 (-948 |#1|))) 40)) (-1714 (((-641 (-948 |#1|)) (-641 (-948 |#1|))) 52)) (-2005 (((-3 (-641 (-948 |#1|)) "failed") (-641 (-948 |#1|))) 47))) +(((-360 |#1| |#2|) (-10 -7 (-15 -2130 ((-112) (-641 (-948 |#1|)))) (-15 -2005 ((-3 (-641 (-948 |#1|)) "failed") (-641 (-948 |#1|)))) (-15 -1714 ((-641 (-948 |#1|)) (-641 (-948 |#1|))))) (-452) (-641 (-1170))) (T -360)) +((-1714 (*1 *2 *2) (-12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-2005 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170)))))) +(-10 -7 (-15 -2130 ((-112) (-641 (-948 |#1|)))) (-15 -2005 ((-3 (-641 (-948 |#1|)) "failed") (-641 (-948 |#1|)))) (-15 -1714 ((-641 (-948 |#1|)) (-641 (-948 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767) $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) 17)) (-4047 ((|#1| $ (-564)) NIL)) (-4067 (((-564) $ (-564)) NIL)) (-3269 (($ (-1 |#1| |#1|) $) 34)) (-3692 (($ (-1 (-564) (-564)) $) 26)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 28)) (-3840 (((-1114) $) NIL)) (-4322 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-564)))) $) 30)) (-2675 (($ $ $) NIL)) (-2617 (($ $ $) NIL)) (-2322 (((-858) $) 40) (($ |#1|) NIL)) (-2403 (($) 11 T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-361 |#1|) (-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -1959 ((-767) $)) (-15 -4067 ((-564) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -3692 ($ (-1 (-564) (-564)) $)) (-15 -3269 ($ (-1 |#1| |#1|) $)) (-15 -4322 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-564)))) $)))) (-1094)) (T -361)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-4067 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-3269 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))) +(-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -1959 ((-767) $)) (-15 -4067 ((-564) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -3692 ($ (-1 (-564) (-564)) $)) (-15 -3269 ($ (-1 |#1| |#1|) $)) (-15 -4322 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-564)))) $)))) +((-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 13)) (-3622 (($ $) 14)) (-2657 (((-418 $) $) 33)) (-4229 (((-112) $) 29)) (-2639 (($ $) 18)) (-3235 (($ $ $) 24) (($ (-641 $)) NIL)) (-2375 (((-418 $) $) 34)) (-2526 (((-3 $ "failed") $ $) 23)) (-3844 (((-767) $) 27)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 38)) (-4024 (((-112) $ $) 15)) (-3034 (($ $ $) 36))) +(((-362 |#1|) (-10 -8 (-15 -3034 (|#1| |#1| |#1|)) (-15 -2639 (|#1| |#1|)) (-15 -4229 ((-112) |#1|)) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -3153 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3844 ((-767) |#1|)) (-15 -3235 (|#1| (-641 |#1|))) (-15 -3235 (|#1| |#1| |#1|)) (-15 -4024 ((-112) |#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -1864 ((-2 (|:| -2563 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362)) +NIL +(-10 -8 (-15 -3034 (|#1| |#1| |#1|)) (-15 -2639 (|#1| |#1|)) (-15 -4229 ((-112) |#1|)) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -3153 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3844 ((-767) |#1|)) (-15 -3235 (|#1| (-641 |#1|))) (-15 -3235 (|#1| |#1| |#1|)) (-15 -4024 ((-112) |#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -1864 ((-2 (|:| -2563 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-4229 (((-112) $) 72)) (-1828 (((-112) $) 31)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 66)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-363) (-140)) (T -363)) -((-1823 (*1 *1 *1 *1) (-4 *1 (-363)))) -(-13 (-307) (-1213) (-243) (-10 -8 (-15 -1823 ($ $ $)) (-6 -4404) (-6 -4398))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-1817 (((-112) $ $) 7)) (-3239 ((|#2| $ |#2|) 13)) (-1940 (($ $ (-1152)) 18)) (-3218 ((|#2| $) 14)) (-1669 (($ |#1|) 20) (($ |#1| (-1152)) 19)) (-1316 ((|#1| $) 16)) (-2723 (((-1152) $) 9)) (-3455 (((-1152) $) 15)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1846 (($ $) 17)) (-1702 (((-112) $ $) 6))) +((-3034 (*1 *1 *1 *1) (-4 *1 (-363)))) +(-13 (-307) (-1213) (-243) (-10 -8 (-15 -3034 ($ $ $)) (-6 -4404) (-6 -4398))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2310 (((-112) $ $) 7)) (-3799 ((|#2| $ |#2|) 13)) (-2096 (($ $ (-1152)) 18)) (-3603 ((|#2| $) 14)) (-4197 (($ |#1|) 20) (($ |#1| (-1152)) 19)) (-2420 ((|#1| $) 16)) (-1418 (((-1152) $) 9)) (-1920 (((-1152) $) 15)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-3566 (($ $) 17)) (-2921 (((-112) $ $) 6))) (((-364 |#1| |#2|) (-140) (-1094) (-1094)) (T -364)) -((-1669 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1669 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1846 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1152)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3239 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) -(-13 (-1094) (-10 -8 (-15 -1669 ($ |t#1|)) (-15 -1669 ($ |t#1| (-1152))) (-15 -1940 ($ $ (-1152))) (-15 -1846 ($ $)) (-15 -1316 (|t#1| $)) (-15 -3455 ((-1152) $)) (-15 -3218 (|t#2| $)) (-15 -3239 (|t#2| $ |t#2|)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-3239 ((|#1| $ |#1|) 31)) (-1940 (($ $ (-1152)) 23)) (-1460 (((-3 |#1| "failed") $) 30)) (-3218 ((|#1| $) 28)) (-1669 (($ (-388)) 22) (($ (-388) (-1152)) 21)) (-1316 (((-388) $) 25)) (-2723 (((-1152) $) NIL)) (-3455 (((-1152) $) 26)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 20)) (-1846 (($ $) 24)) (-1702 (((-112) $ $) 19))) -(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -1460 ((-3 |#1| "failed") $)))) (-1094)) (T -365)) -((-1460 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094))))) -(-13 (-364 (-388) |#1|) (-10 -8 (-15 -1460 ((-3 |#1| "failed") $)))) -((-1546 (((-1259 (-685 |#2|)) (-1259 $)) 70)) (-1911 (((-685 |#2|) (-1259 $)) 141)) (-2825 ((|#2| $) 39)) (-2050 (((-685 |#2|) $ (-1259 $)) 144)) (-2767 (((-3 $ "failed") $) 91)) (-2166 ((|#2| $) 42)) (-2878 (((-1166 |#2|) $) 99)) (-1476 ((|#2| (-1259 $)) 124)) (-1475 (((-1166 |#2|) $) 34)) (-2103 (((-112)) 118)) (-3624 (($ (-1259 |#2|) (-1259 $)) 134)) (-3733 (((-3 $ "failed") $) 95)) (-3001 (((-112)) 112)) (-3261 (((-112)) 107)) (-2130 (((-112)) 61)) (-2510 (((-685 |#2|) (-1259 $)) 139)) (-3385 ((|#2| $) 38)) (-2289 (((-685 |#2|) $ (-1259 $)) 143)) (-3874 (((-3 $ "failed") $) 89)) (-2873 ((|#2| $) 41)) (-4146 (((-1166 |#2|) $) 98)) (-3525 ((|#2| (-1259 $)) 122)) (-2582 (((-1166 |#2|) $) 32)) (-2628 (((-112)) 117)) (-3582 (((-112)) 109)) (-2317 (((-112)) 59)) (-2241 (((-112)) 104)) (-3740 (((-112)) 119)) (-2467 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 130)) (-2595 (((-112)) 115)) (-1488 (((-641 (-1259 |#2|))) 103)) (-1604 (((-112)) 116)) (-3830 (((-112)) 113)) (-3335 (((-112)) 54)) (-2921 (((-112)) 120))) -(((-366 |#1| |#2|) (-10 -8 (-15 -2878 ((-1166 |#2|) |#1|)) (-15 -4146 ((-1166 |#2|) |#1|)) (-15 -1488 ((-641 (-1259 |#2|)))) (-15 -2767 ((-3 |#1| "failed") |#1|)) (-15 -3874 ((-3 |#1| "failed") |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 -3261 ((-112))) (-15 -3582 ((-112))) (-15 -3001 ((-112))) (-15 -2317 ((-112))) (-15 -2130 ((-112))) (-15 -2241 ((-112))) (-15 -2921 ((-112))) (-15 -3740 ((-112))) (-15 -2103 ((-112))) (-15 -2628 ((-112))) (-15 -3335 ((-112))) (-15 -1604 ((-112))) (-15 -3830 ((-112))) (-15 -2595 ((-112))) (-15 -1475 ((-1166 |#2|) |#1|)) (-15 -2582 ((-1166 |#2|) |#1|)) (-15 -1911 ((-685 |#2|) (-1259 |#1|))) (-15 -2510 ((-685 |#2|) (-1259 |#1|))) (-15 -1476 (|#2| (-1259 |#1|))) (-15 -3525 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2166 (|#2| |#1|)) (-15 -2873 (|#2| |#1|)) (-15 -2825 (|#2| |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -2050 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2289 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1546 ((-1259 (-685 |#2|)) (-1259 |#1|)))) (-367 |#2|) (-172)) (T -366)) -((-2595 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3830 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1604 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3335 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2628 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2103 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3740 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2921 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2241 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2130 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2317 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3001 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3582 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3261 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1488 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) -(-10 -8 (-15 -2878 ((-1166 |#2|) |#1|)) (-15 -4146 ((-1166 |#2|) |#1|)) (-15 -1488 ((-641 (-1259 |#2|)))) (-15 -2767 ((-3 |#1| "failed") |#1|)) (-15 -3874 ((-3 |#1| "failed") |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 -3261 ((-112))) (-15 -3582 ((-112))) (-15 -3001 ((-112))) (-15 -2317 ((-112))) (-15 -2130 ((-112))) (-15 -2241 ((-112))) (-15 -2921 ((-112))) (-15 -3740 ((-112))) (-15 -2103 ((-112))) (-15 -2628 ((-112))) (-15 -3335 ((-112))) (-15 -1604 ((-112))) (-15 -3830 ((-112))) (-15 -2595 ((-112))) (-15 -1475 ((-1166 |#2|) |#1|)) (-15 -2582 ((-1166 |#2|) |#1|)) (-15 -1911 ((-685 |#2|) (-1259 |#1|))) (-15 -2510 ((-685 |#2|) (-1259 |#1|))) (-15 -1476 (|#2| (-1259 |#1|))) (-15 -3525 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2166 (|#2| |#1|)) (-15 -2873 (|#2| |#1|)) (-15 -2825 (|#2| |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -2050 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2289 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1546 ((-1259 (-685 |#2|)) (-1259 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-1674 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) 19)) (-1546 (((-1259 (-685 |#1|)) (-1259 $)) 78)) (-2294 (((-1259 $)) 81)) (-1778 (($) 17 T CONST)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-3868 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-1911 (((-685 |#1|) (-1259 $)) 65)) (-2825 ((|#1| $) 74)) (-2050 (((-685 |#1|) $ (-1259 $)) 76)) (-2767 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-4221 (($ $ (-918)) 28)) (-2166 ((|#1| $) 72)) (-2878 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-1476 ((|#1| (-1259 $)) 67)) (-1475 (((-1166 |#1|) $) 63)) (-2103 (((-112)) 57)) (-3624 (($ (-1259 |#1|) (-1259 $)) 69)) (-3733 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-3531 (((-918)) 80)) (-3628 (((-112)) 54)) (-2482 (($ $ (-918)) 33)) (-3001 (((-112)) 50)) (-3261 (((-112)) 48)) (-2130 (((-112)) 52)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-2302 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-2510 (((-685 |#1|) (-1259 $)) 66)) (-3385 ((|#1| $) 75)) (-2289 (((-685 |#1|) $ (-1259 $)) 77)) (-3874 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-2839 (($ $ (-918)) 29)) (-2873 ((|#1| $) 73)) (-4146 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3525 ((|#1| (-1259 $)) 68)) (-2582 (((-1166 |#1|) $) 64)) (-2628 (((-112)) 58)) (-2723 (((-1152) $) 9)) (-3582 (((-112)) 49)) (-2317 (((-112)) 51)) (-2241 (((-112)) 53)) (-2780 (((-1114) $) 10)) (-3740 (((-112)) 56)) (-2467 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70)) (-2852 (((-641 (-949 |#1|)) (-1259 $)) 79)) (-1992 (($ $ $) 25)) (-2595 (((-112)) 62)) (-1831 (((-859) $) 11)) (-1488 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-2611 (($ $ $ $) 26)) (-1604 (((-112)) 60)) (-1656 (($ $ $) 24)) (-3830 (((-112)) 61)) (-3335 (((-112)) 59)) (-2921 (((-112)) 55)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-4197 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4197 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-2096 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3566 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1152)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3799 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -4197 ($ |t#1|)) (-15 -4197 ($ |t#1| (-1152))) (-15 -2096 ($ $ (-1152))) (-15 -3566 ($ $)) (-15 -2420 (|t#1| $)) (-15 -1920 ((-1152) $)) (-15 -3603 (|t#2| $)) (-15 -3799 (|t#2| $ |t#2|)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3799 ((|#1| $ |#1|) 31)) (-2096 (($ $ (-1152)) 23)) (-4140 (((-3 |#1| "failed") $) 30)) (-3603 ((|#1| $) 28)) (-4197 (($ (-388)) 22) (($ (-388) (-1152)) 21)) (-2420 (((-388) $) 25)) (-1418 (((-1152) $) NIL)) (-1920 (((-1152) $) 26)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 20)) (-3566 (($ $) 24)) (-2921 (((-112) $ $) 19))) +(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -4140 ((-3 |#1| "failed") $)))) (-1094)) (T -365)) +((-4140 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094))))) +(-13 (-364 (-388) |#1|) (-10 -8 (-15 -4140 ((-3 |#1| "failed") $)))) +((-3727 (((-1259 (-685 |#2|)) (-1259 $)) 70)) (-3035 (((-685 |#2|) (-1259 $)) 141)) (-3063 ((|#2| $) 39)) (-1991 (((-685 |#2|) $ (-1259 $)) 144)) (-3706 (((-3 $ "failed") $) 91)) (-3845 ((|#2| $) 42)) (-2331 (((-1166 |#2|) $) 99)) (-4287 ((|#2| (-1259 $)) 124)) (-4276 (((-1166 |#2|) $) 34)) (-1335 (((-112)) 118)) (-3013 (($ (-1259 |#2|) (-1259 $)) 134)) (-2689 (((-3 $ "failed") $) 95)) (-2235 (((-112)) 112)) (-2809 (((-112)) 107)) (-3457 (((-112)) 61)) (-3065 (((-685 |#2|) (-1259 $)) 139)) (-2528 ((|#2| $) 38)) (-2645 (((-685 |#2|) $ (-1259 $)) 143)) (-1529 (((-3 $ "failed") $) 89)) (-2276 ((|#2| $) 41)) (-4339 (((-1166 |#2|) $) 98)) (-1400 ((|#2| (-1259 $)) 122)) (-2536 (((-1166 |#2|) $) 32)) (-1723 (((-112)) 117)) (-3816 (((-112)) 109)) (-1671 (((-112)) 59)) (-3353 (((-112)) 104)) (-2753 (((-112)) 119)) (-3864 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 130)) (-2676 (((-112)) 115)) (-1296 (((-641 (-1259 |#2|))) 103)) (-3148 (((-112)) 116)) (-4232 (((-112)) 113)) (-2145 (((-112)) 54)) (-2803 (((-112)) 120))) +(((-366 |#1| |#2|) (-10 -8 (-15 -2331 ((-1166 |#2|) |#1|)) (-15 -4339 ((-1166 |#2|) |#1|)) (-15 -1296 ((-641 (-1259 |#2|)))) (-15 -3706 ((-3 |#1| "failed") |#1|)) (-15 -1529 ((-3 |#1| "failed") |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 -2809 ((-112))) (-15 -3816 ((-112))) (-15 -2235 ((-112))) (-15 -1671 ((-112))) (-15 -3457 ((-112))) (-15 -3353 ((-112))) (-15 -2803 ((-112))) (-15 -2753 ((-112))) (-15 -1335 ((-112))) (-15 -1723 ((-112))) (-15 -2145 ((-112))) (-15 -3148 ((-112))) (-15 -4232 ((-112))) (-15 -2676 ((-112))) (-15 -4276 ((-1166 |#2|) |#1|)) (-15 -2536 ((-1166 |#2|) |#1|)) (-15 -3035 ((-685 |#2|) (-1259 |#1|))) (-15 -3065 ((-685 |#2|) (-1259 |#1|))) (-15 -4287 (|#2| (-1259 |#1|))) (-15 -1400 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3845 (|#2| |#1|)) (-15 -2276 (|#2| |#1|)) (-15 -3063 (|#2| |#1|)) (-15 -2528 (|#2| |#1|)) (-15 -1991 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2645 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3727 ((-1259 (-685 |#2|)) (-1259 |#1|)))) (-367 |#2|) (-172)) (T -366)) +((-2676 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4232 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3148 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2145 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1723 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1335 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2753 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2803 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3353 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3457 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1671 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2235 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3816 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2809 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1296 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) +(-10 -8 (-15 -2331 ((-1166 |#2|) |#1|)) (-15 -4339 ((-1166 |#2|) |#1|)) (-15 -1296 ((-641 (-1259 |#2|)))) (-15 -3706 ((-3 |#1| "failed") |#1|)) (-15 -1529 ((-3 |#1| "failed") |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 -2809 ((-112))) (-15 -3816 ((-112))) (-15 -2235 ((-112))) (-15 -1671 ((-112))) (-15 -3457 ((-112))) (-15 -3353 ((-112))) (-15 -2803 ((-112))) (-15 -2753 ((-112))) (-15 -1335 ((-112))) (-15 -1723 ((-112))) (-15 -2145 ((-112))) (-15 -3148 ((-112))) (-15 -4232 ((-112))) (-15 -2676 ((-112))) (-15 -4276 ((-1166 |#2|) |#1|)) (-15 -2536 ((-1166 |#2|) |#1|)) (-15 -3035 ((-685 |#2|) (-1259 |#1|))) (-15 -3065 ((-685 |#2|) (-1259 |#1|))) (-15 -4287 (|#2| (-1259 |#1|))) (-15 -1400 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3845 (|#2| |#1|)) (-15 -2276 (|#2| |#1|)) (-15 -3063 (|#2| |#1|)) (-15 -2528 (|#2| |#1|)) (-15 -1991 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2645 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3727 ((-1259 (-685 |#2|)) (-1259 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2563 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) 19)) (-3727 (((-1259 (-685 |#1|)) (-1259 $)) 78)) (-2691 (((-1259 $)) 81)) (-4157 (($) 17 T CONST)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-1485 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-3035 (((-685 |#1|) (-1259 $)) 65)) (-3063 ((|#1| $) 74)) (-1991 (((-685 |#1|) $ (-1259 $)) 76)) (-3706 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-3865 (($ $ (-917)) 28)) (-3845 ((|#1| $) 72)) (-2331 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-4287 ((|#1| (-1259 $)) 67)) (-4276 (((-1166 |#1|) $) 63)) (-1335 (((-112)) 57)) (-3013 (($ (-1259 |#1|) (-1259 $)) 69)) (-2689 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-3105 (((-917)) 80)) (-3055 (((-112)) 54)) (-3996 (($ $ (-917)) 33)) (-2235 (((-112)) 50)) (-2809 (((-112)) 48)) (-3457 (((-112)) 52)) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-1523 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-3065 (((-685 |#1|) (-1259 $)) 66)) (-2528 ((|#1| $) 75)) (-2645 (((-685 |#1|) $ (-1259 $)) 77)) (-1529 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-3200 (($ $ (-917)) 29)) (-2276 ((|#1| $) 73)) (-4339 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-1400 ((|#1| (-1259 $)) 68)) (-2536 (((-1166 |#1|) $) 64)) (-1723 (((-112)) 58)) (-1418 (((-1152) $) 9)) (-3816 (((-112)) 49)) (-1671 (((-112)) 51)) (-3353 (((-112)) 53)) (-3840 (((-1114) $) 10)) (-2753 (((-112)) 56)) (-3864 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70)) (-3328 (((-641 (-948 |#1|)) (-1259 $)) 79)) (-2617 (($ $ $) 25)) (-2676 (((-112)) 62)) (-2322 (((-858) $) 11)) (-1296 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-1553 (($ $ $ $) 26)) (-3148 (((-112)) 60)) (-2366 (($ $ $) 24)) (-4232 (((-112)) 61)) (-2145 (((-112)) 59)) (-2803 (((-112)) 55)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-367 |#1|) (-140) (-172)) (T -367)) -((-2294 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))) (-3531 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))))) (-2289 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2050 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 *4)))) (-2467 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-2595 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3830 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1604 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3335 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2628 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2103 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3740 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2921 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3628 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2241 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2130 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2317 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3001 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3582 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3261 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3733 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3874 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2767 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1488 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-641 (-1259 *3))))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-1907 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3331 (-641 *1)))) (-4 *1 (-367 *3)))) (-3353 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3331 (-641 *1)))) (-4 *1 (-367 *3)))) (-2302 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-3868 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1674 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) -(-13 (-741 |t#1|) (-10 -8 (-15 -2294 ((-1259 $))) (-15 -3531 ((-918))) (-15 -2852 ((-641 (-949 |t#1|)) (-1259 $))) (-15 -1546 ((-1259 (-685 |t#1|)) (-1259 $))) (-15 -2289 ((-685 |t#1|) $ (-1259 $))) (-15 -2050 ((-685 |t#1|) $ (-1259 $))) (-15 -3385 (|t#1| $)) (-15 -2825 (|t#1| $)) (-15 -2873 (|t#1| $)) (-15 -2166 (|t#1| $)) (-15 -2467 ((-1259 |t#1|) $ (-1259 $))) (-15 -2467 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3624 ($ (-1259 |t#1|) (-1259 $))) (-15 -3525 (|t#1| (-1259 $))) (-15 -1476 (|t#1| (-1259 $))) (-15 -2510 ((-685 |t#1|) (-1259 $))) (-15 -1911 ((-685 |t#1|) (-1259 $))) (-15 -2582 ((-1166 |t#1|) $)) (-15 -1475 ((-1166 |t#1|) $)) (-15 -2595 ((-112))) (-15 -3830 ((-112))) (-15 -1604 ((-112))) (-15 -3335 ((-112))) (-15 -2628 ((-112))) (-15 -2103 ((-112))) (-15 -3740 ((-112))) (-15 -2921 ((-112))) (-15 -3628 ((-112))) (-15 -2241 ((-112))) (-15 -2130 ((-112))) (-15 -2317 ((-112))) (-15 -3001 ((-112))) (-15 -3582 ((-112))) (-15 -3261 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -3733 ((-3 $ "failed") $)) (-15 -3874 ((-3 $ "failed") $)) (-15 -2767 ((-3 $ "failed") $)) (-15 -1488 ((-641 (-1259 |t#1|)))) (-15 -4146 ((-1166 |t#1|) $)) (-15 -2878 ((-1166 |t#1|) $)) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed"))) (-15 -3353 ((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed"))) (-15 -2302 ((-3 $ "failed"))) (-15 -3868 ((-3 $ "failed"))) (-15 -1674 ((-3 $ "failed"))) (-6 -4403)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-741 |#1|) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-3267 (((-768)) 16)) (-2900 (($) 13)) (-1811 (((-918) $) 14)) (-2723 (((-1152) $) 9)) (-1468 (($ (-918)) 15)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) +((-2691 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))) (-3105 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-641 (-948 *4))))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))))) (-2645 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 *4)))) (-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3013 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-2676 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4232 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3148 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2145 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1723 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1335 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2753 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2803 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3055 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3353 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3457 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1671 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2235 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3816 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2809 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2689 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1529 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3706 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1296 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-641 (-1259 *3))))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-3001 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3342 (-641 *1)))) (-4 *1 (-367 *3)))) (-2262 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3342 (-641 *1)))) (-4 *1 (-367 *3)))) (-1523 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1485 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2563 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) +(-13 (-740 |t#1|) (-10 -8 (-15 -2691 ((-1259 $))) (-15 -3105 ((-917))) (-15 -3328 ((-641 (-948 |t#1|)) (-1259 $))) (-15 -3727 ((-1259 (-685 |t#1|)) (-1259 $))) (-15 -2645 ((-685 |t#1|) $ (-1259 $))) (-15 -1991 ((-685 |t#1|) $ (-1259 $))) (-15 -2528 (|t#1| $)) (-15 -3063 (|t#1| $)) (-15 -2276 (|t#1| $)) (-15 -3845 (|t#1| $)) (-15 -3864 ((-1259 |t#1|) $ (-1259 $))) (-15 -3864 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3013 ($ (-1259 |t#1|) (-1259 $))) (-15 -1400 (|t#1| (-1259 $))) (-15 -4287 (|t#1| (-1259 $))) (-15 -3065 ((-685 |t#1|) (-1259 $))) (-15 -3035 ((-685 |t#1|) (-1259 $))) (-15 -2536 ((-1166 |t#1|) $)) (-15 -4276 ((-1166 |t#1|) $)) (-15 -2676 ((-112))) (-15 -4232 ((-112))) (-15 -3148 ((-112))) (-15 -2145 ((-112))) (-15 -1723 ((-112))) (-15 -1335 ((-112))) (-15 -2753 ((-112))) (-15 -2803 ((-112))) (-15 -3055 ((-112))) (-15 -3353 ((-112))) (-15 -3457 ((-112))) (-15 -1671 ((-112))) (-15 -2235 ((-112))) (-15 -3816 ((-112))) (-15 -2809 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -2689 ((-3 $ "failed") $)) (-15 -1529 ((-3 $ "failed") $)) (-15 -3706 ((-3 $ "failed") $)) (-15 -1296 ((-641 (-1259 |t#1|)))) (-15 -4339 ((-1166 |t#1|) $)) (-15 -2331 ((-1166 |t#1|) $)) (-15 -3001 ((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed"))) (-15 -2262 ((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed"))) (-15 -1523 ((-3 $ "failed"))) (-15 -1485 ((-3 $ "failed"))) (-15 -2563 ((-3 $ "failed"))) (-6 -4403)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-1959 (((-767)) 16)) (-3860 (($) 13)) (-1368 (((-917) $) 14)) (-1418 (((-1152) $) 9)) (-1998 (($ (-917)) 15)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) (((-368) (-140)) (T -368)) -((-3267 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918)))) (-2900 (*1 *1) (-4 *1 (-368)))) -(-13 (-1094) (-10 -8 (-15 -3267 ((-768))) (-15 -1468 ($ (-918))) (-15 -1811 ((-918) $)) (-15 -2900 ($)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-3390 (((-685 |#2|) (-1259 $)) 47)) (-3624 (($ (-1259 |#2|) (-1259 $)) 41)) (-4206 (((-685 |#2|) $ (-1259 $)) 49)) (-3190 ((|#2| (-1259 $)) 13)) (-2467 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 27))) -(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3390 ((-685 |#2|) (-1259 |#1|))) (-15 -3190 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4206 ((-685 |#2|) |#1| (-1259 |#1|)))) (-370 |#2| |#3|) (-172) (-1235 |#2|)) (T -369)) -NIL -(-10 -8 (-15 -3390 ((-685 |#2|) (-1259 |#1|))) (-15 -3190 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4206 ((-685 |#2|) |#1| (-1259 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3390 (((-685 |#1|) (-1259 $)) 47)) (-2713 ((|#1| $) 53)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3624 (($ (-1259 |#1|) (-1259 $)) 49)) (-4206 (((-685 |#1|) $ (-1259 $)) 54)) (-3733 (((-3 $ "failed") $) 33)) (-3531 (((-918)) 55)) (-2949 (((-112) $) 31)) (-3797 ((|#1| $) 52)) (-3774 ((|#2| $) 45 (|has| |#1| (-363)))) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3190 ((|#1| (-1259 $)) 48)) (-2467 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-4018 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1349 ((|#2| $) 46)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-1959 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) (-3860 (*1 *1) (-4 *1 (-368)))) +(-13 (-1094) (-10 -8 (-15 -1959 ((-767))) (-15 -1998 ($ (-917))) (-15 -1368 ((-917) $)) (-15 -3860 ($)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2586 (((-685 |#2|) (-1259 $)) 47)) (-3013 (($ (-1259 |#2|) (-1259 $)) 41)) (-3689 (((-685 |#2|) $ (-1259 $)) 49)) (-3392 ((|#2| (-1259 $)) 13)) (-3864 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 27))) +(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -2586 ((-685 |#2|) (-1259 |#1|))) (-15 -3392 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3689 ((-685 |#2|) |#1| (-1259 |#1|)))) (-370 |#2| |#3|) (-172) (-1235 |#2|)) (T -369)) +NIL +(-10 -8 (-15 -2586 ((-685 |#2|) (-1259 |#1|))) (-15 -3392 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3689 ((-685 |#2|) |#1| (-1259 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2586 (((-685 |#1|) (-1259 $)) 47)) (-3770 ((|#1| $) 53)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3013 (($ (-1259 |#1|) (-1259 $)) 49)) (-3689 (((-685 |#1|) $ (-1259 $)) 54)) (-2689 (((-3 $ "failed") $) 33)) (-3105 (((-917)) 55)) (-1828 (((-112) $) 31)) (-2019 ((|#1| $) 52)) (-1790 ((|#2| $) 45 (|has| |#1| (-363)))) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-3392 ((|#1| (-1259 $)) 48)) (-3864 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-2409 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2117 ((|#2| $) 46)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-370 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -370)) -((-3531 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-918)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) (-2467 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) (-4 *2 (-172)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1235 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3531 ((-918))) (-15 -4206 ((-685 |t#1|) $ (-1259 $))) (-15 -2713 (|t#1| $)) (-15 -3797 (|t#1| $)) (-15 -2467 ((-1259 |t#1|) $ (-1259 $))) (-15 -2467 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3624 ($ (-1259 |t#1|) (-1259 $))) (-15 -3190 (|t#1| (-1259 $))) (-15 -3390 ((-685 |t#1|) (-1259 $))) (-15 -1349 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -3774 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1694 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1988 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2449 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1988 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1694 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1209) (-373 |#1|) (-1209) (-373 |#3|)) (T -371)) -((-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))) -(-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1988 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1694 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2386 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2573 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2861 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3919 (($ $) 25)) (-3360 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-3956 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-372 |#1| |#2|) (-10 -8 (-15 -2573 (|#1| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2386 ((-112) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3956 (|#1| |#1| |#1|)) (-15 -3360 ((-564) |#2| |#1| (-564))) (-15 -3360 ((-564) |#2| |#1|)) (-15 -3360 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -2386 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2861 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3956 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1209)) (T -372)) -NIL -(-10 -8 (-15 -2573 (|#1| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2386 ((-112) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3956 (|#1| |#1| |#1|)) (-15 -3360 ((-564) |#2| |#1| (-564))) (-15 -3360 ((-564) |#2| |#1|)) (-15 -3360 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -2386 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2861 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3956 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4325 (($ $) 90 (|has| $ (-6 -4407)))) (-3919 (($ $) 100)) (-3337 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 51)) (-3360 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 87 (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 86 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 42 (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4253 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 70)) (-3043 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3105 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-917)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) (-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3013 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) (-4 *2 (-172)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1235 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3105 ((-917))) (-15 -3689 ((-685 |t#1|) $ (-1259 $))) (-15 -3770 (|t#1| $)) (-15 -2019 (|t#1| $)) (-15 -3864 ((-1259 |t#1|) $ (-1259 $))) (-15 -3864 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3013 ($ (-1259 |t#1|) (-1259 $))) (-15 -3392 (|t#1| (-1259 $))) (-15 -2586 ((-685 |t#1|) (-1259 $))) (-15 -2117 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -1790 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-1514 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3239 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3123 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3239 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1514 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1209) (-373 |#1|) (-1209) (-373 |#3|)) (T -371)) +((-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))) +(-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3239 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1514 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4294 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2441 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3811 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2493 (($ $) 25)) (-3847 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-2988 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-372 |#1| |#2|) (-10 -8 (-15 -2441 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -2988 (|#1| |#1| |#1|)) (-15 -3847 ((-564) |#2| |#1| (-564))) (-15 -3847 ((-564) |#2| |#1|)) (-15 -3847 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4294 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3811 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -2988 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1209)) (T -372)) +NIL +(-10 -8 (-15 -2441 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -2988 (|#1| |#1| |#1|)) (-15 -3847 ((-564) |#2| |#1| (-564))) (-15 -3847 ((-564) |#2| |#1|)) (-15 -3847 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4294 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3811 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -2988 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2443 (($ $) 90 (|has| $ (-6 -4407)))) (-2493 (($ $) 100)) (-2027 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 51)) (-3847 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 87 (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 86 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 42 (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2981 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 70)) (-3533 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2964 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 82 (|has| |#1| (-846)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-373 |#1|) (-140) (-1209)) (T -373)) -((-3956 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3919 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2386 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3360 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-564)))) (-3360 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-564)))) (-3360 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)))) (-3956 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-2861 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112)))) (-3623 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-4325 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2573 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4407)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2573 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))) -(-13 (-647 |t#1|) (-10 -8 (-6 -4406) (-15 -3956 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3919 ($ $)) (-15 -2861 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2386 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3360 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3360 ((-564) |t#1| $)) (-15 -3360 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-6 (-847)) (-15 -3956 ($ $ $)) (-15 -2861 ($ $)) (-15 -2386 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3623 ($ $ $ (-564))) (-15 -4325 ($ $)) (-15 -2573 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-847)) (-15 -2573 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T)) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2412 (((-641 |#1|) $) 32)) (-3520 (($ $ (-768)) 33)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2113 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 36)) (-3156 (($ $) 34)) (-2674 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 37)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-2633 (($ $ |#1| $) 31) (($ $ (-641 |#1|) (-641 $)) 30)) (-1619 (((-768) $) 38)) (-1842 (($ $ $) 29)) (-1831 (((-859) $) 11) (($ |#1|) 41) (((-1274 |#1| |#2|) $) 40) (((-1283 |#1| |#2|) $) 39)) (-2860 ((|#2| (-1283 |#1| |#2|) $) 42)) (-1293 (($) 18 T CONST)) (-3993 (($ (-668 |#1|)) 35)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-374 |#1| |#2|) (-140) (-847) (-172)) (T -374)) -((-2860 (*1 *2 *3 *1) (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847)) (-4 *2 (-172)))) (-1831 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-768)))) (-2674 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2113 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3993 (*1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-641 *3)))) (-2633 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-847)) (-4 *5 (-172))))) -(-13 (-632 |t#2|) (-10 -8 (-15 -2860 (|t#2| (-1283 |t#1| |t#2|) $)) (-15 -1831 ($ |t#1|)) (-15 -1831 ((-1274 |t#1| |t#2|) $)) (-15 -1831 ((-1283 |t#1| |t#2|) $)) (-15 -1619 ((-768) $)) (-15 -2674 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -2113 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -3993 ($ (-668 |t#1|))) (-15 -3156 ($ $)) (-15 -3520 ($ $ (-768))) (-15 -2412 ((-641 |t#1|) $)) (-15 -2633 ($ $ |t#1| $)) (-15 -2633 ($ $ (-641 |t#1|) (-641 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-632 |#2|) . T) ((-714 |#2|) . T) ((-1052 |#2|) . T) ((-1094) . T)) -((-2403 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 41)) (-2731 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1524 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-375 |#1| |#2|) (-10 -7 (-15 -2731 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1524 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2403 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1209) (-13 (-373 |#1|) (-10 -7 (-6 -4407)))) (T -375)) -((-2403 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))))) (-1524 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))))) (-2731 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) -(-10 -7 (-15 -2731 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1524 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2403 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-4050 (((-685 |#2|) (-685 $)) NIL) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 22) (((-685 (-564)) (-685 $)) 14))) -(((-376 |#1| |#2|) (-10 -8 (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 |#2|) (-685 |#1|)))) (-377 |#2|) (-1046)) (T -376)) -NIL -(-10 -8 (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 |#2|) (-685 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-4050 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 43 (|has| |#1| (-637 (-564)))) (((-685 (-564)) (-685 $)) 42 (|has| |#1| (-637 (-564))))) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-377 |#1|) (-140) (-1046)) (T -377)) +((-2988 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-4294 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3847 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-564)))) (-3847 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-564)))) (-3847 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)))) (-2988 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-846)) (-5 *2 (-112)))) (-3000 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2443 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2441 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4407)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2441 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846))))) +(-13 (-647 |t#1|) (-10 -8 (-6 -4406) (-15 -2988 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2493 ($ $)) (-15 -3811 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4294 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3847 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3847 ((-564) |t#1| $)) (-15 -3847 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-6 (-846)) (-15 -2988 ($ $ $)) (-15 -3811 ($ $)) (-15 -4294 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3000 ($ $ $ (-564))) (-15 -2443 ($ $)) (-15 -2441 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-846)) (-15 -2441 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T)) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2966 (((-641 |#1|) $) 32)) (-1360 (($ $ (-767)) 33)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1417 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 36)) (-4321 (($ $) 34)) (-2152 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 37)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-3100 (($ $ |#1| $) 31) (($ $ (-641 |#1|) (-641 $)) 30)) (-2073 (((-767) $) 38)) (-2335 (($ $ $) 29)) (-2322 (((-858) $) 11) (($ |#1|) 41) (((-1274 |#1| |#2|) $) 40) (((-1283 |#1| |#2|) $) 39)) (-3139 ((|#2| (-1283 |#1| |#2|) $) 42)) (-2389 (($) 18 T CONST)) (-3374 (($ (-668 |#1|)) 35)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-374 |#1| |#2|) (-140) (-846) (-172)) (T -374)) +((-3139 (*1 *2 *3 *1) (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) (-4 *2 (-172)))) (-2322 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767)))) (-2152 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1417 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-4321 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1360 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-641 *3)))) (-3100 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846)) (-4 *5 (-172))))) +(-13 (-632 |t#2|) (-10 -8 (-15 -3139 (|t#2| (-1283 |t#1| |t#2|) $)) (-15 -2322 ($ |t#1|)) (-15 -2322 ((-1274 |t#1| |t#2|) $)) (-15 -2322 ((-1283 |t#1| |t#2|) $)) (-15 -2073 ((-767) $)) (-15 -2152 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -1417 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -3374 ($ (-668 |t#1|))) (-15 -4321 ($ $)) (-15 -1360 ($ $ (-767))) (-15 -2966 ((-641 |t#1|) $)) (-15 -3100 ($ $ |t#1| $)) (-15 -3100 ($ $ (-641 |t#1|) (-641 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#2|) . T) ((-632 |#2|) . T) ((-713 |#2|) . T) ((-1051 |#2|) . T) ((-1094) . T)) +((-1359 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 41)) (-1486 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3484 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-375 |#1| |#2|) (-10 -7 (-15 -1486 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3484 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1359 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1209) (-13 (-373 |#1|) (-10 -7 (-6 -4407)))) (T -375)) +((-1359 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))))) (-3484 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))))) (-1486 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) +(-10 -7 (-15 -1486 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3484 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1359 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2750 (((-685 |#2|) (-685 $)) NIL) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 22) (((-685 (-564)) (-685 $)) 14))) +(((-376 |#1| |#2|) (-10 -8 (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 |#2|) (-685 |#1|)))) (-377 |#2|) (-1045)) (T -376)) +NIL +(-10 -8 (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 |#2|) (-685 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2750 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 43 (|has| |#1| (-637 (-564)))) (((-685 (-564)) (-685 $)) 42 (|has| |#1| (-637 (-564))))) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-377 |#1|) (-140) (-1045)) (T -377)) NIL (-13 (-637 |t#1|) (-10 -7 (IF (|has| |t#1| (-637 (-564))) (-6 (-637 (-564))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-3376 (((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|) 51) (((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|) 50) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|) 47) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|) 41)) (-3339 (((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|) 30) (((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|) 18))) -(((-378 |#1|) (-10 -7 (-15 -3376 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3376 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -3376 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3376 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3339 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3339 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|))) (-13 (-363) (-845))) (T -378)) -((-3339 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564))))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845)))))) -(-10 -7 (-15 -3376 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3376 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -3376 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3376 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3339 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3339 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 35)) (-3423 (((-564) $) 61)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-3220 (($ $) 141)) (-3357 (($ $) 106)) (-3210 (($ $) 93)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3083 (($ $) 47)) (-3554 (((-112) $ $) NIL)) (-3330 (($ $) 104)) (-3187 (($ $) 87)) (-1598 (((-564) $) 80)) (-1815 (($ $ (-564)) 75)) (-3384 (($ $) NIL)) (-3233 (($ $) NIL)) (-1778 (($) NIL T CONST)) (-3015 (($ $) 143)) (-2347 (((-3 (-564) "failed") $) 237) (((-3 (-407 (-564)) "failed") $) 233)) (-2237 (((-564) $) 235) (((-407 (-564)) $) 231)) (-1449 (($ $ $) NIL)) (-3476 (((-564) $ $) 130)) (-3733 (((-3 $ "failed") $) 145)) (-3702 (((-407 (-564)) $ (-768)) 238) (((-407 (-564)) $ (-768) (-768)) 230)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-4292 (((-918)) 95) (((-918) (-918)) 126 (|has| $ (-6 -4397)))) (-1569 (((-112) $) 135)) (-3714 (($) 41)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-3255 (((-1264) (-768)) 197)) (-1741 (((-1264)) 202) (((-1264) (-768)) 203)) (-2229 (((-1264)) 204) (((-1264) (-768)) 205)) (-3999 (((-1264)) 200) (((-1264) (-768)) 201)) (-2155 (((-564) $) 68)) (-2949 (((-112) $) 40)) (-2915 (($ $ (-564)) NIL)) (-2374 (($ $) 51)) (-3797 (($ $) NIL)) (-2607 (((-112) $) 37)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL) (($) NIL (-12 (-4338 (|has| $ (-6 -4389))) (-4338 (|has| $ (-6 -4397)))))) (-3375 (($ $ $) NIL) (($) 127 (-12 (-4338 (|has| $ (-6 -4389))) (-4338 (|has| $ (-6 -4397)))))) (-2935 (((-564) $) 17)) (-2793 (($) 113) (($ $) 119)) (-4167 (($) 118) (($ $) 120)) (-2358 (($ $) 108)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 147)) (-4094 (((-918) (-564)) 46 (|has| $ (-6 -4397)))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) 59)) (-1818 (($ $) 140)) (-2293 (($ (-564) (-564)) 136) (($ (-564) (-564) (-918)) 137)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1558 (((-564) $) 19)) (-2343 (($) 121)) (-4326 (($ $) 103)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-2422 (((-918)) 128) (((-918) (-918)) 129 (|has| $ (-6 -4397)))) (-3534 (($ $ (-768)) NIL) (($ $) 146)) (-4169 (((-918) (-564)) 50 (|has| $ (-6 -4397)))) (-3395 (($ $) NIL)) (-3245 (($ $) NIL)) (-3371 (($ $) NIL)) (-3221 (($ $) NIL)) (-3344 (($ $) 105)) (-3199 (($ $) 92)) (-2511 (((-379) $) 224) (((-225) $) 225) (((-889 (-379)) $) NIL) (((-1152) $) 208) (((-536) $) 222) (($ (-225)) 229)) (-1831 (((-859) $) 210) (($ (-564)) 234) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 234) (($ (-407 (-564))) NIL) (((-225) $) 226)) (-2219 (((-768)) NIL T CONST)) (-4150 (($ $) 142)) (-2432 (((-918)) 60) (((-918) (-918)) 82 (|has| $ (-6 -4397)))) (-3655 (((-918)) 131)) (-3427 (($ $) 111)) (-3276 (($ $) 49) (($ $ $) 58)) (-3939 (((-112) $ $) NIL)) (-3406 (($ $) 109)) (-3254 (($ $) 39)) (-3450 (($ $) NIL)) (-3302 (($ $) NIL)) (-2315 (($ $) NIL)) (-3316 (($ $) NIL)) (-3439 (($ $) NIL)) (-3287 (($ $) NIL)) (-3416 (($ $) 110)) (-3265 (($ $) 52)) (-1849 (($ $) 57)) (-1293 (($) 36 T CONST)) (-1300 (($) 43 T CONST)) (-3213 (((-1152) $) 27) (((-1152) $ (-112)) 29) (((-1264) (-819) $) 30) (((-1264) (-819) $ (-112)) 31)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 56)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 45)) (-1823 (($ $ $) 48) (($ $ (-564)) 42)) (-1808 (($ $) 38) (($ $ $) 53)) (-1797 (($ $ $) 74)) (** (($ $ (-918)) 85) (($ $ (-768)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-918) $) 81) (($ (-768) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-379) (-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1823 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2374 ($ $)) (-15 -3476 ((-564) $ $)) (-15 -1815 ($ $ (-564))) (-15 -3702 ((-407 (-564)) $ (-768))) (-15 -3702 ((-407 (-564)) $ (-768) (-768))) (-15 -2793 ($)) (-15 -4167 ($)) (-15 -2343 ($)) (-15 -3276 ($ $ $)) (-15 -2793 ($ $)) (-15 -4167 ($ $)) (-15 -2229 ((-1264))) (-15 -2229 ((-1264) (-768))) (-15 -3999 ((-1264))) (-15 -3999 ((-1264) (-768))) (-15 -1741 ((-1264))) (-15 -1741 ((-1264) (-768))) (-15 -3255 ((-1264) (-768))) (-6 -4397) (-6 -4389)))) (T -379)) -((** (*1 *1 *1 *1) (-5 *1 (-379))) (-1823 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2374 (*1 *1 *1) (-5 *1 (-379))) (-3476 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-3702 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-3702 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-2793 (*1 *1) (-5 *1 (-379))) (-4167 (*1 *1) (-5 *1 (-379))) (-2343 (*1 *1) (-5 *1 (-379))) (-3276 (*1 *1 *1 *1) (-5 *1 (-379))) (-2793 (*1 *1 *1) (-5 *1 (-379))) (-4167 (*1 *1 *1) (-5 *1 (-379))) (-2229 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-3999 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-1741 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))) -(-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1823 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2374 ($ $)) (-15 -3476 ((-564) $ $)) (-15 -1815 ($ $ (-564))) (-15 -3702 ((-407 (-564)) $ (-768))) (-15 -3702 ((-407 (-564)) $ (-768) (-768))) (-15 -2793 ($)) (-15 -4167 ($)) (-15 -2343 ($)) (-15 -3276 ($ $ $)) (-15 -2793 ($ $)) (-15 -4167 ($ $)) (-15 -2229 ((-1264))) (-15 -2229 ((-1264) (-768))) (-15 -3999 ((-1264))) (-15 -3999 ((-1264) (-768))) (-15 -1741 ((-1264))) (-15 -1741 ((-1264) (-768))) (-15 -3255 ((-1264) (-768))) (-6 -4397) (-6 -4389))) -((-2017 (((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|) 46) (((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|) 45) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|) 42) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|) 36)) (-2405 (((-641 |#1|) (-407 (-949 (-564))) |#1|) 20) (((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|) 30))) -(((-380 |#1|) (-10 -7 (-15 -2017 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -2017 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -2017 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -2017 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -2405 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -2405 ((-641 |#1|) (-407 (-949 (-564))) |#1|))) (-13 (-845) (-363))) (T -380)) -((-2405 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-845) (-363))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-564))))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363)))))) -(-10 -7 (-15 -2017 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -2017 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -2017 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -2017 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -2405 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -2405 ((-641 |#1|) (-407 (-949 (-564))) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) 30)) (-2237 ((|#2| $) 32)) (-3396 (($ $) NIL)) (-4128 (((-768) $) 11)) (-3802 (((-641 $) $) 23)) (-2003 (((-112) $) NIL)) (-1383 (($ |#2| |#1|) 21)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1338 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3356 ((|#2| $) 18)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 50) (($ |#2|) 31)) (-3227 (((-641 |#1|) $) 20)) (-2742 ((|#1| $ |#2|) 54)) (-1293 (($) 33 T CONST)) (-1430 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 38) (($ |#2| |#1|) 39))) -(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1046) (-847)) (T -381)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2456 (((-641 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-564))))) |#1|) 51) (((-641 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-564)))) |#1|) 50) (((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-294 (-407 (-948 (-169 (-564)))))) |#1|) 47) (((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-407 (-948 (-169 (-564))))) |#1|) 41)) (-2171 (((-641 (-641 (-169 |#1|))) (-641 (-407 (-948 (-169 (-564))))) (-641 (-1170)) |#1|) 30) (((-641 (-169 |#1|)) (-407 (-948 (-169 (-564)))) |#1|) 18))) +(((-378 |#1|) (-10 -7 (-15 -2456 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -2456 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-294 (-407 (-948 (-169 (-564)))))) |#1|)) (-15 -2456 ((-641 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -2456 ((-641 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -2171 ((-641 (-169 |#1|)) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -2171 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-948 (-169 (-564))))) (-641 (-1170)) |#1|))) (-13 (-363) (-844))) (T -378)) +((-2171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564)))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-169 (-564)))))) (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-564))))) (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-948 (-169 (-564))))))) (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564)))))) (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -2456 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -2456 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-294 (-407 (-948 (-169 (-564)))))) |#1|)) (-15 -2456 ((-641 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -2456 ((-641 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -2171 ((-641 (-169 |#1|)) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -2171 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-948 (-169 (-564))))) (-641 (-1170)) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 35)) (-1625 (((-564) $) 61)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-3624 (($ $) 141)) (-3802 (($ $) 106)) (-3661 (($ $) 93)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2387 (($ $) 47)) (-3547 (((-112) $ $) NIL)) (-3779 (($ $) 104)) (-3639 (($ $) 87)) (-3085 (((-564) $) 80)) (-2308 (($ $ (-564)) 75)) (-3825 (($ $) NIL)) (-3684 (($ $) NIL)) (-4157 (($) NIL T CONST)) (-2362 (($ $) 143)) (-3032 (((-3 (-564) "failed") $) 237) (((-3 (-407 (-564)) "failed") $) 233)) (-1781 (((-564) $) 235) (((-407 (-564)) $) 231)) (-2574 (($ $ $) NIL)) (-4027 (((-564) $ $) 130)) (-2689 (((-3 $ "failed") $) 145)) (-2398 (((-407 (-564)) $ (-767)) 238) (((-407 (-564)) $ (-767) (-767)) 230)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-1442 (((-917)) 95) (((-917) (-917)) 126 (|has| $ (-6 -4397)))) (-2786 (((-112) $) 135)) (-4223 (($) 41)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3941 (((-1264) (-767)) 197)) (-1939 (((-1264)) 202) (((-1264) (-767)) 203)) (-3274 (((-1264)) 204) (((-1264) (-767)) 205)) (-2201 (((-1264)) 200) (((-1264) (-767)) 201)) (-3717 (((-564) $) 68)) (-1828 (((-112) $) 40)) (-2739 (($ $ (-564)) NIL)) (-4170 (($ $) 51)) (-2019 (($ $) NIL)) (-2783 (((-112) $) 37)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL) (($) NIL (-12 (-2329 (|has| $ (-6 -4389))) (-2329 (|has| $ (-6 -4397)))))) (-2622 (($ $ $) NIL) (($) 127 (-12 (-2329 (|has| $ (-6 -4389))) (-2329 (|has| $ (-6 -4397)))))) (-3537 (((-564) $) 17)) (-3942 (($) 113) (($ $) 119)) (-2128 (($) 118) (($ $) 120)) (-3439 (($ $) 108)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 147)) (-1910 (((-917) (-564)) 46 (|has| $ (-6 -4397)))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) 59)) (-1421 (($ $) 140)) (-2793 (($ (-564) (-564)) 136) (($ (-564) (-564) (-917)) 137)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3866 (((-564) $) 19)) (-1960 (($) 121)) (-3571 (($ $) 103)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3413 (((-917)) 128) (((-917) (-917)) 129 (|has| $ (-6 -4397)))) (-1343 (($ $ (-767)) NIL) (($ $) 146)) (-1454 (((-917) (-564)) 50 (|has| $ (-6 -4397)))) (-3836 (($ $) NIL)) (-3697 (($ $) NIL)) (-3814 (($ $) NIL)) (-3672 (($ $) NIL)) (-3792 (($ $) 105)) (-3650 (($ $) 92)) (-3172 (((-379) $) 224) (((-225) $) 225) (((-888 (-379)) $) NIL) (((-1152) $) 208) (((-536) $) 222) (($ (-225)) 229)) (-2322 (((-858) $) 210) (($ (-564)) 234) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 234) (($ (-407 (-564))) NIL) (((-225) $) 226)) (-3179 (((-767)) NIL T CONST)) (-4381 (($ $) 142)) (-3503 (((-917)) 60) (((-917) (-917)) 82 (|has| $ (-6 -4397)))) (-2610 (((-917)) 131)) (-2672 (($ $) 111)) (-3732 (($ $) 49) (($ $ $) 58)) (-4024 (((-112) $ $) NIL)) (-3849 (($ $) 109)) (-3708 (($ $) 39)) (-2695 (($ $) NIL)) (-3757 (($ $) NIL)) (-1511 (($ $) NIL)) (-3768 (($ $) NIL)) (-2684 (($ $) NIL)) (-3746 (($ $) NIL)) (-2660 (($ $) 110)) (-3720 (($ $) 52)) (-3598 (($ $) 57)) (-2389 (($) 36 T CONST)) (-2403 (($) 43 T CONST)) (-3552 (((-1152) $) 27) (((-1152) $ (-112)) 29) (((-1264) (-818) $) 30) (((-1264) (-818) $ (-112)) 31)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 56)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 45)) (-3034 (($ $ $) 48) (($ $ (-564)) 42)) (-3021 (($ $) 38) (($ $ $) 53)) (-3011 (($ $ $) 74)) (** (($ $ (-917)) 85) (($ $ (-767)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-917) $) 81) (($ (-767) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-379) (-13 (-404) (-233) (-612 (-1152)) (-824) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -3034 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -4170 ($ $)) (-15 -4027 ((-564) $ $)) (-15 -2308 ($ $ (-564))) (-15 -2398 ((-407 (-564)) $ (-767))) (-15 -2398 ((-407 (-564)) $ (-767) (-767))) (-15 -3942 ($)) (-15 -2128 ($)) (-15 -1960 ($)) (-15 -3732 ($ $ $)) (-15 -3942 ($ $)) (-15 -2128 ($ $)) (-15 -3274 ((-1264))) (-15 -3274 ((-1264) (-767))) (-15 -2201 ((-1264))) (-15 -2201 ((-1264) (-767))) (-15 -1939 ((-1264))) (-15 -1939 ((-1264) (-767))) (-15 -3941 ((-1264) (-767))) (-6 -4397) (-6 -4389)))) (T -379)) +((** (*1 *1 *1 *1) (-5 *1 (-379))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-4170 (*1 *1 *1) (-5 *1 (-379))) (-4027 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2398 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-2398 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-3942 (*1 *1) (-5 *1 (-379))) (-2128 (*1 *1) (-5 *1 (-379))) (-1960 (*1 *1) (-5 *1 (-379))) (-3732 (*1 *1 *1 *1) (-5 *1 (-379))) (-3942 (*1 *1 *1) (-5 *1 (-379))) (-2128 (*1 *1 *1) (-5 *1 (-379))) (-3274 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2201 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-1939 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379))))) +(-13 (-404) (-233) (-612 (-1152)) (-824) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -3034 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -4170 ($ $)) (-15 -4027 ((-564) $ $)) (-15 -2308 ($ $ (-564))) (-15 -2398 ((-407 (-564)) $ (-767))) (-15 -2398 ((-407 (-564)) $ (-767) (-767))) (-15 -3942 ($)) (-15 -2128 ($)) (-15 -1960 ($)) (-15 -3732 ($ $ $)) (-15 -3942 ($ $)) (-15 -2128 ($ $)) (-15 -3274 ((-1264))) (-15 -3274 ((-1264) (-767))) (-15 -2201 ((-1264))) (-15 -2201 ((-1264) (-767))) (-15 -1939 ((-1264))) (-15 -1939 ((-1264) (-767))) (-15 -3941 ((-1264) (-767))) (-6 -4397) (-6 -4389))) +((-1630 (((-641 (-294 (-948 |#1|))) (-294 (-407 (-948 (-564)))) |#1|) 46) (((-641 (-294 (-948 |#1|))) (-407 (-948 (-564))) |#1|) 45) (((-641 (-641 (-294 (-948 |#1|)))) (-641 (-294 (-407 (-948 (-564))))) |#1|) 42) (((-641 (-641 (-294 (-948 |#1|)))) (-641 (-407 (-948 (-564)))) |#1|) 36)) (-1377 (((-641 |#1|) (-407 (-948 (-564))) |#1|) 20) (((-641 (-641 |#1|)) (-641 (-407 (-948 (-564)))) (-641 (-1170)) |#1|) 30))) +(((-380 |#1|) (-10 -7 (-15 -1630 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-407 (-948 (-564)))) |#1|)) (-15 -1630 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-294 (-407 (-948 (-564))))) |#1|)) (-15 -1630 ((-641 (-294 (-948 |#1|))) (-407 (-948 (-564))) |#1|)) (-15 -1630 ((-641 (-294 (-948 |#1|))) (-294 (-407 (-948 (-564)))) |#1|)) (-15 -1377 ((-641 (-641 |#1|)) (-641 (-407 (-948 (-564)))) (-641 (-1170)) |#1|)) (-15 -1377 ((-641 |#1|) (-407 (-948 (-564))) |#1|))) (-13 (-844) (-363))) (T -380)) +((-1377 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1377 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-948 (-564))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-564))))) (-5 *2 (-641 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-948 (-564)))))) (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 (-564))))) (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363)))))) +(-10 -7 (-15 -1630 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-407 (-948 (-564)))) |#1|)) (-15 -1630 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-294 (-407 (-948 (-564))))) |#1|)) (-15 -1630 ((-641 (-294 (-948 |#1|))) (-407 (-948 (-564))) |#1|)) (-15 -1630 ((-641 (-294 (-948 |#1|))) (-294 (-407 (-948 (-564)))) |#1|)) (-15 -1377 ((-641 (-641 |#1|)) (-641 (-407 (-948 (-564)))) (-641 (-1170)) |#1|)) (-15 -1377 ((-641 |#1|) (-407 (-948 (-564))) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) 30)) (-1781 ((|#2| $) 32)) (-2710 (($ $) NIL)) (-4137 (((-767) $) 11)) (-2071 (((-641 $) $) 23)) (-1492 (((-112) $) NIL)) (-1955 (($ |#2| |#1|) 21)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1812 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2674 ((|#2| $) 18)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 50) (($ |#2|) 31)) (-3680 (((-641 |#1|) $) 20)) (-3467 ((|#1| $ |#2|) 54)) (-2389 (($) 33 T CONST)) (-4318 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 38) (($ |#2| |#1|) 39))) +(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1045) (-846)) (T -381)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))))) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#2| "failed") $) 44)) (-2237 ((|#2| $) 45)) (-3396 (($ $) 30)) (-4128 (((-768) $) 34)) (-3802 (((-641 $) $) 35)) (-2003 (((-112) $) 38)) (-1383 (($ |#2| |#1|) 39)) (-2449 (($ (-1 |#1| |#1|) $) 40)) (-1338 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3356 ((|#2| $) 33)) (-3370 ((|#1| $) 32)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ |#2|) 43)) (-3227 (((-641 |#1|) $) 36)) (-2742 ((|#1| $ |#2|) 41)) (-1293 (($) 18 T CONST)) (-1430 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-382 |#1| |#2|) (-140) (-1046) (-1094)) (T -382)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) (-2742 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)))) (-1383 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-3802 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-382 *3 *4)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-768)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094))))) -(-13 (-111 |t#1| |t#1|) (-1035 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2742 (|t#1| $ |t#2|)) (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (-15 -1383 ($ |t#2| |t#1|)) (-15 -2003 ((-112) $)) (-15 -1430 ((-641 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3227 ((-641 |t#1|) $)) (-15 -3802 ((-641 $) $)) (-15 -4128 ((-768) $)) (-15 -3356 (|t#2| $)) (-15 -3370 (|t#1| $)) (-15 -1338 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3396 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-714 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) |has| |#1| (-172)) ((-1035 |#2|) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-3069 (((-1264) $) 7)) (-1831 (((-859) $) 8) (($ (-685 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 11))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#2| "failed") $) 44)) (-1781 ((|#2| $) 45)) (-2710 (($ $) 30)) (-4137 (((-767) $) 34)) (-2071 (((-641 $) $) 35)) (-1492 (((-112) $) 38)) (-1955 (($ |#2| |#1|) 39)) (-3123 (($ (-1 |#1| |#1|) $) 40)) (-1812 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2674 ((|#2| $) 33)) (-2686 ((|#1| $) 32)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ |#2|) 43)) (-3680 (((-641 |#1|) $) 36)) (-3467 ((|#1| $ |#2|) 41)) (-2389 (($) 18 T CONST)) (-4318 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-382 |#1| |#2|) (-140) (-1045) (-1094)) (T -382)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))) (-3467 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)))) (-1955 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-2071 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-382 *3 *4)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-767)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094))))) +(-13 (-111 |t#1| |t#1|) (-1034 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3467 (|t#1| $ |t#2|)) (-15 -3123 ($ (-1 |t#1| |t#1|) $)) (-15 -1955 ($ |t#2| |t#1|)) (-15 -1492 ((-112) $)) (-15 -4318 ((-641 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3680 ((-641 |t#1|) $)) (-15 -2071 ((-641 $) $)) (-15 -4137 ((-767) $)) (-15 -2674 (|t#2| $)) (-15 -2686 (|t#1| $)) (-15 -1812 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2710 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-713 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) |has| |#1| (-172)) ((-1034 |#2|) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-4308 (((-1264) $) 7)) (-2322 (((-858) $) 8) (($ (-685 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 11))) (((-383) (-140)) (T -383)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) (-4 *1 (-383))))) -(-13 (-395) (-10 -8 (-15 -1831 ($ (-685 (-695)))) (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-330))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))))) -(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) -((-2347 (((-3 $ "failed") (-685 (-316 (-379)))) 21) (((-3 $ "failed") (-685 (-316 (-564)))) 19) (((-3 $ "failed") (-685 (-949 (-379)))) 17) (((-3 $ "failed") (-685 (-949 (-564)))) 15) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 11)) (-2237 (($ (-685 (-316 (-379)))) 22) (($ (-685 (-316 (-564)))) 20) (($ (-685 (-949 (-379)))) 18) (($ (-685 (-949 (-564)))) 16) (($ (-685 (-407 (-949 (-379))))) 14) (($ (-685 (-407 (-949 (-564))))) 12)) (-3069 (((-1264) $) 7)) (-1831 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 23))) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-383))))) +(-13 (-395) (-10 -8 (-15 -2322 ($ (-685 (-695)))) (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-330))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))))) +(((-611 (-858)) . T) ((-395) . T) ((-1209) . T)) +((-3032 (((-3 $ "failed") (-685 (-316 (-379)))) 21) (((-3 $ "failed") (-685 (-316 (-564)))) 19) (((-3 $ "failed") (-685 (-948 (-379)))) 17) (((-3 $ "failed") (-685 (-948 (-564)))) 15) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 11)) (-1781 (($ (-685 (-316 (-379)))) 22) (($ (-685 (-316 (-564)))) 20) (($ (-685 (-948 (-379)))) 18) (($ (-685 (-948 (-564)))) 16) (($ (-685 (-407 (-948 (-379))))) 14) (($ (-685 (-407 (-948 (-564))))) 12)) (-4308 (((-1264) $) 7)) (-2322 (((-858) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 23))) (((-384) (-140)) (T -384)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) (-4 *1 (-384)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384))))) -(-13 (-395) (-10 -8 (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-330))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))) (-15 -2237 ($ (-685 (-316 (-379))))) (-15 -2347 ((-3 $ "failed") (-685 (-316 (-379))))) (-15 -2237 ($ (-685 (-316 (-564))))) (-15 -2347 ((-3 $ "failed") (-685 (-316 (-564))))) (-15 -2237 ($ (-685 (-949 (-379))))) (-15 -2347 ((-3 $ "failed") (-685 (-949 (-379))))) (-15 -2237 ($ (-685 (-949 (-564))))) (-15 -2347 ((-3 $ "failed") (-685 (-949 (-564))))) (-15 -2237 ($ (-685 (-407 (-949 (-379)))))) (-15 -2347 ((-3 $ "failed") (-685 (-407 (-949 (-379)))))) (-15 -2237 ($ (-685 (-407 (-949 (-564)))))) (-15 -2347 ((-3 $ "failed") (-685 (-407 (-949 (-564)))))))) -(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3186 (($ |#1| |#2|) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3446 ((|#2| $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 34)) (-1293 (($) 12 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|))) (-1046) (-847)) (T -385)) -NIL -(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768) $) 71)) (-1778 (($) NIL T CONST)) (-2113 (((-3 $ "failed") $ $) 74)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1456 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 61)) (-2949 (((-112) $) 17)) (-1765 ((|#1| $ (-564)) NIL)) (-1767 (((-768) $ (-564)) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-1934 (($ (-1 |#1| |#1|) $) 40)) (-3228 (($ (-1 (-768) (-768)) $) 37)) (-2674 (((-3 $ "failed") $ $) 58)) (-2723 (((-1152) $) NIL)) (-2276 (($ $ $) 28)) (-4275 (($ $ $) 26)) (-2780 (((-1114) $) NIL)) (-3840 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $) 34)) (-1922 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 67)) (-1831 (((-859) $) 24) (($ |#1|) NIL)) (-1300 (($) 11 T CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) 80 (|has| |#1| (-847)))) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-386 |#1|) (-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -4275 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2674 ((-3 $ "failed") $ $)) (-15 -2113 ((-3 $ "failed") $ $)) (-15 -1922 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1456 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3267 ((-768) $)) (-15 -3840 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $)) (-15 -1767 ((-768) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3228 ($ (-1 (-768) (-768)) $)) (-15 -1934 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -386)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4275 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2276 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2674 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2113 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1922 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 (-768))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1767 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3228 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))) -(-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -4275 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2674 ((-3 $ "failed") $ $)) (-15 -2113 ((-3 $ "failed") $ $)) (-15 -1922 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1456 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3267 ((-768) $)) (-15 -3840 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $)) (-15 -1767 ((-768) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3228 ($ (-1 (-768) (-768)) $)) (-15 -1934 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 48)) (-2237 (((-564) $) 49)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-1925 (($ $ $) 55)) (-3375 (($ $ $) 54)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ $) 43)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 47)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 52)) (-1737 (((-112) $ $) 51)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 53)) (-1723 (((-112) $ $) 50)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-384)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384))))) +(-13 (-395) (-10 -8 (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-330))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))) (-15 -1781 ($ (-685 (-316 (-379))))) (-15 -3032 ((-3 $ "failed") (-685 (-316 (-379))))) (-15 -1781 ($ (-685 (-316 (-564))))) (-15 -3032 ((-3 $ "failed") (-685 (-316 (-564))))) (-15 -1781 ($ (-685 (-948 (-379))))) (-15 -3032 ((-3 $ "failed") (-685 (-948 (-379))))) (-15 -1781 ($ (-685 (-948 (-564))))) (-15 -3032 ((-3 $ "failed") (-685 (-948 (-564))))) (-15 -1781 ($ (-685 (-407 (-948 (-379)))))) (-15 -3032 ((-3 $ "failed") (-685 (-407 (-948 (-379)))))) (-15 -1781 ($ (-685 (-407 (-948 (-564)))))) (-15 -3032 ((-3 $ "failed") (-685 (-407 (-948 (-564)))))))) +(((-611 (-858)) . T) ((-395) . T) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2507 (($ |#1| |#2|) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1850 ((|#2| $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 34)) (-2389 (($) 12 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) (-1045) (-846)) (T -385)) +NIL +(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767) $) 71)) (-4157 (($) NIL T CONST)) (-1417 (((-3 $ "failed") $ $) 74)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-4093 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 61)) (-1828 (((-112) $) 17)) (-4047 ((|#1| $ (-564)) NIL)) (-4067 (((-767) $ (-564)) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-3269 (($ (-1 |#1| |#1|) $) 40)) (-3692 (($ (-1 (-767) (-767)) $) 37)) (-2152 (((-3 $ "failed") $ $) 58)) (-1418 (((-1152) $) NIL)) (-2489 (($ $ $) 28)) (-3186 (($ $ $) 26)) (-3840 (((-1114) $) NIL)) (-4322 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $) 34)) (-3153 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 67)) (-2322 (((-858) $) 24) (($ |#1|) NIL)) (-2403 (($) 11 T CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) 80 (|has| |#1| (-846)))) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-386 |#1|) (-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3186 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -2152 ((-3 $ "failed") $ $)) (-15 -1417 ((-3 $ "failed") $ $)) (-15 -3153 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4093 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1959 ((-767) $)) (-15 -4322 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $)) (-15 -4067 ((-767) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -3692 ($ (-1 (-767) (-767)) $)) (-15 -3269 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1094)) (T -386)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3186 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2489 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2152 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1417 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3153 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-4093 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3269 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))) +(-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3186 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -2152 ((-3 $ "failed") $ $)) (-15 -1417 ((-3 $ "failed") $ $)) (-15 -3153 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4093 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1959 ((-767) $)) (-15 -4322 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $)) (-15 -4067 ((-767) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -3692 ($ (-1 (-767) (-767)) $)) (-15 -3269 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 48)) (-1781 (((-564) $) 49)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1501 (($ $ $) 55)) (-2622 (($ $ $) 54)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ $) 43)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 47)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 52)) (-2953 (((-112) $ $) 51)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 53)) (-2942 (((-112) $ $) 50)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-387) (-140)) (T -387)) NIL -(-13 (-556) (-847) (-1035 (-564))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-4123 (((-112) $) 25)) (-2589 (((-112) $) 22)) (-3654 (($ (-1152) (-1152) (-1152)) 26)) (-1316 (((-1152) $) 16)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2590 (($ (-1152) (-1152) (-1152)) 14)) (-2596 (((-1152) $) 17)) (-2509 (((-112) $) 18)) (-2553 (((-1152) $) 15)) (-1831 (((-859) $) 12) (($ (-1152)) 13) (((-1152) $) 9)) (-1702 (((-112) $ $) 7))) +(-13 (-556) (-846) (-1034 (-564))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-1034 (-564)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-4090 (((-112) $) 25)) (-2619 (((-112) $) 22)) (-4121 (($ (-1152) (-1152) (-1152)) 26)) (-2420 (((-1152) $) 16)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3098 (($ (-1152) (-1152) (-1152)) 14)) (-2688 (((-1152) $) 17)) (-3056 (((-112) $) 18)) (-4109 (((-1152) $) 15)) (-2322 (((-858) $) 12) (($ (-1152)) 13) (((-1152) $) 9)) (-2921 (((-112) $ $) 7))) (((-388) (-389)) (T -388)) NIL (-389) -((-1817 (((-112) $ $) 7)) (-4123 (((-112) $) 16)) (-2589 (((-112) $) 17)) (-3654 (($ (-1152) (-1152) (-1152)) 15)) (-1316 (((-1152) $) 20)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-2590 (($ (-1152) (-1152) (-1152)) 22)) (-2596 (((-1152) $) 19)) (-2509 (((-112) $) 18)) (-2553 (((-1152) $) 21)) (-1831 (((-859) $) 11) (($ (-1152)) 24) (((-1152) $) 23)) (-1702 (((-112) $ $) 6))) +((-2310 (((-112) $ $) 7)) (-4090 (((-112) $) 16)) (-2619 (((-112) $) 17)) (-4121 (($ (-1152) (-1152) (-1152)) 15)) (-2420 (((-1152) $) 20)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-3098 (($ (-1152) (-1152) (-1152)) 22)) (-2688 (((-1152) $) 19)) (-3056 (((-112) $) 18)) (-4109 (((-1152) $) 21)) (-2322 (((-858) $) 11) (($ (-1152)) 24) (((-1152) $) 23)) (-2921 (((-112) $ $) 6))) (((-389) (-140)) (T -389)) -((-2590 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3654 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))) -(-13 (-1094) (-490 (-1152)) (-10 -8 (-15 -2590 ($ (-1152) (-1152) (-1152))) (-15 -2553 ((-1152) $)) (-15 -1316 ((-1152) $)) (-15 -2596 ((-1152) $)) (-15 -2509 ((-112) $)) (-15 -2589 ((-112) $)) (-15 -4123 ((-112) $)) (-15 -3654 ($ (-1152) (-1152) (-1152))))) -(((-102) . T) ((-614 #0=(-1152)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2855 (((-859) $) 63)) (-1778 (($) NIL T CONST)) (-4221 (($ $ (-918)) NIL)) (-2482 (($ $ (-918)) NIL)) (-2839 (($ $ (-918)) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1426 (($ (-768)) 37)) (-3548 (((-768)) 18)) (-2682 (((-859) $) 65)) (-1992 (($ $ $) NIL)) (-1831 (((-859) $) NIL)) (-2611 (($ $ $ $) NIL)) (-1656 (($ $ $) NIL)) (-1293 (($) 24 T CONST)) (-1702 (((-112) $ $) 40)) (-1808 (($ $) 47) (($ $ $) 49)) (-1797 (($ $ $) 50)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46))) -(((-390 |#1| |#2| |#3|) (-13 (-741 |#3|) (-10 -8 (-15 -3548 ((-768))) (-15 -2682 ((-859) $)) (-15 -2855 ((-859) $)) (-15 -1426 ($ (-768))))) (-768) (-768) (-172)) (T -390)) -((-3548 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-741 |#3|) (-10 -8 (-15 -3548 ((-768))) (-15 -2682 ((-859) $)) (-15 -2855 ((-859) $)) (-15 -1426 ($ (-768))))) -((-1662 (((-1152)) 12)) (-1998 (((-1141 (-1152))) 31)) (-3027 (((-1264) (-1152)) 28) (((-1264) (-388)) 27)) (-3059 (((-1264)) 29)) (-3077 (((-1141 (-1152))) 30))) -(((-391) (-10 -7 (-15 -3077 ((-1141 (-1152)))) (-15 -1998 ((-1141 (-1152)))) (-15 -3059 ((-1264))) (-15 -3027 ((-1264) (-388))) (-15 -3027 ((-1264) (-1152))) (-15 -1662 ((-1152))))) (T -391)) -((-1662 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3059 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))) (-1998 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))) (-3077 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) -(-10 -7 (-15 -3077 ((-1141 (-1152)))) (-15 -1998 ((-1141 (-1152)))) (-15 -3059 ((-1264))) (-15 -3027 ((-1264) (-388))) (-15 -3027 ((-1264) (-1152))) (-15 -1662 ((-1152)))) -((-2155 (((-768) (-336 |#1| |#2| |#3| |#4|)) 19))) -(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2155 ((-768) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392)) -((-2155 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7))))) -(-10 -7 (-15 -2155 ((-768) (-336 |#1| |#2| |#3| |#4|)))) -((-1831 (((-394) |#1|) 11))) -(((-393 |#1|) (-10 -7 (-15 -1831 ((-394) |#1|))) (-1094)) (T -393)) -((-1831 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094))))) -(-10 -7 (-15 -1831 ((-394) |#1|))) -((-1817 (((-112) $ $) NIL)) (-4158 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-4073 (((-641 (-1152)) $ (-641 (-1152))) 44)) (-2499 (((-641 (-1152)) $ (-641 (-1152))) 45)) (-1995 (((-641 (-1152)) $) 40)) (-3654 (($) 30)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1697 (((-641 (-1152)) $) 41)) (-2668 (((-641 (-1152)) $) 42)) (-3712 (((-1264) $ (-564)) 38) (((-1264) $) 39)) (-2511 (($ (-859) (-564)) 35)) (-1831 (((-859) $) 54) (($ (-859)) 32)) (-1702 (((-112) $ $) NIL))) -(((-394) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2511 ($ (-859) (-564))) (-15 -3712 ((-1264) $ (-564))) (-15 -3712 ((-1264) $)) (-15 -2668 ((-641 (-1152)) $)) (-15 -1697 ((-641 (-1152)) $)) (-15 -3654 ($)) (-15 -1995 ((-641 (-1152)) $)) (-15 -2499 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4073 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4158 ((-641 (-1152)) $ (-641 (-1152))))))) (T -394)) -((-2511 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-394)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3654 (*1 *1) (-5 *1 (-394))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2499 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-4073 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-4158 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) -(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2511 ($ (-859) (-564))) (-15 -3712 ((-1264) $ (-564))) (-15 -3712 ((-1264) $)) (-15 -2668 ((-641 (-1152)) $)) (-15 -1697 ((-641 (-1152)) $)) (-15 -3654 ($)) (-15 -1995 ((-641 (-1152)) $)) (-15 -2499 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4073 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4158 ((-641 (-1152)) $ (-641 (-1152)))))) -((-3069 (((-1264) $) 7)) (-1831 (((-859) $) 8))) +((-3098 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4121 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))) +(-13 (-1094) (-490 (-1152)) (-10 -8 (-15 -3098 ($ (-1152) (-1152) (-1152))) (-15 -4109 ((-1152) $)) (-15 -2420 ((-1152) $)) (-15 -2688 ((-1152) $)) (-15 -3056 ((-112) $)) (-15 -2619 ((-112) $)) (-15 -4090 ((-112) $)) (-15 -4121 ($ (-1152) (-1152) (-1152))))) +(((-102) . T) ((-614 #0=(-1152)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3344 (((-858) $) 63)) (-4157 (($) NIL T CONST)) (-3865 (($ $ (-917)) NIL)) (-3996 (($ $ (-917)) NIL)) (-3200 (($ $ (-917)) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4095 (($ (-767)) 37)) (-3480 (((-767)) 18)) (-4115 (((-858) $) 65)) (-2617 (($ $ $) NIL)) (-2322 (((-858) $) NIL)) (-1553 (($ $ $ $) NIL)) (-2366 (($ $ $) NIL)) (-2389 (($) 24 T CONST)) (-2921 (((-112) $ $) 40)) (-3021 (($ $) 47) (($ $ $) 49)) (-3011 (($ $ $) 50)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46))) +(((-390 |#1| |#2| |#3|) (-13 (-740 |#3|) (-10 -8 (-15 -3480 ((-767))) (-15 -4115 ((-858) $)) (-15 -3344 ((-858) $)) (-15 -4095 ($ (-767))))) (-767) (-767) (-172)) (T -390)) +((-3480 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-740 |#3|) (-10 -8 (-15 -3480 ((-767))) (-15 -4115 ((-858) $)) (-15 -3344 ((-858) $)) (-15 -4095 ($ (-767))))) +((-2444 (((-1152)) 12)) (-2685 (((-1141 (-1152))) 31)) (-3428 (((-1264) (-1152)) 28) (((-1264) (-388)) 27)) (-3574 (((-1264)) 29)) (-1687 (((-1141 (-1152))) 30))) +(((-391) (-10 -7 (-15 -1687 ((-1141 (-1152)))) (-15 -2685 ((-1141 (-1152)))) (-15 -3574 ((-1264))) (-15 -3428 ((-1264) (-388))) (-15 -3428 ((-1264) (-1152))) (-15 -2444 ((-1152))))) (T -391)) +((-2444 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3574 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))) (-2685 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))) (-1687 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) +(-10 -7 (-15 -1687 ((-1141 (-1152)))) (-15 -2685 ((-1141 (-1152)))) (-15 -3574 ((-1264))) (-15 -3428 ((-1264) (-388))) (-15 -3428 ((-1264) (-1152))) (-15 -2444 ((-1152)))) +((-3717 (((-767) (-336 |#1| |#2| |#3| |#4|)) 19))) +(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3717 ((-767) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392)) +((-3717 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7))))) +(-10 -7 (-15 -3717 ((-767) (-336 |#1| |#2| |#3| |#4|)))) +((-2322 (((-394) |#1|) 11))) +(((-393 |#1|) (-10 -7 (-15 -2322 ((-394) |#1|))) (-1094)) (T -393)) +((-2322 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094))))) +(-10 -7 (-15 -2322 ((-394) |#1|))) +((-2310 (((-112) $ $) NIL)) (-1361 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-1719 (((-641 (-1152)) $ (-641 (-1152))) 44)) (-2956 (((-641 (-1152)) $ (-641 (-1152))) 45)) (-2651 (((-641 (-1152)) $) 40)) (-4121 (($) 30)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3791 (((-641 (-1152)) $) 41)) (-2099 (((-641 (-1152)) $) 42)) (-1624 (((-1264) $ (-564)) 38) (((-1264) $) 39)) (-3172 (($ (-858) (-564)) 35)) (-2322 (((-858) $) 54) (($ (-858)) 32)) (-2921 (((-112) $ $) NIL))) +(((-394) (-13 (-1094) (-614 (-858)) (-10 -8 (-15 -3172 ($ (-858) (-564))) (-15 -1624 ((-1264) $ (-564))) (-15 -1624 ((-1264) $)) (-15 -2099 ((-641 (-1152)) $)) (-15 -3791 ((-641 (-1152)) $)) (-15 -4121 ($)) (-15 -2651 ((-641 (-1152)) $)) (-15 -2956 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1719 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1361 ((-641 (-1152)) $ (-641 (-1152))))))) (T -394)) +((-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-394)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-4121 (*1 *1) (-5 *1 (-394))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2956 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-1719 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-1361 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(-13 (-1094) (-614 (-858)) (-10 -8 (-15 -3172 ($ (-858) (-564))) (-15 -1624 ((-1264) $ (-564))) (-15 -1624 ((-1264) $)) (-15 -2099 ((-641 (-1152)) $)) (-15 -3791 ((-641 (-1152)) $)) (-15 -4121 ($)) (-15 -2651 ((-641 (-1152)) $)) (-15 -2956 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1719 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1361 ((-641 (-1152)) $ (-641 (-1152)))))) +((-4308 (((-1264) $) 7)) (-2322 (((-858) $) 8))) (((-395) (-140)) (T -395)) -((-3069 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264))))) -(-13 (-1209) (-611 (-859)) (-10 -8 (-15 -3069 ((-1264) $)))) -(((-611 (-859)) . T) ((-1209) . T)) -((-2347 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-949 (-379))) 17) (((-3 $ "failed") (-949 (-564))) 15) (((-3 $ "failed") (-407 (-949 (-379)))) 13) (((-3 $ "failed") (-407 (-949 (-564)))) 11)) (-2237 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-949 (-379))) 18) (($ (-949 (-564))) 16) (($ (-407 (-949 (-379)))) 14) (($ (-407 (-949 (-564)))) 12)) (-3069 (((-1264) $) 7)) (-1831 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 23))) +((-4308 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264))))) +(-13 (-1209) (-611 (-858)) (-10 -8 (-15 -4308 ((-1264) $)))) +(((-611 (-858)) . T) ((-1209) . T)) +((-3032 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-948 (-379))) 17) (((-3 $ "failed") (-948 (-564))) 15) (((-3 $ "failed") (-407 (-948 (-379)))) 13) (((-3 $ "failed") (-407 (-948 (-564)))) 11)) (-1781 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-948 (-379))) 18) (($ (-948 (-564))) 16) (($ (-407 (-948 (-379)))) 14) (($ (-407 (-948 (-564)))) 12)) (-4308 (((-1264) $) 7)) (-2322 (((-858) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 23))) (((-396) (-140)) (T -396)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) (-4 *1 (-396)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396))))) -(-13 (-395) (-10 -8 (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-330))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))) (-15 -2237 ($ (-316 (-379)))) (-15 -2347 ((-3 $ "failed") (-316 (-379)))) (-15 -2237 ($ (-316 (-564)))) (-15 -2347 ((-3 $ "failed") (-316 (-564)))) (-15 -2237 ($ (-949 (-379)))) (-15 -2347 ((-3 $ "failed") (-949 (-379)))) (-15 -2237 ($ (-949 (-564)))) (-15 -2347 ((-3 $ "failed") (-949 (-564)))) (-15 -2237 ($ (-407 (-949 (-379))))) (-15 -2347 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2237 ($ (-407 (-949 (-564))))) (-15 -2347 ((-3 $ "failed") (-407 (-949 (-564))))))) -(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) -((-4124 (((-641 (-1152)) (-641 (-1152))) 9)) (-3069 (((-1264) (-388)) 27)) (-1862 (((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170))) 60) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170)) 35) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170))) 34))) -(((-397) (-10 -7 (-15 -1862 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -1862 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -1862 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -3069 ((-1264) (-388))) (-15 -4124 ((-641 (-1152)) (-641 (-1152)))))) (T -397)) -((-4124 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) (-1862 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-1862 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-1862 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397))))) -(-10 -7 (-15 -1862 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -1862 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -1862 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -3069 ((-1264) (-388))) (-15 -4124 ((-641 (-1152)) (-641 (-1152))))) -((-3069 (((-1264) $) 36)) (-1831 (((-859) $) 98) (($ (-330)) 100) (($ (-641 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 97) (($ (-316 (-697))) 53) (($ (-316 (-695))) 73) (($ (-316 (-690))) 86) (($ (-294 (-316 (-697)))) 68) (($ (-294 (-316 (-695)))) 81) (($ (-294 (-316 (-690)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139))) -(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -1831 ($ (-330))) (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))) (-15 -1831 ($ (-316 (-697)))) (-15 -1831 ($ (-316 (-695)))) (-15 -1831 ($ (-316 (-690)))) (-15 -1831 ($ (-294 (-316 (-697))))) (-15 -1831 ($ (-294 (-316 (-695))))) (-15 -1831 ($ (-294 (-316 (-690))))) (-15 -1831 ($ (-316 (-564)))) (-15 -1831 ($ (-316 (-379)))) (-15 -1831 ($ (-316 (-169 (-379))))) (-15 -1831 ($ (-294 (-316 (-564))))) (-15 -1831 ($ (-294 (-316 (-379))))) (-15 -1831 ($ (-294 (-316 (-169 (-379)))))))) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-1170)) (-1174)) (T -398)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))) -(-13 (-395) (-10 -8 (-15 -1831 ($ (-330))) (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))) (-15 -1831 ($ (-316 (-697)))) (-15 -1831 ($ (-316 (-695)))) (-15 -1831 ($ (-316 (-690)))) (-15 -1831 ($ (-294 (-316 (-697))))) (-15 -1831 ($ (-294 (-316 (-695))))) (-15 -1831 ($ (-294 (-316 (-690))))) (-15 -1831 ($ (-316 (-564)))) (-15 -1831 ($ (-316 (-379)))) (-15 -1831 ($ (-316 (-169 (-379))))) (-15 -1831 ($ (-294 (-316 (-564))))) (-15 -1831 ($ (-294 (-316 (-379))))) (-15 -1831 ($ (-294 (-316 (-169 (-379)))))))) -((-1817 (((-112) $ $) NIL)) (-1586 ((|#2| $) 38)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2063 (($ (-407 |#2|)) 95)) (-3293 (((-641 (-2 (|:| -1558 (-768)) (|:| -2513 |#2|) (|:| |num| |#2|))) $) 39)) (-3534 (($ $) 34) (($ $ (-768)) 36)) (-2511 (((-407 |#2|) $) 51)) (-1842 (($ (-641 (-2 (|:| -1558 (-768)) (|:| -2513 |#2|) (|:| |num| |#2|)))) 33)) (-1831 (((-859) $) 137)) (-3435 (($ $) 35) (($ $ (-768)) 37)) (-1702 (((-112) $ $) NIL)) (-1797 (($ |#2| $) 41))) -(((-399 |#1| |#2|) (-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1797 ($ |#2| $)) (-15 -2063 ($ (-407 |#2|))) (-15 -1586 (|#2| $)) (-15 -3293 ((-641 (-2 (|:| -1558 (-768)) (|:| -2513 |#2|) (|:| |num| |#2|))) $)) (-15 -1842 ($ (-641 (-2 (|:| -1558 (-768)) (|:| -2513 |#2|) (|:| |num| |#2|))))) (-15 -3534 ($ $)) (-15 -3435 ($ $)) (-15 -3534 ($ $ (-768))) (-15 -3435 ($ $ (-768))))) (-13 (-363) (-147)) (-1235 |#1|)) (T -399)) -((-1797 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1235 *3)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-1586 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-3293 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-641 (-2 (|:| -1558 (-768)) (|:| -2513 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1558 (-768)) (|:| -2513 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-3534 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-3435 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3))))) -(-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1797 ($ |#2| $)) (-15 -2063 ($ (-407 |#2|))) (-15 -1586 (|#2| $)) (-15 -3293 ((-641 (-2 (|:| -1558 (-768)) (|:| -2513 |#2|) (|:| |num| |#2|))) $)) (-15 -1842 ($ (-641 (-2 (|:| -1558 (-768)) (|:| -2513 |#2|) (|:| |num| |#2|))))) (-15 -3534 ($ $)) (-15 -3435 ($ $)) (-15 -3534 ($ $ (-768))) (-15 -3435 ($ $ (-768))))) -((-1817 (((-112) $ $) 9 (-4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 15 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 14 (|has| |#1| (-883 (-564))))) (-2723 (((-1152) $) 13 (-4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-2780 (((-1114) $) 12 (-4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-1831 (((-859) $) 11 (-4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-1702 (((-112) $ $) 10 (-4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379))))))) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-396)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-396)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-564))) (-4 *1 (-396)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396))))) +(-13 (-395) (-10 -8 (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-330))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))) (-15 -1781 ($ (-316 (-379)))) (-15 -3032 ((-3 $ "failed") (-316 (-379)))) (-15 -1781 ($ (-316 (-564)))) (-15 -3032 ((-3 $ "failed") (-316 (-564)))) (-15 -1781 ($ (-948 (-379)))) (-15 -3032 ((-3 $ "failed") (-948 (-379)))) (-15 -1781 ($ (-948 (-564)))) (-15 -3032 ((-3 $ "failed") (-948 (-564)))) (-15 -1781 ($ (-407 (-948 (-379))))) (-15 -3032 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -1781 ($ (-407 (-948 (-564))))) (-15 -3032 ((-3 $ "failed") (-407 (-948 (-564))))))) +(((-611 (-858)) . T) ((-395) . T) ((-1209) . T)) +((-4102 (((-641 (-1152)) (-641 (-1152))) 9)) (-4308 (((-1264) (-388)) 27)) (-3733 (((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170))) 60) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170)) 35) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170))) 34))) +(((-397) (-10 -7 (-15 -3733 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -3733 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -3733 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -4308 ((-1264) (-388))) (-15 -4102 ((-641 (-1152)) (-641 (-1152)))))) (T -397)) +((-4102 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) (-3733 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-3733 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-3733 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397))))) +(-10 -7 (-15 -3733 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -3733 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -3733 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -4308 ((-1264) (-388))) (-15 -4102 ((-641 (-1152)) (-641 (-1152))))) +((-4308 (((-1264) $) 36)) (-2322 (((-858) $) 98) (($ (-330)) 100) (($ (-641 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 97) (($ (-316 (-697))) 53) (($ (-316 (-695))) 73) (($ (-316 (-690))) 86) (($ (-294 (-316 (-697)))) 68) (($ (-294 (-316 (-695)))) 81) (($ (-294 (-316 (-690)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139))) +(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -2322 ($ (-330))) (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))) (-15 -2322 ($ (-316 (-697)))) (-15 -2322 ($ (-316 (-695)))) (-15 -2322 ($ (-316 (-690)))) (-15 -2322 ($ (-294 (-316 (-697))))) (-15 -2322 ($ (-294 (-316 (-695))))) (-15 -2322 ($ (-294 (-316 (-690))))) (-15 -2322 ($ (-316 (-564)))) (-15 -2322 ($ (-316 (-379)))) (-15 -2322 ($ (-316 (-169 (-379))))) (-15 -2322 ($ (-294 (-316 (-564))))) (-15 -2322 ($ (-294 (-316 (-379))))) (-15 -2322 ($ (-294 (-316 (-169 (-379)))))))) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-1170)) (-1174)) (T -398)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))) +(-13 (-395) (-10 -8 (-15 -2322 ($ (-330))) (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))) (-15 -2322 ($ (-316 (-697)))) (-15 -2322 ($ (-316 (-695)))) (-15 -2322 ($ (-316 (-690)))) (-15 -2322 ($ (-294 (-316 (-697))))) (-15 -2322 ($ (-294 (-316 (-695))))) (-15 -2322 ($ (-294 (-316 (-690))))) (-15 -2322 ($ (-316 (-564)))) (-15 -2322 ($ (-316 (-379)))) (-15 -2322 ($ (-316 (-169 (-379))))) (-15 -2322 ($ (-294 (-316 (-564))))) (-15 -2322 ($ (-294 (-316 (-379))))) (-15 -2322 ($ (-294 (-316 (-169 (-379)))))))) +((-2310 (((-112) $ $) NIL)) (-2959 ((|#2| $) 38)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4008 (($ (-407 |#2|)) 95)) (-3060 (((-641 (-2 (|:| -3866 (-767)) (|:| -2965 |#2|) (|:| |num| |#2|))) $) 39)) (-1343 (($ $) 34) (($ $ (-767)) 36)) (-3172 (((-407 |#2|) $) 51)) (-2335 (($ (-641 (-2 (|:| -3866 (-767)) (|:| -2965 |#2|) (|:| |num| |#2|)))) 33)) (-2322 (((-858) $) 137)) (-3917 (($ $) 35) (($ $ (-767)) 37)) (-2921 (((-112) $ $) NIL)) (-3011 (($ |#2| $) 41))) +(((-399 |#1| |#2|) (-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -3011 ($ |#2| $)) (-15 -4008 ($ (-407 |#2|))) (-15 -2959 (|#2| $)) (-15 -3060 ((-641 (-2 (|:| -3866 (-767)) (|:| -2965 |#2|) (|:| |num| |#2|))) $)) (-15 -2335 ($ (-641 (-2 (|:| -3866 (-767)) (|:| -2965 |#2|) (|:| |num| |#2|))))) (-15 -1343 ($ $)) (-15 -3917 ($ $)) (-15 -1343 ($ $ (-767))) (-15 -3917 ($ $ (-767))))) (-13 (-363) (-147)) (-1235 |#1|)) (T -399)) +((-3011 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1235 *3)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-2959 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-3060 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-641 (-2 (|:| -3866 (-767)) (|:| -2965 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3866 (-767)) (|:| -2965 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-1343 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-3917 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3))))) +(-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -3011 ($ |#2| $)) (-15 -4008 ($ (-407 |#2|))) (-15 -2959 (|#2| $)) (-15 -3060 ((-641 (-2 (|:| -3866 (-767)) (|:| -2965 |#2|) (|:| |num| |#2|))) $)) (-15 -2335 ($ (-641 (-2 (|:| -3866 (-767)) (|:| -2965 |#2|) (|:| |num| |#2|))))) (-15 -1343 ($ $)) (-15 -3917 ($ $)) (-15 -1343 ($ $ (-767))) (-15 -3917 ($ $ (-767))))) +((-2310 (((-112) $ $) 9 (-2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 15 (|has| |#1| (-882 (-379)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 14 (|has| |#1| (-882 (-564))))) (-1418 (((-1152) $) 13 (-2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-3840 (((-1114) $) 12 (-2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-2322 (((-858) $) 11 (-2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-2921 (((-112) $ $) 10 (-2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379))))))) (((-400 |#1|) (-140) (-1209)) (T -400)) NIL -(-13 (-1209) (-10 -7 (IF (|has| |t#1| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|))) -(((-102) -4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-611 (-859)) -4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-1094) -4078 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-1209) . T)) -((-3340 (($ $) 12) (($ $ (-768)) 14))) -(((-401 |#1|) (-10 -8 (-15 -3340 (|#1| |#1| (-768))) (-15 -3340 (|#1| |#1|))) (-402)) (T -401)) +(-13 (-1209) (-10 -7 (IF (|has| |t#1| (-882 (-564))) (-6 (-882 (-564))) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|))) +(((-102) -2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))) ((-611 (-858)) -2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-1094) -2789 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))) ((-1209) . T)) +((-2180 (($ $) 12) (($ $ (-767)) 14))) +(((-401 |#1|) (-10 -8 (-15 -2180 (|#1| |#1| (-767))) (-15 -2180 (|#1| |#1|))) (-402)) (T -401)) NIL -(-10 -8 (-15 -3340 (|#1| |#1| (-768))) (-15 -3340 (|#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-3340 (($ $) 80) (($ $ (-768)) 79)) (-1420 (((-112) $) 72)) (-2155 (((-830 (-918)) $) 82)) (-2949 (((-112) $) 31)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1820 (((-3 (-768) "failed") $ $) 81)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-4018 (((-3 $ "failed") $) 83)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 66)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +(-10 -8 (-15 -2180 (|#1| |#1| (-767))) (-15 -2180 (|#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-2180 (($ $) 80) (($ $ (-767)) 79)) (-4229 (((-112) $) 72)) (-3717 (((-829 (-917)) $) 82)) (-1828 (((-112) $) 31)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3337 (((-3 (-767) "failed") $ $) 81)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-2409 (((-3 $ "failed") $) 83)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 66)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-402) (-140)) (T -402)) -((-2155 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918))))) (-1820 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768)))) (-3340 (*1 *1 *1) (-4 *1 (-402))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768))))) -(-13 (-363) (-145) (-10 -8 (-15 -2155 ((-830 (-918)) $)) (-15 -1820 ((-3 (-768) "failed") $ $)) (-15 -3340 ($ $)) (-15 -3340 ($ $ (-768))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-2293 (($ (-564) (-564)) 11) (($ (-564) (-564) (-918)) NIL)) (-2422 (((-918)) 20) (((-918) (-918)) NIL))) -(((-403 |#1|) (-10 -8 (-15 -2422 ((-918) (-918))) (-15 -2422 ((-918))) (-15 -2293 (|#1| (-564) (-564) (-918))) (-15 -2293 (|#1| (-564) (-564)))) (-404)) (T -403)) -((-2422 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404))))) -(-10 -8 (-15 -2422 ((-918) (-918))) (-15 -2422 ((-918))) (-15 -2293 (|#1| (-564) (-564) (-918))) (-15 -2293 (|#1| (-564) (-564)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3423 (((-564) $) 90)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-3220 (($ $) 88)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3083 (($ $) 98)) (-3554 (((-112) $ $) 60)) (-1598 (((-564) $) 115)) (-1778 (($) 17 T CONST)) (-3015 (($ $) 87)) (-2347 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2237 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1420 (((-112) $) 72)) (-4292 (((-918)) 131) (((-918) (-918)) 128 (|has| $ (-6 -4397)))) (-1569 (((-112) $) 113)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-2155 (((-564) $) 137)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 97)) (-3797 (($ $) 93)) (-2607 (((-112) $) 114)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1925 (($ $ $) 112) (($) 125 (-12 (-4338 (|has| $ (-6 -4397))) (-4338 (|has| $ (-6 -4389)))))) (-3375 (($ $ $) 111) (($) 124 (-12 (-4338 (|has| $ (-6 -4397))) (-4338 (|has| $ (-6 -4389)))))) (-2935 (((-564) $) 134)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-4094 (((-918) (-564)) 127 (|has| $ (-6 -4397)))) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3191 (($ $) 89)) (-1818 (($ $) 91)) (-2293 (($ (-564) (-564)) 139) (($ (-564) (-564) (-918)) 138)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1558 (((-564) $) 135)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-2422 (((-918)) 132) (((-918) (-918)) 129 (|has| $ (-6 -4397)))) (-4169 (((-918) (-564)) 126 (|has| $ (-6 -4397)))) (-2511 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-2219 (((-768)) 28 T CONST)) (-4150 (($ $) 92)) (-2432 (((-918)) 133) (((-918) (-918)) 130 (|has| $ (-6 -4397)))) (-3655 (((-918)) 136)) (-3939 (((-112) $ $) 40)) (-1849 (($ $) 116)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 109)) (-1737 (((-112) $ $) 108)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 110)) (-1723 (((-112) $ $) 107)) (-1823 (($ $ $) 66)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +((-3717 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) (-3337 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))) (-2180 (*1 *1 *1) (-4 *1 (-402))) (-2180 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767))))) +(-13 (-363) (-145) (-10 -8 (-15 -3717 ((-829 (-917)) $)) (-15 -3337 ((-3 (-767) "failed") $ $)) (-15 -2180 ($ $)) (-15 -2180 ($ $ (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2793 (($ (-564) (-564)) 11) (($ (-564) (-564) (-917)) NIL)) (-3413 (((-917)) 20) (((-917) (-917)) NIL))) +(((-403 |#1|) (-10 -8 (-15 -3413 ((-917) (-917))) (-15 -3413 ((-917))) (-15 -2793 (|#1| (-564) (-564) (-917))) (-15 -2793 (|#1| (-564) (-564)))) (-404)) (T -403)) +((-3413 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-3413 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))) +(-10 -8 (-15 -3413 ((-917) (-917))) (-15 -3413 ((-917))) (-15 -2793 (|#1| (-564) (-564) (-917))) (-15 -2793 (|#1| (-564) (-564)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1625 (((-564) $) 90)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-3624 (($ $) 88)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-2387 (($ $) 98)) (-3547 (((-112) $ $) 60)) (-3085 (((-564) $) 115)) (-4157 (($) 17 T CONST)) (-2362 (($ $) 87)) (-3032 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-1781 (((-564) $) 104) (((-407 (-564)) $) 101)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-4229 (((-112) $) 72)) (-1442 (((-917)) 131) (((-917) (-917)) 128 (|has| $ (-6 -4397)))) (-2786 (((-112) $) 113)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-3717 (((-564) $) 137)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 97)) (-2019 (($ $) 93)) (-2783 (((-112) $) 114)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1501 (($ $ $) 112) (($) 125 (-12 (-2329 (|has| $ (-6 -4397))) (-2329 (|has| $ (-6 -4389)))))) (-2622 (($ $ $) 111) (($) 124 (-12 (-2329 (|has| $ (-6 -4397))) (-2329 (|has| $ (-6 -4389)))))) (-3537 (((-564) $) 134)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-1910 (((-917) (-564)) 127 (|has| $ (-6 -4397)))) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-3399 (($ $) 89)) (-1421 (($ $) 91)) (-2793 (($ (-564) (-564)) 139) (($ (-564) (-564) (-917)) 138)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3866 (((-564) $) 135)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3413 (((-917)) 132) (((-917) (-917)) 129 (|has| $ (-6 -4397)))) (-1454 (((-917) (-564)) 126 (|has| $ (-6 -4397)))) (-3172 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-3179 (((-767)) 28 T CONST)) (-4381 (($ $) 92)) (-3503 (((-917)) 133) (((-917) (-917)) 130 (|has| $ (-6 -4397)))) (-2610 (((-917)) 136)) (-4024 (((-112) $ $) 40)) (-3598 (($ $) 116)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 109)) (-2953 (((-112) $ $) 108)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 110)) (-2942 (((-112) $ $) 107)) (-3034 (($ $ $) 66)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-404) (-140)) (T -404)) -((-2293 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2293 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3655 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-1558 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2432 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2422 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-4292 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) (-5 *2 (-918)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) (-5 *2 (-918)))) (-1925 (*1 *1) (-12 (-4 *1 (-404)) (-4338 (|has| *1 (-6 -4397))) (-4338 (|has| *1 (-6 -4389))))) (-3375 (*1 *1) (-12 (-4 *1 (-404)) (-4338 (|has| *1 (-6 -4397))) (-4338 (|has| *1 (-6 -4389)))))) -(-13 (-1055) (-10 -8 (-6 -2508) (-15 -2293 ($ (-564) (-564))) (-15 -2293 ($ (-564) (-564) (-918))) (-15 -2155 ((-564) $)) (-15 -3655 ((-918))) (-15 -1558 ((-564) $)) (-15 -2935 ((-564) $)) (-15 -2432 ((-918))) (-15 -2422 ((-918))) (-15 -4292 ((-918))) (IF (|has| $ (-6 -4397)) (PROGN (-15 -2432 ((-918) (-918))) (-15 -2422 ((-918) (-918))) (-15 -4292 ((-918) (-918))) (-15 -4094 ((-918) (-564))) (-15 -4169 ((-918) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4389)) |%noBranch| (IF (|has| $ (-6 -4397)) |%noBranch| (PROGN (-15 -1925 ($)) (-15 -3375 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-889 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-883 (-379)) . T) ((-917) . T) ((-999) . T) ((-1019) . T) ((-1055) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-2449 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20))) -(((-405 |#1| |#2|) (-10 -7 (-15 -2449 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))) -(-10 -7 (-15 -2449 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) -((-2449 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13))) -(((-406 |#1| |#2|) (-10 -7 (-15 -2449 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))) -(-10 -7 (-15 -2449 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 13)) (-3423 ((|#1| $) 21 (|has| |#1| (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| |#1| (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 17) (((-3 (-1170) "failed") $) NIL (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564))))) (-2237 ((|#1| $) 15) (((-1170) $) NIL (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 69 (|has| |#1| (-1035 (-564)))) (((-564) $) NIL (|has| |#1| (-1035 (-564))))) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) 51)) (-2900 (($) NIL (|has| |#1| (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| |#1| (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-2949 (((-112) $) 57)) (-4157 (($ $) NIL)) (-3678 ((|#1| $) 73)) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2607 (((-112) $) NIL (|has| |#1| (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| |#1| (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| |#1| (-307)))) (-1818 ((|#1| $) 28 (|has| |#1| (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 148 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 141 (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3920 (((-768) $) NIL)) (-1350 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2644 (($ $) NIL)) (-3693 ((|#1| $) 75)) (-2511 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1019))) (((-225) $) NIL (|has| |#1| (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1170)) NIL (|has| |#1| (-1035 (-1170))))) (-4018 (((-3 $ "failed") $) 102 (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) 103 T CONST)) (-4150 ((|#1| $) 26 (|has| |#1| (-545)))) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL (|has| |#1| (-817)))) (-1293 (($) 22 T CONST)) (-1300 (($) 8 T CONST)) (-3213 (((-1152) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1152) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-825))))) (-3435 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) 66)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) 24 (|has| |#1| (-847)))) (-1823 (($ $ $) 136) (($ |#1| |#1|) 53)) (-1808 (($ $) 25) (($ $ $) 56)) (-1797 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 135)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-407 |#1|) (-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4404)) (-6 -4393) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407)) -NIL -(-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4404)) (-6 -4393) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3390 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 18)) (-3624 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 24)) (-4206 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 40)) (-3774 ((|#3| $) 73)) (-3190 ((|#2| (-1259 $)) NIL) ((|#2|) 20)) (-2467 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 22) (((-685 |#2|) (-1259 $)) 38)) (-2511 (((-1259 |#2|) $) 11) (($ (-1259 |#2|)) 13)) (-1349 ((|#3| $) 55))) -(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -4206 ((-685 |#2|) |#1|)) (-15 -3190 (|#2|)) (-15 -3390 ((-685 |#2|))) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -3624 (|#1| (-1259 |#2|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -3774 (|#3| |#1|)) (-15 -1349 (|#3| |#1|)) (-15 -3390 ((-685 |#2|) (-1259 |#1|))) (-15 -3190 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4206 ((-685 |#2|) |#1| (-1259 |#1|)))) (-409 |#2| |#3|) (-172) (-1235 |#2|)) (T -408)) -((-3390 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-3190 (*1 *2) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) -(-10 -8 (-15 -4206 ((-685 |#2|) |#1|)) (-15 -3190 (|#2|)) (-15 -3390 ((-685 |#2|))) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -3624 (|#1| (-1259 |#2|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -3774 (|#3| |#1|)) (-15 -1349 (|#3| |#1|)) (-15 -3390 ((-685 |#2|) (-1259 |#1|))) (-15 -3190 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4206 ((-685 |#2|) |#1| (-1259 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3390 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-2713 ((|#1| $) 53)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3624 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-4206 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-3733 (((-3 $ "failed") $) 33)) (-3531 (((-918)) 55)) (-2949 (((-112) $) 31)) (-3797 ((|#1| $) 52)) (-3774 ((|#2| $) 45 (|has| |#1| (-363)))) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3190 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-2467 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2511 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-4018 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1349 ((|#2| $) 46)) (-2219 (((-768)) 28 T CONST)) (-3331 (((-1259 $)) 68)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2793 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2793 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-4 *1 (-404)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2610 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3503 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3413 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1442 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) (-3413 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) (-5 *2 (-917)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) (-5 *2 (-917)))) (-1501 (*1 *1) (-12 (-4 *1 (-404)) (-2329 (|has| *1 (-6 -4397))) (-2329 (|has| *1 (-6 -4389))))) (-2622 (*1 *1) (-12 (-4 *1 (-404)) (-2329 (|has| *1 (-6 -4397))) (-2329 (|has| *1 (-6 -4389)))))) +(-13 (-1054) (-10 -8 (-6 -3564) (-15 -2793 ($ (-564) (-564))) (-15 -2793 ($ (-564) (-564) (-917))) (-15 -3717 ((-564) $)) (-15 -2610 ((-917))) (-15 -3866 ((-564) $)) (-15 -3537 ((-564) $)) (-15 -3503 ((-917))) (-15 -3413 ((-917))) (-15 -1442 ((-917))) (IF (|has| $ (-6 -4397)) (PROGN (-15 -3503 ((-917) (-917))) (-15 -3413 ((-917) (-917))) (-15 -1442 ((-917) (-917))) (-15 -1910 ((-917) (-564))) (-15 -1454 ((-917) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4389)) |%noBranch| (IF (|has| $ (-6 -4397)) |%noBranch| (PROGN (-15 -1501 ($)) (-15 -2622 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1054) . T) ((-1034 (-407 (-564))) . T) ((-1034 (-564)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-3123 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20))) +(((-405 |#1| |#2|) (-10 -7 (-15 -3123 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))) +(-10 -7 (-15 -3123 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) +((-3123 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13))) +(((-406 |#1| |#2|) (-10 -7 (-15 -3123 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))) +(-10 -7 (-15 -3123 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 13)) (-1625 ((|#1| $) 21 (|has| |#1| (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| |#1| (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 17) (((-3 (-1170) "failed") $) NIL (|has| |#1| (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564))))) (-1781 ((|#1| $) 15) (((-1170) $) NIL (|has| |#1| (-1034 (-1170)))) (((-407 (-564)) $) 69 (|has| |#1| (-1034 (-564)))) (((-564) $) NIL (|has| |#1| (-1034 (-564))))) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) 51)) (-3860 (($) NIL (|has| |#1| (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| |#1| (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-1828 (((-112) $) 57)) (-1352 (($ $) NIL)) (-4189 ((|#1| $) 73)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2783 (((-112) $) NIL (|has| |#1| (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| |#1| (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| |#1| (-307)))) (-1421 ((|#1| $) 28 (|has| |#1| (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 148 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 141 (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3844 (((-767) $) NIL)) (-4353 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1881 (($ $) NIL)) (-4201 ((|#1| $) 75)) (-3172 (((-888 (-564)) $) NIL (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#1| (-612 (-888 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1018))) (((-225) $) NIL (|has| |#1| (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1170)) NIL (|has| |#1| (-1034 (-1170))))) (-2409 (((-3 $ "failed") $) 102 (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) 103 T CONST)) (-4381 ((|#1| $) 26 (|has| |#1| (-545)))) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL (|has| |#1| (-816)))) (-2389 (($) 22 T CONST)) (-2403 (($) 8 T CONST)) (-3552 (((-1152) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1152) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1264) (-818) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1264) (-818) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-824))))) (-3917 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) 66)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) 24 (|has| |#1| (-846)))) (-3034 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3021 (($ $) 25) (($ $ $) 56)) (-3011 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 135)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-407 |#1|) (-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4404)) (-6 -4393) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407)) +NIL +(-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4404)) (-6 -4393) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2586 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 18)) (-3013 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 24)) (-3689 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 40)) (-1790 ((|#3| $) 73)) (-3392 ((|#2| (-1259 $)) NIL) ((|#2|) 20)) (-3864 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 22) (((-685 |#2|) (-1259 $)) 38)) (-3172 (((-1259 |#2|) $) 11) (($ (-1259 |#2|)) 13)) (-2117 ((|#3| $) 55))) +(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -3689 ((-685 |#2|) |#1|)) (-15 -3392 (|#2|)) (-15 -2586 ((-685 |#2|))) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3013 (|#1| (-1259 |#2|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -1790 (|#3| |#1|)) (-15 -2117 (|#3| |#1|)) (-15 -2586 ((-685 |#2|) (-1259 |#1|))) (-15 -3392 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3689 ((-685 |#2|) |#1| (-1259 |#1|)))) (-409 |#2| |#3|) (-172) (-1235 |#2|)) (T -408)) +((-2586 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-3392 (*1 *2) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) +(-10 -8 (-15 -3689 ((-685 |#2|) |#1|)) (-15 -3392 (|#2|)) (-15 -2586 ((-685 |#2|))) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3013 (|#1| (-1259 |#2|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -1790 (|#3| |#1|)) (-15 -2117 (|#3| |#1|)) (-15 -2586 ((-685 |#2|) (-1259 |#1|))) (-15 -3392 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3689 ((-685 |#2|) |#1| (-1259 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2586 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3770 ((|#1| $) 53)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3013 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3689 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-2689 (((-3 $ "failed") $) 33)) (-3105 (((-917)) 55)) (-1828 (((-112) $) 31)) (-2019 ((|#1| $) 52)) (-1790 ((|#2| $) 45 (|has| |#1| (-363)))) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-3392 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-3864 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-3172 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-2409 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2117 ((|#2| $) 46)) (-3179 (((-767)) 28 T CONST)) (-3342 (((-1259 $)) 68)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-409 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -409)) -((-3331 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) (-4 *1 (-409 *3 *4)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3624 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-3390 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))) (-3190 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3))))) -(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -3331 ((-1259 $))) (-15 -2467 ((-1259 |t#1|) $)) (-15 -2467 ((-685 |t#1|) (-1259 $))) (-15 -3624 ($ (-1259 |t#1|))) (-15 -2511 ((-1259 |t#1|) $)) (-15 -2511 ($ (-1259 |t#1|))) (-15 -3390 ((-685 |t#1|))) (-15 -3190 (|t#1|)) (-15 -4206 ((-685 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-370 |#1| |#2|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-1831 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11))) -(((-410 |#1| |#2|) (-10 -8 (-15 -1831 (|#1| (-564))) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|))) (-411 |#2|) (-1209)) (T -410)) -NIL -(-10 -8 (-15 -1831 (|#1| (-564))) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|))) -((-2347 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1035 (-564))))) (-2237 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1035 (-564))))) (-1831 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1035 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1035 (-564)))))) +((-3342 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) (-4 *1 (-409 *3 *4)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-2586 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))) (-3392 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3))))) +(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -3342 ((-1259 $))) (-15 -3864 ((-1259 |t#1|) $)) (-15 -3864 ((-685 |t#1|) (-1259 $))) (-15 -3013 ($ (-1259 |t#1|))) (-15 -3172 ((-1259 |t#1|) $)) (-15 -3172 ($ (-1259 |t#1|))) (-15 -2586 ((-685 |t#1|))) (-15 -3392 (|t#1|)) (-15 -3689 ((-685 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-370 |#1| |#2|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-2322 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11))) +(((-410 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| (-564))) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|))) (-411 |#2|) (-1209)) (T -410)) +NIL +(-10 -8 (-15 -2322 (|#1| (-564))) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|))) +((-3032 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1034 (-564))))) (-1781 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1034 (-564))))) (-2322 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1034 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1034 (-564)))))) (((-411 |#1|) (-140) (-1209)) (T -411)) NIL -(-13 (-1035 |t#1|) (-10 -7 (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-564))) |%noBranch|) (IF (|has| |t#1| (-1035 (-407 (-564)))) (-6 (-1035 (-407 (-564)))) |%noBranch|))) -(((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1035 (-564))) ((-614 |#1|) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 #1#) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T)) -((-2449 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35))) -(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2449 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|)) (-307) (-989 |#5|) (-1235 |#6|) (-13 (-409 |#6| |#7|) (-1035 |#6|))) (T -412)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *7 (-1235 *6)) (-4 *8 (-13 (-409 *6 *7) (-1035 *6))) (-4 *9 (-307)) (-4 *10 (-989 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1035 *10)))))) -(-10 -7 (-15 -2449 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) -((-1817 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-4240 ((|#4| (-768) (-1259 |#4|)) 60)) (-2949 (((-112) $) NIL)) (-3678 (((-1259 |#4|) $) 17)) (-3797 ((|#2| $) 55)) (-3609 (($ $) 163)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 108)) (-3884 (($ (-1259 |#4|)) 107)) (-2780 (((-1114) $) NIL)) (-3693 ((|#1| $) 18)) (-3047 (($ $ $) NIL)) (-1992 (($ $ $) NIL)) (-1831 (((-859) $) 153)) (-3331 (((-1259 |#4|) $) 146)) (-1300 (($) 11 T CONST)) (-1702 (((-112) $ $) 41)) (-1823 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135))) -(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -3884 ($ (-1259 |#4|))) (-15 -3331 ((-1259 |#4|) $)) (-15 -3797 (|#2| $)) (-15 -3678 ((-1259 |#4|) $)) (-15 -3693 (|#1| $)) (-15 -3609 ($ $)) (-15 -4240 (|#4| (-768) (-1259 |#4|))))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|))) (T -413)) -((-3884 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-3797 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2))))) (-3678 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-3693 (*1 *2 *1) (-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-3609 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6))))) -(-13 (-473) (-10 -8 (-15 -3884 ($ (-1259 |#4|))) (-15 -3331 ((-1259 |#4|) $)) (-15 -3797 (|#2| $)) (-15 -3678 ((-1259 |#4|) $)) (-15 -3693 (|#1| $)) (-15 -3609 ($ $)) (-15 -4240 (|#4| (-768) (-1259 |#4|))))) -((-1817 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-3797 ((|#2| $) 71)) (-2903 (($ (-1259 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1035 |#2|)))) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 37)) (-3331 (((-1259 |#4|) $) 28)) (-1300 (($) 25 T CONST)) (-1702 (((-112) $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ $ $) 82))) -(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-723) (-10 -8 (-15 -3331 ((-1259 |#4|) $)) (-15 -3797 (|#2| $)) (-15 -2903 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -2903 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-989 |#1|) (-1235 |#2|) (-409 |#2| |#3|) (-1259 |#4|)) (T -414)) -((-3331 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3797 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1259 *5)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) -(-13 (-723) (-10 -8 (-15 -3331 ((-1259 |#4|) $)) (-15 -3797 (|#2| $)) (-15 -2903 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -2903 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2449 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) -(-10 -7 (-15 -2449 (|#3| (-1 |#4| |#2|) |#1|))) -((-1674 (((-3 $ "failed")) 99)) (-1546 (((-1259 (-685 |#2|)) (-1259 $)) NIL) (((-1259 (-685 |#2|))) 104)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) 97)) (-3868 (((-3 $ "failed")) 96)) (-1911 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 115)) (-2050 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 123)) (-2232 (((-1166 (-949 |#2|))) 65)) (-1476 ((|#2| (-1259 $)) NIL) ((|#2|) 119)) (-3624 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 125)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) 95)) (-2302 (((-3 $ "failed")) 87)) (-2510 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 113)) (-2289 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 121)) (-1402 (((-1166 (-949 |#2|))) 64)) (-3525 ((|#2| (-1259 $)) NIL) ((|#2|) 117)) (-2467 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 124) (((-685 |#2|) (-1259 $)) 133)) (-2511 (((-1259 |#2|) $) 109) (($ (-1259 |#2|)) 111)) (-2852 (((-641 (-949 |#2|)) (-1259 $)) NIL) (((-641 (-949 |#2|))) 107)) (-3246 (($ (-685 |#2|) $) 103))) -(((-416 |#1| |#2|) (-10 -8 (-15 -3246 (|#1| (-685 |#2|) |#1|)) (-15 -2232 ((-1166 (-949 |#2|)))) (-15 -1402 ((-1166 (-949 |#2|)))) (-15 -2050 ((-685 |#2|) |#1|)) (-15 -2289 ((-685 |#2|) |#1|)) (-15 -1911 ((-685 |#2|))) (-15 -2510 ((-685 |#2|))) (-15 -1476 (|#2|)) (-15 -3525 (|#2|)) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -3624 (|#1| (-1259 |#2|))) (-15 -2852 ((-641 (-949 |#2|)))) (-15 -1546 ((-1259 (-685 |#2|)))) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -1674 ((-3 |#1| "failed"))) (-15 -3868 ((-3 |#1| "failed"))) (-15 -2302 ((-3 |#1| "failed"))) (-15 -3353 ((-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed"))) (-15 -1907 ((-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed"))) (-15 -1911 ((-685 |#2|) (-1259 |#1|))) (-15 -2510 ((-685 |#2|) (-1259 |#1|))) (-15 -1476 (|#2| (-1259 |#1|))) (-15 -3525 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2050 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2289 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1546 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -2852 ((-641 (-949 |#2|)) (-1259 |#1|)))) (-417 |#2|) (-172)) (T -416)) -((-1546 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2852 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3525 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1476 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-2510 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1911 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1402 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2232 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) -(-10 -8 (-15 -3246 (|#1| (-685 |#2|) |#1|)) (-15 -2232 ((-1166 (-949 |#2|)))) (-15 -1402 ((-1166 (-949 |#2|)))) (-15 -2050 ((-685 |#2|) |#1|)) (-15 -2289 ((-685 |#2|) |#1|)) (-15 -1911 ((-685 |#2|))) (-15 -2510 ((-685 |#2|))) (-15 -1476 (|#2|)) (-15 -3525 (|#2|)) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -3624 (|#1| (-1259 |#2|))) (-15 -2852 ((-641 (-949 |#2|)))) (-15 -1546 ((-1259 (-685 |#2|)))) (-15 -2467 ((-685 |#2|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1|)) (-15 -1674 ((-3 |#1| "failed"))) (-15 -3868 ((-3 |#1| "failed"))) (-15 -2302 ((-3 |#1| "failed"))) (-15 -3353 ((-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed"))) (-15 -1907 ((-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed"))) (-15 -1911 ((-685 |#2|) (-1259 |#1|))) (-15 -2510 ((-685 |#2|) (-1259 |#1|))) (-15 -1476 (|#2| (-1259 |#1|))) (-15 -3525 (|#2| (-1259 |#1|))) (-15 -3624 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -2467 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -2467 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2050 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2289 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1546 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -2852 ((-641 (-949 |#2|)) (-1259 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-1674 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) 19)) (-1546 (((-1259 (-685 |#1|)) (-1259 $)) 78) (((-1259 (-685 |#1|))) 100)) (-2294 (((-1259 $)) 81)) (-1778 (($) 17 T CONST)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-3868 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-1911 (((-685 |#1|) (-1259 $)) 65) (((-685 |#1|)) 92)) (-2825 ((|#1| $) 74)) (-2050 (((-685 |#1|) $ (-1259 $)) 76) (((-685 |#1|) $) 90)) (-2767 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-2232 (((-1166 (-949 |#1|))) 88 (|has| |#1| (-363)))) (-4221 (($ $ (-918)) 28)) (-2166 ((|#1| $) 72)) (-2878 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-1476 ((|#1| (-1259 $)) 67) ((|#1|) 94)) (-1475 (((-1166 |#1|) $) 63)) (-2103 (((-112)) 57)) (-3624 (($ (-1259 |#1|) (-1259 $)) 69) (($ (-1259 |#1|)) 98)) (-3733 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-3531 (((-918)) 80)) (-3628 (((-112)) 54)) (-2482 (($ $ (-918)) 33)) (-3001 (((-112)) 50)) (-3261 (((-112)) 48)) (-2130 (((-112)) 52)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-2302 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-2510 (((-685 |#1|) (-1259 $)) 66) (((-685 |#1|)) 93)) (-3385 ((|#1| $) 75)) (-2289 (((-685 |#1|) $ (-1259 $)) 77) (((-685 |#1|) $) 91)) (-3874 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-1402 (((-1166 (-949 |#1|))) 89 (|has| |#1| (-363)))) (-2839 (($ $ (-918)) 29)) (-2873 ((|#1| $) 73)) (-4146 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3525 ((|#1| (-1259 $)) 68) ((|#1|) 95)) (-2582 (((-1166 |#1|) $) 64)) (-2628 (((-112)) 58)) (-2723 (((-1152) $) 9)) (-3582 (((-112)) 49)) (-2317 (((-112)) 51)) (-2241 (((-112)) 53)) (-2780 (((-1114) $) 10)) (-3740 (((-112)) 56)) (-1350 ((|#1| $ (-564)) 101)) (-2467 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70) (((-1259 |#1|) $) 103) (((-685 |#1|) (-1259 $)) 102)) (-2511 (((-1259 |#1|) $) 97) (($ (-1259 |#1|)) 96)) (-2852 (((-641 (-949 |#1|)) (-1259 $)) 79) (((-641 (-949 |#1|))) 99)) (-1992 (($ $ $) 25)) (-2595 (((-112)) 62)) (-1831 (((-859) $) 11)) (-3331 (((-1259 $)) 104)) (-1488 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-2611 (($ $ $ $) 26)) (-1604 (((-112)) 60)) (-3246 (($ (-685 |#1|) $) 87)) (-1656 (($ $ $) 24)) (-3830 (((-112)) 61)) (-3335 (((-112)) 59)) (-2921 (((-112)) 55)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(-13 (-1034 |t#1|) (-10 -7 (IF (|has| |t#1| (-1034 (-564))) (-6 (-1034 (-564))) |%noBranch|) (IF (|has| |t#1| (-1034 (-407 (-564)))) (-6 (-1034 (-407 (-564)))) |%noBranch|))) +(((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1034 (-564))) ((-614 |#1|) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 #1#) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T)) +((-3123 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35))) +(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3123 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-988 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|)) (-307) (-988 |#5|) (-1235 |#6|) (-13 (-409 |#6| |#7|) (-1034 |#6|))) (T -412)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *7 (-1235 *6)) (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) (-4 *10 (-988 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1034 *10)))))) +(-10 -7 (-15 -3123 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) +((-2310 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-4061 ((|#4| (-767) (-1259 |#4|)) 60)) (-1828 (((-112) $) NIL)) (-4189 (((-1259 |#4|) $) 17)) (-2019 ((|#2| $) 55)) (-2870 (($ $) 163)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 108)) (-3499 (($ (-1259 |#4|)) 107)) (-3840 (((-1114) $) NIL)) (-4201 ((|#1| $) 18)) (-2675 (($ $ $) NIL)) (-2617 (($ $ $) NIL)) (-2322 (((-858) $) 153)) (-3342 (((-1259 |#4|) $) 146)) (-2403 (($) 11 T CONST)) (-2921 (((-112) $ $) 41)) (-3034 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135))) +(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -3499 ($ (-1259 |#4|))) (-15 -3342 ((-1259 |#4|) $)) (-15 -2019 (|#2| $)) (-15 -4189 ((-1259 |#4|) $)) (-15 -4201 (|#1| $)) (-15 -2870 ($ $)) (-15 -4061 (|#4| (-767) (-1259 |#4|))))) (-307) (-988 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|))) (T -413)) +((-3499 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-3342 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-2019 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) (-4189 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-4201 (*1 *2 *1) (-12 (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-2870 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6))))) +(-13 (-473) (-10 -8 (-15 -3499 ($ (-1259 |#4|))) (-15 -3342 ((-1259 |#4|) $)) (-15 -2019 (|#2| $)) (-15 -4189 ((-1259 |#4|) $)) (-15 -4201 (|#1| $)) (-15 -2870 ($ $)) (-15 -4061 (|#4| (-767) (-1259 |#4|))))) +((-2310 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-2019 ((|#2| $) 71)) (-2602 (($ (-1259 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1034 |#2|)))) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 37)) (-3342 (((-1259 |#4|) $) 28)) (-2403 (($) 25 T CONST)) (-2921 (((-112) $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ $ $) 82))) +(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-722) (-10 -8 (-15 -3342 ((-1259 |#4|) $)) (-15 -2019 (|#2| $)) (-15 -2602 ($ (-1259 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -2602 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-988 |#1|) (-1235 |#2|) (-409 |#2| |#3|) (-1259 |#4|)) (T -414)) +((-3342 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-2019 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1259 *5)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) +(-13 (-722) (-10 -8 (-15 -3342 ((-1259 |#4|) $)) (-15 -2019 (|#2| $)) (-15 -2602 ($ (-1259 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -2602 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3123 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) +(-10 -7 (-15 -3123 (|#3| (-1 |#4| |#2|) |#1|))) +((-2563 (((-3 $ "failed")) 99)) (-3727 (((-1259 (-685 |#2|)) (-1259 $)) NIL) (((-1259 (-685 |#2|))) 104)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) 97)) (-1485 (((-3 $ "failed")) 96)) (-3035 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 115)) (-1991 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 123)) (-3294 (((-1166 (-948 |#2|))) 65)) (-4287 ((|#2| (-1259 $)) NIL) ((|#2|) 119)) (-3013 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 125)) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) 95)) (-1523 (((-3 $ "failed")) 87)) (-3065 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 113)) (-2645 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 121)) (-4060 (((-1166 (-948 |#2|))) 64)) (-1400 ((|#2| (-1259 $)) NIL) ((|#2|) 117)) (-3864 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 124) (((-685 |#2|) (-1259 $)) 133)) (-3172 (((-1259 |#2|) $) 109) (($ (-1259 |#2|)) 111)) (-3328 (((-641 (-948 |#2|)) (-1259 $)) NIL) (((-641 (-948 |#2|))) 107)) (-1937 (($ (-685 |#2|) $) 103))) +(((-416 |#1| |#2|) (-10 -8 (-15 -1937 (|#1| (-685 |#2|) |#1|)) (-15 -3294 ((-1166 (-948 |#2|)))) (-15 -4060 ((-1166 (-948 |#2|)))) (-15 -1991 ((-685 |#2|) |#1|)) (-15 -2645 ((-685 |#2|) |#1|)) (-15 -3035 ((-685 |#2|))) (-15 -3065 ((-685 |#2|))) (-15 -4287 (|#2|)) (-15 -1400 (|#2|)) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3013 (|#1| (-1259 |#2|))) (-15 -3328 ((-641 (-948 |#2|)))) (-15 -3727 ((-1259 (-685 |#2|)))) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -2563 ((-3 |#1| "failed"))) (-15 -1485 ((-3 |#1| "failed"))) (-15 -1523 ((-3 |#1| "failed"))) (-15 -2262 ((-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed"))) (-15 -3001 ((-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed"))) (-15 -3035 ((-685 |#2|) (-1259 |#1|))) (-15 -3065 ((-685 |#2|) (-1259 |#1|))) (-15 -4287 (|#2| (-1259 |#1|))) (-15 -1400 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1991 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2645 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3727 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -3328 ((-641 (-948 |#2|)) (-1259 |#1|)))) (-417 |#2|) (-172)) (T -416)) +((-3727 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3328 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1400 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-4287 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3065 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3035 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4060 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3294 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) +(-10 -8 (-15 -1937 (|#1| (-685 |#2|) |#1|)) (-15 -3294 ((-1166 (-948 |#2|)))) (-15 -4060 ((-1166 (-948 |#2|)))) (-15 -1991 ((-685 |#2|) |#1|)) (-15 -2645 ((-685 |#2|) |#1|)) (-15 -3035 ((-685 |#2|))) (-15 -3065 ((-685 |#2|))) (-15 -4287 (|#2|)) (-15 -1400 (|#2|)) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3013 (|#1| (-1259 |#2|))) (-15 -3328 ((-641 (-948 |#2|)))) (-15 -3727 ((-1259 (-685 |#2|)))) (-15 -3864 ((-685 |#2|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1|)) (-15 -2563 ((-3 |#1| "failed"))) (-15 -1485 ((-3 |#1| "failed"))) (-15 -1523 ((-3 |#1| "failed"))) (-15 -2262 ((-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed"))) (-15 -3001 ((-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed"))) (-15 -3035 ((-685 |#2|) (-1259 |#1|))) (-15 -3065 ((-685 |#2|) (-1259 |#1|))) (-15 -4287 (|#2| (-1259 |#1|))) (-15 -1400 (|#2| (-1259 |#1|))) (-15 -3013 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3864 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3864 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1991 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2645 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3727 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -3328 ((-641 (-948 |#2|)) (-1259 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2563 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) 19)) (-3727 (((-1259 (-685 |#1|)) (-1259 $)) 78) (((-1259 (-685 |#1|))) 100)) (-2691 (((-1259 $)) 81)) (-4157 (($) 17 T CONST)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-1485 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-3035 (((-685 |#1|) (-1259 $)) 65) (((-685 |#1|)) 92)) (-3063 ((|#1| $) 74)) (-1991 (((-685 |#1|) $ (-1259 $)) 76) (((-685 |#1|) $) 90)) (-3706 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-3294 (((-1166 (-948 |#1|))) 88 (|has| |#1| (-363)))) (-3865 (($ $ (-917)) 28)) (-3845 ((|#1| $) 72)) (-2331 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-4287 ((|#1| (-1259 $)) 67) ((|#1|) 94)) (-4276 (((-1166 |#1|) $) 63)) (-1335 (((-112)) 57)) (-3013 (($ (-1259 |#1|) (-1259 $)) 69) (($ (-1259 |#1|)) 98)) (-2689 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-3105 (((-917)) 80)) (-3055 (((-112)) 54)) (-3996 (($ $ (-917)) 33)) (-2235 (((-112)) 50)) (-2809 (((-112)) 48)) (-3457 (((-112)) 52)) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-1523 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-3065 (((-685 |#1|) (-1259 $)) 66) (((-685 |#1|)) 93)) (-2528 ((|#1| $) 75)) (-2645 (((-685 |#1|) $ (-1259 $)) 77) (((-685 |#1|) $) 91)) (-1529 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-4060 (((-1166 (-948 |#1|))) 89 (|has| |#1| (-363)))) (-3200 (($ $ (-917)) 29)) (-2276 ((|#1| $) 73)) (-4339 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-1400 ((|#1| (-1259 $)) 68) ((|#1|) 95)) (-2536 (((-1166 |#1|) $) 64)) (-1723 (((-112)) 58)) (-1418 (((-1152) $) 9)) (-3816 (((-112)) 49)) (-1671 (((-112)) 51)) (-3353 (((-112)) 53)) (-3840 (((-1114) $) 10)) (-2753 (((-112)) 56)) (-4353 ((|#1| $ (-564)) 101)) (-3864 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70) (((-1259 |#1|) $) 103) (((-685 |#1|) (-1259 $)) 102)) (-3172 (((-1259 |#1|) $) 97) (($ (-1259 |#1|)) 96)) (-3328 (((-641 (-948 |#1|)) (-1259 $)) 79) (((-641 (-948 |#1|))) 99)) (-2617 (($ $ $) 25)) (-2676 (((-112)) 62)) (-2322 (((-858) $) 11)) (-3342 (((-1259 $)) 104)) (-1296 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-1553 (($ $ $ $) 26)) (-3148 (((-112)) 60)) (-1937 (($ (-685 |#1|) $) 87)) (-2366 (($ $ $) 24)) (-4232 (((-112)) 61)) (-2145 (((-112)) 59)) (-2803 (((-112)) 55)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-417 |#1|) (-140) (-172)) (T -417)) -((-3331 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1546 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) (-2852 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3))))) (-3624 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3525 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1476 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-2510 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1911 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1402 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-2232 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-3246 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))) -(-13 (-367 |t#1|) (-10 -8 (-15 -3331 ((-1259 $))) (-15 -2467 ((-1259 |t#1|) $)) (-15 -2467 ((-685 |t#1|) (-1259 $))) (-15 -1350 (|t#1| $ (-564))) (-15 -1546 ((-1259 (-685 |t#1|)))) (-15 -2852 ((-641 (-949 |t#1|)))) (-15 -3624 ($ (-1259 |t#1|))) (-15 -2511 ((-1259 |t#1|) $)) (-15 -2511 ($ (-1259 |t#1|))) (-15 -3525 (|t#1|)) (-15 -1476 (|t#1|)) (-15 -2510 ((-685 |t#1|))) (-15 -1911 ((-685 |t#1|))) (-15 -2289 ((-685 |t#1|) $)) (-15 -2050 ((-685 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -1402 ((-1166 (-949 |t#1|)))) (-15 -2232 ((-1166 (-949 |t#1|))))) |%noBranch|) (-15 -3246 ($ (-685 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-367 |#1|) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-741 |#1|) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 60)) (-2125 (($ $) 78)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 190)) (-1537 (($ $) NIL)) (-1932 (((-112) $) 48)) (-1674 ((|#1| $) 16)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-1213)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-3904 (($ |#1| (-564)) 43)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 74)) (-3733 (((-3 $ "failed") $) 164)) (-2078 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-2272 (((-112) $) 80 (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-1294 (($ |#1| (-564)) 45)) (-1420 (((-112) $) 212 (|has| |#1| (-1213)))) (-2949 (((-112) $) 62)) (-4185 (((-768) $) 51)) (-3936 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-1765 ((|#1| $ (-564)) 173)) (-2114 (((-564) $ (-564)) 172)) (-3918 (($ |#1| (-564)) 42)) (-2449 (($ (-1 |#1| |#1|) $) 182)) (-2004 (($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-1916 (($ |#1| (-564)) 44)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-3679 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 41)) (-3840 (((-641 (-2 (|:| -3070 |#1|) (|:| -1558 (-564)))) $) 73)) (-3991 (((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-3070 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-1403 (((-3 $ "failed") $ $) 175)) (-1558 (((-564) $) 167)) (-3723 ((|#1| $) 75)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 106 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) $) NIL (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-1170)) (-641 $)) 107 (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-641 $) (-641 $)) NIL (|has| |#1| (-309 $)))) (-1350 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-3534 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-2511 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1019))) (((-225) $) 119 (|has| |#1| (-1019)))) (-1831 (((-859) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564)))))) (-2219 (((-768)) 67 T CONST)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 53 T CONST)) (-1300 (($) 52 T CONST)) (-3435 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1702 (((-112) $ $) 159)) (-1808 (($ $) 161) (($ $ $) NIL)) (-1797 (($ $ $) 179)) (** (($ $ (-918)) NIL) (($ $ (-768)) 125)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -3723 (|#1| $)) (-15 -1558 ((-564) $)) (-15 -2004 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3991 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3918 ($ |#1| (-564))) (-15 -3840 ((-641 (-2 (|:| -3070 |#1|) (|:| -1558 (-564)))) $)) (-15 -1916 ($ |#1| (-564))) (-15 -2114 ((-564) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3936 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -4185 ((-768) $)) (-15 -1294 ($ |#1| (-564))) (-15 -3904 ($ |#1| (-564))) (-15 -3679 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1674 (|#1| $)) (-15 -2125 ($ $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) (-556)) (T -418)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-3723 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2004 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3918 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -3070 *3) (|:| -1558 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1916 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2114 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3936 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1294 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3904 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3679 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1674 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2125 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-2078 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))) -(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -3723 (|#1| $)) (-15 -1558 ((-564) $)) (-15 -2004 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3991 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3918 ($ |#1| (-564))) (-15 -3840 ((-641 (-2 (|:| -3070 |#1|) (|:| -1558 (-564)))) $)) (-15 -1916 ($ |#1| (-564))) (-15 -2114 ((-564) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3936 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -4185 ((-768) $)) (-15 -1294 ($ |#1| (-564))) (-15 -3904 ($ |#1| (-564))) (-15 -3679 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1674 (|#1| $)) (-15 -2125 ($ $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) -((-2264 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-2751 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17))) -(((-419 |#1|) (-10 -7 (-15 -2264 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -2751 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419)) -((-2751 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-2264 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4))))) -(-10 -7 (-15 -2264 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -2751 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) -((-2588 ((|#2| |#2|) 186)) (-4021 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112)) 60))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4021 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2588 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -420)) -((-2588 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) (-14 *4 (-1170)) (-14 *5 *2))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-14 *6 (-1170)) (-14 *7 *3)))) -(-10 -7 (-15 -4021 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2588 (|#2| |#2|))) -((-2449 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1046) (-847)) (-430 |#1|) (-13 (-1046) (-847)) (-430 |#3|)) (T -421)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1046) (-847))) (-4 *6 (-13 (-1046) (-847))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) -(-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|))) -((-2588 ((|#2| |#2|) 103)) (-3756 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 52)) (-3741 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 170))) -(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3756 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3741 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2588 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|) (-10 -8 (-15 -1831 ($ |#3|)))) (-845) (-13 (-1237 |#2| |#3|) (-363) (-1194) (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $)))) (-980 |#4|) (-1170)) (T -422)) -((-2588 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -1831 ($ *4))))) (-4 *4 (-845)) (-4 *5 (-13 (-1237 *2 *4) (-363) (-1194) (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170)))) (-3741 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1831 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170)))) (-3756 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1831 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170))))) -(-10 -7 (-15 -3756 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3741 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2588 (|#2| |#2|))) -((-1694 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1988 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2449 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1988 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1694 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-425 |#1|) (-1094) (-425 |#3|)) (T -423)) -((-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) -(-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1988 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1694 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3002 (($) 52)) (-3650 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2396 (($ $ $) 45)) (-2172 (((-112) $ $) 34)) (-3267 (((-768)) 56)) (-3810 (($ (-641 |#2|)) 23) (($) NIL)) (-2900 (($) 67)) (-3668 (((-112) $ $) 15)) (-1925 ((|#2| $) 78)) (-3375 ((|#2| $) 76)) (-1811 (((-918) $) 71)) (-3425 (($ $ $) 41)) (-1468 (($ (-918)) 61)) (-3405 (($ $ |#2|) NIL) (($ $ $) 44)) (-2791 (((-768) (-1 (-112) |#2|) $) NIL) (((-768) |#2| $) 31)) (-1842 (($ (-641 |#2|)) 27)) (-3028 (($ $) 54)) (-1831 (((-859) $) 39)) (-3434 (((-768) $) 24)) (-3131 (($ (-641 |#2|)) 22) (($) NIL)) (-1702 (((-112) $ $) 19))) -(((-424 |#1| |#2|) (-10 -8 (-15 -3267 ((-768))) (-15 -1468 (|#1| (-918))) (-15 -1811 ((-918) |#1|)) (-15 -2900 (|#1|)) (-15 -1925 (|#2| |#1|)) (-15 -3375 (|#2| |#1|)) (-15 -3002 (|#1|)) (-15 -3028 (|#1| |#1|)) (-15 -3434 ((-768) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -3668 ((-112) |#1| |#1|)) (-15 -3131 (|#1|)) (-15 -3131 (|#1| (-641 |#2|))) (-15 -3810 (|#1|)) (-15 -3810 (|#1| (-641 |#2|))) (-15 -3425 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#2|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#2|)) (-15 -3650 (|#1| |#2| |#1|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1094)) (T -424)) -((-3267 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) -(-10 -8 (-15 -3267 ((-768))) (-15 -1468 (|#1| (-918))) (-15 -1811 ((-918) |#1|)) (-15 -2900 (|#1|)) (-15 -1925 (|#2| |#1|)) (-15 -3375 (|#2| |#1|)) (-15 -3002 (|#1|)) (-15 -3028 (|#1| |#1|)) (-15 -3434 ((-768) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -3668 ((-112) |#1| |#1|)) (-15 -3131 (|#1|)) (-15 -3131 (|#1| (-641 |#2|))) (-15 -3810 (|#1|)) (-15 -3810 (|#1| (-641 |#2|))) (-15 -3425 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#2|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#2|)) (-15 -3650 (|#1| |#2| |#1|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|))) -((-1817 (((-112) $ $) 19)) (-3002 (($) 67 (|has| |#1| (-368)))) (-3650 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2396 (($ $ $) 78)) (-2172 (((-112) $ $) 79)) (-4010 (((-112) $ (-768)) 8)) (-3267 (((-768)) 61 (|has| |#1| (-368)))) (-3810 (($ (-641 |#1|)) 74) (($) 73)) (-4145 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-3337 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-2900 (($) 64 (|has| |#1| (-368)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) 70)) (-2324 (((-112) $ (-768)) 9)) (-1925 ((|#1| $) 65 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3375 ((|#1| $) 66 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1811 (((-918) $) 63 (|has| |#1| (-368)))) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22)) (-3425 (($ $ $) 75)) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-1468 (($ (-918)) 62 (|has| |#1| (-368)))) (-2780 (((-1114) $) 21)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-3405 (($ $ |#1|) 77) (($ $ $) 76)) (-4232 (($) 49) (($ (-641 |#1|)) 48)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 50)) (-3028 (($ $) 68 (|has| |#1| (-368)))) (-1831 (((-859) $) 18)) (-3434 (((-768) $) 69)) (-3131 (($ (-641 |#1|)) 72) (($) 71)) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20)) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3342 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3727 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) (-3328 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-948 *3))))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-1400 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-4287 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3065 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-3035 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-4060 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-948 *3))))) (-3294 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-948 *3))))) (-1937 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))) +(-13 (-367 |t#1|) (-10 -8 (-15 -3342 ((-1259 $))) (-15 -3864 ((-1259 |t#1|) $)) (-15 -3864 ((-685 |t#1|) (-1259 $))) (-15 -4353 (|t#1| $ (-564))) (-15 -3727 ((-1259 (-685 |t#1|)))) (-15 -3328 ((-641 (-948 |t#1|)))) (-15 -3013 ($ (-1259 |t#1|))) (-15 -3172 ((-1259 |t#1|) $)) (-15 -3172 ($ (-1259 |t#1|))) (-15 -1400 (|t#1|)) (-15 -4287 (|t#1|)) (-15 -3065 ((-685 |t#1|))) (-15 -3035 ((-685 |t#1|))) (-15 -2645 ((-685 |t#1|) $)) (-15 -1991 ((-685 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -4060 ((-1166 (-948 |t#1|)))) (-15 -3294 ((-1166 (-948 |t#1|))))) |%noBranch|) (-15 -1937 ($ (-685 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-367 |#1|) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 60)) (-3417 (($ $) 78)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 190)) (-3622 (($ $) NIL)) (-3247 (((-112) $) 48)) (-2563 ((|#1| $) 16)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-1213)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-3681 (($ |#1| (-564)) 43)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 74)) (-2689 (((-3 $ "failed") $) 164)) (-4175 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-2446 (((-112) $) 80 (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-1952 (($ |#1| (-564)) 45)) (-4229 (((-112) $) 212 (|has| |#1| (-1213)))) (-1828 (((-112) $) 62)) (-3481 (((-767) $) 51)) (-4003 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-4047 ((|#1| $ (-564)) 173)) (-1426 (((-564) $ (-564)) 172)) (-3833 (($ |#1| (-564)) 42)) (-3123 (($ (-1 |#1| |#1|) $) 182)) (-1500 (($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-3090 (($ |#1| (-564)) 44)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-2204 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 41)) (-4322 (((-641 (-2 (|:| -2375 |#1|) (|:| -3866 (-564)))) $) 73)) (-3356 (((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-2375 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-2526 (((-3 $ "failed") $ $) 175)) (-3866 (((-564) $) 167)) (-2925 ((|#1| $) 75)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 106 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) $) NIL (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-1170)) (-641 $)) 107 (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-641 $) (-641 $)) NIL (|has| |#1| (-309 $)))) (-4353 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-1343 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-3172 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1018))) (((-225) $) 119 (|has| |#1| (-1018)))) (-2322 (((-858) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564)))))) (-3179 (((-767)) 67 T CONST)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 53 T CONST)) (-2403 (($) 52 T CONST)) (-3917 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2921 (((-112) $ $) 159)) (-3021 (($ $) 161) (($ $ $) NIL)) (-3011 (($ $ $) 179)) (** (($ $ (-917)) NIL) (($ $ (-767)) 125)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2925 (|#1| $)) (-15 -3866 ((-564) $)) (-15 -1500 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3356 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3833 ($ |#1| (-564))) (-15 -4322 ((-641 (-2 (|:| -2375 |#1|) (|:| -3866 (-564)))) $)) (-15 -3090 ($ |#1| (-564))) (-15 -1426 ((-564) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -4003 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -3481 ((-767) $)) (-15 -1952 ($ |#1| (-564))) (-15 -3681 ($ |#1| (-564))) (-15 -2204 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2563 (|#1| $)) (-15 -3417 ($ $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) (-556)) (T -418)) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-2925 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1500 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3833 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -2375 *3) (|:| -3866 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3090 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1426 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-4003 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1952 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3681 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2563 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-4175 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))) +(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2925 (|#1| $)) (-15 -3866 ((-564) $)) (-15 -1500 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3356 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3833 ($ |#1| (-564))) (-15 -4322 ((-641 (-2 (|:| -2375 |#1|) (|:| -3866 (-564)))) $)) (-15 -3090 ($ |#1| (-564))) (-15 -1426 ((-564) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -4003 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -3481 ((-767) $)) (-15 -1952 ($ |#1| (-564))) (-15 -3681 ($ |#1| (-564))) (-15 -2204 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2563 (|#1| $)) (-15 -3417 ($ $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) +((-2346 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-3559 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17))) +(((-419 |#1|) (-10 -7 (-15 -2346 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3559 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419)) +((-3559 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-2346 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4))))) +(-10 -7 (-15 -2346 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3559 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) +((-2607 ((|#2| |#2|) 186)) (-2448 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112)) 60))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2448 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2607 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -420)) +((-2607 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) (-14 *4 (-1170)) (-14 *5 *2))) (-2448 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-14 *6 (-1170)) (-14 *7 *3)))) +(-10 -7 (-15 -2448 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2607 (|#2| |#2|))) +((-3123 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1045) (-846)) (-430 |#1|) (-13 (-1045) (-846)) (-430 |#3|)) (T -421)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|))) +((-2607 ((|#2| |#2|) 103)) (-1631 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 52)) (-2765 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 170))) +(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1631 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2765 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2607 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|) (-10 -8 (-15 -2322 ($ |#3|)))) (-844) (-13 (-1237 |#2| |#3|) (-363) (-1194) (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $)))) (-979 |#4|) (-1170)) (T -422)) +((-2607 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -2322 ($ *4))))) (-4 *4 (-844)) (-4 *5 (-13 (-1237 *2 *4) (-363) (-1194) (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1170)))) (-2765 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2322 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8)) (-14 *10 (-1170)))) (-1631 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2322 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8)) (-14 *10 (-1170))))) +(-10 -7 (-15 -1631 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2765 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2607 (|#2| |#2|))) +((-1514 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3239 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3123 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3239 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1514 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-425 |#1|) (-1094) (-425 |#3|)) (T -423)) +((-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) +(-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3239 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1514 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2245 (($) 52)) (-1565 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-1294 (($ $ $) 45)) (-3910 (((-112) $ $) 34)) (-1959 (((-767)) 56)) (-1740 (($ (-641 |#2|)) 23) (($) NIL)) (-3860 (($) 67)) (-3360 (((-112) $ $) 15)) (-1501 ((|#2| $) 78)) (-2622 ((|#2| $) 76)) (-1368 (((-917) $) 71)) (-1648 (($ $ $) 41)) (-1998 (($ (-917)) 61)) (-2727 (($ $ |#2|) NIL) (($ $ $) 44)) (-3852 (((-767) (-1 (-112) |#2|) $) NIL) (((-767) |#2| $) 31)) (-2335 (($ (-641 |#2|)) 27)) (-2482 (($ $) 54)) (-2322 (((-858) $) 39)) (-1738 (((-767) $) 24)) (-2451 (($ (-641 |#2|)) 22) (($) NIL)) (-2921 (((-112) $ $) 19))) +(((-424 |#1| |#2|) (-10 -8 (-15 -1959 ((-767))) (-15 -1998 (|#1| (-917))) (-15 -1368 ((-917) |#1|)) (-15 -3860 (|#1|)) (-15 -1501 (|#2| |#1|)) (-15 -2622 (|#2| |#1|)) (-15 -2245 (|#1|)) (-15 -2482 (|#1| |#1|)) (-15 -1738 ((-767) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -2451 (|#1|)) (-15 -2451 (|#1| (-641 |#2|))) (-15 -1740 (|#1|)) (-15 -1740 (|#1| (-641 |#2|))) (-15 -1648 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| |#2|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -3910 ((-112) |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#2| |#1|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1094)) (T -424)) +((-1959 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) +(-10 -8 (-15 -1959 ((-767))) (-15 -1998 (|#1| (-917))) (-15 -1368 ((-917) |#1|)) (-15 -3860 (|#1|)) (-15 -1501 (|#2| |#1|)) (-15 -2622 (|#2| |#1|)) (-15 -2245 (|#1|)) (-15 -2482 (|#1| |#1|)) (-15 -1738 ((-767) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -2451 (|#1|)) (-15 -2451 (|#1| (-641 |#2|))) (-15 -1740 (|#1|)) (-15 -1740 (|#1| (-641 |#2|))) (-15 -1648 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| |#2|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -3910 ((-112) |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#2| |#1|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -3852 ((-767) |#2| |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|))) +((-2310 (((-112) $ $) 19)) (-2245 (($) 67 (|has| |#1| (-368)))) (-1565 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1294 (($ $ $) 78)) (-3910 (((-112) $ $) 79)) (-2318 (((-112) $ (-767)) 8)) (-1959 (((-767)) 61 (|has| |#1| (-368)))) (-1740 (($ (-641 |#1|)) 74) (($) 73)) (-4328 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2027 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-3860 (($) 64 (|has| |#1| (-368)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) 70)) (-1751 (((-112) $ (-767)) 9)) (-1501 ((|#1| $) 65 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2622 ((|#1| $) 66 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1368 (((-917) $) 63 (|has| |#1| (-368)))) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22)) (-1648 (($ $ $) 75)) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-1998 (($ (-917)) 62 (|has| |#1| (-368)))) (-3840 (((-1114) $) 21)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-2727 (($ $ |#1|) 77) (($ $ $) 76)) (-3977 (($) 49) (($ (-641 |#1|)) 48)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 50)) (-2482 (($ $) 68 (|has| |#1| (-368)))) (-2322 (((-858) $) 18)) (-1738 (((-767) $) 69)) (-2451 (($ (-641 |#1|)) 72) (($) 71)) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20)) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-425 |#1|) (-140) (-1094)) (T -425)) -((-3434 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-3028 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-3002 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847))))) -(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4406) (-15 -3434 ((-768) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3028 ($ $)) (-15 -3002 ($))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -3375 (|t#1| $)) (-15 -1925 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) -((-3593 (((-585 |#2|) |#2| (-1170)) 38)) (-1731 (((-585 |#2|) |#2| (-1170)) 21)) (-3312 ((|#2| |#2| (-1170)) 26))) -(((-426 |#1| |#2|) (-10 -7 (-15 -1731 ((-585 |#2|) |#2| (-1170))) (-15 -3593 ((-585 |#2|) |#2| (-1170))) (-15 -3312 (|#2| |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -426)) -((-3312 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) (-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) (-1731 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5)))))) -(-10 -7 (-15 -1731 ((-585 |#2|) |#2| (-1170))) (-15 -3593 ((-585 |#2|) |#2| (-1170))) (-15 -3312 (|#2| |#2| (-1170)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-3020 (($ |#2| |#1|) 37)) (-2104 (($ |#2| |#1|) 35)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-2219 (((-768)) NIL T CONST)) (-1293 (($) 10 T CONST)) (-1300 (($) 16 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4393)) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) |%noBranch|) (-15 -1831 ($ |#1|)) (-15 -1831 ($ (-331 |#2|))) (-15 -3020 ($ |#2| |#1|)) (-15 -2104 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-847) (-21))) (T -427)) -((-1831 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-847) (-21))))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-3020 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21))))) (-2104 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4393)) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) |%noBranch|) (-15 -1831 ($ |#1|)) (-15 -1831 ($ (-331 |#2|))) (-15 -3020 ($ |#2| |#1|)) (-15 -2104 ($ |#2| |#1|)))) -((-3907 (((-3 |#2| (-641 |#2|)) |#2| (-1170)) 115))) -(((-428 |#1| |#2|) (-10 -7 (-15 -3907 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -428)) -((-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1194) (-956) (-29 *5)))))) -(-10 -7 (-15 -3907 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) -((-3209 (((-641 (-1170)) $) 80)) (-3040 (((-407 (-1166 $)) $ (-610 $)) 310)) (-3574 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) 274)) (-2347 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1170) "failed") $) 83) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 270) (((-3 (-407 (-949 |#2|)) "failed") $) 360) (((-3 (-949 |#2|) "failed") $) 272) (((-3 (-407 (-564)) "failed") $) NIL)) (-2237 (((-610 $) $) NIL) (((-1170) $) 30) (((-564) $) NIL) ((|#2| $) 268) (((-407 (-949 |#2|)) $) 342) (((-949 |#2|) $) 269) (((-407 (-564)) $) NIL)) (-1841 (((-114) (-114)) 49)) (-4157 (($ $) 98)) (-1802 (((-3 (-610 $) "failed") $) 265)) (-3026 (((-641 (-610 $)) $) 266)) (-2955 (((-3 (-641 $) "failed") $) 284)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -1558 (-564))) "failed") $) 291)) (-2512 (((-3 (-641 $) "failed") $) 282)) (-3847 (((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 $))) "failed") $) 301)) (-4059 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $) 288) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-114)) 252) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-1170)) 254)) (-3326 (((-112) $) 19)) (-3341 ((|#2| $) 21)) (-2633 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 273) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 108) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) 62) (($ $ (-641 (-1170))) 277) (($ $) 278) (($ $ (-114) $ (-1170)) 65) (($ $ (-641 (-114)) (-641 $) (-1170)) 72) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 119) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 279) (($ $ (-1170) (-768) (-1 $ (-641 $))) 104) (($ $ (-1170) (-768) (-1 $ $)) 103)) (-1350 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) 118)) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 275)) (-2644 (($ $) 321)) (-2511 (((-889 (-564)) $) 294) (((-889 (-379)) $) 298) (($ (-418 $)) 356) (((-536) $) NIL)) (-1831 (((-859) $) 276) (($ (-610 $)) 92) (($ (-1170)) 26) (($ |#2|) NIL) (($ (-1119 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 326) (($ (-949 (-407 |#2|))) 365) (($ (-407 (-949 (-407 |#2|)))) 338) (($ (-407 (-949 |#2|))) 332) (($ $) NIL) (($ (-949 |#2|)) 214) (($ (-407 (-564))) 370) (($ (-564)) NIL)) (-2219 (((-768)) 87)) (-1322 (((-112) (-114)) 44)) (-3645 (($ (-1170) $) 33) (($ (-1170) $ $) 34) (($ (-1170) $ $ $) 35) (($ (-1170) $ $ $ $) 36) (($ (-1170) (-641 $)) 41)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 303) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) -(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1831 (|#1| (-564))) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -1831 (|#1| (-949 |#2|))) (-15 -2347 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2237 ((-949 |#2|) |#1|)) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1831 (|#1| (-407 (-949 |#2|)))) (-15 -2347 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2237 ((-407 (-949 |#2|)) |#1|)) (-15 -3040 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -1831 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -1831 (|#1| (-949 (-407 |#2|)))) (-15 -1831 (|#1| (-407 |#2|))) (-15 -2644 (|#1| |#1|)) (-15 -2511 (|#1| (-418 |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -2826 ((-3 (-2 (|:| |val| |#1|) (|:| -1558 (-564))) "failed") |#1|)) (-15 -4059 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1558 (-564))) "failed") |#1| (-1170))) (-15 -4059 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1558 (-564))) "failed") |#1| (-114))) (-15 -4157 (|#1| |#1|)) (-15 -1831 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -3847 ((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -2512 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4059 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1558 (-564))) "failed") |#1|)) (-15 -2955 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2633 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2633 (|#1| |#1|)) (-15 -2633 (|#1| |#1| (-641 (-1170)))) (-15 -2633 (|#1| |#1| (-1170))) (-15 -3645 (|#1| (-1170) (-641 |#1|))) (-15 -3645 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -3645 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -3645 (|#1| (-1170) |#1| |#1|)) (-15 -3645 (|#1| (-1170) |#1|)) (-15 -3209 ((-641 (-1170)) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -1831 (|#1| (-1170))) (-15 -2347 ((-3 (-1170) "failed") |#1|)) (-15 -2237 ((-1170) |#1|)) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -3026 ((-641 (-610 |#1|)) |#1|)) (-15 -1802 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3574 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3574 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3574 (|#1| |#1| (-294 |#1|))) (-15 -1350 (|#1| (-114) (-641 |#1|))) (-15 -1350 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2633 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -1831 (|#1| (-610 |#1|))) (-15 -2347 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2237 ((-610 |#1|) |#1|)) (-15 -1831 ((-859) |#1|))) (-430 |#2|) (-847)) (T -429)) -((-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-2219 (*1 *2) (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -(-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1831 (|#1| (-564))) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -1831 (|#1| (-949 |#2|))) (-15 -2347 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2237 ((-949 |#2|) |#1|)) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1831 (|#1| (-407 (-949 |#2|)))) (-15 -2347 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2237 ((-407 (-949 |#2|)) |#1|)) (-15 -3040 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -1831 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -1831 (|#1| (-949 (-407 |#2|)))) (-15 -1831 (|#1| (-407 |#2|))) (-15 -2644 (|#1| |#1|)) (-15 -2511 (|#1| (-418 |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -2826 ((-3 (-2 (|:| |val| |#1|) (|:| -1558 (-564))) "failed") |#1|)) (-15 -4059 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1558 (-564))) "failed") |#1| (-1170))) (-15 -4059 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1558 (-564))) "failed") |#1| (-114))) (-15 -4157 (|#1| |#1|)) (-15 -1831 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -3847 ((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -2512 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4059 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1558 (-564))) "failed") |#1|)) (-15 -2955 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2633 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2633 (|#1| |#1|)) (-15 -2633 (|#1| |#1| (-641 (-1170)))) (-15 -2633 (|#1| |#1| (-1170))) (-15 -3645 (|#1| (-1170) (-641 |#1|))) (-15 -3645 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -3645 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -3645 (|#1| (-1170) |#1| |#1|)) (-15 -3645 (|#1| (-1170) |#1|)) (-15 -3209 ((-641 (-1170)) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -1831 (|#1| (-1170))) (-15 -2347 ((-3 (-1170) "failed") |#1|)) (-15 -2237 ((-1170) |#1|)) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2633 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2633 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -3026 ((-641 (-610 |#1|)) |#1|)) (-15 -1802 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3574 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3574 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3574 (|#1| |#1| (-294 |#1|))) (-15 -1350 (|#1| (-114) (-641 |#1|))) (-15 -1350 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1| |#1|)) (-15 -1350 (|#1| (-114) |#1|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2633 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2633 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -1831 (|#1| (-610 |#1|))) (-15 -2347 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2237 ((-610 |#1|) |#1|)) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 114 (|has| |#1| (-25)))) (-3209 (((-641 (-1170)) $) 201)) (-3040 (((-407 (-1166 $)) $ (-610 $)) 169 (|has| |#1| (-556)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-1537 (($ $) 142 (|has| |#1| (-556)))) (-1932 (((-112) $) 144 (|has| |#1| (-556)))) (-2956 (((-641 (-610 $)) $) 44)) (-4088 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3574 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-2427 (($ $) 161 (|has| |#1| (-556)))) (-3399 (((-418 $) $) 162 (|has| |#1| (-556)))) (-3554 (((-112) $ $) 152 (|has| |#1| (-556)))) (-1778 (($) 102 (-4078 (|has| |#1| (-1106)) (|has| |#1| (-25))) CONST)) (-2347 (((-3 (-610 $) "failed") $) 69) (((-3 (-1170) "failed") $) 214) (((-3 (-564) "failed") $) 208 (|has| |#1| (-1035 (-564)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-949 |#1|)) "failed") $) 167 (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) 121 (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 96 (-4078 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2237 (((-610 $) $) 70) (((-1170) $) 215) (((-564) $) 207 (|has| |#1| (-1035 (-564)))) ((|#1| $) 206) (((-407 (-949 |#1|)) $) 168 (|has| |#1| (-556))) (((-949 |#1|) $) 122 (|has| |#1| (-1046))) (((-407 (-564)) $) 97 (-4078 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1449 (($ $ $) 156 (|has| |#1| (-556)))) (-4050 (((-685 (-564)) (-685 $)) 135 (-4348 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 134 (-4348 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 133 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 132 (|has| |#1| (-1046)))) (-3733 (((-3 $ "failed") $) 104 (|has| |#1| (-1106)))) (-1424 (($ $ $) 155 (|has| |#1| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 150 (|has| |#1| (-556)))) (-1420 (((-112) $) 163 (|has| |#1| (-556)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 210 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 209 (|has| |#1| (-883 (-379))))) (-3352 (($ $) 51) (($ (-641 $)) 50)) (-4095 (((-641 (-114)) $) 43)) (-1841 (((-114) (-114)) 42)) (-2949 (((-112) $) 103 (|has| |#1| (-1106)))) (-4301 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-4157 (($ $) 184 (|has| |#1| (-1046)))) (-3678 (((-1119 |#1| (-610 $)) $) 185 (|has| |#1| (-1046)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 159 (|has| |#1| (-556)))) (-4168 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2449 (($ (-1 $ $) (-610 $)) 36)) (-1802 (((-3 (-610 $) "failed") $) 46)) (-2740 (($ (-641 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-2723 (((-1152) $) 9)) (-3026 (((-641 (-610 $)) $) 45)) (-3755 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-2955 (((-3 (-641 $) "failed") $) 190 (|has| |#1| (-1106)))) (-2826 (((-3 (-2 (|:| |val| $) (|:| -1558 (-564))) "failed") $) 181 (|has| |#1| (-1046)))) (-2512 (((-3 (-641 $) "failed") $) 188 (|has| |#1| (-25)))) (-3847 (((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 $))) "failed") $) 187 (|has| |#1| (-25)))) (-4059 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $) 189 (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-114)) 183 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-1170)) 182 (|has| |#1| (-1046)))) (-1657 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-3315 (($ $) 106 (-4078 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3926 (((-768) $) 47)) (-2780 (((-1114) $) 10)) (-3326 (((-112) $) 203)) (-3341 ((|#1| $) 202)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 149 (|has| |#1| (-556)))) (-2777 (($ (-641 $)) 146 (|has| |#1| (-556))) (($ $ $) 145 (|has| |#1| (-556)))) (-2417 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-3070 (((-418 $) $) 160 (|has| |#1| (-556)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 157 (|has| |#1| (-556)))) (-1403 (((-3 $ "failed") $ $) 140 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 151 (|has| |#1| (-556)))) (-1492 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2633 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1170)) 195 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 194 (|has| |#1| (-612 (-536)))) (($ $) 193 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 192 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 191 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 180 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 179 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 178 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) 177 (|has| |#1| (-1046)))) (-3920 (((-768) $) 153 (|has| |#1| (-556)))) (-1350 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 154 (|has| |#1| (-556)))) (-3467 (($ $) 49) (($ $ $) 48)) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) 126 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 125 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 124 (|has| |#1| (-1046))) (($ $ (-1170)) 123 (|has| |#1| (-1046)))) (-2644 (($ $) 174 (|has| |#1| (-556)))) (-3693 (((-1119 |#1| (-610 $)) $) 175 (|has| |#1| (-556)))) (-3019 (($ $) 24 (|has| $ (-1046)))) (-2511 (((-889 (-564)) $) 212 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 211 (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-556))) (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3047 (($ $ $) 109 (|has| |#1| (-473)))) (-1992 (($ $ $) 110 (|has| |#1| (-473)))) (-1831 (((-859) $) 11) (($ (-610 $)) 68) (($ (-1170)) 213) (($ |#1|) 204) (($ (-1119 |#1| (-610 $))) 186 (|has| |#1| (-1046))) (($ (-407 |#1|)) 172 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 171 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 170 (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) 166 (|has| |#1| (-556))) (($ $) 139 (|has| |#1| (-556))) (($ (-949 |#1|)) 120 (|has| |#1| (-1046))) (($ (-407 (-564))) 95 (-4078 (|has| |#1| (-556)) (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 94 (-4078 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564)))))) (-4018 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-2219 (((-768)) 131 (|has| |#1| (-1046)) CONST)) (-4264 (($ $) 53) (($ (-641 $)) 52)) (-1322 (((-112) (-114)) 41)) (-3939 (((-112) $ $) 143 (|has| |#1| (-556)))) (-3645 (($ (-1170) $) 200) (($ (-1170) $ $) 199) (($ (-1170) $ $ $) 198) (($ (-1170) $ $ $ $) 197) (($ (-1170) (-641 $)) 196)) (-1293 (($) 113 (|has| |#1| (-25)) CONST)) (-1300 (($) 101 (|has| |#1| (-1106)) CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) 130 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 129 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 128 (|has| |#1| (-1046))) (($ $ (-1170)) 127 (|has| |#1| (-1046)))) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1823 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 173 (|has| |#1| (-556))) (($ $ $) 107 (-4078 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1808 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1797 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-564)) 108 (-4078 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 105 (|has| |#1| (-1106))) (($ $ (-918)) 100 (|has| |#1| (-1106)))) (* (($ (-407 (-564)) $) 165 (|has| |#1| (-556))) (($ $ (-407 (-564))) 164 (|has| |#1| (-556))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-768) $) 115 (|has| |#1| (-25))) (($ (-918) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1106))))) -(((-430 |#1|) (-140) (-847)) (T -430)) -((-3326 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-641 (-1170))))) (-3645 (*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-3645 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-3645 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-3645 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2633 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-612 (-536))))) (-2633 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-612 (-536))))) (-2633 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-612 (-536))))) (-2955 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-4059 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1558 (-564)))) (-4 *1 (-430 *3)))) (-2512 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-3847 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -2860 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3678 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-4157 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046)))) (-4059 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1558 (-564)))) (-4 *1 (-430 *4)))) (-4059 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1558 (-564)))) (-4 *1 (-430 *4)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |val| *1) (|:| -1558 (-564)))) (-4 *1 (-430 *3)))) (-2633 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2633 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2633 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 (-641 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2633 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-3693 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-2644 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556)))) (-1823 (*1 *1 *2 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3040 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-1106))))) -(-13 (-302) (-1035 (-1170)) (-881 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -3326 ((-112) $)) (-15 -3341 (|t#1| $)) (-15 -3209 ((-641 (-1170)) $)) (-15 -3645 ($ (-1170) $)) (-15 -3645 ($ (-1170) $ $)) (-15 -3645 ($ (-1170) $ $ $)) (-15 -3645 ($ (-1170) $ $ $ $)) (-15 -3645 ($ (-1170) (-641 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -2633 ($ $ (-1170))) (-15 -2633 ($ $ (-641 (-1170)))) (-15 -2633 ($ $)) (-15 -2633 ($ $ (-114) $ (-1170))) (-15 -2633 ($ $ (-641 (-114)) (-641 $) (-1170)))) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-723)) (-15 ** ($ $ (-768))) (-15 -2955 ((-3 (-641 $) "failed") $)) (-15 -4059 ((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2512 ((-3 (-641 $) "failed") $)) (-15 -3847 ((-3 (-2 (|:| -2860 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-1035 (-949 |t#1|))) (-6 (-897 (-1170))) (-6 (-377 |t#1|)) (-15 -1831 ($ (-1119 |t#1| (-610 $)))) (-15 -3678 ((-1119 |t#1| (-610 $)) $)) (-15 -4157 ($ $)) (-15 -4059 ((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-114))) (-15 -4059 ((-3 (-2 (|:| |var| (-610 $)) (|:| -1558 (-564))) "failed") $ (-1170))) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -1558 (-564))) "failed") $)) (-15 -2633 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $)))) (-15 -2633 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $))))) (-15 -2633 ($ $ (-1170) (-768) (-1 $ (-641 $)))) (-15 -2633 ($ $ (-1170) (-768) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1035 (-407 (-949 |t#1|)))) (-15 -2511 ($ (-418 $))) (-15 -3693 ((-1119 |t#1| (-610 $)) $)) (-15 -2644 ($ $)) (-15 -1823 ($ (-1119 |t#1| (-610 $)) (-1119 |t#1| (-610 $)))) (-15 -1831 ($ (-407 |t#1|))) (-15 -1831 ($ (-949 (-407 |t#1|)))) (-15 -1831 ($ (-407 (-949 (-407 |t#1|))))) (-15 -3040 ((-407 (-1166 $)) $ (-610 $))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-407 (-564)))) |%noBranch|)) |%noBranch|))) -(((-21) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -4078 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) |has| |#1| (-556)) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) -4078 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) |has| |#1| (-556)) ((-1035 (-407 (-564))) -4078 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-556)) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) |has| |#1| (-556)) ((-1046) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1053) -4078 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) -4078 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1209) . T) ((-1213) |has| |#1| (-556))) -((-1827 ((|#2| |#2| |#2|) 31)) (-1841 (((-114) (-114)) 43)) (-4316 ((|#2| |#2|) 63)) (-2704 ((|#2| |#2|) 66)) (-1888 ((|#2| |#2|) 30)) (-3573 ((|#2| |#2| |#2|) 33)) (-1551 ((|#2| |#2| |#2|) 35)) (-4296 ((|#2| |#2| |#2|) 32)) (-2773 ((|#2| |#2| |#2|) 34)) (-1322 (((-112) (-114)) 41)) (-4288 ((|#2| |#2|) 37)) (-4354 ((|#2| |#2|) 36)) (-1849 ((|#2| |#2|) 25)) (-2591 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2496 ((|#2| |#2| |#2|) 29))) -(((-431 |#1| |#2|) (-10 -7 (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -1849 (|#2| |#2|)) (-15 -2591 (|#2| |#2|)) (-15 -2591 (|#2| |#2| |#2|)) (-15 -2496 (|#2| |#2| |#2|)) (-15 -1888 (|#2| |#2|)) (-15 -1827 (|#2| |#2| |#2|)) (-15 -4296 (|#2| |#2| |#2|)) (-15 -3573 (|#2| |#2| |#2|)) (-15 -2773 (|#2| |#2| |#2|)) (-15 -1551 (|#2| |#2| |#2|)) (-15 -4354 (|#2| |#2|)) (-15 -4288 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -4316 (|#2| |#2|))) (-13 (-847) (-556)) (-430 |#1|)) (T -431)) -((-4316 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4288 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4354 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1551 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2773 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3573 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4296 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1827 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1888 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2496 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2591 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2591 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))) -(-10 -7 (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -1849 (|#2| |#2|)) (-15 -2591 (|#2| |#2|)) (-15 -2591 (|#2| |#2| |#2|)) (-15 -2496 (|#2| |#2| |#2|)) (-15 -1888 (|#2| |#2|)) (-15 -1827 (|#2| |#2| |#2|)) (-15 -4296 (|#2| |#2| |#2|)) (-15 -3573 (|#2| |#2| |#2|)) (-15 -2773 (|#2| |#2| |#2|)) (-15 -1551 (|#2| |#2| |#2|)) (-15 -4354 (|#2| |#2|)) (-15 -4288 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -4316 (|#2| |#2|))) -((-1830 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|) 105 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|)) 68))) -(((-432 |#1| |#2|) (-10 -7 (-15 -1830 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -1830 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-847) (-147)) (-430 |#1|)) (T -432)) -((-1830 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-432 *4 *5))))) -(-10 -7 (-15 -1830 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -1830 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) -((-4305 (((-1264)) 19)) (-2473 (((-1166 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25))) -(((-433 |#1| |#2|) (-10 -7 (-15 -2473 ((-407 (-564)) |#2|)) (-15 -2473 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -4305 ((-1264)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|)) (T -433)) -((-4305 (*1 *2) (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))) -(-10 -7 (-15 -2473 ((-407 (-564)) |#2|)) (-15 -2473 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -4305 ((-1264)))) -((-2020 (((-112) $) 32)) (-2059 (((-112) $) 34)) (-3604 (((-112) $) 35)) (-2455 (((-112) $) 38)) (-1966 (((-112) $) 33)) (-3826 (((-112) $) 37)) (-1831 (((-859) $) 20) (($ (-1152)) 31) (($ (-1170)) 26) (((-1170) $) 24) (((-1098) $) 23)) (-1362 (((-112) $) 36)) (-1702 (((-112) $ $) 17))) -(((-434) (-13 (-611 (-859)) (-10 -8 (-15 -1831 ($ (-1152))) (-15 -1831 ($ (-1170))) (-15 -1831 ((-1170) $)) (-15 -1831 ((-1098) $)) (-15 -2020 ((-112) $)) (-15 -1966 ((-112) $)) (-15 -3604 ((-112) $)) (-15 -3826 ((-112) $)) (-15 -2455 ((-112) $)) (-15 -1362 ((-112) $)) (-15 -2059 ((-112) $)) (-15 -1702 ((-112) $ $))))) (T -434)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1702 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(-13 (-611 (-859)) (-10 -8 (-15 -1831 ($ (-1152))) (-15 -1831 ($ (-1170))) (-15 -1831 ((-1170) $)) (-15 -1831 ((-1098) $)) (-15 -2020 ((-112) $)) (-15 -1966 ((-112) $)) (-15 -3604 ((-112) $)) (-15 -3826 ((-112) $)) (-15 -2455 ((-112) $)) (-15 -1362 ((-112) $)) (-15 -2059 ((-112) $)) (-15 -1702 ((-112) $ $)))) -((-3115 (((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|) 72)) (-2748 (((-418 |#3|) |#3|) 34)) (-3544 (((-3 (-418 (-1166 (-48))) "failed") |#3|) 46 (|has| |#2| (-1035 (-48))))) (-1497 (((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2105 (-112))) |#3|) 37))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -2748 ((-418 |#3|) |#3|)) (-15 -3115 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -1497 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2105 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -3544 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|) (-1235 |#2|)) (T -435)) -((-3544 (*1 *2 *3) (|partial| -12 (-4 *5 (-1035 (-48))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-1497 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2105 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-3115 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) -(-10 -7 (-15 -2748 ((-418 |#3|) |#3|)) (-15 -3115 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -1497 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2105 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -3544 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-3239 (((-1152) $ (-1152)) NIL)) (-1940 (($ $ (-1152)) NIL)) (-3218 (((-1152) $) NIL)) (-4258 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-1669 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-1316 (((-388) $) NIL)) (-2723 (((-1152) $) NIL)) (-3455 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1976 (((-1264) (-1152)) 9)) (-2175 (((-1264) (-1152)) 10)) (-1590 (((-1264)) 11)) (-1831 (((-859) $) NIL)) (-1846 (($ $) 38)) (-1702 (((-112) $ $) NIL))) -(((-436) (-13 (-364 (-388) (-1152)) (-10 -7 (-15 -4258 ((-388) (-388) (-388))) (-15 -4258 ((-388) (-388))) (-15 -1976 ((-1264) (-1152))) (-15 -2175 ((-1264) (-1152))) (-15 -1590 ((-1264)))))) (T -436)) -((-4258 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-1590 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436))))) -(-13 (-364 (-388) (-1152)) (-10 -7 (-15 -4258 ((-388) (-388) (-388))) (-15 -4258 ((-388) (-388))) (-15 -1976 ((-1264) (-1152))) (-15 -2175 ((-1264) (-1152))) (-15 -1590 ((-1264))))) -((-1817 (((-112) $ $) NIL)) (-3144 (((-3 (|:| |fst| (-434)) (|:| -3495 "void")) $) 11)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2763 (($) 35)) (-4243 (($) 41)) (-1679 (($) 37)) (-2517 (($) 39)) (-2488 (($) 36)) (-2805 (($) 38)) (-2972 (($) 40)) (-3674 (((-112) $) 8)) (-1606 (((-641 (-949 (-564))) $) 19)) (-1842 (($ (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-1170)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-949 (-564))) (-112)) 30)) (-1831 (((-859) $) 24) (($ (-434)) 32)) (-1702 (((-112) $ $) NIL))) -(((-437) (-13 (-1094) (-10 -8 (-15 -1831 ($ (-434))) (-15 -3144 ((-3 (|:| |fst| (-434)) (|:| -3495 "void")) $)) (-15 -1606 ((-641 (-949 (-564))) $)) (-15 -3674 ((-112) $)) (-15 -1842 ($ (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-1170)) (-112))) (-15 -1842 ($ (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-949 (-564))) (-112))) (-15 -2763 ($)) (-15 -2488 ($)) (-15 -1679 ($)) (-15 -4243 ($)) (-15 -2805 ($)) (-15 -2517 ($)) (-15 -2972 ($))))) (T -437)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *1 (-437)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437)))) (-3674 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1842 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) (-1842 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2763 (*1 *1) (-5 *1 (-437))) (-2488 (*1 *1) (-5 *1 (-437))) (-1679 (*1 *1) (-5 *1 (-437))) (-4243 (*1 *1) (-5 *1 (-437))) (-2805 (*1 *1) (-5 *1 (-437))) (-2517 (*1 *1) (-5 *1 (-437))) (-2972 (*1 *1) (-5 *1 (-437)))) -(-13 (-1094) (-10 -8 (-15 -1831 ($ (-434))) (-15 -3144 ((-3 (|:| |fst| (-434)) (|:| -3495 "void")) $)) (-15 -1606 ((-641 (-949 (-564))) $)) (-15 -3674 ((-112) $)) (-15 -1842 ($ (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-1170)) (-112))) (-15 -1842 ($ (-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-641 (-949 (-564))) (-112))) (-15 -2763 ($)) (-15 -2488 ($)) (-15 -1679 ($)) (-15 -4243 ($)) (-15 -2805 ($)) (-15 -2517 ($)) (-15 -2972 ($)))) -((-1817 (((-112) $ $) NIL)) (-1316 (((-1170) $) 8)) (-2723 (((-1152) $) 17)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 14))) -(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -1316 ((-1170) $)))) (-1170)) (T -438)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2)))) -(-13 (-1094) (-10 -8 (-15 -1316 ((-1170) $)))) -((-1817 (((-112) $ $) NIL)) (-3080 (((-1112) $) 7)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 13)) (-1702 (((-112) $ $) 9))) -(((-439) (-13 (-1094) (-10 -8 (-15 -3080 ((-1112) $))))) (T -439)) -((-3080 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))) -(-13 (-1094) (-10 -8 (-15 -3080 ((-1112) $)))) -((-3069 (((-1264) $) 7)) (-1831 (((-859) $) 8) (($ (-1259 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 11))) +((-1738 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-767)))) (-2482 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-2245 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846))))) +(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4406) (-15 -1738 ((-767) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -2482 ($ $)) (-15 -2245 ($))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -2622 (|t#1| $)) (-15 -1501 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) +((-3936 (((-585 |#2|) |#2| (-1170)) 38)) (-1848 (((-585 |#2|) |#2| (-1170)) 21)) (-3210 ((|#2| |#2| (-1170)) 26))) +(((-426 |#1| |#2|) (-10 -7 (-15 -1848 ((-585 |#2|) |#2| (-1170))) (-15 -3936 ((-585 |#2|) |#2| (-1170))) (-15 -3210 (|#2| |#2| (-1170)))) (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -426)) +((-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5)))))) +(-10 -7 (-15 -1848 ((-585 |#2|) |#2| (-1170))) (-15 -3936 ((-585 |#2|) |#2| (-1170))) (-15 -3210 (|#2| |#2| (-1170)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-2412 (($ |#2| |#1|) 37)) (-1345 (($ |#2| |#1|) 35)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3179 (((-767)) NIL T CONST)) (-2389 (($) 10 T CONST)) (-2403 (($) 16 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4393)) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) |%noBranch|) (-15 -2322 ($ |#1|)) (-15 -2322 ($ (-331 |#2|))) (-15 -2412 ($ |#2| |#1|)) (-15 -1345 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-846) (-21))) (T -427)) +((-2322 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-846) (-21))))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-2412 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-846) (-21))))) (-1345 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-846) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4393)) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) |%noBranch|) (-15 -2322 ($ |#1|)) (-15 -2322 ($ (-331 |#2|))) (-15 -2412 ($ |#2| |#1|)) (-15 -1345 ($ |#2| |#1|)))) +((-3719 (((-3 |#2| (-641 |#2|)) |#2| (-1170)) 115))) +(((-428 |#1| |#2|) (-10 -7 (-15 -3719 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-29 |#1|))) (T -428)) +((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1194) (-955) (-29 *5)))))) +(-10 -7 (-15 -3719 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) +((-2534 (((-641 (-1170)) $) 80)) (-2340 (((-407 (-1166 $)) $ (-610 $)) 310)) (-2523 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) 274)) (-3032 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1170) "failed") $) 83) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 270) (((-3 (-407 (-948 |#2|)) "failed") $) 360) (((-3 (-948 |#2|) "failed") $) 272) (((-3 (-407 (-564)) "failed") $) NIL)) (-1781 (((-610 $) $) NIL) (((-1170) $) 30) (((-564) $) NIL) ((|#2| $) 268) (((-407 (-948 |#2|)) $) 342) (((-948 |#2|) $) 269) (((-407 (-564)) $) NIL)) (-3523 (((-114) (-114)) 49)) (-1352 (($ $) 98)) (-1301 (((-3 (-610 $) "failed") $) 265)) (-2324 (((-641 (-610 $)) $) 266)) (-1888 (((-3 (-641 $) "failed") $) 284)) (-3074 (((-3 (-2 (|:| |val| $) (|:| -3866 (-564))) "failed") $) 291)) (-3081 (((-3 (-641 $) "failed") $) 282)) (-1299 (((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 $))) "failed") $) 301)) (-1580 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $) 288) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-114)) 252) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-1170)) 254)) (-2649 (((-112) $) 19)) (-2662 ((|#2| $) 21)) (-3100 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 273) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 108) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) 62) (($ $ (-641 (-1170))) 277) (($ $) 278) (($ $ (-114) $ (-1170)) 65) (($ $ (-641 (-114)) (-641 $) (-1170)) 72) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) 119) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) 279) (($ $ (-1170) (-767) (-1 $ (-641 $))) 104) (($ $ (-1170) (-767) (-1 $ $)) 103)) (-4353 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) 118)) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 275)) (-1881 (($ $) 321)) (-3172 (((-888 (-564)) $) 294) (((-888 (-379)) $) 298) (($ (-418 $)) 356) (((-536) $) NIL)) (-2322 (((-858) $) 276) (($ (-610 $)) 92) (($ (-1170)) 26) (($ |#2|) NIL) (($ (-1119 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 326) (($ (-948 (-407 |#2|))) 365) (($ (-407 (-948 (-407 |#2|)))) 338) (($ (-407 (-948 |#2|))) 332) (($ $) NIL) (($ (-948 |#2|)) 214) (($ (-407 (-564))) 370) (($ (-564)) NIL)) (-3179 (((-767)) 87)) (-1646 (((-112) (-114)) 44)) (-2731 (($ (-1170) $) 33) (($ (-1170) $ $) 34) (($ (-1170) $ $ $) 35) (($ (-1170) $ $ $ $) 36) (($ (-1170) (-641 $)) 41)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 303) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2322 (|#1| (-564))) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -2322 (|#1| (-948 |#2|))) (-15 -3032 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -1781 ((-948 |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2322 (|#1| (-407 (-948 |#2|)))) (-15 -3032 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -1781 ((-407 (-948 |#2|)) |#1|)) (-15 -2340 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -2322 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -2322 (|#1| (-948 (-407 |#2|)))) (-15 -2322 (|#1| (-407 |#2|))) (-15 -1881 (|#1| |#1|)) (-15 -3172 (|#1| (-418 |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-767) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-767) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| |#1|)))) (-15 -3074 ((-3 (-2 (|:| |val| |#1|) (|:| -3866 (-564))) "failed") |#1|)) (-15 -1580 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3866 (-564))) "failed") |#1| (-1170))) (-15 -1580 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3866 (-564))) "failed") |#1| (-114))) (-15 -1352 (|#1| |#1|)) (-15 -2322 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -1299 ((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -3081 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1580 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3866 (-564))) "failed") |#1|)) (-15 -1888 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -3100 (|#1| |#1| (-114) |#1| (-1170))) (-15 -3100 (|#1| |#1|)) (-15 -3100 (|#1| |#1| (-641 (-1170)))) (-15 -3100 (|#1| |#1| (-1170))) (-15 -2731 (|#1| (-1170) (-641 |#1|))) (-15 -2731 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2731 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2731 (|#1| (-1170) |#1| |#1|)) (-15 -2731 (|#1| (-1170) |#1|)) (-15 -2534 ((-641 (-1170)) |#1|)) (-15 -2662 (|#2| |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -2322 (|#1| (-1170))) (-15 -3032 ((-3 (-1170) "failed") |#1|)) (-15 -1781 ((-1170) |#1|)) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -2324 ((-641 (-610 |#1|)) |#1|)) (-15 -1301 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2523 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2523 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2523 (|#1| |#1| (-294 |#1|))) (-15 -4353 (|#1| (-114) (-641 |#1|))) (-15 -4353 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3100 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2322 (|#1| (-610 |#1|))) (-15 -3032 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1781 ((-610 |#1|) |#1|)) (-15 -2322 ((-858) |#1|))) (-430 |#2|) (-846)) (T -429)) +((-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3179 (*1 *2) (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2322 (|#1| (-564))) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -2322 (|#1| (-948 |#2|))) (-15 -3032 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -1781 ((-948 |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2322 (|#1| (-407 (-948 |#2|)))) (-15 -3032 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -1781 ((-407 (-948 |#2|)) |#1|)) (-15 -2340 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -2322 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -2322 (|#1| (-948 (-407 |#2|)))) (-15 -2322 (|#1| (-407 |#2|))) (-15 -1881 (|#1| |#1|)) (-15 -3172 (|#1| (-418 |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-767) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-767) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| |#1|)))) (-15 -3074 ((-3 (-2 (|:| |val| |#1|) (|:| -3866 (-564))) "failed") |#1|)) (-15 -1580 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3866 (-564))) "failed") |#1| (-1170))) (-15 -1580 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3866 (-564))) "failed") |#1| (-114))) (-15 -1352 (|#1| |#1|)) (-15 -2322 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -1299 ((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -3081 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1580 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3866 (-564))) "failed") |#1|)) (-15 -1888 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -3100 (|#1| |#1| (-114) |#1| (-1170))) (-15 -3100 (|#1| |#1|)) (-15 -3100 (|#1| |#1| (-641 (-1170)))) (-15 -3100 (|#1| |#1| (-1170))) (-15 -2731 (|#1| (-1170) (-641 |#1|))) (-15 -2731 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2731 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2731 (|#1| (-1170) |#1| |#1|)) (-15 -2731 (|#1| (-1170) |#1|)) (-15 -2534 ((-641 (-1170)) |#1|)) (-15 -2662 (|#2| |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -2322 (|#1| (-1170))) (-15 -3032 ((-3 (-1170) "failed") |#1|)) (-15 -1781 ((-1170) |#1|)) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3100 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3100 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -2324 ((-641 (-610 |#1|)) |#1|)) (-15 -1301 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2523 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2523 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2523 (|#1| |#1| (-294 |#1|))) (-15 -4353 (|#1| (-114) (-641 |#1|))) (-15 -4353 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1| |#1|)) (-15 -4353 (|#1| (-114) |#1|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3100 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3100 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2322 (|#1| (-610 |#1|))) (-15 -3032 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1781 ((-610 |#1|) |#1|)) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 114 (|has| |#1| (-25)))) (-2534 (((-641 (-1170)) $) 201)) (-2340 (((-407 (-1166 $)) $ (-610 $)) 169 (|has| |#1| (-556)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-3622 (($ $) 142 (|has| |#1| (-556)))) (-3247 (((-112) $) 144 (|has| |#1| (-556)))) (-2244 (((-641 (-610 $)) $) 44)) (-1862 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2523 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-3453 (($ $) 161 (|has| |#1| (-556)))) (-2657 (((-418 $) $) 162 (|has| |#1| (-556)))) (-3547 (((-112) $ $) 152 (|has| |#1| (-556)))) (-4157 (($) 102 (-2789 (|has| |#1| (-1106)) (|has| |#1| (-25))) CONST)) (-3032 (((-3 (-610 $) "failed") $) 69) (((-3 (-1170) "failed") $) 214) (((-3 (-564) "failed") $) 208 (|has| |#1| (-1034 (-564)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-948 |#1|)) "failed") $) 167 (|has| |#1| (-556))) (((-3 (-948 |#1|) "failed") $) 121 (|has| |#1| (-1045))) (((-3 (-407 (-564)) "failed") $) 96 (-2789 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-1781 (((-610 $) $) 70) (((-1170) $) 215) (((-564) $) 207 (|has| |#1| (-1034 (-564)))) ((|#1| $) 206) (((-407 (-948 |#1|)) $) 168 (|has| |#1| (-556))) (((-948 |#1|) $) 122 (|has| |#1| (-1045))) (((-407 (-564)) $) 97 (-2789 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-2574 (($ $ $) 156 (|has| |#1| (-556)))) (-2750 (((-685 (-564)) (-685 $)) 135 (-2342 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 134 (-2342 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 133 (|has| |#1| (-1045))) (((-685 |#1|) (-685 $)) 132 (|has| |#1| (-1045)))) (-2689 (((-3 $ "failed") $) 104 (|has| |#1| (-1106)))) (-2552 (($ $ $) 155 (|has| |#1| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 150 (|has| |#1| (-556)))) (-4229 (((-112) $) 163 (|has| |#1| (-556)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 210 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 209 (|has| |#1| (-882 (-379))))) (-2252 (($ $) 51) (($ (-641 $)) 50)) (-1921 (((-641 (-114)) $) 43)) (-3523 (((-114) (-114)) 42)) (-1828 (((-112) $) 103 (|has| |#1| (-1106)))) (-3415 (((-112) $) 22 (|has| $ (-1034 (-564))))) (-1352 (($ $) 184 (|has| |#1| (-1045)))) (-4189 (((-1119 |#1| (-610 $)) $) 185 (|has| |#1| (-1045)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 159 (|has| |#1| (-556)))) (-1445 (((-1166 $) (-610 $)) 25 (|has| $ (-1045)))) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-3123 (($ (-1 $ $) (-610 $)) 36)) (-1301 (((-3 (-610 $) "failed") $) 46)) (-3202 (($ (-641 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-1418 (((-1152) $) 9)) (-2324 (((-641 (-610 $)) $) 45)) (-3059 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-1888 (((-3 (-641 $) "failed") $) 190 (|has| |#1| (-1106)))) (-3074 (((-3 (-2 (|:| |val| $) (|:| -3866 (-564))) "failed") $) 181 (|has| |#1| (-1045)))) (-3081 (((-3 (-641 $) "failed") $) 188 (|has| |#1| (-25)))) (-1299 (((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 $))) "failed") $) 187 (|has| |#1| (-25)))) (-1580 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $) 189 (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-114)) 183 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-1170)) 182 (|has| |#1| (-1045)))) (-2379 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-2639 (($ $) 106 (-2789 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3162 (((-767) $) 47)) (-3840 (((-1114) $) 10)) (-2649 (((-112) $) 203)) (-2662 ((|#1| $) 202)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 149 (|has| |#1| (-556)))) (-3235 (($ (-641 $)) 146 (|has| |#1| (-556))) (($ $ $) 145 (|has| |#1| (-556)))) (-1473 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-2375 (((-418 $) $) 160 (|has| |#1| (-556)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 157 (|has| |#1| (-556)))) (-2526 (((-3 $ "failed") $ $) 140 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 151 (|has| |#1| (-556)))) (-1333 (((-112) $) 23 (|has| $ (-1034 (-564))))) (-3100 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1170)) 195 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 194 (|has| |#1| (-612 (-536)))) (($ $) 193 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 192 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 191 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) 180 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) 179 (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ (-641 $))) 178 (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ $)) 177 (|has| |#1| (-1045)))) (-3844 (((-767) $) 153 (|has| |#1| (-556)))) (-4353 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 154 (|has| |#1| (-556)))) (-2054 (($ $) 49) (($ $ $) 48)) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) 126 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 125 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 124 (|has| |#1| (-1045))) (($ $ (-1170)) 123 (|has| |#1| (-1045)))) (-1881 (($ $) 174 (|has| |#1| (-556)))) (-4201 (((-1119 |#1| (-610 $)) $) 175 (|has| |#1| (-556)))) (-2400 (($ $) 24 (|has| $ (-1045)))) (-3172 (((-888 (-564)) $) 212 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 211 (|has| |#1| (-612 (-888 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-556))) (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-2675 (($ $ $) 109 (|has| |#1| (-473)))) (-2617 (($ $ $) 110 (|has| |#1| (-473)))) (-2322 (((-858) $) 11) (($ (-610 $)) 68) (($ (-1170)) 213) (($ |#1|) 204) (($ (-1119 |#1| (-610 $))) 186 (|has| |#1| (-1045))) (($ (-407 |#1|)) 172 (|has| |#1| (-556))) (($ (-948 (-407 |#1|))) 171 (|has| |#1| (-556))) (($ (-407 (-948 (-407 |#1|)))) 170 (|has| |#1| (-556))) (($ (-407 (-948 |#1|))) 166 (|has| |#1| (-556))) (($ $) 139 (|has| |#1| (-556))) (($ (-948 |#1|)) 120 (|has| |#1| (-1045))) (($ (-407 (-564))) 95 (-2789 (|has| |#1| (-556)) (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564)))))) (($ (-564)) 94 (-2789 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-564)))))) (-2409 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3179 (((-767)) 131 (|has| |#1| (-1045)) CONST)) (-1389 (($ $) 53) (($ (-641 $)) 52)) (-1646 (((-112) (-114)) 41)) (-4024 (((-112) $ $) 143 (|has| |#1| (-556)))) (-2731 (($ (-1170) $) 200) (($ (-1170) $ $) 199) (($ (-1170) $ $ $) 198) (($ (-1170) $ $ $ $) 197) (($ (-1170) (-641 $)) 196)) (-2389 (($) 113 (|has| |#1| (-25)) CONST)) (-2403 (($) 101 (|has| |#1| (-1106)) CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) 130 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 129 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 128 (|has| |#1| (-1045))) (($ $ (-1170)) 127 (|has| |#1| (-1045)))) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3034 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 173 (|has| |#1| (-556))) (($ $ $) 107 (-2789 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3021 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-3011 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-564)) 108 (-2789 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-767)) 105 (|has| |#1| (-1106))) (($ $ (-917)) 100 (|has| |#1| (-1106)))) (* (($ (-407 (-564)) $) 165 (|has| |#1| (-556))) (($ $ (-407 (-564))) 164 (|has| |#1| (-556))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-767) $) 115 (|has| |#1| (-25))) (($ (-917) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1106))))) +(((-430 |#1|) (-140) (-846)) (T -430)) +((-2649 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-641 (-1170))))) (-2731 (*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2731 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2731 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2731 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2731 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-612 (-536))))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-612 (-536))))) (-3100 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-612 (-536))))) (-3100 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-612 (-536))))) (-3100 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-612 (-536))))) (-1888 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-1580 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3866 (-564)))) (-4 *1 (-430 *3)))) (-3081 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-1299 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -3139 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-4189 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-1352 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) (-1580 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3866 (-564)))) (-4 *1 (-430 *4)))) (-1580 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3866 (-564)))) (-4 *1 (-430 *4)))) (-3074 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |val| *1) (|:| -3866 (-564)))) (-4 *1 (-430 *3)))) (-3100 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767))) (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-3100 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767))) (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-3100 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-641 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-3100 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-846)))) (-4201 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-846)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-556)))) (-3034 (*1 *1 *2 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2340 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1106))))) +(-13 (-302) (-1034 (-1170)) (-880 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -2649 ((-112) $)) (-15 -2662 (|t#1| $)) (-15 -2534 ((-641 (-1170)) $)) (-15 -2731 ($ (-1170) $)) (-15 -2731 ($ (-1170) $ $)) (-15 -2731 ($ (-1170) $ $ $)) (-15 -2731 ($ (-1170) $ $ $ $)) (-15 -2731 ($ (-1170) (-641 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -3100 ($ $ (-1170))) (-15 -3100 ($ $ (-641 (-1170)))) (-15 -3100 ($ $)) (-15 -3100 ($ $ (-114) $ (-1170))) (-15 -3100 ($ $ (-641 (-114)) (-641 $) (-1170)))) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-722)) (-15 ** ($ $ (-767))) (-15 -1888 ((-3 (-641 $) "failed") $)) (-15 -1580 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3081 ((-3 (-641 $) "failed") $)) (-15 -1299 ((-3 (-2 (|:| -3139 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-1034 (-948 |t#1|))) (-6 (-896 (-1170))) (-6 (-377 |t#1|)) (-15 -2322 ($ (-1119 |t#1| (-610 $)))) (-15 -4189 ((-1119 |t#1| (-610 $)) $)) (-15 -1352 ($ $)) (-15 -1580 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-114))) (-15 -1580 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3866 (-564))) "failed") $ (-1170))) (-15 -3074 ((-3 (-2 (|:| |val| $) (|:| -3866 (-564))) "failed") $)) (-15 -3100 ($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $)))) (-15 -3100 ($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $))))) (-15 -3100 ($ $ (-1170) (-767) (-1 $ (-641 $)))) (-15 -3100 ($ $ (-1170) (-767) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1034 (-407 (-948 |t#1|)))) (-15 -3172 ($ (-418 $))) (-15 -4201 ((-1119 |t#1| (-610 $)) $)) (-15 -1881 ($ $)) (-15 -3034 ($ (-1119 |t#1| (-610 $)) (-1119 |t#1| (-610 $)))) (-15 -2322 ($ (-407 |t#1|))) (-15 -2322 ($ (-948 (-407 |t#1|)))) (-15 -2322 ($ (-407 (-948 (-407 |t#1|))))) (-15 -2340 ((-407 (-1166 $)) $ (-610 $))) (IF (|has| |t#1| (-1034 (-564))) (-6 (-1034 (-407 (-564)))) |%noBranch|)) |%noBranch|))) +(((-21) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-948 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -2789 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) ((-637 |#1|) |has| |#1| (-1045)) ((-713 #0#) |has| |#1| (-556)) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) -2789 (|has| |#1| (-1106)) (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-846) . T) ((-896 (-1170)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-916) |has| |#1| (-556)) ((-1034 (-407 (-564))) -2789 (|has| |#1| (-1034 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) ((-1034 #1#) |has| |#1| (-556)) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-556)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-556)) ((-1045) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1052) -2789 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) -2789 (|has| |#1| (-1106)) (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1209) . T) ((-1213) |has| |#1| (-556))) +((-3395 ((|#2| |#2| |#2|) 31)) (-3523 (((-114) (-114)) 43)) (-2330 ((|#2| |#2|) 63)) (-4334 ((|#2| |#2|) 66)) (-2813 ((|#2| |#2|) 30)) (-3736 ((|#2| |#2| |#2|) 33)) (-3786 ((|#2| |#2| |#2|) 35)) (-3369 ((|#2| |#2| |#2|) 32)) (-3766 ((|#2| |#2| |#2|) 34)) (-1646 (((-112) (-114)) 41)) (-3322 ((|#2| |#2|) 37)) (-2724 ((|#2| |#2|) 36)) (-3598 ((|#2| |#2|) 25)) (-2630 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2934 ((|#2| |#2| |#2|) 29))) +(((-431 |#1| |#2|) (-10 -7 (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -3598 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -2630 (|#2| |#2| |#2|)) (-15 -2934 (|#2| |#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -3395 (|#2| |#2| |#2|)) (-15 -3369 (|#2| |#2| |#2|)) (-15 -3736 (|#2| |#2| |#2|)) (-15 -3766 (|#2| |#2| |#2|)) (-15 -3786 (|#2| |#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -3322 (|#2| |#2|)) (-15 -4334 (|#2| |#2|)) (-15 -2330 (|#2| |#2|))) (-13 (-846) (-556)) (-430 |#1|)) (T -431)) +((-2330 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4334 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3322 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3786 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3766 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3736 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3369 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3395 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2813 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2934 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2630 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2630 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))) +(-10 -7 (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -3598 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -2630 (|#2| |#2| |#2|)) (-15 -2934 (|#2| |#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -3395 (|#2| |#2| |#2|)) (-15 -3369 (|#2| |#2| |#2|)) (-15 -3736 (|#2| |#2| |#2|)) (-15 -3766 (|#2| |#2| |#2|)) (-15 -3786 (|#2| |#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -3322 (|#2| |#2|)) (-15 -4334 (|#2| |#2|)) (-15 -2330 (|#2| |#2|))) +((-3422 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|) 105 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|)) 68))) +(((-432 |#1| |#2|) (-10 -7 (-15 -3422 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -3422 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-846) (-147)) (-430 |#1|)) (T -432)) +((-3422 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-432 *4 *5))))) +(-10 -7 (-15 -3422 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -3422 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3455 (((-1264)) 19)) (-3903 (((-1166 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25))) +(((-433 |#1| |#2|) (-10 -7 (-15 -3903 ((-407 (-564)) |#2|)) (-15 -3903 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -3455 ((-1264)))) (-13 (-846) (-556) (-1034 (-564))) (-430 |#1|)) (T -433)) +((-3455 (*1 *2) (-12 (-4 *3 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-1264)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-3903 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-3903 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))) +(-10 -7 (-15 -3903 ((-407 (-564)) |#2|)) (-15 -3903 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -3455 ((-1264)))) +((-1664 (((-112) $) 32)) (-2079 (((-112) $) 34)) (-2835 (((-112) $) 35)) (-3722 (((-112) $) 38)) (-2349 (((-112) $) 33)) (-4190 (((-112) $) 37)) (-2322 (((-858) $) 20) (($ (-1152)) 31) (($ (-1170)) 26) (((-1170) $) 24) (((-1098) $) 23)) (-2405 (((-112) $) 36)) (-2921 (((-112) $ $) 17))) +(((-434) (-13 (-611 (-858)) (-10 -8 (-15 -2322 ($ (-1152))) (-15 -2322 ($ (-1170))) (-15 -2322 ((-1170) $)) (-15 -2322 ((-1098) $)) (-15 -1664 ((-112) $)) (-15 -2349 ((-112) $)) (-15 -2835 ((-112) $)) (-15 -4190 ((-112) $)) (-15 -3722 ((-112) $)) (-15 -2405 ((-112) $)) (-15 -2079 ((-112) $)) (-15 -2921 ((-112) $ $))))) (T -434)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2921 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2322 ($ (-1152))) (-15 -2322 ($ (-1170))) (-15 -2322 ((-1170) $)) (-15 -2322 ((-1098) $)) (-15 -1664 ((-112) $)) (-15 -2349 ((-112) $)) (-15 -2835 ((-112) $)) (-15 -4190 ((-112) $)) (-15 -3722 ((-112) $)) (-15 -2405 ((-112) $)) (-15 -2079 ((-112) $)) (-15 -2921 ((-112) $ $)))) +((-2060 (((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|) 72)) (-3528 (((-418 |#3|) |#3|) 34)) (-3452 (((-3 (-418 (-1166 (-48))) "failed") |#3|) 46 (|has| |#2| (-1034 (-48))))) (-1382 (((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3208 (-112))) |#3|) 37))) +(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3528 ((-418 |#3|) |#3|)) (-15 -2060 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -1382 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3208 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -3452 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-846) (-1034 (-564))) (-430 |#1|) (-1235 |#2|)) (T -435)) +((-3452 (*1 *2 *3) (|partial| -12 (-4 *5 (-1034 (-48))) (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-1382 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3208 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2060 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-3528 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -3528 ((-418 |#3|) |#3|)) (-15 -2060 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -1382 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3208 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -3452 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-3799 (((-1152) $ (-1152)) NIL)) (-2096 (($ $ (-1152)) NIL)) (-3603 (((-1152) $) NIL)) (-3038 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-4197 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-2420 (((-388) $) NIL)) (-1418 (((-1152) $) NIL)) (-1920 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2460 (((-1264) (-1152)) 9)) (-3943 (((-1264) (-1152)) 10)) (-3006 (((-1264)) 11)) (-2322 (((-858) $) NIL)) (-3566 (($ $) 38)) (-2921 (((-112) $ $) NIL))) +(((-436) (-13 (-364 (-388) (-1152)) (-10 -7 (-15 -3038 ((-388) (-388) (-388))) (-15 -3038 ((-388) (-388))) (-15 -2460 ((-1264) (-1152))) (-15 -3943 ((-1264) (-1152))) (-15 -3006 ((-1264)))))) (T -436)) +((-3038 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-3006 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436))))) +(-13 (-364 (-388) (-1152)) (-10 -7 (-15 -3038 ((-388) (-388) (-388))) (-15 -3038 ((-388) (-388))) (-15 -2460 ((-1264) (-1152))) (-15 -3943 ((-1264) (-1152))) (-15 -3006 ((-1264))))) +((-2310 (((-112) $ $) NIL)) (-4210 (((-3 (|:| |fst| (-434)) (|:| -3734 "void")) $) 11)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3671 (($) 35)) (-2893 (($) 41)) (-2611 (($) 37)) (-3125 (($) 39)) (-2851 (($) 36)) (-2866 (($) 38)) (-2057 (($) 40)) (-2187 (((-112) $) 8)) (-3168 (((-641 (-948 (-564))) $) 19)) (-2335 (($ (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-1170)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-948 (-564))) (-112)) 30)) (-2322 (((-858) $) 24) (($ (-434)) 32)) (-2921 (((-112) $ $) NIL))) +(((-437) (-13 (-1094) (-10 -8 (-15 -2322 ($ (-434))) (-15 -4210 ((-3 (|:| |fst| (-434)) (|:| -3734 "void")) $)) (-15 -3168 ((-641 (-948 (-564))) $)) (-15 -2187 ((-112) $)) (-15 -2335 ($ (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-1170)) (-112))) (-15 -2335 ($ (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-948 (-564))) (-112))) (-15 -3671 ($)) (-15 -2851 ($)) (-15 -2611 ($)) (-15 -2893 ($)) (-15 -2866 ($)) (-15 -3125 ($)) (-15 -2057 ($))))) (T -437)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *1 (-437)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-641 (-948 (-564)))) (-5 *1 (-437)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3671 (*1 *1) (-5 *1 (-437))) (-2851 (*1 *1) (-5 *1 (-437))) (-2611 (*1 *1) (-5 *1 (-437))) (-2893 (*1 *1) (-5 *1 (-437))) (-2866 (*1 *1) (-5 *1 (-437))) (-3125 (*1 *1) (-5 *1 (-437))) (-2057 (*1 *1) (-5 *1 (-437)))) +(-13 (-1094) (-10 -8 (-15 -2322 ($ (-434))) (-15 -4210 ((-3 (|:| |fst| (-434)) (|:| -3734 "void")) $)) (-15 -3168 ((-641 (-948 (-564))) $)) (-15 -2187 ((-112) $)) (-15 -2335 ($ (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-1170)) (-112))) (-15 -2335 ($ (-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-641 (-948 (-564))) (-112))) (-15 -3671 ($)) (-15 -2851 ($)) (-15 -2611 ($)) (-15 -2893 ($)) (-15 -2866 ($)) (-15 -3125 ($)) (-15 -2057 ($)))) +((-2310 (((-112) $ $) NIL)) (-2420 (((-1170) $) 8)) (-1418 (((-1152) $) 17)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 14))) +(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -2420 ((-1170) $)))) (-1170)) (T -438)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2)))) +(-13 (-1094) (-10 -8 (-15 -2420 ((-1170) $)))) +((-2310 (((-112) $ $) NIL)) (-3685 (((-1112) $) 7)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 13)) (-2921 (((-112) $ $) 9))) +(((-439) (-13 (-1094) (-10 -8 (-15 -3685 ((-1112) $))))) (T -439)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))) +(-13 (-1094) (-10 -8 (-15 -3685 ((-1112) $)))) +((-4308 (((-1264) $) 7)) (-2322 (((-858) $) 8) (($ (-1259 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 11))) (((-440) (-140)) (T -440)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) (-4 *1 (-440))))) -(-13 (-395) (-10 -8 (-15 -1831 ($ (-1259 (-695)))) (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-330))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))))) -(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) -((-2347 (((-3 $ "failed") (-1259 (-316 (-379)))) 21) (((-3 $ "failed") (-1259 (-316 (-564)))) 19) (((-3 $ "failed") (-1259 (-949 (-379)))) 17) (((-3 $ "failed") (-1259 (-949 (-564)))) 15) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 11)) (-2237 (($ (-1259 (-316 (-379)))) 22) (($ (-1259 (-316 (-564)))) 20) (($ (-1259 (-949 (-379)))) 18) (($ (-1259 (-949 (-564)))) 16) (($ (-1259 (-407 (-949 (-379))))) 14) (($ (-1259 (-407 (-949 (-564))))) 12)) (-3069 (((-1264) $) 7)) (-1831 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) 23))) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-440))))) +(-13 (-395) (-10 -8 (-15 -2322 ($ (-1259 (-695)))) (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-330))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))))) +(((-611 (-858)) . T) ((-395) . T) ((-1209) . T)) +((-3032 (((-3 $ "failed") (-1259 (-316 (-379)))) 21) (((-3 $ "failed") (-1259 (-316 (-564)))) 19) (((-3 $ "failed") (-1259 (-948 (-379)))) 17) (((-3 $ "failed") (-1259 (-948 (-564)))) 15) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 11)) (-1781 (($ (-1259 (-316 (-379)))) 22) (($ (-1259 (-316 (-564)))) 20) (($ (-1259 (-948 (-379)))) 18) (($ (-1259 (-948 (-564)))) 16) (($ (-1259 (-407 (-948 (-379))))) 14) (($ (-1259 (-407 (-948 (-564))))) 12)) (-4308 (((-1264) $) 7)) (-2322 (((-858) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) 23))) (((-441) (-140)) (T -441)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) (-4 *1 (-441)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441))))) -(-13 (-395) (-10 -8 (-15 -1831 ($ (-641 (-330)))) (-15 -1831 ($ (-330))) (-15 -1831 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330)))))) (-15 -2237 ($ (-1259 (-316 (-379))))) (-15 -2347 ((-3 $ "failed") (-1259 (-316 (-379))))) (-15 -2237 ($ (-1259 (-316 (-564))))) (-15 -2347 ((-3 $ "failed") (-1259 (-316 (-564))))) (-15 -2237 ($ (-1259 (-949 (-379))))) (-15 -2347 ((-3 $ "failed") (-1259 (-949 (-379))))) (-15 -2237 ($ (-1259 (-949 (-564))))) (-15 -2347 ((-3 $ "failed") (-1259 (-949 (-564))))) (-15 -2237 ($ (-1259 (-407 (-949 (-379)))))) (-15 -2347 ((-3 $ "failed") (-1259 (-407 (-949 (-379)))))) (-15 -2237 ($ (-1259 (-407 (-949 (-564)))))) (-15 -2347 ((-3 $ "failed") (-1259 (-407 (-949 (-564)))))))) -(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) -((-3971 (((-112)) 18)) (-3056 (((-112) (-112)) 19)) (-2158 (((-112)) 14)) (-1969 (((-112) (-112)) 15)) (-2437 (((-112)) 16)) (-2715 (((-112) (-112)) 17)) (-3845 (((-918) (-918)) 22) (((-918)) 21)) (-4185 (((-768) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564))))) 51)) (-1535 (((-918) (-918)) 24) (((-918)) 23)) (-4357 (((-2 (|:| -3053 (-564)) (|:| -3840 (-641 |#1|))) |#1|) 94)) (-2004 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564))))))) 174)) (-2185 (((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112)) 207)) (-2999 (((-418 |#1|) |#1| (-768) (-768)) 222) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 219) (((-418 |#1|) |#1| (-641 (-768))) 221) (((-418 |#1|) |#1| (-768)) 220) (((-418 |#1|) |#1|) 218)) (-3183 (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112)) 224) (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768)) 225) (((-3 |#1| "failed") (-918) |#1| (-641 (-768))) 227) (((-3 |#1| "failed") (-918) |#1| (-768)) 226) (((-3 |#1| "failed") (-918) |#1|) 228)) (-3070 (((-418 |#1|) |#1| (-768) (-768)) 217) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 213) (((-418 |#1|) |#1| (-641 (-768))) 215) (((-418 |#1|) |#1| (-768)) 214) (((-418 |#1|) |#1|) 212)) (-4200 (((-112) |#1|) 43)) (-3201 (((-734 (-768)) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564))))) 99)) (-3704 (((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)) 211))) -(((-442 |#1|) (-10 -7 (-15 -2004 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))))) (-15 -3201 ((-734 (-768)) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))))) (-15 -1535 ((-918))) (-15 -1535 ((-918) (-918))) (-15 -3845 ((-918))) (-15 -3845 ((-918) (-918))) (-15 -4185 ((-768) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))))) (-15 -4357 ((-2 (|:| -3053 (-564)) (|:| -3840 (-641 |#1|))) |#1|)) (-15 -3971 ((-112))) (-15 -3056 ((-112) (-112))) (-15 -2158 ((-112))) (-15 -1969 ((-112) (-112))) (-15 -4200 ((-112) |#1|)) (-15 -2437 ((-112))) (-15 -2715 ((-112) (-112))) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3070 ((-418 |#1|) |#1| (-768))) (-15 -3070 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -3070 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -3070 ((-418 |#1|) |#1| (-768) (-768))) (-15 -2999 ((-418 |#1|) |#1|)) (-15 -2999 ((-418 |#1|) |#1| (-768))) (-15 -2999 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -2999 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -2999 ((-418 |#1|) |#1| (-768) (-768))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1|)) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -2185 ((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112))) (-15 -3704 ((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)))) (-1235 (-564))) (T -442)) -((-3704 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2185 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3183 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3183 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3183 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3183 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3183 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-2999 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2999 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2999 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2999 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2999 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2437 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2158 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3056 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3971 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4357 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3053 (-564)) (|:| -3840 (-641 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3070 *4) (|:| -1619 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3845 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1535 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3070 *4) (|:| -1619 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| *4) (|:| -1874 (-564))))))) (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) -(-10 -7 (-15 -2004 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))))) (-15 -3201 ((-734 (-768)) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))))) (-15 -1535 ((-918))) (-15 -1535 ((-918) (-918))) (-15 -3845 ((-918))) (-15 -3845 ((-918) (-918))) (-15 -4185 ((-768) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))))) (-15 -4357 ((-2 (|:| -3053 (-564)) (|:| -3840 (-641 |#1|))) |#1|)) (-15 -3971 ((-112))) (-15 -3056 ((-112) (-112))) (-15 -2158 ((-112))) (-15 -1969 ((-112) (-112))) (-15 -4200 ((-112) |#1|)) (-15 -2437 ((-112))) (-15 -2715 ((-112) (-112))) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3070 ((-418 |#1|) |#1| (-768))) (-15 -3070 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -3070 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -3070 ((-418 |#1|) |#1| (-768) (-768))) (-15 -2999 ((-418 |#1|) |#1|)) (-15 -2999 ((-418 |#1|) |#1| (-768))) (-15 -2999 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -2999 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -2999 ((-418 |#1|) |#1| (-768) (-768))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1|)) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -3183 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -2185 ((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112))) (-15 -3704 ((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)))) -((-2025 (((-564) |#2|) 52) (((-564) |#2| (-768)) 51)) (-3930 (((-564) |#2|) 67)) (-2292 ((|#3| |#2|) 26)) (-3797 ((|#3| |#2| (-918)) 15)) (-1502 ((|#3| |#2|) 16)) (-3685 ((|#3| |#2|) 9)) (-3926 ((|#3| |#2|) 10)) (-2829 ((|#3| |#2| (-918)) 74) ((|#3| |#2|) 34)) (-2485 (((-564) |#2|) 69))) -(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2485 ((-564) |#2|)) (-15 -2829 (|#3| |#2|)) (-15 -2829 (|#3| |#2| (-918))) (-15 -3930 ((-564) |#2|)) (-15 -2025 ((-564) |#2| (-768))) (-15 -2025 ((-564) |#2|)) (-15 -3797 (|#3| |#2| (-918))) (-15 -2292 (|#3| |#2|)) (-15 -3685 (|#3| |#2|)) (-15 -3926 (|#3| |#2|)) (-15 -1502 (|#3| |#2|))) (-1046) (-1235 |#1|) (-13 (-404) (-1035 |#1|) (-363) (-1194) (-284))) (T -443)) -((-1502 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3926 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2292 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))))) (-3930 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-2829 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2485 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) -(-10 -7 (-15 -2485 ((-564) |#2|)) (-15 -2829 (|#3| |#2|)) (-15 -2829 (|#3| |#2| (-918))) (-15 -3930 ((-564) |#2|)) (-15 -2025 ((-564) |#2| (-768))) (-15 -2025 ((-564) |#2|)) (-15 -3797 (|#3| |#2| (-918))) (-15 -2292 (|#3| |#2|)) (-15 -3685 (|#3| |#2|)) (-15 -3926 (|#3| |#2|)) (-15 -1502 (|#3| |#2|))) -((-4063 ((|#2| (-1259 |#1|)) 45)) (-3822 ((|#2| |#2| |#1|) 61)) (-3559 ((|#2| |#2| |#1|) 53)) (-3919 ((|#2| |#2|) 49)) (-1784 (((-112) |#2|) 36)) (-4313 (((-641 |#2|) (-918) (-418 |#2|)) 24)) (-3183 ((|#2| (-918) (-418 |#2|)) 28)) (-3201 (((-734 (-768)) (-418 |#2|)) 33))) -(((-444 |#1| |#2|) (-10 -7 (-15 -1784 ((-112) |#2|)) (-15 -4063 (|#2| (-1259 |#1|))) (-15 -3919 (|#2| |#2|)) (-15 -3559 (|#2| |#2| |#1|)) (-15 -3822 (|#2| |#2| |#1|)) (-15 -3201 ((-734 (-768)) (-418 |#2|))) (-15 -3183 (|#2| (-918) (-418 |#2|))) (-15 -4313 ((-641 |#2|) (-918) (-418 |#2|)))) (-1046) (-1235 |#1|)) (T -444)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1046)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5)))) (-3822 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-3559 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4)) (-5 *1 (-444 *4 *2)))) (-1784 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -1784 ((-112) |#2|)) (-15 -4063 (|#2| (-1259 |#1|))) (-15 -3919 (|#2| |#2|)) (-15 -3559 (|#2| |#2| |#1|)) (-15 -3822 (|#2| |#2| |#1|)) (-15 -3201 ((-734 (-768)) (-418 |#2|))) (-15 -3183 (|#2| (-918) (-418 |#2|))) (-15 -4313 ((-641 |#2|) (-918) (-418 |#2|)))) -((-3870 (((-768)) 57)) (-3294 (((-768)) 29 (|has| |#1| (-404))) (((-768) (-768)) 28 (|has| |#1| (-404)))) (-2340 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-3721 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-2202 (((-768)) 56) (((-768) (-768)) 55)) (-3997 ((|#1| (-768) (-564)) 36)) (-4159 (((-1264)) 59))) -(((-445 |#1|) (-10 -7 (-15 -3997 (|#1| (-768) (-564))) (-15 -2202 ((-768) (-768))) (-15 -2202 ((-768))) (-15 -3870 ((-768))) (-15 -4159 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -3721 ((-564) |#1|)) (-15 -2340 ((-564) |#1|)) (-15 -3294 ((-768) (-768))) (-15 -3294 ((-768)))) |%noBranch|)) (-1046)) (T -445)) -((-3294 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-3294 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-3721 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-4159 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3870 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-2202 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046))))) -(-10 -7 (-15 -3997 (|#1| (-768) (-564))) (-15 -2202 ((-768) (-768))) (-15 -2202 ((-768))) (-15 -3870 ((-768))) (-15 -4159 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -3721 ((-564) |#1|)) (-15 -2340 ((-564) |#1|)) (-15 -3294 ((-768) (-768))) (-15 -3294 ((-768)))) |%noBranch|)) -((-2369 (((-641 (-564)) (-564)) 75)) (-1420 (((-112) (-169 (-564))) 81)) (-3070 (((-418 (-169 (-564))) (-169 (-564))) 74))) -(((-446) (-10 -7 (-15 -3070 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -2369 ((-641 (-564)) (-564))) (-15 -1420 ((-112) (-169 (-564)))))) (T -446)) -((-1420 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-2369 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-3070 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564)))))) -(-10 -7 (-15 -3070 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -2369 ((-641 (-564)) (-564))) (-15 -1420 ((-112) (-169 (-564))))) -((-2415 ((|#4| |#4| (-641 |#4|)) 80)) (-2523 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 22) (((-641 |#4|) (-641 |#4|) (-1152)) 21) (((-641 |#4|) (-641 |#4|)) 13))) -(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 (|#4| |#4| (-641 |#4|))) (-15 -2523 ((-641 |#4|) (-641 |#4|))) (-15 -2523 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -2523 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) (-307) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -447)) -((-2523 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2523 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6)))) (-2415 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2))))) -(-10 -7 (-15 -2415 (|#4| |#4| (-641 |#4|))) (-15 -2523 ((-641 |#4|) (-641 |#4|))) (-15 -2523 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -2523 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) -((-2116 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 89) (((-641 (-641 |#4|)) (-641 |#4|)) 88) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112)) 82) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|)) 83)) (-1772 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 54) (((-641 (-641 |#4|)) (-641 |#4|)) 75))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1772 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -1772 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) (-13 (-307) (-147)) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -448)) -((-2116 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2116 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2116 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2116 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-1772 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) -(-10 -7 (-15 -1772 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -1772 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2116 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) -((-2719 (((-768) |#4|) 12)) (-3362 (((-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|)))) 38)) (-4199 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3929 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-4140 ((|#4| |#4| (-641 |#4|)) 54)) (-3662 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|)) 96)) (-2365 (((-1264) |#4|) 59)) (-3279 (((-1264) (-641 |#4|)) 69)) (-2693 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 66)) (-2171 (((-1264) (-564)) 111)) (-3563 (((-641 |#4|) (-641 |#4|)) 103)) (-3066 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|)) |#4| (-768)) 31)) (-2697 (((-564) |#4|) 108)) (-2007 ((|#4| |#4|) 36)) (-3489 (((-641 |#4|) (-641 |#4|) (-564) (-564)) 74)) (-3773 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 124)) (-3003 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2991 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1719 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2067 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3410 (((-112) |#2| |#2|) 75)) (-1720 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2557 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1473 ((|#4| |#4| (-641 |#4|)) 97))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1473 (|#4| |#4| (-641 |#4|))) (-15 -4140 (|#4| |#4| (-641 |#4|))) (-15 -3489 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2991 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3410 ((-112) |#2| |#2|)) (-15 -2557 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1720 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2067 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1719 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3662 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -2007 (|#4| |#4|)) (-15 -3362 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|))))) (-15 -3929 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4199 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3563 ((-641 |#4|) (-641 |#4|))) (-15 -2697 ((-564) |#4|)) (-15 -2365 ((-1264) |#4|)) (-15 -2693 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -3773 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -3279 ((-1264) (-641 |#4|))) (-15 -2171 ((-1264) (-564))) (-15 -3003 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3066 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|)) |#4| (-768))) (-15 -2719 ((-768) |#4|))) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -449)) -((-2719 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-3066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -3194 *4))) (-5 *5 (-768)) (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-3003 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3773 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2693 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-847)))) (-3362 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 *3)))) (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3)))) (-2007 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-1719 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *4 *3 *5 *6)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1720 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *3)))) (-2557 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-3410 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3489 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4140 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))) (-1473 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2))))) -(-10 -7 (-15 -1473 (|#4| |#4| (-641 |#4|))) (-15 -4140 (|#4| |#4| (-641 |#4|))) (-15 -3489 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2991 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3410 ((-112) |#2| |#2|)) (-15 -2557 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1720 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2067 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1719 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3662 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -2007 (|#4| |#4|)) (-15 -3362 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|))))) (-15 -3929 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4199 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3563 ((-641 |#4|) (-641 |#4|))) (-15 -2697 ((-564) |#4|)) (-15 -2365 ((-1264) |#4|)) (-15 -2693 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -3773 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -3279 ((-1264) (-641 |#4|))) (-15 -2171 ((-1264) (-564))) (-15 -3003 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3066 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -3194 |#4|)) |#4| (-768))) (-15 -2719 ((-768) |#4|))) -((-2120 ((|#4| |#4| (-641 |#4|)) 20 (|has| |#1| (-363)))) (-4385 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 46) (((-641 |#4|) (-641 |#4|) (-1152)) 45) (((-641 |#4|) (-641 |#4|)) 34))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4385 ((-641 |#4|) (-641 |#4|))) (-15 -4385 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -4385 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -2120 (|#4| |#4| (-641 |#4|))) |%noBranch|)) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -450)) -((-2120 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *2)))) (-4385 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-4385 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-4385 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6))))) -(-10 -7 (-15 -4385 ((-641 |#4|) (-641 |#4|))) (-15 -4385 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -4385 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -2120 (|#4| |#4| (-641 |#4|))) |%noBranch|)) -((-2740 (($ $ $) 14) (($ (-641 $)) 21)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 48)) (-2777 (($ $ $) NIL) (($ (-641 $)) 22))) -(((-451 |#1|) (-10 -8 (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2740 (|#1| (-641 |#1|))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -2777 (|#1| (-641 |#1|))) (-15 -2777 (|#1| |#1| |#1|))) (-452)) (T -451)) -NIL -(-10 -8 (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2740 (|#1| (-641 |#1|))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -2777 (|#1| (-641 |#1|))) (-15 -2777 (|#1| |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-1403 (((-3 $ "failed") $ $) 43)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-441)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441))))) +(-13 (-395) (-10 -8 (-15 -2322 ($ (-641 (-330)))) (-15 -2322 ($ (-330))) (-15 -2322 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330)))))) (-15 -1781 ($ (-1259 (-316 (-379))))) (-15 -3032 ((-3 $ "failed") (-1259 (-316 (-379))))) (-15 -1781 ($ (-1259 (-316 (-564))))) (-15 -3032 ((-3 $ "failed") (-1259 (-316 (-564))))) (-15 -1781 ($ (-1259 (-948 (-379))))) (-15 -3032 ((-3 $ "failed") (-1259 (-948 (-379))))) (-15 -1781 ($ (-1259 (-948 (-564))))) (-15 -3032 ((-3 $ "failed") (-1259 (-948 (-564))))) (-15 -1781 ($ (-1259 (-407 (-948 (-379)))))) (-15 -3032 ((-3 $ "failed") (-1259 (-407 (-948 (-379)))))) (-15 -1781 ($ (-1259 (-407 (-948 (-564)))))) (-15 -3032 ((-3 $ "failed") (-1259 (-407 (-948 (-564)))))))) +(((-611 (-858)) . T) ((-395) . T) ((-1209) . T)) +((-3151 (((-112)) 18)) (-1518 (((-112) (-112)) 19)) (-3754 (((-112)) 14)) (-2384 (((-112) (-112)) 15)) (-3556 (((-112)) 16)) (-1336 (((-112) (-112)) 17)) (-4376 (((-917) (-917)) 22) (((-917)) 21)) (-3481 (((-767) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564))))) 51)) (-3602 (((-917) (-917)) 24) (((-917)) 23)) (-2755 (((-2 (|:| -1491 (-564)) (|:| -4322 (-641 |#1|))) |#1|) 94)) (-1500 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564))))))) 174)) (-2847 (((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112)) 207)) (-2212 (((-418 |#1|) |#1| (-767) (-767)) 222) (((-418 |#1|) |#1| (-641 (-767)) (-767)) 219) (((-418 |#1|) |#1| (-641 (-767))) 221) (((-418 |#1|) |#1| (-767)) 220) (((-418 |#1|) |#1|) 218)) (-1455 (((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767) (-112)) 224) (((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767)) 225) (((-3 |#1| "failed") (-917) |#1| (-641 (-767))) 227) (((-3 |#1| "failed") (-917) |#1| (-767)) 226) (((-3 |#1| "failed") (-917) |#1|) 228)) (-2375 (((-418 |#1|) |#1| (-767) (-767)) 217) (((-418 |#1|) |#1| (-641 (-767)) (-767)) 213) (((-418 |#1|) |#1| (-641 (-767))) 215) (((-418 |#1|) |#1| (-767)) 214) (((-418 |#1|) |#1|) 212)) (-3633 (((-112) |#1|) 43)) (-3465 (((-733 (-767)) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564))))) 99)) (-2430 (((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112) (-1096 (-767)) (-767)) 211))) +(((-442 |#1|) (-10 -7 (-15 -1500 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))))) (-15 -3465 ((-733 (-767)) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))))) (-15 -3602 ((-917))) (-15 -3602 ((-917) (-917))) (-15 -4376 ((-917))) (-15 -4376 ((-917) (-917))) (-15 -3481 ((-767) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))))) (-15 -2755 ((-2 (|:| -1491 (-564)) (|:| -4322 (-641 |#1|))) |#1|)) (-15 -3151 ((-112))) (-15 -1518 ((-112) (-112))) (-15 -3754 ((-112))) (-15 -2384 ((-112) (-112))) (-15 -3633 ((-112) |#1|)) (-15 -3556 ((-112))) (-15 -1336 ((-112) (-112))) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2375 ((-418 |#1|) |#1| (-767))) (-15 -2375 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -2375 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -2375 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2212 ((-418 |#1|) |#1|)) (-15 -2212 ((-418 |#1|) |#1| (-767))) (-15 -2212 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -2212 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -2212 ((-418 |#1|) |#1| (-767) (-767))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1|)) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767) (-112))) (-15 -2847 ((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112))) (-15 -2430 ((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112) (-1096 (-767)) (-767)))) (-1235 (-564))) (T -442)) +((-2430 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-767))) (-5 *6 (-767)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2847 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1455 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1455 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1455 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1455 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1455 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-2212 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2212 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2212 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2212 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2212 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2375 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2375 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3556 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3633 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3754 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3151 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2755 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1491 (-564)) (|:| -4322 (-641 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2375 *4) (|:| -2073 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-767)) (-5 *1 (-442 *4)))) (-4376 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4376 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3602 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3602 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2375 *4) (|:| -2073 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| *4) (|:| -3871 (-564))))))) (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) +(-10 -7 (-15 -1500 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))))) (-15 -3465 ((-733 (-767)) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))))) (-15 -3602 ((-917))) (-15 -3602 ((-917) (-917))) (-15 -4376 ((-917))) (-15 -4376 ((-917) (-917))) (-15 -3481 ((-767) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))))) (-15 -2755 ((-2 (|:| -1491 (-564)) (|:| -4322 (-641 |#1|))) |#1|)) (-15 -3151 ((-112))) (-15 -1518 ((-112) (-112))) (-15 -3754 ((-112))) (-15 -2384 ((-112) (-112))) (-15 -3633 ((-112) |#1|)) (-15 -3556 ((-112))) (-15 -1336 ((-112) (-112))) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2375 ((-418 |#1|) |#1| (-767))) (-15 -2375 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -2375 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -2375 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2212 ((-418 |#1|) |#1|)) (-15 -2212 ((-418 |#1|) |#1| (-767))) (-15 -2212 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -2212 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -2212 ((-418 |#1|) |#1| (-767) (-767))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1|)) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767))) (-15 -1455 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767) (-112))) (-15 -2847 ((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112))) (-15 -2430 ((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112) (-1096 (-767)) (-767)))) +((-1721 (((-564) |#2|) 52) (((-564) |#2| (-767)) 51)) (-3944 (((-564) |#2|) 67)) (-2680 ((|#3| |#2|) 26)) (-2019 ((|#3| |#2| (-917)) 15)) (-1750 ((|#3| |#2|) 16)) (-2259 ((|#3| |#2|) 9)) (-3162 ((|#3| |#2|) 10)) (-3099 ((|#3| |#2| (-917)) 74) ((|#3| |#2|) 34)) (-2823 (((-564) |#2|) 69))) +(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2823 ((-564) |#2|)) (-15 -3099 (|#3| |#2|)) (-15 -3099 (|#3| |#2| (-917))) (-15 -3944 ((-564) |#2|)) (-15 -1721 ((-564) |#2| (-767))) (-15 -1721 ((-564) |#2|)) (-15 -2019 (|#3| |#2| (-917))) (-15 -2680 (|#3| |#2|)) (-15 -2259 (|#3| |#2|)) (-15 -3162 (|#3| |#2|)) (-15 -1750 (|#3| |#2|))) (-1045) (-1235 |#1|) (-13 (-404) (-1034 |#1|) (-363) (-1194) (-284))) (T -443)) +((-1750 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3162 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2259 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2680 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-1721 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))))) (-3944 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))) (-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))))) +(-10 -7 (-15 -2823 ((-564) |#2|)) (-15 -3099 (|#3| |#2|)) (-15 -3099 (|#3| |#2| (-917))) (-15 -3944 ((-564) |#2|)) (-15 -1721 ((-564) |#2| (-767))) (-15 -1721 ((-564) |#2|)) (-15 -2019 (|#3| |#2| (-917))) (-15 -2680 (|#3| |#2|)) (-15 -2259 (|#3| |#2|)) (-15 -3162 (|#3| |#2|)) (-15 -1750 (|#3| |#2|))) +((-1628 ((|#2| (-1259 |#1|)) 45)) (-4155 ((|#2| |#2| |#1|) 61)) (-3588 ((|#2| |#2| |#1|) 53)) (-2493 ((|#2| |#2|) 49)) (-4214 (((-112) |#2|) 36)) (-2293 (((-641 |#2|) (-917) (-418 |#2|)) 24)) (-1455 ((|#2| (-917) (-418 |#2|)) 28)) (-3465 (((-733 (-767)) (-418 |#2|)) 33))) +(((-444 |#1| |#2|) (-10 -7 (-15 -4214 ((-112) |#2|)) (-15 -1628 (|#2| (-1259 |#1|))) (-15 -2493 (|#2| |#2|)) (-15 -3588 (|#2| |#2| |#1|)) (-15 -4155 (|#2| |#2| |#1|)) (-15 -3465 ((-733 (-767)) (-418 |#2|))) (-15 -1455 (|#2| (-917) (-418 |#2|))) (-15 -2293 ((-641 |#2|) (-917) (-418 |#2|)))) (-1045) (-1235 |#1|)) (T -444)) +((-2293 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-1045)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1045)) (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))) (-4155 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-3588 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1045)) (-4 *2 (-1235 *4)) (-5 *1 (-444 *4 *2)))) (-4214 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -4214 ((-112) |#2|)) (-15 -1628 (|#2| (-1259 |#1|))) (-15 -2493 (|#2| |#2|)) (-15 -3588 (|#2| |#2| |#1|)) (-15 -4155 (|#2| |#2| |#1|)) (-15 -3465 ((-733 (-767)) (-418 |#2|))) (-15 -1455 (|#2| (-917) (-418 |#2|))) (-15 -2293 ((-641 |#2|) (-917) (-418 |#2|)))) +((-1503 (((-767)) 57)) (-3071 (((-767)) 29 (|has| |#1| (-404))) (((-767) (-767)) 28 (|has| |#1| (-404)))) (-1930 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-2582 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-3007 (((-767)) 56) (((-767) (-767)) 55)) (-3409 ((|#1| (-767) (-564)) 36)) (-1371 (((-1264)) 59))) +(((-445 |#1|) (-10 -7 (-15 -3409 (|#1| (-767) (-564))) (-15 -3007 ((-767) (-767))) (-15 -3007 ((-767))) (-15 -1503 ((-767))) (-15 -1371 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -2582 ((-564) |#1|)) (-15 -1930 ((-564) |#1|)) (-15 -3071 ((-767) (-767))) (-15 -3071 ((-767)))) |%noBranch|)) (-1045)) (T -445)) +((-3071 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-1930 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2582 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-1371 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-1503 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-3007 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1045))))) +(-10 -7 (-15 -3409 (|#1| (-767) (-564))) (-15 -3007 ((-767) (-767))) (-15 -3007 ((-767))) (-15 -1503 ((-767))) (-15 -1371 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -2582 ((-564) |#1|)) (-15 -1930 ((-564) |#1|)) (-15 -3071 ((-767) (-767))) (-15 -3071 ((-767)))) |%noBranch|)) +((-4112 (((-641 (-564)) (-564)) 75)) (-4229 (((-112) (-169 (-564))) 81)) (-2375 (((-418 (-169 (-564))) (-169 (-564))) 74))) +(((-446) (-10 -7 (-15 -2375 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -4112 ((-641 (-564)) (-564))) (-15 -4229 ((-112) (-169 (-564)))))) (T -446)) +((-4229 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564)))))) +(-10 -7 (-15 -2375 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -4112 ((-641 (-564)) (-564))) (-15 -4229 ((-112) (-169 (-564))))) +((-1452 ((|#4| |#4| (-641 |#4|)) 80)) (-3164 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 22) (((-641 |#4|) (-641 |#4|) (-1152)) 21) (((-641 |#4|) (-641 |#4|)) 13))) +(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 (|#4| |#4| (-641 |#4|))) (-15 -3164 ((-641 |#4|) (-641 |#4|))) (-15 -3164 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3164 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) (-307) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -447)) +((-3164 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1452 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))) +(-10 -7 (-15 -1452 (|#4| |#4| (-641 |#4|))) (-15 -3164 ((-641 |#4|) (-641 |#4|))) (-15 -3164 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3164 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) +((-1447 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 89) (((-641 (-641 |#4|)) (-641 |#4|)) 88) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112)) 82) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|)) 83)) (-4098 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 54) (((-641 (-641 |#4|)) (-641 |#4|)) 75))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4098 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -4098 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) (-13 (-307) (-147)) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -448)) +((-1447 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1447 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-1447 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-4098 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(-10 -7 (-15 -4098 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -4098 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -1447 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) +((-1375 (((-767) |#4|) 12)) (-2333 (((-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|))) |#4| (-767) (-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|)))) 38)) (-3621 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3933 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-4274 ((|#4| |#4| (-641 |#4|)) 54)) (-3299 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|)) 96)) (-4068 (((-1264) |#4|) 59)) (-2938 (((-1264) (-641 |#4|)) 69)) (-4224 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 66)) (-3897 (((-1264) (-564)) 111)) (-3631 (((-641 |#4|) (-641 |#4|)) 103)) (-1593 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|)) |#4| (-767)) 31)) (-4259 (((-564) |#4|) 108)) (-1527 ((|#4| |#4|) 36)) (-4158 (((-641 |#4|) (-641 |#4|) (-564) (-564)) 74)) (-1780 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 124)) (-2257 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2137 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1749 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4053 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1515 (((-112) |#2| |#2|) 75)) (-1760 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2270 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4256 ((|#4| |#4| (-641 |#4|)) 97))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4256 (|#4| |#4| (-641 |#4|))) (-15 -4274 (|#4| |#4| (-641 |#4|))) (-15 -4158 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2137 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1515 ((-112) |#2| |#2|)) (-15 -2270 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1760 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4053 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1749 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3299 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -1527 (|#4| |#4|)) (-15 -2333 ((-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|))) |#4| (-767) (-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|))))) (-15 -3933 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3621 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3631 ((-641 |#4|) (-641 |#4|))) (-15 -4259 ((-564) |#4|)) (-15 -4068 ((-1264) |#4|)) (-15 -4224 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -1780 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -2938 ((-1264) (-641 |#4|))) (-15 -3897 ((-1264) (-564))) (-15 -2257 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1593 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|)) |#4| (-767))) (-15 -1375 ((-767) |#4|))) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -449)) +((-1375 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -3429 *4))) (-5 *5 (-767)) (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-2257 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1780 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-4224 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-4068 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-4259 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3621 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-846)))) (-2333 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 *3)))) (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-1749 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *4 *3 *5 *6)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1760 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *3)))) (-2270 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-1515 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4158 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))) (-4256 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) +(-10 -7 (-15 -4256 (|#4| |#4| (-641 |#4|))) (-15 -4274 (|#4| |#4| (-641 |#4|))) (-15 -4158 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2137 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1515 ((-112) |#2| |#2|)) (-15 -2270 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1760 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4053 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1749 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3299 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -1527 (|#4| |#4|)) (-15 -2333 ((-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|))) |#4| (-767) (-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|))))) (-15 -3933 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3621 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3631 ((-641 |#4|) (-641 |#4|))) (-15 -4259 ((-564) |#4|)) (-15 -4068 ((-1264) |#4|)) (-15 -4224 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -1780 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -2938 ((-1264) (-641 |#4|))) (-15 -3897 ((-1264) (-564))) (-15 -2257 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1593 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3429 |#4|)) |#4| (-767))) (-15 -1375 ((-767) |#4|))) +((-3381 ((|#4| |#4| (-641 |#4|)) 20 (|has| |#1| (-363)))) (-1714 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 46) (((-641 |#4|) (-641 |#4|) (-1152)) 45) (((-641 |#4|) (-641 |#4|)) 34))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1714 ((-641 |#4|) (-641 |#4|))) (-15 -1714 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -1714 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -3381 (|#4| |#4| (-641 |#4|))) |%noBranch|)) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -450)) +((-3381 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))) (-1714 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1714 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6))))) +(-10 -7 (-15 -1714 ((-641 |#4|) (-641 |#4|))) (-15 -1714 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -1714 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -3381 (|#4| |#4| (-641 |#4|))) |%noBranch|)) +((-3202 (($ $ $) 14) (($ (-641 $)) 21)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 48)) (-3235 (($ $ $) NIL) (($ (-641 $)) 22))) +(((-451 |#1|) (-10 -8 (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3202 (|#1| (-641 |#1|))) (-15 -3202 (|#1| |#1| |#1|)) (-15 -3235 (|#1| (-641 |#1|))) (-15 -3235 (|#1| |#1| |#1|))) (-452)) (T -451)) +NIL +(-10 -8 (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3202 (|#1| (-641 |#1|))) (-15 -3202 (|#1| |#1| |#1|)) (-15 -3235 (|#1| (-641 |#1|))) (-15 -3235 (|#1| |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2526 (((-3 $ "failed") $ $) 43)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-452) (-140)) (T -452)) -((-2777 (*1 *1 *1 *1) (-4 *1 (-452))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2740 (*1 *1 *1 *1) (-4 *1 (-452))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-1574 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452))))) -(-13 (-556) (-10 -8 (-15 -2777 ($ $ $)) (-15 -2777 ($ (-641 $))) (-15 -2740 ($ $ $)) (-15 -2740 ($ (-641 $))) (-15 -1574 ((-1166 $) (-1166 $) (-1166 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1674 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1546 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-1259 (-685 (-407 (-949 |#1|))))) NIL)) (-2294 (((-1259 $)) NIL)) (-1778 (($) NIL T CONST)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL)) (-3868 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1911 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-2825 (((-407 (-949 |#1|)) $) NIL)) (-2050 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-2767 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-2232 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 94 (|has| |#1| (-556)))) (-4221 (($ $ (-918)) NIL)) (-2166 (((-407 (-949 |#1|)) $) NIL)) (-2878 (((-1166 (-407 (-949 |#1|))) $) 92 (|has| (-407 (-949 |#1|)) (-556)))) (-1476 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-1475 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-2103 (((-112)) NIL)) (-3624 (($ (-1259 (-407 (-949 |#1|))) (-1259 $)) 118) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-3733 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3531 (((-918)) NIL)) (-3628 (((-112)) NIL)) (-2482 (($ $ (-918)) NIL)) (-3001 (((-112)) NIL)) (-3261 (((-112)) NIL)) (-2130 (((-112)) NIL)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL)) (-2302 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-2510 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-3385 (((-407 (-949 |#1|)) $) NIL)) (-2289 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-3874 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1402 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 93 (|has| |#1| (-556)))) (-2839 (($ $ (-918)) NIL)) (-2873 (((-407 (-949 |#1|)) $) NIL)) (-4146 (((-1166 (-407 (-949 |#1|))) $) 87 (|has| (-407 (-949 |#1|)) (-556)))) (-3525 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-2582 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-2628 (((-112)) NIL)) (-2723 (((-1152) $) NIL)) (-3582 (((-112)) NIL)) (-2317 (((-112)) NIL)) (-2241 (((-112)) NIL)) (-2780 (((-1114) $) NIL)) (-1739 (((-407 (-949 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-2528 (((-407 (-949 |#1|)) $) 104 (|has| |#1| (-556)))) (-3974 (((-407 (-949 |#1|)) $) 108 (|has| |#1| (-556)))) (-3927 (((-1166 (-407 (-949 |#1|))) $) 98 (|has| |#1| (-556)))) (-2815 (((-407 (-949 |#1|))) 79 (|has| |#1| (-556)))) (-2212 (((-407 (-949 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-1453 (((-407 (-949 |#1|)) $) 103 (|has| |#1| (-556)))) (-4363 (((-407 (-949 |#1|)) $) 107 (|has| |#1| (-556)))) (-1568 (((-1166 (-407 (-949 |#1|))) $) 97 (|has| |#1| (-556)))) (-3715 (((-407 (-949 |#1|))) 75 (|has| |#1| (-556)))) (-3858 (($) 114) (($ (-1170)) 122) (($ (-1259 (-1170))) 121) (($ (-1259 $)) 109) (($ (-1170) (-1259 $)) 120) (($ (-1259 (-1170)) (-1259 $)) 119)) (-3740 (((-112)) NIL)) (-1350 (((-407 (-949 |#1|)) $ (-564)) NIL)) (-2467 (((-1259 (-407 (-949 |#1|))) $ (-1259 $)) 111) (((-685 (-407 (-949 |#1|))) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 (-949 |#1|))) $) 45) (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL)) (-2511 (((-1259 (-407 (-949 |#1|))) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) 42)) (-2852 (((-641 (-949 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-641 (-949 (-407 (-949 |#1|))))) NIL) (((-641 (-949 |#1|)) (-1259 $)) 112 (|has| |#1| (-556))) (((-641 (-949 |#1|))) 113 (|has| |#1| (-556)))) (-1992 (($ $ $) NIL)) (-2595 (((-112)) NIL)) (-1831 (((-859) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-3331 (((-1259 $)) 67)) (-1488 (((-641 (-1259 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-2611 (($ $ $ $) NIL)) (-1604 (((-112)) NIL)) (-3246 (($ (-685 (-407 (-949 |#1|))) $) NIL)) (-1656 (($ $ $) NIL)) (-3830 (((-112)) NIL)) (-3335 (((-112)) NIL)) (-2921 (((-112)) NIL)) (-1293 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) 110)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-949 |#1|))) NIL) (($ (-407 (-949 |#1|)) $) NIL) (($ (-1136 |#2| (-407 (-949 |#1|))) $) NIL))) -(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -1831 ($ (-1259 (-407 (-949 |#1|))))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed"))) (-15 -3353 ((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed"))) (-15 -3858 ($)) (-15 -3858 ($ (-1170))) (-15 -3858 ($ (-1259 (-1170)))) (-15 -3858 ($ (-1259 $))) (-15 -3858 ($ (-1170) (-1259 $))) (-15 -3858 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -1402 ((-1166 (-407 (-949 |#1|))))) (-15 -1568 ((-1166 (-407 (-949 |#1|))) $)) (-15 -1453 ((-407 (-949 |#1|)) $)) (-15 -4363 ((-407 (-949 |#1|)) $)) (-15 -2232 ((-1166 (-407 (-949 |#1|))))) (-15 -3927 ((-1166 (-407 (-949 |#1|))) $)) (-15 -2528 ((-407 (-949 |#1|)) $)) (-15 -3974 ((-407 (-949 |#1|)) $)) (-15 -2212 ((-407 (-949 |#1|)) $ $)) (-15 -3715 ((-407 (-949 |#1|)))) (-15 -1739 ((-407 (-949 |#1|)) $ $)) (-15 -2815 ((-407 (-949 |#1|)))) (-15 -2852 ((-641 (-949 |#1|)) (-1259 $))) (-15 -2852 ((-641 (-949 |#1|))))) |%noBranch|))) (-172) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -453)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) (-1907 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3331 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3353 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3331 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3858 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918)) (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-1402 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2232 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2212 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3715 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1739 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2815 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-2852 (*1 *2) (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -1831 ($ (-1259 (-407 (-949 |#1|))))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed"))) (-15 -3353 ((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed"))) (-15 -3858 ($)) (-15 -3858 ($ (-1170))) (-15 -3858 ($ (-1259 (-1170)))) (-15 -3858 ($ (-1259 $))) (-15 -3858 ($ (-1170) (-1259 $))) (-15 -3858 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -1402 ((-1166 (-407 (-949 |#1|))))) (-15 -1568 ((-1166 (-407 (-949 |#1|))) $)) (-15 -1453 ((-407 (-949 |#1|)) $)) (-15 -4363 ((-407 (-949 |#1|)) $)) (-15 -2232 ((-1166 (-407 (-949 |#1|))))) (-15 -3927 ((-1166 (-407 (-949 |#1|))) $)) (-15 -2528 ((-407 (-949 |#1|)) $)) (-15 -3974 ((-407 (-949 |#1|)) $)) (-15 -2212 ((-407 (-949 |#1|)) $ $)) (-15 -3715 ((-407 (-949 |#1|)))) (-15 -1739 ((-407 (-949 |#1|)) $ $)) (-15 -2815 ((-407 (-949 |#1|)))) (-15 -2852 ((-641 (-949 |#1|)) (-1259 $))) (-15 -2852 ((-641 (-949 |#1|))))) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 18)) (-3209 (((-641 (-861 |#1|)) $) 93)) (-3040 (((-1166 $) $ (-861 |#1|)) 59) (((-1166 |#2|) $) 142)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1537 (($ $) NIL (|has| |#2| (-556)))) (-1932 (((-112) $) NIL (|has| |#2| (-556)))) (-2291 (((-768) $) 27) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2427 (($ $) NIL (|has| |#2| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2237 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-1357 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3240 (($ $ (-641 (-564))) 99)) (-3396 (($ $) 87)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-906)))) (-2055 (($ $ |#2| |#3| $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) 72)) (-3198 (($ (-1166 |#2|) (-861 |#1|)) 147) (($ (-1166 $) (-861 |#1|)) 65)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) 75)) (-3186 (($ |#2| |#3|) 38) (($ $ (-861 |#1|) (-768)) 40) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-861 |#1|)) NIL)) (-1826 ((|#3| $) NIL) (((-768) $ (-861 |#1|)) 63) (((-641 (-768)) $ (-641 (-861 |#1|))) 70)) (-1925 (($ $ $) NIL (|has| |#2| (-847)))) (-3375 (($ $ $) NIL (|has| |#2| (-847)))) (-2546 (($ (-1 |#3| |#3|) $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2169 (((-3 (-861 |#1|) "failed") $) 52)) (-3356 (($ $) NIL)) (-3370 ((|#2| $) 54)) (-2740 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -1558 (-768))) "failed") $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) 53)) (-3341 ((|#2| $) 140)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) 152 (|has| |#2| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) 106) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) 112) (($ $ (-861 |#1|) $) 104) (($ $ (-641 (-861 |#1|)) (-641 $)) 130)) (-3190 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3534 (($ $ (-861 |#1|)) 66) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1619 ((|#3| $) 86) (((-768) $ (-861 |#1|)) 49) (((-641 (-768)) $ (-641 (-861 |#1|))) 69)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3008 ((|#2| $) 149 (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1831 (((-859) $) 177) (($ (-564)) NIL) (($ |#2|) 105) (($ (-861 |#1|)) 42) (($ (-407 (-564))) NIL (-4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ |#3|) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-556)))) (-1293 (($) 22 T CONST)) (-1300 (($) 31 T CONST)) (-3435 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1823 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 135)) (** (($ $ (-918)) NIL) (($ $ (-768)) 133)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL))) -(((-454 |#1| |#2| |#3|) (-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -3240 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046) (-238 (-2828 |#1|) (-768))) (T -454)) -((-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-238 (-2828 *3) (-768)))))) -(-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -3240 ($ $ (-641 (-564)))))) -((-2036 (((-112) |#1| (-641 |#2|)) 92)) (-4069 (((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|)) 101)) (-2199 (((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|))) 103)) (-2879 ((|#2| |#2| |#1|) 35)) (-3925 (((-768) |#2| (-641 |#2|)) 26))) -(((-455 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| |#2| |#1|)) (-15 -3925 ((-768) |#2| (-641 |#2|))) (-15 -4069 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -2199 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -2036 ((-112) |#1| (-641 |#2|)))) (-307) (-1235 |#1|)) (T -455)) -((-2036 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-2199 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))) (-4069 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) (-5 *2 (-768)) (-5 *1 (-455 *5 *3)))) (-2879 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3))))) -(-10 -7 (-15 -2879 (|#2| |#2| |#1|)) (-15 -3925 ((-768) |#2| (-641 |#2|))) (-15 -4069 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -2199 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -2036 ((-112) |#1| (-641 |#2|)))) -((-3070 (((-418 |#5|) |#5|) 24))) -(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3070 ((-418 |#5|) |#5|))) (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170))))) (-790) (-556) (-556) (-946 |#4| |#2| |#1|)) (T -456)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-946 *7 *5 *4))))) -(-10 -7 (-15 -3070 ((-418 |#5|) |#5|))) -((-1878 ((|#3|) 40)) (-1574 (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 36))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1574 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1878 (|#3|))) (-790) (-847) (-906) (-946 |#3| |#1| |#2|)) (T -457)) -((-1878 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) (-1574 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6))))) -(-10 -7 (-15 -1574 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1878 (|#3|))) -((-3070 (((-418 (-1166 |#1|)) (-1166 |#1|)) 43))) -(((-458 |#1|) (-10 -7 (-15 -3070 ((-418 (-1166 |#1|)) (-1166 |#1|)))) (-307)) (T -458)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1166 *4))))) -(-10 -7 (-15 -3070 ((-418 (-1166 |#1|)) (-1166 |#1|)))) -((-3266 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768))) 43) (((-52) |#2| (-1170) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-1881 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 84) (((-52) |#2| (-1170) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-3288 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 71)) (-3277 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 49))) -(((-459 |#1| |#2|) (-10 -7 (-15 -3266 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3266 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3266 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -3266 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -3277 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3277 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3288 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3288 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1881 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -1881 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -1881 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -1881 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -1881 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1881 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -459)) -((-1881 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-1881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-1881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-1881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-1881 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-3288 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3288 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3277 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3277 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3266 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3266 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3266 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))) -(-10 -7 (-15 -3266 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3266 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3266 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -3266 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -3277 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3277 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3288 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3288 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1881 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -1881 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -1881 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -1881 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -1881 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1881 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) -((-2879 ((|#2| |#2| |#1|) 15)) (-4329 (((-641 |#2|) |#2| (-641 |#2|) |#1| (-918)) 84)) (-1630 (((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918)) 70))) -(((-460 |#1| |#2|) (-10 -7 (-15 -1630 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -4329 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -2879 (|#2| |#2| |#1|))) (-307) (-1235 |#1|)) (T -460)) -((-2879 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) (-4329 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-1630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3))))) -(-10 -7 (-15 -1630 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -4329 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -2879 (|#2| |#2| |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 28)) (-1575 (($ |#3|) 25)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3396 (($ $) 32)) (-2738 (($ |#2| |#4| $) 33)) (-3186 (($ |#2| (-710 |#3| |#4| |#5|)) 24)) (-3356 (((-710 |#3| |#4| |#5|) $) 15)) (-3457 ((|#3| $) 19)) (-2962 ((|#4| $) 17)) (-3370 ((|#2| $) 29)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-2952 (($ |#2| |#3| |#4|) 26)) (-1293 (($) 36 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -3370 (|#2| $)) (-15 -3356 ((-710 |#3| |#4| |#5|) $)) (-15 -2962 (|#4| $)) (-15 -3457 (|#3| $)) (-15 -3396 ($ $)) (-15 -3186 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -1575 ($ |#3|)) (-15 -2952 ($ |#2| |#3| |#4|)) (-15 -2738 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-641 (-1170)) (-172) (-847) (-238 (-2828 |#1|) (-768)) (-1 (-112) (-2 (|:| -1468 |#3|) (|:| -1558 |#4|)) (-2 (|:| -1468 |#3|) (|:| -1558 |#4|))) (-946 |#2| |#4| (-861 |#1|))) (T -461)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2828 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *6)) (-2 (|:| -1468 *5) (|:| -1558 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847)) (-4 *2 (-946 *4 *6 (-861 *3))))) (-3370 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2828 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1468 *4) (|:| -1558 *5)) (-2 (|:| -1468 *4) (|:| -1558 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *2 *5 (-861 *3))))) (-3356 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2828 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *6)) (-2 (|:| -1468 *5) (|:| -1558 *6)))) (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3))))) (-2962 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *2)) (-2 (|:| -1468 *5) (|:| -1558 *2)))) (-4 *2 (-238 (-2828 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3))))) (-3457 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2828 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *5)) (-2 (|:| -1468 *2) (|:| -1558 *5)))) (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-3396 (*1 *1 *1) (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) (-4 *5 (-238 (-2828 *2) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1468 *4) (|:| -1558 *5)) (-2 (|:| -1468 *4) (|:| -1558 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *3 *5 (-861 *2))))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847)) (-4 *6 (-238 (-2828 *4) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *6)) (-2 (|:| -1468 *5) (|:| -1558 *6)))) (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4))))) (-1575 (*1 *1 *2) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2828 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *5)) (-2 (|:| -1468 *2) (|:| -1558 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-2952 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) (-4 *4 (-238 (-2828 *5) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1468 *3) (|:| -1558 *4)) (-2 (|:| -1468 *3) (|:| -1558 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847)) (-4 *7 (-946 *2 *4 (-861 *5))))) (-2738 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-4 *3 (-238 (-2828 *4) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *3)) (-2 (|:| -1468 *5) (|:| -1558 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *2 *3 (-861 *4)))))) -(-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -3370 (|#2| $)) (-15 -3356 ((-710 |#3| |#4| |#5|) $)) (-15 -2962 (|#4| $)) (-15 -3457 (|#3| $)) (-15 -3396 ($ $)) (-15 -3186 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -1575 ($ |#3|)) (-15 -2952 ($ |#2| |#3| |#4|)) (-15 -2738 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2520 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2520 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -1831 ($ |#4|)) (-15 -3678 (|#4| $)) (-15 -3693 (|#4| $))))) (T -462)) -((-2520 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790)) (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $)))))))) -(-10 -7 (-15 -2520 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-1817 (((-112) $ $) NIL)) (-3209 (((-641 |#3|) $) 41)) (-3449 (((-112) $) NIL)) (-3961 (((-112) $) NIL (|has| |#1| (-556)))) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3752 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-3602 (((-112) $) NIL (|has| |#1| (-556)))) (-2495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2536 (((-112) $) NIL (|has| |#1| (-556)))) (-2338 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 49)) (-2237 (($ (-641 |#4|)) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2576 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406)))) (-1433 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-1543 ((|#3| $) 47)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#4|) $) 14 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2250 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 21)) (-3580 (((-641 |#3|) $) NIL)) (-3879 (((-112) |#3| $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-2780 (((-1114) $) NIL)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 39)) (-4012 (($) 17)) (-2791 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) 16)) (-2511 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-641 |#4|)) 51)) (-1842 (($ (-641 |#4|)) 13)) (-4287 (($ $ |#3|) NIL)) (-1887 (($ $ |#3|) NIL)) (-3111 (($ $ |#3|) NIL)) (-1831 (((-859) $) 38) (((-641 |#4|) $) 50)) (-1963 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 30)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-463 |#1| |#2| |#3| |#4|) (-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2511 ($ (-641 |#4|))) (-6 -4406) (-6 -4407))) (-1046) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -463)) -((-2511 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-463 *3 *4 *5 *6))))) -(-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2511 ($ (-641 |#4|))) (-6 -4406) (-6 -4407))) -((-1293 (($) 11)) (-1300 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -1300 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1293 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464)) -NIL -(-10 -8 (-15 -1300 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1293 (|#1|))) -((-1817 (((-112) $ $) 7)) (-2347 (((-3 |#1| "failed") $) 26)) (-2237 ((|#1| $) 27)) (-4049 (($ $ $) 23)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1619 ((|#2| $) 19)) (-1831 (((-859) $) 11) (($ |#1|) 25)) (-1293 (($) 18 T CONST)) (-1300 (($) 24 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 15) (($ $ $) 13)) (-1797 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-3235 (*1 *1 *1 *1) (-4 *1 (-452))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-3202 (*1 *1 *1 *1) (-4 *1 (-452))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452))))) +(-13 (-556) (-10 -8 (-15 -3235 ($ $ $)) (-15 -3235 ($ (-641 $))) (-15 -3202 ($ $ $)) (-15 -3202 ($ (-641 $))) (-15 -2837 ((-1166 $) (-1166 $) (-1166 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2563 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3727 (((-1259 (-685 (-407 (-948 |#1|)))) (-1259 $)) NIL) (((-1259 (-685 (-407 (-948 |#1|))))) NIL)) (-2691 (((-1259 $)) NIL)) (-4157 (($) NIL T CONST)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL)) (-1485 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3035 (((-685 (-407 (-948 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-948 |#1|)))) NIL)) (-3063 (((-407 (-948 |#1|)) $) NIL)) (-1991 (((-685 (-407 (-948 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-948 |#1|))) $) NIL)) (-3706 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3294 (((-1166 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1166 (-407 (-948 |#1|)))) 94 (|has| |#1| (-556)))) (-3865 (($ $ (-917)) NIL)) (-3845 (((-407 (-948 |#1|)) $) NIL)) (-2331 (((-1166 (-407 (-948 |#1|))) $) 92 (|has| (-407 (-948 |#1|)) (-556)))) (-4287 (((-407 (-948 |#1|)) (-1259 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-4276 (((-1166 (-407 (-948 |#1|))) $) NIL)) (-1335 (((-112)) NIL)) (-3013 (($ (-1259 (-407 (-948 |#1|))) (-1259 $)) 118) (($ (-1259 (-407 (-948 |#1|)))) NIL)) (-2689 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3105 (((-917)) NIL)) (-3055 (((-112)) NIL)) (-3996 (($ $ (-917)) NIL)) (-2235 (((-112)) NIL)) (-2809 (((-112)) NIL)) (-3457 (((-112)) NIL)) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL)) (-1523 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3065 (((-685 (-407 (-948 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-948 |#1|)))) NIL)) (-2528 (((-407 (-948 |#1|)) $) NIL)) (-2645 (((-685 (-407 (-948 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-948 |#1|))) $) NIL)) (-1529 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-4060 (((-1166 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1166 (-407 (-948 |#1|)))) 93 (|has| |#1| (-556)))) (-3200 (($ $ (-917)) NIL)) (-2276 (((-407 (-948 |#1|)) $) NIL)) (-4339 (((-1166 (-407 (-948 |#1|))) $) 87 (|has| (-407 (-948 |#1|)) (-556)))) (-1400 (((-407 (-948 |#1|)) (-1259 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-2536 (((-1166 (-407 (-948 |#1|))) $) NIL)) (-1723 (((-112)) NIL)) (-1418 (((-1152) $) NIL)) (-3816 (((-112)) NIL)) (-1671 (((-112)) NIL)) (-3353 (((-112)) NIL)) (-3840 (((-1114) $) NIL)) (-1928 (((-407 (-948 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-3215 (((-407 (-948 |#1|)) $) 104 (|has| |#1| (-556)))) (-3181 (((-407 (-948 |#1|)) $) 108 (|has| |#1| (-556)))) (-3912 (((-1166 (-407 (-948 |#1|))) $) 98 (|has| |#1| (-556)))) (-2962 (((-407 (-948 |#1|))) 79 (|has| |#1| (-556)))) (-3120 (((-407 (-948 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-4062 (((-407 (-948 |#1|)) $) 103 (|has| |#1| (-556)))) (-2797 (((-407 (-948 |#1|)) $) 107 (|has| |#1| (-556)))) (-2775 (((-1166 (-407 (-948 |#1|))) $) 97 (|has| |#1| (-556)))) (-2508 (((-407 (-948 |#1|))) 75 (|has| |#1| (-556)))) (-1406 (($) 114) (($ (-1170)) 122) (($ (-1259 (-1170))) 121) (($ (-1259 $)) 109) (($ (-1170) (-1259 $)) 120) (($ (-1259 (-1170)) (-1259 $)) 119)) (-2753 (((-112)) NIL)) (-4353 (((-407 (-948 |#1|)) $ (-564)) NIL)) (-3864 (((-1259 (-407 (-948 |#1|))) $ (-1259 $)) 111) (((-685 (-407 (-948 |#1|))) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 (-948 |#1|))) $) 45) (((-685 (-407 (-948 |#1|))) (-1259 $)) NIL)) (-3172 (((-1259 (-407 (-948 |#1|))) $) NIL) (($ (-1259 (-407 (-948 |#1|)))) 42)) (-3328 (((-641 (-948 (-407 (-948 |#1|)))) (-1259 $)) NIL) (((-641 (-948 (-407 (-948 |#1|))))) NIL) (((-641 (-948 |#1|)) (-1259 $)) 112 (|has| |#1| (-556))) (((-641 (-948 |#1|))) 113 (|has| |#1| (-556)))) (-2617 (($ $ $) NIL)) (-2676 (((-112)) NIL)) (-2322 (((-858) $) NIL) (($ (-1259 (-407 (-948 |#1|)))) NIL)) (-3342 (((-1259 $)) 67)) (-1296 (((-641 (-1259 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-1553 (($ $ $ $) NIL)) (-3148 (((-112)) NIL)) (-1937 (($ (-685 (-407 (-948 |#1|))) $) NIL)) (-2366 (($ $ $) NIL)) (-4232 (((-112)) NIL)) (-2145 (((-112)) NIL)) (-2803 (((-112)) NIL)) (-2389 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) 110)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-948 |#1|))) NIL) (($ (-407 (-948 |#1|)) $) NIL) (($ (-1136 |#2| (-407 (-948 |#1|))) $) NIL))) +(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-948 |#1|))) (-644 (-1136 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -2322 ($ (-1259 (-407 (-948 |#1|))))) (-15 -3001 ((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed"))) (-15 -2262 ((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed"))) (-15 -1406 ($)) (-15 -1406 ($ (-1170))) (-15 -1406 ($ (-1259 (-1170)))) (-15 -1406 ($ (-1259 $))) (-15 -1406 ($ (-1170) (-1259 $))) (-15 -1406 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -4060 ((-1166 (-407 (-948 |#1|))))) (-15 -2775 ((-1166 (-407 (-948 |#1|))) $)) (-15 -4062 ((-407 (-948 |#1|)) $)) (-15 -2797 ((-407 (-948 |#1|)) $)) (-15 -3294 ((-1166 (-407 (-948 |#1|))))) (-15 -3912 ((-1166 (-407 (-948 |#1|))) $)) (-15 -3215 ((-407 (-948 |#1|)) $)) (-15 -3181 ((-407 (-948 |#1|)) $)) (-15 -3120 ((-407 (-948 |#1|)) $ $)) (-15 -2508 ((-407 (-948 |#1|)))) (-15 -1928 ((-407 (-948 |#1|)) $ $)) (-15 -2962 ((-407 (-948 |#1|)))) (-15 -3328 ((-641 (-948 |#1|)) (-1259 $))) (-15 -3328 ((-641 (-948 |#1|))))) |%noBranch|))) (-172) (-917) (-641 (-1170)) (-1259 (-685 |#1|))) (T -453)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))))) (-3001 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3342 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2262 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3342 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1406 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))) (-1406 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) (-1406 (*1 *1 *2) (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1406 (*1 *1 *2) (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1406 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) (-1406 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-4060 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3294 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3120 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2508 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1928 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2962 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-948 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-3328 (*1 *2) (-12 (-5 *2 (-641 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(-13 (-417 (-407 (-948 |#1|))) (-644 (-1136 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -2322 ($ (-1259 (-407 (-948 |#1|))))) (-15 -3001 ((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed"))) (-15 -2262 ((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed"))) (-15 -1406 ($)) (-15 -1406 ($ (-1170))) (-15 -1406 ($ (-1259 (-1170)))) (-15 -1406 ($ (-1259 $))) (-15 -1406 ($ (-1170) (-1259 $))) (-15 -1406 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -4060 ((-1166 (-407 (-948 |#1|))))) (-15 -2775 ((-1166 (-407 (-948 |#1|))) $)) (-15 -4062 ((-407 (-948 |#1|)) $)) (-15 -2797 ((-407 (-948 |#1|)) $)) (-15 -3294 ((-1166 (-407 (-948 |#1|))))) (-15 -3912 ((-1166 (-407 (-948 |#1|))) $)) (-15 -3215 ((-407 (-948 |#1|)) $)) (-15 -3181 ((-407 (-948 |#1|)) $)) (-15 -3120 ((-407 (-948 |#1|)) $ $)) (-15 -2508 ((-407 (-948 |#1|)))) (-15 -1928 ((-407 (-948 |#1|)) $ $)) (-15 -2962 ((-407 (-948 |#1|)))) (-15 -3328 ((-641 (-948 |#1|)) (-1259 $))) (-15 -3328 ((-641 (-948 |#1|))))) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 18)) (-2534 (((-641 (-860 |#1|)) $) 93)) (-2340 (((-1166 $) $ (-860 |#1|)) 59) (((-1166 |#2|) $) 142)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3622 (($ $) NIL (|has| |#2| (-556)))) (-3247 (((-112) $) NIL (|has| |#2| (-556)))) (-2669 (((-767) $) 27) (((-767) $ (-641 (-860 |#1|))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3453 (($ $) NIL (|has| |#2| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-1781 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2595 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3810 (($ $ (-641 (-564))) 99)) (-2710 (($ $) 87)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#2| (-905)))) (-2050 (($ $ |#2| |#3| $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) 72)) (-2519 (($ (-1166 |#2|) (-860 |#1|)) 147) (($ (-1166 $) (-860 |#1|)) 65)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) 75)) (-2507 (($ |#2| |#3|) 38) (($ $ (-860 |#1|) (-767)) 40) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-860 |#1|)) NIL)) (-3386 ((|#3| $) NIL) (((-767) $ (-860 |#1|)) 63) (((-641 (-767)) $ (-641 (-860 |#1|))) 70)) (-1501 (($ $ $) NIL (|has| |#2| (-846)))) (-2622 (($ $ $) NIL (|has| |#2| (-846)))) (-2168 (($ (-1 |#3| |#3|) $) NIL)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-3878 (((-3 (-860 |#1|) "failed") $) 52)) (-2674 (($ $) NIL)) (-2686 ((|#2| $) 54)) (-3202 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3866 (-767))) "failed") $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) 53)) (-2662 ((|#2| $) 140)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) 152 (|has| |#2| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) 106) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) 112) (($ $ (-860 |#1|) $) 104) (($ $ (-641 (-860 |#1|)) (-641 $)) 130)) (-3392 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1343 (($ $ (-860 |#1|)) 66) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2073 ((|#3| $) 86) (((-767) $ (-860 |#1|)) 49) (((-641 (-767)) $ (-641 (-860 |#1|))) 69)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2290 ((|#2| $) 149 (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2322 (((-858) $) 177) (($ (-564)) NIL) (($ |#2|) 105) (($ (-860 |#1|)) 42) (($ (-407 (-564))) NIL (-2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ |#3|) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2389 (($) 22 T CONST)) (-2403 (($) 31 T CONST)) (-3917 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3034 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 135)) (** (($ $ (-917)) NIL) (($ $ (-767)) 133)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL))) +(((-454 |#1| |#2| |#3|) (-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3810 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1045) (-238 (-2059 |#1|) (-767))) (T -454)) +((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-238 (-2059 *3) (-767)))))) +(-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3810 ($ $ (-641 (-564)))))) +((-1843 (((-112) |#1| (-641 |#2|)) 92)) (-1685 (((-3 (-1259 (-641 |#2|)) "failed") (-767) |#1| (-641 |#2|)) 101)) (-2986 (((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|))) 103)) (-2347 ((|#2| |#2| |#1|) 35)) (-3899 (((-767) |#2| (-641 |#2|)) 26))) +(((-455 |#1| |#2|) (-10 -7 (-15 -2347 (|#2| |#2| |#1|)) (-15 -3899 ((-767) |#2| (-641 |#2|))) (-15 -1685 ((-3 (-1259 (-641 |#2|)) "failed") (-767) |#1| (-641 |#2|))) (-15 -2986 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -1843 ((-112) |#1| (-641 |#2|)))) (-307) (-1235 |#1|)) (T -455)) +((-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-2986 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))) (-1685 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))) (-2347 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -2347 (|#2| |#2| |#1|)) (-15 -3899 ((-767) |#2| (-641 |#2|))) (-15 -1685 ((-3 (-1259 (-641 |#2|)) "failed") (-767) |#1| (-641 |#2|))) (-15 -2986 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -1843 ((-112) |#1| (-641 |#2|)))) +((-2375 (((-418 |#5|) |#5|) 24))) +(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2375 ((-418 |#5|) |#5|))) (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170))))) (-789) (-556) (-556) (-945 |#4| |#2| |#1|)) (T -456)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-4 *5 (-789)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-945 *7 *5 *4))))) +(-10 -7 (-15 -2375 ((-418 |#5|) |#5|))) +((-3915 ((|#3|) 40)) (-2837 (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 36))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2837 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3915 (|#3|))) (-789) (-846) (-905) (-945 |#3| |#1| |#2|)) (T -457)) +((-3915 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6))))) +(-10 -7 (-15 -2837 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3915 (|#3|))) +((-2375 (((-418 (-1166 |#1|)) (-1166 |#1|)) 43))) +(((-458 |#1|) (-10 -7 (-15 -2375 ((-418 (-1166 |#1|)) (-1166 |#1|)))) (-307)) (T -458)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1166 *4))))) +(-10 -7 (-15 -2375 ((-418 (-1166 |#1|)) (-1166 |#1|)))) +((-2593 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-767))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-767))) 43) (((-52) |#2| (-1170) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-1467 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 84) (((-52) |#2| (-1170) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-2618 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 71)) (-2606 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 49))) +(((-459 |#1| |#2|) (-10 -7 (-15 -2593 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2593 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -2593 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-767)))) (-15 -2593 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-767)))) (-15 -2606 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -2606 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -2618 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2618 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1467 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -1467 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -1467 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -1467 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -1467 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1467 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -459)) +((-1467 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-1467 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-1467 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-1467 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-1467 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-2618 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2618 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2606 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2593 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-767))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-767))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2593 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))) +(-10 -7 (-15 -2593 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2593 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -2593 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-767)))) (-15 -2593 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-767)))) (-15 -2606 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -2606 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -2618 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2618 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1467 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -1467 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -1467 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -1467 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -1467 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -1467 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) +((-2347 ((|#2| |#2| |#1|) 15)) (-2475 (((-641 |#2|) |#2| (-641 |#2|) |#1| (-917)) 84)) (-2154 (((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-917)) 70))) +(((-460 |#1| |#2|) (-10 -7 (-15 -2154 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-917))) (-15 -2475 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-917))) (-15 -2347 (|#2| |#2| |#1|))) (-307) (-1235 |#1|)) (T -460)) +((-2347 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) (-2475 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-641 *3)) (-5 *5 (-917)) (-4 *3 (-1235 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3))))) +(-10 -7 (-15 -2154 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-917))) (-15 -2475 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-917))) (-15 -2347 (|#2| |#2| |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 28)) (-2845 (($ |#3|) 25)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2710 (($ $) 32)) (-3448 (($ |#2| |#4| $) 33)) (-2507 (($ |#2| (-709 |#3| |#4| |#5|)) 24)) (-2674 (((-709 |#3| |#4| |#5|) $) 15)) (-1941 ((|#3| $) 19)) (-1953 ((|#4| $) 17)) (-2686 ((|#2| $) 29)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-1852 (($ |#2| |#3| |#4|) 26)) (-2389 (($) 36 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -2686 (|#2| $)) (-15 -2674 ((-709 |#3| |#4| |#5|) $)) (-15 -1953 (|#4| $)) (-15 -1941 (|#3| $)) (-15 -2710 ($ $)) (-15 -2507 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -2845 ($ |#3|)) (-15 -1852 ($ |#2| |#3| |#4|)) (-15 -3448 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-641 (-1170)) (-172) (-846) (-238 (-2059 |#1|) (-767)) (-1 (-112) (-2 (|:| -1998 |#3|) (|:| -3866 |#4|)) (-2 (|:| -1998 |#3|) (|:| -3866 |#4|))) (-945 |#2| |#4| (-860 |#1|))) (T -461)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2059 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *6)) (-2 (|:| -1998 *5) (|:| -3866 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) (-4 *2 (-945 *4 *6 (-860 *3))))) (-2686 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2059 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -1998 *4) (|:| -3866 *5)) (-2 (|:| -1998 *4) (|:| -3866 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *2 *5 (-860 *3))))) (-2674 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2059 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *6)) (-2 (|:| -1998 *5) (|:| -3866 *6)))) (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) (-1953 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *2)) (-2 (|:| -1998 *5) (|:| -3866 *2)))) (-4 *2 (-238 (-2059 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))) (-1941 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2059 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *5)) (-2 (|:| -1998 *2) (|:| -3866 *5)))) (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-2710 (*1 *1 *1) (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) (-4 *5 (-238 (-2059 *2) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -1998 *4) (|:| -3866 *5)) (-2 (|:| -1998 *4) (|:| -3866 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *3 *5 (-860 *2))))) (-2507 (*1 *1 *2 *3) (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-2059 *4) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *6)) (-2 (|:| -1998 *5) (|:| -3866 *6)))) (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) (-2845 (*1 *1 *2) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2059 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *5)) (-2 (|:| -1998 *2) (|:| -3866 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-1852 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) (-4 *4 (-238 (-2059 *5) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -1998 *3) (|:| -3866 *4)) (-2 (|:| -1998 *3) (|:| -3866 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) (-4 *7 (-945 *2 *4 (-860 *5))))) (-3448 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-4 *3 (-238 (-2059 *4) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *3)) (-2 (|:| -1998 *5) (|:| -3866 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *2 *3 (-860 *4)))))) +(-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -2686 (|#2| $)) (-15 -2674 ((-709 |#3| |#4| |#5|) $)) (-15 -1953 (|#4| $)) (-15 -1941 (|#3| $)) (-15 -2710 ($ $)) (-15 -2507 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -2845 ($ |#3|)) (-15 -1852 ($ |#2| |#3| |#4|)) (-15 -3448 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3154 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3154 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-789) (-846) (-556) (-945 |#3| |#1| |#2|) (-13 (-1034 (-407 (-564))) (-363) (-10 -8 (-15 -2322 ($ |#4|)) (-15 -4189 (|#4| $)) (-15 -4201 (|#4| $))))) (T -462)) +((-3154 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-556)) (-4 *7 (-945 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1034 (-407 (-564))) (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $)))))))) +(-10 -7 (-15 -3154 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2310 (((-112) $ $) NIL)) (-2534 (((-641 |#3|) $) 41)) (-1885 (((-112) $) NIL)) (-3042 (((-112) $) NIL (|has| |#1| (-556)))) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2957 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2815 (((-112) $) NIL (|has| |#1| (-556)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1362 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-112) $) NIL (|has| |#1| (-556)))) (-1907 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 49)) (-1781 (($ (-641 |#4|)) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406)))) (-3534 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-3691 ((|#3| $) 47)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#4|) $) 14 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1456 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 21)) (-3805 (((-641 |#3|) $) NIL)) (-3460 (((-112) |#3| $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3840 (((-1114) $) NIL)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 39)) (-2348 (($) 17)) (-3852 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) 16)) (-3172 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-641 |#4|)) 51)) (-2335 (($ (-641 |#4|)) 13)) (-3311 (($ $ |#3|) NIL)) (-2805 (($ $ |#3|) NIL)) (-2029 (($ $ |#3|) NIL)) (-2322 (((-858) $) 38) (((-641 |#4|) $) 50)) (-2313 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 30)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-463 |#1| |#2| |#3| |#4|) (-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3172 ($ (-641 |#4|))) (-6 -4406) (-6 -4407))) (-1045) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -463)) +((-3172 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6))))) +(-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3172 ($ (-641 |#4|))) (-6 -4406) (-6 -4407))) +((-2389 (($) 11)) (-2403 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -2403 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2389 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464)) +NIL +(-10 -8 (-15 -2403 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2389 (|#1|))) +((-2310 (((-112) $ $) 7)) (-3032 (((-3 |#1| "failed") $) 26)) (-1781 ((|#1| $) 27)) (-2740 (($ $ $) 23)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2073 ((|#2| $) 19)) (-2322 (((-858) $) 11) (($ |#1|) 25)) (-2389 (($) 18 T CONST)) (-2403 (($) 24 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 15) (($ $ $) 13)) (-3011 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465)) -((-1300 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4049 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-470 |t#1| |t#2|) (-1035 |t#1|) (-10 -8 (-15 (-1300) ($) -1809) (-15 -4049 ($ $ $)))) -(((-102) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-470 |#1| |#2|) . T) ((-1035 |#1|) . T) ((-1094) . T)) -((-1865 (((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918)) 29)) (-2177 (((-1259 (-1259 (-564))) (-918)) 24))) -(((-466) (-10 -7 (-15 -1865 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -2177 ((-1259 (-1259 (-564))) (-918))))) (T -466)) -((-2177 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466))))) -(-10 -7 (-15 -1865 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -2177 ((-1259 (-1259 (-564))) (-918)))) -((-2932 (((-564) (-564)) 32) (((-564)) 24)) (-1552 (((-564) (-564)) 28) (((-564)) 20)) (-2047 (((-564) (-564)) 30) (((-564)) 22)) (-1872 (((-112) (-112)) 14) (((-112)) 12)) (-1490 (((-112) (-112)) 13) (((-112)) 11)) (-3572 (((-112) (-112)) 26) (((-112)) 17))) -(((-467) (-10 -7 (-15 -1490 ((-112))) (-15 -1872 ((-112))) (-15 -1490 ((-112) (-112))) (-15 -1872 ((-112) (-112))) (-15 -3572 ((-112))) (-15 -2047 ((-564))) (-15 -1552 ((-564))) (-15 -2932 ((-564))) (-15 -3572 ((-112) (-112))) (-15 -2047 ((-564) (-564))) (-15 -1552 ((-564) (-564))) (-15 -2932 ((-564) (-564))))) (T -467)) -((-2932 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2047 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2932 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1552 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2047 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3572 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1490 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1872 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1490 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(-10 -7 (-15 -1490 ((-112))) (-15 -1872 ((-112))) (-15 -1490 ((-112) (-112))) (-15 -1872 ((-112) (-112))) (-15 -3572 ((-112))) (-15 -2047 ((-564))) (-15 -1552 ((-564))) (-15 -2932 ((-564))) (-15 -3572 ((-112) (-112))) (-15 -2047 ((-564) (-564))) (-15 -1552 ((-564) (-564))) (-15 -2932 ((-564) (-564)))) -((-1817 (((-112) $ $) NIL)) (-2521 (((-641 (-379)) $) 34) (((-641 (-379)) $ (-641 (-379))) 144)) (-2654 (((-641 (-1088 (-379))) $) 16) (((-641 (-1088 (-379))) $ (-641 (-1088 (-379)))) 140)) (-1763 (((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871))) 58)) (-1838 (((-641 (-641 (-940 (-225)))) $) 135)) (-1850 (((-1264) $ (-940 (-225)) (-871)) 160)) (-2564 (($ $) 134) (($ (-641 (-641 (-940 (-225))))) 147) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918))) 146) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263))) 148)) (-2723 (((-1152) $) NIL)) (-2568 (((-564) $) 108)) (-2780 (((-1114) $) NIL)) (-3823 (($) 145)) (-4342 (((-641 (-225)) (-641 (-641 (-940 (-225))))) 88)) (-1876 (((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918)) 153) (((-1264) $ (-940 (-225))) 155) (((-1264) $ (-940 (-225)) (-871) (-871) (-918)) 154)) (-1831 (((-859) $) 166) (($ (-641 (-641 (-940 (-225))))) 161)) (-2953 (((-1264) $ (-940 (-225))) 159)) (-1702 (((-112) $ $) NIL))) -(((-468) (-13 (-1094) (-10 -8 (-15 -3823 ($)) (-15 -2564 ($ $)) (-15 -2564 ($ (-641 (-641 (-940 (-225)))))) (-15 -2564 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -2564 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -1838 ((-641 (-641 (-940 (-225)))) $)) (-15 -2568 ((-564) $)) (-15 -2654 ((-641 (-1088 (-379))) $)) (-15 -2654 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -2521 ((-641 (-379)) $)) (-15 -2521 ((-641 (-379)) $ (-641 (-379)))) (-15 -1876 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -1876 ((-1264) $ (-940 (-225)))) (-15 -1876 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -2953 ((-1264) $ (-940 (-225)))) (-15 -1850 ((-1264) $ (-940 (-225)) (-871))) (-15 -1831 ($ (-641 (-641 (-940 (-225)))))) (-15 -1831 ((-859) $)) (-15 -1763 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -4342 ((-641 (-225)) (-641 (-641 (-940 (-225))))))))) (T -468)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) (-3823 (*1 *1) (-5 *1 (-468))) (-2564 (*1 *1 *1) (-5 *1 (-468))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-2564 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *1 (-468)))) (-2564 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-2654 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-2521 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-1876 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1876 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1876 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-1763 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *1 (-468)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225))) (-5 *1 (-468))))) -(-13 (-1094) (-10 -8 (-15 -3823 ($)) (-15 -2564 ($ $)) (-15 -2564 ($ (-641 (-641 (-940 (-225)))))) (-15 -2564 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -2564 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -1838 ((-641 (-641 (-940 (-225)))) $)) (-15 -2568 ((-564) $)) (-15 -2654 ((-641 (-1088 (-379))) $)) (-15 -2654 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -2521 ((-641 (-379)) $)) (-15 -2521 ((-641 (-379)) $ (-641 (-379)))) (-15 -1876 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -1876 ((-1264) $ (-940 (-225)))) (-15 -1876 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -2953 ((-1264) $ (-940 (-225)))) (-15 -1850 ((-1264) $ (-940 (-225)) (-871))) (-15 -1831 ($ (-641 (-641 (-940 (-225)))))) (-15 -1831 ((-859) $)) (-15 -1763 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -4342 ((-641 (-225)) (-641 (-641 (-940 (-225)))))))) -((-1808 (($ $) NIL) (($ $ $) 11))) -(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) -NIL -(-10 -8 (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1619 ((|#2| $) 19)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 15) (($ $ $) 13)) (-1797 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-2403 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2740 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-470 |t#1| |t#2|) (-1034 |t#1|) (-10 -8 (-15 (-2403) ($) -2255) (-15 -2740 ($ $ $)))) +(((-102) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-470 |#1| |#2|) . T) ((-1034 |#1|) . T) ((-1094) . T)) +((-3767 (((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-917)) 29)) (-3961 (((-1259 (-1259 (-564))) (-917)) 24))) +(((-466) (-10 -7 (-15 -3767 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-917))) (-15 -3961 ((-1259 (-1259 (-564))) (-917))))) (T -466)) +((-3961 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-917)) (-5 *1 (-466))))) +(-10 -7 (-15 -3767 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-917))) (-15 -3961 ((-1259 (-1259 (-564))) (-917)))) +((-1661 (((-564) (-564)) 32) (((-564)) 24)) (-3797 (((-564) (-564)) 28) (((-564)) 20)) (-1957 (((-564) (-564)) 30) (((-564)) 22)) (-3851 (((-112) (-112)) 14) (((-112)) 12)) (-1314 (((-112) (-112)) 13) (((-112)) 11)) (-3723 (((-112) (-112)) 26) (((-112)) 17))) +(((-467) (-10 -7 (-15 -1314 ((-112))) (-15 -3851 ((-112))) (-15 -1314 ((-112) (-112))) (-15 -3851 ((-112) (-112))) (-15 -3723 ((-112))) (-15 -1957 ((-564))) (-15 -3797 ((-564))) (-15 -1661 ((-564))) (-15 -3723 ((-112) (-112))) (-15 -1957 ((-564) (-564))) (-15 -3797 ((-564) (-564))) (-15 -1661 ((-564) (-564))))) (T -467)) +((-1661 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1957 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3723 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1661 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3797 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1957 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3723 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3851 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1314 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(-10 -7 (-15 -1314 ((-112))) (-15 -3851 ((-112))) (-15 -1314 ((-112) (-112))) (-15 -3851 ((-112) (-112))) (-15 -3723 ((-112))) (-15 -1957 ((-564))) (-15 -3797 ((-564))) (-15 -1661 ((-564))) (-15 -3723 ((-112) (-112))) (-15 -1957 ((-564) (-564))) (-15 -3797 ((-564) (-564))) (-15 -1661 ((-564) (-564)))) +((-2310 (((-112) $ $) NIL)) (-3026 (((-641 (-379)) $) 34) (((-641 (-379)) $ (-641 (-379))) 144)) (-1981 (((-641 (-1088 (-379))) $) 16) (((-641 (-1088 (-379))) $ (-641 (-1088 (-379)))) 140)) (-4026 (((-641 (-641 (-939 (-225)))) (-641 (-641 (-939 (-225)))) (-641 (-870))) 58)) (-3489 (((-641 (-641 (-939 (-225)))) $) 135)) (-1437 (((-1264) $ (-939 (-225)) (-870)) 160)) (-2350 (($ $) 134) (($ (-641 (-641 (-939 (-225))))) 147) (($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917))) 146) (($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)) (-641 (-263))) 148)) (-1418 (((-1152) $) NIL)) (-3076 (((-564) $) 108)) (-3840 (((-1114) $) NIL)) (-4165 (($) 145)) (-2609 (((-641 (-225)) (-641 (-641 (-939 (-225))))) 88)) (-3892 (((-1264) $ (-641 (-939 (-225))) (-870) (-870) (-917)) 153) (((-1264) $ (-939 (-225))) 155) (((-1264) $ (-939 (-225)) (-870) (-870) (-917)) 154)) (-2322 (((-858) $) 166) (($ (-641 (-641 (-939 (-225))))) 161)) (-1863 (((-1264) $ (-939 (-225))) 159)) (-2921 (((-112) $ $) NIL))) +(((-468) (-13 (-1094) (-10 -8 (-15 -4165 ($)) (-15 -2350 ($ $)) (-15 -2350 ($ (-641 (-641 (-939 (-225)))))) (-15 -2350 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)))) (-15 -2350 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)) (-641 (-263)))) (-15 -3489 ((-641 (-641 (-939 (-225)))) $)) (-15 -3076 ((-564) $)) (-15 -1981 ((-641 (-1088 (-379))) $)) (-15 -1981 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -3026 ((-641 (-379)) $)) (-15 -3026 ((-641 (-379)) $ (-641 (-379)))) (-15 -3892 ((-1264) $ (-641 (-939 (-225))) (-870) (-870) (-917))) (-15 -3892 ((-1264) $ (-939 (-225)))) (-15 -3892 ((-1264) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -1863 ((-1264) $ (-939 (-225)))) (-15 -1437 ((-1264) $ (-939 (-225)) (-870))) (-15 -2322 ($ (-641 (-641 (-939 (-225)))))) (-15 -2322 ((-858) $)) (-15 -4026 ((-641 (-641 (-939 (-225)))) (-641 (-641 (-939 (-225)))) (-641 (-870)))) (-15 -2609 ((-641 (-225)) (-641 (-641 (-939 (-225))))))))) (T -468)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) (-4165 (*1 *1) (-5 *1 (-468))) (-2350 (*1 *1 *1) (-5 *1 (-468))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) (-2350 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) (-5 *4 (-641 (-917))) (-5 *1 (-468)))) (-2350 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) (-5 *4 (-641 (-917))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-1981 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-3026 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-3892 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3892 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1863 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1437 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) (-4026 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) (-5 *1 (-468)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-641 (-225))) (-5 *1 (-468))))) +(-13 (-1094) (-10 -8 (-15 -4165 ($)) (-15 -2350 ($ $)) (-15 -2350 ($ (-641 (-641 (-939 (-225)))))) (-15 -2350 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)))) (-15 -2350 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)) (-641 (-263)))) (-15 -3489 ((-641 (-641 (-939 (-225)))) $)) (-15 -3076 ((-564) $)) (-15 -1981 ((-641 (-1088 (-379))) $)) (-15 -1981 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -3026 ((-641 (-379)) $)) (-15 -3026 ((-641 (-379)) $ (-641 (-379)))) (-15 -3892 ((-1264) $ (-641 (-939 (-225))) (-870) (-870) (-917))) (-15 -3892 ((-1264) $ (-939 (-225)))) (-15 -3892 ((-1264) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -1863 ((-1264) $ (-939 (-225)))) (-15 -1437 ((-1264) $ (-939 (-225)) (-870))) (-15 -2322 ($ (-641 (-641 (-939 (-225)))))) (-15 -2322 ((-858) $)) (-15 -4026 ((-641 (-641 (-939 (-225)))) (-641 (-641 (-939 (-225)))) (-641 (-870)))) (-15 -2609 ((-641 (-225)) (-641 (-641 (-939 (-225)))))))) +((-3021 (($ $) NIL) (($ $ $) 11))) +(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) +NIL +(-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2073 ((|#2| $) 19)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 15) (($ $ $) 13)) (-3011 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470)) -((-1619 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1293 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1797 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1808 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1094) (-10 -8 (-15 -1619 (|t#2| $)) (-15 (-1293) ($) -1809) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1808 ($ $)) (-15 -1797 ($ $ $)) (-15 -1808 ($ $ $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-2189 (((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|))) 136)) (-2741 (((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 133)) (-2875 (((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 86))) -(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2741 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -2189 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -2875 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))))) (-641 (-1170)) (-452) (-452)) (T -471)) -((-2875 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-641 (-247 *5 *6))) (|:| |coords| (-641 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))) (-2189 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) -(-10 -7 (-15 -2741 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -2189 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -2875 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))))) -((-3733 (((-3 $ "failed") $) 11)) (-3047 (($ $ $) 23)) (-1992 (($ $ $) 24)) (-1823 (($ $ $) 9)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 22))) -(((-472 |#1|) (-10 -8 (-15 -1992 (|#1| |#1| |#1|)) (-15 -3047 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1823 (|#1| |#1| |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-473)) (T -472)) -NIL -(-10 -8 (-15 -1992 (|#1| |#1| |#1|)) (-15 -3047 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1823 (|#1| |#1| |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-1778 (($) 18 T CONST)) (-3733 (((-3 $ "failed") $) 15)) (-2949 (((-112) $) 17)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 24)) (-2780 (((-1114) $) 10)) (-3047 (($ $ $) 21)) (-1992 (($ $ $) 20)) (-1831 (((-859) $) 11)) (-1300 (($) 19 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14))) +((-2073 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2389 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3011 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1094) (-10 -8 (-15 -2073 (|t#2| $)) (-15 (-2389) ($) -2255) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3021 ($ $)) (-15 -3011 ($ $ $)) (-15 -3021 ($ $ $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2884 (((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-860 |#1|))) 136)) (-3459 (((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))) 133)) (-2297 (((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))) 86))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -3459 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -2884 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -2297 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))))) (-641 (-1170)) (-452) (-452)) (T -471)) +((-2297 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-641 (-247 *5 *6))) (|:| |coords| (-641 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))) (-2884 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) +(-10 -7 (-15 -3459 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -2884 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -2297 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))))) +((-2689 (((-3 $ "failed") $) 11)) (-2675 (($ $ $) 23)) (-2617 (($ $ $) 24)) (-3034 (($ $ $) 9)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 22))) +(((-472 |#1|) (-10 -8 (-15 -2617 (|#1| |#1| |#1|)) (-15 -2675 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3034 (|#1| |#1| |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-473)) (T -472)) +NIL +(-10 -8 (-15 -2617 (|#1| |#1| |#1|)) (-15 -2675 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3034 (|#1| |#1| |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-4157 (($) 18 T CONST)) (-2689 (((-3 $ "failed") $) 15)) (-1828 (((-112) $) 17)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 24)) (-3840 (((-1114) $) 10)) (-2675 (($ $ $) 21)) (-2617 (($ $ $) 20)) (-2322 (((-858) $) 11)) (-2403 (($) 19 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14))) (((-473) (-140)) (T -473)) -((-3315 (*1 *1 *1) (-4 *1 (-473))) (-1823 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-3047 (*1 *1 *1 *1) (-4 *1 (-473))) (-1992 (*1 *1 *1 *1) (-4 *1 (-473)))) -(-13 (-723) (-10 -8 (-15 -3315 ($ $)) (-15 -1823 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4403) (-15 -3047 ($ $ $)) (-15 -1992 ($ $ $)))) -(((-102) . T) ((-611 (-859)) . T) ((-723) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 18)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) 25)) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-3907 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 35 (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) NIL)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 16)) (-1619 (((-407 (-564)) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1255 |#2|)) NIL) (($ (-1244 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 21)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) 27)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-474 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-10 -8 (-15 -1831 ($ (-1255 |#2|))) (-15 -1831 ($ (-1244 |#1| |#2| |#3|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -474)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1240 |#1|) (-10 -8 (-15 -1831 ($ (-1255 |#2|))) (-15 -1831 ($ (-1244 |#1| |#2| |#3|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#2| $ |#1| |#2|) 18)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) 19)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 16)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2945 (((-641 |#1|) $) NIL)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3883 (((-641 |#1|) $) NIL)) (-4336 (((-112) |#1| $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-2639 (*1 *1 *1) (-4 *1 (-473))) (-3034 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-2675 (*1 *1 *1 *1) (-4 *1 (-473))) (-2617 (*1 *1 *1 *1) (-4 *1 (-473)))) +(-13 (-722) (-10 -8 (-15 -2639 ($ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4403) (-15 -2675 ($ $ $)) (-15 -2617 ($ $ $)))) +(((-102) . T) ((-611 (-858)) . T) ((-722) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 18)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) 25)) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3719 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 35 (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) NIL)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 16)) (-2073 (((-407 (-564)) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1255 |#2|)) NIL) (($ (-1244 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 21)) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) 27)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-474 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-10 -8 (-15 -2322 ($ (-1255 |#2|))) (-15 -2322 ($ (-1244 |#1| |#2| |#3|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -474)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1240 |#1|) (-10 -8 (-15 -2322 ($ (-1255 |#2|))) (-15 -2322 ($ (-1244 |#1| |#2| |#3|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#2| $ |#1| |#2|) 18)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) 19)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 16)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2843 (((-641 |#1|) $) NIL)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3487 (((-641 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-475 |#1| |#2| |#3| |#4|) (-1185 |#1| |#2|) (-1094) (-1094) (-1185 |#1| |#2|) |#2|) (T -475)) NIL (-1185 |#1| |#2|) -((-1817 (((-112) $ $) NIL)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2951 (((-641 $) (-641 |#4|)) NIL)) (-3209 (((-641 |#3|) $) NIL)) (-3449 (((-112) $) NIL)) (-3961 (((-112) $) NIL (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3752 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1778 (($) NIL T CONST)) (-3602 (((-112) $) 29 (|has| |#1| (-556)))) (-2495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2536 (((-112) $) NIL (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2338 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2237 (($ (-641 |#4|)) NIL)) (-3314 (((-3 $ "failed") $) 45)) (-1470 ((|#4| |#4| $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2576 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) NIL)) (-1433 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1543 ((|#3| $) 38)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#4|) $) 19 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2250 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 23)) (-3580 (((-641 |#3|) $) NIL)) (-3879 (((-112) |#3| $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2598 (((-3 |#4| "failed") $) 42)) (-3123 (((-641 |#4|) $) NIL)) (-4281 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3984 (((-112) $ $) NIL)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1482 ((|#4| |#4| $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-3 |#4| "failed") $) 40)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3824 (((-3 $ "failed") $ |#4|) 56)) (-3951 (($ $ |#4|) NIL)) (-4077 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 17)) (-4012 (($) 14)) (-1619 (((-768) $) NIL)) (-2791 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) 13)) (-2511 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 22)) (-4287 (($ $ |#3|) 52)) (-1887 (($ $ |#3|) 53)) (-3728 (($ $) NIL)) (-3111 (($ $ |#3|) NIL)) (-1831 (((-859) $) 35) (((-641 |#4|) $) 46)) (-4321 (((-768) $) NIL (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-1963 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) NIL)) (-1484 (((-112) |#3| $) NIL)) (-1702 (((-112) $ $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-476 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2| |#3| |#4|) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -476)) +((-2310 (((-112) $ $) NIL)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1841 (((-641 $) (-641 |#4|)) NIL)) (-2534 (((-641 |#3|) $) NIL)) (-1885 (((-112) $) NIL)) (-3042 (((-112) $) NIL (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4230 ((|#4| |#4| $) NIL)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2957 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4157 (($) NIL T CONST)) (-2815 (((-112) $) 29 (|has| |#1| (-556)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1362 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-112) $) NIL (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1907 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) NIL)) (-1781 (($ (-641 |#4|)) NIL)) (-2008 (((-3 $ "failed") $) 45)) (-4220 ((|#4| |#4| $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4194 ((|#4| |#4| $) NIL)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) NIL)) (-3534 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3691 ((|#3| $) 38)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#4|) $) 19 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1456 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 23)) (-3805 (((-641 |#3|) $) NIL)) (-3460 (((-112) |#3| $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-3649 (((-3 |#4| "failed") $) 42)) (-4022 (((-641 |#4|) $) NIL)) (-3250 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2093 ((|#4| |#4| $) NIL)) (-3288 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4340 ((|#4| |#4| $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-3 |#4| "failed") $) 40)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4179 (((-3 $ "failed") $ |#4|) 56)) (-2941 (($ $ |#4|) NIL)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 17)) (-2348 (($) 14)) (-2073 (((-767) $) NIL)) (-3852 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) 13)) (-3172 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-2805 (($ $ |#3|) 53)) (-2631 (($ $) NIL)) (-2029 (($ $ |#3|) NIL)) (-2322 (((-858) $) 35) (((-641 |#4|) $) 46)) (-2390 (((-767) $) NIL (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-2313 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) NIL)) (-4363 (((-112) |#3| $) NIL)) (-2921 (((-112) $ $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-476 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2| |#3| |#4|) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -476)) NIL (-1202 |#1| |#2| |#3| |#4|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2237 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-3714 (($) 17)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-2511 (((-379) $) 21) (((-225) $) 24) (((-407 (-1166 (-564))) $) 18) (((-536) $) 53)) (-1831 (((-859) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 37 T CONST)) (-1300 (($) 8 T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-477) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -3714 ($))))) (T -477)) -((-3714 (*1 *1) (-5 *1 (-477)))) -(-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -3714 ($)))) -((-1817 (((-112) $ $) NIL)) (-4383 (((-1129) $) 11)) (-4372 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-478) (-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $))))) (T -478)) -((-4372 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))) -(-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $)))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#2| $ |#1| |#2|) 16)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) 20)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 18)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2945 (((-641 |#1|) $) 13)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3883 (((-641 |#1|) $) NIL)) (-4336 (((-112) |#1| $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 19)) (-1350 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 11 (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2828 (((-768) $) 15 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-1781 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-4223 (($) 17)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3172 (((-379) $) 21) (((-225) $) 24) (((-407 (-1166 (-564))) $) 18) (((-536) $) 53)) (-2322 (((-858) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 37 T CONST)) (-2403 (($) 8 T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-477) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))) (-1018) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -4223 ($))))) (T -477)) +((-4223 (*1 *1) (-5 *1 (-477)))) +(-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))) (-1018) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -4223 ($)))) +((-2310 (((-112) $ $) NIL)) (-3725 (((-1129) $) 11)) (-3713 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-478) (-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $))))) (T -478)) +((-3713 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))) +(-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $)))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#2| $ |#1| |#2|) 16)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) 20)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 18)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2843 (((-641 |#1|) $) 13)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3487 (((-641 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 19)) (-4353 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 11 (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2059 (((-767) $) 15 (|has| $ (-6 -4406))))) (((-479 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) (-1094) (-1094) (-1152)) (T -479)) NIL (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) -((-2327 (((-564) (-564) (-564)) 19)) (-2098 (((-112) (-564) (-564) (-564) (-564)) 26)) (-3688 (((-1259 (-641 (-564))) (-768) (-768)) 39))) -(((-480) (-10 -7 (-15 -2327 ((-564) (-564) (-564))) (-15 -2098 ((-112) (-564) (-564) (-564) (-564))) (-15 -3688 ((-1259 (-641 (-564))) (-768) (-768))))) (T -480)) -((-3688 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) (-2098 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-2327 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) -(-10 -7 (-15 -2327 ((-564) (-564) (-564))) (-15 -2098 ((-112) (-564) (-564) (-564) (-564))) (-15 -3688 ((-1259 (-641 (-564))) (-768) (-768)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-861 |#1|)) $) NIL)) (-3040 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1537 (($ $) NIL (|has| |#2| (-556)))) (-1932 (((-112) $) NIL (|has| |#2| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2427 (($ $) NIL (|has| |#2| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-1357 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3240 (($ $ (-641 (-564))) NIL)) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-906)))) (-2055 (($ $ |#2| (-482 (-2828 |#1|) (-768)) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#2| (-482 (-2828 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-861 |#1|)) NIL)) (-1826 (((-482 (-2828 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-1925 (($ $ $) NIL (|has| |#2| (-847)))) (-3375 (($ $ $) NIL (|has| |#2| (-847)))) (-2546 (($ (-1 (-482 (-2828 |#1|) (-768)) (-482 (-2828 |#1|) (-768))) $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2169 (((-3 (-861 |#1|) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#2| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -1558 (-768))) "failed") $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#2| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-3190 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3534 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1619 (((-482 (-2828 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3008 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-482 (-2828 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-481 |#1| |#2|) (-13 (-946 |#2| (-482 (-2828 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3240 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -481)) -((-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))) -(-13 (-946 |#2| (-482 (-2828 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3240 ($ $ (-641 (-564)))))) -((-1817 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1615 (((-112) $) NIL (|has| |#2| (-131)))) (-1575 (($ (-918)) NIL (|has| |#2| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1986 (($ $ $) NIL (|has| |#2| (-790)))) (-4088 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| |#2| (-368)))) (-1598 (((-564) $) NIL (|has| |#2| (-845)))) (-1970 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2237 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-4050 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-3733 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2900 (($) NIL (|has| |#2| (-368)))) (-2261 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ (-564)) 15)) (-1569 (((-112) $) NIL (|has| |#2| (-845)))) (-1433 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL (|has| |#2| (-723)))) (-2607 (((-112) $) NIL (|has| |#2| (-845)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2640 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2250 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#2| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-1468 (($ (-918)) NIL (|has| |#2| (-368)))) (-2780 (((-1114) $) NIL (|has| |#2| (-1094)))) (-3303 ((|#2| $) NIL (|has| (-564) (-847)))) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-3032 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-3112 (($ (-1259 |#2|)) NIL)) (-3548 (((-134)) NIL (|has| |#2| (-363)))) (-3534 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-2791 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4078 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-2219 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1849 (($ $) NIL (|has| |#2| (-845)))) (-1293 (($) NIL (|has| |#2| (-131)) CONST)) (-1300 (($) NIL (|has| |#2| (-723)) CONST)) (-3435 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1762 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1702 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1749 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1723 (((-112) $ $) 21 (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1797 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-482 |#1| |#2|) (-238 |#1| |#2|) (-768) (-790)) (T -482)) +((-1784 (((-564) (-564) (-564)) 19)) (-4383 (((-112) (-564) (-564) (-564) (-564)) 26)) (-2892 (((-1259 (-641 (-564))) (-767) (-767)) 39))) +(((-480) (-10 -7 (-15 -1784 ((-564) (-564) (-564))) (-15 -4383 ((-112) (-564) (-564) (-564) (-564))) (-15 -2892 ((-1259 (-641 (-564))) (-767) (-767))))) (T -480)) +((-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) (-4383 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-1784 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) +(-10 -7 (-15 -1784 ((-564) (-564) (-564))) (-15 -4383 ((-112) (-564) (-564) (-564) (-564))) (-15 -2892 ((-1259 (-641 (-564))) (-767) (-767)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-860 |#1|)) $) NIL)) (-2340 (((-1166 $) $ (-860 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3622 (($ $) NIL (|has| |#2| (-556)))) (-3247 (((-112) $) NIL (|has| |#2| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-860 |#1|))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3453 (($ $) NIL (|has| |#2| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2595 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3810 (($ $ (-641 (-564))) NIL)) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#2| (-905)))) (-2050 (($ $ |#2| (-482 (-2059 |#1|) (-767)) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#2|) (-860 |#1|)) NIL) (($ (-1166 $) (-860 |#1|)) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#2| (-482 (-2059 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-860 |#1|)) NIL)) (-3386 (((-482 (-2059 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1501 (($ $ $) NIL (|has| |#2| (-846)))) (-2622 (($ $ $) NIL (|has| |#2| (-846)))) (-2168 (($ (-1 (-482 (-2059 |#1|) (-767)) (-482 (-2059 |#1|) (-767))) $) NIL)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-3878 (((-3 (-860 |#1|) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#2| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3866 (-767))) "failed") $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#2| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-641 (-860 |#1|)) (-641 $)) NIL)) (-3392 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1343 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2073 (((-482 (-2059 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2290 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-482 (-2059 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-481 |#1| |#2|) (-13 (-945 |#2| (-482 (-2059 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3810 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1045)) (T -481)) +((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1045))))) +(-13 (-945 |#2| (-482 (-2059 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3810 ($ $ (-641 (-564)))))) +((-2310 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3264 (((-112) $) NIL (|has| |#2| (-131)))) (-2845 (($ (-917)) NIL (|has| |#2| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2568 (($ $ $) NIL (|has| |#2| (-789)))) (-1862 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| |#2| (-368)))) (-3085 (((-564) $) NIL (|has| |#2| (-844)))) (-3750 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-1781 (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-2750 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1045)))) (-2689 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-3860 (($) NIL (|has| |#2| (-368)))) (-1466 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ (-564)) 15)) (-2786 (((-112) $) NIL (|has| |#2| (-844)))) (-3534 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL (|has| |#2| (-722)))) (-2783 (((-112) $) NIL (|has| |#2| (-844)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1834 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1456 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#2| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-1998 (($ (-917)) NIL (|has| |#2| (-368)))) (-3840 (((-1114) $) NIL (|has| |#2| (-1094)))) (-1995 ((|#2| $) NIL (|has| (-564) (-846)))) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2535 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2427 (($ (-1259 |#2|)) NIL)) (-3480 (((-134)) NIL (|has| |#2| (-363)))) (-1343 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3852 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-2789 (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-858) $) NIL (|has| |#2| (-611 (-858))))) (-3179 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3598 (($ $) NIL (|has| |#2| (-844)))) (-2389 (($) NIL (|has| |#2| (-131)) CONST)) (-2403 (($) NIL (|has| |#2| (-722)) CONST)) (-3917 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2977 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2921 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-2964 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2942 (((-112) $ $) 21 (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3011 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-564) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-482 |#1| |#2|) (-238 |#1| |#2|) (-767) (-789)) (T -482)) NIL (-238 |#1| |#2|) -((-1817 (((-112) $ $) NIL)) (-1740 (((-641 (-506)) $) 14)) (-1316 (((-506) $) 12)) (-2723 (((-1152) $) NIL)) (-2931 (($ (-506) (-641 (-506))) 10)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-483) (-13 (-1077) (-10 -8 (-15 -2931 ($ (-506) (-641 (-506)))) (-15 -1316 ((-506) $)) (-15 -1740 ((-641 (-506)) $))))) (T -483)) -((-2931 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483))))) -(-13 (-1077) (-10 -8 (-15 -2931 ($ (-506) (-641 (-506)))) (-15 -1316 ((-506) $)) (-15 -1740 ((-641 (-506)) $)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) NIL)) (-1778 (($) NIL T CONST)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2429 (($ $ $) 48)) (-3956 (($ $ $) 47)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3375 ((|#1| $) 38)) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 18)) (-3849 (($ (-641 |#1|)) 19)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4153 ((|#1| $) 34)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 11)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 45)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) 29 (|has| $ (-6 -4406))))) -(((-484 |#1|) (-13 (-965 |#1|) (-10 -8 (-15 -3849 ($ (-641 |#1|))))) (-847)) (T -484)) -((-3849 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3))))) -(-13 (-965 |#1|) (-10 -8 (-15 -3849 ($ (-641 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-1988 (($ $) 76)) (-3905 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-3884 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 49)) (-2780 (((-1114) $) NIL)) (-1426 (((-3 |#4| "failed") $) 121)) (-1340 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 86) (($ |#4|) 35) (($ |#1| |#1|) 131) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 144)) (-1295 (((-2 (|:| -1680 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 51)) (-1831 (((-859) $) 115)) (-1293 (($) 36 T CONST)) (-1702 (((-112) $ $) 125)) (-1808 (($ $) 82) (($ $ $) NIL)) (-1797 (($ $ $) 77)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 83))) +((-2310 (((-112) $ $) NIL)) (-3002 (((-641 (-506)) $) 14)) (-2420 (((-506) $) 12)) (-1418 (((-1152) $) NIL)) (-1650 (($ (-506) (-641 (-506))) 10)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-483) (-13 (-1077) (-10 -8 (-15 -1650 ($ (-506) (-641 (-506)))) (-15 -2420 ((-506) $)) (-15 -3002 ((-641 (-506)) $))))) (T -483)) +((-1650 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483))))) +(-13 (-1077) (-10 -8 (-15 -1650 ($ (-506) (-641 (-506)))) (-15 -2420 ((-506) $)) (-15 -3002 ((-641 (-506)) $)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) NIL)) (-4157 (($) NIL T CONST)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-3471 (($ $ $) 48)) (-2988 (($ $ $) 47)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2622 ((|#1| $) 38)) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 18)) (-1317 (($ (-641 |#1|)) 19)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1313 ((|#1| $) 34)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 11)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 45)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) 29 (|has| $ (-6 -4406))))) +(((-484 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -1317 ($ (-641 |#1|))))) (-846)) (T -484)) +((-1317 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3))))) +(-13 (-964 |#1|) (-10 -8 (-15 -1317 ($ (-641 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3239 (($ $) 76)) (-3694 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-3499 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 49)) (-3840 (((-1114) $) NIL)) (-4095 (((-3 |#4| "failed") $) 121)) (-1835 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 86) (($ |#4|) 35) (($ |#1| |#1|) 131) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 144)) (-1965 (((-2 (|:| -4086 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 51)) (-2322 (((-858) $) 115)) (-2389 (($) 36 T CONST)) (-2921 (((-112) $ $) 125)) (-3021 (($ $) 82) (($ $ $) NIL)) (-3011 (($ $ $) 77)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 83))) (((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485)) NIL (-335 |#1| |#2| |#3| |#4|) -((-2673 (((-564) (-641 (-564))) 53)) (-1667 ((|#1| (-641 |#1|)) 94)) (-2649 (((-641 |#1|) (-641 |#1|)) 95)) (-1920 (((-641 |#1|) (-641 |#1|)) 97)) (-2777 ((|#1| (-641 |#1|)) 96)) (-3008 (((-641 (-564)) (-641 |#1|)) 56))) -(((-486 |#1|) (-10 -7 (-15 -2777 (|#1| (-641 |#1|))) (-15 -1667 (|#1| (-641 |#1|))) (-15 -1920 ((-641 |#1|) (-641 |#1|))) (-15 -2649 ((-641 |#1|) (-641 |#1|))) (-15 -3008 ((-641 (-564)) (-641 |#1|))) (-15 -2673 ((-564) (-641 (-564))))) (-1235 (-564))) (T -486)) -((-2673 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1235 *2)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) (-5 *1 (-486 *4)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))) -(-10 -7 (-15 -2777 (|#1| (-641 |#1|))) (-15 -1667 (|#1| (-641 |#1|))) (-15 -1920 ((-641 |#1|) (-641 |#1|))) (-15 -2649 ((-641 |#1|) (-641 |#1|))) (-15 -3008 ((-641 (-564)) (-641 |#1|))) (-15 -2673 ((-564) (-641 (-564))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-564) $) NIL (|has| (-564) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-564) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2237 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-564) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| (-564) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-564) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2607 (((-112) $) NIL (|has| (-564) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-564) (-847)))) (-2449 (($ (-1 (-564) (-564)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-564) (-1145)) CONST)) (-3555 (($ (-407 (-564))) 9)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-1818 (((-564) $) NIL (|has| (-564) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-564) $) NIL)) (-2511 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 16) $) 10)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 (((-564) $) NIL (|has| (-564) (-545)))) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL (|has| (-564) (-817)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1823 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) -(((-487) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -3555 ($ (-407 (-564))))))) (T -487)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) -(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -3555 ($ (-407 (-564)))))) -((-2640 (((-641 |#2|) $) 29)) (-2516 (((-112) |#2| $) 34)) (-4077 (((-112) (-1 (-112) |#2|) $) 24)) (-2633 (($ $ (-641 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-2791 (((-768) (-1 (-112) |#2|) $) 28) (((-768) |#2| $) 32)) (-1831 (((-859) $) 43)) (-1963 (((-112) (-1 (-112) |#2|) $) 23)) (-1702 (((-112) $ $) 37)) (-2828 (((-768) $) 18))) -(((-488 |#1| |#2|) (-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#2| |#2|)) (-15 -2633 (|#1| |#1| (-294 |#2|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2516 ((-112) |#2| |#1|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2640 ((-641 |#2|) |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2828 ((-768) |#1|))) (-489 |#2|) (-1209)) (T -488)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#2| |#2|)) (-15 -2633 (|#1| |#1| (-294 |#2|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2516 ((-112) |#2| |#1|)) (-15 -2791 ((-768) |#2| |#1|)) (-15 -2640 ((-641 |#2|) |#1|)) (-15 -2791 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2828 ((-768) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2139 (((-564) (-641 (-564))) 53)) (-2487 ((|#1| (-641 |#1|)) 94)) (-1923 (((-641 |#1|) (-641 |#1|)) 95)) (-3134 (((-641 |#1|) (-641 |#1|)) 97)) (-3235 ((|#1| (-641 |#1|)) 96)) (-2290 (((-641 (-564)) (-641 |#1|)) 56))) +(((-486 |#1|) (-10 -7 (-15 -3235 (|#1| (-641 |#1|))) (-15 -2487 (|#1| (-641 |#1|))) (-15 -3134 ((-641 |#1|) (-641 |#1|))) (-15 -1923 ((-641 |#1|) (-641 |#1|))) (-15 -2290 ((-641 (-564)) (-641 |#1|))) (-15 -2139 ((-564) (-641 (-564))))) (-1235 (-564))) (T -486)) +((-2139 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1235 *2)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) (-5 *1 (-486 *4)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))) +(-10 -7 (-15 -3235 (|#1| (-641 |#1|))) (-15 -2487 (|#1| (-641 |#1|))) (-15 -3134 ((-641 |#1|) (-641 |#1|))) (-15 -1923 ((-641 |#1|) (-641 |#1|))) (-15 -2290 ((-641 (-564)) (-641 |#1|))) (-15 -2139 ((-564) (-641 (-564))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-564) $) NIL (|has| (-564) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-564) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1034 (-564))))) (-1781 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-564) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| (-564) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-564) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2783 (((-112) $) NIL (|has| (-564) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-564) (-846)))) (-3123 (($ (-1 (-564) (-564)) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-564) (-1145)) CONST)) (-3557 (($ (-407 (-564))) 9)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-1421 (((-564) $) NIL (|has| (-564) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-564) $) NIL)) (-3172 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL) (((-1000 16) $) 10)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 (((-564) $) NIL (|has| (-564) (-545)))) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL (|has| (-564) (-816)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3034 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) +(((-487) (-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 16)) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -3557 ($ (-407 (-564))))))) (T -487)) +((-3399 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) +(-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 16)) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -3557 ($ (-407 (-564)))))) +((-1834 (((-641 |#2|) $) 29)) (-3114 (((-112) |#2| $) 34)) (-1763 (((-112) (-1 (-112) |#2|) $) 24)) (-3100 (($ $ (-641 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-3852 (((-767) (-1 (-112) |#2|) $) 28) (((-767) |#2| $) 32)) (-2322 (((-858) $) 43)) (-2313 (((-112) (-1 (-112) |#2|) $) 23)) (-2921 (((-112) $ $) 37)) (-2059 (((-767) $) 18))) +(((-488 |#1| |#2|) (-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#2| |#2|)) (-15 -3100 (|#1| |#1| (-294 |#2|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3114 ((-112) |#2| |#1|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -1834 ((-641 |#2|) |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2059 ((-767) |#1|))) (-489 |#2|) (-1209)) (T -488)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#2| |#2|)) (-15 -3100 (|#1| |#1| (-294 |#2|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3114 ((-112) |#2| |#1|)) (-15 -3852 ((-767) |#2| |#1|)) (-15 -1834 ((-641 |#2|) |#1|)) (-15 -3852 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2059 ((-767) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-489 |#1|) (-140) (-1209)) (T -489)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-2250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-1963 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-4077 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-2791 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-768)))) (-1433 (*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-2640 (*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-2791 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-2516 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4407)) (-15 -2250 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4406)) (PROGN (-15 -1963 ((-112) (-1 (-112) |t#1|) $)) (-15 -4077 ((-112) (-1 (-112) |t#1|) $)) (-15 -2791 ((-768) (-1 (-112) |t#1|) $)) (-15 -1433 ((-641 |t#1|) $)) (-15 -2640 ((-641 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -2791 ((-768) |t#1| $)) (-15 -2516 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1831 ((|#1| $) 6) (($ |#1|) 9))) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-1456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-2313 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-1763 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3852 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-767)))) (-3534 (*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-1834 (*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3852 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-767)))) (-3114 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3123 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4407)) (-15 -1456 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4406)) (PROGN (-15 -2313 ((-112) (-1 (-112) |t#1|) $)) (-15 -1763 ((-112) (-1 (-112) |t#1|) $)) (-15 -3852 ((-767) (-1 (-112) |t#1|) $)) (-15 -3534 ((-641 |t#1|) $)) (-15 -1834 ((-641 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3852 ((-767) |t#1| $)) (-15 -3114 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2322 ((|#1| $) 6) (($ |#1|) 9))) (((-490 |#1|) (-140) (-1209)) (T -490)) NIL (-13 (-611 |t#1|) (-614 |t#1|)) (((-614 |#1|) . T) ((-611 |#1|) . T)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3007 (($ (-1152)) 8)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 15) (((-1152) $) 12)) (-1702 (((-112) $ $) 11))) -(((-491) (-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -3007 ($ (-1152)))))) (T -491)) -((-3007 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491))))) -(-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -3007 ($ (-1152))))) -((-3357 (($ $) 15)) (-3330 (($ $) 24)) (-3384 (($ $) 12)) (-3395 (($ $) 10)) (-3371 (($ $) 17)) (-3344 (($ $) 22))) -(((-492 |#1|) (-10 -8 (-15 -3344 (|#1| |#1|)) (-15 -3371 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3357 (|#1| |#1|))) (-493)) (T -492)) -NIL -(-10 -8 (-15 -3344 (|#1| |#1|)) (-15 -3371 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3357 (|#1| |#1|))) -((-3357 (($ $) 11)) (-3330 (($ $) 10)) (-3384 (($ $) 9)) (-3395 (($ $) 8)) (-3371 (($ $) 7)) (-3344 (($ $) 6))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-2278 (($ (-1152)) 8)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 15) (((-1152) $) 12)) (-2921 (((-112) $ $) 11))) +(((-491) (-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -2278 ($ (-1152)))))) (T -491)) +((-2278 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491))))) +(-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -2278 ($ (-1152))))) +((-3802 (($ $) 15)) (-3779 (($ $) 24)) (-3825 (($ $) 12)) (-3836 (($ $) 10)) (-3814 (($ $) 17)) (-3792 (($ $) 22))) +(((-492 |#1|) (-10 -8 (-15 -3792 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3802 (|#1| |#1|))) (-493)) (T -492)) +NIL +(-10 -8 (-15 -3792 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3802 (|#1| |#1|))) +((-3802 (($ $) 11)) (-3779 (($ $) 10)) (-3825 (($ $) 9)) (-3836 (($ $) 8)) (-3814 (($ $) 7)) (-3792 (($ $) 6))) (((-493) (-140)) (T -493)) -((-3357 (*1 *1 *1) (-4 *1 (-493))) (-3330 (*1 *1 *1) (-4 *1 (-493))) (-3384 (*1 *1 *1) (-4 *1 (-493))) (-3395 (*1 *1 *1) (-4 *1 (-493))) (-3371 (*1 *1 *1) (-4 *1 (-493))) (-3344 (*1 *1 *1) (-4 *1 (-493)))) -(-13 (-10 -8 (-15 -3344 ($ $)) (-15 -3371 ($ $)) (-15 -3395 ($ $)) (-15 -3384 ($ $)) (-15 -3330 ($ $)) (-15 -3357 ($ $)))) -((-3070 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1235 |#1|) (-13 (-363) (-147) (-721 |#1| |#2|)) (-1235 |#3|)) (T -494)) -((-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-721 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7))))) -(-10 -7 (-15 -3070 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) -((-1817 (((-112) $ $) NIL)) (-2271 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2474 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-1615 (((-112) $) 38)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-2451 (((-112) $ $) 72)) (-2956 (((-641 (-610 $)) $) 49)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3574 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3083 (($ $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-1938 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2929 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2347 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2237 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 54)) (-1449 (($ $ $) NIL)) (-4050 (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1988 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-3352 (($ $) NIL) (($ (-641 $)) NIL)) (-4095 (((-641 (-114)) $) NIL)) (-1841 (((-114) (-114)) NIL)) (-2949 (((-112) $) 41)) (-4301 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-3678 (((-1119 (-564) (-610 $)) $) 36)) (-2915 (($ $ (-564)) NIL)) (-3797 (((-1166 $) (-1166 $) (-610 $)) 86) (((-1166 $) (-1166 $) (-641 (-610 $))) 61) (($ $ (-610 $)) 75) (($ $ (-641 (-610 $))) 76)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4168 (((-1166 $) (-610 $)) 73 (|has| $ (-1046)))) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 $ $) (-610 $)) NIL)) (-1802 (((-3 (-610 $) "failed") $) NIL)) (-2740 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3026 (((-641 (-610 $)) $) NIL)) (-3755 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-1657 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3315 (($ $) NIL)) (-3926 (((-768) $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2417 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1492 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2633 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3920 (((-768) $) NIL)) (-1350 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3467 (($ $) NIL) (($ $ $) NIL)) (-3534 (($ $ (-768)) NIL) (($ $) 35)) (-3693 (((-1119 (-564) (-610 $)) $) 19)) (-3019 (($ $) NIL (|has| $ (-1046)))) (-2511 (((-379) $) 100) (((-225) $) 108) (((-169 (-379)) $) 116)) (-1831 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) 20)) (-2219 (((-768)) NIL T CONST)) (-4264 (($ $) NIL) (($ (-641 $)) NIL)) (-1322 (((-112) (-114)) 92)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 10 T CONST)) (-1300 (($) 21 T CONST)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 23)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1823 (($ $ $) 43)) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 47) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 26) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) -(((-495) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1831 ($ (-1119 (-564) (-610 $)))) (-15 -3678 ((-1119 (-564) (-610 $)) $)) (-15 -3693 ((-1119 (-564) (-610 $)) $)) (-15 -1988 ($ $)) (-15 -2451 ((-112) $ $)) (-15 -3797 ((-1166 $) (-1166 $) (-610 $))) (-15 -3797 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3797 ($ $ (-610 $))) (-15 -3797 ($ $ (-641 (-610 $))))))) (T -495)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1988 (*1 *1 *1) (-5 *1 (-495))) (-2451 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) (-5 *1 (-495)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495))))) -(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1831 ($ (-1119 (-564) (-610 $)))) (-15 -3678 ((-1119 (-564) (-610 $)) $)) (-15 -3693 ((-1119 (-564) (-610 $)) $)) (-15 -1988 ($ $)) (-15 -2451 ((-112) $ $)) (-15 -3797 ((-1166 $) (-1166 $) (-610 $))) (-15 -3797 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3797 ($ $ (-610 $))) (-15 -3797 ($ $ (-641 (-610 $)))))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) |#1|) 46 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 41)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 21)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 17 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) 15 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 19)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 45) (($ $ (-1226 (-564))) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 24)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) 11 (|has| $ (-6 -4406))))) +((-3802 (*1 *1 *1) (-4 *1 (-493))) (-3779 (*1 *1 *1) (-4 *1 (-493))) (-3825 (*1 *1 *1) (-4 *1 (-493))) (-3836 (*1 *1 *1) (-4 *1 (-493))) (-3814 (*1 *1 *1) (-4 *1 (-493))) (-3792 (*1 *1 *1) (-4 *1 (-493)))) +(-13 (-10 -8 (-15 -3792 ($ $)) (-15 -3814 ($ $)) (-15 -3836 ($ $)) (-15 -3825 ($ $)) (-15 -3779 ($ $)) (-15 -3802 ($ $)))) +((-2375 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1235 |#1|) (-13 (-363) (-147) (-720 |#1| |#2|)) (-1235 |#3|)) (T -494)) +((-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7))))) +(-10 -7 (-15 -2375 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) +((-2310 (((-112) $ $) NIL)) (-2435 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-3914 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-3264 (((-112) $) 38)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-3674 (((-112) $ $) 72)) (-2244 (((-641 (-610 $)) $) 49)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2523 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2387 (($ $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-3308 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-1627 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-3032 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-1781 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 54)) (-2574 (($ $ $) NIL)) (-2750 (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-3239 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2252 (($ $) NIL) (($ (-641 $)) NIL)) (-1921 (((-641 (-114)) $) NIL)) (-3523 (((-114) (-114)) NIL)) (-1828 (((-112) $) 41)) (-3415 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-4189 (((-1119 (-564) (-610 $)) $) 36)) (-2739 (($ $ (-564)) NIL)) (-2019 (((-1166 $) (-1166 $) (-610 $)) 86) (((-1166 $) (-1166 $) (-641 (-610 $))) 61) (($ $ (-610 $)) 75) (($ $ (-641 (-610 $))) 76)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1445 (((-1166 $) (-610 $)) 73 (|has| $ (-1045)))) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 $ $) (-610 $)) NIL)) (-1301 (((-3 (-610 $) "failed") $) NIL)) (-3202 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-2324 (((-641 (-610 $)) $) NIL)) (-3059 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-2379 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-2639 (($ $) NIL)) (-3162 (((-767) $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1473 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1333 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3100 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3844 (((-767) $) NIL)) (-4353 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-2054 (($ $) NIL) (($ $ $) NIL)) (-1343 (($ $ (-767)) NIL) (($ $) 35)) (-4201 (((-1119 (-564) (-610 $)) $) 19)) (-2400 (($ $) NIL (|has| $ (-1045)))) (-3172 (((-379) $) 100) (((-225) $) 108) (((-169 (-379)) $) 116)) (-2322 (((-858) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) 20)) (-3179 (((-767)) NIL T CONST)) (-1389 (($ $) NIL) (($ (-641 $)) NIL)) (-1646 (((-112) (-114)) 92)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 10 T CONST)) (-2403 (($) 21 T CONST)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 23)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3034 (($ $ $) 43)) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 47) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 26) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-495) (-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2322 ($ (-1119 (-564) (-610 $)))) (-15 -4189 ((-1119 (-564) (-610 $)) $)) (-15 -4201 ((-1119 (-564) (-610 $)) $)) (-15 -3239 ($ $)) (-15 -3674 ((-112) $ $)) (-15 -2019 ((-1166 $) (-1166 $) (-610 $))) (-15 -2019 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2019 ($ $ (-610 $))) (-15 -2019 ($ $ (-641 (-610 $))))))) (T -495)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-3239 (*1 *1 *1) (-5 *1 (-495))) (-3674 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) (-5 *1 (-495)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495))))) +(-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2322 ($ (-1119 (-564) (-610 $)))) (-15 -4189 ((-1119 (-564) (-610 $)) $)) (-15 -4201 ((-1119 (-564) (-610 $)) $)) (-15 -3239 ($ $)) (-15 -3674 ((-112) $ $)) (-15 -2019 ((-1166 $) (-1166 $) (-610 $))) (-15 -2019 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2019 ($ $ (-610 $))) (-15 -2019 ($ $ (-641 (-610 $)))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) |#1|) 46 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 41)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 21)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 17 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) 15 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 19)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 45) (($ $ (-1226 (-564))) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 24)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) 11 (|has| $ (-6 -4406))))) (((-496 |#1| |#2|) (-19 |#1|) (-1209) (-564)) (T -496)) NIL (-19 |#1|) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3251 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-3436 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-1778 (($) NIL T CONST)) (-3751 (((-496 |#1| |#3|) $ (-564)) NIL)) (-2261 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2190 ((|#1| $ (-564) (-564)) NIL)) (-1433 (((-641 |#1|) $) NIL)) (-1745 (((-768) $) NIL)) (-3654 (($ (-768) (-768) |#1|) NIL)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-2904 (((-564) $) NIL)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2381 (((-564) $) NIL)) (-2821 (((-564) $) NIL)) (-2250 (($ (-1 |#1| |#1|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-3065 (((-496 |#1| |#2|) $ (-564)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3909 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-1748 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-4157 (($) NIL T CONST)) (-1597 (((-496 |#1| |#3|) $ (-564)) NIL)) (-1466 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1407 ((|#1| $ (-564) (-564)) NIL)) (-3534 (((-641 |#1|) $) NIL)) (-3835 (((-767) $) NIL)) (-4121 (($ (-767) (-767) |#1|) NIL)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-2615 (((-564) $) NIL)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4253 (((-564) $) NIL)) (-3020 (((-564) $) NIL)) (-1456 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-1582 (((-496 |#1| |#2|) $ (-564)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1209) (-564) (-564)) (T -497)) NIL (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) -((-2164 (((-641 (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768)) 33)) (-3991 (((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768)) 43)) (-3274 (((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)) 110))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3991 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -2164 ((-641 (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -3274 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -498)) -((-3274 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-2 (|:| -3331 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7))))) (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -3331 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3331 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -3331 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6)))) (-4 *7 (-1235 *6)))) (-3991 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1235 *5))))) -(-10 -7 (-15 -3991 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -2164 ((-641 (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -3274 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)))) -((-2303 (((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 74)) (-3550 ((|#1| (-685 |#1|) |#1| (-768)) 27)) (-2688 (((-768) (-768) (-768)) 36)) (-3088 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 54)) (-4144 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 62) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 59)) (-3403 ((|#1| (-685 |#1|) (-685 |#1|) |#1| (-564)) 31)) (-1385 ((|#1| (-685 |#1|)) 18))) -(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -1385 (|#1| (-685 |#1|))) (-15 -3550 (|#1| (-685 |#1|) |#1| (-768))) (-15 -3403 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2688 ((-768) (-768) (-768))) (-15 -4144 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4144 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -3088 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2303 ((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -499)) -((-2303 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3088 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4144 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4144 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2688 (*1 *2 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3403 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3550 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-768)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) -(-10 -7 (-15 -1385 (|#1| (-685 |#1|))) (-15 -3550 (|#1| (-685 |#1|) |#1| (-768))) (-15 -3403 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2688 ((-768) (-768) (-768))) (-15 -4144 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4144 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -3088 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2303 ((-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3331 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) -((-1817 (((-112) $ $) NIL)) (-1644 (($ $) NIL)) (-4366 (($ $ $) 39)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2573 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2861 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-1970 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4407))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-2576 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1988 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-2261 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4407)))) (-2190 (((-112) $ (-564)) NIL)) (-3360 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-1433 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-4358 (($ $ $) 37)) (-4338 (($ $) NIL)) (-3311 (($ $ $) NIL)) (-3654 (($ (-768) (-112)) 26)) (-3842 (($ $ $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 8 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL)) (-3956 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2640 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL)) (-2250 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3652 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-112) $) NIL (|has| (-564) (-847)))) (-3995 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4253 (($ $ (-112)) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1794 (((-641 (-112)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 27)) (-1350 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-2126 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2791 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) 28)) (-2511 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-1842 (($ (-641 (-112))) NIL)) (-3043 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1831 (((-859) $) 25)) (-1963 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-4348 (($ $ $) 35)) (-3705 (($ $ $) NIL)) (-1498 (($ $ $) 44)) (-1510 (($ $) 42)) (-1486 (($ $ $) 43)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 29)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 30)) (-3694 (($ $ $) NIL)) (-2828 (((-768) $) 13 (|has| $ (-6 -4406))))) -(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -1510 ($ $)) (-15 -1498 ($ $ $)) (-15 -1486 ($ $ $)))) (-564)) (T -500)) -((-1510 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1498 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1486 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))) -(-13 (-123) (-10 -8 (-15 -1510 ($ $)) (-15 -1498 ($ $ $)) (-15 -1486 ($ $ $)))) -((-1839 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|)) 34)) (-3035 (((-1166 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1166 |#4|)) 21)) (-4104 (((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|))) 48)) (-3806 (((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|) 57))) -(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3035 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -3035 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1839 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -4104 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -3806 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|) (-1046)) (T -501)) -((-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))) (-4104 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1235 *6)))) (-1839 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1235 *4)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2))))) -(-10 -7 (-15 -3035 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -3035 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1839 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -4104 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -3806 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) -((-1817 (((-112) $ $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3595 (((-1264) $) 25)) (-1350 (((-1152) $ (-1170)) 30)) (-3712 (((-1264) $) 17)) (-1831 (((-859) $) 27) (($ (-1152)) 26)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 11)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 9))) -(((-502) (-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $)) (-15 -1831 ($ (-1152)))))) (T -502)) -((-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502))))) -(-13 (-847) (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) (-15 -3595 ((-1264) $)) (-15 -1831 ($ (-1152))))) -((-2203 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2980 ((|#1| |#4|) 10)) (-1648 ((|#3| |#4|) 17))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2980 (|#1| |#4|)) (-15 -1648 (|#3| |#4|)) (-15 -2203 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-989 |#1|) (-373 |#1|) (-373 |#2|)) (T -503)) -((-2203 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-1648 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-2980 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))) -(-10 -7 (-15 -2980 (|#1| |#4|)) (-15 -1648 (|#3| |#4|)) (-15 -2203 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-1817 (((-112) $ $) NIL)) (-2195 (((-112) $ (-641 |#3|)) 128) (((-112) $) 129)) (-1615 (((-112) $) 180)) (-2550 (($ $ |#4|) 119) (($ $ |#4| (-641 |#3|)) 123)) (-4052 (((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|)) 173 (|has| |#3| (-612 (-1170))))) (-4347 (($ $ $) 107) (($ $ |#4|) 105)) (-2949 (((-112) $) 179)) (-2097 (($ $) 133)) (-2723 (((-1152) $) NIL)) (-3425 (($ $ $) 99) (($ (-641 $)) 101)) (-2404 (((-112) |#4| $) 131)) (-2653 (((-112) $ $) 85)) (-3884 (($ (-641 |#4|)) 106)) (-2780 (((-1114) $) NIL)) (-1783 (($ (-641 |#4|)) 177)) (-1675 (((-112) $) 178)) (-4385 (($ $) 88)) (-3743 (((-641 |#4|) $) 72)) (-2848 (((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|)) NIL)) (-1417 (((-112) |#4| $) 92)) (-3548 (((-564) $ (-641 |#3|)) 135) (((-564) $) 136)) (-1831 (((-859) $) 176) (($ (-641 |#4|)) 102)) (-1466 (($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $))) NIL)) (-1702 (((-112) $ $) 87)) (-1797 (($ $ $) 109)) (** (($ $ (-768)) 117)) (* (($ $ $) 115))) -(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1797 ($ $ $)) (-15 -2949 ((-112) $)) (-15 -1615 ((-112) $)) (-15 -1417 ((-112) |#4| $)) (-15 -2653 ((-112) $ $)) (-15 -2404 ((-112) |#4| $)) (-15 -2195 ((-112) $ (-641 |#3|))) (-15 -2195 ((-112) $)) (-15 -3425 ($ $ $)) (-15 -3425 ($ (-641 $))) (-15 -4347 ($ $ $)) (-15 -4347 ($ $ |#4|)) (-15 -4385 ($ $)) (-15 -2848 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -1466 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3548 ((-564) $ (-641 |#3|))) (-15 -3548 ((-564) $)) (-15 -2097 ($ $)) (-15 -3884 ($ (-641 |#4|))) (-15 -1783 ($ (-641 |#4|))) (-15 -1675 ((-112) $)) (-15 -3743 ((-641 |#4|) $)) (-15 -1831 ($ (-641 |#4|))) (-15 -2550 ($ $ |#4|)) (-15 -2550 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -4052 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -504)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1797 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2949 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1615 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1417 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2653 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2404 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2195 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4347 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-4347 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-4385 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2848 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3548 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2097 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1675 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3743 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2550 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-2550 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170))) (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4))))) (-5 *1 (-504 *4 *5 *6 *7))))) -(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1797 ($ $ $)) (-15 -2949 ((-112) $)) (-15 -1615 ((-112) $)) (-15 -1417 ((-112) |#4| $)) (-15 -2653 ((-112) $ $)) (-15 -2404 ((-112) |#4| $)) (-15 -2195 ((-112) $ (-641 |#3|))) (-15 -2195 ((-112) $)) (-15 -3425 ($ $ $)) (-15 -3425 ($ (-641 $))) (-15 -4347 ($ $ $)) (-15 -4347 ($ $ |#4|)) (-15 -4385 ($ $)) (-15 -2848 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -1466 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3548 ((-564) $ (-641 |#3|))) (-15 -3548 ((-564) $)) (-15 -2097 ($ $)) (-15 -3884 ($ (-641 |#4|))) (-15 -1783 ($ (-641 |#4|))) (-15 -1675 ((-112) $)) (-15 -3743 ((-641 |#4|) $)) (-15 -1831 ($ (-641 |#4|))) (-15 -2550 ($ $ |#4|)) (-15 -2550 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -4052 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|))) -((-1686 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 177)) (-3419 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-2660 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 128)) (-1420 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-2503 (((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 180)) (-2069 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))) 195))) -(((-505 |#1| |#2|) (-10 -7 (-15 -1686 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3419 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1420 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2660 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2503 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2069 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))))) (-641 (-1170)) (-768)) (T -505)) -((-2069 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *1 (-505 *4 *5)))) (-2503 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-641 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5))))) -(-10 -7 (-15 -1686 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3419 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1420 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2660 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2503 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2069 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3515 (($) 6)) (-1831 (((-859) $) 12) (((-1170) $) 10)) (-1702 (((-112) $ $) 8))) -(((-506) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -3515 ($))))) (T -506)) -((-3515 (*1 *1) (-5 *1 (-506)))) -(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -3515 ($)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3186 (($ |#1| |#2|) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3446 ((|#2| $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1293 (($) 12 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) 11) (($ $ $) 34)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21))) -(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-847)) (T -507)) +((-3820 (((-641 (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-767) (-767)) 33)) (-3356 (((-641 (-1166 |#1|)) |#1| (-767) (-767) (-767)) 43)) (-2905 (((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-767)) 110))) +(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3356 ((-641 (-1166 |#1|)) |#1| (-767) (-767) (-767))) (-15 -3820 ((-641 (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-767) (-767))) (-15 -2905 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-767)))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -498)) +((-2905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-2 (|:| -3342 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7))))) (-5 *5 (-767)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -3342 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3342 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -3342 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6)))) (-4 *7 (-1235 *6)))) (-3356 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1235 *5))))) +(-10 -7 (-15 -3356 ((-641 (-1166 |#1|)) |#1| (-767) (-767) (-767))) (-15 -3820 ((-641 (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-767) (-767))) (-15 -2905 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-767)))) +((-1531 (((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 74)) (-3504 ((|#1| (-685 |#1|) |#1| (-767)) 27)) (-4178 (((-767) (-767) (-767)) 36)) (-1788 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 54)) (-4317 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 62) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 59)) (-2703 ((|#1| (-685 |#1|) (-685 |#1|) |#1| (-564)) 31)) (-4167 ((|#1| (-685 |#1|)) 18))) +(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -4167 (|#1| (-685 |#1|))) (-15 -3504 (|#1| (-685 |#1|) |#1| (-767))) (-15 -2703 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -4178 ((-767) (-767) (-767))) (-15 -4317 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4317 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1788 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1531 ((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -499)) +((-1531 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1788 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4317 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4317 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4178 (*1 *2 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2703 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3504 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-767)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) +(-10 -7 (-15 -4167 (|#1| (-685 |#1|))) (-15 -3504 (|#1| (-685 |#1|) |#1| (-767))) (-15 -2703 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -4178 ((-767) (-767) (-767))) (-15 -4317 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4317 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1788 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1531 ((-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3342 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) +((-2310 (((-112) $ $) NIL)) (-4173 (($ $) NIL)) (-2364 (($ $ $) 39)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2441 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3811 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-3750 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4407))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-3628 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-3239 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1466 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4407)))) (-1407 (((-112) $ (-564)) NIL)) (-3847 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3534 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-2353 (($ $ $) 37)) (-2329 (($ $) NIL)) (-3198 (($ $ $) NIL)) (-4121 (($ (-767) (-112)) 26)) (-4343 (($ $ $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 8 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL)) (-2988 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1834 (((-641 (-112)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL)) (-1456 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-4116 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-112) $) NIL (|has| (-564) (-846)))) (-3393 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2981 (($ $ (-112)) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094))))) (-4324 (((-641 (-112)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 27)) (-4353 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-1996 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3852 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-112) (-1094)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) 28)) (-3172 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2335 (($ (-641 (-112))) NIL)) (-3533 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2322 (((-858) $) 25)) (-2313 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4406)))) (-2342 (($ $ $) 35)) (-3497 (($ $ $) NIL)) (-4023 (($ $ $) 44)) (-4034 (($ $) 42)) (-4011 (($ $ $) 43)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 29)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 30)) (-3485 (($ $ $) NIL)) (-2059 (((-767) $) 13 (|has| $ (-6 -4406))))) +(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -4034 ($ $)) (-15 -4023 ($ $ $)) (-15 -4011 ($ $ $)))) (-564)) (T -500)) +((-4034 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-4023 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-4011 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))) +(-13 (-123) (-10 -8 (-15 -4034 ($ $)) (-15 -4023 ($ $ $)) (-15 -4011 ($ $ $)))) +((-3501 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|)) 34)) (-2558 (((-1166 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1166 |#4|)) 21)) (-2015 (((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|))) 48)) (-2109 (((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|) 57))) +(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2558 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -2558 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3501 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -2015 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -2109 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) (-1045) (-1235 |#1|) (-1235 |#2|) (-1045)) (T -501)) +((-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))) (-2015 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1235 *6)))) (-3501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1235 *4)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2))))) +(-10 -7 (-15 -2558 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -2558 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3501 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -2015 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -2109 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2310 (((-112) $ $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3948 (((-1264) $) 25)) (-4353 (((-1152) $ (-1170)) 30)) (-1624 (((-1264) $) 17)) (-2322 (((-858) $) 27) (($ (-1152)) 26)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 11)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 9))) +(((-502) (-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $)) (-15 -2322 ($ (-1152)))))) (T -502)) +((-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502))))) +(-13 (-846) (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) (-15 -3948 ((-1264) $)) (-15 -2322 ($ (-1152))))) +((-3018 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2135 ((|#1| |#4|) 10)) (-2284 ((|#3| |#4|) 17))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2135 (|#1| |#4|)) (-15 -2284 (|#3| |#4|)) (-15 -3018 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-988 |#1|) (-373 |#1|) (-373 |#2|)) (T -503)) +((-3018 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-2284 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))) +(-10 -7 (-15 -2135 (|#1| |#4|)) (-15 -2284 (|#3| |#4|)) (-15 -3018 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2310 (((-112) $ $) NIL)) (-2939 (((-112) $ (-641 |#3|)) 128) (((-112) $) 129)) (-3264 (((-112) $) 180)) (-2205 (($ $ |#4|) 119) (($ $ |#4| (-641 |#3|)) 123)) (-2769 (((-1159 (-641 (-948 |#1|)) (-641 (-294 (-948 |#1|)))) (-641 |#4|)) 173 (|has| |#3| (-612 (-1170))))) (-2666 (($ $ $) 107) (($ $ |#4|) 105)) (-1828 (((-112) $) 179)) (-4374 (($ $) 133)) (-1418 (((-1152) $) NIL)) (-1648 (($ $ $) 99) (($ (-641 $)) 101)) (-1369 (((-112) |#4| $) 131)) (-1970 (((-112) $ $) 85)) (-3499 (($ (-641 |#4|)) 106)) (-3840 (((-1114) $) NIL)) (-4204 (($ (-641 |#4|)) 177)) (-2573 (((-112) $) 178)) (-1714 (($ $) 88)) (-2782 (((-641 |#4|) $) 72)) (-3287 (((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|)) NIL)) (-4196 (((-112) |#4| $) 92)) (-3480 (((-564) $ (-641 |#3|)) 135) (((-564) $) 136)) (-2322 (((-858) $) 176) (($ (-641 |#4|)) 102)) (-4186 (($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $))) NIL)) (-2921 (((-112) $ $) 87)) (-3011 (($ $ $) 109)) (** (($ $ (-767)) 117)) (* (($ $ $) 115))) +(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -3011 ($ $ $)) (-15 -1828 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -4196 ((-112) |#4| $)) (-15 -1970 ((-112) $ $)) (-15 -1369 ((-112) |#4| $)) (-15 -2939 ((-112) $ (-641 |#3|))) (-15 -2939 ((-112) $)) (-15 -1648 ($ $ $)) (-15 -1648 ($ (-641 $))) (-15 -2666 ($ $ $)) (-15 -2666 ($ $ |#4|)) (-15 -1714 ($ $)) (-15 -3287 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -4186 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3480 ((-564) $ (-641 |#3|))) (-15 -3480 ((-564) $)) (-15 -4374 ($ $)) (-15 -3499 ($ (-641 |#4|))) (-15 -4204 ($ (-641 |#4|))) (-15 -2573 ((-112) $)) (-15 -2782 ((-641 |#4|) $)) (-15 -2322 ($ (-641 |#4|))) (-15 -2205 ($ $ |#4|)) (-15 -2205 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -2769 ((-1159 (-641 (-948 |#1|)) (-641 (-294 (-948 |#1|)))) (-641 |#4|))) |%noBranch|))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -504)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3011 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1828 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3264 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-4196 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1970 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1369 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-2939 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1648 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2666 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2666 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-1714 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3287 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-4186 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3480 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-3480 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-4374 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-4204 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2573 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2782 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2205 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-2205 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-612 (-1170))) (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1159 (-641 (-948 *4)) (-641 (-294 (-948 *4))))) (-5 *1 (-504 *4 *5 *6 *7))))) +(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -3011 ($ $ $)) (-15 -1828 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -4196 ((-112) |#4| $)) (-15 -1970 ((-112) $ $)) (-15 -1369 ((-112) |#4| $)) (-15 -2939 ((-112) $ (-641 |#3|))) (-15 -2939 ((-112) $)) (-15 -1648 ($ $ $)) (-15 -1648 ($ (-641 $))) (-15 -2666 ($ $ $)) (-15 -2666 ($ $ |#4|)) (-15 -1714 ($ $)) (-15 -3287 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -4186 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3480 ((-564) $ (-641 |#3|))) (-15 -3480 ((-564) $)) (-15 -4374 ($ $)) (-15 -3499 ($ (-641 |#4|))) (-15 -4204 ($ (-641 |#4|))) (-15 -2573 ((-112) $)) (-15 -2782 ((-641 |#4|) $)) (-15 -2322 ($ (-641 |#4|))) (-15 -2205 ($ $ |#4|)) (-15 -2205 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -2769 ((-1159 (-641 (-948 |#1|)) (-641 (-294 (-948 |#1|)))) (-641 |#4|))) |%noBranch|))) +((-2679 (((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 177)) (-1587 (((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-1589 (((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 128)) (-4229 (((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-3003 (((-641 (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 180)) (-4073 (((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-860 |#1|))) 195))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2679 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1587 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4229 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1589 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3003 ((-641 (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4073 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-860 |#1|))))) (-641 (-1170)) (-767)) (T -505)) +((-4073 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *1 (-505 *4 *5)))) (-3003 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-641 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-767)) (-860 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5))))) +(-10 -7 (-15 -2679 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1587 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4229 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1589 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3003 ((-641 (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4073 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-860 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1311 (($) 6)) (-2322 (((-858) $) 12) (((-1170) $) 10)) (-2921 (((-112) $ $) 8))) +(((-506) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1311 ($))))) (T -506)) +((-1311 (*1 *1) (-5 *1 (-506)))) +(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1311 ($)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2507 (($ |#1| |#2|) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1850 ((|#2| $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2389 (($) 12 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) 11) (($ $ $) 34)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 21))) +(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-846)) (T -507)) NIL (-13 (-21) (-509 |#1| |#2|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 13)) (-1778 (($) NIL T CONST)) (-3396 (($ $) 40)) (-3186 (($ |#1| |#2|) 37)) (-2449 (($ (-1 |#1| |#1|) $) 39)) (-3446 ((|#2| $) NIL)) (-3370 ((|#1| $) 41)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1293 (($) 10 T CONST)) (-1702 (((-112) $ $) NIL)) (-1797 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) 35))) -(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-847)) (T -508)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 13)) (-4157 (($) NIL T CONST)) (-2710 (($ $) 40)) (-2507 (($ |#1| |#2|) 37)) (-3123 (($ (-1 |#1| |#1|) $) 39)) (-1850 ((|#2| $) NIL)) (-2686 ((|#1| $) 41)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2389 (($) 10 T CONST)) (-2921 (((-112) $ $) NIL)) (-3011 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) 35))) +(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-846)) (T -508)) NIL (-13 (-23) (-509 |#1| |#2|)) -((-1817 (((-112) $ $) 7)) (-3396 (($ $) 13)) (-3186 (($ |#1| |#2|) 16)) (-2449 (($ (-1 |#1| |#1|) $) 17)) (-3446 ((|#2| $) 14)) (-3370 ((|#1| $) 15)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) -(((-509 |#1| |#2|) (-140) (-1094) (-847)) (T -509)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-847)))) (-3186 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847))))) -(-13 (-1094) (-10 -8 (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (-15 -3186 ($ |t#1| |t#2|)) (-15 -3370 (|t#1| $)) (-15 -3446 (|t#2| $)) (-15 -3396 ($ $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3186 (($ |#1| |#2|) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3446 ((|#2| $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1293 (($) NIL T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 20)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL))) -(((-510 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-847)) (T -510)) +((-2310 (((-112) $ $) 7)) (-2710 (($ $) 13)) (-2507 (($ |#1| |#2|) 16)) (-3123 (($ (-1 |#1| |#1|) $) 17)) (-1850 ((|#2| $) 14)) (-2686 ((|#1| $) 15)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) +(((-509 |#1| |#2|) (-140) (-1094) (-846)) (T -509)) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-846)))) (-2507 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1094)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-846)))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846))))) +(-13 (-1094) (-10 -8 (-15 -3123 ($ (-1 |t#1| |t#1|) $)) (-15 -2507 ($ |t#1| |t#2|)) (-15 -2686 (|t#1| $)) (-15 -1850 (|t#2| $)) (-15 -2710 ($ $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2507 (($ |#1| |#2|) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1850 ((|#2| $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2389 (($) NIL T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 20)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) +(((-510 |#1| |#2|) (-13 (-788) (-509 |#1| |#2|)) (-788) (-846)) (T -510)) +NIL +(-13 (-788) (-509 |#1| |#2|)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2568 (($ $ $) 22)) (-1862 (((-3 $ "failed") $ $) 18)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2507 (($ |#1| |#2|) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1850 ((|#2| $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2389 (($) NIL T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) +(((-511 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-846)) (T -511)) NIL (-13 (-789) (-509 |#1| |#2|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1986 (($ $ $) 22)) (-4088 (((-3 $ "failed") $ $) 18)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3186 (($ |#1| |#2|) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3446 ((|#2| $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1293 (($) NIL T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL))) -(((-511 |#1| |#2|) (-13 (-790) (-509 |#1| |#2|)) (-790) (-847)) (T -511)) -NIL -(-13 (-790) (-509 |#1| |#2|)) -((-1817 (((-112) $ $) NIL)) (-3396 (($ $) 31)) (-3186 (($ |#1| |#2|) 27)) (-2449 (($ (-1 |#1| |#1|) $) 29)) (-3446 ((|#2| $) 33)) (-3370 ((|#1| $) 32)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 26)) (-1702 (((-112) $ $) 19))) -(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1094) (-847)) (T -512)) +((-2310 (((-112) $ $) NIL)) (-2710 (($ $) 31)) (-2507 (($ |#1| |#2|) 27)) (-3123 (($ (-1 |#1| |#1|) $) 29)) (-1850 ((|#2| $) 33)) (-2686 ((|#1| $) 32)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 26)) (-2921 (((-112) $ $) 19))) +(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1094) (-846)) (T -512)) NIL (-509 |#1| |#2|) -((-2633 (($ $ (-641 |#2|) (-641 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -2633 (|#1| |#1| |#2| |#3|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) (-514 |#2| |#3|) (-1094) (-1209)) (T -513)) +((-3100 (($ $ (-641 |#2|) (-641 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -3100 (|#1| |#1| |#2| |#3|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) (-514 |#2| |#3|) (-1094) (-1209)) (T -513)) NIL -(-10 -8 (-15 -2633 (|#1| |#1| |#2| |#3|)) (-15 -2633 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) -((-2633 (($ $ (-641 |#1|) (-641 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(-10 -8 (-15 -3100 (|#1| |#1| |#2| |#3|)) (-15 -3100 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) +((-3100 (($ $ (-641 |#1|) (-641 |#2|)) 7) (($ $ |#1| |#2|) 6))) (((-514 |#1| |#2|) (-140) (-1094) (-1209)) (T -514)) -((-2633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1209)))) (-2633 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209))))) -(-13 (-10 -8 (-15 -2633 ($ $ |t#1| |t#2|)) (-15 -2633 ($ $ (-641 |t#1|) (-641 |t#2|))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 17)) (-4163 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))) $) 19)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3267 (((-768) $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-1765 ((|#1| $ (-564)) 24)) (-2802 ((|#2| $ (-564)) 22)) (-1934 (($ (-1 |#1| |#1|) $) 48)) (-1957 (($ (-1 |#2| |#2|) $) 45)) (-2723 (((-1152) $) NIL)) (-3886 (($ $ $) 55 (|has| |#2| (-789)))) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 44) (($ |#1|) NIL)) (-2742 ((|#2| |#1| $) 51)) (-1293 (($) 11 T CONST)) (-1702 (((-112) $ $) 30)) (-1797 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 37) (($ |#2| |#1|) 32))) +((-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1209)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209))))) +(-13 (-10 -8 (-15 -3100 ($ $ |t#1| |t#2|)) (-15 -3100 ($ $ (-641 |t#1|) (-641 |t#2|))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 17)) (-1412 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $) 19)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1959 (((-767) $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-4047 ((|#1| $ (-564)) 24)) (-4035 ((|#2| $ (-564)) 22)) (-3269 (($ (-1 |#1| |#1|) $) 48)) (-2256 (($ (-1 |#2| |#2|) $) 45)) (-1418 (((-1152) $) NIL)) (-3519 (($ $ $) 55 (|has| |#2| (-788)))) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 44) (($ |#1|) NIL)) (-3467 ((|#2| |#1| $) 51)) (-2389 (($) 11 T CONST)) (-2921 (((-112) $ $) 30)) (-3011 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) 37) (($ |#2| |#1|) 32))) (((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1094) (-131) |#2|) (T -515)) NIL (-323 |#1| |#2|) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-2759 (((-112) (-112)) 32)) (-1970 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) |#1|) $) 78)) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-4341 (($ $) 82 (|has| |#1| (-1094)))) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 65)) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3698 (($ $ (-564)) 19)) (-3205 (((-768) $) 13)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 31)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 29 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-2429 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) 28 (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2783 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2086 (($ (-641 |#1|)) 43)) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) 24 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 61)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 21)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1226 (-564))) NIL)) (-2087 (($ $ (-1226 (-564))) 72) (($ $ (-564)) 66)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) 62 (|has| $ (-6 -4407)))) (-1991 (($ $) 53)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) NIL)) (-2460 (($ $ $) 63) (($ $ |#1|) 60)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) 22 (|has| $ (-6 -4406))))) -(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2086 ($ (-641 |#1|))) (-15 -3205 ((-768) $)) (-15 -3698 ($ $ (-564))) (-15 -2759 ((-112) (-112))))) (-1209) (-564)) (T -516)) -((-2086 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564))))) -(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2086 ($ (-641 |#1|))) (-15 -3205 ((-768) $)) (-15 -3698 ($ $ (-564))) (-15 -2759 ((-112) (-112))))) -((-1817 (((-112) $ $) NIL)) (-3145 (((-1129) $) 11)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1521 (((-1129) $) 13)) (-4270 (((-1129) $) 9)) (-1831 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-517) (-13 (-1077) (-10 -8 (-15 -4270 ((-1129) $)) (-15 -3145 ((-1129) $)) (-15 -1521 ((-1129) $))))) (T -517)) -((-4270 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) -(-13 (-1077) (-10 -8 (-15 -4270 ((-1129) $)) (-15 -3145 ((-1129) $)) (-15 -1521 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL (|has| (-581 |#1|) (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-581 |#1|) "failed") $) NIL)) (-2237 (((-581 |#1|) $) NIL)) (-3624 (($ (-1259 (-581 |#1|))) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-581 |#1|) (-368)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL (|has| (-581 |#1|) (-368)))) (-4282 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-3340 (($ $ (-768)) NIL (-4078 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-4078 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-1420 (((-112) $) NIL)) (-2155 (((-918) $) NIL (|has| (-581 |#1|) (-368))) (((-830 (-918)) $) NIL (-4078 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| (-581 |#1|) (-368)))) (-2370 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-3797 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-2619 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 (-581 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-1811 (((-918) $) NIL (|has| (-581 |#1|) (-368)))) (-3696 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-2402 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1166 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-1372 (($ $ (-1166 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-1468 (($ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1426 (($) NIL (|has| (-581 |#1|) (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-3070 (((-418 $) $) NIL)) (-4085 (((-830 (-918))) NIL) (((-918)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-768) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4078 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3548 (((-134)) NIL)) (-3534 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3019 (((-1166 (-581 |#1|))) NIL)) (-3297 (($) NIL (|has| (-581 |#1|) (-368)))) (-1974 (($) NIL (|has| (-581 |#1|) (-368)))) (-2467 (((-1259 (-581 |#1|)) $) NIL) (((-685 (-581 |#1|)) (-1259 $)) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-581 |#1|) (-368)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-4018 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4078 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-3435 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL))) -(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-918) (-918)) (T -518)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3638 (((-112) (-112)) 32)) (-3750 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) |#1|) $) 78)) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2596 (($ $) 82 (|has| |#1| (-1094)))) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 65)) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2352 (($ $ (-564)) 19)) (-3495 (((-767) $) 13)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 31)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 29 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-3471 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) 28 (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3861 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4267 (($ (-641 |#1|)) 43)) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) 24 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 61)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 21)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1226 (-564))) NIL)) (-4277 (($ $ (-1226 (-564))) 72) (($ $ (-564)) 66)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) 62 (|has| $ (-6 -4407)))) (-3772 (($ $) 53)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) NIL)) (-3783 (($ $ $) 63) (($ $ |#1|) 60)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) 22 (|has| $ (-6 -4406))))) +(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -4267 ($ (-641 |#1|))) (-15 -3495 ((-767) $)) (-15 -2352 ($ $ (-564))) (-15 -3638 ((-112) (-112))))) (-1209) (-564)) (T -516)) +((-4267 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564))))) +(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -4267 ($ (-641 |#1|))) (-15 -3495 ((-767) $)) (-15 -2352 ($ $ (-564))) (-15 -3638 ((-112) (-112))))) +((-2310 (((-112) $ $) NIL)) (-4219 (((-1129) $) 11)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3464 (((-1129) $) 13)) (-1612 (((-1129) $) 9)) (-2322 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-517) (-13 (-1077) (-10 -8 (-15 -1612 ((-1129) $)) (-15 -4219 ((-1129) $)) (-15 -3464 ((-1129) $))))) (T -517)) +((-1612 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) +(-13 (-1077) (-10 -8 (-15 -1612 ((-1129) $)) (-15 -4219 ((-1129) $)) (-15 -3464 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 (((-581 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL (|has| (-581 |#1|) (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-581 |#1|) "failed") $) NIL)) (-1781 (((-581 |#1|) $) NIL)) (-3013 (($ (-1259 (-581 |#1|))) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-581 |#1|) (-368)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL (|has| (-581 |#1|) (-368)))) (-3261 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2180 (($ $ (-767)) NIL (-2789 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-2789 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-4229 (((-112) $) NIL)) (-3717 (((-917) $) NIL (|has| (-581 |#1|) (-368))) (((-829 (-917)) $) NIL (-2789 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| (-581 |#1|) (-368)))) (-4124 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2019 (((-581 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 (-581 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-1368 (((-917) $) NIL (|has| (-581 |#1|) (-368)))) (-2325 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-1350 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1166 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-3696 (($ $ (-1166 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-1998 (($ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4095 (($) NIL (|has| (-581 |#1|) (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-2375 (((-418 $) $) NIL)) (-1829 (((-829 (-917))) NIL) (((-917)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-767) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2789 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3480 (((-134)) NIL)) (-1343 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-581 |#1|) (-368)))) (-2073 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2400 (((-1166 (-581 |#1|))) NIL)) (-3107 (($) NIL (|has| (-581 |#1|) (-368)))) (-2439 (($) NIL (|has| (-581 |#1|) (-368)))) (-3864 (((-1259 (-581 |#1|)) $) NIL) (((-685 (-581 |#1|)) (-1259 $)) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-581 |#1|) (-368)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-2409 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2789 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-581 |#1|) (-368)))) (-3917 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-581 |#1|) (-368)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL))) +(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-917) (-917)) (T -518)) NIL (-329 (-581 |#1|)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) (-564) |#1|) 50)) (-3251 (($ $ (-564) |#4|) NIL)) (-3436 (($ $ (-564) |#5|) NIL)) (-1778 (($) NIL T CONST)) (-3751 ((|#4| $ (-564)) NIL)) (-2261 ((|#1| $ (-564) (-564) |#1|) 49)) (-2190 ((|#1| $ (-564) (-564)) 45)) (-1433 (((-641 |#1|) $) NIL)) (-1745 (((-768) $) 33)) (-3654 (($ (-768) (-768) |#1|) 30)) (-1757 (((-768) $) 38)) (-2324 (((-112) $ (-768)) NIL)) (-2904 (((-564) $) 31)) (-2015 (((-564) $) 32)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2381 (((-564) $) 37)) (-2821 (((-564) $) 39)) (-2250 (($ (-1 |#1| |#1|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) 54 (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 14)) (-4012 (($) 16)) (-1350 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-3065 ((|#5| $ (-564)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) (-564) |#1|) 50)) (-3909 (($ $ (-564) |#4|) NIL)) (-1748 (($ $ (-564) |#5|) NIL)) (-4157 (($) NIL T CONST)) (-1597 ((|#4| $ (-564)) NIL)) (-1466 ((|#1| $ (-564) (-564) |#1|) 49)) (-1407 ((|#1| $ (-564) (-564)) 45)) (-3534 (((-641 |#1|) $) NIL)) (-3835 (((-767) $) 33)) (-4121 (($ (-767) (-767) |#1|) 30)) (-3848 (((-767) $) 38)) (-1751 (((-112) $ (-767)) NIL)) (-2615 (((-564) $) 31)) (-1607 (((-564) $) 32)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4253 (((-564) $) 37)) (-3020 (((-564) $) 39)) (-1456 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) 54 (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 14)) (-2348 (($) 16)) (-4353 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-1582 ((|#5| $ (-564)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1209) (-564) (-564) (-373 |#1|) (-373 |#1|)) (T -519)) NIL (-57 |#1| |#4| |#5|) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) NIL)) (-3149 ((|#1| $) NIL)) (-4045 (($ $) NIL)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) 73 (|has| $ (-6 -4407)))) (-2386 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2573 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4407)))) (-2861 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3653 (($ $ $) 23 (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) 21 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4407))) (($ $ "rest" $) 24 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) |#1|) $) NIL)) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3137 ((|#1| $) NIL)) (-1778 (($) NIL T CONST)) (-4325 (($ $) 28 (|has| $ (-6 -4407)))) (-3919 (($ $) 29)) (-3314 (($ $) 18) (($ $ (-768)) 35)) (-4341 (($ $) 66 (|has| |#1| (-1094)))) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2576 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-1346 (((-112) $) NIL)) (-3360 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-1433 (((-641 |#1|) $) 27 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 31 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-2429 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3956 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3176 (($ |#1|) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) NIL)) (-2723 (((-1152) $) 62 (|has| |#1| (-1094)))) (-2598 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2783 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3652 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) 13) (($ $ (-768)) NIL)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4337 (((-112) $) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 12)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) 17)) (-4012 (($) 16)) (-1350 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-4190 (((-564) $ $) NIL)) (-2087 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2126 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1899 (((-112) $) 39)) (-2034 (($ $) NIL)) (-3292 (($ $) NIL (|has| $ (-6 -4407)))) (-1724 (((-768) $) NIL)) (-3910 (($ $) 44)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) 40)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 26)) (-2460 (($ $ $) 65) (($ $ |#1|) NIL)) (-3043 (($ $ $) NIL) (($ |#1| $) 10) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-1831 (((-859) $) 54 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) 9 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) NIL)) (-3678 ((|#1| $) NIL)) (-3284 (($ $) NIL)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) 73 (|has| $ (-6 -4407)))) (-4294 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2441 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4407)))) (-3811 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3238 (($ $ $) 23 (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) 21 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4407))) (($ $ "rest" $) 24 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) |#1|) $) NIL)) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3667 ((|#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2443 (($ $) 28 (|has| $ (-6 -4407)))) (-2493 (($ $) 29)) (-2008 (($ $) 18) (($ $ (-767)) 35)) (-2596 (($ $) 66 (|has| |#1| (-1094)))) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3628 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3524 (((-112) $) NIL)) (-3847 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3534 (((-641 |#1|) $) 27 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 31 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-3471 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2988 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1870 (($ |#1|) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) NIL)) (-1418 (((-1152) $) 62 (|has| |#1| (-1094)))) (-3649 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3861 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4116 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) 13) (($ $ (-767)) NIL)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-2562 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 12)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) 17)) (-2348 (($) 16)) (-4353 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-3526 (((-564) $ $) NIL)) (-4277 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1996 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2911 (((-112) $) 39)) (-1819 (($ $) NIL)) (-3051 (($ $) NIL (|has| $ (-6 -4407)))) (-1793 (((-767) $) NIL)) (-3743 (($ $) 44)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) 40)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 26)) (-3783 (($ $ $) 65) (($ $ |#1|) NIL)) (-3533 (($ $ $) NIL) (($ |#1| $) 10) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-2322 (((-858) $) 54 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) 9 (|has| $ (-6 -4406))))) (((-520 |#1| |#2|) (-662 |#1|) (-1209) (-564)) (T -520)) NIL (-662 |#1|) -((-3543 ((|#4| |#4|) 37)) (-3531 (((-768) |#4|) 46)) (-3408 (((-768) |#4|) 47)) (-3540 (((-641 |#3|) |#4|) 56 (|has| |#3| (-6 -4407)))) (-1861 (((-3 |#4| "failed") |#4|) 70)) (-1499 ((|#4| |#4|) 62)) (-2876 ((|#1| |#4|) 61))) -(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3543 (|#4| |#4|)) (-15 -3531 ((-768) |#4|)) (-15 -3408 ((-768) |#4|)) (IF (|has| |#3| (-6 -4407)) (-15 -3540 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2876 (|#1| |#4|)) (-15 -1499 (|#4| |#4|)) (-15 -1861 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -521)) -((-1861 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1499 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-3540 (*1 *2 *3) (-12 (|has| *6 (-6 -4407)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3531 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) -(-10 -7 (-15 -3543 (|#4| |#4|)) (-15 -3531 ((-768) |#4|)) (-15 -3408 ((-768) |#4|)) (IF (|has| |#3| (-6 -4407)) (-15 -3540 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2876 (|#1| |#4|)) (-15 -1499 (|#4| |#4|)) (-15 -1861 ((-3 |#4| "failed") |#4|))) -((-3543 ((|#8| |#4|) 20)) (-3540 (((-641 |#3|) |#4|) 29 (|has| |#7| (-6 -4407)))) (-1861 (((-3 |#8| "failed") |#4|) 23))) -(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3543 (|#8| |#4|)) (-15 -1861 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4407)) (-15 -3540 ((-641 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-989 |#1|) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -522)) -((-3540 (*1 *2 *3) (-12 (|has| *9 (-6 -4407)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) (-4 *10 (-683 *7 *8 *9)))) (-1861 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-3543 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))) -(-10 -7 (-15 -3543 (|#8| |#4|)) (-15 -1861 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4407)) (-15 -3540 ((-641 |#3|) |#4|)) |%noBranch|)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1463 (($ (-768) (-768)) NIL)) (-1516 (($ $ $) NIL)) (-2775 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-1512 (((-112) $) NIL)) (-1990 (($ $ (-564) (-564)) 20)) (-3649 (($ $ (-564) (-564)) NIL)) (-3812 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3252 (($ $) NIL)) (-2385 (((-112) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-1353 (($ $ (-564) (-564) $) NIL)) (-1970 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-3251 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-3436 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-2899 (($ (-768) |#1|) NIL)) (-1778 (($) NIL T CONST)) (-3543 (($ $) 29 (|has| |#1| (-307)))) (-3751 (((-600 |#1| |#3|) $ (-564)) NIL)) (-3531 (((-768) $) 32 (|has| |#1| (-556)))) (-2261 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2190 ((|#1| $ (-564) (-564)) NIL)) (-1433 (((-641 |#1|) $) NIL)) (-3408 (((-768) $) 34 (|has| |#1| (-556)))) (-3540 (((-641 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-1745 (((-768) $) NIL)) (-3654 (($ (-768) (-768) |#1|) NIL)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3508 ((|#1| $) 27 (|has| |#1| (-6 (-4408 "*"))))) (-2904 (((-564) $) 10)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2381 (((-564) $) 13)) (-2821 (((-564) $) NIL)) (-4309 (($ (-641 (-641 |#1|))) NIL)) (-2250 (($ (-1 |#1| |#1|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4217 (((-641 (-641 |#1|)) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1861 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-2435 (($ $ $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-2088 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-1302 (((-112) $) NIL)) (-2876 ((|#1| $) 25 (|has| |#1| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-3065 (((-600 |#1| |#2|) $ (-564)) NIL)) (-1831 (($ (-600 |#1| |#2|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4320 (((-112) $) NIL)) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-523 |#1| |#2| |#3|) (-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1046) (-564) (-564)) (T -523)) +((-3442 ((|#4| |#4|) 37)) (-3105 (((-767) |#4|) 46)) (-2748 (((-767) |#4|) 47)) (-3414 (((-641 |#3|) |#4|) 56 (|has| |#3| (-6 -4407)))) (-3721 (((-3 |#4| "failed") |#4|) 70)) (-1393 ((|#4| |#4|) 62)) (-2311 ((|#1| |#4|) 61))) +(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3442 (|#4| |#4|)) (-15 -3105 ((-767) |#4|)) (-15 -2748 ((-767) |#4|)) (IF (|has| |#3| (-6 -4407)) (-15 -3414 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2311 (|#1| |#4|)) (-15 -1393 (|#4| |#4|)) (-15 -3721 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -521)) +((-3721 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1393 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2311 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-3414 (*1 *2 *3) (-12 (|has| *6 (-6 -4407)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3442 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(-10 -7 (-15 -3442 (|#4| |#4|)) (-15 -3105 ((-767) |#4|)) (-15 -2748 ((-767) |#4|)) (IF (|has| |#3| (-6 -4407)) (-15 -3414 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2311 (|#1| |#4|)) (-15 -1393 (|#4| |#4|)) (-15 -3721 ((-3 |#4| "failed") |#4|))) +((-3442 ((|#8| |#4|) 20)) (-3414 (((-641 |#3|) |#4|) 29 (|has| |#7| (-6 -4407)))) (-3721 (((-3 |#8| "failed") |#4|) 23))) +(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3442 (|#8| |#4|)) (-15 -3721 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4407)) (-15 -3414 ((-641 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-988 |#1|) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -522)) +((-3414 (*1 *2 *3) (-12 (|has| *9 (-6 -4407)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) (-4 *10 (-683 *7 *8 *9)))) (-3721 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))) +(-10 -7 (-15 -3442 (|#8| |#4|)) (-15 -3721 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4407)) (-15 -3414 ((-641 |#3|) |#4|)) |%noBranch|)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3991 (($ (-767) (-767)) NIL)) (-3416 (($ $ $) NIL)) (-3789 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-3390 (((-112) $) NIL)) (-2604 (($ $ (-564) (-564)) 20)) (-3216 (($ $ (-564) (-564)) NIL)) (-2150 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3920 (($ $) NIL)) (-4283 (((-112) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2182 (($ $ (-564) (-564) $) NIL)) (-3750 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-3909 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-1748 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-2567 (($ (-767) |#1|) NIL)) (-4157 (($) NIL T CONST)) (-3442 (($ $) 29 (|has| |#1| (-307)))) (-1597 (((-600 |#1| |#3|) $ (-564)) NIL)) (-3105 (((-767) $) 32 (|has| |#1| (-556)))) (-1466 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1407 ((|#1| $ (-564) (-564)) NIL)) (-3534 (((-641 |#1|) $) NIL)) (-2748 (((-767) $) 34 (|has| |#1| (-556)))) (-3414 (((-641 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-3835 (((-767) $) NIL)) (-4121 (($ (-767) (-767) |#1|) NIL)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-4360 ((|#1| $) 27 (|has| |#1| (-6 (-4408 "*"))))) (-2615 (((-564) $) 10)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4253 (((-564) $) 13)) (-3020 (((-564) $) NIL)) (-4187 (($ (-641 (-641 |#1|))) NIL)) (-1456 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3818 (((-641 (-641 |#1|)) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3721 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-3535 (($ $ $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-4289 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-2037 (((-112) $) NIL)) (-2311 ((|#1| $) 25 (|has| |#1| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-1582 (((-600 |#1| |#2|) $ (-564)) NIL)) (-2322 (($ (-600 |#1| |#2|)) NIL) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2378 (((-112) $) NIL)) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-523 |#1| |#2| |#3|) (-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1045) (-564) (-564)) (T -523)) NIL (-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-4151 (((-641 (-1208)) $) 13)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL) (($ (-641 (-1208))) 11)) (-1702 (((-112) $ $) NIL))) -(((-524) (-13 (-1077) (-10 -8 (-15 -1831 ($ (-641 (-1208)))) (-15 -4151 ((-641 (-1208)) $))))) (T -524)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))) -(-13 (-1077) (-10 -8 (-15 -1831 ($ (-641 (-1208)))) (-15 -4151 ((-641 (-1208)) $)))) -((-1817 (((-112) $ $) NIL)) (-2797 (((-1129) $) 14)) (-2723 (((-1152) $) NIL)) (-3013 (((-506) $) 11)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-525) (-13 (-1077) (-10 -8 (-15 -3013 ((-506) $)) (-15 -2797 ((-1129) $))))) (T -525)) -((-3013 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) -(-13 (-1077) (-10 -8 (-15 -3013 ((-506) $)) (-15 -2797 ((-1129) $)))) -((-2721 (((-687 (-1217)) $) 15)) (-3791 (((-687 (-1215)) $) 39)) (-2678 (((-687 (-1214)) $) 30)) (-1356 (((-687 (-549)) $) 12)) (-4005 (((-687 (-547)) $) 43)) (-3687 (((-687 (-546)) $) 34)) (-3633 (((-768) $ (-128)) 55))) -(((-526 |#1|) (-10 -8 (-15 -3633 ((-768) |#1| (-128))) (-15 -3791 ((-687 (-1215)) |#1|)) (-15 -4005 ((-687 (-547)) |#1|)) (-15 -2678 ((-687 (-1214)) |#1|)) (-15 -3687 ((-687 (-546)) |#1|)) (-15 -2721 ((-687 (-1217)) |#1|)) (-15 -1356 ((-687 (-549)) |#1|))) (-527)) (T -526)) -NIL -(-10 -8 (-15 -3633 ((-768) |#1| (-128))) (-15 -3791 ((-687 (-1215)) |#1|)) (-15 -4005 ((-687 (-547)) |#1|)) (-15 -2678 ((-687 (-1214)) |#1|)) (-15 -3687 ((-687 (-546)) |#1|)) (-15 -2721 ((-687 (-1217)) |#1|)) (-15 -1356 ((-687 (-549)) |#1|))) -((-2721 (((-687 (-1217)) $) 12)) (-3791 (((-687 (-1215)) $) 8)) (-2678 (((-687 (-1214)) $) 10)) (-1356 (((-687 (-549)) $) 13)) (-4005 (((-687 (-547)) $) 9)) (-3687 (((-687 (-546)) $) 11)) (-3633 (((-768) $ (-128)) 7)) (-4350 (((-687 (-129)) $) 14)) (-1846 (($ $) 6))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-1295 (((-641 (-1208)) $) 13)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL) (($ (-641 (-1208))) 11)) (-2921 (((-112) $ $) NIL))) +(((-524) (-13 (-1077) (-10 -8 (-15 -2322 ($ (-641 (-1208)))) (-15 -1295 ((-641 (-1208)) $))))) (T -524)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))) +(-13 (-1077) (-10 -8 (-15 -2322 ($ (-641 (-1208)))) (-15 -1295 ((-641 (-1208)) $)))) +((-2310 (((-112) $ $) NIL)) (-3981 (((-1129) $) 14)) (-1418 (((-1152) $) NIL)) (-2338 (((-506) $) 11)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-525) (-13 (-1077) (-10 -8 (-15 -2338 ((-506) $)) (-15 -3981 ((-1129) $))))) (T -525)) +((-2338 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) +(-13 (-1077) (-10 -8 (-15 -2338 ((-506) $)) (-15 -3981 ((-1129) $)))) +((-1397 (((-687 (-1217)) $) 15)) (-1946 (((-687 (-1215)) $) 39)) (-4085 (((-687 (-1214)) $) 30)) (-2492 (((-687 (-549)) $) 12)) (-2265 (((-687 (-547)) $) 43)) (-2280 (((-687 (-546)) $) 34)) (-3102 (((-767) $ (-128)) 55))) +(((-526 |#1|) (-10 -8 (-15 -3102 ((-767) |#1| (-128))) (-15 -1946 ((-687 (-1215)) |#1|)) (-15 -2265 ((-687 (-547)) |#1|)) (-15 -4085 ((-687 (-1214)) |#1|)) (-15 -2280 ((-687 (-546)) |#1|)) (-15 -1397 ((-687 (-1217)) |#1|)) (-15 -2492 ((-687 (-549)) |#1|))) (-527)) (T -526)) +NIL +(-10 -8 (-15 -3102 ((-767) |#1| (-128))) (-15 -1946 ((-687 (-1215)) |#1|)) (-15 -2265 ((-687 (-547)) |#1|)) (-15 -4085 ((-687 (-1214)) |#1|)) (-15 -2280 ((-687 (-546)) |#1|)) (-15 -1397 ((-687 (-1217)) |#1|)) (-15 -2492 ((-687 (-549)) |#1|))) +((-1397 (((-687 (-1217)) $) 12)) (-1946 (((-687 (-1215)) $) 8)) (-4085 (((-687 (-1214)) $) 10)) (-2492 (((-687 (-549)) $) 13)) (-2265 (((-687 (-547)) $) 9)) (-2280 (((-687 (-546)) $) 11)) (-3102 (((-767) $ (-128)) 7)) (-2690 (((-687 (-129)) $) 14)) (-3566 (($ $) 6))) (((-527) (-140)) (T -527)) -((-4350 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))) (-2721 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))) (-3633 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768))))) -(-13 (-173) (-10 -8 (-15 -4350 ((-687 (-129)) $)) (-15 -1356 ((-687 (-549)) $)) (-15 -2721 ((-687 (-1217)) $)) (-15 -3687 ((-687 (-546)) $)) (-15 -2678 ((-687 (-1214)) $)) (-15 -4005 ((-687 (-547)) $)) (-15 -3791 ((-687 (-1215)) $)) (-15 -3633 ((-768) $ (-128))))) +((-2690 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))) (-3102 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767))))) +(-13 (-173) (-10 -8 (-15 -2690 ((-687 (-129)) $)) (-15 -2492 ((-687 (-549)) $)) (-15 -1397 ((-687 (-1217)) $)) (-15 -2280 ((-687 (-546)) $)) (-15 -4085 ((-687 (-1214)) $)) (-15 -2265 ((-687 (-547)) $)) (-15 -1946 ((-687 (-1215)) $)) (-15 -3102 ((-767) $ (-128))))) (((-173) . T)) -((-4260 (((-1166 |#1|) (-768)) 113)) (-2713 (((-1259 |#1|) (-1259 |#1|) (-918)) 106)) (-2745 (((-1264) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) |#1|) 122)) (-2776 (((-1259 |#1|) (-1259 |#1|) (-768)) 53)) (-2900 (((-1259 |#1|) (-918)) 108)) (-1895 (((-1259 |#1|) (-1259 |#1|) (-564)) 30)) (-3194 (((-1166 |#1|) (-1259 |#1|)) 114)) (-4311 (((-1259 |#1|) (-918)) 135)) (-2370 (((-112) (-1259 |#1|)) 118)) (-3797 (((-1259 |#1|) (-1259 |#1|) (-918)) 98)) (-3774 (((-1166 |#1|) (-1259 |#1|)) 129)) (-1811 (((-918) (-1259 |#1|)) 94)) (-3315 (((-1259 |#1|) (-1259 |#1|)) 38)) (-1468 (((-1259 |#1|) (-918) (-918)) 138)) (-3511 (((-1259 |#1|) (-1259 |#1|) (-1114) (-1114)) 29)) (-2832 (((-1259 |#1|) (-1259 |#1|) (-768) (-1114)) 54)) (-3331 (((-1259 (-1259 |#1|)) (-918)) 134)) (-1823 (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 119)) (** (((-1259 |#1|) (-1259 |#1|) (-564)) 65)) (* (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 31))) -(((-528 |#1|) (-10 -7 (-15 -2745 ((-1264) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) |#1|)) (-15 -2900 ((-1259 |#1|) (-918))) (-15 -1468 ((-1259 |#1|) (-918) (-918))) (-15 -3194 ((-1166 |#1|) (-1259 |#1|))) (-15 -4260 ((-1166 |#1|) (-768))) (-15 -2832 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -2776 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -3511 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -1895 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1823 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3797 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -2713 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3315 ((-1259 |#1|) (-1259 |#1|))) (-15 -1811 ((-918) (-1259 |#1|))) (-15 -2370 ((-112) (-1259 |#1|))) (-15 -3331 ((-1259 (-1259 |#1|)) (-918))) (-15 -4311 ((-1259 |#1|) (-918))) (-15 -3774 ((-1166 |#1|) (-1259 |#1|)))) (-349)) (T -528)) -((-3774 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918)) (-5 *1 (-528 *4)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-2713 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1823 (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1895 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3511 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2776 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2832 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-1468 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4))))) -(-10 -7 (-15 -2745 ((-1264) (-1259 (-641 (-2 (|:| -1522 |#1|) (|:| -1468 (-1114))))) |#1|)) (-15 -2900 ((-1259 |#1|) (-918))) (-15 -1468 ((-1259 |#1|) (-918) (-918))) (-15 -3194 ((-1166 |#1|) (-1259 |#1|))) (-15 -4260 ((-1166 |#1|) (-768))) (-15 -2832 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -2776 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -3511 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -1895 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1823 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3797 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -2713 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3315 ((-1259 |#1|) (-1259 |#1|))) (-15 -1811 ((-918) (-1259 |#1|))) (-15 -2370 ((-112) (-1259 |#1|))) (-15 -3331 ((-1259 (-1259 |#1|)) (-918))) (-15 -4311 ((-1259 |#1|) (-918))) (-15 -3774 ((-1166 |#1|) (-1259 |#1|)))) -((-2721 (((-687 (-1217)) $) NIL)) (-3791 (((-687 (-1215)) $) NIL)) (-2678 (((-687 (-1214)) $) NIL)) (-1356 (((-687 (-549)) $) NIL)) (-4005 (((-687 (-547)) $) NIL)) (-3687 (((-687 (-546)) $) NIL)) (-3633 (((-768) $ (-128)) NIL)) (-4350 (((-687 (-129)) $) 25)) (-4028 (((-1114) $ (-1114)) 30)) (-3360 (((-1114) $) 29)) (-4310 (((-112) $) 19)) (-2263 (($ (-388)) 14) (($ (-1152)) 16)) (-2565 (((-112) $) 26)) (-1831 (((-859) $) 33)) (-1846 (($ $) 27))) -(((-529) (-13 (-527) (-611 (-859)) (-10 -8 (-15 -2263 ($ (-388))) (-15 -2263 ($ (-1152))) (-15 -2565 ((-112) $)) (-15 -4310 ((-112) $)) (-15 -3360 ((-1114) $)) (-15 -4028 ((-1114) $ (-1114)))))) (T -529)) -((-2263 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) (-4028 (*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))) -(-13 (-527) (-611 (-859)) (-10 -8 (-15 -2263 ($ (-388))) (-15 -2263 ($ (-1152))) (-15 -2565 ((-112) $)) (-15 -4310 ((-112) $)) (-15 -3360 ((-1114) $)) (-15 -4028 ((-1114) $ (-1114))))) -((-3707 (((-1 |#1| |#1|) |#1|) 11)) (-4293 (((-1 |#1| |#1|)) 10))) -(((-530 |#1|) (-10 -7 (-15 -4293 ((-1 |#1| |#1|))) (-15 -3707 ((-1 |#1| |#1|) |#1|))) (-13 (-723) (-25))) (T -530)) -((-3707 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))) (-4293 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25)))))) -(-10 -7 (-15 -4293 ((-1 |#1| |#1|))) (-15 -3707 ((-1 |#1| |#1|) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1986 (($ $ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3186 (($ (-768) |#1|) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 (-768) (-768)) $) NIL)) (-3446 ((|#1| $) NIL)) (-3370 (((-768) $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 27)) (-1293 (($) NIL T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL))) -(((-531 |#1|) (-13 (-790) (-509 (-768) |#1|)) (-847)) (T -531)) -NIL -(-13 (-790) (-509 (-768) |#1|)) -((-4224 (((-641 |#2|) (-1166 |#1|) |#3|) 98)) (-1824 (((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))) 114)) (-3730 (((-1166 |#1|) (-685 |#1|)) 110))) -(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -3730 ((-1166 |#1|) (-685 |#1|))) (-15 -4224 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -1824 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) (-363) (-363) (-13 (-363) (-845))) (T -532)) -((-1824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) (-4 *6 (-363)) (-5 *2 (-641 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845))))) (-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845)))))) -(-10 -7 (-15 -3730 ((-1166 |#1|) (-685 |#1|))) (-15 -4224 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -1824 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) -((-3796 (((-687 (-1217)) $ (-1217)) NIL)) (-1721 (((-687 (-549)) $ (-549)) NIL)) (-1386 (((-768) $ (-128)) 41)) (-2800 (((-687 (-129)) $ (-129)) 42)) (-2721 (((-687 (-1217)) $) NIL)) (-3791 (((-687 (-1215)) $) NIL)) (-2678 (((-687 (-1214)) $) NIL)) (-1356 (((-687 (-549)) $) NIL)) (-4005 (((-687 (-547)) $) NIL)) (-3687 (((-687 (-546)) $) NIL)) (-3633 (((-768) $ (-128)) 37)) (-4350 (((-687 (-129)) $) 39)) (-3413 (((-112) $) 29)) (-1548 (((-687 $) (-579) (-951)) 19) (((-687 $) (-491) (-951)) 26)) (-1831 (((-859) $) 49)) (-1846 (($ $) 43))) -(((-533) (-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -1548 ((-687 $) (-491) (-951)))))) (T -533)) -((-1548 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533))) (-5 *1 (-533))))) -(-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -1548 ((-687 $) (-491) (-951))))) -((-1626 (((-840 (-564))) 12)) (-1640 (((-840 (-564))) 14)) (-3726 (((-830 (-564))) 9))) -(((-534) (-10 -7 (-15 -3726 ((-830 (-564)))) (-15 -1626 ((-840 (-564)))) (-15 -1640 ((-840 (-564)))))) (T -534)) -((-1640 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1626 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-3726 (*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534))))) -(-10 -7 (-15 -3726 ((-830 (-564)))) (-15 -1626 ((-840 (-564)))) (-15 -1640 ((-840 (-564))))) -((-3833 (((-536) (-1170)) 15)) (-1773 ((|#1| (-536)) 20))) -(((-535 |#1|) (-10 -7 (-15 -3833 ((-536) (-1170))) (-15 -1773 (|#1| (-536)))) (-1209)) (T -535)) -((-1773 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1209))))) -(-10 -7 (-15 -3833 ((-536) (-1170))) (-15 -1773 (|#1| (-536)))) -((-1817 (((-112) $ $) NIL)) (-2328 (((-1152) $) 55)) (-2246 (((-112) $) 51)) (-3866 (((-1170) $) 52)) (-2061 (((-112) $) 49)) (-1307 (((-1152) $) 50)) (-2095 (($ (-1152)) 56)) (-2197 (((-112) $) NIL)) (-2566 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-3676 (($ $ (-641 (-1170))) 21)) (-1773 (((-52) $) 23)) (-3604 (((-112) $) NIL)) (-3888 (((-564) $) NIL)) (-2780 (((-1114) $) NIL)) (-2609 (($ $ (-641 (-1170)) (-1170)) 73)) (-2647 (((-112) $) NIL)) (-2293 (((-225) $) NIL)) (-3076 (($ $) 44)) (-3832 (((-859) $) NIL)) (-4252 (((-112) $ $) NIL)) (-1350 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-3143 (((-641 $) $) 30)) (-4031 (((-1170) (-641 $)) 57)) (-2511 (($ (-1152)) NIL) (($ (-1170)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-859)) NIL) (($ (-641 $)) 65) (((-1098) $) 12) (($ (-1098)) 13)) (-1303 (((-1170) (-1170) (-641 $)) 60)) (-1831 (((-859) $) 54)) (-3200 (($ $) 59)) (-3188 (($ $) 58)) (-1603 (($ $ (-641 $)) 66)) (-2205 (((-112) $) 29)) (-1293 (($) 9 T CONST)) (-1300 (($) 11 T CONST)) (-1702 (((-112) $ $) 74)) (-1823 (($ $ $) 82)) (-1797 (($ $ $) 75)) (** (($ $ (-768)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2828 (((-564) $) NIL))) -(((-536) (-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -1773 ((-52) $)) (-15 -2511 ($ (-1098))) (-15 -1603 ($ $ (-641 $))) (-15 -2609 ($ $ (-641 (-1170)) (-1170))) (-15 -3676 ($ $ (-641 (-1170)))) (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 -1823 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 0 ($) -1809) (-15 1 ($) -1809) (-15 -3076 ($ $)) (-15 -2328 ((-1152) $)) (-15 -2095 ($ (-1152))) (-15 -4031 ((-1170) (-641 $))) (-15 -1303 ((-1170) (-1170) (-641 $)))))) (T -536)) -((-1773 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))) (-2609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))) (-1797 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-1823 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-1293 (*1 *1) (-5 *1 (-536))) (-1300 (*1 *1) (-5 *1 (-536))) (-3076 (*1 *1 *1) (-5 *1 (-536))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))) (-1303 (*1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536))))) -(-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -1773 ((-52) $)) (-15 -2511 ($ (-1098))) (-15 -1603 ($ $ (-641 $))) (-15 -2609 ($ $ (-641 (-1170)) (-1170))) (-15 -3676 ($ $ (-641 (-1170)))) (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 -1823 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 (-1293) ($) -1809) (-15 (-1300) ($) -1809) (-15 -3076 ($ $)) (-15 -2328 ((-1152) $)) (-15 -2095 ($ (-1152))) (-15 -4031 ((-1170) (-641 $))) (-15 -1303 ((-1170) (-1170) (-641 $))))) -((-4156 ((|#2| |#2|) 17)) (-1742 ((|#2| |#2|) 13)) (-2360 ((|#2| |#2| (-564) (-564)) 20)) (-1363 ((|#2| |#2|) 15))) -(((-537 |#1| |#2|) (-10 -7 (-15 -1742 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -2360 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1250 |#1|)) (T -537)) -((-2360 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1250 *4)))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3))))) -(-10 -7 (-15 -1742 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -2360 (|#2| |#2| (-564) (-564)))) -((-2786 (((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))) 32)) (-3643 (((-641 |#2|) (-949 |#1|) |#3|) 54) (((-641 |#2|) (-1166 |#1|) |#3|) 53)) (-3282 (((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|) 106))) -(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -3643 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3643 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -3282 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -2786 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))))) (-452) (-363) (-13 (-363) (-845))) (T -538)) -((-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845))))) (-3282 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-845))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))) -(-10 -7 (-15 -3643 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3643 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -3282 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -2786 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))))) -((-2879 ((|#2| |#2| |#1|) 17)) (-2093 ((|#2| (-641 |#2|)) 33)) (-1394 ((|#2| (-641 |#2|)) 56))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2093 (|#2| (-641 |#2|))) (-15 -1394 (|#2| (-641 |#2|))) (-15 -2879 (|#2| |#2| |#1|))) (-307) (-1235 |#1|) |#1| (-1 |#1| |#1| (-768))) (T -539)) -((-2879 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768)))))) -(-10 -7 (-15 -2093 (|#2| (-641 |#2|))) (-15 -1394 (|#2| (-641 |#2|))) (-15 -2879 (|#2| |#2| |#1|))) -((-3070 (((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 220))) -(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -3070 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -540)) -((-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-946 *7 *6 *5))))) -(-10 -7 (-15 -3070 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -3070 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) -((-4156 ((|#4| |#4|) 73)) (-1742 ((|#4| |#4|) 69)) (-2360 ((|#4| |#4| (-564) (-564)) 75)) (-1363 ((|#4| |#4|) 71))) -(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1742 (|#4| |#4|)) (-15 -1363 (|#4| |#4|)) (-15 -4156 (|#4| |#4|)) (-15 -2360 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1235 |#1|) (-721 |#1| |#2|) (-1250 |#3|)) (T -541)) -((-2360 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1250 *6)))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))) -(-10 -7 (-15 -1742 (|#4| |#4|)) (-15 -1363 (|#4| |#4|)) (-15 -4156 (|#4| |#4|)) (-15 -2360 (|#4| |#4| (-564) (-564)))) -((-4156 ((|#2| |#2|) 27)) (-1742 ((|#2| |#2|) 23)) (-2360 ((|#2| |#2| (-564) (-564)) 29)) (-1363 ((|#2| |#2|) 25))) -(((-542 |#1| |#2|) (-10 -7 (-15 -1742 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -2360 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1250 |#1|)) (T -542)) -((-2360 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3))))) -(-10 -7 (-15 -1742 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -2360 (|#2| |#2| (-564) (-564)))) -((-1634 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32))) -(((-543 |#1| |#2|) (-10 -7 (-15 -1634 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -1634 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -1634 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1046) (-1235 |#1|)) (T -543)) -((-1634 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-1634 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-1634 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5))))) -(-10 -7 (-15 -1634 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -1634 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -1634 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) -((-2487 (($ $ $) 82)) (-3399 (((-418 $) $) 50)) (-2347 (((-3 (-564) "failed") $) 62)) (-2237 (((-564) $) 40)) (-2078 (((-3 (-407 (-564)) "failed") $) 77)) (-2272 (((-112) $) 25)) (-3036 (((-407 (-564)) $) 75)) (-1420 (((-112) $) 53)) (-1447 (($ $ $ $) 90)) (-1569 (((-112) $) 16)) (-2163 (($ $ $) 60)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 72)) (-2619 (((-3 $ "failed") $) 67)) (-1781 (($ $) 23)) (-3244 (($ $ $) 88)) (-2884 (($) 63)) (-3839 (($ $) 56)) (-3070 (((-418 $) $) 48)) (-1492 (((-112) $) 14)) (-3920 (((-768) $) 30)) (-3534 (($ $ (-768)) NIL) (($ $) 11)) (-1991 (($ $) 17)) (-2511 (((-564) $) NIL) (((-536) $) 39) (((-889 (-564)) $) 43) (((-379) $) 33) (((-225) $) 36)) (-2219 (((-768)) 9)) (-1935 (((-112) $ $) 20)) (-4254 (($ $ $) 58))) -(((-544 |#1|) (-10 -8 (-15 -3244 (|#1| |#1| |#1|)) (-15 -1447 (|#1| |#1| |#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -2487 (|#1| |#1| |#1|)) (-15 -1935 ((-112) |#1| |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -2511 ((-225) |#1|)) (-15 -2511 ((-379) |#1|)) (-15 -2163 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2511 ((-564) |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -1569 ((-112) |#1|)) (-15 -3920 ((-768) |#1|)) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -2219 ((-768)))) (-545)) (T -544)) -((-2219 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545))))) -(-10 -8 (-15 -3244 (|#1| |#1| |#1|)) (-15 -1447 (|#1| |#1| |#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -2487 (|#1| |#1| |#1|)) (-15 -1935 ((-112) |#1| |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -2511 ((-225) |#1|)) (-15 -2511 ((-379) |#1|)) (-15 -2163 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2511 ((-564) |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -1569 ((-112) |#1|)) (-15 -3920 ((-768) |#1|)) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -2219 ((-768)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-2487 (($ $ $) 85)) (-4088 (((-3 $ "failed") $ $) 19)) (-1689 (($ $ $ $) 74)) (-2427 (($ $) 52)) (-3399 (((-418 $) $) 53)) (-3554 (((-112) $ $) 125)) (-1598 (((-564) $) 114)) (-1815 (($ $ $) 88)) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 106)) (-2237 (((-564) $) 107)) (-1449 (($ $ $) 129)) (-4050 (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 104) (((-685 (-564)) (-685 $)) 103)) (-3733 (((-3 $ "failed") $) 33)) (-2078 (((-3 (-407 (-564)) "failed") $) 82)) (-2272 (((-112) $) 84)) (-3036 (((-407 (-564)) $) 83)) (-2900 (($) 81) (($ $) 80)) (-1424 (($ $ $) 128)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 123)) (-1420 (((-112) $) 54)) (-1447 (($ $ $ $) 72)) (-2227 (($ $ $) 86)) (-1569 (((-112) $) 116)) (-2163 (($ $ $) 97)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 100)) (-2949 (((-112) $) 31)) (-4301 (((-112) $) 92)) (-2619 (((-3 $ "failed") $) 94)) (-2607 (((-112) $) 115)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 132)) (-1584 (($ $ $ $) 73)) (-1925 (($ $ $) 117)) (-3375 (($ $ $) 118)) (-1781 (($ $) 76)) (-1502 (($ $) 89)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3244 (($ $ $) 71)) (-2884 (($) 93 T CONST)) (-3900 (($ $) 78)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3839 (($ $) 98)) (-3070 (((-418 $) $) 51)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 130)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 124)) (-1492 (((-112) $) 91)) (-3920 (((-768) $) 126)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 127)) (-3534 (($ $ (-768)) 111) (($ $) 109)) (-3656 (($ $) 77)) (-1991 (($ $) 79)) (-2511 (((-564) $) 108) (((-536) $) 102) (((-889 (-564)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 105)) (-2219 (((-768)) 28 T CONST)) (-1935 (((-112) $ $) 87)) (-4254 (($ $ $) 99)) (-3655 (($) 90)) (-3939 (((-112) $ $) 40)) (-2807 (($ $ $ $) 75)) (-1849 (($ $) 113)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-768)) 112) (($ $) 110)) (-1762 (((-112) $ $) 120)) (-1737 (((-112) $ $) 121)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 119)) (-1723 (((-112) $ $) 122)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-3057 (((-1166 |#1|) (-767)) 113)) (-3770 (((-1259 |#1|) (-1259 |#1|) (-917)) 106)) (-3500 (((-1264) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) |#1|) 122)) (-3800 (((-1259 |#1|) (-1259 |#1|) (-767)) 53)) (-3860 (((-1259 |#1|) (-917)) 108)) (-2878 (((-1259 |#1|) (-1259 |#1|) (-564)) 30)) (-3429 (((-1166 |#1|) (-1259 |#1|)) 114)) (-2272 (((-1259 |#1|) (-917)) 135)) (-4124 (((-112) (-1259 |#1|)) 118)) (-2019 (((-1259 |#1|) (-1259 |#1|) (-917)) 98)) (-1790 (((-1166 |#1|) (-1259 |#1|)) 129)) (-1368 (((-917) (-1259 |#1|)) 94)) (-2639 (((-1259 |#1|) (-1259 |#1|)) 38)) (-1998 (((-1259 |#1|) (-917) (-917)) 138)) (-4380 (((-1259 |#1|) (-1259 |#1|) (-1114) (-1114)) 29)) (-3131 (((-1259 |#1|) (-1259 |#1|) (-767) (-1114)) 54)) (-3342 (((-1259 (-1259 |#1|)) (-917)) 134)) (-3034 (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 119)) (** (((-1259 |#1|) (-1259 |#1|) (-564)) 65)) (* (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 31))) +(((-528 |#1|) (-10 -7 (-15 -3500 ((-1264) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) |#1|)) (-15 -3860 ((-1259 |#1|) (-917))) (-15 -1998 ((-1259 |#1|) (-917) (-917))) (-15 -3429 ((-1166 |#1|) (-1259 |#1|))) (-15 -3057 ((-1166 |#1|) (-767))) (-15 -3131 ((-1259 |#1|) (-1259 |#1|) (-767) (-1114))) (-15 -3800 ((-1259 |#1|) (-1259 |#1|) (-767))) (-15 -4380 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -2878 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3034 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -2019 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -3770 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -2639 ((-1259 |#1|) (-1259 |#1|))) (-15 -1368 ((-917) (-1259 |#1|))) (-15 -4124 ((-112) (-1259 |#1|))) (-15 -3342 ((-1259 (-1259 |#1|)) (-917))) (-15 -2272 ((-1259 |#1|) (-917))) (-15 -1790 ((-1166 |#1|) (-1259 |#1|)))) (-349)) (T -528)) +((-1790 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-917)) (-5 *1 (-528 *4)))) (-2639 (*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3034 (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2878 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-4380 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3800 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3131 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1259 *5)) (-5 *3 (-767)) (-5 *4 (-1114)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-1998 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3500 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4))))) +(-10 -7 (-15 -3500 ((-1264) (-1259 (-641 (-2 (|:| -2053 |#1|) (|:| -1998 (-1114))))) |#1|)) (-15 -3860 ((-1259 |#1|) (-917))) (-15 -1998 ((-1259 |#1|) (-917) (-917))) (-15 -3429 ((-1166 |#1|) (-1259 |#1|))) (-15 -3057 ((-1166 |#1|) (-767))) (-15 -3131 ((-1259 |#1|) (-1259 |#1|) (-767) (-1114))) (-15 -3800 ((-1259 |#1|) (-1259 |#1|) (-767))) (-15 -4380 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -2878 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3034 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -2019 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -3770 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -2639 ((-1259 |#1|) (-1259 |#1|))) (-15 -1368 ((-917) (-1259 |#1|))) (-15 -4124 ((-112) (-1259 |#1|))) (-15 -3342 ((-1259 (-1259 |#1|)) (-917))) (-15 -2272 ((-1259 |#1|) (-917))) (-15 -1790 ((-1166 |#1|) (-1259 |#1|)))) +((-1397 (((-687 (-1217)) $) NIL)) (-1946 (((-687 (-1215)) $) NIL)) (-4085 (((-687 (-1214)) $) NIL)) (-2492 (((-687 (-549)) $) NIL)) (-2265 (((-687 (-547)) $) NIL)) (-2280 (((-687 (-546)) $) NIL)) (-3102 (((-767) $ (-128)) NIL)) (-2690 (((-687 (-129)) $) 25)) (-2530 (((-1114) $ (-1114)) 30)) (-3847 (((-1114) $) 29)) (-2260 (((-112) $) 19)) (-2334 (($ (-388)) 14) (($ (-1152)) 16)) (-2360 (((-112) $) 26)) (-2322 (((-858) $) 33)) (-3566 (($ $) 27))) +(((-529) (-13 (-527) (-611 (-858)) (-10 -8 (-15 -2334 ($ (-388))) (-15 -2334 ($ (-1152))) (-15 -2360 ((-112) $)) (-15 -2260 ((-112) $)) (-15 -3847 ((-1114) $)) (-15 -2530 ((-1114) $ (-1114)))))) (T -529)) +((-2334 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2334 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) (-2530 (*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))) +(-13 (-527) (-611 (-858)) (-10 -8 (-15 -2334 ($ (-388))) (-15 -2334 ($ (-1152))) (-15 -2360 ((-112) $)) (-15 -2260 ((-112) $)) (-15 -3847 ((-1114) $)) (-15 -2530 ((-1114) $ (-1114))))) +((-2909 (((-1 |#1| |#1|) |#1|) 11)) (-3340 (((-1 |#1| |#1|)) 10))) +(((-530 |#1|) (-10 -7 (-15 -3340 ((-1 |#1| |#1|))) (-15 -2909 ((-1 |#1| |#1|) |#1|))) (-13 (-722) (-25))) (T -530)) +((-2909 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))) (-3340 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) +(-10 -7 (-15 -3340 ((-1 |#1| |#1|))) (-15 -2909 ((-1 |#1| |#1|) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2568 (($ $ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2507 (($ (-767) |#1|) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 (-767) (-767)) $) NIL)) (-1850 ((|#1| $) NIL)) (-2686 (((-767) $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 27)) (-2389 (($) NIL T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) +(((-531 |#1|) (-13 (-789) (-509 (-767) |#1|)) (-846)) (T -531)) +NIL +(-13 (-789) (-509 (-767) |#1|)) +((-3895 (((-641 |#2|) (-1166 |#1|) |#3|) 98)) (-3366 (((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))) 114)) (-2652 (((-1166 |#1|) (-685 |#1|)) 110))) +(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2652 ((-1166 |#1|) (-685 |#1|))) (-15 -3895 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3366 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) (-363) (-363) (-13 (-363) (-844))) (T -532)) +((-3366 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) (-4 *6 (-363)) (-5 *2 (-641 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844)))))) +(-10 -7 (-15 -2652 ((-1166 |#1|) (-685 |#1|))) (-15 -3895 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3366 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) +((-2007 (((-687 (-1217)) $ (-1217)) NIL)) (-1772 (((-687 (-549)) $ (-549)) NIL)) (-3067 (((-767) $ (-128)) 41)) (-4012 (((-687 (-129)) $ (-129)) 42)) (-1397 (((-687 (-1217)) $) NIL)) (-1946 (((-687 (-1215)) $) NIL)) (-4085 (((-687 (-1214)) $) NIL)) (-2492 (((-687 (-549)) $) NIL)) (-2265 (((-687 (-547)) $) NIL)) (-2280 (((-687 (-546)) $) NIL)) (-3102 (((-767) $ (-128)) 37)) (-2690 (((-687 (-129)) $) 39)) (-1538 (((-112) $) 29)) (-3752 (((-687 $) (-579) (-950)) 19) (((-687 $) (-491) (-950)) 26)) (-2322 (((-858) $) 49)) (-3566 (($ $) 43))) +(((-533) (-13 (-763 (-579)) (-611 (-858)) (-10 -8 (-15 -3752 ((-687 $) (-491) (-950)))))) (T -533)) +((-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-687 (-533))) (-5 *1 (-533))))) +(-13 (-763 (-579)) (-611 (-858)) (-10 -8 (-15 -3752 ((-687 $) (-491) (-950))))) +((-2756 (((-839 (-564))) 12)) (-2767 (((-839 (-564))) 14)) (-4235 (((-829 (-564))) 9))) +(((-534) (-10 -7 (-15 -4235 ((-829 (-564)))) (-15 -2756 ((-839 (-564)))) (-15 -2767 ((-839 (-564)))))) (T -534)) +((-2767 (*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534)))) (-2756 (*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534)))) (-4235 (*1 *2) (-12 (-5 *2 (-829 (-564))) (-5 *1 (-534))))) +(-10 -7 (-15 -4235 ((-829 (-564)))) (-15 -2756 ((-839 (-564)))) (-15 -2767 ((-839 (-564))))) +((-4260 (((-536) (-1170)) 15)) (-2216 ((|#1| (-536)) 20))) +(((-535 |#1|) (-10 -7 (-15 -4260 ((-536) (-1170))) (-15 -2216 (|#1| (-536)))) (-1209)) (T -535)) +((-2216 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1209))))) +(-10 -7 (-15 -4260 ((-536) (-1170))) (-15 -2216 (|#1| (-536)))) +((-2310 (((-112) $ $) NIL)) (-1794 (((-1152) $) 55)) (-2172 (((-112) $) 51)) (-4357 (((-1170) $) 52)) (-3990 (((-112) $) 49)) (-4177 (((-1152) $) 50)) (-4364 (($ (-1152)) 56)) (-2961 (((-112) $) NIL)) (-2376 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-3323 (($ $ (-641 (-1170))) 21)) (-2216 (((-52) $) 23)) (-2835 (((-112) $) NIL)) (-4377 (((-564) $) NIL)) (-3840 (((-1114) $) NIL)) (-3078 (($ $ (-641 (-1170)) (-1170)) 73)) (-1915 (((-112) $) NIL)) (-2793 (((-225) $) NIL)) (-3515 (($ $) 44)) (-3213 (((-858) $) NIL)) (-3482 (((-112) $ $) NIL)) (-4353 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-2461 (((-641 $) $) 30)) (-3262 (((-1170) (-641 $)) 57)) (-3172 (($ (-1152)) NIL) (($ (-1170)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-858)) NIL) (($ (-641 $)) 65) (((-1098) $) 12) (($ (-1098)) 13)) (-1771 (((-1170) (-1170) (-641 $)) 60)) (-2322 (((-858) $) 54)) (-1893 (($ $) 59)) (-1882 (($ $) 58)) (-3138 (($ $ (-641 $)) 66)) (-3041 (((-112) $) 29)) (-2389 (($) 9 T CONST)) (-2403 (($) 11 T CONST)) (-2921 (((-112) $ $) 74)) (-3034 (($ $ $) 82)) (-3011 (($ $ $) 75)) (** (($ $ (-767)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2059 (((-564) $) NIL))) +(((-536) (-13 (-1097 (-1152) (-1170) (-564) (-225) (-858)) (-612 (-1098)) (-10 -8 (-15 -2216 ((-52) $)) (-15 -3172 ($ (-1098))) (-15 -3138 ($ $ (-641 $))) (-15 -3078 ($ $ (-641 (-1170)) (-1170))) (-15 -3323 ($ $ (-641 (-1170)))) (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-564))) (-15 0 ($) -2255) (-15 1 ($) -2255) (-15 -3515 ($ $)) (-15 -1794 ((-1152) $)) (-15 -4364 ($ (-1152))) (-15 -3262 ((-1170) (-641 $))) (-15 -1771 ((-1170) (-1170) (-641 $)))))) (T -536)) +((-2216 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))) (-3078 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) (-3323 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))) (-3011 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-3034 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-2389 (*1 *1) (-5 *1 (-536))) (-2403 (*1 *1) (-5 *1 (-536))) (-3515 (*1 *1 *1) (-5 *1 (-536))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-4364 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))) (-1771 (*1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536))))) +(-13 (-1097 (-1152) (-1170) (-564) (-225) (-858)) (-612 (-1098)) (-10 -8 (-15 -2216 ((-52) $)) (-15 -3172 ($ (-1098))) (-15 -3138 ($ $ (-641 $))) (-15 -3078 ($ $ (-641 (-1170)) (-1170))) (-15 -3323 ($ $ (-641 (-1170)))) (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-564))) (-15 (-2389) ($) -2255) (-15 (-2403) ($) -2255) (-15 -3515 ($ $)) (-15 -1794 ((-1152) $)) (-15 -4364 ($ (-1152))) (-15 -3262 ((-1170) (-641 $))) (-15 -1771 ((-1170) (-1170) (-641 $))))) +((-1342 ((|#2| |#2|) 17)) (-1949 ((|#2| |#2|) 13)) (-4017 ((|#2| |#2| (-564) (-564)) 20)) (-2419 ((|#2| |#2|) 15))) +(((-537 |#1| |#2|) (-10 -7 (-15 -1949 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -4017 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1250 |#1|)) (T -537)) +((-4017 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1250 *4)))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3))))) +(-10 -7 (-15 -1949 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -4017 (|#2| |#2| (-564) (-564)))) +((-3891 (((-641 (-294 (-948 |#2|))) (-641 |#2|) (-641 (-1170))) 32)) (-3165 (((-641 |#2|) (-948 |#1|) |#3|) 54) (((-641 |#2|) (-1166 |#1|) |#3|) 53)) (-2974 (((-641 (-641 |#2|)) (-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)) |#3|) 106))) +(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3165 ((-641 |#2|) (-948 |#1|) |#3|)) (-15 -2974 ((-641 (-641 |#2|)) (-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)) |#3|)) (-15 -3891 ((-641 (-294 (-948 |#2|))) (-641 |#2|) (-641 (-1170))))) (-452) (-363) (-13 (-363) (-844))) (T -538)) +((-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) (-5 *2 (-641 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))) (-2974 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-844))))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -3165 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3165 ((-641 |#2|) (-948 |#1|) |#3|)) (-15 -2974 ((-641 (-641 |#2|)) (-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)) |#3|)) (-15 -3891 ((-641 (-294 (-948 |#2|))) (-641 |#2|) (-641 (-1170))))) +((-2347 ((|#2| |#2| |#1|) 17)) (-4341 ((|#2| (-641 |#2|)) 33)) (-3004 ((|#2| (-641 |#2|)) 56))) +(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4341 (|#2| (-641 |#2|))) (-15 -3004 (|#2| (-641 |#2|))) (-15 -2347 (|#2| |#2| |#1|))) (-307) (-1235 |#1|) |#1| (-1 |#1| |#1| (-767))) (T -539)) +((-2347 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) +(-10 -7 (-15 -4341 (|#2| (-641 |#2|))) (-15 -3004 (|#2| (-641 |#2|))) (-15 -2347 (|#2| |#2| |#1|))) +((-2375 (((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 220))) +(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -2375 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -540)) +((-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-945 *7 *6 *5))))) +(-10 -7 (-15 -2375 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -2375 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) +((-1342 ((|#4| |#4|) 73)) (-1949 ((|#4| |#4|) 69)) (-4017 ((|#4| |#4| (-564) (-564)) 75)) (-2419 ((|#4| |#4|) 71))) +(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1949 (|#4| |#4|)) (-15 -2419 (|#4| |#4|)) (-15 -1342 (|#4| |#4|)) (-15 -4017 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1235 |#1|) (-720 |#1| |#2|) (-1250 |#3|)) (T -541)) +((-4017 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1235 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1250 *6)))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))) +(-10 -7 (-15 -1949 (|#4| |#4|)) (-15 -2419 (|#4| |#4|)) (-15 -1342 (|#4| |#4|)) (-15 -4017 (|#4| |#4| (-564) (-564)))) +((-1342 ((|#2| |#2|) 27)) (-1949 ((|#2| |#2|) 23)) (-4017 ((|#2| |#2| (-564) (-564)) 29)) (-2419 ((|#2| |#2|) 25))) +(((-542 |#1| |#2|) (-10 -7 (-15 -1949 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -4017 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1250 |#1|)) (T -542)) +((-4017 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3))))) +(-10 -7 (-15 -1949 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -4017 (|#2| |#2| (-564) (-564)))) +((-2189 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32))) +(((-543 |#1| |#2|) (-10 -7 (-15 -2189 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2189 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2189 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1045) (-1235 |#1|)) (T -543)) +((-2189 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-2189 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-2189 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1045)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -2189 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2189 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2189 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) +((-2842 (($ $ $) 82)) (-2657 (((-418 $) $) 50)) (-3032 (((-3 (-564) "failed") $) 62)) (-1781 (((-564) $) 40)) (-4175 (((-3 (-407 (-564)) "failed") $) 77)) (-2446 (((-112) $) 25)) (-2569 (((-407 (-564)) $) 75)) (-4229 (((-112) $) 53)) (-4009 (($ $ $ $) 90)) (-2786 (((-112) $) 16)) (-3808 (($ $ $) 60)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 72)) (-1620 (((-3 $ "failed") $) 67)) (-1605 (($ $) 23)) (-3855 (($ $ $) 88)) (-3346 (($) 63)) (-4312 (($ $) 56)) (-2375 (((-418 $) $) 48)) (-1333 (((-112) $) 14)) (-3844 (((-767) $) 30)) (-1343 (($ $ (-767)) NIL) (($ $) 11)) (-3772 (($ $) 17)) (-3172 (((-564) $) NIL) (((-536) $) 39) (((-888 (-564)) $) 43) (((-379) $) 33) (((-225) $) 36)) (-3179 (((-767)) 9)) (-3279 (((-112) $ $) 20)) (-2994 (($ $ $) 58))) +(((-544 |#1|) (-10 -8 (-15 -3855 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1| |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -3279 ((-112) |#1| |#1|)) (-15 -1333 ((-112) |#1|)) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -3172 ((-225) |#1|)) (-15 -3172 ((-379) |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 -2994 (|#1| |#1| |#1|)) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3172 ((-564) |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -2786 ((-112) |#1|)) (-15 -3844 ((-767) |#1|)) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -4229 ((-112) |#1|)) (-15 -3179 ((-767)))) (-545)) (T -544)) +((-3179 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545))))) +(-10 -8 (-15 -3855 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1| |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -3279 ((-112) |#1| |#1|)) (-15 -1333 ((-112) |#1|)) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -3172 ((-225) |#1|)) (-15 -3172 ((-379) |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 -2994 (|#1| |#1| |#1|)) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3172 ((-564) |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -2786 ((-112) |#1|)) (-15 -3844 ((-767) |#1|)) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -4229 ((-112) |#1|)) (-15 -3179 ((-767)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-2842 (($ $ $) 85)) (-1862 (((-3 $ "failed") $ $) 19)) (-1472 (($ $ $ $) 74)) (-3453 (($ $) 52)) (-2657 (((-418 $) $) 53)) (-3547 (((-112) $ $) 125)) (-3085 (((-564) $) 114)) (-2308 (($ $ $) 88)) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 106)) (-1781 (((-564) $) 107)) (-2574 (($ $ $) 129)) (-2750 (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 104) (((-685 (-564)) (-685 $)) 103)) (-2689 (((-3 $ "failed") $) 33)) (-4175 (((-3 (-407 (-564)) "failed") $) 82)) (-2446 (((-112) $) 84)) (-2569 (((-407 (-564)) $) 83)) (-3860 (($) 81) (($ $) 80)) (-2552 (($ $ $) 128)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 123)) (-4229 (((-112) $) 54)) (-4009 (($ $ $ $) 72)) (-3253 (($ $ $) 86)) (-2786 (((-112) $) 116)) (-3808 (($ $ $) 97)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 100)) (-1828 (((-112) $) 31)) (-3415 (((-112) $) 92)) (-1620 (((-3 $ "failed") $) 94)) (-2783 (((-112) $) 115)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 132)) (-2937 (($ $ $ $) 73)) (-1501 (($ $ $) 117)) (-2622 (($ $ $) 118)) (-1605 (($ $) 76)) (-1750 (($ $) 89)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3855 (($ $ $) 71)) (-3346 (($) 93 T CONST)) (-1830 (($ $) 78)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-4312 (($ $) 98)) (-2375 (((-418 $) $) 51)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 130)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 124)) (-1333 (((-112) $) 91)) (-3844 (((-767) $) 126)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 127)) (-1343 (($ $ (-767)) 111) (($ $) 109)) (-4122 (($ $) 77)) (-3772 (($ $) 79)) (-3172 (((-564) $) 108) (((-536) $) 102) (((-888 (-564)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 105)) (-3179 (((-767)) 28 T CONST)) (-3279 (((-112) $ $) 87)) (-2994 (($ $ $) 99)) (-2610 (($) 90)) (-4024 (((-112) $ $) 40)) (-2885 (($ $ $ $) 75)) (-3598 (($ $) 113)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-767)) 112) (($ $) 110)) (-2977 (((-112) $ $) 120)) (-2953 (((-112) $ $) 121)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 119)) (-2942 (((-112) $ $) 122)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-545) (-140)) (T -545)) -((-4301 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3655 (*1 *1) (-4 *1 (-545))) (-1502 (*1 *1 *1) (-4 *1 (-545))) (-1815 (*1 *1 *1 *1) (-4 *1 (-545))) (-1935 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2227 (*1 *1 *1 *1) (-4 *1 (-545))) (-2487 (*1 *1 *1 *1) (-4 *1 (-545))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2078 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2900 (*1 *1) (-4 *1 (-545))) (-2900 (*1 *1 *1) (-4 *1 (-545))) (-1991 (*1 *1 *1) (-4 *1 (-545))) (-3900 (*1 *1 *1) (-4 *1 (-545))) (-3656 (*1 *1 *1) (-4 *1 (-545))) (-1781 (*1 *1 *1) (-4 *1 (-545))) (-2807 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1689 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1584 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1447 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3244 (*1 *1 *1 *1) (-4 *1 (-545)))) -(-13 (-1213) (-307) (-817) (-233) (-612 (-564)) (-1035 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-889 (-564))) (-883 (-564)) (-143) (-1019) (-147) (-1145) (-10 -8 (-15 -4301 ((-112) $)) (-15 -1492 ((-112) $)) (-6 -4405) (-15 -3655 ($)) (-15 -1502 ($ $)) (-15 -1815 ($ $ $)) (-15 -1935 ((-112) $ $)) (-15 -2227 ($ $ $)) (-15 -2487 ($ $ $)) (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $)) (-15 -2900 ($)) (-15 -2900 ($ $)) (-15 -1991 ($ $)) (-15 -3900 ($ $)) (-15 -3656 ($ $)) (-15 -1781 ($ $)) (-15 -2807 ($ $ $ $)) (-15 -1689 ($ $ $ $)) (-15 -1584 ($ $ $ $)) (-15 -1447 ($ $ $ $)) (-15 -3244 ($ $ $)) (-6 -4404))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-889 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-637 (-564)) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-817) . T) ((-845) . T) ((-847) . T) ((-883 (-564)) . T) ((-917) . T) ((-1019) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T)) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-546) (-13 (-841) (-10 -8 (-15 -1778 ($) -1809)))) (T -546)) -((-1778 (*1 *1) (-5 *1 (-546)))) -(-13 (-841) (-10 -8 (-15 -1778 ($) -1809))) +((-3415 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2610 (*1 *1) (-4 *1 (-545))) (-1750 (*1 *1 *1) (-4 *1 (-545))) (-2308 (*1 *1 *1 *1) (-4 *1 (-545))) (-3279 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3253 (*1 *1 *1 *1) (-4 *1 (-545))) (-2842 (*1 *1 *1 *1) (-4 *1 (-545))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-4175 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-3860 (*1 *1) (-4 *1 (-545))) (-3860 (*1 *1 *1) (-4 *1 (-545))) (-3772 (*1 *1 *1) (-4 *1 (-545))) (-1830 (*1 *1 *1) (-4 *1 (-545))) (-4122 (*1 *1 *1) (-4 *1 (-545))) (-1605 (*1 *1 *1) (-4 *1 (-545))) (-2885 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1472 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2937 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4009 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3855 (*1 *1 *1 *1) (-4 *1 (-545)))) +(-13 (-1213) (-307) (-816) (-233) (-612 (-564)) (-1034 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-888 (-564))) (-882 (-564)) (-143) (-1018) (-147) (-1145) (-10 -8 (-15 -3415 ((-112) $)) (-15 -1333 ((-112) $)) (-6 -4405) (-15 -2610 ($)) (-15 -1750 ($ $)) (-15 -2308 ($ $ $)) (-15 -3279 ((-112) $ $)) (-15 -3253 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $)) (-15 -3860 ($)) (-15 -3860 ($ $)) (-15 -3772 ($ $)) (-15 -1830 ($ $)) (-15 -4122 ($ $)) (-15 -1605 ($ $)) (-15 -2885 ($ $ $ $)) (-15 -1472 ($ $ $ $)) (-15 -2937 ($ $ $ $)) (-15 -4009 ($ $ $ $)) (-15 -3855 ($ $ $)) (-6 -4404))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-888 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-637 (-564)) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-816) . T) ((-844) . T) ((-846) . T) ((-882 (-564)) . T) ((-916) . T) ((-1018) . T) ((-1034 (-564)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T)) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-546) (-13 (-840) (-10 -8 (-15 -4157 ($) -2255)))) (T -546)) +((-4157 (*1 *1) (-5 *1 (-546)))) +(-13 (-840) (-10 -8 (-15 -4157 ($) -2255))) ((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-547) (-13 (-841) (-10 -8 (-15 -1778 ($) -1809)))) (T -547)) -((-1778 (*1 *1) (-5 *1 (-547)))) -(-13 (-841) (-10 -8 (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-547) (-13 (-840) (-10 -8 (-15 -4157 ($) -2255)))) (T -547)) +((-4157 (*1 *1) (-5 *1 (-547)))) +(-13 (-840) (-10 -8 (-15 -4157 ($) -2255))) ((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-548) (-13 (-841) (-10 -8 (-15 -1778 ($) -1809)))) (T -548)) -((-1778 (*1 *1) (-5 *1 (-548)))) -(-13 (-841) (-10 -8 (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-548) (-13 (-840) (-10 -8 (-15 -4157 ($) -2255)))) (T -548)) +((-4157 (*1 *1) (-5 *1 (-548)))) +(-13 (-840) (-10 -8 (-15 -4157 ($) -2255))) ((|Integer|) (COND ((< 64 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-549) (-13 (-841) (-10 -8 (-15 -1778 ($) -1809)))) (T -549)) -((-1778 (*1 *1) (-5 *1 (-549)))) -(-13 (-841) (-10 -8 (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-549) (-13 (-840) (-10 -8 (-15 -4157 ($) -2255)))) (T -549)) +((-4157 (*1 *1) (-5 *1 (-549)))) +(-13 (-840) (-10 -8 (-15 -4157 ($) -2255))) ((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#2| $ |#1| |#2|) NIL)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2945 (((-641 |#1|) $) NIL)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3883 (((-641 |#1|) $) NIL)) (-4336 (((-112) |#1| $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#2| $ |#1| |#2|) NIL)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2843 (((-641 |#1|) $) NIL)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3487 (((-641 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-550 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) (-1094) (-1094) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406)))) (T -550)) NIL (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) -((-3990 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))) 52))) -(((-551 |#1| |#2|) (-10 -7 (-15 -3990 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) (-13 (-847) (-556)) (-13 (-27) (-430 |#1|))) (T -551)) -((-3990 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556))) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) -(-10 -7 (-15 -3990 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) -((-4009 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-3119 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-3526 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226))) -(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4009 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3119 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-847) (-556) (-1035 (-564))) (-13 (-27) (-430 |#1|)) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552)) -((-3119 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-4009 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) -(-10 -7 (-15 -3526 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4009 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3119 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2301 (((-112) (-564) (-564)) 12)) (-3148 (((-564) (-564)) 7)) (-2864 (((-564) (-564) (-564)) 10))) -(((-553) (-10 -7 (-15 -3148 ((-564) (-564))) (-15 -2864 ((-564) (-564) (-564))) (-15 -2301 ((-112) (-564) (-564))))) (T -553)) -((-2301 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-2864 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) -(-10 -7 (-15 -3148 ((-564) (-564))) (-15 -2864 ((-564) (-564) (-564))) (-15 -2301 ((-112) (-564) (-564)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2820 ((|#1| $) 62)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-3357 (($ $) 92)) (-3210 (($ $) 75)) (-1986 ((|#1| $) 63)) (-4088 (((-3 $ "failed") $ $) 19)) (-3083 (($ $) 74)) (-3330 (($ $) 91)) (-3187 (($ $) 76)) (-3384 (($ $) 90)) (-3233 (($ $) 77)) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 70)) (-2237 (((-564) $) 71)) (-3733 (((-3 $ "failed") $) 33)) (-3461 (($ |#1| |#1|) 67)) (-1569 (((-112) $) 61)) (-3714 (($) 102)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 73)) (-2607 (((-112) $) 60)) (-1925 (($ $ $) 108)) (-3375 (($ $ $) 107)) (-2358 (($ $) 99)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3363 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-564))) 65)) (-1351 ((|#1| $) 64)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-1403 (((-3 $ "failed") $ $) 43)) (-4326 (($ $) 100)) (-3395 (($ $) 89)) (-3245 (($ $) 78)) (-3371 (($ $) 88)) (-3221 (($ $) 79)) (-3344 (($ $) 87)) (-3199 (($ $) 80)) (-2043 (((-112) $ |#1|) 59)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 69)) (-2219 (((-768)) 28 T CONST)) (-3427 (($ $) 98)) (-3276 (($ $) 86)) (-3939 (((-112) $ $) 40)) (-3406 (($ $) 97)) (-3254 (($ $) 85)) (-3450 (($ $) 96)) (-3302 (($ $) 84)) (-2315 (($ $) 95)) (-3316 (($ $) 83)) (-3439 (($ $) 94)) (-3287 (($ $) 82)) (-3416 (($ $) 93)) (-3265 (($ $) 81)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 105)) (-1737 (((-112) $ $) 104)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 106)) (-1723 (((-112) $ $) 103)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 101) (($ $ (-407 (-564))) 72)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-3345 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))) 52))) +(((-551 |#1| |#2|) (-10 -7 (-15 -3345 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) (-13 (-846) (-556)) (-13 (-27) (-430 |#1|))) (T -551)) +((-3345 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-556))) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) +(-10 -7 (-15 -3345 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) +((-2305 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-3979 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-1408 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226))) +(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1408 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2305 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3979 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-846) (-556) (-1034 (-564))) (-13 (-27) (-430 |#1|)) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552)) +((-3979 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-556) (-1034 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-556) (-1034 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) +(-10 -7 (-15 -1408 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2305 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3979 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1516 (((-112) (-564) (-564)) 12)) (-4257 (((-564) (-564)) 7)) (-3410 (((-564) (-564) (-564)) 10))) +(((-553) (-10 -7 (-15 -4257 ((-564) (-564))) (-15 -3410 ((-564) (-564) (-564))) (-15 -1516 ((-112) (-564) (-564))))) (T -553)) +((-1516 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-3410 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) +(-10 -7 (-15 -4257 ((-564) (-564))) (-15 -3410 ((-564) (-564) (-564))) (-15 -1516 ((-112) (-564) (-564)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-3318 ((|#1| $) 62)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-3802 (($ $) 92)) (-3661 (($ $) 75)) (-2568 ((|#1| $) 63)) (-1862 (((-3 $ "failed") $ $) 19)) (-2387 (($ $) 74)) (-3779 (($ $) 91)) (-3639 (($ $) 76)) (-3825 (($ $) 90)) (-3684 (($ $) 77)) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 70)) (-1781 (((-564) $) 71)) (-2689 (((-3 $ "failed") $) 33)) (-1984 (($ |#1| |#1|) 67)) (-2786 (((-112) $) 61)) (-4223 (($) 102)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 73)) (-2783 (((-112) $) 60)) (-1501 (($ $ $) 108)) (-2622 (($ $ $) 107)) (-3439 (($ $) 99)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2345 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-564))) 65)) (-3357 ((|#1| $) 64)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2526 (((-3 $ "failed") $ $) 43)) (-3571 (($ $) 100)) (-3836 (($ $) 89)) (-3697 (($ $) 78)) (-3814 (($ $) 88)) (-3672 (($ $) 79)) (-3792 (($ $) 87)) (-3650 (($ $) 80)) (-1924 (((-112) $ |#1|) 59)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 69)) (-3179 (((-767)) 28 T CONST)) (-2672 (($ $) 98)) (-3732 (($ $) 86)) (-4024 (((-112) $ $) 40)) (-3849 (($ $) 97)) (-3708 (($ $) 85)) (-2695 (($ $) 96)) (-3757 (($ $) 84)) (-1511 (($ $) 95)) (-3768 (($ $) 83)) (-2684 (($ $) 94)) (-3746 (($ $) 82)) (-2660 (($ $) 93)) (-3720 (($ $) 81)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 105)) (-2953 (((-112) $ $) 104)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 106)) (-2942 (((-112) $ $) 103)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 101) (($ $ (-407 (-564))) 72)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-554 |#1|) (-140) (-13 (-404) (-1194))) (T -554)) -((-3363 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3461 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3363 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3363 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2043 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))) -(-13 (-452) (-847) (-1194) (-999) (-1035 (-564)) (-10 -8 (-6 -2508) (-15 -3363 ($ |t#1| |t#1|)) (-15 -3461 ($ |t#1| |t#1|)) (-15 -3363 ($ |t#1|)) (-15 -3363 ($ (-407 (-564)))) (-15 -1351 (|t#1| $)) (-15 -1986 (|t#1| $)) (-15 -2820 (|t#1| $)) (-15 -1569 ((-112) $)) (-15 -2607 ((-112) $)) (-15 -2043 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-999) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) . T) ((-1197) . T)) -((-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 9)) (-1537 (($ $) 11)) (-1932 (((-112) $) 20)) (-3733 (((-3 $ "failed") $) 16)) (-3939 (((-112) $ $) 22))) -(((-555 |#1|) (-10 -8 (-15 -1932 ((-112) |#1|)) (-15 -3939 ((-112) |#1| |#1|)) (-15 -1537 (|#1| |#1|)) (-15 -3784 ((-2 (|:| -1674 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|))) (-556)) (T -555)) -NIL -(-10 -8 (-15 -1932 ((-112) |#1|)) (-15 -3939 ((-112) |#1| |#1|)) (-15 -1537 (|#1| |#1|)) (-15 -3784 ((-2 (|:| -1674 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ $) 43)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +((-2345 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-1984 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2345 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-1924 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))) +(-13 (-452) (-846) (-1194) (-998) (-1034 (-564)) (-10 -8 (-6 -3564) (-15 -2345 ($ |t#1| |t#1|)) (-15 -1984 ($ |t#1| |t#1|)) (-15 -2345 ($ |t#1|)) (-15 -2345 ($ (-407 (-564)))) (-15 -3357 (|t#1| $)) (-15 -2568 (|t#1| $)) (-15 -3318 (|t#1| $)) (-15 -2786 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -1924 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-998) . T) ((-1034 (-564)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) . T) ((-1197) . T)) +((-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 9)) (-3622 (($ $) 11)) (-3247 (((-112) $) 20)) (-2689 (((-3 $ "failed") $) 16)) (-4024 (((-112) $ $) 22))) +(((-555 |#1|) (-10 -8 (-15 -3247 ((-112) |#1|)) (-15 -4024 ((-112) |#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -1864 ((-2 (|:| -2563 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|))) (-556)) (T -555)) +NIL +(-10 -8 (-15 -3247 ((-112) |#1|)) (-15 -4024 ((-112) |#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -1864 ((-2 (|:| -2563 |#1|) (|:| -4393 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ $) 43)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-556) (-140)) (T -556)) -((-1403 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1674 *1) (|:| -4393 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-1537 (*1 *1 *1) (-4 *1 (-556))) (-3939 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -1403 ((-3 $ "failed") $ $)) (-15 -3784 ((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $)) (-15 -1537 ($ $)) (-15 -3939 ((-112) $ $)) (-15 -1932 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-4064 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|)) 39)) (-2378 (((-585 |#2|) |#2| (-1170)) 64)) (-4205 (((-3 |#2| "failed") |#2| (-1170)) 157)) (-1954 (((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))) 160)) (-2119 (((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|) 42))) -(((-557 |#1| |#2|) (-10 -7 (-15 -2119 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -4064 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -4205 ((-3 |#2| "failed") |#2| (-1170))) (-15 -2378 ((-585 |#2|) |#2| (-1170))) (-15 -1954 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -557)) -((-1954 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-2378 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4205 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-4064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-2119 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) -(-10 -7 (-15 -2119 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -4064 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -4205 ((-3 |#2| "failed") |#2| (-1170))) (-15 -2378 ((-585 |#2|) |#2| (-1170))) (-15 -1954 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) -((-3399 (((-418 |#1|) |#1|) 18)) (-3070 (((-418 |#1|) |#1|) 33)) (-2918 (((-3 |#1| "failed") |#1|) 49)) (-3068 (((-418 |#1|) |#1|) 63))) -(((-558 |#1|) (-10 -7 (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -3068 ((-418 |#1|) |#1|)) (-15 -2918 ((-3 |#1| "failed") |#1|))) (-545)) (T -558)) -((-2918 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-3068 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3399 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3070 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -3070 ((-418 |#1|) |#1|)) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -3068 ((-418 |#1|) |#1|)) (-15 -2918 ((-3 |#1| "failed") |#1|))) -((-4248 (($) 9)) (-2685 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-2945 (((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2783 (($ (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2907 (($ (-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1389 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-1794 (((-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1848 (((-1264)) 12))) -(((-559) (-10 -8 (-15 -4248 ($)) (-15 -1848 ((-1264))) (-15 -2945 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2907 ($ (-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2783 ($ (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2685 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1794 ((-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1389 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559)) -((-1389 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2685 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-2907 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-1848 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))) (-4248 (*1 *1) (-5 *1 (-559)))) -(-10 -8 (-15 -4248 ($)) (-15 -1848 ((-1264))) (-15 -2945 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2907 ($ (-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2783 ($ (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2685 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1794 ((-641 (-2 (|:| -2568 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1389 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3040 (((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|)) 35)) (-4025 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|)) 115)) (-3952 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 55)) (-1980 (((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|))) 92) (((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|)) 114)) (-2492 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|)) 116)) (-4331 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 135 (|has| |#3| (-652 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 134 (|has| |#3| (-652 |#2|)))) (-3198 ((|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|) 53)) (-1977 (((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|)) 34))) -(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -3952 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1980 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -1980 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -4025 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -4025 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2492 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2492 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3040 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -3198 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1977 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -4331 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4331 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -560)) -((-4331 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-4331 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-1977 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) (-3198 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-3040 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) (-2492 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2492 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-4025 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-4025 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-1980 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-1980 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-3952 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-3952 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) -(-10 -7 (-15 -3952 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -3952 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1980 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -1980 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -4025 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -4025 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2492 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2492 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3040 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -3198 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1977 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -4331 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4331 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) -((-3108 (((-564) (-564) (-768)) 88)) (-2816 (((-564) (-564)) 86)) (-1847 (((-564) (-564)) 84)) (-3646 (((-564) (-564)) 91)) (-3729 (((-564) (-564) (-564)) 68)) (-1989 (((-564) (-564) (-564)) 65)) (-2908 (((-407 (-564)) (-564)) 29)) (-2384 (((-564) (-564)) 35)) (-1666 (((-564) (-564)) 77)) (-2452 (((-564) (-564)) 50)) (-4022 (((-641 (-564)) (-564)) 83)) (-3274 (((-564) (-564) (-564) (-564) (-564)) 62)) (-1393 (((-407 (-564)) (-564)) 59))) -(((-561) (-10 -7 (-15 -1393 ((-407 (-564)) (-564))) (-15 -3274 ((-564) (-564) (-564) (-564) (-564))) (-15 -4022 ((-641 (-564)) (-564))) (-15 -2452 ((-564) (-564))) (-15 -1666 ((-564) (-564))) (-15 -2384 ((-564) (-564))) (-15 -2908 ((-407 (-564)) (-564))) (-15 -1989 ((-564) (-564) (-564))) (-15 -3729 ((-564) (-564) (-564))) (-15 -3646 ((-564) (-564))) (-15 -1847 ((-564) (-564))) (-15 -2816 ((-564) (-564))) (-15 -3108 ((-564) (-564) (-768))))) (T -561)) -((-3108 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561)))) (-2816 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3646 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3729 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1989 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2908 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4022 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-3274 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) -(-10 -7 (-15 -1393 ((-407 (-564)) (-564))) (-15 -3274 ((-564) (-564) (-564) (-564) (-564))) (-15 -4022 ((-641 (-564)) (-564))) (-15 -2452 ((-564) (-564))) (-15 -1666 ((-564) (-564))) (-15 -2384 ((-564) (-564))) (-15 -2908 ((-407 (-564)) (-564))) (-15 -1989 ((-564) (-564) (-564))) (-15 -3729 ((-564) (-564) (-564))) (-15 -3646 ((-564) (-564))) (-15 -1847 ((-564) (-564))) (-15 -2816 ((-564) (-564))) (-15 -3108 ((-564) (-564) (-768)))) -((-2835 (((-2 (|:| |answer| |#4|) (|:| -3493 |#4|)) |#4| (-1 |#2| |#2|)) 57))) -(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2835 ((-2 (|:| |answer| |#4|) (|:| -3493 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562)) -((-2835 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3493 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))) -(-10 -7 (-15 -2835 ((-2 (|:| |answer| |#4|) (|:| -3493 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2835 (((-2 (|:| |answer| (-407 |#2|)) (|:| -3493 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2835 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3493 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -563)) -((-2835 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -3493 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -2835 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3493 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 30)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 93)) (-1537 (($ $) 94)) (-1932 (((-112) $) NIL)) (-2487 (($ $ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1689 (($ $ $ $) 51)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL)) (-1815 (($ $ $) 88)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL)) (-2237 (((-564) $) NIL)) (-1449 (($ $ $) 53)) (-4050 (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 76) (((-685 (-564)) (-685 $)) 72)) (-3733 (((-3 $ "failed") $) 90)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL)) (-2272 (((-112) $) NIL)) (-3036 (((-407 (-564)) $) NIL)) (-2900 (($) 78) (($ $) 79)) (-1424 (($ $ $) 87)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1447 (($ $ $ $) NIL)) (-2227 (($ $ $) 69)) (-1569 (((-112) $) NIL)) (-2163 (($ $ $) NIL)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2949 (((-112) $) 34)) (-4301 (((-112) $) 82)) (-2619 (((-3 $ "failed") $) NIL)) (-2607 (((-112) $) 43)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1584 (($ $ $ $) 54)) (-1925 (($ $ $) 84)) (-3375 (($ $ $) 83)) (-1781 (($ $) NIL)) (-1502 (($ $) 49)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) 68)) (-3244 (($ $ $) NIL)) (-2884 (($) NIL T CONST)) (-3900 (($ $) 38)) (-2780 (((-1114) $) 42)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 125)) (-2777 (($ $ $) 91) (($ (-641 $)) NIL)) (-3839 (($ $) NIL)) (-3070 (((-418 $) $) 111)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-1403 (((-3 $ "failed") $ $) 109)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 86)) (-3534 (($ $ (-768)) NIL) (($ $) NIL)) (-3656 (($ $) 40)) (-1991 (($ $) 36)) (-2511 (((-564) $) 48) (((-536) $) 63) (((-889 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1152) $) 65)) (-1831 (((-859) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-2219 (((-768)) NIL T CONST)) (-1935 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (-3655 (($) 35)) (-3939 (((-112) $ $) NIL)) (-2807 (($ $ $ $) 50)) (-1849 (($ $) 77)) (-1293 (($) 6 T CONST)) (-1300 (($) 31 T CONST)) (-3213 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 33)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 10)) (-1808 (($ $) 16) (($ $ $) 39)) (-1797 (($ $ $) 37)) (** (($ $ (-918)) NIL) (($ $ (-768)) 81)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 80) (($ $ $) 52))) -(((-564) (-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2900 ($ $)) (-6 -4393) (-6 -4398) (-6 -4394) (-6 -4388)))) (T -564)) -((-2900 (*1 *1 *1) (-5 *1 (-564)))) -(-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2900 ($ $)) (-6 -4393) (-6 -4398) (-6 -4394) (-6 -4388))) -((-2620 (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058)) 119) (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766)) 121)) (-3907 (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170)) 196) (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152)) 195) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058)) 200) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379)) 201) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379)) 202) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379))))) 203) (((-1032) (-316 (-379)) (-1088 (-840 (-379)))) 191) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379)) 190) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379)) 186) (((-1032) (-766)) 178) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058)) 185))) -(((-565) (-10 -7 (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -3907 ((-1032) (-766))) (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -3907 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -3907 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170))))) (T -565)) -((-3907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1170)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1152)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3907 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565))))) -(-10 -7 (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -3907 ((-1032) (-766))) (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -3907 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -3907 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -3907 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170)))) -((-1825 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|)) 202)) (-1812 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-3060 (((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 198)) (-3290 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170))) 207)) (-3519 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170)) 216 (|has| |#3| (-652 |#2|))))) -(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -1812 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -3060 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -1825 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3290 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3519 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -566)) -((-3519 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-3290 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))) (-1825 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))) (-3060 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))) (-1812 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) -(-10 -7 (-15 -1812 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -3060 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -1825 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3290 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3519 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3331 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) -((-3120 (((-2 (|:| -2792 |#2|) (|:| |nconst| |#2|)) |#2| (-1170)) 63)) (-1494 (((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|)) 180 (-12 (|has| |#2| (-1133)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 159 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564)))))) (-1515 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 161 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564))))))) -(((-567 |#1| |#2|) (-10 -7 (-15 -3120 ((-2 (|:| -2792 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -1515 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -1494 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -1494 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -567)) -((-1494 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-1494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1515 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -2792 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) -(-10 -7 (-15 -3120 ((-2 (|:| -2792 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -1515 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -1494 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -1494 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3010 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))) 41)) (-3907 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-2040 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-4023 (((-3 (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48))) -(((-568 |#1| |#2|) (-10 -7 (-15 -3907 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -2040 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -4023 ((-3 (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3010 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -568)) -((-3010 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-4023 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3521 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-2040 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) -(-10 -7 (-15 -3907 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -2040 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -4023 ((-3 (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3010 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) -((-1813 (((-3 (-564) "failed") |#1|) 14)) (-3604 (((-112) |#1|) 13)) (-3888 (((-564) |#1|) 9))) -(((-569 |#1|) (-10 -7 (-15 -3888 ((-564) |#1|)) (-15 -3604 ((-112) |#1|)) (-15 -1813 ((-3 (-564) "failed") |#1|))) (-1035 (-564))) (T -569)) -((-1813 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))) (-3604 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564))))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2))))) -(-10 -7 (-15 -3888 ((-564) |#1|)) (-15 -3604 ((-112) |#1|)) (-15 -1813 ((-3 (-564) "failed") |#1|))) -((-3125 (((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|)))) 48)) (-1731 (((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170)) 28)) (-3657 (((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170)) 23)) (-1948 (((-3 (-2 (|:| -3521 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 35))) -(((-570 |#1|) (-10 -7 (-15 -1731 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3657 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -3125 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -1948 ((-3 (-2 (|:| -3521 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))))) (-13 (-556) (-1035 (-564)) (-147))) (T -570)) -((-1948 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| -3521 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))) (-3125 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-3657 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4)))) (-1731 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5)))))) -(-10 -7 (-15 -1731 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3657 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -3125 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -1948 ((-3 (-2 (|:| -3521 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))))) -((-1817 (((-112) $ $) 73)) (-1615 (((-112) $) 47)) (-2820 ((|#1| $) 39)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) 77)) (-3357 (($ $) 137)) (-3210 (($ $) 117)) (-1986 ((|#1| $) 37)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $) NIL)) (-3330 (($ $) 139)) (-3187 (($ $) 113)) (-3384 (($ $) 141)) (-3233 (($ $) 121)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) 92)) (-2237 (((-564) $) 94)) (-3733 (((-3 $ "failed") $) 76)) (-3461 (($ |#1| |#1|) 35)) (-1569 (((-112) $) 43)) (-3714 (($) 103)) (-2949 (((-112) $) 54)) (-2915 (($ $ (-564)) NIL)) (-2607 (((-112) $) 44)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2358 (($ $) 105)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3363 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-1351 ((|#1| $) 36)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) 79) (($ (-641 $)) NIL)) (-1403 (((-3 $ "failed") $ $) 78)) (-4326 (($ $) 107)) (-3395 (($ $) 145)) (-3245 (($ $) 119)) (-3371 (($ $) 147)) (-3221 (($ $) 123)) (-3344 (($ $) 143)) (-3199 (($ $) 115)) (-2043 (((-112) $ |#1|) 41)) (-1831 (((-859) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-2219 (((-768)) 101 T CONST)) (-3427 (($ $) 159)) (-3276 (($ $) 129)) (-3939 (((-112) $ $) NIL)) (-3406 (($ $) 157)) (-3254 (($ $) 125)) (-3450 (($ $) 155)) (-3302 (($ $) 135)) (-2315 (($ $) 153)) (-3316 (($ $) 133)) (-3439 (($ $) 151)) (-3287 (($ $) 131)) (-3416 (($ $) 149)) (-3265 (($ $) 127)) (-1293 (($) 30 T CONST)) (-1300 (($) 10 T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 48)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 46)) (-1808 (($ $) 52) (($ $ $) 53)) (-1797 (($ $ $) 51)) (** (($ $ (-918)) 69) (($ $ (-768)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-918) $) 64) (($ (-768) $) NIL) (($ (-564) $) 63) (($ $ $) 60))) +((-2526 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2563 *1) (|:| -4393 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-3622 (*1 *1 *1) (-4 *1 (-556))) (-4024 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -2526 ((-3 $ "failed") $ $)) (-15 -1864 ((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $)) (-15 -3622 ($ $)) (-15 -4024 ((-112) $ $)) (-15 -3247 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-1639 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|)) 39)) (-4215 (((-585 |#2|) |#2| (-1170)) 64)) (-3676 (((-3 |#2| "failed") |#2| (-1170)) 157)) (-2223 (((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))) 160)) (-3371 (((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|) 42))) +(((-557 |#1| |#2|) (-10 -7 (-15 -3371 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -1639 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -3676 ((-3 |#2| "failed") |#2| (-1170))) (-15 -4215 ((-585 |#2|) |#2| (-1170))) (-15 -2223 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -557)) +((-2223 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3676 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1639 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-3371 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(-10 -7 (-15 -3371 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -1639 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -3676 ((-3 |#2| "failed") |#2| (-1170))) (-15 -4215 ((-585 |#2|) |#2| (-1170))) (-15 -2223 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) +((-2657 (((-418 |#1|) |#1|) 18)) (-2375 (((-418 |#1|) |#1|) 33)) (-2770 (((-3 |#1| "failed") |#1|) 49)) (-1617 (((-418 |#1|) |#1|) 63))) +(((-558 |#1|) (-10 -7 (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -1617 ((-418 |#1|) |#1|)) (-15 -2770 ((-3 |#1| "failed") |#1|))) (-545)) (T -558)) +((-2770 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-1617 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-2657 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -1617 ((-418 |#1|) |#1|)) (-15 -2770 ((-3 |#1| "failed") |#1|))) +((-2947 (($) 9)) (-2399 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-2843 (((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-3861 (($ (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2647 (($ (-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2511 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-4324 (((-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3587 (((-1264)) 12))) +(((-559) (-10 -8 (-15 -2947 ($)) (-15 -3587 ((-1264))) (-15 -2843 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2647 ($ (-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3861 ($ (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2399 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4324 ((-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2511 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559)) +((-2511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2399 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-3861 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-2647 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-3587 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))) (-2947 (*1 *1) (-5 *1 (-559)))) +(-10 -8 (-15 -2947 ($)) (-15 -3587 ((-1264))) (-15 -2843 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2647 ($ (-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3861 ($ (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2399 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4324 ((-641 (-2 (|:| -3076 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2511 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4195 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2340 (((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|)) 35)) (-2490 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|)) 115)) (-2951 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 55)) (-2494 (((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|))) 92) (((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|)) 114)) (-2889 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|)) 116)) (-2486 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 135 (|has| |#3| (-652 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 134 (|has| |#3| (-652 |#2|)))) (-2519 ((|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|) 53)) (-3228 (((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|)) 34))) +(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -2951 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2951 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2494 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -2494 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2889 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2889 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2340 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -2519 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -3228 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -2486 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2486 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -560)) +((-2486 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-2486 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-3228 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) (-2519 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-2340 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) (-2889 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2889 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2490 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2490 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2494 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2494 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2951 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2951 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) +(-10 -7 (-15 -2951 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2951 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2494 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -2494 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -2490 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2889 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2889 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2340 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -2519 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -3228 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -2486 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2486 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) +((-1992 (((-564) (-564) (-767)) 88)) (-2976 (((-564) (-564)) 86)) (-3578 (((-564) (-564)) 84)) (-3184 (((-564) (-564)) 91)) (-2641 (((-564) (-564) (-564)) 68)) (-2592 (((-564) (-564) (-564)) 65)) (-2658 (((-407 (-564)) (-564)) 29)) (-4272 (((-564) (-564)) 35)) (-2476 (((-564) (-564)) 77)) (-3688 (((-564) (-564)) 50)) (-2458 (((-641 (-564)) (-564)) 83)) (-2905 (((-564) (-564) (-564) (-564) (-564)) 62)) (-2993 (((-407 (-564)) (-564)) 59))) +(((-561) (-10 -7 (-15 -2993 ((-407 (-564)) (-564))) (-15 -2905 ((-564) (-564) (-564) (-564) (-564))) (-15 -2458 ((-641 (-564)) (-564))) (-15 -3688 ((-564) (-564))) (-15 -2476 ((-564) (-564))) (-15 -4272 ((-564) (-564))) (-15 -2658 ((-407 (-564)) (-564))) (-15 -2592 ((-564) (-564) (-564))) (-15 -2641 ((-564) (-564) (-564))) (-15 -3184 ((-564) (-564))) (-15 -3578 ((-564) (-564))) (-15 -2976 ((-564) (-564))) (-15 -1992 ((-564) (-564) (-767))))) (T -561)) +((-1992 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-767)) (-5 *1 (-561)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2641 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2592 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2658 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2458 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2905 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2993 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) +(-10 -7 (-15 -2993 ((-407 (-564)) (-564))) (-15 -2905 ((-564) (-564) (-564) (-564) (-564))) (-15 -2458 ((-641 (-564)) (-564))) (-15 -3688 ((-564) (-564))) (-15 -2476 ((-564) (-564))) (-15 -4272 ((-564) (-564))) (-15 -2658 ((-407 (-564)) (-564))) (-15 -2592 ((-564) (-564) (-564))) (-15 -2641 ((-564) (-564) (-564))) (-15 -3184 ((-564) (-564))) (-15 -3578 ((-564) (-564))) (-15 -2976 ((-564) (-564))) (-15 -1992 ((-564) (-564) (-767)))) +((-3160 (((-2 (|:| |answer| |#4|) (|:| -4205 |#4|)) |#4| (-1 |#2| |#2|)) 57))) +(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3160 ((-2 (|:| |answer| |#4|) (|:| -4205 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562)) +((-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4205 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))) +(-10 -7 (-15 -3160 ((-2 (|:| |answer| |#4|) (|:| -4205 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3160 (((-2 (|:| |answer| (-407 |#2|)) (|:| -4205 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18))) +(((-563 |#1| |#2|) (-10 -7 (-15 -3160 ((-2 (|:| |answer| (-407 |#2|)) (|:| -4205 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -563)) +((-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -4205 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -3160 ((-2 (|:| |answer| (-407 |#2|)) (|:| -4205 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 30)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 93)) (-3622 (($ $) 94)) (-3247 (((-112) $) NIL)) (-2842 (($ $ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1472 (($ $ $ $) 51)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL)) (-2308 (($ $ $) 88)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL)) (-1781 (((-564) $) NIL)) (-2574 (($ $ $) 53)) (-2750 (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 76) (((-685 (-564)) (-685 $)) 72)) (-2689 (((-3 $ "failed") $) 90)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL)) (-2446 (((-112) $) NIL)) (-2569 (((-407 (-564)) $) NIL)) (-3860 (($) 78) (($ $) 79)) (-2552 (($ $ $) 87)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-3253 (($ $ $) 69)) (-2786 (((-112) $) NIL)) (-3808 (($ $ $) NIL)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-1828 (((-112) $) 34)) (-3415 (((-112) $) 82)) (-1620 (((-3 $ "failed") $) NIL)) (-2783 (((-112) $) 43)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2937 (($ $ $ $) 54)) (-1501 (($ $ $) 84)) (-2622 (($ $ $) 83)) (-1605 (($ $) NIL)) (-1750 (($ $) 49)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) 68)) (-3855 (($ $ $) NIL)) (-3346 (($) NIL T CONST)) (-1830 (($ $) 38)) (-3840 (((-1114) $) 42)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 125)) (-3235 (($ $ $) 91) (($ (-641 $)) NIL)) (-4312 (($ $) NIL)) (-2375 (((-418 $) $) 111)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2526 (((-3 $ "failed") $ $) 109)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1333 (((-112) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 86)) (-1343 (($ $ (-767)) NIL) (($ $) NIL)) (-4122 (($ $) 40)) (-3772 (($ $) 36)) (-3172 (((-564) $) 48) (((-536) $) 63) (((-888 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1152) $) 65)) (-2322 (((-858) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-3179 (((-767)) NIL T CONST)) (-3279 (((-112) $ $) NIL)) (-2994 (($ $ $) NIL)) (-2610 (($) 35)) (-4024 (((-112) $ $) NIL)) (-2885 (($ $ $ $) 50)) (-3598 (($ $) 77)) (-2389 (($) 6 T CONST)) (-2403 (($) 31 T CONST)) (-3552 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-818) $) 28) (((-1264) (-818) $ (-112)) 29)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 33)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 10)) (-3021 (($ $) 16) (($ $ $) 39)) (-3011 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-767)) 81)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 80) (($ $ $) 52))) +(((-564) (-13 (-545) (-612 (-1152)) (-824) (-10 -8 (-15 -3860 ($ $)) (-6 -4393) (-6 -4398) (-6 -4394) (-6 -4388)))) (T -564)) +((-3860 (*1 *1 *1) (-5 *1 (-564)))) +(-13 (-545) (-612 (-1152)) (-824) (-10 -8 (-15 -3860 ($ $)) (-6 -4393) (-6 -4398) (-6 -4394) (-6 -4388))) +((-1632 (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765) (-1057)) 119) (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765)) 121)) (-3719 (((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1170)) 196) (((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1152)) 195) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379) (-1057)) 200) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379)) 201) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379)) 202) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379))))) 203) (((-1031) (-316 (-379)) (-1088 (-839 (-379)))) 191) (((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379)) 190) (((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379)) 186) (((-1031) (-765)) 178) (((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379) (-1057)) 185))) +(((-565) (-10 -7 (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379) (-1057))) (-15 -3719 ((-1031) (-765))) (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -3719 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1152))) (-15 -3719 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1170))))) (T -565)) +((-3719 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379)))) (-5 *5 (-1170)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379)))) (-5 *5 (-1152)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) (-5 *1 (-565)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3719 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565))))) +(-10 -7 (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379) (-1057))) (-15 -3719 ((-1031) (-765))) (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-1088 (-839 (-379))))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379))) (-15 -3719 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -3719 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1152))) (-15 -3719 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1170)))) +((-3375 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|)) 202)) (-1378 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-1536 (((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 198)) (-3028 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170))) 207)) (-1351 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170)) 216 (|has| |#3| (-652 |#2|))))) +(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -1378 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -1536 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -3375 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3028 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -1351 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -566)) +((-1351 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-3028 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))) (-3375 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))) (-1536 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))) (-1378 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) +(-10 -7 (-15 -1378 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -1536 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -3375 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3028 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -1351 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3342 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) +((-3988 (((-2 (|:| -3934 |#2|) (|:| |nconst| |#2|)) |#2| (-1170)) 63)) (-1353 (((-3 |#2| "failed") |#2| (-1170) (-839 |#2|) (-839 |#2|)) 180 (-12 (|has| |#2| (-1133)) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-882 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 159 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-882 (-564)))))) (-3406 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 161 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-882 (-564))))))) +(((-567 |#1| |#2|) (-10 -7 (-15 -3988 ((-2 (|:| -3934 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3406 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -1353 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -1353 ((-3 |#2| "failed") |#2| (-1170) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-846) (-1034 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -567)) +((-1353 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-839 *2)) (-4 *2 (-1133)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-1353 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3406 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3988 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -3934 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(-10 -7 (-15 -3988 ((-2 (|:| -3934 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3406 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -1353 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -1353 ((-3 |#2| "failed") |#2| (-1170) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2314 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))) 41)) (-3719 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-1891 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-2469 (((-3 (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48))) +(((-568 |#1| |#2|) (-10 -7 (-15 -3719 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -1891 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2469 ((-3 (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2314 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-564))) (-1235 |#1|)) (T -568)) +((-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-2469 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -1370 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-1891 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147) (-1034 (-564)))) (-5 *1 (-568 *3 *4)))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) +(-10 -7 (-15 -3719 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -1891 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2469 ((-3 (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2314 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) +((-1387 (((-3 (-564) "failed") |#1|) 14)) (-2835 (((-112) |#1|) 13)) (-4377 (((-564) |#1|) 9))) +(((-569 |#1|) (-10 -7 (-15 -4377 ((-564) |#1|)) (-15 -2835 ((-112) |#1|)) (-15 -1387 ((-3 (-564) "failed") |#1|))) (-1034 (-564))) (T -569)) +((-1387 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2)))) (-2835 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1034 (-564))))) (-4377 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2))))) +(-10 -7 (-15 -4377 ((-564) |#1|)) (-15 -2835 ((-112) |#1|)) (-15 -1387 ((-3 (-564) "failed") |#1|))) +((-4044 (((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1170) (-641 (-407 (-948 |#1|)))) 48)) (-1848 (((-585 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1170)) 28)) (-3248 (((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1170)) 23)) (-2175 (((-3 (-2 (|:| -1370 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))) 35))) +(((-570 |#1|) (-10 -7 (-15 -1848 ((-585 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -3248 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1170))) (-15 -4044 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1170) (-641 (-407 (-948 |#1|))))) (-15 -2175 ((-3 (-2 (|:| -1370 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))))) (-13 (-556) (-1034 (-564)) (-147))) (T -570)) +((-2175 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-147))) (-5 *2 (-2 (|:| -1370 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-948 *5))))) (-4044 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-3248 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)) (-147))) (-5 *1 (-570 *4)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-147))) (-5 *2 (-585 (-407 (-948 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-948 *5)))))) +(-10 -7 (-15 -1848 ((-585 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -3248 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1170))) (-15 -4044 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1170) (-641 (-407 (-948 |#1|))))) (-15 -2175 ((-3 (-2 (|:| -1370 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))))) +((-2310 (((-112) $ $) 73)) (-3264 (((-112) $) 47)) (-3318 ((|#1| $) 39)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) 77)) (-3802 (($ $) 137)) (-3661 (($ $) 117)) (-2568 ((|#1| $) 37)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $) NIL)) (-3779 (($ $) 139)) (-3639 (($ $) 113)) (-3825 (($ $) 141)) (-3684 (($ $) 121)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) 92)) (-1781 (((-564) $) 94)) (-2689 (((-3 $ "failed") $) 76)) (-1984 (($ |#1| |#1|) 35)) (-2786 (((-112) $) 43)) (-4223 (($) 103)) (-1828 (((-112) $) 54)) (-2739 (($ $ (-564)) NIL)) (-2783 (((-112) $) 44)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3439 (($ $) 105)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2345 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-3357 ((|#1| $) 36)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) 79) (($ (-641 $)) NIL)) (-2526 (((-3 $ "failed") $ $) 78)) (-3571 (($ $) 107)) (-3836 (($ $) 145)) (-3697 (($ $) 119)) (-3814 (($ $) 147)) (-3672 (($ $) 123)) (-3792 (($ $) 143)) (-3650 (($ $) 115)) (-1924 (((-112) $ |#1|) 41)) (-2322 (((-858) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-3179 (((-767)) 101 T CONST)) (-2672 (($ $) 159)) (-3732 (($ $) 129)) (-4024 (((-112) $ $) NIL)) (-3849 (($ $) 157)) (-3708 (($ $) 125)) (-2695 (($ $) 155)) (-3757 (($ $) 135)) (-1511 (($ $) 153)) (-3768 (($ $) 133)) (-2684 (($ $) 151)) (-3746 (($ $) 131)) (-2660 (($ $) 149)) (-3720 (($ $) 127)) (-2389 (($) 30 T CONST)) (-2403 (($) 10 T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 48)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 46)) (-3021 (($ $) 52) (($ $ $) 53)) (-3011 (($ $ $) 51)) (** (($ $ (-917)) 69) (($ $ (-767)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-917) $) 64) (($ (-767) $) NIL) (($ (-564) $) 63) (($ $ $) 60))) (((-571 |#1|) (-554 |#1|) (-13 (-404) (-1194))) (T -571)) NIL (-554 |#1|) -((-2601 (((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))) 27))) -(((-572) (-10 -7 (-15 -2601 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))) (T -572)) -((-2601 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) (-5 *1 (-572))))) -(-10 -7 (-15 -2601 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))))) -((-1663 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170)) 19)) (-3061 (((-641 (-610 |#2|)) (-641 |#2|) (-1170)) 23)) (-3650 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|))) 11)) (-2593 ((|#2| |#2| (-1170)) 59 (|has| |#1| (-556)))) (-4216 ((|#2| |#2| (-1170)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-2349 (((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170)) 25)) (-3107 (((-610 |#2|) (-641 (-610 |#2|))) 24)) (-3669 (((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1035 (-1170))) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-883 (-564))))))) -(((-573 |#1| |#2|) (-10 -7 (-15 -1663 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -3107 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -2349 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3650 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -3061 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2593 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -4216 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -3669 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-847) (-430 |#1|)) (T -573)) -((-3669 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1170))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452)) (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-4216 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-2593 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-3650 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847)) (-5 *1 (-573 *3 *4)))) (-2349 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-1663 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) (-4 *4 (-847)) (-5 *1 (-573 *4 *5))))) -(-10 -7 (-15 -1663 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -3107 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -2349 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3650 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -3061 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2593 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -4216 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -3669 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-4279 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|)) 200)) (-4053 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|))) 177)) (-2242 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|))) 174)) (-3494 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 165)) (-4244 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-3146 (((-3 (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 203)) (-2462 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 206)) (-3949 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-3598 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3834 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|))) 181)) (-3948 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 169)) (-3034 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 191)) (-2108 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 211))) -(((-574 |#1| |#2|) (-10 -7 (-15 -4244 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3034 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -4279 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2462 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2108 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -4053 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -3834 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -3146 ((-3 (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2242 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -3494 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3948 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3949 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3598 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -574)) -((-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-3948 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3777 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))) (-3494 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3521 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))) (-2242 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-3146 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3521 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-3834 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3777 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-4053 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3521 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-2108 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3777 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3521 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2462 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3521 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3521 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-4279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3777 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3521 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(-10 -7 (-15 -4244 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3034 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -4279 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2462 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2108 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -4053 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -3834 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -3146 ((-3 (-2 (|:| -3521 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2242 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -3494 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3948 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3777 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3949 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3598 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1908 (((-3 |#2| "failed") |#2| (-1170) (-1170)) 10))) -(((-575 |#1| |#2|) (-10 -7 (-15 -1908 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-1133) (-29 |#1|))) (T -575)) -((-1908 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4)))))) -(-10 -7 (-15 -1908 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) -((-3796 (((-687 (-1217)) $ (-1217)) 26)) (-1721 (((-687 (-549)) $ (-549)) 25)) (-1386 (((-768) $ (-128)) 27)) (-2800 (((-687 (-129)) $ (-129)) 24)) (-2721 (((-687 (-1217)) $) 12)) (-3791 (((-687 (-1215)) $) 8)) (-2678 (((-687 (-1214)) $) 10)) (-1356 (((-687 (-549)) $) 13)) (-4005 (((-687 (-547)) $) 9)) (-3687 (((-687 (-546)) $) 11)) (-3633 (((-768) $ (-128)) 7)) (-4350 (((-687 (-129)) $) 14)) (-1846 (($ $) 6))) +((-2732 (((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))) 27))) +(((-572) (-10 -7 (-15 -2732 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))) (T -572)) +((-2732 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) (-5 *1 (-572))))) +(-10 -7 (-15 -2732 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))))) +((-2455 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170)) 19)) (-1543 (((-641 (-610 |#2|)) (-641 |#2|) (-1170)) 23)) (-1565 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|))) 11)) (-2653 ((|#2| |#2| (-1170)) 59 (|has| |#1| (-556)))) (-3807 ((|#2| |#2| (-1170)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-2023 (((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170)) 25)) (-1979 (((-610 |#2|) (-641 (-610 |#2|))) 24)) (-3367 (((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1034 (-1170))) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-882 (-564))))))) +(((-573 |#1| |#2|) (-10 -7 (-15 -2455 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -1979 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -2023 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -1565 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -1543 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2653 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3807 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1034 (-1170))) (-15 -3367 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-846) (-430 |#1|)) (T -573)) +((-3367 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1170))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1170)) (-4 *7 (-612 (-888 (-564)))) (-4 *7 (-452)) (-4 *7 (-882 (-564))) (-4 *7 (-846)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-846)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-2653 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-846)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-1565 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) (-5 *1 (-573 *3 *4)))) (-2023 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-573 *5 *6)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-846)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-2455 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) (-4 *4 (-846)) (-5 *1 (-573 *4 *5))))) +(-10 -7 (-15 -2455 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -1979 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -2023 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -1565 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -1543 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2653 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3807 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1034 (-1170))) (-15 -3367 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3229 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|)) 200)) (-2780 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|))) 177)) (-2131 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|))) 174)) (-4216 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 165)) (-2903 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-4234 (((-3 (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 203)) (-3803 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 206)) (-2930 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-3967 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-4269 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|))) 181)) (-2919 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 169)) (-2546 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 191)) (-1373 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 211))) +(((-574 |#1| |#2|) (-10 -7 (-15 -2903 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2546 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3229 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -3803 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1373 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -2780 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -4269 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -4234 ((-3 (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2131 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -4216 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2919 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2930 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3967 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -574)) +((-3967 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-2919 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))) (-4216 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1370 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))) (-2131 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-4234 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1370 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-4269 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4250 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-2780 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1370 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-1373 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -1370 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-3803 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1370 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -1370 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-3229 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2546 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1370 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(-10 -7 (-15 -2903 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2546 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3229 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -3803 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1373 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -2780 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -4269 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -4234 ((-3 (-2 (|:| -1370 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2131 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -4216 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2919 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2930 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3967 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3012 (((-3 |#2| "failed") |#2| (-1170) (-1170)) 10))) +(((-575 |#1| |#2|) (-10 -7 (-15 -3012 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-1133) (-29 |#1|))) (T -575)) +((-3012 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1194) (-955) (-1133) (-29 *4)))))) +(-10 -7 (-15 -3012 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) +((-2007 (((-687 (-1217)) $ (-1217)) 26)) (-1772 (((-687 (-549)) $ (-549)) 25)) (-3067 (((-767) $ (-128)) 27)) (-4012 (((-687 (-129)) $ (-129)) 24)) (-1397 (((-687 (-1217)) $) 12)) (-1946 (((-687 (-1215)) $) 8)) (-4085 (((-687 (-1214)) $) 10)) (-2492 (((-687 (-549)) $) 13)) (-2265 (((-687 (-547)) $) 9)) (-2280 (((-687 (-546)) $) 11)) (-3102 (((-767) $ (-128)) 7)) (-2690 (((-687 (-129)) $) 14)) (-3566 (($ $) 6))) (((-576) (-140)) (T -576)) NIL -(-13 (-527) (-857)) -(((-173) . T) ((-527) . T) ((-857) . T)) -((-3796 (((-687 (-1217)) $ (-1217)) NIL)) (-1721 (((-687 (-549)) $ (-549)) NIL)) (-1386 (((-768) $ (-128)) NIL)) (-2800 (((-687 (-129)) $ (-129)) NIL)) (-2721 (((-687 (-1217)) $) NIL)) (-3791 (((-687 (-1215)) $) NIL)) (-2678 (((-687 (-1214)) $) NIL)) (-1356 (((-687 (-549)) $) NIL)) (-4005 (((-687 (-547)) $) NIL)) (-3687 (((-687 (-546)) $) NIL)) (-3633 (((-768) $ (-128)) NIL)) (-4350 (((-687 (-129)) $) NIL)) (-4310 (((-112) $) NIL)) (-2206 (($ (-388)) 14) (($ (-1152)) 16)) (-1831 (((-859) $) NIL)) (-1846 (($ $) NIL))) -(((-577) (-13 (-576) (-611 (-859)) (-10 -8 (-15 -2206 ($ (-388))) (-15 -2206 ($ (-1152))) (-15 -4310 ((-112) $))))) (T -577)) -((-2206 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))) -(-13 (-576) (-611 (-859)) (-10 -8 (-15 -2206 ($ (-388))) (-15 -2206 ($ (-1152))) (-15 -4310 ((-112) $)))) -((-1817 (((-112) $ $) NIL)) (-1478 (($) 7 T CONST)) (-2723 (((-1152) $) NIL)) (-3763 (($) 6 T CONST)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 14)) (-3647 (($) 8 T CONST)) (-1702 (((-112) $ $) 10))) -(((-578) (-13 (-1094) (-10 -8 (-15 -3763 ($) -1809) (-15 -1478 ($) -1809) (-15 -3647 ($) -1809)))) (T -578)) -((-3763 (*1 *1) (-5 *1 (-578))) (-1478 (*1 *1) (-5 *1 (-578))) (-3647 (*1 *1) (-5 *1 (-578)))) -(-13 (-1094) (-10 -8 (-15 -3763 ($) -1809) (-15 -1478 ($) -1809) (-15 -3647 ($) -1809))) -((-1817 (((-112) $ $) NIL)) (-3547 (((-687 $) (-491)) 21)) (-2723 (((-1152) $) NIL)) (-2617 (($ (-1152)) 14)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 34)) (-2019 (((-213 4 (-129)) $) 24)) (-1702 (((-112) $ $) 26))) -(((-579) (-13 (-1094) (-10 -8 (-15 -2617 ($ (-1152))) (-15 -2019 ((-213 4 (-129)) $)) (-15 -3547 ((-687 $) (-491)))))) (T -579)) -((-2617 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579))))) -(-13 (-1094) (-10 -8 (-15 -2617 ($ (-1152))) (-15 -2019 ((-213 4 (-129)) $)) (-15 -3547 ((-687 $) (-491))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $ (-564)) 77)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-4317 (($ (-1166 (-564)) (-564)) 83)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) 68)) (-2905 (($ $) 43)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-2155 (((-768) $) 16)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1691 (((-564)) 37)) (-1822 (((-564) $) 41)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3951 (($ $ (-564)) 24)) (-1403 (((-3 $ "failed") $ $) 73)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) 17)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 74)) (-2422 (((-1150 (-564)) $) 19)) (-4037 (($ $) 26)) (-1831 (((-859) $) 103) (($ (-564)) 63) (($ $) NIL)) (-2219 (((-768)) 15 T CONST)) (-3939 (((-112) $ $) NIL)) (-2508 (((-564) $ (-564)) 46)) (-1293 (($) 44 T CONST)) (-1300 (($) 21 T CONST)) (-1702 (((-112) $ $) 54)) (-1808 (($ $) 62) (($ $ $) 48)) (-1797 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 64) (($ $ $) 65))) -(((-580 |#1| |#2|) (-866 |#1|) (-564) (-112)) (T -580)) -NIL -(-866 |#1|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 30)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3967 (((-1182 (-918) (-768)) (-564)) 59)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 $ "failed") $) 98)) (-2237 (($ $) 97)) (-3624 (($ (-1259 $)) 96)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) 44)) (-2900 (($) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) 61)) (-4282 (((-112) $) NIL)) (-3340 (($ $) NIL) (($ $ (-768)) NIL)) (-1420 (((-112) $) NIL)) (-2155 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-2949 (((-112) $) NIL)) (-4311 (($) 49 (|has| $ (-368)))) (-2370 (((-112) $) NIL (|has| $ (-368)))) (-3797 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-2619 (((-3 $ "failed") $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) 107)) (-1811 (((-918) $) 67)) (-3696 (((-1166 $) $) NIL (|has| $ (-368)))) (-2402 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-1372 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL T CONST)) (-1468 (($ (-918)) 60)) (-1927 (((-112) $) 90)) (-2780 (((-1114) $) NIL)) (-1426 (($) 28 (|has| $ (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 54)) (-3070 (((-418 $) $) NIL)) (-4085 (((-918)) 89) (((-830 (-918))) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-3548 (((-134)) NIL)) (-3534 (($ $ (-768)) NIL) (($ $) NIL)) (-1619 (((-918) $) 88) (((-830 (-918)) $) NIL)) (-3019 (((-1166 $)) 105)) (-3297 (($) 66)) (-1974 (($) 50 (|has| $ (-368)))) (-2467 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) 94)) (-2511 (((-564) $) 40)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-4018 (((-3 $ "failed") $) NIL) (($ $) 108)) (-2219 (((-768)) 51 T CONST)) (-3331 (((-1259 $) (-918)) 100) (((-1259 $)) 99)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) 31 T CONST)) (-1300 (($) 27 T CONST)) (-3962 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-918)) (T -581)) +(-13 (-527) (-856)) +(((-173) . T) ((-527) . T) ((-856) . T)) +((-2007 (((-687 (-1217)) $ (-1217)) NIL)) (-1772 (((-687 (-549)) $ (-549)) NIL)) (-3067 (((-767) $ (-128)) NIL)) (-4012 (((-687 (-129)) $ (-129)) NIL)) (-1397 (((-687 (-1217)) $) NIL)) (-1946 (((-687 (-1215)) $) NIL)) (-4085 (((-687 (-1214)) $) NIL)) (-2492 (((-687 (-549)) $) NIL)) (-2265 (((-687 (-547)) $) NIL)) (-2280 (((-687 (-546)) $) NIL)) (-3102 (((-767) $ (-128)) NIL)) (-2690 (((-687 (-129)) $) NIL)) (-2260 (((-112) $) NIL)) (-3050 (($ (-388)) 14) (($ (-1152)) 16)) (-2322 (((-858) $) NIL)) (-3566 (($ $) NIL))) +(((-577) (-13 (-576) (-611 (-858)) (-10 -8 (-15 -3050 ($ (-388))) (-15 -3050 ($ (-1152))) (-15 -2260 ((-112) $))))) (T -577)) +((-3050 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-3050 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))) +(-13 (-576) (-611 (-858)) (-10 -8 (-15 -3050 ($ (-388))) (-15 -3050 ($ (-1152))) (-15 -2260 ((-112) $)))) +((-2310 (((-112) $ $) NIL)) (-1363 (($) 7 T CONST)) (-1418 (((-1152) $) NIL)) (-1682 (($) 6 T CONST)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 14)) (-3192 (($) 8 T CONST)) (-2921 (((-112) $ $) 10))) +(((-578) (-13 (-1094) (-10 -8 (-15 -1682 ($) -2255) (-15 -1363 ($) -2255) (-15 -3192 ($) -2255)))) (T -578)) +((-1682 (*1 *1) (-5 *1 (-578))) (-1363 (*1 *1) (-5 *1 (-578))) (-3192 (*1 *1) (-5 *1 (-578)))) +(-13 (-1094) (-10 -8 (-15 -1682 ($) -2255) (-15 -1363 ($) -2255) (-15 -3192 ($) -2255))) +((-2310 (((-112) $ $) NIL)) (-2825 (((-687 $) (-491)) 21)) (-1418 (((-1152) $) NIL)) (-1594 (($ (-1152)) 14)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 34)) (-1652 (((-213 4 (-129)) $) 24)) (-2921 (((-112) $ $) 26))) +(((-579) (-13 (-1094) (-10 -8 (-15 -1594 ($ (-1152))) (-15 -1652 ((-213 4 (-129)) $)) (-15 -2825 ((-687 $) (-491)))))) (T -579)) +((-1594 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579))))) +(-13 (-1094) (-10 -8 (-15 -1594 ($ (-1152))) (-15 -1652 ((-213 4 (-129)) $)) (-15 -2825 ((-687 $) (-491))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $ (-564)) 77)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2343 (($ (-1166 (-564)) (-564)) 83)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) 68)) (-2627 (($ $) 43)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3717 (((-767) $) 16)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1487 (((-564)) 37)) (-3358 (((-564) $) 41)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2941 (($ $ (-564)) 24)) (-2526 (((-3 $ "failed") $ $) 73)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) 17)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 74)) (-3413 (((-1150 (-564)) $) 19)) (-2614 (($ $) 26)) (-2322 (((-858) $) 103) (($ (-564)) 63) (($ $) NIL)) (-3179 (((-767)) 15 T CONST)) (-4024 (((-112) $ $) NIL)) (-3564 (((-564) $ (-564)) 46)) (-2389 (($) 44 T CONST)) (-2403 (($) 21 T CONST)) (-2921 (((-112) $ $) 54)) (-3021 (($ $) 62) (($ $ $) 48)) (-3011 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 64) (($ $ $) 65))) +(((-580 |#1| |#2|) (-865 |#1|) (-564) (-112)) (T -580)) +NIL +(-865 |#1|) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 30)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-3109 (((-1182 (-917) (-767)) (-564)) 59)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 $ "failed") $) 98)) (-1781 (($ $) 97)) (-3013 (($ (-1259 $)) 96)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) 44)) (-3860 (($) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) 61)) (-3261 (((-112) $) NIL)) (-2180 (($ $) NIL) (($ $ (-767)) NIL)) (-4229 (((-112) $) NIL)) (-3717 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-1828 (((-112) $) NIL)) (-2272 (($) 49 (|has| $ (-368)))) (-4124 (((-112) $) NIL (|has| $ (-368)))) (-2019 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 $) $ (-917)) NIL (|has| $ (-368))) (((-1166 $) $) 107)) (-1368 (((-917) $) 67)) (-2325 (((-1166 $) $) NIL (|has| $ (-368)))) (-1350 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-3696 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL T CONST)) (-1998 (($ (-917)) 60)) (-3193 (((-112) $) 90)) (-3840 (((-1114) $) NIL)) (-4095 (($) 28 (|has| $ (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 54)) (-2375 (((-418 $) $) NIL)) (-1829 (((-917)) 89) (((-829 (-917))) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-3480 (((-134)) NIL)) (-1343 (($ $ (-767)) NIL) (($ $) NIL)) (-2073 (((-917) $) 88) (((-829 (-917)) $) NIL)) (-2400 (((-1166 $)) 105)) (-3107 (($) 66)) (-2439 (($) 50 (|has| $ (-368)))) (-3864 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) 94)) (-3172 (((-564) $) 40)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2409 (((-3 $ "failed") $) NIL) (($ $) 108)) (-3179 (((-767)) 51 T CONST)) (-3342 (((-1259 $) (-917)) 100) (((-1259 $)) 99)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) 31 T CONST)) (-2403 (($) 27 T CONST)) (-3053 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-917)) (T -581)) NIL (-13 (-349) (-329 $) (-612 (-564))) -((-1538 (((-1264) (-1152)) 10))) -(((-582) (-10 -7 (-15 -1538 ((-1264) (-1152))))) (T -582)) -((-1538 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582))))) -(-10 -7 (-15 -1538 ((-1264) (-1152)))) -((-3838 (((-585 |#2|) (-585 |#2|)) 41)) (-3723 (((-641 |#2|) (-585 |#2|)) 43)) (-2284 ((|#2| (-585 |#2|)) 49))) -(((-583 |#1| |#2|) (-10 -7 (-15 -3838 ((-585 |#2|) (-585 |#2|))) (-15 -3723 ((-641 |#2|) (-585 |#2|))) (-15 -2284 (|#2| (-585 |#2|)))) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))) (-13 (-29 |#1|) (-1194))) (T -583)) -((-2284 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-583 *3 *4))))) -(-10 -7 (-15 -3838 ((-585 |#2|) (-585 |#2|))) (-15 -3723 ((-641 |#2|) (-585 |#2|))) (-15 -2284 (|#2| (-585 |#2|)))) -((-2449 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2449 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2449 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2449 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2449 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584)) -((-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3521 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -3521 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))) -(-10 -7 (-15 -2449 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2449 ((-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3521 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2449 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2449 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 76)) (-2237 ((|#1| $) NIL)) (-3521 ((|#1| $) 30)) (-2147 (((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1733 (($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3493 (((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $) 31)) (-2723 (((-1152) $) NIL)) (-3165 (($ |#1| |#1|) 38) (($ |#1| (-1170)) 49 (|has| |#1| (-1035 (-1170))))) (-2780 (((-1114) $) NIL)) (-3307 (((-112) $) 35)) (-3534 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1170)) 89 (|has| |#1| (-897 (-1170))))) (-1831 (((-859) $) 112) (($ |#1|) 29)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) 17) (($ $ $) NIL)) (-1797 (($ $ $) 85)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL))) -(((-585 |#1|) (-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -1733 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3521 (|#1| $)) (-15 -3493 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -2147 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3307 ((-112) $)) (-15 -3165 ($ |#1| |#1|)) (-15 -3534 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -3534 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -3165 ($ |#1| (-1170))) |%noBranch|))) (-363)) (T -585)) -((-1733 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-3521 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) (|:| |logand| (-1166 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3165 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3534 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3534 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1170)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3)) (-4 *2 (-363))))) -(-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -1733 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3521 (|#1| $)) (-15 -3493 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -2147 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3307 ((-112) $)) (-15 -3165 ($ |#1| |#1|)) (-15 -3534 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -3534 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -3165 ($ |#1| (-1170))) |%noBranch|))) -((-3648 (((-112) |#1|) 16)) (-2618 (((-3 |#1| "failed") |#1|) 14)) (-3517 (((-2 (|:| -3655 |#1|) (|:| -1558 (-768))) |#1|) 38) (((-3 |#1| "failed") |#1| (-768)) 18)) (-3781 (((-112) |#1| (-768)) 19)) (-2091 ((|#1| |#1|) 42)) (-3985 ((|#1| |#1| (-768)) 45))) -(((-586 |#1|) (-10 -7 (-15 -3781 ((-112) |#1| (-768))) (-15 -3517 ((-3 |#1| "failed") |#1| (-768))) (-15 -3517 ((-2 (|:| -3655 |#1|) (|:| -1558 (-768))) |#1|)) (-15 -3985 (|#1| |#1| (-768))) (-15 -3648 ((-112) |#1|)) (-15 -2618 ((-3 |#1| "failed") |#1|)) (-15 -2091 (|#1| |#1|))) (-545)) (T -586)) -((-2091 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2618 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3648 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3985 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3517 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3655 *3) (|:| -1558 (-768)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3517 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -3781 ((-112) |#1| (-768))) (-15 -3517 ((-3 |#1| "failed") |#1| (-768))) (-15 -3517 ((-2 (|:| -3655 |#1|) (|:| -1558 (-768))) |#1|)) (-15 -3985 (|#1| |#1| (-768))) (-15 -3648 ((-112) |#1|)) (-15 -2618 ((-3 |#1| "failed") |#1|)) (-15 -2091 (|#1| |#1|))) -((-3072 (((-1166 |#1|) (-918)) 43))) -(((-587 |#1|) (-10 -7 (-15 -3072 ((-1166 |#1|) (-918)))) (-349)) (T -587)) -((-3072 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349))))) -(-10 -7 (-15 -3072 ((-1166 |#1|) (-918)))) -((-3838 (((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|)))) 27)) (-3907 (((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 34 (|has| |#1| (-147)))) (-3723 (((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|)))) 19)) (-3312 (((-316 |#1|) (-407 (-949 |#1|)) (-1170)) 32 (|has| |#1| (-147)))) (-2284 (((-316 |#1|) (-585 (-407 (-949 |#1|)))) 21))) -(((-588 |#1|) (-10 -7 (-15 -3838 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -3723 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -2284 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3907 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3312 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (T -588)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-949 *3)))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-588 *3))))) -(-10 -7 (-15 -3838 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -3723 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -2284 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3907 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3312 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|)) -((-2810 (((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564)))) 74) (((-641 (-685 (-564))) (-641 (-564))) 75) (((-685 (-564)) (-641 (-564)) (-902 (-564))) 68)) (-1933 (((-768) (-641 (-564))) 65))) -(((-589) (-10 -7 (-15 -1933 ((-768) (-641 (-564)))) (-15 -2810 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -2810 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2810 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564))))))) (T -589)) -((-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-589)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589))))) -(-10 -7 (-15 -1933 ((-768) (-641 (-564)))) (-15 -2810 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -2810 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2810 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564)))))) -((-2803 (((-641 |#5|) |#5| (-112)) 99)) (-1292 (((-112) |#5| (-641 |#5|)) 34))) -(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2803 ((-641 |#5|) |#5| (-112))) (-15 -1292 ((-112) |#5| (-641 |#5|)))) (-13 (-307) (-147)) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -590)) -((-1292 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8))))) -(-10 -7 (-15 -2803 ((-641 |#5|) |#5| (-112))) (-15 -1292 ((-112) |#5| (-641 |#5|)))) -((-1817 (((-112) $ $) NIL)) (-4383 (((-1129) $) 11)) (-4372 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-591) (-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $))))) (T -591)) -((-4372 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))) -(-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $)))) -((-1817 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-3579 (($ $) 38)) (-3129 (($ $) NIL)) (-1655 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1620 (((-112) $ $) 66)) (-1596 (((-112) $ $ (-564)) 60)) (-3838 (((-641 $) $ (-144)) 74) (((-641 $) $ (-141)) 75)) (-2386 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-2573 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-847))))) (-2861 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4082 (($ $ (-144)) 79) (($ $ (-141)) 80)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-1880 (($ $ (-1226 (-564)) $) 56)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-2576 (($ (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2261 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4407)))) (-2190 (((-144) $ (-564)) NIL)) (-1647 (((-112) $ $) 93)) (-3360 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-1433 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) (-144)) 9)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 32 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| (-144) (-847)))) (-3956 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-2640 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3440 (((-564) $) 47 (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-144) (-847)))) (-3373 (((-112) $ $ (-144)) 94)) (-3343 (((-768) $ $ (-144)) 91)) (-2250 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1309 (($ $) 41)) (-1573 (($ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-4093 (($ $ (-144)) 76) (($ $ (-141)) 77)) (-2723 (((-1152) $) 43 (|has| (-144) (-1094)))) (-3652 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-564) $) 90) (((-1114) $) NIL (|has| (-144) (-1094)))) (-3303 (((-144) $) NIL (|has| (-564) (-847)))) (-3995 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4253 (($ $ (-144)) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1794 (((-641 (-144)) $) NIL)) (-4284 (((-112) $) 15)) (-4012 (($) 10)) (-1350 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1226 (-564))) 25) (($ $ $) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3623 (($ $ $ (-564)) 82 (|has| $ (-6 -4407)))) (-1991 (($ $) 20)) (-2511 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-1842 (($ (-641 (-144))) NIL)) (-3043 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-641 $)) 83)) (-1831 (($ (-144)) NIL) (((-859) $) 31 (|has| (-144) (-611 (-859))))) (-1963 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1702 (((-112) $ $) 17 (|has| (-144) (-1094)))) (-1749 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1723 (((-112) $ $) 18 (|has| (-144) (-847)))) (-2828 (((-768) $) 16 (|has| $ (-6 -4406))))) -(((-592 |#1|) (-13 (-1138) (-10 -8 (-15 -2780 ((-564) $)))) (-564)) (T -592)) -((-2780 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))) -(-13 (-1138) (-10 -8 (-15 -2780 ((-564) $)))) -((-3837 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|)) 32))) -(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3837 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -3837 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|)) (T -593)) -((-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790)) (-4 *4 (-847)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3))))) -(-10 -7 (-15 -3837 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -3837 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 71)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-4163 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-2350 (($ $) 107)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3765 (((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564))) 240)) (-1881 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3030 (((-112) $) NIL)) (-2155 (((-564) $) 62) (((-564) $ (-564)) 63)) (-2949 (((-112) $) NIL)) (-2325 (($ $ (-918)) 83)) (-1477 (($ (-1 |#1| (-564)) $) 80)) (-2003 (((-112) $) 26)) (-3186 (($ |#1| (-564)) 22) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) 75)) (-3764 (($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-3907 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-1503 (((-3 $ "failed") $ $ (-112)) 106)) (-3891 (($ $ $) 114)) (-2780 (((-1114) $) NIL)) (-3616 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-1422 (((-1023 (-840 (-564))) $) 14)) (-3951 (($ $ (-564)) 47)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-1350 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1106)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1619 (((-564) $) NIL)) (-4037 (($ $) 48)) (-1831 (((-859) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2742 ((|#1| $ (-564)) 60)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) 39 T CONST)) (-2513 ((|#1| $) NIL)) (-4340 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-1833 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-4359 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-4241 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-2406 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-1419 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2260 (($ $ (-407 (-564))) 176 (|has| |#1| (-38 (-407 (-564)))))) (-4322 (($ $ |#1|) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3651 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-4191 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-2052 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-2285 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2787 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-4343 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-4172 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2115 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-4266 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-4091 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-2230 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-1459 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-2065 (($ $) 213 (|has| |#1| (-38 (-407 (-564)))))) (-2161 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-2089 (($ $) 215 (|has| |#1| (-38 (-407 (-564)))))) (-2211 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-1595 (($ $) 211 (|has| |#1| (-38 (-407 (-564)))))) (-1941 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-2631 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-4256 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2508 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-1293 (($) 30 T CONST)) (-1300 (($) 40 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1702 (((-112) $ $) 73)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) 90) (($ $ $) 72)) (-1797 (($ $ $) 87)) (** (($ $ (-918)) NIL) (($ $ (-768)) 109)) (* (($ (-918) $) 97) (($ (-768) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 121) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-594 |#1|) (-13 (-1237 |#1| (-564)) (-10 -8 (-15 -3764 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -1422 ((-1023 (-840 (-564))) $)) (-15 -3616 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -1881 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2003 ((-112) $)) (-15 -1477 ($ (-1 |#1| (-564)) $)) (-15 -1503 ((-3 $ "failed") $ $ (-112))) (-15 -2350 ($ $)) (-15 -3891 ($ $ $)) (-15 -3765 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $)) (-15 -4322 ($ $ |#1|)) (-15 -2260 ($ $ (-407 (-564)))) (-15 -4191 ($ $)) (-15 -3651 ($ $)) (-15 -4241 ($ $)) (-15 -2115 ($ $)) (-15 -1833 ($ $)) (-15 -4343 ($ $)) (-15 -1419 ($ $)) (-15 -2285 ($ $)) (-15 -1459 ($ $)) (-15 -4256 ($ $)) (-15 -4091 ($ $)) (-15 -1941 ($ $)) (-15 -2161 ($ $)) (-15 -2211 ($ $)) (-15 -4359 ($ $)) (-15 -4172 ($ $)) (-15 -4340 ($ $)) (-15 -2787 ($ $)) (-15 -2406 ($ $)) (-15 -2052 ($ $)) (-15 -2230 ($ $)) (-15 -2631 ($ $)) (-15 -4266 ($ $)) (-15 -1595 ($ $)) (-15 -2065 ($ $)) (-15 -2089 ($ $))) |%noBranch|))) (-1046)) (T -594)) -((-2003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046)) (-5 *1 (-594 *4)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-1881 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-1503 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-2350 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-3891 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-3765 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6)))) (-3907 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4322 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2260 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1046)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3651 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2115 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4256 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4091 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1941 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4359 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4172 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4340 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2787 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2052 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2230 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2631 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4266 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2065 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2089 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(-13 (-1237 |#1| (-564)) (-10 -8 (-15 -3764 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -1422 ((-1023 (-840 (-564))) $)) (-15 -3616 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -1881 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2003 ((-112) $)) (-15 -1477 ($ (-1 |#1| (-564)) $)) (-15 -1503 ((-3 $ "failed") $ $ (-112))) (-15 -2350 ($ $)) (-15 -3891 ($ $ $)) (-15 -3765 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $)) (-15 -4322 ($ $ |#1|)) (-15 -2260 ($ $ (-407 (-564)))) (-15 -4191 ($ $)) (-15 -3651 ($ $)) (-15 -4241 ($ $)) (-15 -2115 ($ $)) (-15 -1833 ($ $)) (-15 -4343 ($ $)) (-15 -1419 ($ $)) (-15 -2285 ($ $)) (-15 -1459 ($ $)) (-15 -4256 ($ $)) (-15 -4091 ($ $)) (-15 -1941 ($ $)) (-15 -2161 ($ $)) (-15 -2211 ($ $)) (-15 -4359 ($ $)) (-15 -4172 ($ $)) (-15 -4340 ($ $)) (-15 -2787 ($ $)) (-15 -2406 ($ $)) (-15 -2052 ($ $)) (-15 -2230 ($ $)) (-15 -2631 ($ $)) (-15 -4266 ($ $)) (-15 -1595 ($ $)) (-15 -2065 ($ $)) (-15 -2089 ($ $))) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1881 (($ (-1150 |#1|)) 9)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) 48)) (-3030 (((-112) $) 58)) (-2155 (((-768) $) 63) (((-768) $ (-768)) 62)) (-2949 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-1150 |#1|) $) 29)) (-2219 (((-768)) 57 T CONST)) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) 10 T CONST)) (-1300 (($) 14 T CONST)) (-1702 (((-112) $ $) 28)) (-1808 (($ $) 36) (($ $ $) 16)) (-1797 (($ $ $) 31)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42))) -(((-595 |#1|) (-13 (-1046) (-10 -8 (-15 -3227 ((-1150 |#1|) $)) (-15 -1881 ($ (-1150 |#1|))) (-15 -3030 ((-112) $)) (-15 -2155 ((-768) $)) (-15 -2155 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1046)) (T -595)) -((-3227 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-1881 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-2155 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))) -(-13 (-1046) (-10 -8 (-15 -3227 ((-1150 |#1|) $)) (-15 -1881 ($ (-1150 |#1|))) (-15 -3030 ((-112) $)) (-15 -2155 ((-768) $)) (-15 -2155 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) -((-2449 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2449 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1209) (-1209)) (T -596)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -2449 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) -((-2449 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)) 20) (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18))) -(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2449 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2449 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2449 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -597)) -((-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8))))) -(-10 -7 (-15 -2449 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2449 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2449 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) -((-3854 ((|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))) 57)) (-2505 (((-169 |#2|) |#3|) 123)) (-2215 ((|#3| (-169 |#2|)) 46)) (-2761 ((|#2| |#3|) 21)) (-3348 ((|#3| |#2|) 35))) -(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -2215 (|#3| (-169 |#2|))) (-15 -2761 (|#2| |#3|)) (-15 -3348 (|#3| |#2|)) (-15 -2505 ((-169 |#2|) |#3|)) (-15 -3854 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) (-13 (-556) (-847)) (-13 (-430 |#1|) (-999) (-1194)) (-13 (-430 (-169 |#1|)) (-999) (-1194))) (T -598)) -((-3854 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194))) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-999) (-1194))))) (-2505 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194))))) (-2761 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *5 *2))))) -(-10 -7 (-15 -2215 (|#3| (-169 |#2|))) (-15 -2761 (|#2| |#3|)) (-15 -3348 (|#3| |#2|)) (-15 -2505 ((-169 |#2|) |#3|)) (-15 -3854 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) -((-3752 (($ (-1 (-112) |#1|) $) 17)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3688 (($ (-1 |#1| |#1|) |#1|) 9)) (-3735 (($ (-1 (-112) |#1|) $) 13)) (-3744 (($ (-1 (-112) |#1|) $) 15)) (-1842 (((-1150 |#1|) $) 18)) (-1831 (((-859) $) NIL))) -(((-599 |#1|) (-13 (-611 (-859)) (-10 -8 (-15 -2449 ($ (-1 |#1| |#1|) $)) (-15 -3735 ($ (-1 (-112) |#1|) $)) (-15 -3744 ($ (-1 (-112) |#1|) $)) (-15 -3752 ($ (-1 (-112) |#1|) $)) (-15 -3688 ($ (-1 |#1| |#1|) |#1|)) (-15 -1842 ((-1150 |#1|) $)))) (-1209)) (T -599)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3744 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3752 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3688 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209))))) -(-13 (-611 (-859)) (-10 -8 (-15 -2449 ($ (-1 |#1| |#1|) $)) (-15 -3735 ($ (-1 (-112) |#1|) $)) (-15 -3744 ($ (-1 (-112) |#1|) $)) (-15 -3752 ($ (-1 (-112) |#1|) $)) (-15 -3688 ($ (-1 |#1| |#1|) |#1|)) (-15 -1842 ((-1150 |#1|) $)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1463 (($ (-768)) NIL (|has| |#1| (-23)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3167 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2117 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1713 (((-112) $ (-768)) NIL)) (-1502 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3032 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4231 (($ $ $) NIL (|has| |#1| (-1046)))) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) NIL)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1808 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1797 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-3634 (((-1264) (-1152)) 10))) +(((-582) (-10 -7 (-15 -3634 ((-1264) (-1152))))) (T -582)) +((-3634 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582))))) +(-10 -7 (-15 -3634 ((-1264) (-1152)))) +((-4302 (((-585 |#2|) (-585 |#2|)) 41)) (-2925 (((-641 |#2|) (-585 |#2|)) 43)) (-2587 ((|#2| (-585 |#2|)) 49))) +(((-583 |#1| |#2|) (-10 -7 (-15 -4302 ((-585 |#2|) (-585 |#2|))) (-15 -2925 ((-641 |#2|) (-585 |#2|))) (-15 -2587 (|#2| (-585 |#2|)))) (-13 (-452) (-1034 (-564)) (-846) (-637 (-564))) (-13 (-29 |#1|) (-1194))) (T -583)) +((-2587 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) (-4 *3 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *1 (-583 *3 *4))))) +(-10 -7 (-15 -4302 ((-585 |#2|) (-585 |#2|))) (-15 -2925 ((-641 |#2|) (-585 |#2|))) (-15 -2587 (|#2| (-585 |#2|)))) +((-3123 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30))) +(((-584 |#1| |#2|) (-10 -7 (-15 -3123 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -3123 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3123 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3123 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584)) +((-3123 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-3123 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-3123 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1370 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -1370 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))) +(-10 -7 (-15 -3123 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -3123 ((-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1370 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3123 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3123 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 76)) (-1781 ((|#1| $) NIL)) (-1370 ((|#1| $) 30)) (-3623 (((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1872 (($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4205 (((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $) 31)) (-1418 (((-1152) $) NIL)) (-1306 (($ |#1| |#1|) 38) (($ |#1| (-1170)) 49 (|has| |#1| (-1034 (-1170))))) (-3840 (((-1114) $) NIL)) (-3169 (((-112) $) 35)) (-1343 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1170)) 89 (|has| |#1| (-896 (-1170))))) (-2322 (((-858) $) 112) (($ |#1|) 29)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) 17) (($ $ $) NIL)) (-3011 (($ $ $) 85)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL))) +(((-585 |#1|) (-13 (-713 (-407 (-564))) (-1034 |#1|) (-10 -8 (-15 -1872 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1370 (|#1| $)) (-15 -4205 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -3623 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3169 ((-112) $)) (-15 -1306 ($ |#1| |#1|)) (-15 -1343 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1170))) (-15 -1343 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1034 (-1170))) (-15 -1306 ($ |#1| (-1170))) |%noBranch|))) (-363)) (T -585)) +((-1872 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-1370 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) (|:| |logand| (-1166 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-1306 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-1343 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-1343 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1170)))) (-1306 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363))))) +(-13 (-713 (-407 (-564))) (-1034 |#1|) (-10 -8 (-15 -1872 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1370 (|#1| $)) (-15 -4205 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -3623 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3169 ((-112) $)) (-15 -1306 ($ |#1| |#1|)) (-15 -1343 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1170))) (-15 -1343 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1034 (-1170))) (-15 -1306 ($ |#1| (-1170))) |%noBranch|))) +((-3204 (((-112) |#1|) 16)) (-1608 (((-3 |#1| "failed") |#1|) 14)) (-1329 (((-2 (|:| -2610 |#1|) (|:| -3866 (-767))) |#1|) 38) (((-3 |#1| "failed") |#1| (-767)) 18)) (-1833 (((-112) |#1| (-767)) 19)) (-4320 ((|#1| |#1|) 42)) (-3295 ((|#1| |#1| (-767)) 45))) +(((-586 |#1|) (-10 -7 (-15 -1833 ((-112) |#1| (-767))) (-15 -1329 ((-3 |#1| "failed") |#1| (-767))) (-15 -1329 ((-2 (|:| -2610 |#1|) (|:| -3866 (-767))) |#1|)) (-15 -3295 (|#1| |#1| (-767))) (-15 -3204 ((-112) |#1|)) (-15 -1608 ((-3 |#1| "failed") |#1|)) (-15 -4320 (|#1| |#1|))) (-545)) (T -586)) +((-4320 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1608 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3295 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1329 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| -3866 (-767)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-1329 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -1833 ((-112) |#1| (-767))) (-15 -1329 ((-3 |#1| "failed") |#1| (-767))) (-15 -1329 ((-2 (|:| -2610 |#1|) (|:| -3866 (-767))) |#1|)) (-15 -3295 (|#1| |#1| (-767))) (-15 -3204 ((-112) |#1|)) (-15 -1608 ((-3 |#1| "failed") |#1|)) (-15 -4320 (|#1| |#1|))) +((-1642 (((-1166 |#1|) (-917)) 43))) +(((-587 |#1|) (-10 -7 (-15 -1642 ((-1166 |#1|) (-917)))) (-349)) (T -587)) +((-1642 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349))))) +(-10 -7 (-15 -1642 ((-1166 |#1|) (-917)))) +((-4302 (((-585 (-407 (-948 |#1|))) (-585 (-407 (-948 |#1|)))) 27)) (-3719 (((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-948 |#1|)) (-1170)) 34 (|has| |#1| (-147)))) (-2925 (((-641 (-316 |#1|)) (-585 (-407 (-948 |#1|)))) 19)) (-3210 (((-316 |#1|) (-407 (-948 |#1|)) (-1170)) 32 (|has| |#1| (-147)))) (-2587 (((-316 |#1|) (-585 (-407 (-948 |#1|)))) 21))) +(((-588 |#1|) (-10 -7 (-15 -4302 ((-585 (-407 (-948 |#1|))) (-585 (-407 (-948 |#1|))))) (-15 -2925 ((-641 (-316 |#1|)) (-585 (-407 (-948 |#1|))))) (-15 -2587 ((-316 |#1|) (-585 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3719 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -3210 ((-316 |#1|) (-407 (-948 |#1|)) (-1170)))) |%noBranch|)) (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (T -588)) +((-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-948 *3)))) (-4 *3 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *1 (-588 *3))))) +(-10 -7 (-15 -4302 ((-585 (-407 (-948 |#1|))) (-585 (-407 (-948 |#1|))))) (-15 -2925 ((-641 (-316 |#1|)) (-585 (-407 (-948 |#1|))))) (-15 -2587 ((-316 |#1|) (-585 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3719 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -3210 ((-316 |#1|) (-407 (-948 |#1|)) (-1170)))) |%noBranch|)) +((-2920 (((-641 (-685 (-564))) (-641 (-564)) (-641 (-901 (-564)))) 74) (((-641 (-685 (-564))) (-641 (-564))) 75) (((-685 (-564)) (-641 (-564)) (-901 (-564))) 68)) (-3258 (((-767) (-641 (-564))) 65))) +(((-589) (-10 -7 (-15 -3258 ((-767) (-641 (-564)))) (-15 -2920 ((-685 (-564)) (-641 (-564)) (-901 (-564)))) (-15 -2920 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2920 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-901 (-564))))))) (T -589)) +((-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-901 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-901 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-589)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-767)) (-5 *1 (-589))))) +(-10 -7 (-15 -3258 ((-767) (-641 (-564)))) (-15 -2920 ((-685 (-564)) (-641 (-564)) (-901 (-564)))) (-15 -2920 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2920 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-901 (-564)))))) +((-2849 (((-641 |#5|) |#5| (-112)) 99)) (-1942 (((-112) |#5| (-641 |#5|)) 34))) +(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2849 ((-641 |#5|) |#5| (-112))) (-15 -1942 ((-112) |#5| (-641 |#5|)))) (-13 (-307) (-147)) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -590)) +((-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-641 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8))))) +(-10 -7 (-15 -2849 ((-641 |#5|) |#5| (-112))) (-15 -1942 ((-112) |#5| (-641 |#5|)))) +((-2310 (((-112) $ $) NIL)) (-3725 (((-1129) $) 11)) (-3713 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-591) (-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $))))) (T -591)) +((-3713 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))) +(-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $)))) +((-2310 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-3795 (($ $) 38)) (-4084 (($ $) NIL)) (-2355 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-3904 (((-112) $ $) 66)) (-3883 (((-112) $ $ (-564)) 60)) (-4302 (((-641 $) $ (-144)) 74) (((-641 $) $ (-141)) 75)) (-4294 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-2441 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-846))))) (-3811 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-1470 (($ $ (-144)) 79) (($ $ (-141)) 80)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2742 (($ $ (-1226 (-564)) $) 56)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3628 (($ (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1466 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4407)))) (-1407 (((-144) $ (-564)) NIL)) (-3925 (((-112) $ $) 93)) (-3847 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-3534 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) (-144)) 9)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 32 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| (-144) (-846)))) (-2988 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-1834 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1785 (((-564) $) 47 (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-144) (-846)))) (-3858 (((-112) $ $ (-144)) 94)) (-3983 (((-767) $ $ (-144)) 91)) (-1456 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2134 (($ $) 41)) (-2828 (($ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1476 (($ $ (-144)) 76) (($ $ (-141)) 77)) (-1418 (((-1152) $) 43 (|has| (-144) (-1094)))) (-4116 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-564) $) 90) (((-1114) $) NIL (|has| (-144) (-1094)))) (-1995 (((-144) $) NIL (|has| (-564) (-846)))) (-3393 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2981 (($ $ (-144)) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-4324 (((-641 (-144)) $) NIL)) (-3282 (((-112) $) 15)) (-2348 (($) 10)) (-4353 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1226 (-564))) 25) (($ $ $) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3000 (($ $ $ (-564)) 82 (|has| $ (-6 -4407)))) (-3772 (($ $) 20)) (-3172 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2335 (($ (-641 (-144))) NIL)) (-3533 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-641 $)) 83)) (-2322 (($ (-144)) NIL) (((-858) $) 31 (|has| (-144) (-611 (-858))))) (-2313 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2921 (((-112) $ $) 17 (|has| (-144) (-1094)))) (-2964 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2942 (((-112) $ $) 18 (|has| (-144) (-846)))) (-2059 (((-767) $) 16 (|has| $ (-6 -4406))))) +(((-592 |#1|) (-13 (-1138) (-10 -8 (-15 -3840 ((-564) $)))) (-564)) (T -592)) +((-3840 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))) +(-13 (-1138) (-10 -8 (-15 -3840 ((-564) $)))) +((-4281 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|)) 32))) +(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4281 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -4281 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-789) (-846) (-556) (-945 |#3| |#1| |#2|)) (T -593)) +((-4281 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-4281 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3))))) +(-10 -7 (-15 -4281 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -4281 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 71)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-1412 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-2032 (($ $) 107)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1710 (((-858) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1022 (-839 (-564))) (-1170) |#1| (-407 (-564))) 240)) (-1467 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2506 (((-112) $) NIL)) (-3717 (((-564) $) 62) (((-564) $ (-564)) 63)) (-1828 (((-112) $) NIL)) (-1762 (($ $ (-917)) 83)) (-4298 (($ (-1 |#1| (-564)) $) 80)) (-1492 (((-112) $) 26)) (-2507 (($ |#1| (-564)) 22) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) 75)) (-1700 (($ (-1022 (-839 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3719 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3324 (((-3 $ "failed") $ $ (-112)) 106)) (-3553 (($ $ $) 114)) (-3840 (((-1114) $) NIL)) (-2932 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-4255 (((-1022 (-839 (-564))) $) 14)) (-2941 (($ $ (-564)) 47)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4353 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1106)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2073 (((-564) $) NIL)) (-2614 (($ $) 48)) (-2322 (((-858) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-3467 ((|#1| $ (-564)) 60)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) 39 T CONST)) (-2965 ((|#1| $) NIL)) (-2584 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3440 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-2766 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-4071 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-1388 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-4217 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2306 (($ $ (-407 (-564))) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $ |#1|) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3225 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3540 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-2016 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-2600 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3900 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-2621 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-1482 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-1436 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-3104 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-1887 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-3285 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-4128 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-4031 (($ $) 213 (|has| |#1| (-38 (-407 (-564)))))) (-3788 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-4299 (($ $) 215 (|has| |#1| (-38 (-407 (-564)))))) (-3108 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 211 (|has| |#1| (-38 (-407 (-564)))))) (-2105 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-1745 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3015 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3564 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-2389 (($) 30 T CONST)) (-2403 (($) 40 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2921 (((-112) $ $) 73)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) 90) (($ $ $) 72)) (-3011 (($ $ $) 87)) (** (($ $ (-917)) NIL) (($ $ (-767)) 109)) (* (($ (-917) $) 97) (($ (-767) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 121) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-594 |#1|) (-13 (-1237 |#1| (-564)) (-10 -8 (-15 -1700 ($ (-1022 (-839 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -4255 ((-1022 (-839 (-564))) $)) (-15 -2932 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -1467 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -1492 ((-112) $)) (-15 -4298 ($ (-1 |#1| (-564)) $)) (-15 -3324 ((-3 $ "failed") $ $ (-112))) (-15 -2032 ($ $)) (-15 -3553 ($ $ $)) (-15 -1710 ((-858) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1022 (-839 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $)) (-15 -2404 ($ $ |#1|)) (-15 -2306 ($ $ (-407 (-564)))) (-15 -3540 ($ $)) (-15 -3225 ($ $)) (-15 -4071 ($ $)) (-15 -1436 ($ $)) (-15 -3440 ($ $)) (-15 -2621 ($ $)) (-15 -4217 ($ $)) (-15 -2600 ($ $)) (-15 -4128 ($ $)) (-15 -3015 ($ $)) (-15 -1887 ($ $)) (-15 -2105 ($ $)) (-15 -3788 ($ $)) (-15 -3108 ($ $)) (-15 -2766 ($ $)) (-15 -1482 ($ $)) (-15 -2584 ($ $)) (-15 -3900 ($ $)) (-15 -1388 ($ $)) (-15 -2016 ($ $)) (-15 -3285 ($ $)) (-15 -1745 ($ $)) (-15 -3104 ($ $)) (-15 -3058 ($ $)) (-15 -4031 ($ $)) (-15 -4299 ($ $))) |%noBranch|))) (-1045)) (T -594)) +((-1492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *2 (-1022 (-839 (-564)))) (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1045)) (-5 *1 (-594 *4)))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-1022 (-839 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-4298 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-3324 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2032 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (-3553 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (-1710 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1022 (-839 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-594 *6)))) (-3719 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2404 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1045)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3225 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1436 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2621 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4217 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4128 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3015 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1887 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2105 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3788 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3108 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2766 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1482 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2584 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3900 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2016 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3285 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1745 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3104 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3058 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4031 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4299 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(-13 (-1237 |#1| (-564)) (-10 -8 (-15 -1700 ($ (-1022 (-839 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -4255 ((-1022 (-839 (-564))) $)) (-15 -2932 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -1467 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -1492 ((-112) $)) (-15 -4298 ($ (-1 |#1| (-564)) $)) (-15 -3324 ((-3 $ "failed") $ $ (-112))) (-15 -2032 ($ $)) (-15 -3553 ($ $ $)) (-15 -1710 ((-858) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1022 (-839 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $)) (-15 -2404 ($ $ |#1|)) (-15 -2306 ($ $ (-407 (-564)))) (-15 -3540 ($ $)) (-15 -3225 ($ $)) (-15 -4071 ($ $)) (-15 -1436 ($ $)) (-15 -3440 ($ $)) (-15 -2621 ($ $)) (-15 -4217 ($ $)) (-15 -2600 ($ $)) (-15 -4128 ($ $)) (-15 -3015 ($ $)) (-15 -1887 ($ $)) (-15 -2105 ($ $)) (-15 -3788 ($ $)) (-15 -3108 ($ $)) (-15 -2766 ($ $)) (-15 -1482 ($ $)) (-15 -2584 ($ $)) (-15 -3900 ($ $)) (-15 -1388 ($ $)) (-15 -2016 ($ $)) (-15 -3285 ($ $)) (-15 -1745 ($ $)) (-15 -3104 ($ $)) (-15 -3058 ($ $)) (-15 -4031 ($ $)) (-15 -4299 ($ $))) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-1467 (($ (-1150 |#1|)) 9)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) 48)) (-2506 (((-112) $) 58)) (-3717 (((-767) $) 63) (((-767) $ (-767)) 62)) (-1828 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-1150 |#1|) $) 29)) (-3179 (((-767)) 57 T CONST)) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) 10 T CONST)) (-2403 (($) 14 T CONST)) (-2921 (((-112) $ $) 28)) (-3021 (($ $) 36) (($ $ $) 16)) (-3011 (($ $ $) 31)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42))) +(((-595 |#1|) (-13 (-1045) (-10 -8 (-15 -3680 ((-1150 |#1|) $)) (-15 -1467 ($ (-1150 |#1|))) (-15 -2506 ((-112) $)) (-15 -3717 ((-767) $)) (-15 -3717 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1045)) (T -595)) +((-3680 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-595 *3)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (-3717 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -3680 ((-1150 |#1|) $)) (-15 -1467 ($ (-1150 |#1|))) (-15 -2506 ((-112) $)) (-15 -3717 ((-767) $)) (-15 -3717 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) +((-3123 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15))) +(((-596 |#1| |#2|) (-10 -7 (-15 -3123 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1209) (-1209)) (T -596)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -3123 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) +((-3123 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)) 20) (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18))) +(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -3123 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -3123 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -597)) +((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8))))) +(-10 -7 (-15 -3123 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -3123 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -3123 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) +((-1367 ((|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))) 57)) (-3022 (((-169 |#2|) |#3|) 123)) (-3140 ((|#3| (-169 |#2|)) 46)) (-3658 ((|#2| |#3|) 21)) (-2219 ((|#3| |#2|) 35))) +(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -3140 (|#3| (-169 |#2|))) (-15 -3658 (|#2| |#3|)) (-15 -2219 (|#3| |#2|)) (-15 -3022 ((-169 |#2|) |#3|)) (-15 -1367 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) (-13 (-556) (-846)) (-13 (-430 |#1|) (-998) (-1194)) (-13 (-430 (-169 |#1|)) (-998) (-1194))) (T -598)) +((-1367 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1194))) (-4 *5 (-13 (-556) (-846))) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-998) (-1194))))) (-3022 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846))) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1194))) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194))))) (-2219 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1194))))) (-3658 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-430 *4) (-998) (-1194))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194))))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194))) (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194))) (-5 *1 (-598 *4 *5 *2))))) +(-10 -7 (-15 -3140 (|#3| (-169 |#2|))) (-15 -3658 (|#2| |#3|)) (-15 -2219 (|#3| |#2|)) (-15 -3022 ((-169 |#2|) |#3|)) (-15 -1367 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) +((-2957 (($ (-1 (-112) |#1|) $) 17)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2892 (($ (-1 |#1| |#1|) |#1|) 9)) (-2935 (($ (-1 (-112) |#1|) $) 13)) (-2946 (($ (-1 (-112) |#1|) $) 15)) (-2335 (((-1150 |#1|) $) 18)) (-2322 (((-858) $) NIL))) +(((-599 |#1|) (-13 (-611 (-858)) (-10 -8 (-15 -3123 ($ (-1 |#1| |#1|) $)) (-15 -2935 ($ (-1 (-112) |#1|) $)) (-15 -2946 ($ (-1 (-112) |#1|) $)) (-15 -2957 ($ (-1 (-112) |#1|) $)) (-15 -2892 ($ (-1 |#1| |#1|) |#1|)) (-15 -2335 ((-1150 |#1|) $)))) (-1209)) (T -599)) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2935 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209))))) +(-13 (-611 (-858)) (-10 -8 (-15 -3123 ($ (-1 |#1| |#1|) $)) (-15 -2935 ($ (-1 (-112) |#1|) $)) (-15 -2946 ($ (-1 (-112) |#1|) $)) (-15 -2957 ($ (-1 (-112) |#1|) $)) (-15 -2892 ($ (-1 |#1| |#1|) |#1|)) (-15 -2335 ((-1150 |#1|) $)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3991 (($ (-767)) NIL (|has| |#1| (-23)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3611 (((-685 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1457 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1681 (((-112) $ (-767)) NIL)) (-1750 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2535 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3969 (($ $ $) NIL (|has| |#1| (-1045)))) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) NIL)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3021 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3011 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-600 |#1| |#2|) (-1257 |#1|) (-1209) (-564)) (T -600)) NIL (-1257 |#1|) -((-1956 (((-1264) $ |#2| |#2|) 36)) (-3100 ((|#2| $) 23)) (-3440 ((|#2| $) 21)) (-2250 (($ (-1 |#3| |#3|) $) 32)) (-2449 (($ (-1 |#3| |#3|) $) 30)) (-3303 ((|#3| $) 26)) (-4253 (($ $ |#3|) 33)) (-3561 (((-112) |#3| $) 17)) (-1794 (((-641 |#3|) $) 15)) (-1350 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -1956 ((-1264) |#1| |#2| |#2|)) (-15 -4253 (|#1| |#1| |#3|)) (-15 -3303 (|#3| |#1|)) (-15 -3100 (|#2| |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -3561 ((-112) |#3| |#1|)) (-15 -1794 ((-641 |#3|) |#1|)) (-15 -1350 (|#3| |#1| |#2|)) (-15 -1350 (|#3| |#1| |#2| |#3|)) (-15 -2250 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1094) (-1209)) (T -601)) +((-2246 (((-1264) $ |#2| |#2|) 36)) (-1913 ((|#2| $) 23)) (-1785 ((|#2| $) 21)) (-1456 (($ (-1 |#3| |#3|) $) 32)) (-3123 (($ (-1 |#3| |#3|) $) 30)) (-1995 ((|#3| $) 26)) (-2981 (($ $ |#3|) 33)) (-3608 (((-112) |#3| $) 17)) (-4324 (((-641 |#3|) $) 15)) (-4353 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -2246 ((-1264) |#1| |#2| |#2|)) (-15 -2981 (|#1| |#1| |#3|)) (-15 -1995 (|#3| |#1|)) (-15 -1913 (|#2| |#1|)) (-15 -1785 (|#2| |#1|)) (-15 -3608 ((-112) |#3| |#1|)) (-15 -4324 ((-641 |#3|) |#1|)) (-15 -4353 (|#3| |#1| |#2|)) (-15 -4353 (|#3| |#1| |#2| |#3|)) (-15 -1456 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3123 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1094) (-1209)) (T -601)) NIL -(-10 -8 (-15 -1956 ((-1264) |#1| |#2| |#2|)) (-15 -4253 (|#1| |#1| |#3|)) (-15 -3303 (|#3| |#1|)) (-15 -3100 (|#2| |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -3561 ((-112) |#3| |#1|)) (-15 -1794 ((-641 |#3|) |#1|)) (-15 -1350 (|#3| |#1| |#2|)) (-15 -1350 (|#3| |#1| |#2| |#3|)) (-15 -2250 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-1956 (((-1264) $ |#1| |#1|) 40 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4407)))) (-1778 (($) 7 T CONST)) (-2261 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) 51)) (-1433 (((-641 |#2|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-3100 ((|#1| $) 43 (|has| |#1| (-847)))) (-2640 (((-641 |#2|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-3440 ((|#1| $) 44 (|has| |#1| (-847)))) (-2250 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3883 (((-641 |#1|) $) 46)) (-4336 (((-112) |#1| $) 47)) (-2780 (((-1114) $) 21 (|has| |#2| (-1094)))) (-3303 ((|#2| $) 42 (|has| |#1| (-847)))) (-4253 (($ $ |#2|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2791 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4406))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +(-10 -8 (-15 -2246 ((-1264) |#1| |#2| |#2|)) (-15 -2981 (|#1| |#1| |#3|)) (-15 -1995 (|#3| |#1|)) (-15 -1913 (|#2| |#1|)) (-15 -1785 (|#2| |#1|)) (-15 -3608 ((-112) |#3| |#1|)) (-15 -4324 ((-641 |#3|) |#1|)) (-15 -4353 (|#3| |#1| |#2|)) (-15 -4353 (|#3| |#1| |#2| |#3|)) (-15 -1456 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3123 (|#1| (-1 |#3| |#3|) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-2246 (((-1264) $ |#1| |#1|) 40 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4407)))) (-4157 (($) 7 T CONST)) (-1466 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) 51)) (-3534 (((-641 |#2|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1913 ((|#1| $) 43 (|has| |#1| (-846)))) (-1834 (((-641 |#2|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-1785 ((|#1| $) 44 (|has| |#1| (-846)))) (-1456 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3487 (((-641 |#1|) $) 46)) (-2550 (((-112) |#1| $) 47)) (-3840 (((-1114) $) 21 (|has| |#2| (-1094)))) (-1995 ((|#2| $) 42 (|has| |#1| (-846)))) (-2981 (($ $ |#2|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3852 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4406))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#2| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-602 |#1| |#2|) (-140) (-1094) (-1209)) (T -602)) -((-1794 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *4)))) (-4336 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *3)))) (-3561 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847)) (-4 *2 (-1209)))) (-4253 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-1956 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-1264))))) -(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -1794 ((-641 |t#2|) $)) (-15 -4336 ((-112) |t#1| $)) (-15 -3883 ((-641 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4406)) (-15 -3561 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -3440 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3303 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -4253 ($ $ |t#2|)) (-15 -1956 ((-1264) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1094)) ((-611 (-859)) -4078 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1209) . T)) -((-1831 (((-859) $) 19) (($ (-129)) 13) (((-129) $) 14))) -(((-603) (-13 (-611 (-859)) (-490 (-129)))) (T -603)) -NIL -(-13 (-611 (-859)) (-490 (-129))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 14) (($ (-641 (-1208))) 13)) (-1898 (((-641 (-1208)) $) 10)) (-1702 (((-112) $ $) NIL))) -(((-604) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1831 ($ (-641 (-1208)))) (-15 -1898 ((-641 (-1208)) $))))) (T -604)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))) -(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1831 ($ (-641 (-1208)))) (-15 -1898 ((-641 (-1208)) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1674 (((-3 $ "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1546 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2294 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1778 (($) NIL T CONST)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3868 (((-3 $ "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1911 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2825 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2050 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2767 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2232 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-4221 (($ $ (-918)) NIL)) (-2166 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2878 (((-1166 |#1|) $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1476 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1475 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2103 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3624 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3733 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3531 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-3628 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2482 (($ $ (-918)) NIL)) (-3001 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3261 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2130 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2302 (((-3 $ "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2510 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3385 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2289 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3874 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1402 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2839 (($ $ (-918)) NIL)) (-2873 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-4146 (((-1166 |#1|) $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3525 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2582 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2628 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2723 (((-1152) $) NIL)) (-3582 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2317 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2241 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2780 (((-1114) $) NIL)) (-3740 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1350 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-2467 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2511 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2852 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1992 (($ $ $) NIL)) (-2595 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1831 (((-859) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3331 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-1488 (((-641 (-1259 |#1|))) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2611 (($ $ $ $) NIL)) (-1604 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3246 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1656 (($ $ $) NIL)) (-3830 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3335 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2921 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1293 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-605 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1831 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -605)) -((-1831 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3))))) -(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1831 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-3239 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) 39)) (-3639 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL) (($) NIL)) (-1956 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-1152) |#1|) 49)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#1| "failed") (-1152) $) 52)) (-1778 (($) NIL T CONST)) (-1940 (($ $ (-1152)) 25)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094))))) (-3644 (((-3 |#1| "failed") (-1152) $) 53) (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (($ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (|has| $ (-6 -4406)))) (-2576 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (($ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094))))) (-1988 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094))))) (-3218 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) 38)) (-2261 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-1152)) NIL)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1582 (($ $) 54)) (-1669 (($ (-388)) 23) (($ (-388) (-1152)) 22)) (-1316 (((-388) $) 40)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094))))) (-3440 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2945 (((-641 (-1152)) $) 45)) (-2554 (((-112) (-1152) $) NIL)) (-3455 (((-1152) $) 41)) (-2401 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL)) (-3883 (((-641 (-1152)) $) NIL)) (-4336 (((-112) (-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 ((|#1| $) NIL (|has| (-1152) (-847)))) (-3995 (((-3 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) "failed") (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 43)) (-1350 ((|#1| $ (-1152) |#1|) NIL) ((|#1| $ (-1152)) 48)) (-4232 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL) (($) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (((-768) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL)) (-1831 (((-859) $) 21)) (-1846 (($ $) 26)) (-2321 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20)) (-2828 (((-768) $) 47 (|has| $ (-6 -4406))))) -(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4406) (-15 -1582 ($ $)))) (-1094)) (T -606)) -((-1582 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094))))) -(-13 (-364 (-388) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4406) (-15 -1582 ($ $)))) -((-2516 (((-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) $) 16)) (-2945 (((-641 |#2|) $) 20)) (-2554 (((-112) |#2| $) 12))) -(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -2945 ((-641 |#2|) |#1|)) (-15 -2554 ((-112) |#2| |#1|)) (-15 -2516 ((-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|))) (-608 |#2| |#3|) (-1094) (-1094)) (T -607)) -NIL -(-10 -8 (-15 -2945 ((-641 |#2|) |#1|)) (-15 -2554 ((-112) |#2| |#1|)) (-15 -2516 ((-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|))) -((-1817 (((-112) $ $) 19 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 55 (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) 61)) (-1778 (($) 7 T CONST)) (-3337 (($ $) 58 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 46 (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 62)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 54 (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 56 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 53 (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 52 (|has| $ (-6 -4406)))) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-2945 (((-641 |#1|) $) 63)) (-2554 (((-112) |#1| $) 64)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 39)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 40)) (-2780 (((-1114) $) 21 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 51)) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 41)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) 26 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 25 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 24 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 23 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4232 (($) 49) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 48)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 31 (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 50)) (-1831 (((-859) $) 18 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 42)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-4324 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *4)))) (-2550 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *3)))) (-3608 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-846)) (-4 *2 (-1209)))) (-2981 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2246 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-1264))))) +(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -4324 ((-641 |t#2|) $)) (-15 -2550 ((-112) |t#1| $)) (-15 -3487 ((-641 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4406)) (-15 -3608 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -1785 (|t#1| $)) (-15 -1913 (|t#1| $)) (-15 -1995 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -2981 ($ $ |t#2|)) (-15 -2246 ((-1264) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1094)) ((-611 (-858)) -2789 (|has| |#2| (-1094)) (|has| |#2| (-611 (-858)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1209) . T)) +((-2322 (((-858) $) 19) (($ (-129)) 13) (((-129) $) 14))) +(((-603) (-13 (-611 (-858)) (-490 (-129)))) (T -603)) +NIL +(-13 (-611 (-858)) (-490 (-129))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 14) (($ (-641 (-1208))) 13)) (-4238 (((-641 (-1208)) $) 10)) (-2921 (((-112) $ $) NIL))) +(((-604) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2322 ($ (-641 (-1208)))) (-15 -4238 ((-641 (-1208)) $))))) (T -604)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))) +(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2322 ($ (-641 (-1208)))) (-15 -4238 ((-641 (-1208)) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2563 (((-3 $ "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3727 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2691 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4157 (($) NIL T CONST)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1485 (((-3 $ "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3035 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3063 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1991 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3706 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3294 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3865 (($ $ (-917)) NIL)) (-3845 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2331 (((-1166 |#1|) $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4287 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4276 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1335 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3013 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2689 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3105 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3055 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3996 (($ $ (-917)) NIL)) (-2235 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2809 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3457 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1523 (((-3 $ "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3065 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2528 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2645 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1529 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4060 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3200 (($ $ (-917)) NIL)) (-2276 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-4339 (((-1166 |#1|) $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1400 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2536 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1723 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1418 (((-1152) $) NIL)) (-3816 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1671 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3353 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3840 (((-1114) $) NIL)) (-2753 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4353 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3864 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3172 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3328 (((-641 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-948 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2617 (($ $ $) NIL)) (-2676 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2322 (((-858) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3342 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-1296 (((-641 (-1259 |#1|))) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1553 (($ $ $ $) NIL)) (-3148 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1937 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2366 (($ $ $) NIL)) (-4232 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2145 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2803 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2389 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-605 |#1| |#2|) (-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2322 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -605)) +((-2322 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-740 *3))))) +(-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2322 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3799 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) 39)) (-4108 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL) (($) NIL)) (-2246 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-1152) |#1|) 49)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#1| "failed") (-1152) $) 52)) (-4157 (($) NIL T CONST)) (-2096 (($ $ (-1152)) 25)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094))))) (-3175 (((-3 |#1| "failed") (-1152) $) 53) (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (($ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (|has| $ (-6 -4406)))) (-3628 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (($ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094))))) (-3239 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094))))) (-3603 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) 38)) (-1466 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-1152)) NIL)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2916 (($ $) 54)) (-4197 (($ (-388)) 23) (($ (-388) (-1152)) 22)) (-2420 (((-388) $) 40)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406))) (((-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094))))) (-1785 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-2843 (((-641 (-1152)) $) 45)) (-2237 (((-112) (-1152) $) NIL)) (-1920 (((-1152) $) 41)) (-1340 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL)) (-3487 (((-641 (-1152)) $) NIL)) (-2550 (((-112) (-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 ((|#1| $) NIL (|has| (-1152) (-846)))) (-3393 (((-3 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) "failed") (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 43)) (-4353 ((|#1| $ (-1152) |#1|) NIL) ((|#1| $ (-1152)) 48)) (-3977 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL) (($) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (((-767) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (((-767) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL)) (-2322 (((-858) $) 21)) (-3566 (($ $) 26)) (-1717 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20)) (-2059 (((-767) $) 47 (|has| $ (-6 -4406))))) +(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4406) (-15 -2916 ($ $)))) (-1094)) (T -606)) +((-2916 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094))))) +(-13 (-364 (-388) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4406) (-15 -2916 ($ $)))) +((-3114 (((-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) $) 16)) (-2843 (((-641 |#2|) $) 20)) (-2237 (((-112) |#2| $) 12))) +(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -2843 ((-641 |#2|) |#1|)) (-15 -2237 ((-112) |#2| |#1|)) (-15 -3114 ((-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|))) (-608 |#2| |#3|) (-1094) (-1094)) (T -607)) +NIL +(-10 -8 (-15 -2843 ((-641 |#2|) |#1|)) (-15 -2237 ((-112) |#2| |#1|)) (-15 -3114 ((-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|))) +((-2310 (((-112) $ $) 19 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 55 (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) 61)) (-4157 (($) 7 T CONST)) (-2027 (($ $) 58 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 46 (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 62)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 54 (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 56 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 53 (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 52 (|has| $ (-6 -4406)))) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-2843 (((-641 |#1|) $) 63)) (-2237 (((-112) |#1| $) 64)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 39)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 40)) (-3840 (((-1114) $) 21 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 51)) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 41)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) 26 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 25 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 24 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 23 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3977 (($) 49) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 48)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 31 (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 50)) (-2322 (((-858) $) 18 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 42)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-608 |#1| |#2|) (-140) (-1094) (-1094)) (T -608)) -((-2554 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-3644 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1725 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) -(-13 (-229 (-2 (|:| -2568 |t#1|) (|:| -1389 |t#2|))) (-10 -8 (-15 -2554 ((-112) |t#1| $)) (-15 -2945 ((-641 |t#1|) $)) (-15 -3644 ((-3 |t#2| "failed") |t#1| $)) (-15 -1725 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((-102) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) ((-611 (-859)) -4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) ((-1209) . T)) -((-3393 (((-610 |#2|) |#1|) 17)) (-4125 (((-3 |#1| "failed") (-610 |#2|)) 21))) -(((-609 |#1| |#2|) (-10 -7 (-15 -3393 ((-610 |#2|) |#1|)) (-15 -4125 ((-3 |#1| "failed") (-610 |#2|)))) (-847) (-847)) (T -609)) -((-4125 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847)) (-5 *1 (-609 *2 *4)))) (-3393 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847)) (-4 *4 (-847))))) -(-10 -7 (-15 -3393 ((-610 |#2|) |#1|)) (-15 -4125 ((-3 |#1| "failed") (-610 |#2|)))) -((-1817 (((-112) $ $) NIL)) (-3417 (((-3 (-1170) "failed") $) 46)) (-2919 (((-1264) $ (-768)) 26)) (-3360 (((-768) $) 25)) (-1841 (((-114) $) 12)) (-1316 (((-1170) $) 20)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3755 (($ (-114) (-641 |#1|) (-768)) 36) (($ (-1170)) 37)) (-1657 (((-112) $ (-114)) 18) (((-112) $ (-1170)) 16)) (-3926 (((-768) $) 22)) (-2780 (((-1114) $) NIL)) (-2511 (((-889 (-564)) $) 92 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 99 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 85 (|has| |#1| (-612 (-536))))) (-1831 (((-859) $) 69)) (-2562 (((-641 |#1|) $) 24)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 50)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 52))) -(((-610 |#1|) (-13 (-132) (-881 |#1|) (-10 -8 (-15 -1316 ((-1170) $)) (-15 -1841 ((-114) $)) (-15 -2562 ((-641 |#1|) $)) (-15 -3926 ((-768) $)) (-15 -3755 ($ (-114) (-641 |#1|) (-768))) (-15 -3755 ($ (-1170))) (-15 -3417 ((-3 (-1170) "failed") $)) (-15 -1657 ((-112) $ (-114))) (-15 -1657 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-847)) (T -610)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3755 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847)) (-5 *1 (-610 *5)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3417 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847))))) -(-13 (-132) (-881 |#1|) (-10 -8 (-15 -1316 ((-1170) $)) (-15 -1841 ((-114) $)) (-15 -2562 ((-641 |#1|) $)) (-15 -3926 ((-768) $)) (-15 -3755 ($ (-114) (-641 |#1|) (-768))) (-15 -3755 ($ (-1170))) (-15 -3417 ((-3 (-1170) "failed") $)) (-15 -1657 ((-112) $ (-114))) (-15 -1657 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) -((-1831 ((|#1| $) 6))) +((-2237 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-3175 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2227 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(-13 (-229 (-2 (|:| -3076 |t#1|) (|:| -2511 |t#2|))) (-10 -8 (-15 -2237 ((-112) |t#1| $)) (-15 -2843 ((-641 |t#1|) $)) (-15 -3175 ((-3 |t#2| "failed") |t#1| $)) (-15 -2227 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((-102) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) ((-611 (-858)) -2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) ((-1209) . T)) +((-2612 (((-610 |#2|) |#1|) 17)) (-4113 (((-3 |#1| "failed") (-610 |#2|)) 21))) +(((-609 |#1| |#2|) (-10 -7 (-15 -2612 ((-610 |#2|) |#1|)) (-15 -4113 ((-3 |#1| "failed") (-610 |#2|)))) (-846) (-846)) (T -609)) +((-4113 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-846)) (-4 *2 (-846)) (-5 *1 (-609 *2 *4)))) (-2612 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-846)) (-4 *4 (-846))))) +(-10 -7 (-15 -2612 ((-610 |#2|) |#1|)) (-15 -4113 ((-3 |#1| "failed") (-610 |#2|)))) +((-2310 (((-112) $ $) NIL)) (-1568 (((-3 (-1170) "failed") $) 46)) (-2779 (((-1264) $ (-767)) 26)) (-3847 (((-767) $) 25)) (-3523 (((-114) $) 12)) (-2420 (((-1170) $) 20)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3059 (($ (-114) (-641 |#1|) (-767)) 36) (($ (-1170)) 37)) (-2379 (((-112) $ (-114)) 18) (((-112) $ (-1170)) 16)) (-3162 (((-767) $) 22)) (-3840 (((-1114) $) NIL)) (-3172 (((-888 (-564)) $) 92 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 99 (|has| |#1| (-612 (-888 (-379))))) (((-536) $) 85 (|has| |#1| (-612 (-536))))) (-2322 (((-858) $) 69)) (-2328 (((-641 |#1|) $) 24)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 50)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 52))) +(((-610 |#1|) (-13 (-132) (-880 |#1|) (-10 -8 (-15 -2420 ((-1170) $)) (-15 -3523 ((-114) $)) (-15 -2328 ((-641 |#1|) $)) (-15 -3162 ((-767) $)) (-15 -3059 ($ (-114) (-641 |#1|) (-767))) (-15 -3059 ($ (-1170))) (-15 -1568 ((-3 (-1170) "failed") $)) (-15 -2379 ((-112) $ (-114))) (-15 -2379 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-846)) (T -610)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) (-3059 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-846)) (-5 *1 (-610 *5)))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) (-1568 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) (-2379 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-846)))) (-2379 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-846))))) +(-13 (-132) (-880 |#1|) (-10 -8 (-15 -2420 ((-1170) $)) (-15 -3523 ((-114) $)) (-15 -2328 ((-641 |#1|) $)) (-15 -3162 ((-767) $)) (-15 -3059 ($ (-114) (-641 |#1|) (-767))) (-15 -3059 ($ (-1170))) (-15 -1568 ((-3 (-1170) "failed") $)) (-15 -2379 ((-112) $ (-114))) (-15 -2379 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) +((-2322 ((|#1| $) 6))) (((-611 |#1|) (-140) (-1209)) (T -611)) -((-1831 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209))))) -(-13 (-10 -8 (-15 -1831 (|t#1| $)))) -((-2511 ((|#1| $) 6))) +((-2322 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -2322 (|t#1| $)))) +((-3172 ((|#1| $) 6))) (((-612 |#1|) (-140) (-1209)) (T -612)) -((-2511 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209))))) -(-13 (-10 -8 (-15 -2511 (|t#1| $)))) -((-3527 (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16))) -(((-613 |#1| |#2|) (-10 -7 (-15 -3527 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3527 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -613)) -((-3527 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-3527 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5))))) -(-10 -7 (-15 -3527 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3527 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) -((-1831 (($ |#1|) 6))) +((-3172 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -3172 (|t#1| $)))) +((-1422 (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16))) +(((-613 |#1| |#2|) (-10 -7 (-15 -1422 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -1422 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -613)) +((-1422 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-1422 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5))))) +(-10 -7 (-15 -1422 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -1422 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) +((-2322 (($ |#1|) 6))) (((-614 |#1|) (-140) (-1209)) (T -614)) -((-1831 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209))))) -(-13 (-10 -8 (-15 -1831 ($ |t#1|)))) -((-1817 (((-112) $ $) NIL)) (-3033 (($) 14 T CONST)) (-3955 (($) 15 T CONST)) (-4358 (($ $ $) 29)) (-4338 (($ $) 27)) (-2723 (((-1152) $) NIL)) (-2957 (($ $ $) 30)) (-2780 (((-1114) $) NIL)) (-2788 (($) 11 T CONST)) (-4134 (($ $ $) 31)) (-1831 (((-859) $) 35)) (-4378 (((-112) $ (|[\|\|]| -2788)) 24) (((-112) $ (|[\|\|]| -3033)) 26) (((-112) $ (|[\|\|]| -3955)) 21)) (-4348 (($ $ $) 28)) (-1702 (((-112) $ $) 18))) -(((-615) (-13 (-964) (-10 -8 (-15 -2788 ($) -1809) (-15 -3033 ($) -1809) (-15 -3955 ($) -1809) (-15 -4378 ((-112) $ (|[\|\|]| -2788))) (-15 -4378 ((-112) $ (|[\|\|]| -3033))) (-15 -4378 ((-112) $ (|[\|\|]| -3955)))))) (T -615)) -((-2788 (*1 *1) (-5 *1 (-615))) (-3033 (*1 *1) (-5 *1 (-615))) (-3955 (*1 *1) (-5 *1 (-615))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2788)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3033)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3955)) (-5 *2 (-112)) (-5 *1 (-615))))) -(-13 (-964) (-10 -8 (-15 -2788 ($) -1809) (-15 -3033 ($) -1809) (-15 -3955 ($) -1809) (-15 -4378 ((-112) $ (|[\|\|]| -2788))) (-15 -4378 ((-112) $ (|[\|\|]| -3033))) (-15 -4378 ((-112) $ (|[\|\|]| -3955))))) -((-2511 (($ |#1|) 6))) +((-2322 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -2322 ($ |t#1|)))) +((-2310 (((-112) $ $) NIL)) (-3314 (($) 14 T CONST)) (-1904 (($) 15 T CONST)) (-2353 (($ $ $) 29)) (-2329 (($ $) 27)) (-1418 (((-1152) $) NIL)) (-1897 (($ $ $) 30)) (-3840 (((-1114) $) NIL)) (-3246 (($) 11 T CONST)) (-4208 (($ $ $) 31)) (-2322 (((-858) $) 35)) (-2377 (((-112) $ (|[\|\|]| -3246)) 24) (((-112) $ (|[\|\|]| -3314)) 26) (((-112) $ (|[\|\|]| -1904)) 21)) (-2342 (($ $ $) 28)) (-2921 (((-112) $ $) 18))) +(((-615) (-13 (-963) (-10 -8 (-15 -3246 ($) -2255) (-15 -3314 ($) -2255) (-15 -1904 ($) -2255) (-15 -2377 ((-112) $ (|[\|\|]| -3246))) (-15 -2377 ((-112) $ (|[\|\|]| -3314))) (-15 -2377 ((-112) $ (|[\|\|]| -1904)))))) (T -615)) +((-3246 (*1 *1) (-5 *1 (-615))) (-3314 (*1 *1) (-5 *1 (-615))) (-1904 (*1 *1) (-5 *1 (-615))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3246)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3314)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1904)) (-5 *2 (-112)) (-5 *1 (-615))))) +(-13 (-963) (-10 -8 (-15 -3246 ($) -2255) (-15 -3314 ($) -2255) (-15 -1904 ($) -2255) (-15 -2377 ((-112) $ (|[\|\|]| -3246))) (-15 -2377 ((-112) $ (|[\|\|]| -3314))) (-15 -2377 ((-112) $ (|[\|\|]| -1904))))) +((-3172 (($ |#1|) 6))) (((-616 |#1|) (-140) (-1209)) (T -616)) -((-2511 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209))))) -(-13 (-10 -8 (-15 -2511 ($ |t#1|)))) -((-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) -(((-617 |#1| |#2|) (-10 -8 (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-618 |#2|) (-1046)) (T -617)) -NIL -(-10 -8 (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 36)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-618 |#1|) (-140) (-1046)) (T -618)) -((-1831 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046))))) -(-13 (-1046) (-644 |t#1|) (-10 -8 (-15 -1831 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1598 (((-564) $) NIL (|has| |#1| (-845)))) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-1569 (((-112) $) NIL (|has| |#1| (-845)))) (-2949 (((-112) $) NIL)) (-3678 ((|#1| $) 13)) (-2607 (((-112) $) NIL (|has| |#1| (-845)))) (-1925 (($ $ $) NIL (|has| |#1| (-845)))) (-3375 (($ $ $) NIL (|has| |#1| (-845)))) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3693 ((|#3| $) 15)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-2219 (((-768)) 20 T CONST)) (-1849 (($ $) NIL (|has| |#1| (-845)))) (-1293 (($) NIL T CONST)) (-1300 (($) 12 T CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1823 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1823 ($ $ |#3|)) (-15 -1823 ($ |#1| |#3|)) (-15 -3678 (|#1| $)) (-15 -3693 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -619)) -((-1823 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1823 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-3678 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-3693 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1823 ($ $ |#3|)) (-15 -1823 ($ |#1| |#3|)) (-15 -3678 (|#1| $)) (-15 -3693 (|#3| $)))) -((-4155 ((|#2| |#2| (-1170) (-1170)) 16))) -(((-620 |#1| |#2|) (-10 -7 (-15 -4155 (|#2| |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -620)) -((-4155 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4)))))) -(-10 -7 (-15 -4155 (|#2| |#2| (-1170) (-1170)))) -((-1817 (((-112) $ $) 64)) (-1615 (((-112) $) 58)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-1374 ((|#1| $) 55)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2011 (((-2 (|:| -1586 $) (|:| -3293 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) 27)) (-3733 (((-3 $ "failed") $) 88)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2155 (((-564) $) 22)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) 40)) (-3186 (($ |#1| (-564)) 24)) (-3370 ((|#1| $) 57)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ $) 92)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-768) $) 114 (|has| |#1| (-363)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 113 (|has| |#1| (-363)))) (-3534 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1619 (((-564) $) 38)) (-2511 (((-407 |#2|) $) 47)) (-1831 (((-859) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-2742 ((|#1| $ (-564)) 72)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) 32 T CONST)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 9 T CONST)) (-1300 (($) 14 T CONST)) (-3435 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1702 (((-112) $ $) 21)) (-1808 (($ $) 51) (($ $ $) NIL)) (-1797 (($ $ $) 89)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 29) (($ $ $) 49))) -(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -2003 ((-112) $)) (-15 -1619 ((-564) $)) (-15 -2155 ((-564) $)) (-15 -3396 ($ $)) (-15 -3370 (|#1| $)) (-15 -1374 (|#1| $)) (-15 -2742 (|#1| $ (-564))) (-15 -3186 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2011 ((-2 (|:| -1586 $) (|:| -3293 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1235 |#1|)) (T -621)) -((-2003 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1619 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-2155 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-3370 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-1374 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-2011 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -1586 (-621 *4 *5)) (|:| -3293 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))) -(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -2003 ((-112) $)) (-15 -1619 ((-564) $)) (-15 -2155 ((-564) $)) (-15 -3396 ($ $)) (-15 -3370 (|#1| $)) (-15 -1374 (|#1| $)) (-15 -2742 (|#1| $ (-564))) (-15 -3186 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2011 ((-2 (|:| -1586 $) (|:| -3293 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) -((-2951 (((-641 |#6|) (-641 |#4|) (-112)) 53)) (-1860 ((|#6| |#6|) 47))) -(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1860 (|#6| |#6|)) (-15 -2951 ((-641 |#6|) (-641 |#4|) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|)) (T -622)) -((-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *10 (-1103 *5 *6 *7 *8)))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6))))) -(-10 -7 (-15 -1860 (|#6| |#6|)) (-15 -2951 ((-641 |#6|) (-641 |#4|) (-112)))) -((-4055 (((-112) |#3| (-768) (-641 |#3|)) 32)) (-2068 (((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3840 (-641 (-2 (|:| |irr| |#4|) (|:| -1874 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)) 73))) -(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4055 ((-112) |#3| (-768) (-641 |#3|))) (-15 -2068 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3840 (-641 (-2 (|:| |irr| |#4|) (|:| -1874 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) (-847) (-790) (-307) (-946 |#3| |#2| |#1|)) (T -623)) -((-2068 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3840 (-641 (-2 (|:| |irr| *10) (|:| -1874 (-564))))))) (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307)) (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790)) (-5 *2 (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) (|:| |corrfact| (-641 (-1166 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))) (-4055 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847)) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-946 *3 *7 *6))))) -(-10 -7 (-15 -4055 ((-112) |#3| (-768) (-641 |#3|))) (-15 -2068 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3840 (-641 (-2 (|:| |irr| |#4|) (|:| -1874 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) -((-1817 (((-112) $ $) NIL)) (-4383 (((-1129) $) 11)) (-4372 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-624) (-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $))))) (T -624)) -((-4372 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))) -(-13 (-1077) (-10 -8 (-15 -4372 ((-1129) $)) (-15 -4383 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-2412 (((-641 |#1|) $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-3156 (($ $) 77)) (-2358 (((-660 |#1| |#2|) $) 60)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 81)) (-3458 (((-641 (-294 |#2|)) $ $) 42)) (-2780 (((-1114) $) NIL)) (-4326 (($ (-660 |#1| |#2|)) 56)) (-3047 (($ $ $) NIL)) (-1992 (($ $ $) NIL)) (-1831 (((-859) $) 66) (((-1274 |#1| |#2|) $) NIL) (((-1279 |#1| |#2|) $) 74)) (-1300 (($) 61 T CONST)) (-2500 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) 41)) (-3960 (((-641 (-660 |#1| |#2|)) (-641 |#1|)) 73)) (-1430 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) 46)) (-1702 (((-112) $ $) 62)) (-1823 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52))) -(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -4326 ($ (-660 |#1| |#2|))) (-15 -2358 ((-660 |#1| |#2|) $)) (-15 -1430 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -1831 ((-1274 |#1| |#2|) $)) (-15 -1831 ((-1279 |#1| |#2|) $)) (-15 -3156 ($ $)) (-15 -2412 ((-641 |#1|) $)) (-15 -3960 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2500 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -3458 ((-641 (-294 |#2|)) $ $)))) (-847) (-13 (-172) (-714 (-407 (-564)))) (-918)) (T -625)) -((-4326 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-918)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564))))) (-14 *6 (-918)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3458 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))) -(-13 (-473) (-10 -8 (-15 -4326 ($ (-660 |#1| |#2|))) (-15 -2358 ((-660 |#1| |#2|) $)) (-15 -1430 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -1831 ((-1274 |#1| |#2|) $)) (-15 -1831 ((-1279 |#1| |#2|) $)) (-15 -3156 ($ $)) (-15 -2412 ((-641 |#1|) $)) (-15 -3960 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2500 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -3458 ((-641 (-294 |#2|)) $ $)))) -((-2951 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 102) (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 76)) (-1628 (((-112) (-641 (-777 |#1| (-861 |#2|)))) 26)) (-3184 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 101)) (-3575 (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 75)) (-4385 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) 30)) (-3109 (((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|)))) 29))) -(((-626 |#1| |#2|) (-10 -7 (-15 -1628 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3109 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -4385 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3575 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3184 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -2951 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -2951 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)))) (-452) (-641 (-1170))) (T -626)) -((-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-4385 (*1 *2 *2) (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-3109 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452)) (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) -(-10 -7 (-15 -1628 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3109 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -4385 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3575 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3184 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -2951 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -2951 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)))) -((-3357 (($ $) 38)) (-3210 (($ $) 21)) (-3330 (($ $) 37)) (-3187 (($ $) 22)) (-3384 (($ $) 36)) (-3233 (($ $) 23)) (-3714 (($) 48)) (-2358 (($ $) 45)) (-4127 (($ $) 17)) (-3165 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)) (-4326 (($ $) 46)) (-3142 (($ $) 15)) (-3173 (($ $) 16)) (-3395 (($ $) 35)) (-3245 (($ $) 24)) (-3371 (($ $) 34)) (-3221 (($ $) 25)) (-3344 (($ $) 33)) (-3199 (($ $) 26)) (-3427 (($ $) 44)) (-3276 (($ $) 32)) (-3406 (($ $) 43)) (-3254 (($ $) 31)) (-3450 (($ $) 42)) (-3302 (($ $) 30)) (-2315 (($ $) 41)) (-3316 (($ $) 29)) (-3439 (($ $) 40)) (-3287 (($ $) 28)) (-3416 (($ $) 39)) (-3265 (($ $) 27)) (-3074 (($ $) 19)) (-1805 (($ $) 20)) (-2924 (($ $) 18)) (** (($ $ $) 47))) +((-3172 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -3172 ($ |t#1|)))) +((-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) +(((-617 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-618 |#2|) (-1045)) (T -617)) +NIL +(-10 -8 (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 36)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-618 |#1|) (-140) (-1045)) (T -618)) +((-2322 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-644 |t#1|) (-10 -8 (-15 -2322 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3085 (((-564) $) NIL (|has| |#1| (-844)))) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-2786 (((-112) $) NIL (|has| |#1| (-844)))) (-1828 (((-112) $) NIL)) (-4189 ((|#1| $) 13)) (-2783 (((-112) $) NIL (|has| |#1| (-844)))) (-1501 (($ $ $) NIL (|has| |#1| (-844)))) (-2622 (($ $ $) NIL (|has| |#1| (-844)))) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4201 ((|#3| $) 15)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-3179 (((-767)) 20 T CONST)) (-3598 (($ $) NIL (|has| |#1| (-844)))) (-2389 (($) NIL T CONST)) (-2403 (($) 12 T CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3034 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -4189 (|#1| $)) (-15 -4201 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -619)) +((-3034 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-3034 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-4189 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-4201 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -4189 (|#1| $)) (-15 -4201 (|#3| $)))) +((-1331 ((|#2| |#2| (-1170) (-1170)) 16))) +(((-620 |#1| |#2|) (-10 -7 (-15 -1331 (|#2| |#2| (-1170) (-1170)))) (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-29 |#1|))) (T -620)) +((-1331 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-955) (-29 *4)))))) +(-10 -7 (-15 -1331 (|#2| |#2| (-1170) (-1170)))) +((-2310 (((-112) $ $) 64)) (-3264 (((-112) $) 58)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-3935 ((|#1| $) 55)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1561 (((-2 (|:| -2959 $) (|:| -3060 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) 27)) (-2689 (((-3 $ "failed") $) 88)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3717 (((-564) $) 22)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) 40)) (-2507 (($ |#1| (-564)) 24)) (-2686 ((|#1| $) 57)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ $) 92)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3844 (((-767) $) 114 (|has| |#1| (-363)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 113 (|has| |#1| (-363)))) (-1343 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2073 (((-564) $) 38)) (-3172 (((-407 |#2|) $) 47)) (-2322 (((-858) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-3467 ((|#1| $ (-564)) 72)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) 32 T CONST)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 9 T CONST)) (-2403 (($) 14 T CONST)) (-3917 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2921 (((-112) $ $) 21)) (-3021 (($ $) 51) (($ $ $) NIL)) (-3011 (($ $ $) 89)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 29) (($ $ $) 49))) +(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -1492 ((-112) $)) (-15 -2073 ((-564) $)) (-15 -3717 ((-564) $)) (-15 -2710 ($ $)) (-15 -2686 (|#1| $)) (-15 -3935 (|#1| $)) (-15 -3467 (|#1| $ (-564))) (-15 -2507 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -1561 ((-2 (|:| -2959 $) (|:| -3060 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1235 |#1|)) (T -621)) +((-1492 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-2073 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-3717 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-2710 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-3935 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-2507 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-1561 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2959 (-621 *4 *5)) (|:| -3060 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))) +(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -1492 ((-112) $)) (-15 -2073 ((-564) $)) (-15 -3717 ((-564) $)) (-15 -2710 ($ $)) (-15 -2686 (|#1| $)) (-15 -3935 (|#1| $)) (-15 -3467 (|#1| $ (-564))) (-15 -2507 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -1561 ((-2 (|:| -2959 $) (|:| -3060 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) +((-1841 (((-641 |#6|) (-641 |#4|) (-112)) 53)) (-3709 ((|#6| |#6|) 47))) +(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3709 (|#6| |#6|)) (-15 -1841 ((-641 |#6|) (-641 |#4|) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|)) (T -622)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *10 (-1103 *5 *6 *7 *8)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6))))) +(-10 -7 (-15 -3709 (|#6| |#6|)) (-15 -1841 ((-641 |#6|) (-641 |#4|) (-112)))) +((-2804 (((-112) |#3| (-767) (-641 |#3|)) 32)) (-4063 (((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4322 (-641 (-2 (|:| |irr| |#4|) (|:| -3871 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)) 73))) +(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2804 ((-112) |#3| (-767) (-641 |#3|))) (-15 -4063 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4322 (-641 (-2 (|:| |irr| |#4|) (|:| -3871 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) (-846) (-789) (-307) (-945 |#3| |#2| |#1|)) (T -623)) +((-4063 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4322 (-641 (-2 (|:| |irr| *10) (|:| -3871 (-564))))))) (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-846)) (-4 *3 (-307)) (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) (-5 *2 (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) (|:| |corrfact| (-641 (-1166 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))) (-2804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-767)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-846)) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-945 *3 *7 *6))))) +(-10 -7 (-15 -2804 ((-112) |#3| (-767) (-641 |#3|))) (-15 -4063 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4322 (-641 (-2 (|:| |irr| |#4|) (|:| -3871 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) +((-2310 (((-112) $ $) NIL)) (-3725 (((-1129) $) 11)) (-3713 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-624) (-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $))))) (T -624)) +((-3713 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))) +(-13 (-1077) (-10 -8 (-15 -3713 ((-1129) $)) (-15 -3725 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-2966 (((-641 |#1|) $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-4321 (($ $) 77)) (-3439 (((-660 |#1| |#2|) $) 60)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 81)) (-1951 (((-641 (-294 |#2|)) $ $) 42)) (-3840 (((-1114) $) NIL)) (-3571 (($ (-660 |#1| |#2|)) 56)) (-2675 (($ $ $) NIL)) (-2617 (($ $ $) NIL)) (-2322 (((-858) $) 66) (((-1274 |#1| |#2|) $) NIL) (((-1279 |#1| |#2|) $) 74)) (-2403 (($) 61 T CONST)) (-2968 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) 41)) (-3030 (((-641 (-660 |#1| |#2|)) (-641 |#1|)) 73)) (-4318 (((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) 46)) (-2921 (((-112) $ $) 62)) (-3034 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52))) +(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -3571 ($ (-660 |#1| |#2|))) (-15 -3439 ((-660 |#1| |#2|) $)) (-15 -4318 ((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -2322 ((-1274 |#1| |#2|) $)) (-15 -2322 ((-1279 |#1| |#2|) $)) (-15 -4321 ($ $)) (-15 -2966 ((-641 |#1|) $)) (-15 -3030 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2968 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -1951 ((-641 (-294 |#2|)) $ $)))) (-846) (-13 (-172) (-713 (-407 (-564)))) (-917)) (T -625)) +((-3571 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-917)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-13 (-172) (-713 (-407 (-564))))) (-14 *4 (-917)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-660 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-564))))) (-14 *6 (-917)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))) +(-13 (-473) (-10 -8 (-15 -3571 ($ (-660 |#1| |#2|))) (-15 -3439 ((-660 |#1| |#2|) $)) (-15 -4318 ((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -2322 ((-1274 |#1| |#2|) $)) (-15 -2322 ((-1279 |#1| |#2|) $)) (-15 -4321 ($ $)) (-15 -2966 ((-641 |#1|) $)) (-15 -3030 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2968 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -1951 ((-641 (-294 |#2|)) $ $)))) +((-1841 (((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)) 102) (((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112)) 76)) (-2130 (((-112) (-641 (-776 |#1| (-860 |#2|)))) 26)) (-1468 (((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)) 101)) (-3744 (((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112)) 75)) (-1714 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|)))) 30)) (-2005 (((-3 (-641 (-776 |#1| (-860 |#2|))) "failed") (-641 (-776 |#1| (-860 |#2|)))) 29))) +(((-626 |#1| |#2|) (-10 -7 (-15 -2130 ((-112) (-641 (-776 |#1| (-860 |#2|))))) (-15 -2005 ((-3 (-641 (-776 |#1| (-860 |#2|))) "failed") (-641 (-776 |#1| (-860 |#2|))))) (-15 -1714 ((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))))) (-15 -3744 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1468 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1841 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1841 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)))) (-452) (-641 (-1170))) (T -626)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-626 *5 *6)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-626 *5 *6)))) (-1468 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-626 *5 *6)))) (-3744 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-626 *5 *6)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-2005 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-641 (-776 *4 (-860 *5)))) (-4 *4 (-452)) (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) +(-10 -7 (-15 -2130 ((-112) (-641 (-776 |#1| (-860 |#2|))))) (-15 -2005 ((-3 (-641 (-776 |#1| (-860 |#2|))) "failed") (-641 (-776 |#1| (-860 |#2|))))) (-15 -1714 ((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))))) (-15 -3744 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1468 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1841 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1841 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)))) +((-3802 (($ $) 38)) (-3661 (($ $) 21)) (-3779 (($ $) 37)) (-3639 (($ $) 22)) (-3825 (($ $) 36)) (-3684 (($ $) 23)) (-4223 (($) 48)) (-3439 (($ $) 45)) (-1469 (($ $) 17)) (-1306 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)) (-3571 (($ $) 46)) (-3597 (($ $) 15)) (-3629 (($ $) 16)) (-3836 (($ $) 35)) (-3697 (($ $) 24)) (-3814 (($ $) 34)) (-3672 (($ $) 25)) (-3792 (($ $) 33)) (-3650 (($ $) 26)) (-2672 (($ $) 44)) (-3732 (($ $) 32)) (-3849 (($ $) 43)) (-3708 (($ $) 31)) (-2695 (($ $) 42)) (-3757 (($ $) 30)) (-1511 (($ $) 41)) (-3768 (($ $) 29)) (-2684 (($ $) 40)) (-3746 (($ $) 28)) (-2660 (($ $) 39)) (-3720 (($ $) 27)) (-1663 (($ $) 19)) (-1328 (($ $) 20)) (-2831 (($ $) 18)) (** (($ $ $) 47))) (((-627) (-140)) (T -627)) -((-1805 (*1 *1 *1) (-4 *1 (-627))) (-3074 (*1 *1 *1) (-4 *1 (-627))) (-2924 (*1 *1 *1) (-4 *1 (-627))) (-4127 (*1 *1 *1) (-4 *1 (-627))) (-3173 (*1 *1 *1) (-4 *1 (-627))) (-3142 (*1 *1 *1) (-4 *1 (-627)))) -(-13 (-956) (-1194) (-10 -8 (-15 -1805 ($ $)) (-15 -3074 ($ $)) (-15 -2924 ($ $)) (-15 -4127 ($ $)) (-15 -3173 ($ $)) (-15 -3142 ($ $)))) -(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-956) . T) ((-1194) . T) ((-1197) . T)) -((-1841 (((-114) (-114)) 90)) (-4127 ((|#2| |#2|) 28)) (-3165 ((|#2| |#2| (-1086 |#2|)) 86) ((|#2| |#2| (-1170)) 50)) (-3142 ((|#2| |#2|) 27)) (-3173 ((|#2| |#2|) 29)) (-1322 (((-112) (-114)) 33)) (-3074 ((|#2| |#2|) 24)) (-1805 ((|#2| |#2|) 26)) (-2924 ((|#2| |#2|) 25))) -(((-628 |#1| |#2|) (-10 -7 (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -1805 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -3142 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3165 (|#2| |#2| (-1170))) (-15 -3165 (|#2| |#2| (-1086 |#2|)))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999) (-1194))) (T -628)) -((-3165 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)))) (-3165 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2924 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-999) (-1194))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))))) -(-10 -7 (-15 -1322 ((-112) (-114))) (-15 -1841 ((-114) (-114))) (-15 -1805 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -3142 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3165 (|#2| |#2| (-1170))) (-15 -3165 (|#2| |#2| (-1086 |#2|)))) -((-1613 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-1572 (((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 93)) (-2480 (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 95) (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 94)) (-2709 (((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|))) 138)) (-3892 (((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 108)) (-1323 (((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|))) 148)) (-2894 (((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|))) 72)) (-2382 (((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 48)) (-3000 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 64)) (-3354 (((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 116))) -(((-629 |#1| |#2|) (-10 -7 (-15 -2709 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1323 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -1572 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2480 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2480 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2382 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2894 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -3354 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3892 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3000 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1613 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-641 (-1170)) (-452)) (T -629)) -((-1613 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-3000 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-3892 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-3354 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) (-5 *1 (-629 *5 *6)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2480 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-1323 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-641 (-247 *4 *5))) (|:| |gvlist| (-641 (-564))))) (-5 *1 (-629 *4 *5))))) -(-10 -7 (-15 -2709 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1323 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -1572 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2480 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2480 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2382 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2894 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -3354 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3892 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3000 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1613 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) NIL)) (-1956 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 (((-52) $ (-1152) (-52)) 16) (((-52) $ (-1170) (-52)) 17)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 (-52) "failed") (-1152) $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094))))) (-3644 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-3 (-52) "failed") (-1152) $) NIL)) (-2576 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $ (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (((-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $ (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2261 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4407)))) (-2190 (((-52) $ (-1152)) NIL)) (-1433 (((-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-1582 (($ $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2640 (((-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-3440 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3775 (($ (-388)) 9)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094))))) (-2945 (((-641 (-1152)) $) NIL)) (-2554 (((-112) (-1152) $) NIL)) (-2401 (((-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL)) (-2783 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL)) (-3883 (((-641 (-1152)) $) NIL)) (-4336 (((-112) (-1152) $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094))))) (-3303 (((-52) $) NIL (|has| (-1152) (-847)))) (-3995 (((-3 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) "failed") (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL)) (-4253 (($ $ (-52)) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (($ $ (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-1794 (((-641 (-52)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 (((-52) $ (-1152)) 14) (((-52) $ (-1152) (-52)) NIL) (((-52) $ (-1170)) 15)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 (-52))) (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-630) (-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3775 ($ (-388))) (-15 -1582 ($ $)) (-15 -1350 ((-52) $ (-1170))) (-15 -1970 ((-52) $ (-1170) (-52)))))) (T -630)) -((-3775 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-1582 (*1 *1 *1) (-5 *1 (-630))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) (-1970 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630))))) -(-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3775 ($ (-388))) (-15 -1582 ($ $)) (-15 -1350 ((-52) $ (-1170))) (-15 -1970 ((-52) $ (-1170) (-52))))) -((-1823 (($ $ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -1823 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631)) -NIL -(-10 -8 (-15 -1823 (|#1| |#1| |#2|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1842 (($ $ $) 29)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-1328 (*1 *1 *1) (-4 *1 (-627))) (-1663 (*1 *1 *1) (-4 *1 (-627))) (-2831 (*1 *1 *1) (-4 *1 (-627))) (-1469 (*1 *1 *1) (-4 *1 (-627))) (-3629 (*1 *1 *1) (-4 *1 (-627))) (-3597 (*1 *1 *1) (-4 *1 (-627)))) +(-13 (-955) (-1194) (-10 -8 (-15 -1328 ($ $)) (-15 -1663 ($ $)) (-15 -2831 ($ $)) (-15 -1469 ($ $)) (-15 -3629 ($ $)) (-15 -3597 ($ $)))) +(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-955) . T) ((-1194) . T) ((-1197) . T)) +((-3523 (((-114) (-114)) 90)) (-1469 ((|#2| |#2|) 28)) (-1306 ((|#2| |#2| (-1086 |#2|)) 86) ((|#2| |#2| (-1170)) 50)) (-3597 ((|#2| |#2|) 27)) (-3629 ((|#2| |#2|) 29)) (-1646 (((-112) (-114)) 33)) (-1663 ((|#2| |#2|) 24)) (-1328 ((|#2| |#2|) 26)) (-2831 ((|#2| |#2|) 25))) +(((-628 |#1| |#2|) (-10 -7 (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -1328 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -1306 (|#2| |#2| (-1170))) (-15 -1306 (|#2| |#2| (-1086 |#2|)))) (-13 (-846) (-556)) (-13 (-430 |#1|) (-998) (-1194))) (T -628)) +((-1306 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1194))) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-628 *4 *2)))) (-1306 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1194))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-3597 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-1469 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-998) (-1194))))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194)))))) +(-10 -7 (-15 -1646 ((-112) (-114))) (-15 -3523 ((-114) (-114))) (-15 -1328 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -1306 (|#2| |#2| (-1170))) (-15 -1306 (|#2| |#2| (-1086 |#2|)))) +((-3241 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-2818 (((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 93)) (-3975 (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-860 |#1|)) 95) (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-860 |#1|)) 94)) (-4385 (((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|))) 138)) (-3563 (((-641 (-481 |#1| |#2|)) (-860 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 108)) (-1657 (((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|))) 148)) (-2504 (((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|))) 72)) (-4262 (((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 48)) (-2224 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 64)) (-2274 (((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 116))) +(((-629 |#1| |#2|) (-10 -7 (-15 -4385 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1657 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -2818 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3975 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3975 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -4262 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2504 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -2274 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3563 ((-641 (-481 |#1| |#2|)) (-860 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2224 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3241 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-641 (-1170)) (-452)) (T -629)) +((-3241 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-2224 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-3563 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-2274 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) (-5 *1 (-629 *5 *6)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-3975 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-1657 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-641 (-247 *4 *5))) (|:| |gvlist| (-641 (-564))))) (-5 *1 (-629 *4 *5))))) +(-10 -7 (-15 -4385 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1657 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -2818 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3975 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3975 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -4262 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2504 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -2274 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3563 ((-641 (-481 |#1| |#2|)) (-860 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2224 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3241 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) NIL)) (-2246 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 (((-52) $ (-1152) (-52)) 16) (((-52) $ (-1170) (-52)) 17)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 (-52) "failed") (-1152) $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094))))) (-3175 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-3 (-52) "failed") (-1152) $) NIL)) (-3628 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $ (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (((-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $ (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1466 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4407)))) (-1407 (((-52) $ (-1152)) NIL)) (-3534 (((-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-2916 (($ $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1834 (((-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-1785 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1692 (($ (-388)) 9)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094))))) (-2843 (((-641 (-1152)) $) NIL)) (-2237 (((-112) (-1152) $) NIL)) (-1340 (((-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL)) (-3861 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL)) (-3487 (((-641 (-1152)) $) NIL)) (-2550 (((-112) (-1152) $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094))))) (-1995 (((-52) $) NIL (|has| (-1152) (-846)))) (-3393 (((-3 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) "failed") (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL)) (-2981 (($ $ (-52)) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (($ $ (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-4324 (((-641 (-52)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 (((-52) $ (-1152)) 14) (((-52) $ (-1152) (-52)) NIL) (((-52) $ (-1170)) 15)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-52) (-611 (-858))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 (-52))) (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-630) (-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -1692 ($ (-388))) (-15 -2916 ($ $)) (-15 -4353 ((-52) $ (-1170))) (-15 -3750 ((-52) $ (-1170) (-52)))))) (T -630)) +((-1692 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-2916 (*1 *1 *1) (-5 *1 (-630))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) (-3750 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630))))) +(-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -1692 ($ (-388))) (-15 -2916 ($ $)) (-15 -4353 ((-52) $ (-1170))) (-15 -3750 ((-52) $ (-1170) (-52))))) +((-3034 (($ $ |#2|) 10))) +(((-631 |#1| |#2|) (-10 -8 (-15 -3034 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631)) +NIL +(-10 -8 (-15 -3034 (|#1| |#1| |#2|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2335 (($ $ $) 29)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-632 |#1|) (-140) (-172)) (T -632)) -((-1842 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-1823 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(-13 (-714 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1842 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -1823 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1674 (((-3 $ "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1546 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2294 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1778 (($) NIL T CONST)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3868 (((-3 $ "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1911 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2825 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2050 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2767 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2232 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-4221 (($ $ (-918)) NIL)) (-2166 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2878 (((-1166 |#1|) $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1476 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1475 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2103 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3624 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3733 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3531 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-3628 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2482 (($ $ (-918)) NIL)) (-3001 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3261 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2130 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2302 (((-3 $ "failed")) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2510 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3385 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2289 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3874 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1402 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2839 (($ $ (-918)) NIL)) (-2873 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-4146 (((-1166 |#1|) $) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3525 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2582 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2628 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2723 (((-1152) $) NIL)) (-3582 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2317 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2241 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2780 (((-1114) $) NIL)) (-3740 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1350 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-2467 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2511 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2852 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1992 (($ $ $) NIL)) (-2595 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1831 (((-859) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3331 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-1488 (((-641 (-1259 |#1|))) NIL (-4078 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2611 (($ $ $ $) NIL)) (-1604 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3246 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1656 (($ $ $) NIL)) (-3830 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3335 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2921 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1293 (($) 19 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-633 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1831 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -633)) -((-1831 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3))))) -(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1831 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) -((-3025 (((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)) 105) (((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|))) 130)) (-2478 (((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|))) 135))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -2478 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -3025 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -634)) -((-3025 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3)))) (-2478 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-830 *3))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3025 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3))))) -(-10 -7 (-15 -3025 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -2478 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -3025 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) -((-3025 (((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)) 85) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 20) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|)))) 35)) (-2478 (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 23) (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|)))) 43))) -(((-635 |#1|) (-10 -7 (-15 -3025 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -3025 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2478 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -2478 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -3025 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)))) (-452)) (T -635)) -((-3025 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3)) (-5 *1 (-635 *6)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))) (-3025 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-3025 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-840 (-407 (-949 *5))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5)))))) -(-10 -7 (-15 -3025 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -3025 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2478 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -2478 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -3025 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)))) -((-4132 (((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|) 64 (-4338 (|has| |#1| (-363)))) (((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-2380 (((-112) (-1259 |#2|)) 33)) (-3118 (((-3 (-1259 |#1|) "failed") (-1259 |#2|)) 40))) -(((-636 |#1| |#2|) (-10 -7 (-15 -2380 ((-112) (-1259 |#2|))) (-15 -3118 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -4132 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -4132 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636)) -((-4132 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4338 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-4132 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) (-3118 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) -(-10 -7 (-15 -2380 ((-112) (-1259 |#2|))) (-15 -3118 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -4132 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -4132 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-4050 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-637 |#1|) (-140) (-1046)) (T -637)) -((-4050 (*1 *2 *3) (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046)) (-5 *2 (-685 *4)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -2394 (-685 *5)) (|:| |vec| (-1259 *5))))))) -(-13 (-1046) (-10 -8 (-15 -4050 ((-685 |t#1|) (-685 $))) (-15 -4050 ((-2 (|:| -2394 (-685 |t#1|)) (|:| |vec| (-1259 |t#1|))) (-685 $) (-1259 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-3343 ((|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|) 17) ((|#2| (-641 |#1|) (-641 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|)) 12))) -(((-638 |#1| |#2|) (-10 -7 (-15 -3343 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -3343 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -3343 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -3343 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -3343 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -3343 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1209)) (T -638)) -((-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-3343 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) (-3343 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6))))) -(-10 -7 (-15 -3343 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -3343 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -3343 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -3343 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -3343 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -3343 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) -((-1694 (((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 16)) (-1988 ((|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 18)) (-2449 (((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)) 13))) -(((-639 |#1| |#2|) (-10 -7 (-15 -1694 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2449 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) (-1209) (-1209)) (T -639)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5))))) -(-10 -7 (-15 -1694 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2449 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) -((-2449 (((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)) 21))) -(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2449 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) (-1209) (-1209) (-1209)) (T -640)) -((-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) (-5 *1 (-640 *6 *7 *8))))) -(-10 -7 (-15 -2449 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) NIL)) (-3149 ((|#1| $) NIL)) (-4045 (($ $) NIL)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2573 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2861 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3653 (($ $ $) NIL (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "rest" $) NIL (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-3234 (($ $ $) 36 (|has| |#1| (-1094)))) (-3222 (($ $ $) 40 (|has| |#1| (-1094)))) (-3211 (($ $ $) 43 (|has| |#1| (-1094)))) (-4145 (($ (-1 (-112) |#1|) $) NIL)) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3137 ((|#1| $) NIL)) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3314 (($ $) 22) (($ $ (-768)) NIL)) (-4341 (($ $) NIL (|has| |#1| (-1094)))) (-3337 (($ $) 35 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2576 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-1346 (((-112) $) NIL)) (-3360 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4330 (((-112) $) 11)) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2471 (($) 9)) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-2429 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3956 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 39 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3176 (($ |#1|) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2598 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2783 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3652 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) 19) (($ $ (-768)) NIL)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4337 (((-112) $) NIL)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) 38)) (-4012 (($) 37)) (-1350 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 41) ((|#1| $ (-564) |#1|) NIL)) (-4190 (((-564) $ $) NIL)) (-2087 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2126 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1899 (((-112) $) NIL)) (-2034 (($ $) NIL)) (-3292 (($ $) NIL (|has| $ (-6 -4407)))) (-1724 (((-768) $) NIL)) (-3910 (($ $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) 52 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) NIL)) (-4251 (($ |#1| $) 12)) (-2460 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $ $) 34) (($ |#1| $) 42) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2765 (($ $ $) 13)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3213 (((-1152) $) 30 (|has| |#1| (-825))) (((-1152) $ (-112)) 31 (|has| |#1| (-825))) (((-1264) (-819) $) 32 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 33 (|has| |#1| (-825)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-641 |#1|) (-13 (-662 |#1|) (-10 -8 (-15 -2471 ($)) (-15 -4330 ((-112) $)) (-15 -4251 ($ |#1| $)) (-15 -2765 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3234 ($ $ $)) (-15 -3222 ($ $ $)) (-15 -3211 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1209)) (T -641)) -((-2471 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))) (-4251 (*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2765 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-3234 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-3222 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-3211 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) -(-13 (-662 |#1|) (-10 -8 (-15 -2471 ($)) (-15 -4330 ((-112) $)) (-15 -4251 ($ |#1| $)) (-15 -2765 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3234 ($ $ $)) (-15 -3222 ($ $ $)) (-15 -3211 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 11) (($ (-1175)) NIL) (((-1175) $) NIL) ((|#1| $) 8)) (-1702 (((-112) $ $) NIL))) +((-2335 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(-13 (-713 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2335 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -3034 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2563 (((-3 $ "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3727 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2691 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4157 (($) NIL T CONST)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1485 (((-3 $ "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3035 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3063 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1991 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3706 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3294 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3865 (($ $ (-917)) NIL)) (-3845 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2331 (((-1166 |#1|) $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4287 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4276 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1335 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3013 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2689 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3105 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3055 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3996 (($ $ (-917)) NIL)) (-2235 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2809 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3457 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1523 (((-3 $ "failed")) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3065 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2528 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2645 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1529 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4060 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3200 (($ $ (-917)) NIL)) (-2276 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-4339 (((-1166 |#1|) $) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1400 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2536 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1723 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1418 (((-1152) $) NIL)) (-3816 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1671 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3353 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3840 (((-1114) $) NIL)) (-2753 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4353 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3864 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3172 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3328 (((-641 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-948 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2617 (($ $ $) NIL)) (-2676 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2322 (((-858) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3342 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-1296 (((-641 (-1259 |#1|))) NIL (-2789 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1553 (($ $ $ $) NIL)) (-3148 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1937 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2366 (($ $ $) NIL)) (-4232 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2145 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2803 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2389 (($) 19 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) 20)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-633 |#1| |#2|) (-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2322 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -633)) +((-2322 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-740 *3))))) +(-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2322 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) +((-2472 (((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1152)) 105) (((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|))) 130)) (-3957 (((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|))) 135))) +(((-634 |#1| |#2|) (-10 -7 (-15 -2472 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -3957 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -2472 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) (-13 (-452) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -634)) +((-2472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-839 *3)) (-5 *1 (-634 *6 *3)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-829 *3))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-829 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3))))) +(-10 -7 (-15 -2472 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -3957 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -2472 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) +((-2472 (((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1152)) 85) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 20) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|)))) 35)) (-3957 (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 23) (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|)))) 43))) +(((-635 |#1|) (-10 -7 (-15 -2472 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -2472 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3957 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -3957 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -2472 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1152)))) (-452)) (T -635)) +((-2472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1152)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) (-5 *1 (-635 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-635 *5)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-948 *5))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-839 (-407 (-948 *5))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-948 *5)))))) +(-10 -7 (-15 -2472 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -2472 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3957 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -3957 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -2472 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1152)))) +((-4183 (((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|) 64 (-2329 (|has| |#1| (-363)))) (((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-4240 (((-112) (-1259 |#2|)) 33)) (-2080 (((-3 (-1259 |#1|) "failed") (-1259 |#2|)) 40))) +(((-636 |#1| |#2|) (-10 -7 (-15 -4240 ((-112) (-1259 |#2|))) (-15 -2080 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -4183 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -4183 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636)) +((-4183 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-2329 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-4183 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) (-2080 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) +(-10 -7 (-15 -4240 ((-112) (-1259 |#2|))) (-15 -2080 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -4183 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -4183 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2750 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-637 |#1|) (-140) (-1045)) (T -637)) +((-2750 (*1 *2 *3) (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1045)) (-5 *2 (-685 *4)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -4379 (-685 *5)) (|:| |vec| (-1259 *5))))))) +(-13 (-1045) (-10 -8 (-15 -2750 ((-685 |t#1|) (-685 $))) (-15 -2750 ((-2 (|:| -4379 (-685 |t#1|)) (|:| |vec| (-1259 |t#1|))) (-685 $) (-1259 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3983 ((|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|) 17) ((|#2| (-641 |#1|) (-641 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|)) 12))) +(((-638 |#1| |#2|) (-10 -7 (-15 -3983 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -3983 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -3983 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -3983 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -3983 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -3983 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1209)) (T -638)) +((-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-3983 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) (-3983 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-3983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) (-3983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-3983 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6))))) +(-10 -7 (-15 -3983 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -3983 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -3983 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -3983 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -3983 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -3983 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) +((-1514 (((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 16)) (-3239 ((|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 18)) (-3123 (((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)) 13))) +(((-639 |#1| |#2|) (-10 -7 (-15 -1514 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -3123 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) (-1209) (-1209)) (T -639)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) (-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5))))) +(-10 -7 (-15 -1514 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -3123 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) +((-3123 (((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)) 21))) +(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) (-1209) (-1209) (-1209)) (T -640)) +((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) (-5 *1 (-640 *6 *7 *8))))) +(-10 -7 (-15 -3123 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) NIL)) (-3678 ((|#1| $) NIL)) (-3284 (($ $) NIL)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2441 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3811 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3238 (($ $ $) NIL (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "rest" $) NIL (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-1926 (($ $ $) 36 (|has| |#1| (-1094)))) (-1914 (($ $ $) 40 (|has| |#1| (-1094)))) (-1900 (($ $ $) 43 (|has| |#1| (-1094)))) (-4328 (($ (-1 (-112) |#1|) $) NIL)) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3667 ((|#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2008 (($ $) 22) (($ $ (-767)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-1094)))) (-2027 (($ $) 35 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3628 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3524 (((-112) $) NIL)) (-3847 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2315 (((-112) $) 11)) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3530 (($) 9)) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-3471 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2988 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 39 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1870 (($ |#1|) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3649 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3861 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4116 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) 19) (($ $ (-767)) NIL)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-2562 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) 38)) (-2348 (($) 37)) (-4353 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 41) ((|#1| $ (-564) |#1|) NIL)) (-3526 (((-564) $ $) NIL)) (-4277 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1996 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2911 (((-112) $) NIL)) (-1819 (($ $) NIL)) (-3051 (($ $) NIL (|has| $ (-6 -4407)))) (-1793 (((-767) $) NIL)) (-3743 (($ $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) 52 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) NIL)) (-1644 (($ |#1| $) 12)) (-3783 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3533 (($ $ $) 34) (($ |#1| $) 42) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3224 (($ $ $) 13)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3552 (((-1152) $) 30 (|has| |#1| (-824))) (((-1152) $ (-112)) 31 (|has| |#1| (-824))) (((-1264) (-818) $) 32 (|has| |#1| (-824))) (((-1264) (-818) $ (-112)) 33 (|has| |#1| (-824)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-641 |#1|) (-13 (-662 |#1|) (-10 -8 (-15 -3530 ($)) (-15 -2315 ((-112) $)) (-15 -1644 ($ |#1| $)) (-15 -3224 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1926 ($ $ $)) (-15 -1914 ($ $ $)) (-15 -1900 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-1209)) (T -641)) +((-3530 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))) (-1644 (*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-3224 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-1926 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-1914 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-1900 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(-13 (-662 |#1|) (-10 -8 (-15 -3530 ($)) (-15 -2315 ((-112) $)) (-15 -1644 ($ |#1| $)) (-15 -3224 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1926 ($ $ $)) (-15 -1914 ($ $ $)) (-15 -1900 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 11) (($ (-1175)) NIL) (((-1175) $) NIL) ((|#1| $) 8)) (-2921 (((-112) $ $) NIL))) (((-642 |#1|) (-13 (-1077) (-611 |#1|)) (-1094)) (T -642)) NIL (-13 (-1077) (-611 |#1|)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3332 (($ |#1| |#1| $) 46)) (-4010 (((-112) $ (-768)) NIL)) (-4145 (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4341 (($ $) 48)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) 58 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 60 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 9 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 37)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2401 ((|#1| $) 50)) (-2783 (($ |#1| $) 29) (($ |#1| $ (-768)) 45)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4153 ((|#1| $) 53)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 23)) (-4012 (($) 28)) (-3742 (((-112) $) 56)) (-4096 (((-641 (-2 (|:| -1389 |#1|) (|:| -2791 (-768)))) $) 68)) (-4232 (($) 26) (($ (-641 |#1|)) 19)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) 65 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 20)) (-2511 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) NIL)) (-1831 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 24)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 70 (|has| |#1| (-1094)))) (-2828 (((-768) $) 17 (|has| $ (-6 -4406))))) -(((-643 |#1|) (-13 (-691 |#1|) (-10 -8 (-6 -4406) (-15 -3742 ((-112) $)) (-15 -3332 ($ |#1| |#1| $)))) (-1094)) (T -643)) -((-3742 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))) (-3332 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094))))) -(-13 (-691 |#1|) (-10 -8 (-6 -4406) (-15 -3742 ((-112) $)) (-15 -3332 ($ |#1| |#1| $)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23))) -(((-644 |#1|) (-140) (-1053)) (T -644)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2017 (($ |#1| |#1| $) 46)) (-2318 (((-112) $ (-767)) NIL)) (-4328 (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2596 (($ $) 48)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) 58 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 60 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 9 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 37)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1340 ((|#1| $) 50)) (-3861 (($ |#1| $) 29) (($ |#1| $ (-767)) 45)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1313 ((|#1| $) 53)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 23)) (-2348 (($) 28)) (-2772 (((-112) $) 56)) (-1931 (((-641 (-2 (|:| -2511 |#1|) (|:| -3852 (-767)))) $) 68)) (-3977 (($) 26) (($ (-641 |#1|)) 19)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) 65 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 20)) (-3172 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) NIL)) (-2322 (((-858) $) 14 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 24)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 70 (|has| |#1| (-1094)))) (-2059 (((-767) $) 17 (|has| $ (-6 -4406))))) +(((-643 |#1|) (-13 (-691 |#1|) (-10 -8 (-6 -4406) (-15 -2772 ((-112) $)) (-15 -2017 ($ |#1| |#1| $)))) (-1094)) (T -643)) +((-2772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))) (-2017 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094))))) +(-13 (-691 |#1|) (-10 -8 (-6 -4406) (-15 -2772 ((-112) $)) (-15 -2017 ($ |#1| |#1| $)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#1| $) 23))) +(((-644 |#1|) (-140) (-1052)) (T -644)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1052))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768) $) 17)) (-1930 (($ $ |#1|) 69)) (-4325 (($ $) 39)) (-3919 (($ $) 37)) (-2347 (((-3 |#1| "failed") $) 61)) (-2237 ((|#1| $) NIL)) (-1308 (($ |#1| |#2| $) 78) (($ $ $) 80)) (-4286 (((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564)) 56)) (-1765 ((|#1| $ (-564)) 35)) (-1767 ((|#2| $ (-564)) 34)) (-1934 (($ (-1 |#1| |#1|) $) 41)) (-3228 (($ (-1 |#2| |#2|) $) 47)) (-4070 (($) 11)) (-1979 (($ |#1| |#2|) 24)) (-1523 (($ (-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|)))) 25)) (-3491 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))) $) 14)) (-4299 (($ |#1| $) 71)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-4086 (((-112) $ $) 76)) (-1831 (((-859) $) 21) (($ |#1|) 18)) (-1702 (((-112) $ $) 27))) -(((-645 |#1| |#2| |#3|) (-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -4286 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -3491 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))) $)) (-15 -1979 ($ |#1| |#2|)) (-15 -1523 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))))) (-15 -1767 (|#2| $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3919 ($ $)) (-15 -4325 ($ $)) (-15 -3267 ((-768) $)) (-15 -4070 ($)) (-15 -1930 ($ $ |#1|)) (-15 -4299 ($ |#1| $)) (-15 -1308 ($ |#1| |#2| $)) (-15 -1308 ($ $ $)) (-15 -4086 ((-112) $ $)) (-15 -3228 ($ (-1 |#2| |#2|) $)) (-15 -1934 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -645)) -((-4286 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859)) (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-1979 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))) (-1767 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4325 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-4070 (*1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1930 (*1 *1 *1 *2) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4299 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1308 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1308 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4086 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-3228 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))) (-1934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -4286 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -3491 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))) $)) (-15 -1979 ($ |#1| |#2|)) (-15 -1523 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -4326 |#2|))))) (-15 -1767 (|#2| $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3919 ($ $)) (-15 -4325 ($ $)) (-15 -3267 ((-768) $)) (-15 -4070 ($)) (-15 -1930 ($ $ |#1|)) (-15 -4299 ($ |#1| $)) (-15 -1308 ($ |#1| |#2| $)) (-15 -1308 ($ $ $)) (-15 -4086 ((-112) $ $)) (-15 -3228 ($ (-1 |#2| |#2|) $)) (-15 -1934 ($ (-1 |#1| |#1|) $)))) -((-3440 (((-564) $) 29)) (-3652 (($ |#2| $ (-564)) 25) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) 12)) (-4336 (((-112) (-564) $) 16)) (-3043 (($ $ |#2|) 22) (($ |#2| $) 23) (($ $ $) NIL) (($ (-641 $)) NIL))) -(((-646 |#1| |#2|) (-10 -8 (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -3043 (|#1| (-641 |#1|))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -3440 ((-564) |#1|)) (-15 -3883 ((-641 (-564)) |#1|)) (-15 -4336 ((-112) (-564) |#1|))) (-647 |#2|) (-1209)) (T -646)) -NIL -(-10 -8 (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -3043 (|#1| (-641 |#1|))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -3440 ((-564) |#1|)) (-15 -3883 ((-641 (-564)) |#1|)) (-15 -4336 ((-112) (-564) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-3337 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 51)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 42 (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4253 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 70)) (-3043 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767) $) 17)) (-3226 (($ $ |#1|) 69)) (-2443 (($ $) 39)) (-2493 (($ $) 37)) (-3032 (((-3 |#1| "failed") $) 61)) (-1781 ((|#1| $) NIL)) (-1865 (($ |#1| |#2| $) 78) (($ $ $) 80)) (-3301 (((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-564)) 56)) (-4047 ((|#1| $ (-564)) 35)) (-4067 ((|#2| $ (-564)) 34)) (-3269 (($ (-1 |#1| |#1|) $) 41)) (-3692 (($ (-1 |#2| |#2|) $) 47)) (-1696 (($) 11)) (-2483 (($ |#1| |#2|) 24)) (-3473 (($ (-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|)))) 25)) (-4181 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $) 14)) (-3396 (($ |#1| $) 71)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1840 (((-112) $ $) 76)) (-2322 (((-858) $) 21) (($ |#1|) 18)) (-2921 (((-112) $ $) 27))) +(((-645 |#1| |#2| |#3|) (-13 (-1094) (-1034 |#1|) (-10 -8 (-15 -3301 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-564))) (-15 -4181 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $)) (-15 -2483 ($ |#1| |#2|)) (-15 -3473 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))))) (-15 -4067 (|#2| $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -2493 ($ $)) (-15 -2443 ($ $)) (-15 -1959 ((-767) $)) (-15 -1696 ($)) (-15 -3226 ($ $ |#1|)) (-15 -3396 ($ |#1| $)) (-15 -1865 ($ |#1| |#2| $)) (-15 -1865 ($ $ $)) (-15 -1840 ((-112) $ $)) (-15 -3692 ($ (-1 |#2| |#2|) $)) (-15 -3269 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -645)) +((-3301 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-564)) (-5 *2 (-858)) (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2483 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2493 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2443 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-1696 (*1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3226 (*1 *1 *1 *2) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3396 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1865 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1865 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1840 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))) (-3269 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1094) (-1034 |#1|) (-10 -8 (-15 -3301 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-564))) (-15 -4181 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $)) (-15 -2483 ($ |#1| |#2|)) (-15 -3473 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))))) (-15 -4067 (|#2| $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -2493 ($ $)) (-15 -2443 ($ $)) (-15 -1959 ((-767) $)) (-15 -1696 ($)) (-15 -3226 ($ $ |#1|)) (-15 -3396 ($ |#1| $)) (-15 -1865 ($ |#1| |#2| $)) (-15 -1865 ($ $ $)) (-15 -1840 ((-112) $ $)) (-15 -3692 ($ (-1 |#2| |#2|) $)) (-15 -3269 ($ (-1 |#1| |#1|) $)))) +((-1785 (((-564) $) 29)) (-4116 (($ |#2| $ (-564)) 25) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) 12)) (-2550 (((-112) (-564) $) 16)) (-3533 (($ $ |#2|) 22) (($ |#2| $) 23) (($ $ $) NIL) (($ (-641 $)) NIL))) +(((-646 |#1| |#2|) (-10 -8 (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -3533 (|#1| (-641 |#1|))) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -1785 ((-564) |#1|)) (-15 -3487 ((-641 (-564)) |#1|)) (-15 -2550 ((-112) (-564) |#1|))) (-647 |#2|) (-1209)) (T -646)) +NIL +(-10 -8 (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -3533 (|#1| (-641 |#1|))) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -1785 ((-564) |#1|)) (-15 -3487 ((-641 (-564)) |#1|)) (-15 -2550 ((-112) (-564) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2027 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 51)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 42 (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2981 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 70)) (-3533 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-647 |#1|) (-140) (-1209)) (T -647)) -((-3654 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3043 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3043 (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2449 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2126 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2126 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3652 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3652 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1970 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4407)) (-4 *1 (-647 *2)) (-4 *2 (-1209))))) -(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -3654 ($ (-768) |t#1|)) (-15 -3043 ($ $ |t#1|)) (-15 -3043 ($ |t#1| $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ (-641 $))) (-15 -2449 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1350 ($ $ (-1226 (-564)))) (-15 -2126 ($ $ (-564))) (-15 -2126 ($ $ (-1226 (-564)))) (-15 -3652 ($ |t#1| $ (-564))) (-15 -3652 ($ $ $ (-564))) (IF (|has| $ (-6 -4407)) (-15 -1970 (|t#1| $ (-1226 (-564)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-2017 (((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) "failed") |#3| |#2| (-1170)) 44))) -(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -2017 ((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -2017 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -648)) -((-2017 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) (-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3331 (-641 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4))))) -(-10 -7 (-15 -2017 ((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -2017 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-363)))) (-1621 (($ $ $) NIL (|has| |#1| (-363)))) (-1483 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3249 (($ $ $) NIL (|has| |#1| (-363)))) (-2850 (($ $ $) NIL (|has| |#1| (-363)))) (-3321 (($ $ $) NIL (|has| |#1| (-363)))) (-3703 (($ $ $) NIL (|has| |#1| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-2525 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452)))) (-2949 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) NIL)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-1826 (((-768) $) NIL)) (-2313 (($ $ $) NIL (|has| |#1| (-363)))) (-1799 (($ $ $) NIL (|has| |#1| (-363)))) (-1448 (($ $ $) NIL (|has| |#1| (-363)))) (-1578 (($ $ $) NIL (|has| |#1| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1845 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1350 ((|#1| $ |#1|) NIL)) (-1423 (($ $ $) NIL (|has| |#1| (-363)))) (-1619 (((-768) $) NIL)) (-3008 ((|#1| $) NIL (|has| |#1| (-452)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) NIL)) (-2219 (((-768)) NIL T CONST)) (-3246 ((|#1| $ |#1| |#1|) NIL)) (-4057 (($ $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($) NIL)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3533 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3533 (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3533 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3123 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1996 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1996 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4116 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-4116 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3750 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4407)) (-4 *1 (-647 *2)) (-4 *2 (-1209))))) +(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4121 ($ (-767) |t#1|)) (-15 -3533 ($ $ |t#1|)) (-15 -3533 ($ |t#1| $)) (-15 -3533 ($ $ $)) (-15 -3533 ($ (-641 $))) (-15 -3123 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4353 ($ $ (-1226 (-564)))) (-15 -1996 ($ $ (-564))) (-15 -1996 ($ $ (-1226 (-564)))) (-15 -4116 ($ |t#1| $ (-564))) (-15 -4116 ($ $ $ (-564))) (IF (|has| $ (-6 -4407)) (-15 -3750 (|t#1| $ (-1226 (-564)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-1630 (((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) "failed") |#3| |#2| (-1170)) 44))) +(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -1630 ((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -1630 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955)) (-652 |#2|)) (T -648)) +((-1630 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) (-1630 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170)) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3342 (-641 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4))))) +(-10 -7 (-15 -1630 ((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -1630 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-363)))) (-2083 (($ $ $) NIL (|has| |#1| (-363)))) (-4351 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3305 (($ $ $) NIL (|has| |#1| (-363)))) (-3275 (($ $ $) NIL (|has| |#1| (-363)))) (-2416 (($ $ $) NIL (|has| |#1| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3185 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452)))) (-1828 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) NIL)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-3386 (((-767) $) NIL)) (-1637 (($ $ $) NIL (|has| |#1| (-363)))) (-4368 (($ $ $) NIL (|has| |#1| (-363)))) (-4020 (($ $ $) NIL (|has| |#1| (-363)))) (-2872 (($ $ $) NIL (|has| |#1| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3555 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4353 ((|#1| $ |#1|) NIL)) (-4265 (($ $ $) NIL (|has| |#1| (-363)))) (-2073 (((-767) $) NIL)) (-2290 ((|#1| $) NIL (|has| |#1| (-452)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) NIL)) (-3179 (((-767)) NIL T CONST)) (-1937 ((|#1| $ |#1| |#1|) NIL)) (-2821 (($ $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($) NIL)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-649 |#1|) (-652 |#1|) (-233)) (T -649)) NIL (-652 |#1|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-363)))) (-1621 (($ $ $) NIL (|has| |#1| (-363)))) (-1483 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3249 (($ $ $) NIL (|has| |#1| (-363)))) (-2850 (($ $ $) NIL (|has| |#1| (-363)))) (-3321 (($ $ $) NIL (|has| |#1| (-363)))) (-3703 (($ $ $) NIL (|has| |#1| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-2525 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452)))) (-2949 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) NIL)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-1826 (((-768) $) NIL)) (-2313 (($ $ $) NIL (|has| |#1| (-363)))) (-1799 (($ $ $) NIL (|has| |#1| (-363)))) (-1448 (($ $ $) NIL (|has| |#1| (-363)))) (-1578 (($ $ $) NIL (|has| |#1| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1845 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1350 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1423 (($ $ $) NIL (|has| |#1| (-363)))) (-1619 (((-768) $) NIL)) (-3008 ((|#1| $) NIL (|has| |#1| (-452)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) NIL)) (-2219 (((-768)) NIL T CONST)) (-3246 ((|#1| $ |#1| |#1|) NIL)) (-4057 (($ $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($) NIL)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-650 |#1| |#2|) (-13 (-652 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-644 |#1|) (-10 -8 (-15 -3534 ($ $))))) (T -650)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-363)))) (-2083 (($ $ $) NIL (|has| |#1| (-363)))) (-4351 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3305 (($ $ $) NIL (|has| |#1| (-363)))) (-3275 (($ $ $) NIL (|has| |#1| (-363)))) (-2416 (($ $ $) NIL (|has| |#1| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3185 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452)))) (-1828 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) NIL)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-3386 (((-767) $) NIL)) (-1637 (($ $ $) NIL (|has| |#1| (-363)))) (-4368 (($ $ $) NIL (|has| |#1| (-363)))) (-4020 (($ $ $) NIL (|has| |#1| (-363)))) (-2872 (($ $ $) NIL (|has| |#1| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3555 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4353 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4265 (($ $ $) NIL (|has| |#1| (-363)))) (-2073 (((-767) $) NIL)) (-2290 ((|#1| $) NIL (|has| |#1| (-452)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) NIL)) (-3179 (((-767)) NIL T CONST)) (-1937 ((|#1| $ |#1| |#1|) NIL)) (-2821 (($ $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($) NIL)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-650 |#1| |#2|) (-13 (-652 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-644 |#1|) (-10 -8 (-15 -1343 ($ $))))) (T -650)) NIL (-13 (-652 |#1|) (-286 |#2| |#2|)) -((-4218 (($ $) 29)) (-4057 (($ $) 27)) (-3435 (($) 13))) -(((-651 |#1| |#2|) (-10 -8 (-15 -4218 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3435 (|#1|))) (-652 |#2|) (-1046)) (T -651)) -NIL -(-10 -8 (-15 -4218 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3435 (|#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4218 (($ $) 81 (|has| |#1| (-363)))) (-1621 (($ $ $) 83 (|has| |#1| (-363)))) (-1483 (($ $ (-768)) 82 (|has| |#1| (-363)))) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3249 (($ $ $) 44 (|has| |#1| (-363)))) (-2850 (($ $ $) 45 (|has| |#1| (-363)))) (-3321 (($ $ $) 47 (|has| |#1| (-363)))) (-3703 (($ $ $) 42 (|has| |#1| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 41 (|has| |#1| (-363)))) (-2525 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 46 (|has| |#1| (-363)))) (-2347 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2237 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-3031 (($ $) 54 (|has| |#1| (-452)))) (-2949 (((-112) $) 31)) (-3186 (($ |#1| (-768)) 61)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 56 (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 57 (|has| |#1| (-556)))) (-1826 (((-768) $) 65)) (-2313 (($ $ $) 51 (|has| |#1| (-363)))) (-1799 (($ $ $) 52 (|has| |#1| (-363)))) (-1448 (($ $ $) 40 (|has| |#1| (-363)))) (-1578 (($ $ $) 49 (|has| |#1| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 48 (|has| |#1| (-363)))) (-1845 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 53 (|has| |#1| (-363)))) (-3370 ((|#1| $) 64)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-1350 ((|#1| $ |#1|) 86)) (-1423 (($ $ $) 80 (|has| |#1| (-363)))) (-1619 (((-768) $) 66)) (-3008 ((|#1| $) 55 (|has| |#1| (-452)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-3227 (((-641 |#1|) $) 60)) (-2742 ((|#1| $ (-768)) 62)) (-2219 (((-768)) 28 T CONST)) (-3246 ((|#1| $ |#1| |#1|) 59)) (-4057 (($ $) 84)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($) 85)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-652 |#1|) (-140) (-1046)) (T -652)) -((-3435 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-4057 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363)))) (-4218 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1423 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(-13 (-849 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -3435 ($)) (-15 -4057 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -1621 ($ $ $)) (-15 -1483 ($ $ (-768))) (-15 -4218 ($ $)) (-15 -1423 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-849 |#1|) . T)) -((-3793 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-3070 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 19))) -(((-653 |#1| |#2|) (-10 -7 (-15 -3070 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3070 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -3793 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -653)) -((-3793 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6)))))) -(-10 -7 (-15 -3070 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3070 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -3793 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-363)))) (-1621 (($ $ $) 28 (|has| |#1| (-363)))) (-1483 (($ $ (-768)) 31 (|has| |#1| (-363)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3249 (($ $ $) NIL (|has| |#1| (-363)))) (-2850 (($ $ $) NIL (|has| |#1| (-363)))) (-3321 (($ $ $) NIL (|has| |#1| (-363)))) (-3703 (($ $ $) NIL (|has| |#1| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-2525 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452)))) (-2949 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) NIL)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-1826 (((-768) $) NIL)) (-2313 (($ $ $) NIL (|has| |#1| (-363)))) (-1799 (($ $ $) NIL (|has| |#1| (-363)))) (-1448 (($ $ $) NIL (|has| |#1| (-363)))) (-1578 (($ $ $) NIL (|has| |#1| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1845 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1350 ((|#1| $ |#1|) 24)) (-1423 (($ $ $) 33 (|has| |#1| (-363)))) (-1619 (((-768) $) NIL)) (-3008 ((|#1| $) NIL (|has| |#1| (-452)))) (-1831 (((-859) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) NIL)) (-2219 (((-768)) NIL T CONST)) (-3246 ((|#1| $ |#1| |#1|) 23)) (-4057 (($ $) NIL)) (-1293 (($) 21 T CONST)) (-1300 (($) 8 T CONST)) (-3435 (($) NIL)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-654 |#1| |#2|) (-652 |#1|) (-1046) (-1 |#1| |#1|)) (T -654)) +((-3829 (($ $) 29)) (-2821 (($ $) 27)) (-3917 (($) 13))) +(((-651 |#1| |#2|) (-10 -8 (-15 -3829 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -3917 (|#1|))) (-652 |#2|) (-1045)) (T -651)) +NIL +(-10 -8 (-15 -3829 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -3917 (|#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-3829 (($ $) 81 (|has| |#1| (-363)))) (-2083 (($ $ $) 83 (|has| |#1| (-363)))) (-4351 (($ $ (-767)) 82 (|has| |#1| (-363)))) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3889 (($ $ $) 44 (|has| |#1| (-363)))) (-3305 (($ $ $) 45 (|has| |#1| (-363)))) (-3275 (($ $ $) 47 (|has| |#1| (-363)))) (-2416 (($ $ $) 42 (|has| |#1| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 41 (|has| |#1| (-363)))) (-3185 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 46 (|has| |#1| (-363)))) (-3032 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-1781 (((-564) $) 73 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 69)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2520 (($ $) 54 (|has| |#1| (-452)))) (-1828 (((-112) $) 31)) (-2507 (($ |#1| (-767)) 61)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 56 (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 57 (|has| |#1| (-556)))) (-3386 (((-767) $) 65)) (-1637 (($ $ $) 51 (|has| |#1| (-363)))) (-4368 (($ $ $) 52 (|has| |#1| (-363)))) (-4020 (($ $ $) 40 (|has| |#1| (-363)))) (-2872 (($ $ $) 49 (|has| |#1| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 48 (|has| |#1| (-363)))) (-3555 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 53 (|has| |#1| (-363)))) (-2686 ((|#1| $) 64)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-4353 ((|#1| $ |#1|) 86)) (-4265 (($ $ $) 80 (|has| |#1| (-363)))) (-2073 (((-767) $) 66)) (-2290 ((|#1| $) 55 (|has| |#1| (-452)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 67)) (-3680 (((-641 |#1|) $) 60)) (-3467 ((|#1| $ (-767)) 62)) (-3179 (((-767)) 28 T CONST)) (-1937 ((|#1| $ |#1| |#1|) 59)) (-2821 (($ $) 84)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($) 85)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-652 |#1|) (-140) (-1045)) (T -652)) +((-3917 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)))) (-2821 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)))) (-2083 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-652 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) (-3829 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(-13 (-848 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -3917 ($)) (-15 -2821 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2083 ($ $ $)) (-15 -4351 ($ $ (-767))) (-15 -3829 ($ $)) (-15 -4265 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-848 |#1|) . T)) +((-1971 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-2375 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 19))) +(((-653 |#1| |#2|) (-10 -7 (-15 -2375 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2375 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -1971 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -653)) +((-1971 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6)))))) +(-10 -7 (-15 -2375 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2375 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -1971 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-363)))) (-2083 (($ $ $) 28 (|has| |#1| (-363)))) (-4351 (($ $ (-767)) 31 (|has| |#1| (-363)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3305 (($ $ $) NIL (|has| |#1| (-363)))) (-3275 (($ $ $) NIL (|has| |#1| (-363)))) (-2416 (($ $ $) NIL (|has| |#1| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3185 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452)))) (-1828 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) NIL)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-3386 (((-767) $) NIL)) (-1637 (($ $ $) NIL (|has| |#1| (-363)))) (-4368 (($ $ $) NIL (|has| |#1| (-363)))) (-4020 (($ $ $) NIL (|has| |#1| (-363)))) (-2872 (($ $ $) NIL (|has| |#1| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3555 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4353 ((|#1| $ |#1|) 24)) (-4265 (($ $ $) 33 (|has| |#1| (-363)))) (-2073 (((-767) $) NIL)) (-2290 ((|#1| $) NIL (|has| |#1| (-452)))) (-2322 (((-858) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) NIL)) (-3179 (((-767)) NIL T CONST)) (-1937 ((|#1| $ |#1| |#1|) 23)) (-2821 (($ $) NIL)) (-2389 (($) 21 T CONST)) (-2403 (($) 8 T CONST)) (-3917 (($) NIL)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-654 |#1| |#2|) (-652 |#1|) (-1045) (-1 |#1| |#1|)) (T -654)) NIL (-652 |#1|) -((-1621 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-1483 ((|#2| |#2| (-768) (-1 |#1| |#1|)) 48)) (-1423 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-655 |#1| |#2|) (-10 -7 (-15 -1621 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1483 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -1423 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -655)) -((-1423 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))) (-1483 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))) (-1621 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4))))) -(-10 -7 (-15 -1621 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1483 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -1423 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3705 (($ $ $) 9))) -(((-656 |#1|) (-10 -8 (-15 -3705 (|#1| |#1| |#1|))) (-657)) (T -656)) -NIL -(-10 -8 (-15 -3705 (|#1| |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1644 (($ $) 10)) (-3705 (($ $ $) 8)) (-1702 (((-112) $ $) 6)) (-3694 (($ $ $) 9))) +((-2083 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-4351 ((|#2| |#2| (-767) (-1 |#1| |#1|)) 48)) (-4265 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-655 |#1| |#2|) (-10 -7 (-15 -2083 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4351 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -4265 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -655)) +((-4265 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))) (-4351 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))) (-2083 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4))))) +(-10 -7 (-15 -2083 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4351 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -4265 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3497 (($ $ $) 9))) +(((-656 |#1|) (-10 -8 (-15 -3497 (|#1| |#1| |#1|))) (-657)) (T -656)) +NIL +(-10 -8 (-15 -3497 (|#1| |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-4173 (($ $) 10)) (-3497 (($ $ $) 8)) (-2921 (((-112) $ $) 6)) (-3485 (($ $ $) 9))) (((-657) (-140)) (T -657)) -((-1644 (*1 *1 *1) (-4 *1 (-657))) (-3694 (*1 *1 *1 *1) (-4 *1 (-657))) (-3705 (*1 *1 *1 *1) (-4 *1 (-657)))) -(-13 (-102) (-10 -8 (-15 -1644 ($ $)) (-15 -3694 ($ $ $)) (-15 -3705 ($ $ $)))) +((-4173 (*1 *1 *1) (-4 *1 (-657))) (-3485 (*1 *1 *1 *1) (-4 *1 (-657))) (-3497 (*1 *1 *1 *1) (-4 *1 (-657)))) +(-13 (-102) (-10 -8 (-15 -4173 ($ $)) (-15 -3485 ($ $ $)) (-15 -3497 ($ $ $)))) (((-102) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 15)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3678 ((|#1| $) 21)) (-1925 (($ $ $) NIL (|has| |#1| (-788)))) (-3375 (($ $ $) NIL (|has| |#1| (-788)))) (-2723 (((-1152) $) 46)) (-2780 (((-1114) $) NIL)) (-3693 ((|#3| $) 22)) (-1831 (((-859) $) 41)) (-1293 (($) 10 T CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1702 (((-112) $ $) 20)) (-1749 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1723 (((-112) $ $) 24 (|has| |#1| (-788)))) (-1823 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1808 (($ $) 17) (($ $ $) NIL)) (-1797 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-658 |#1| |#2| |#3|) (-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1823 ($ $ |#3|)) (-15 -1823 ($ |#1| |#3|)) (-15 -3678 (|#1| $)) (-15 -3693 (|#3| $)))) (-714 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -658)) -((-1823 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1823 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-714 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-3678 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-3693 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4))))) -(-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1823 ($ $ |#3|)) (-15 -1823 ($ |#1| |#3|)) (-15 -3678 (|#1| $)) (-15 -3693 (|#3| $)))) -((-2892 (((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)) 33))) -(((-659 |#1|) (-10 -7 (-15 -2892 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) (-906)) (T -659)) -((-2892 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) (-4 *4 (-906)) (-5 *1 (-659 *4))))) -(-10 -7 (-15 -2892 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2412 (((-641 |#1|) $) 84)) (-3520 (($ $ (-768)) 94)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2113 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 50)) (-2347 (((-3 (-668 |#1|) "failed") $) NIL)) (-2237 (((-668 |#1|) $) NIL)) (-3396 (($ $) 93)) (-4128 (((-768) $) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-1383 (($ (-668 |#1|) |#2|) 70)) (-3156 (($ $) 89)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2674 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 49)) (-1338 (((-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3356 (((-668 |#1|) $) NIL)) (-3370 ((|#2| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2633 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 34)) (-1619 (((-768) $) 91)) (-1842 (($ $ $) 20) (($ (-668 |#1|) (-668 |#1|)) 79) (($ (-668 |#1|) $) 77) (($ $ (-668 |#1|)) 78)) (-1831 (((-859) $) NIL) (($ |#1|) 76) (((-1274 |#1| |#2|) $) 60) (((-1283 |#1| |#2|) $) 43) (($ (-668 |#1|)) 27)) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-668 |#1|)) NIL)) (-2860 ((|#2| (-1283 |#1| |#2|) $) 45)) (-1293 (($) 23 T CONST)) (-1430 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4384 (((-3 $ "failed") (-1274 |#1| |#2|)) 62)) (-3993 (($ (-668 |#1|)) 14)) (-1702 (((-112) $ $) 46)) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) 68) (($ $ $) NIL)) (-1797 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-668 |#1|)) NIL))) -(((-660 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -4384 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -1842 ($ (-668 |#1|) (-668 |#1|))) (-15 -1842 ($ (-668 |#1|) $)) (-15 -1842 ($ $ (-668 |#1|))))) (-847) (-172)) (T -660)) -((-4384 (*1 *1 *2) (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-660 *3 *4)))) (-1842 (*1 *1 *2 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172))))) -(-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -4384 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -1842 ($ (-668 |#1|) (-668 |#1|))) (-15 -1842 ($ (-668 |#1|) $)) (-15 -1842 ($ $ (-668 |#1|))))) -((-2386 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 60)) (-2573 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4145 (($ (-1 (-112) |#2|) $) 28)) (-4325 (($ $) 66)) (-4341 (($ $) 77)) (-3644 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 42)) (-1988 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 61) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 63)) (-3360 (((-564) |#2| $ (-564)) 74) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 55)) (-3654 (($ (-768) |#2|) 64)) (-2429 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3956 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2449 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 65)) (-3176 (($ |#2|) 15)) (-2783 (($ $ $ (-564)) 41) (($ |#2| $ (-564)) 39)) (-3995 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 52)) (-2087 (($ $ (-1226 (-564))) 50) (($ $ (-564)) 43)) (-3623 (($ $ $ (-564)) 73)) (-1991 (($ $) 71)) (-1723 (((-112) $ $) 79))) -(((-661 |#1| |#2|) (-10 -8 (-15 -3176 (|#1| |#2|)) (-15 -2087 (|#1| |#1| (-564))) (-15 -2087 (|#1| |#1| (-1226 (-564)))) (-15 -3644 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2783 (|#1| |#2| |#1| (-564))) (-15 -2783 (|#1| |#1| |#1| (-564))) (-15 -2429 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4145 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3956 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2386 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3360 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3360 ((-564) |#2| |#1|)) (-15 -3360 ((-564) |#2| |#1| (-564))) (-15 -3956 (|#1| |#1| |#1|)) (-15 -2386 ((-112) |#1|)) (-15 -3623 (|#1| |#1| |#1| (-564))) (-15 -4325 (|#1| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3995 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3654 (|#1| (-768) |#2|)) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1991 (|#1| |#1|))) (-662 |#2|) (-1209)) (T -661)) -NIL -(-10 -8 (-15 -3176 (|#1| |#2|)) (-15 -2087 (|#1| |#1| (-564))) (-15 -2087 (|#1| |#1| (-1226 (-564)))) (-15 -3644 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2783 (|#1| |#2| |#1| (-564))) (-15 -2783 (|#1| |#1| |#1| (-564))) (-15 -2429 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4145 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3956 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2386 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3360 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3360 ((-564) |#2| |#1|)) (-15 -3360 ((-564) |#2| |#1| (-564))) (-15 -3956 (|#1| |#1| |#1|)) (-15 -2386 ((-112) |#1|)) (-15 -3623 (|#1| |#1| |#1| (-564))) (-15 -4325 (|#1| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1988 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3995 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3654 (|#1| (-768) |#2|)) (-15 -2449 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1991 (|#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-3149 ((|#1| $) 65)) (-4045 (($ $) 67)) (-1956 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-2386 (((-112) $) 142 (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2573 (($ $) 146 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4407)))) (-2861 (($ $) 141 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3653 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-4145 (($ (-1 (-112) |#1|) $) 129)) (-3752 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4406)))) (-3137 ((|#1| $) 66)) (-1778 (($) 7 T CONST)) (-4325 (($ $) 144 (|has| $ (-6 -4407)))) (-3919 (($ $) 134)) (-3314 (($ $) 73) (($ $ (-768)) 71)) (-4341 (($ $) 131 (|has| |#1| (-1094)))) (-3337 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 130 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 125)) (-2576 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4406))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2261 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 87)) (-1346 (((-112) $) 83)) (-3360 (((-564) |#1| $ (-564)) 139 (|has| |#1| (-1094))) (((-564) |#1| $) 138 (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) 137)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3654 (($ (-768) |#1|) 108)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 95 (|has| (-564) (-847)))) (-1925 (($ $ $) 147 (|has| |#1| (-847)))) (-2429 (($ $ $) 132 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3956 (($ $ $) 140 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 94 (|has| (-564) (-847)))) (-3375 (($ $ $) 148 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3176 (($ |#1|) 122)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2598 ((|#1| $) 70) (($ $ (-768)) 68)) (-2783 (($ $ $ (-564)) 127) (($ |#1| $ (-564)) 126)) (-3652 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3883 (((-641 (-564)) $) 92)) (-4336 (((-112) (-564) $) 91)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 76) (($ $ (-768)) 74)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4253 (($ $ |#1|) 96 (|has| $ (-6 -4407)))) (-4337 (((-112) $) 84)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 90)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-4190 (((-564) $ $) 44)) (-2087 (($ $ (-1226 (-564))) 124) (($ $ (-564)) 123)) (-2126 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1899 (((-112) $) 46)) (-2034 (($ $) 62)) (-3292 (($ $) 59 (|has| $ (-6 -4407)))) (-1724 (((-768) $) 63)) (-3910 (($ $) 64)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 143 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 107)) (-2460 (($ $ $) 61) (($ $ |#1|) 60)) (-3043 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 150 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 151 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1749 (((-112) $ $) 149 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 152 (|has| |#1| (-847)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 15)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-4189 ((|#1| $) 21)) (-1501 (($ $ $) NIL (|has| |#1| (-787)))) (-2622 (($ $ $) NIL (|has| |#1| (-787)))) (-1418 (((-1152) $) 46)) (-3840 (((-1114) $) NIL)) (-4201 ((|#3| $) 22)) (-2322 (((-858) $) 41)) (-2389 (($) 10 T CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2921 (((-112) $ $) 20)) (-2964 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2942 (((-112) $ $) 24 (|has| |#1| (-787)))) (-3034 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-3021 (($ $) 17) (($ $ $) NIL)) (-3011 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-658 |#1| |#2| |#3|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -4189 (|#1| $)) (-15 -4201 (|#3| $)))) (-713 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -658)) +((-3034 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-3034 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-713 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-4189 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-658 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-4201 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4))))) +(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -4189 (|#1| $)) (-15 -4201 (|#3| $)))) +((-2480 (((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)) 33))) +(((-659 |#1|) (-10 -7 (-15 -2480 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) (-905)) (T -659)) +((-2480 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) (-4 *4 (-905)) (-5 *1 (-659 *4))))) +(-10 -7 (-15 -2480 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2966 (((-641 |#1|) $) 84)) (-1360 (($ $ (-767)) 94)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-1417 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 50)) (-3032 (((-3 (-668 |#1|) "failed") $) NIL)) (-1781 (((-668 |#1|) $) NIL)) (-2710 (($ $) 93)) (-4137 (((-767) $) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-1955 (($ (-668 |#1|) |#2|) 70)) (-4321 (($ $) 89)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-2152 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 49)) (-1812 (((-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2674 (((-668 |#1|) $) NIL)) (-2686 ((|#2| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3100 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 34)) (-2073 (((-767) $) 91)) (-2335 (($ $ $) 20) (($ (-668 |#1|) (-668 |#1|)) 79) (($ (-668 |#1|) $) 77) (($ $ (-668 |#1|)) 78)) (-2322 (((-858) $) NIL) (($ |#1|) 76) (((-1274 |#1| |#2|) $) 60) (((-1283 |#1| |#2|) $) 43) (($ (-668 |#1|)) 27)) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-668 |#1|)) NIL)) (-3139 ((|#2| (-1283 |#1| |#2|) $) 45)) (-2389 (($) 23 T CONST)) (-4318 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1702 (((-3 $ "failed") (-1274 |#1| |#2|)) 62)) (-3374 (($ (-668 |#1|)) 14)) (-2921 (((-112) $ $) 46)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) 68) (($ $ $) NIL)) (-3011 (($ $ $) 31)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-668 |#1|)) NIL))) +(((-660 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -1702 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -2335 ($ (-668 |#1|) (-668 |#1|))) (-15 -2335 ($ (-668 |#1|) $)) (-15 -2335 ($ $ (-668 |#1|))))) (-846) (-172)) (T -660)) +((-1702 (*1 *1 *2) (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-660 *3 *4)))) (-2335 (*1 *1 *2 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-2335 (*1 *1 *2 *1) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172))))) +(-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -1702 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -2335 ($ (-668 |#1|) (-668 |#1|))) (-15 -2335 ($ (-668 |#1|) $)) (-15 -2335 ($ $ (-668 |#1|))))) +((-4294 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 60)) (-2441 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4328 (($ (-1 (-112) |#2|) $) 28)) (-2443 (($ $) 66)) (-2596 (($ $) 77)) (-3175 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 42)) (-3239 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 61) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 63)) (-3847 (((-564) |#2| $ (-564)) 74) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 55)) (-4121 (($ (-767) |#2|) 64)) (-3471 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2988 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3123 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 65)) (-1870 (($ |#2|) 15)) (-3861 (($ $ $ (-564)) 41) (($ |#2| $ (-564)) 39)) (-3393 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 52)) (-4277 (($ $ (-1226 (-564))) 50) (($ $ (-564)) 43)) (-3000 (($ $ $ (-564)) 73)) (-3772 (($ $) 71)) (-2942 (((-112) $ $) 79))) +(((-661 |#1| |#2|) (-10 -8 (-15 -1870 (|#1| |#2|)) (-15 -4277 (|#1| |#1| (-564))) (-15 -4277 (|#1| |#1| (-1226 (-564)))) (-15 -3175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3861 (|#1| |#2| |#1| (-564))) (-15 -3861 (|#1| |#1| |#1| (-564))) (-15 -3471 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4328 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3175 (|#1| |#2| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -3471 (|#1| |#1| |#1|)) (-15 -2988 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4294 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3847 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3847 ((-564) |#2| |#1|)) (-15 -3847 ((-564) |#2| |#1| (-564))) (-15 -2988 (|#1| |#1| |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -3000 (|#1| |#1| |#1| (-564))) (-15 -2443 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3393 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4121 (|#1| (-767) |#2|)) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3772 (|#1| |#1|))) (-662 |#2|) (-1209)) (T -661)) +NIL +(-10 -8 (-15 -1870 (|#1| |#2|)) (-15 -4277 (|#1| |#1| (-564))) (-15 -4277 (|#1| |#1| (-1226 (-564)))) (-15 -3175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3861 (|#1| |#2| |#1| (-564))) (-15 -3861 (|#1| |#1| |#1| (-564))) (-15 -3471 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4328 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3175 (|#1| |#2| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -3471 (|#1| |#1| |#1|)) (-15 -2988 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4294 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3847 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3847 ((-564) |#2| |#1|)) (-15 -3847 ((-564) |#2| |#1| (-564))) (-15 -2988 (|#1| |#1| |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -3000 (|#1| |#1| |#1| (-564))) (-15 -2443 (|#1| |#1|)) (-15 -2441 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3239 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3393 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4121 (|#1| (-767) |#2|)) (-15 -3123 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3772 (|#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-3678 ((|#1| $) 65)) (-3284 (($ $) 67)) (-2246 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-4294 (((-112) $) 142 (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2441 (($ $) 146 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4407)))) (-3811 (($ $) 141 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3238 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-4328 (($ (-1 (-112) |#1|) $) 129)) (-2957 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4406)))) (-3667 ((|#1| $) 66)) (-4157 (($) 7 T CONST)) (-2443 (($ $) 144 (|has| $ (-6 -4407)))) (-2493 (($ $) 134)) (-2008 (($ $) 73) (($ $ (-767)) 71)) (-2596 (($ $) 131 (|has| |#1| (-1094)))) (-2027 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 130 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 125)) (-3628 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4406))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1466 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 87)) (-3524 (((-112) $) 83)) (-3847 (((-564) |#1| $ (-564)) 139 (|has| |#1| (-1094))) (((-564) |#1| $) 138 (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) 137)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4121 (($ (-767) |#1|) 108)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 95 (|has| (-564) (-846)))) (-1501 (($ $ $) 147 (|has| |#1| (-846)))) (-3471 (($ $ $) 132 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2988 (($ $ $) 140 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 94 (|has| (-564) (-846)))) (-2622 (($ $ $) 148 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1870 (($ |#1|) 122)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3649 ((|#1| $) 70) (($ $ (-767)) 68)) (-3861 (($ $ $ (-564)) 127) (($ |#1| $ (-564)) 126)) (-4116 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3487 (((-641 (-564)) $) 92)) (-2550 (((-112) (-564) $) 91)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 76) (($ $ (-767)) 74)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2981 (($ $ |#1|) 96 (|has| $ (-6 -4407)))) (-2562 (((-112) $) 84)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 90)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-3526 (((-564) $ $) 44)) (-4277 (($ $ (-1226 (-564))) 124) (($ $ (-564)) 123)) (-1996 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-2911 (((-112) $) 46)) (-1819 (($ $) 62)) (-3051 (($ $) 59 (|has| $ (-6 -4407)))) (-1793 (((-767) $) 63)) (-3743 (($ $) 64)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 143 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 107)) (-3783 (($ $ $) 61) (($ $ |#1|) 60)) (-3533 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 150 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 151 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2964 (((-112) $ $) 149 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 152 (|has| |#1| (-846)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-662 |#1|) (-140) (-1209)) (T -662)) -((-3176 (*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209))))) -(-13 (-1143 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -3176 ($ |t#1|)))) -(((-34) . T) ((-102) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1007 |#1|) . T) ((-1094) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T)) -((-2017 (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|))) 22) (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 14)) (-3531 (((-768) (-685 |#1|) (-1259 |#1|)) 30)) (-4257 (((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|)) 24)) (-2898 (((-112) (-685 |#1|) (-1259 |#1|)) 27))) -(((-663 |#1|) (-10 -7 (-15 -2017 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -2017 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -2017 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -2017 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -4257 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2898 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -3531 ((-768) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -663)) -((-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-663 *5)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-4257 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3331 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3331 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3331 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3331 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))) -(-10 -7 (-15 -2017 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -2017 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -2017 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -2017 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -4257 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2898 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -3531 ((-768) (-685 |#1|) (-1259 |#1|)))) -((-2017 (((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|)))) |#4| (-641 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|))) |#4| |#3|) 59)) (-3531 (((-768) |#4| |#3|) 18)) (-4257 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2898 (((-112) |#4| |#3|) 14))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2017 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|))) |#4| |#3|)) (-15 -2017 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -4257 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2898 ((-112) |#4| |#3|)) (-15 -3531 ((-768) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4407))) (-13 (-373 |#1|) (-10 -7 (-6 -4407))) (-683 |#1| |#2| |#3|)) (T -664)) -((-3531 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-768)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2898 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-112)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-4257 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4407)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))) (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) (-2017 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-641 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3331 (-641 *7))))) (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) (-4 *3 (-683 *5 *6 *7)))) (-2017 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) -(-10 -7 (-15 -2017 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|))) |#4| |#3|)) (-15 -2017 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -4257 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2898 ((-112) |#4| |#3|)) (-15 -3531 ((-768) |#4| |#3|))) -((-3750 (((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3331 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)) 54))) -(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3750 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3331 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) (-556) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -665)) -((-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) (|:| -3331 (-641 (-1259 (-407 *8)))))) (-5 *1 (-665 *5 *6 *7 *8))))) -(-10 -7 (-15 -3750 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3331 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1674 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-2713 ((|#2| $) NIL)) (-1512 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1546 (((-1259 (-685 |#2|))) NIL) (((-1259 (-685 |#2|)) (-1259 $)) NIL)) (-2385 (((-112) $) NIL)) (-2294 (((-1259 $)) 44)) (-4010 (((-112) $ (-768)) NIL)) (-2899 (($ |#2|) NIL)) (-1778 (($) NIL T CONST)) (-3543 (($ $) NIL (|has| |#2| (-307)))) (-3751 (((-240 |#1| |#2|) $ (-564)) NIL)) (-3353 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-3868 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-1911 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-2825 ((|#2| $) NIL)) (-2050 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-2767 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-2232 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-4221 (($ $ (-918)) NIL)) (-2166 ((|#2| $) NIL)) (-2878 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-1476 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-1475 (((-1166 |#2|) $) NIL)) (-2103 (((-112)) NIL)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-3624 (($ (-1259 |#2|)) NIL) (($ (-1259 |#2|) (-1259 $)) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3531 (((-768) $) NIL (|has| |#2| (-556))) (((-918)) 45)) (-2190 ((|#2| $ (-564) (-564)) NIL)) (-3628 (((-112)) NIL)) (-2482 (($ $ (-918)) NIL)) (-1433 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL)) (-3408 (((-768) $) NIL (|has| |#2| (-556)))) (-3540 (((-641 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-1745 (((-768) $) NIL)) (-3001 (((-112)) NIL)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3508 ((|#2| $) NIL (|has| |#2| (-6 (-4408 "*"))))) (-2904 (((-564) $) NIL)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-2381 (((-564) $) NIL)) (-2821 (((-564) $) NIL)) (-4309 (($ (-641 (-641 |#2|))) NIL)) (-2250 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4217 (((-641 (-641 |#2|)) $) NIL)) (-3261 (((-112)) NIL)) (-2130 (((-112)) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -3331 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-2302 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-2510 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-3385 ((|#2| $) NIL)) (-2289 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-3874 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-1402 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-2839 (($ $ (-918)) NIL)) (-2873 ((|#2| $) NIL)) (-4146 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-3525 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-2582 (((-1166 |#2|) $) NIL)) (-2628 (((-112)) NIL)) (-2723 (((-1152) $) NIL)) (-3582 (((-112)) NIL)) (-2317 (((-112)) NIL)) (-2241 (((-112)) NIL)) (-1861 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-2780 (((-1114) $) NIL)) (-3740 (((-112)) NIL)) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-4077 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-3534 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1385 ((|#2| $) NIL)) (-2088 (($ (-641 |#2|)) NIL)) (-1302 (((-112) $) NIL)) (-2534 (((-240 |#1| |#2|) $) NIL)) (-2876 ((|#2| $) NIL (|has| |#2| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1991 (($ $) NIL)) (-2467 (((-685 |#2|) (-1259 $)) NIL) (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $ (-1259 $)) 33)) (-2511 (($ (-1259 |#2|)) NIL) (((-1259 |#2|) $) NIL)) (-2852 (((-641 (-949 |#2|))) NIL) (((-641 (-949 |#2|)) (-1259 $)) NIL)) (-1992 (($ $ $) NIL)) (-2595 (((-112)) NIL)) (-3065 (((-240 |#1| |#2|) $ (-564)) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) 43)) (-1488 (((-641 (-1259 |#2|))) NIL (|has| |#2| (-556)))) (-2611 (($ $ $ $) NIL)) (-1604 (((-112)) NIL)) (-3246 (($ (-685 |#2|) $) NIL)) (-1963 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-4320 (((-112) $) NIL)) (-1656 (($ $ $) NIL)) (-3830 (((-112)) NIL)) (-3335 (((-112)) NIL)) (-2921 (((-112)) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-666 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) (-918) (-172)) (T -666)) +((-1870 (*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209))))) +(-13 (-1143 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -1870 ($ |t#1|)))) +(((-34) . T) ((-102) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1006 |#1|) . T) ((-1094) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T)) +((-1630 (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|))) 22) (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 14)) (-3105 (((-767) (-685 |#1|) (-1259 |#1|)) 30)) (-3027 (((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|)) 24)) (-2557 (((-112) (-685 |#1|) (-1259 |#1|)) 27))) +(((-663 |#1|) (-10 -7 (-15 -1630 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -1630 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -1630 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -1630 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -3027 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2557 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -3105 ((-767) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -663)) +((-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-663 *5)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-3027 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3342 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3342 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3342 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3342 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))) +(-10 -7 (-15 -1630 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -1630 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -1630 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -1630 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -3027 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2557 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -3105 ((-767) (-685 |#1|) (-1259 |#1|)))) +((-1630 (((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|)))) |#4| (-641 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|))) |#4| |#3|) 59)) (-3105 (((-767) |#4| |#3|) 18)) (-3027 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2557 (((-112) |#4| |#3|) 14))) +(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1630 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|))) |#4| |#3|)) (-15 -1630 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -3027 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2557 ((-112) |#4| |#3|)) (-15 -3105 ((-767) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4407))) (-13 (-373 |#1|) (-10 -7 (-6 -4407))) (-683 |#1| |#2| |#3|)) (T -664)) +((-3105 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-767)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2557 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-112)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-3027 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4407)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))) (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) (-1630 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-641 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3342 (-641 *7))))) (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) (-4 *3 (-683 *5 *6 *7)))) (-1630 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) +(-10 -7 (-15 -1630 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|))) |#4| |#3|)) (-15 -1630 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -3027 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2557 ((-112) |#4| |#3|)) (-15 -3105 ((-767) |#4| |#3|))) +((-1584 (((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3342 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)) 54))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1584 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3342 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) (-556) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -665)) +((-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) (|:| -3342 (-641 (-1259 (-407 *8)))))) (-5 *1 (-665 *5 *6 *7 *8))))) +(-10 -7 (-15 -1584 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3342 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2563 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3770 ((|#2| $) NIL)) (-3390 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3727 (((-1259 (-685 |#2|))) NIL) (((-1259 (-685 |#2|)) (-1259 $)) NIL)) (-4283 (((-112) $) NIL)) (-2691 (((-1259 $)) 44)) (-2318 (((-112) $ (-767)) NIL)) (-2567 (($ |#2|) NIL)) (-4157 (($) NIL T CONST)) (-3442 (($ $) NIL (|has| |#2| (-307)))) (-1597 (((-240 |#1| |#2|) $ (-564)) NIL)) (-2262 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-1485 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3035 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-3063 ((|#2| $) NIL)) (-1991 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-3706 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3294 (((-1166 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-3865 (($ $ (-917)) NIL)) (-3845 ((|#2| $) NIL)) (-2331 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-4287 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-4276 (((-1166 |#2|) $) NIL)) (-1335 (((-112)) NIL)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) NIL)) (-3013 (($ (-1259 |#2|)) NIL) (($ (-1259 |#2|) (-1259 $)) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3105 (((-767) $) NIL (|has| |#2| (-556))) (((-917)) 45)) (-1407 ((|#2| $ (-564) (-564)) NIL)) (-3055 (((-112)) NIL)) (-3996 (($ $ (-917)) NIL)) (-3534 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL)) (-2748 (((-767) $) NIL (|has| |#2| (-556)))) (-3414 (((-641 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-3835 (((-767) $) NIL)) (-2235 (((-112)) NIL)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-4360 ((|#2| $) NIL (|has| |#2| (-6 (-4408 "*"))))) (-2615 (((-564) $) NIL)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4253 (((-564) $) NIL)) (-3020 (((-564) $) NIL)) (-4187 (($ (-641 (-641 |#2|))) NIL)) (-1456 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3818 (((-641 (-641 |#2|)) $) NIL)) (-2809 (((-112)) NIL)) (-3457 (((-112)) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-3001 (((-3 (-2 (|:| |particular| $) (|:| -3342 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-1523 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3065 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-2528 ((|#2| $) NIL)) (-2645 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-1529 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-4060 (((-1166 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-3200 (($ $ (-917)) NIL)) (-2276 ((|#2| $) NIL)) (-4339 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-1400 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-2536 (((-1166 |#2|) $) NIL)) (-1723 (((-112)) NIL)) (-1418 (((-1152) $) NIL)) (-3816 (((-112)) NIL)) (-1671 (((-112)) NIL)) (-3353 (((-112)) NIL)) (-3721 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3840 (((-1114) $) NIL)) (-2753 (((-112)) NIL)) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-1343 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4167 ((|#2| $) NIL)) (-4289 (($ (-641 |#2|)) NIL)) (-2037 (((-112) $) NIL)) (-3281 (((-240 |#1| |#2|) $) NIL)) (-2311 ((|#2| $) NIL (|has| |#2| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3772 (($ $) NIL)) (-3864 (((-685 |#2|) (-1259 $)) NIL) (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $ (-1259 $)) 33)) (-3172 (($ (-1259 |#2|)) NIL) (((-1259 |#2|) $) NIL)) (-3328 (((-641 (-948 |#2|))) NIL) (((-641 (-948 |#2|)) (-1259 $)) NIL)) (-2617 (($ $ $) NIL)) (-2676 (((-112)) NIL)) (-1582 (((-240 |#1| |#2|) $ (-564)) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) NIL)) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) 43)) (-1296 (((-641 (-1259 |#2|))) NIL (|has| |#2| (-556)))) (-1553 (($ $ $ $) NIL)) (-3148 (((-112)) NIL)) (-1937 (($ (-685 |#2|) $) NIL)) (-2313 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2378 (((-112) $) NIL)) (-2366 (($ $ $) NIL)) (-4232 (((-112)) NIL)) (-2145 (((-112)) NIL)) (-2803 (((-112)) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-666 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) (-917) (-172)) (T -666)) NIL (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1775 (((-641 (-1129)) $) 10)) (-1831 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-667) (-13 (-1077) (-10 -8 (-15 -1775 ((-641 (-1129)) $))))) (T -667)) -((-1775 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667))))) -(-13 (-1077) (-10 -8 (-15 -1775 ((-641 (-1129)) $)))) -((-1817 (((-112) $ $) NIL)) (-2412 (((-641 |#1|) $) NIL)) (-3777 (($ $) 66)) (-1384 (((-112) $) NIL)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-1906 (((-3 $ "failed") (-816 |#1|)) 27)) (-4280 (((-112) (-816 |#1|)) 17)) (-1479 (($ (-816 |#1|)) 28)) (-2519 (((-112) $ $) 35)) (-1502 (((-918) $) 42)) (-3766 (($ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3070 (((-641 $) (-816 |#1|)) 19)) (-1831 (((-859) $) 50) (($ |#1|) 39) (((-816 |#1|) $) 46) (((-673 |#1|) $) 51)) (-2667 (((-59 (-641 $)) (-641 |#1|) (-918)) 71)) (-1501 (((-641 $) (-641 |#1|) (-918)) 75)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 67)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 45))) -(((-668 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 -1384 ((-112) $)) (-15 -3766 ($ $)) (-15 -3777 ($ $)) (-15 -1502 ((-918) $)) (-15 -2519 ((-112) $ $)) (-15 -1831 ((-816 |#1|) $)) (-15 -1831 ((-673 |#1|) $)) (-15 -3070 ((-641 $) (-816 |#1|))) (-15 -4280 ((-112) (-816 |#1|))) (-15 -1479 ($ (-816 |#1|))) (-15 -1906 ((-3 $ "failed") (-816 |#1|))) (-15 -2412 ((-641 |#1|) $)) (-15 -2667 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -1501 ((-641 $) (-641 |#1|) (-918))))) (-847)) (T -668)) -((-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-3777 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2519 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-668 *4))) (-5 *1 (-668 *4)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112)) (-5 *1 (-668 *4)))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-1906 (*1 *1 *2) (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5))))) -(-13 (-847) (-1035 |#1|) (-10 -8 (-15 -1384 ((-112) $)) (-15 -3766 ($ $)) (-15 -3777 ($ $)) (-15 -1502 ((-918) $)) (-15 -2519 ((-112) $ $)) (-15 -1831 ((-816 |#1|) $)) (-15 -1831 ((-673 |#1|) $)) (-15 -3070 ((-641 $) (-816 |#1|))) (-15 -4280 ((-112) (-816 |#1|))) (-15 -1479 ($ (-816 |#1|))) (-15 -1906 ((-3 $ "failed") (-816 |#1|))) (-15 -2412 ((-641 |#1|) $)) (-15 -2667 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -1501 ((-641 $) (-641 |#1|) (-918))))) -((-1522 ((|#2| $) 103)) (-4045 (($ $) 124)) (-4010 (((-112) $ (-768)) 35)) (-3314 (($ $) 112) (($ $ (-768)) 115)) (-1346 (((-112) $) 125)) (-3128 (((-641 $) $) 99)) (-4376 (((-112) $ $) 95)) (-2324 (((-112) $ (-768)) 33)) (-3100 (((-564) $) 69)) (-3440 (((-564) $) 68)) (-1713 (((-112) $ (-768)) 31)) (-2033 (((-112) $) 101)) (-2598 ((|#2| $) 116) (($ $ (-768)) 120)) (-3652 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-3883 (((-641 (-564)) $) 67)) (-4336 (((-112) (-564) $) 61)) (-3303 ((|#2| $) NIL) (($ $ (-768)) 111)) (-3951 (($ $ (-564)) 127)) (-4337 (((-112) $) 126)) (-4077 (((-112) (-1 (-112) |#2|) $) 44)) (-1794 (((-641 |#2|) $) 48)) (-1350 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1226 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-4190 (((-564) $ $) 94)) (-2126 (($ $ (-1226 (-564))) 81) (($ $ (-564)) 75)) (-1899 (((-112) $) 90)) (-2034 (($ $) 108)) (-1724 (((-768) $) 107)) (-3910 (($ $) 106)) (-1842 (($ (-641 |#2|)) 55)) (-4037 (($ $) 128)) (-2926 (((-641 $) $) 93)) (-2054 (((-112) $ $) 92)) (-1963 (((-112) (-1 (-112) |#2|) $) 43)) (-1702 (((-112) $ $) 20)) (-2828 (((-768) $) 41))) -(((-669 |#1| |#2|) (-10 -8 (-15 -4037 (|#1| |#1|)) (-15 -3951 (|#1| |#1| (-564))) (-15 -1346 ((-112) |#1|)) (-15 -4337 ((-112) |#1|)) (-15 -1350 (|#2| |#1| (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564))) (-15 -1794 ((-641 |#2|) |#1|)) (-15 -4336 ((-112) (-564) |#1|)) (-15 -3883 ((-641 (-564)) |#1|)) (-15 -3440 ((-564) |#1|)) (-15 -3100 ((-564) |#1|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -2126 (|#1| |#1| (-564))) (-15 -2126 (|#1| |#1| (-1226 (-564)))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -2034 (|#1| |#1|)) (-15 -1724 ((-768) |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -2598 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "last")) (-15 -2598 (|#2| |#1|)) (-15 -3314 (|#1| |#1| (-768))) (-15 -1350 (|#1| |#1| "rest")) (-15 -3314 (|#1| |#1|)) (-15 -3303 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "first")) (-15 -3303 (|#2| |#1|)) (-15 -4376 ((-112) |#1| |#1|)) (-15 -2054 ((-112) |#1| |#1|)) (-15 -4190 ((-564) |#1| |#1|)) (-15 -1899 ((-112) |#1|)) (-15 -1350 (|#2| |#1| "value")) (-15 -1522 (|#2| |#1|)) (-15 -2033 ((-112) |#1|)) (-15 -3128 ((-641 |#1|) |#1|)) (-15 -2926 ((-641 |#1|) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768)))) (-670 |#2|) (-1209)) (T -669)) -NIL -(-10 -8 (-15 -4037 (|#1| |#1|)) (-15 -3951 (|#1| |#1| (-564))) (-15 -1346 ((-112) |#1|)) (-15 -4337 ((-112) |#1|)) (-15 -1350 (|#2| |#1| (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564))) (-15 -1794 ((-641 |#2|) |#1|)) (-15 -4336 ((-112) (-564) |#1|)) (-15 -3883 ((-641 (-564)) |#1|)) (-15 -3440 ((-564) |#1|)) (-15 -3100 ((-564) |#1|)) (-15 -1842 (|#1| (-641 |#2|))) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -2126 (|#1| |#1| (-564))) (-15 -2126 (|#1| |#1| (-1226 (-564)))) (-15 -3652 (|#1| |#2| |#1| (-564))) (-15 -3652 (|#1| |#1| |#1| (-564))) (-15 -2034 (|#1| |#1|)) (-15 -1724 ((-768) |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -2598 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "last")) (-15 -2598 (|#2| |#1|)) (-15 -3314 (|#1| |#1| (-768))) (-15 -1350 (|#1| |#1| "rest")) (-15 -3314 (|#1| |#1|)) (-15 -3303 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "first")) (-15 -3303 (|#2| |#1|)) (-15 -4376 ((-112) |#1| |#1|)) (-15 -2054 ((-112) |#1| |#1|)) (-15 -4190 ((-564) |#1| |#1|)) (-15 -1899 ((-112) |#1|)) (-15 -1350 (|#2| |#1| "value")) (-15 -1522 (|#2| |#1|)) (-15 -2033 ((-112) |#1|)) (-15 -3128 ((-641 |#1|) |#1|)) (-15 -2926 ((-641 |#1|) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768)))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-3149 ((|#1| $) 65)) (-4045 (($ $) 67)) (-1956 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3653 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 102)) (-3137 ((|#1| $) 66)) (-1778 (($) 7 T CONST)) (-2030 (($ $) 124)) (-3314 (($ $) 73) (($ $ (-768)) 71)) (-3337 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 103)) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2261 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 87)) (-1346 (((-112) $) 83)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3334 (((-768) $) 123)) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3654 (($ (-768) |#1|) 108)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 95 (|has| (-564) (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 94 (|has| (-564) (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2784 (($ $) 126)) (-3894 (((-112) $) 127)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2598 ((|#1| $) 70) (($ $ (-768)) 68)) (-3652 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3883 (((-641 (-564)) $) 92)) (-4336 (((-112) (-564) $) 91)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3411 ((|#1| $) 125)) (-3303 ((|#1| $) 76) (($ $ (-768)) 74)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4253 (($ $ |#1|) 96 (|has| $ (-6 -4407)))) (-3951 (($ $ (-564)) 122)) (-4337 (((-112) $) 84)) (-2265 (((-112) $) 128)) (-4201 (((-112) $) 129)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 90)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-4190 (((-564) $ $) 44)) (-2126 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1899 (((-112) $) 46)) (-2034 (($ $) 62)) (-3292 (($ $) 59 (|has| $ (-6 -4407)))) (-1724 (((-768) $) 63)) (-3910 (($ $) 64)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 107)) (-2460 (($ $ $) 61 (|has| $ (-6 -4407))) (($ $ |#1|) 60 (|has| $ (-6 -4407)))) (-3043 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-4037 (($ $) 121)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4123 (((-641 (-1129)) $) 10)) (-2322 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-667) (-13 (-1077) (-10 -8 (-15 -4123 ((-641 (-1129)) $))))) (T -667)) +((-4123 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667))))) +(-13 (-1077) (-10 -8 (-15 -4123 ((-641 (-1129)) $)))) +((-2310 (((-112) $ $) NIL)) (-2966 (((-641 |#1|) $) NIL)) (-4250 (($ $) 66)) (-4156 (((-112) $) NIL)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-2990 (((-3 $ "failed") (-815 |#1|)) 27)) (-3240 (((-112) (-815 |#1|)) 17)) (-4309 (($ (-815 |#1|)) 28)) (-3145 (((-112) $ $) 35)) (-1750 (((-917) $) 42)) (-4237 (($ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2375 (((-641 $) (-815 |#1|)) 19)) (-2322 (((-858) $) 50) (($ |#1|) 39) (((-815 |#1|) $) 46) (((-673 |#1|) $) 51)) (-2089 (((-59 (-641 $)) (-641 |#1|) (-917)) 71)) (-3312 (((-641 $) (-641 |#1|) (-917)) 75)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 67)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 45))) +(((-668 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 -4156 ((-112) $)) (-15 -4237 ($ $)) (-15 -4250 ($ $)) (-15 -1750 ((-917) $)) (-15 -3145 ((-112) $ $)) (-15 -2322 ((-815 |#1|) $)) (-15 -2322 ((-673 |#1|) $)) (-15 -2375 ((-641 $) (-815 |#1|))) (-15 -3240 ((-112) (-815 |#1|))) (-15 -4309 ($ (-815 |#1|))) (-15 -2990 ((-3 $ "failed") (-815 |#1|))) (-15 -2966 ((-641 |#1|) $)) (-15 -2089 ((-59 (-641 $)) (-641 |#1|) (-917))) (-15 -3312 ((-641 $) (-641 |#1|) (-917))))) (-846)) (T -668)) +((-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846)))) (-4250 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-668 *4))) (-5 *1 (-668 *4)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-668 *4)))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3)))) (-2990 (*1 *1 *2) (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5))))) +(-13 (-846) (-1034 |#1|) (-10 -8 (-15 -4156 ((-112) $)) (-15 -4237 ($ $)) (-15 -4250 ($ $)) (-15 -1750 ((-917) $)) (-15 -3145 ((-112) $ $)) (-15 -2322 ((-815 |#1|) $)) (-15 -2322 ((-673 |#1|) $)) (-15 -2375 ((-641 $) (-815 |#1|))) (-15 -3240 ((-112) (-815 |#1|))) (-15 -4309 ($ (-815 |#1|))) (-15 -2990 ((-3 $ "failed") (-815 |#1|))) (-15 -2966 ((-641 |#1|) $)) (-15 -2089 ((-59 (-641 $)) (-641 |#1|) (-917))) (-15 -3312 ((-641 $) (-641 |#1|) (-917))))) +((-2053 ((|#2| $) 103)) (-3284 (($ $) 124)) (-2318 (((-112) $ (-767)) 35)) (-2008 (($ $) 112) (($ $ (-767)) 115)) (-3524 (((-112) $) 125)) (-4074 (((-641 $) $) 99)) (-1634 (((-112) $ $) 95)) (-1751 (((-112) $ (-767)) 33)) (-1913 (((-564) $) 69)) (-1785 (((-564) $) 68)) (-1681 (((-112) $ (-767)) 31)) (-1808 (((-112) $) 101)) (-3649 ((|#2| $) 116) (($ $ (-767)) 120)) (-4116 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-3487 (((-641 (-564)) $) 67)) (-2550 (((-112) (-564) $) 61)) (-1995 ((|#2| $) NIL) (($ $ (-767)) 111)) (-2941 (($ $ (-564)) 127)) (-2562 (((-112) $) 126)) (-1763 (((-112) (-1 (-112) |#2|) $) 44)) (-4324 (((-641 |#2|) $) 48)) (-4353 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1226 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-3526 (((-564) $ $) 94)) (-1996 (($ $ (-1226 (-564))) 81) (($ $ (-564)) 75)) (-2911 (((-112) $) 90)) (-1819 (($ $) 108)) (-1793 (((-767) $) 107)) (-3743 (($ $) 106)) (-2335 (($ (-641 |#2|)) 55)) (-2614 (($ $) 128)) (-1591 (((-641 $) $) 93)) (-2040 (((-112) $ $) 92)) (-2313 (((-112) (-1 (-112) |#2|) $) 43)) (-2921 (((-112) $ $) 20)) (-2059 (((-767) $) 41))) +(((-669 |#1| |#2|) (-10 -8 (-15 -2614 (|#1| |#1|)) (-15 -2941 (|#1| |#1| (-564))) (-15 -3524 ((-112) |#1|)) (-15 -2562 ((-112) |#1|)) (-15 -4353 (|#2| |#1| (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564))) (-15 -4324 ((-641 |#2|) |#1|)) (-15 -2550 ((-112) (-564) |#1|)) (-15 -3487 ((-641 (-564)) |#1|)) (-15 -1785 ((-564) |#1|)) (-15 -1913 ((-564) |#1|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -1996 (|#1| |#1| (-564))) (-15 -1996 (|#1| |#1| (-1226 (-564)))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -1819 (|#1| |#1|)) (-15 -1793 ((-767) |#1|)) (-15 -3743 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3649 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "last")) (-15 -3649 (|#2| |#1|)) (-15 -2008 (|#1| |#1| (-767))) (-15 -4353 (|#1| |#1| "rest")) (-15 -2008 (|#1| |#1|)) (-15 -1995 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "first")) (-15 -1995 (|#2| |#1|)) (-15 -1634 ((-112) |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -3526 ((-564) |#1| |#1|)) (-15 -2911 ((-112) |#1|)) (-15 -4353 (|#2| |#1| "value")) (-15 -2053 (|#2| |#1|)) (-15 -1808 ((-112) |#1|)) (-15 -4074 ((-641 |#1|) |#1|)) (-15 -1591 ((-641 |#1|) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767)))) (-670 |#2|) (-1209)) (T -669)) +NIL +(-10 -8 (-15 -2614 (|#1| |#1|)) (-15 -2941 (|#1| |#1| (-564))) (-15 -3524 ((-112) |#1|)) (-15 -2562 ((-112) |#1|)) (-15 -4353 (|#2| |#1| (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564))) (-15 -4324 ((-641 |#2|) |#1|)) (-15 -2550 ((-112) (-564) |#1|)) (-15 -3487 ((-641 (-564)) |#1|)) (-15 -1785 ((-564) |#1|)) (-15 -1913 ((-564) |#1|)) (-15 -2335 (|#1| (-641 |#2|))) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -1996 (|#1| |#1| (-564))) (-15 -1996 (|#1| |#1| (-1226 (-564)))) (-15 -4116 (|#1| |#2| |#1| (-564))) (-15 -4116 (|#1| |#1| |#1| (-564))) (-15 -1819 (|#1| |#1|)) (-15 -1793 ((-767) |#1|)) (-15 -3743 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3649 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "last")) (-15 -3649 (|#2| |#1|)) (-15 -2008 (|#1| |#1| (-767))) (-15 -4353 (|#1| |#1| "rest")) (-15 -2008 (|#1| |#1|)) (-15 -1995 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "first")) (-15 -1995 (|#2| |#1|)) (-15 -1634 ((-112) |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -3526 ((-564) |#1| |#1|)) (-15 -2911 ((-112) |#1|)) (-15 -4353 (|#2| |#1| "value")) (-15 -2053 (|#2| |#1|)) (-15 -1808 ((-112) |#1|)) (-15 -4074 ((-641 |#1|) |#1|)) (-15 -1591 ((-641 |#1|) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767)))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-3678 ((|#1| $) 65)) (-3284 (($ $) 67)) (-2246 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3238 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 102)) (-3667 ((|#1| $) 66)) (-4157 (($) 7 T CONST)) (-1778 (($ $) 124)) (-2008 (($ $) 73) (($ $ (-767)) 71)) (-2027 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 103)) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1466 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 87)) (-3524 (((-112) $) 83)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2132 (((-767) $) 123)) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4121 (($ (-767) |#1|) 108)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 95 (|has| (-564) (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 94 (|has| (-564) (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-3869 (($ $) 126)) (-3585 (((-112) $) 127)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3649 ((|#1| $) 70) (($ $ (-767)) 68)) (-4116 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3487 (((-641 (-564)) $) 92)) (-2550 (((-112) (-564) $) 91)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1524 ((|#1| $) 125)) (-1995 ((|#1| $) 76) (($ $ (-767)) 74)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2981 (($ $ |#1|) 96 (|has| $ (-6 -4407)))) (-2941 (($ $ (-564)) 122)) (-2562 (((-112) $) 84)) (-2356 (((-112) $) 128)) (-3643 (((-112) $) 129)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 90)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-3526 (((-564) $ $) 44)) (-1996 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-2911 (((-112) $) 46)) (-1819 (($ $) 62)) (-3051 (($ $) 59 (|has| $ (-6 -4407)))) (-1793 (((-767) $) 63)) (-3743 (($ $) 64)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 107)) (-3783 (($ $ $) 61 (|has| $ (-6 -4407))) (($ $ |#1|) 60 (|has| $ (-6 -4407)))) (-3533 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-2614 (($ $) 121)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-670 |#1|) (-140) (-1209)) (T -670)) -((-2576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3752 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2784 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) -(-13 (-1143 |t#1|) (-10 -8 (-15 -2576 ($ (-1 (-112) |t#1|) $)) (-15 -3752 ($ (-1 (-112) |t#1|) $)) (-15 -4201 ((-112) $)) (-15 -2265 ((-112) $)) (-15 -3894 ((-112) $)) (-15 -2784 ($ $)) (-15 -3411 (|t#1| $)) (-15 -2030 ($ $)) (-15 -3334 ((-768) $)) (-15 -3951 ($ $ (-564))) (-15 -4037 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2747 (($ (-768) (-768) (-768)) 55 (|has| |#1| (-1046)))) (-4010 (((-112) $ (-768)) NIL)) (-3094 ((|#1| $ (-768) (-768) (-768) |#1|) 49)) (-1778 (($) NIL T CONST)) (-1308 (($ $ $) 60 (|has| |#1| (-1046)))) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4364 (((-1259 (-768)) $) 12)) (-2148 (($ (-1170) $ $) 37)) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1774 (($ (-768)) 57 (|has| |#1| (-1046)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-768) (-768) (-768)) 46)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1842 (($ (-641 (-641 (-641 |#1|)))) 70)) (-1831 (($ (-955 (-955 (-955 |#1|)))) 23) (((-955 (-955 (-955 |#1|))) $) 19) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-671 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -2747 ($ (-768) (-768) (-768))) (-15 -1774 ($ (-768))) (-15 -1308 ($ $ $))) |%noBranch|) (-15 -1842 ($ (-641 (-641 (-641 |#1|))))) (-15 -1350 (|#1| $ (-768) (-768) (-768))) (-15 -3094 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -1831 ($ (-955 (-955 (-955 |#1|))))) (-15 -1831 ((-955 (-955 (-955 |#1|))) $)) (-15 -2148 ($ (-1170) $ $)) (-15 -4364 ((-1259 (-768)) $)))) (-1094)) (T -671)) -((-2747 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-1308 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-1350 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-3094 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-2148 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) -(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -2747 ($ (-768) (-768) (-768))) (-15 -1774 ($ (-768))) (-15 -1308 ($ $ $))) |%noBranch|) (-15 -1842 ($ (-641 (-641 (-641 |#1|))))) (-15 -1350 (|#1| $ (-768) (-768) (-768))) (-15 -3094 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -1831 ($ (-955 (-955 (-955 |#1|))))) (-15 -1831 ((-955 (-955 (-955 |#1|))) $)) (-15 -2148 ($ (-1170) $ $)) (-15 -4364 ((-1259 (-768)) $)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-4202 (((-483) $) 10)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-1129) $) 12)) (-1702 (((-112) $ $) NIL))) -(((-672) (-13 (-1077) (-10 -8 (-15 -4202 ((-483) $)) (-15 -1328 ((-1129) $))))) (T -672)) -((-4202 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672))))) -(-13 (-1077) (-10 -8 (-15 -4202 ((-483) $)) (-15 -1328 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-2412 (((-641 |#1|) $) 15)) (-3777 (($ $) 19)) (-1384 (((-112) $) 20)) (-2347 (((-3 |#1| "failed") $) 23)) (-2237 ((|#1| $) 21)) (-3314 (($ $) 37)) (-3156 (($ $) 25)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2519 (((-112) $ $) 45)) (-1502 (((-918) $) 40)) (-3766 (($ $) 18)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 ((|#1| $) 36)) (-1831 (((-859) $) 32) (($ |#1|) 24) (((-816 |#1|) $) 28)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 13)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-673 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1831 ((-816 |#1|) $)) (-15 -3303 (|#1| $)) (-15 -3766 ($ $)) (-15 -1502 ((-918) $)) (-15 -2519 ((-112) $ $)) (-15 -3156 ($ $)) (-15 -3314 ($ $)) (-15 -1384 ((-112) $)) (-15 -3777 ($ $)) (-15 -2412 ((-641 |#1|) $)))) (-847)) (T -673)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-3303 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2519 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3314 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-3777 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847))))) -(-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1831 ((-816 |#1|) $)) (-15 -3303 (|#1| $)) (-15 -3766 ($ $)) (-15 -1502 ((-918) $)) (-15 -2519 ((-112) $ $)) (-15 -3156 ($ $)) (-15 -3314 ($ $)) (-15 -1384 ((-112) $)) (-15 -3777 ($ $)) (-15 -2412 ((-641 |#1|) $)))) -((-2916 ((|#1| (-1 |#1| (-768) |#1|) (-768) |#1|) 14)) (-4262 ((|#1| (-1 |#1| |#1|) (-768) |#1|) 12))) -(((-674 |#1|) (-10 -7 (-15 -4262 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -2916 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|))) (-1094)) (T -674)) -((-2916 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))) (-4262 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2))))) -(-10 -7 (-15 -4262 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -2916 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|))) -((-3298 ((|#2| |#1| |#2|) 9)) (-3284 ((|#1| |#1| |#2|) 8))) -(((-675 |#1| |#2|) (-10 -7 (-15 -3284 (|#1| |#1| |#2|)) (-15 -3298 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -675)) -((-3298 (*1 *2 *3 *2) (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3284 (*1 *2 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(-10 -7 (-15 -3284 (|#1| |#1| |#2|)) (-15 -3298 (|#2| |#1| |#2|))) -((-4368 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -4368 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -676)) -((-4368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2))))) -(-10 -7 (-15 -4368 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1817 (((-112) $ $) NIL)) (-4352 (((-1208) $) 21)) (-4308 (((-641 (-1208)) $) 19)) (-3584 (($ (-641 (-1208)) (-1208)) 14)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 22) (($ (-1112)) 10)) (-1702 (((-112) $ $) NIL))) -(((-677) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1831 ($ (-1112))) (-15 -3584 ($ (-641 (-1208)) (-1208))) (-15 -4308 ((-641 (-1208)) $)) (-15 -4352 ((-1208) $))))) (T -677)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) (-3584 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677))))) -(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1831 ($ (-1112))) (-15 -3584 ($ (-641 (-1208)) (-1208))) (-15 -4308 ((-641 (-1208)) $)) (-15 -4352 ((-1208) $)))) -((-2916 (((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)) 29)) (-2781 (((-1 |#1|) |#1|) 8)) (-1680 ((|#1| |#1|) 23)) (-2743 (((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-1831 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-768)) 26))) -(((-678 |#1|) (-10 -7 (-15 -2781 ((-1 |#1|) |#1|)) (-15 -1831 ((-1 |#1|) |#1|)) (-15 -2743 (|#1| (-1 |#1| |#1|))) (-15 -2743 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -1680 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -2916 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)))) (-1094)) (T -678)) -((-2916 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *4 (-1094)) (-5 *1 (-678 *4)))) (-1680 (*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))) -(-10 -7 (-15 -2781 ((-1 |#1|) |#1|)) (-15 -1831 ((-1 |#1|) |#1|)) (-15 -2743 (|#1| (-1 |#1| |#1|))) (-15 -2743 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -1680 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -2916 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)))) -((-2917 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3758 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1809 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2792 (((-1 |#2| |#1|) |#2|) 11))) -(((-679 |#1| |#2|) (-10 -7 (-15 -2792 ((-1 |#2| |#1|) |#2|)) (-15 -3758 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1809 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2917 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -679)) -((-2917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))) (-2792 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094))))) -(-10 -7 (-15 -2792 ((-1 |#2| |#1|) |#2|)) (-15 -3758 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1809 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2917 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1625 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2583 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3862 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2547 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3596 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -2583 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3862 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2547 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3596 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1625 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -680)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-680 *5 *6 *7)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6))))) -(-10 -7 (-15 -2583 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3862 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2547 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3596 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1625 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-1988 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2449 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-681 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2449 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2449 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1988 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1046) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-1046) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -681)) -((-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))) -(-10 -7 (-15 -2449 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2449 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1988 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1463 (($ (-768) (-768)) 43)) (-1516 (($ $ $) 71)) (-2775 (($ |#3|) 66) (($ $) 67)) (-1512 (((-112) $) 38)) (-1990 (($ $ (-564) (-564)) 81)) (-3649 (($ $ (-564) (-564)) 82)) (-3812 (($ $ (-564) (-564) (-564) (-564)) 87)) (-3252 (($ $) 69)) (-2385 (((-112) $) 15)) (-1353 (($ $ (-564) (-564) $) 88)) (-1970 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) 86)) (-2899 (($ (-768) |#2|) 53)) (-4309 (($ (-641 (-641 |#2|))) 51)) (-4217 (((-641 (-641 |#2|)) $) 78)) (-2435 (($ $ $) 70)) (-1403 (((-3 $ "failed") $ |#2|) 120)) (-1350 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-2088 (($ (-641 |#2|)) 54) (($ (-641 $)) 56)) (-1302 (((-112) $) 28)) (-1831 (($ |#4|) 61) (((-859) $) NIL)) (-4320 (((-112) $) 40)) (-1823 (($ $ |#2|) 122)) (-1808 (($ $ $) 92) (($ $) 95)) (-1797 (($ $ $) 90)) (** (($ $ (-768)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1831 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1823 (|#1| |#1| |#2|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| (-564) (-564) |#1|)) (-15 -3812 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3649 (|#1| |#1| (-564) (-564))) (-15 -1990 (|#1| |#1| (-564) (-564))) (-15 -1970 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -1350 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -4217 ((-641 (-641 |#2|)) |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#3|)) (-15 -1831 (|#1| |#4|)) (-15 -2088 (|#1| (-641 |#1|))) (-15 -2088 (|#1| (-641 |#2|))) (-15 -2899 (|#1| (-768) |#2|)) (-15 -4309 (|#1| (-641 (-641 |#2|)))) (-15 -1463 (|#1| (-768) (-768))) (-15 -4320 ((-112) |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1302 ((-112) |#1|)) (-15 -2385 ((-112) |#1|)) (-15 -1970 (|#2| |#1| (-564) (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) (-564)))) (-683 |#2| |#3| |#4|) (-1046) (-373 |#2|) (-373 |#2|)) (T -682)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1823 (|#1| |#1| |#2|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| (-564) (-564) |#1|)) (-15 -3812 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3649 (|#1| |#1| (-564) (-564))) (-15 -1990 (|#1| |#1| (-564) (-564))) (-15 -1970 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -1350 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -4217 ((-641 (-641 |#2|)) |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#3|)) (-15 -1831 (|#1| |#4|)) (-15 -2088 (|#1| (-641 |#1|))) (-15 -2088 (|#1| (-641 |#2|))) (-15 -2899 (|#1| (-768) |#2|)) (-15 -4309 (|#1| (-641 (-641 |#2|)))) (-15 -1463 (|#1| (-768) (-768))) (-15 -4320 ((-112) |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1302 ((-112) |#1|)) (-15 -2385 ((-112) |#1|)) (-15 -1970 (|#2| |#1| (-564) (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) (-564)))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1463 (($ (-768) (-768)) 97)) (-1516 (($ $ $) 87)) (-2775 (($ |#2|) 91) (($ $) 90)) (-1512 (((-112) $) 99)) (-1990 (($ $ (-564) (-564)) 83)) (-3649 (($ $ (-564) (-564)) 82)) (-3812 (($ $ (-564) (-564) (-564) (-564)) 81)) (-3252 (($ $) 89)) (-2385 (((-112) $) 101)) (-4010 (((-112) $ (-768)) 8)) (-1353 (($ $ (-564) (-564) $) 80)) (-1970 ((|#1| $ (-564) (-564) |#1|) 44) (($ $ (-641 (-564)) (-641 (-564)) $) 84)) (-3251 (($ $ (-564) |#2|) 42)) (-3436 (($ $ (-564) |#3|) 41)) (-2899 (($ (-768) |#1|) 95)) (-1778 (($) 7 T CONST)) (-3543 (($ $) 67 (|has| |#1| (-307)))) (-3751 ((|#2| $ (-564)) 46)) (-3531 (((-768) $) 66 (|has| |#1| (-556)))) (-2261 ((|#1| $ (-564) (-564) |#1|) 43)) (-2190 ((|#1| $ (-564) (-564)) 48)) (-1433 (((-641 |#1|) $) 30)) (-3408 (((-768) $) 65 (|has| |#1| (-556)))) (-3540 (((-641 |#3|) $) 64 (|has| |#1| (-556)))) (-1745 (((-768) $) 51)) (-3654 (($ (-768) (-768) |#1|) 57)) (-1757 (((-768) $) 50)) (-2324 (((-112) $ (-768)) 9)) (-3508 ((|#1| $) 62 (|has| |#1| (-6 (-4408 "*"))))) (-2904 (((-564) $) 55)) (-2015 (((-564) $) 53)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2381 (((-564) $) 54)) (-2821 (((-564) $) 52)) (-4309 (($ (-641 (-641 |#1|))) 96)) (-2250 (($ (-1 |#1| |#1|) $) 34)) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4217 (((-641 (-641 |#1|)) $) 86)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1861 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-2435 (($ $ $) 88)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) 56)) (-1403 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-556)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-2088 (($ (-641 |#1|)) 94) (($ (-641 $)) 93)) (-1302 (((-112) $) 100)) (-2876 ((|#1| $) 63 (|has| |#1| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-3065 ((|#3| $ (-564)) 45)) (-1831 (($ |#3|) 92) (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-4320 (((-112) $) 98)) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1823 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-1808 (($ $ $) 78) (($ $) 77)) (-1797 (($ $ $) 79)) (** (($ $ (-768)) 70) (($ $ (-564)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-564) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-683 |#1| |#2| |#3|) (-140) (-1046) (-373 |t#1|) (-373 |t#1|)) (T -683)) -((-2385 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1463 (*1 *1 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2088 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2088 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1831 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-2775 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2435 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1516 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) (-1350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1970 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1990 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3649 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3812 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1353 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1797 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1808 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1403 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-1823 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046)))) (-1861 (*1 *1 *1) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2385 ((-112) $)) (-15 -1302 ((-112) $)) (-15 -1512 ((-112) $)) (-15 -4320 ((-112) $)) (-15 -1463 ($ (-768) (-768))) (-15 -4309 ($ (-641 (-641 |t#1|)))) (-15 -2899 ($ (-768) |t#1|)) (-15 -2088 ($ (-641 |t#1|))) (-15 -2088 ($ (-641 $))) (-15 -1831 ($ |t#3|)) (-15 -2775 ($ |t#2|)) (-15 -2775 ($ $)) (-15 -3252 ($ $)) (-15 -2435 ($ $ $)) (-15 -1516 ($ $ $)) (-15 -4217 ((-641 (-641 |t#1|)) $)) (-15 -1350 ($ $ (-641 (-564)) (-641 (-564)))) (-15 -1970 ($ $ (-641 (-564)) (-641 (-564)) $)) (-15 -1990 ($ $ (-564) (-564))) (-15 -3649 ($ $ (-564) (-564))) (-15 -3812 ($ $ (-564) (-564) (-564) (-564))) (-15 -1353 ($ $ (-564) (-564) $)) (-15 -1797 ($ $ $)) (-15 -1808 ($ $ $)) (-15 -1808 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-768))) (IF (|has| |t#1| (-556)) (-15 -1403 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1823 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -3543 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3531 ((-768) $)) (-15 -3408 ((-768) $)) (-15 -3540 ((-641 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4408 "*"))) (PROGN (-15 -2876 (|t#1| $)) (-15 -3508 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -1861 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1209) . T)) -((-3543 ((|#4| |#4|) 96 (|has| |#1| (-307)))) (-3531 (((-768) |#4|) 125 (|has| |#1| (-556)))) (-3408 (((-768) |#4|) 100 (|has| |#1| (-556)))) (-3540 (((-641 |#3|) |#4|) 107 (|has| |#1| (-556)))) (-3196 (((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|) 139 (|has| |#1| (-307)))) (-3508 ((|#1| |#4|) 56)) (-2149 (((-3 |#4| "failed") |#4|) 88 (|has| |#1| (-556)))) (-1861 (((-3 |#4| "failed") |#4|) 104 (|has| |#1| (-363)))) (-1580 ((|#4| |#4|) 92 (|has| |#1| (-556)))) (-4233 ((|#4| |#4| |#1| (-564) (-564)) 64)) (-3075 ((|#4| |#4| (-564) (-564)) 59)) (-2443 ((|#4| |#4| |#1| (-564) (-564)) 69)) (-2876 ((|#1| |#4|) 102)) (-4057 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 93 (|has| |#1| (-556))))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2876 (|#1| |#4|)) (-15 -3508 (|#1| |#4|)) (-15 -3075 (|#4| |#4| (-564) (-564))) (-15 -4233 (|#4| |#4| |#1| (-564) (-564))) (-15 -2443 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -3531 ((-768) |#4|)) (-15 -3408 ((-768) |#4|)) (-15 -3540 ((-641 |#3|) |#4|)) (-15 -1580 (|#4| |#4|)) (-15 -2149 ((-3 |#4| "failed") |#4|)) (-15 -4057 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3543 (|#4| |#4|)) (-15 -3196 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1861 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -684)) -((-1861 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3196 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2149 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3540 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3531 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2443 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-4233 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-3075 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) (-4 *2 (-683 *4 *5 *6)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))) -(-10 -7 (-15 -2876 (|#1| |#4|)) (-15 -3508 (|#1| |#4|)) (-15 -3075 (|#4| |#4| (-564) (-564))) (-15 -4233 (|#4| |#4| |#1| (-564) (-564))) (-15 -2443 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -3531 ((-768) |#4|)) (-15 -3408 ((-768) |#4|)) (-15 -3540 ((-641 |#3|) |#4|)) (-15 -1580 (|#4| |#4|)) (-15 -2149 ((-3 |#4| "failed") |#4|)) (-15 -4057 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3543 (|#4| |#4|)) (-15 -3196 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1861 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1463 (($ (-768) (-768)) 63)) (-1516 (($ $ $) NIL)) (-2775 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-1512 (((-112) $) NIL)) (-1990 (($ $ (-564) (-564)) 21)) (-3649 (($ $ (-564) (-564)) NIL)) (-3812 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3252 (($ $) NIL)) (-2385 (((-112) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-1353 (($ $ (-564) (-564) $) NIL)) (-1970 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-3251 (($ $ (-564) (-1259 |#1|)) NIL)) (-3436 (($ $ (-564) (-1259 |#1|)) NIL)) (-2899 (($ (-768) |#1|) 36)) (-1778 (($) NIL T CONST)) (-3543 (($ $) 45 (|has| |#1| (-307)))) (-3751 (((-1259 |#1|) $ (-564)) NIL)) (-3531 (((-768) $) 47 (|has| |#1| (-556)))) (-2261 ((|#1| $ (-564) (-564) |#1|) 68)) (-2190 ((|#1| $ (-564) (-564)) NIL)) (-1433 (((-641 |#1|) $) NIL)) (-3408 (((-768) $) 49 (|has| |#1| (-556)))) (-3540 (((-641 (-1259 |#1|)) $) 52 (|has| |#1| (-556)))) (-1745 (((-768) $) 31)) (-3654 (($ (-768) (-768) |#1|) 27)) (-1757 (((-768) $) 32)) (-2324 (((-112) $ (-768)) NIL)) (-3508 ((|#1| $) 43 (|has| |#1| (-6 (-4408 "*"))))) (-2904 (((-564) $) 10)) (-2015 (((-564) $) 11)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2381 (((-564) $) 14)) (-2821 (((-564) $) 64)) (-4309 (($ (-641 (-641 |#1|))) NIL)) (-2250 (($ (-1 |#1| |#1|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4217 (((-641 (-641 |#1|)) $) 75)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1861 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-2435 (($ $ $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4253 (($ $ |#1|) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-2088 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL) (($ (-1259 |#1|)) 69)) (-1302 (((-112) $) NIL)) (-2876 ((|#1| $) 41 (|has| |#1| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3065 (((-1259 |#1|) $ (-564)) NIL)) (-1831 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4320 (((-112) $) NIL)) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $ $) NIL) (($ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) NIL) (((-1259 |#1|) (-1259 |#1|) $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-685 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -2088 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1861 ((-3 $ "failed") $)) |%noBranch|))) (-1046)) (T -685)) -((-1861 (*1 *1 *1) (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046)))) (-2088 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3))))) -(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -2088 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1861 ((-3 $ "failed") $)) |%noBranch|))) -((-2650 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 37)) (-1912 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 34)) (-4214 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768)) 43)) (-2537 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 27)) (-1692 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 31) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 29)) (-4054 (((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|)) 33)) (-1605 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 25)) (** (((-685 |#1|) (-685 |#1|) (-768)) 46))) -(((-686 |#1|) (-10 -7 (-15 -1605 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2537 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1692 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1692 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4054 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -1912 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -2650 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4214 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768)))) (-1046)) (T -686)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-4214 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-2650 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1912 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-4054 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1692 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2537 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1605 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) -(-10 -7 (-15 -1605 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2537 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1692 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1692 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4054 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -1912 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -2650 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4214 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768)))) -((-2347 (((-3 |#1| "failed") $) 17)) (-2237 ((|#1| $) NIL)) (-2762 (($) 7 T CONST)) (-2813 (($ |#1|) 8)) (-1831 (($ |#1|) 15) (((-859) $) 22)) (-4378 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2762)) 11)) (-3309 ((|#1| $) 14))) -(((-687 |#1|) (-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -2813 ($ |#1|)) (-15 -4378 ((-112) $ (|[\|\|]| |#1|))) (-15 -4378 ((-112) $ (|[\|\|]| -2762))) (-15 -3309 (|#1| $)) (-15 -2762 ($) -1809))) (-611 (-859))) (T -687)) -((-2813 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112)) (-5 *1 (-687 *4)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2762)) (-5 *2 (-112)) (-5 *1 (-687 *4)) (-4 *4 (-611 (-859))))) (-3309 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-2762 (*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))) -(-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -2813 ($ |#1|)) (-15 -4378 ((-112) $ (|[\|\|]| |#1|))) (-15 -4378 ((-112) $ (|[\|\|]| -2762))) (-15 -3309 (|#1| $)) (-15 -2762 ($) -1809))) -((-2600 ((|#2| |#2| |#4|) 33)) (-4215 (((-685 |#2|) |#3| |#4|) 39)) (-2515 (((-685 |#2|) |#2| |#4|) 38)) (-3174 (((-1259 |#2|) |#2| |#4|) 16)) (-1651 ((|#2| |#3| |#4|) 32)) (-1597 (((-685 |#2|) |#3| |#4| (-768) (-768)) 50)) (-3630 (((-685 |#2|) |#2| |#4| (-768)) 49))) -(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3174 ((-1259 |#2|) |#2| |#4|)) (-15 -1651 (|#2| |#3| |#4|)) (-15 -2600 (|#2| |#2| |#4|)) (-15 -2515 ((-685 |#2|) |#2| |#4|)) (-15 -3630 ((-685 |#2|) |#2| |#4| (-768))) (-15 -4215 ((-685 |#2|) |#3| |#4|)) (-15 -1597 ((-685 |#2|) |#3| |#4| (-768) (-768)))) (-1094) (-897 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4406)))) (T -688)) -((-1597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6)) (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406)))))) (-4215 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6)) (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406)))))) (-3630 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6)) (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406)))))) (-2515 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406)))))) (-2600 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4406)))))) (-1651 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406)))))) (-3174 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) -(-10 -7 (-15 -3174 ((-1259 |#2|) |#2| |#4|)) (-15 -1651 (|#2| |#3| |#4|)) (-15 -2600 (|#2| |#2| |#4|)) (-15 -2515 ((-685 |#2|) |#2| |#4|)) (-15 -3630 ((-685 |#2|) |#2| |#4| (-768))) (-15 -4215 ((-685 |#2|) |#3| |#4|)) (-15 -1597 ((-685 |#2|) |#3| |#4| (-768) (-768)))) -((-2203 (((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)) 20)) (-2980 ((|#1| (-685 |#2|)) 9)) (-1648 (((-685 |#1|) (-685 |#2|)) 18))) -(((-689 |#1| |#2|) (-10 -7 (-15 -2980 (|#1| (-685 |#2|))) (-15 -1648 ((-685 |#1|) (-685 |#2|))) (-15 -2203 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) (-556) (-989 |#1|)) (T -689)) -((-2203 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) (-5 *1 (-689 *4 *5)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-689 *2 *4))))) -(-10 -7 (-15 -2980 (|#1| (-685 |#2|))) (-15 -1648 ((-685 |#1|) (-685 |#2|))) (-15 -2203 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-3390 (((-685 (-695))) NIL) (((-685 (-695)) (-1259 $)) NIL)) (-2713 (((-695) $) NIL)) (-3357 (($ $) NIL (|has| (-695) (-1194)))) (-3210 (($ $) NIL (|has| (-695) (-1194)))) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-695) (-349)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-2427 (($ $) NIL (-4078 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-3399 (((-418 $) $) NIL (-4078 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-3083 (($ $) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-3554 (((-112) $ $) NIL (|has| (-695) (-307)))) (-3267 (((-768)) NIL (|has| (-695) (-368)))) (-3330 (($ $) NIL (|has| (-695) (-1194)))) (-3187 (($ $) NIL (|has| (-695) (-1194)))) (-3384 (($ $) NIL (|has| (-695) (-1194)))) (-3233 (($ $) NIL (|has| (-695) (-1194)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-695) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-2237 (((-564) $) NIL) (((-695) $) NIL) (((-407 (-564)) $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-3624 (($ (-1259 (-695))) NIL) (($ (-1259 (-695)) (-1259 $)) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-695) (-349)))) (-1449 (($ $ $) NIL (|has| (-695) (-307)))) (-4206 (((-685 (-695)) $) NIL) (((-685 (-695)) $ (-1259 $)) NIL)) (-4050 (((-685 (-695)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-695))) (|:| |vec| (-1259 (-695)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-695) (-637 (-564)))) (((-685 (-564)) (-685 $)) NIL (|has| (-695) (-637 (-564))))) (-1988 (((-3 $ "failed") (-407 (-1166 (-695)))) NIL (|has| (-695) (-363))) (($ (-1166 (-695))) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3092 (((-695) $) 29)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-545)))) (-2272 (((-112) $) NIL (|has| (-695) (-545)))) (-3036 (((-407 (-564)) $) NIL (|has| (-695) (-545)))) (-3531 (((-918)) NIL)) (-2900 (($) NIL (|has| (-695) (-368)))) (-1424 (($ $ $) NIL (|has| (-695) (-307)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| (-695) (-307)))) (-1830 (($) NIL (|has| (-695) (-349)))) (-4282 (((-112) $) NIL (|has| (-695) (-349)))) (-3340 (($ $) NIL (|has| (-695) (-349))) (($ $ (-768)) NIL (|has| (-695) (-349)))) (-1420 (((-112) $) NIL (-4078 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-2702 (((-2 (|:| |r| (-695)) (|:| |phi| (-695))) $) NIL (-12 (|has| (-695) (-1055)) (|has| (-695) (-1194))))) (-3714 (($) NIL (|has| (-695) (-1194)))) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-695) (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-695) (-883 (-564))))) (-2155 (((-830 (-918)) $) NIL (|has| (-695) (-349))) (((-918) $) NIL (|has| (-695) (-349)))) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-3797 (((-695) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| (-695) (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-3774 (((-1166 (-695)) $) NIL (|has| (-695) (-363)))) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2449 (($ (-1 (-695) (-695)) $) NIL)) (-1811 (((-918) $) NIL (|has| (-695) (-368)))) (-2358 (($ $) NIL (|has| (-695) (-1194)))) (-1977 (((-1166 (-695)) $) NIL)) (-2740 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| (-695) (-363)))) (-2884 (($) NIL (|has| (-695) (-349)) CONST)) (-1468 (($ (-918)) NIL (|has| (-695) (-368)))) (-2774 (($) NIL)) (-3102 (((-695) $) 31)) (-2780 (((-1114) $) NIL)) (-1426 (($) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-695) (-307)))) (-2777 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-695) (-349)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-3070 (((-418 $) $) NIL (-4078 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-695) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| (-695) (-307)))) (-1403 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-695)) NIL (|has| (-695) (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-4326 (($ $) NIL (|has| (-695) (-1194)))) (-2633 (($ $ (-1170) (-695)) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-1170)) (-641 (-695))) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-294 (-695)))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-294 (-695))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-695) (-695)) NIL (|has| (-695) (-309 (-695)))) (($ $ (-641 (-695)) (-641 (-695))) NIL (|has| (-695) (-309 (-695))))) (-3920 (((-768) $) NIL (|has| (-695) (-307)))) (-1350 (($ $ (-695)) NIL (|has| (-695) (-286 (-695) (-695))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| (-695) (-307)))) (-3190 (((-695)) NIL) (((-695) (-1259 $)) NIL)) (-1820 (((-3 (-768) "failed") $ $) NIL (|has| (-695) (-349))) (((-768) $) NIL (|has| (-695) (-349)))) (-3534 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-4027 (((-685 (-695)) (-1259 $) (-1 (-695) (-695))) NIL (|has| (-695) (-363)))) (-3019 (((-1166 (-695))) NIL)) (-3395 (($ $) NIL (|has| (-695) (-1194)))) (-3245 (($ $) NIL (|has| (-695) (-1194)))) (-3297 (($) NIL (|has| (-695) (-349)))) (-3371 (($ $) NIL (|has| (-695) (-1194)))) (-3221 (($ $) NIL (|has| (-695) (-1194)))) (-3344 (($ $) NIL (|has| (-695) (-1194)))) (-3199 (($ $) NIL (|has| (-695) (-1194)))) (-2467 (((-685 (-695)) (-1259 $)) NIL) (((-1259 (-695)) $) NIL) (((-685 (-695)) (-1259 $) (-1259 $)) NIL) (((-1259 (-695)) $ (-1259 $)) NIL)) (-2511 (((-536) $) NIL (|has| (-695) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-695) (-1019))) (((-169 (-379)) $) NIL (|has| (-695) (-1019))) (((-889 (-379)) $) NIL (|has| (-695) (-612 (-889 (-379))))) (((-889 (-564)) $) NIL (|has| (-695) (-612 (-889 (-564))))) (($ (-1166 (-695))) NIL) (((-1166 (-695)) $) NIL) (($ (-1259 (-695))) NIL) (((-1259 (-695)) $) NIL)) (-3047 (($ $) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4078 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-349))))) (-2522 (($ (-695) (-695)) 12)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-695)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-695))) 28) (($ (-169 (-697))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-4078 (|has| (-695) (-1035 (-407 (-564)))) (|has| (-695) (-363))))) (-4018 (($ $) NIL (|has| (-695) (-349))) (((-3 $ "failed") $) NIL (-4078 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-145))))) (-1349 (((-1166 (-695)) $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $)) NIL)) (-3427 (($ $) NIL (|has| (-695) (-1194)))) (-3276 (($ $) NIL (|has| (-695) (-1194)))) (-3939 (((-112) $ $) NIL)) (-3406 (($ $) NIL (|has| (-695) (-1194)))) (-3254 (($ $) NIL (|has| (-695) (-1194)))) (-3450 (($ $) NIL (|has| (-695) (-1194)))) (-3302 (($ $) NIL (|has| (-695) (-1194)))) (-2562 (((-695) $) NIL (|has| (-695) (-1194)))) (-2315 (($ $) NIL (|has| (-695) (-1194)))) (-3316 (($ $) NIL (|has| (-695) (-1194)))) (-3439 (($ $) NIL (|has| (-695) (-1194)))) (-3287 (($ $) NIL (|has| (-695) (-1194)))) (-3416 (($ $) NIL (|has| (-695) (-1194)))) (-3265 (($ $) NIL (|has| (-695) (-1194)))) (-1849 (($ $) NIL (|has| (-695) (-1055)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL (|has| (-695) (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| (-695) (-1194))) (($ $ (-407 (-564))) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194)))) (($ $ (-564)) NIL (|has| (-695) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-695) $) NIL) (($ $ (-695)) NIL) (($ (-407 (-564)) $) NIL (|has| (-695) (-363))) (($ $ (-407 (-564))) NIL (|has| (-695) (-363))))) -(((-690) (-13 (-387) (-166 (-695)) (-10 -8 (-15 -1831 ($ (-169 (-379)))) (-15 -1831 ($ (-169 (-564)))) (-15 -1831 ($ (-169 (-695)))) (-15 -1831 ($ (-169 (-697)))) (-15 -1831 ((-169 (-379)) $))))) (T -690)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))) -(-13 (-387) (-166 (-695)) (-10 -8 (-15 -1831 ($ (-169 (-379)))) (-15 -1831 ($ (-169 (-564)))) (-15 -1831 ($ (-169 (-695)))) (-15 -1831 ($ (-169 (-697)))) (-15 -1831 ((-169 (-379)) $)))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-4145 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4341 (($ $) 62)) (-3337 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4096 (((-641 (-2 (|:| -1389 |#1|) (|:| -2791 (-768)))) $) 61)) (-4232 (($) 49) (($ (-641 |#1|)) 48)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 50)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-1778 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-2614 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(-13 (-1143 |t#1|) (-10 -8 (-15 -3628 ($ (-1 (-112) |t#1|) $)) (-15 -2957 ($ (-1 (-112) |t#1|) $)) (-15 -3643 ((-112) $)) (-15 -2356 ((-112) $)) (-15 -3585 ((-112) $)) (-15 -3869 ($ $)) (-15 -1524 (|t#1| $)) (-15 -1778 ($ $)) (-15 -2132 ((-767) $)) (-15 -2941 ($ $ (-564))) (-15 -2614 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3520 (($ (-767) (-767) (-767)) 55 (|has| |#1| (-1045)))) (-2318 (((-112) $ (-767)) NIL)) (-1844 ((|#1| $ (-767) (-767) (-767) |#1|) 49)) (-4157 (($) NIL T CONST)) (-1865 (($ $ $) 60 (|has| |#1| (-1045)))) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2806 (((-1259 (-767)) $) 12)) (-3636 (($ (-1170) $ $) 37)) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4110 (($ (-767)) 57 (|has| |#1| (-1045)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-767) (-767) (-767)) 46)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2335 (($ (-641 (-641 (-641 |#1|)))) 70)) (-2322 (($ (-954 (-954 (-954 |#1|)))) 23) (((-954 (-954 (-954 |#1|))) $) 19) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-671 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -3520 ($ (-767) (-767) (-767))) (-15 -4110 ($ (-767))) (-15 -1865 ($ $ $))) |%noBranch|) (-15 -2335 ($ (-641 (-641 (-641 |#1|))))) (-15 -4353 (|#1| $ (-767) (-767) (-767))) (-15 -1844 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -2322 ($ (-954 (-954 (-954 |#1|))))) (-15 -2322 ((-954 (-954 (-954 |#1|))) $)) (-15 -3636 ($ (-1170) $ $)) (-15 -2806 ((-1259 (-767)) $)))) (-1094)) (T -671)) +((-3520 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))) (-1865 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1045)) (-4 *2 (-1094)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-4353 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-1844 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-3636 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1259 (-767))) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) +(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -3520 ($ (-767) (-767) (-767))) (-15 -4110 ($ (-767))) (-15 -1865 ($ $ $))) |%noBranch|) (-15 -2335 ($ (-641 (-641 (-641 |#1|))))) (-15 -4353 (|#1| $ (-767) (-767) (-767))) (-15 -1844 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -2322 ($ (-954 (-954 (-954 |#1|))))) (-15 -2322 ((-954 (-954 (-954 |#1|))) $)) (-15 -3636 ($ (-1170) $ $)) (-15 -2806 ((-1259 (-767)) $)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3654 (((-483) $) 10)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-1129) $) 12)) (-2921 (((-112) $ $) NIL))) +(((-672) (-13 (-1077) (-10 -8 (-15 -3654 ((-483) $)) (-15 -2433 ((-1129) $))))) (T -672)) +((-3654 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672))))) +(-13 (-1077) (-10 -8 (-15 -3654 ((-483) $)) (-15 -2433 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-2966 (((-641 |#1|) $) 15)) (-4250 (($ $) 19)) (-4156 (((-112) $) 20)) (-3032 (((-3 |#1| "failed") $) 23)) (-1781 ((|#1| $) 21)) (-2008 (($ $) 37)) (-4321 (($ $) 25)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3145 (((-112) $ $) 45)) (-1750 (((-917) $) 40)) (-4237 (($ $) 18)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 ((|#1| $) 36)) (-2322 (((-858) $) 32) (($ |#1|) 24) (((-815 |#1|) $) 28)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 13)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-673 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2322 ((-815 |#1|) $)) (-15 -1995 (|#1| $)) (-15 -4237 ($ $)) (-15 -1750 ((-917) $)) (-15 -3145 ((-112) $ $)) (-15 -4321 ($ $)) (-15 -2008 ($ $)) (-15 -4156 ((-112) $)) (-15 -4250 ($ $)) (-15 -2966 ((-641 |#1|) $)))) (-846)) (T -673)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-1995 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-4250 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846))))) +(-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2322 ((-815 |#1|) $)) (-15 -1995 (|#1| $)) (-15 -4237 ($ $)) (-15 -1750 ((-917) $)) (-15 -3145 ((-112) $ $)) (-15 -4321 ($ $)) (-15 -2008 ($ $)) (-15 -4156 ((-112) $)) (-15 -4250 ($ $)) (-15 -2966 ((-641 |#1|) $)))) +((-2751 ((|#1| (-1 |#1| (-767) |#1|) (-767) |#1|) 14)) (-3494 ((|#1| (-1 |#1| |#1|) (-767) |#1|) 12))) +(((-674 |#1|) (-10 -7 (-15 -3494 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -2751 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) (-1094)) (T -674)) +((-2751 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))) (-3494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-674 *2))))) +(-10 -7 (-15 -3494 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -2751 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) +((-3951 ((|#2| |#1| |#2|) 9)) (-3945 ((|#1| |#1| |#2|) 8))) +(((-675 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#1| |#2|)) (-15 -3951 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -675)) +((-3951 (*1 *2 *3 *2) (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(-10 -7 (-15 -3945 (|#1| |#1| |#2|)) (-15 -3951 (|#2| |#1| |#2|))) +((-1905 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -1905 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -676)) +((-1905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2))))) +(-10 -7 (-15 -1905 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2310 (((-112) $ $) NIL)) (-1767 (((-1208) $) 21)) (-1712 (((-641 (-1208)) $) 19)) (-3837 (($ (-641 (-1208)) (-1208)) 14)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 22) (($ (-1112)) 10)) (-2921 (((-112) $ $) NIL))) +(((-677) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2322 ($ (-1112))) (-15 -3837 ($ (-641 (-1208)) (-1208))) (-15 -1712 ((-641 (-1208)) $)) (-15 -1767 ((-1208) $))))) (T -677)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) (-3837 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677))))) +(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2322 ($ (-1112))) (-15 -3837 ($ (-641 (-1208)) (-1208))) (-15 -1712 ((-641 (-1208)) $)) (-15 -1767 ((-1208) $)))) +((-2751 (((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)) 29)) (-3834 (((-1 |#1|) |#1|) 8)) (-4086 ((|#1| |#1|) 23)) (-3477 (((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2322 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-767)) 26))) +(((-678 |#1|) (-10 -7 (-15 -3834 ((-1 |#1|) |#1|)) (-15 -2322 ((-1 |#1|) |#1|)) (-15 -3477 (|#1| (-1 |#1| |#1|))) (-15 -3477 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -4086 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -2751 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) (-1094)) (T -678)) +((-2751 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1094)) (-5 *1 (-678 *4)))) (-4086 (*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))) +(-10 -7 (-15 -3834 ((-1 |#1|) |#1|)) (-15 -2322 ((-1 |#1|) |#1|)) (-15 -3477 (|#1| (-1 |#1| |#1|))) (-15 -3477 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -4086 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -2751 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) +((-2760 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1654 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2255 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3934 (((-1 |#2| |#1|) |#2|) 11))) +(((-679 |#1| |#2|) (-10 -7 (-15 -3934 ((-1 |#2| |#1|) |#2|)) (-15 -1654 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2255 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2760 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -679)) +((-2760 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))) (-3934 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094))))) +(-10 -7 (-15 -3934 ((-1 |#2| |#1|) |#2|)) (-15 -1654 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2255 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2760 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2120 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2549 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1438 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2178 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3958 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1438 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2178 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3958 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2120 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -680)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-680 *5 *6 *7)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6))))) +(-10 -7 (-15 -2549 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1438 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2178 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3958 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2120 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3239 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3123 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-681 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3123 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3123 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3239 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1045) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-1045) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -681)) +((-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) (-3123 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))) +(-10 -7 (-15 -3123 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3123 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3239 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3991 (($ (-767) (-767)) 43)) (-3416 (($ $ $) 71)) (-3789 (($ |#3|) 66) (($ $) 67)) (-3390 (((-112) $) 38)) (-2604 (($ $ (-564) (-564)) 81)) (-3216 (($ $ (-564) (-564)) 82)) (-2150 (($ $ (-564) (-564) (-564) (-564)) 87)) (-3920 (($ $) 69)) (-4283 (((-112) $) 15)) (-2182 (($ $ (-564) (-564) $) 88)) (-3750 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) 86)) (-2567 (($ (-767) |#2|) 53)) (-4187 (($ (-641 (-641 |#2|))) 51)) (-3818 (((-641 (-641 |#2|)) $) 78)) (-3535 (($ $ $) 70)) (-2526 (((-3 $ "failed") $ |#2|) 120)) (-4353 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-4289 (($ (-641 |#2|)) 54) (($ (-641 $)) 56)) (-2037 (((-112) $) 28)) (-2322 (($ |#4|) 61) (((-858) $) NIL)) (-2378 (((-112) $) 40)) (-3034 (($ $ |#2|) 122)) (-3021 (($ $ $) 92) (($ $) 95)) (-3011 (($ $ $) 90)) (** (($ $ (-767)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2322 ((-858) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3034 (|#1| |#1| |#2|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2182 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2150 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3216 (|#1| |#1| (-564) (-564))) (-15 -2604 (|#1| |#1| (-564) (-564))) (-15 -3750 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4353 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3818 ((-641 (-641 |#2|)) |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3789 (|#1| |#3|)) (-15 -2322 (|#1| |#4|)) (-15 -4289 (|#1| (-641 |#1|))) (-15 -4289 (|#1| (-641 |#2|))) (-15 -2567 (|#1| (-767) |#2|)) (-15 -4187 (|#1| (-641 (-641 |#2|)))) (-15 -3991 (|#1| (-767) (-767))) (-15 -2378 ((-112) |#1|)) (-15 -3390 ((-112) |#1|)) (-15 -2037 ((-112) |#1|)) (-15 -4283 ((-112) |#1|)) (-15 -3750 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) (-564)))) (-683 |#2| |#3| |#4|) (-1045) (-373 |#2|) (-373 |#2|)) (T -682)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3034 (|#1| |#1| |#2|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2182 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2150 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3216 (|#1| |#1| (-564) (-564))) (-15 -2604 (|#1| |#1| (-564) (-564))) (-15 -3750 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4353 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3818 ((-641 (-641 |#2|)) |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3789 (|#1| |#3|)) (-15 -2322 (|#1| |#4|)) (-15 -4289 (|#1| (-641 |#1|))) (-15 -4289 (|#1| (-641 |#2|))) (-15 -2567 (|#1| (-767) |#2|)) (-15 -4187 (|#1| (-641 (-641 |#2|)))) (-15 -3991 (|#1| (-767) (-767))) (-15 -2378 ((-112) |#1|)) (-15 -3390 ((-112) |#1|)) (-15 -2037 ((-112) |#1|)) (-15 -4283 ((-112) |#1|)) (-15 -3750 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) (-564)))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3991 (($ (-767) (-767)) 97)) (-3416 (($ $ $) 87)) (-3789 (($ |#2|) 91) (($ $) 90)) (-3390 (((-112) $) 99)) (-2604 (($ $ (-564) (-564)) 83)) (-3216 (($ $ (-564) (-564)) 82)) (-2150 (($ $ (-564) (-564) (-564) (-564)) 81)) (-3920 (($ $) 89)) (-4283 (((-112) $) 101)) (-2318 (((-112) $ (-767)) 8)) (-2182 (($ $ (-564) (-564) $) 80)) (-3750 ((|#1| $ (-564) (-564) |#1|) 44) (($ $ (-641 (-564)) (-641 (-564)) $) 84)) (-3909 (($ $ (-564) |#2|) 42)) (-1748 (($ $ (-564) |#3|) 41)) (-2567 (($ (-767) |#1|) 95)) (-4157 (($) 7 T CONST)) (-3442 (($ $) 67 (|has| |#1| (-307)))) (-1597 ((|#2| $ (-564)) 46)) (-3105 (((-767) $) 66 (|has| |#1| (-556)))) (-1466 ((|#1| $ (-564) (-564) |#1|) 43)) (-1407 ((|#1| $ (-564) (-564)) 48)) (-3534 (((-641 |#1|) $) 30)) (-2748 (((-767) $) 65 (|has| |#1| (-556)))) (-3414 (((-641 |#3|) $) 64 (|has| |#1| (-556)))) (-3835 (((-767) $) 51)) (-4121 (($ (-767) (-767) |#1|) 57)) (-3848 (((-767) $) 50)) (-1751 (((-112) $ (-767)) 9)) (-4360 ((|#1| $) 62 (|has| |#1| (-6 (-4408 "*"))))) (-2615 (((-564) $) 55)) (-1607 (((-564) $) 53)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-4253 (((-564) $) 54)) (-3020 (((-564) $) 52)) (-4187 (($ (-641 (-641 |#1|))) 96)) (-1456 (($ (-1 |#1| |#1|) $) 34)) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3818 (((-641 (-641 |#1|)) $) 86)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3721 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-3535 (($ $ $) 88)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) 56)) (-2526 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-556)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-4289 (($ (-641 |#1|)) 94) (($ (-641 $)) 93)) (-2037 (((-112) $) 100)) (-2311 ((|#1| $) 63 (|has| |#1| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-1582 ((|#3| $ (-564)) 45)) (-2322 (($ |#3|) 92) (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2378 (((-112) $) 98)) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3034 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-3021 (($ $ $) 78) (($ $) 77)) (-3011 (($ $ $) 79)) (** (($ $ (-767)) 70) (($ $ (-564)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-564) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-683 |#1| |#2| |#3|) (-140) (-1045) (-373 |t#1|) (-373 |t#1|)) (T -683)) +((-4283 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3991 (*1 *1 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2567 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4289 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4289 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2322 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-3789 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-3789 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3535 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3416 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) (-4353 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3750 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2604 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3216 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2150 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2182 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3011 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2526 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-3442 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045)))) (-3721 (*1 *1 *1) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4407) (-6 -4406) (-15 -4283 ((-112) $)) (-15 -2037 ((-112) $)) (-15 -3390 ((-112) $)) (-15 -2378 ((-112) $)) (-15 -3991 ($ (-767) (-767))) (-15 -4187 ($ (-641 (-641 |t#1|)))) (-15 -2567 ($ (-767) |t#1|)) (-15 -4289 ($ (-641 |t#1|))) (-15 -4289 ($ (-641 $))) (-15 -2322 ($ |t#3|)) (-15 -3789 ($ |t#2|)) (-15 -3789 ($ $)) (-15 -3920 ($ $)) (-15 -3535 ($ $ $)) (-15 -3416 ($ $ $)) (-15 -3818 ((-641 (-641 |t#1|)) $)) (-15 -4353 ($ $ (-641 (-564)) (-641 (-564)))) (-15 -3750 ($ $ (-641 (-564)) (-641 (-564)) $)) (-15 -2604 ($ $ (-564) (-564))) (-15 -3216 ($ $ (-564) (-564))) (-15 -2150 ($ $ (-564) (-564) (-564) (-564))) (-15 -2182 ($ $ (-564) (-564) $)) (-15 -3011 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3021 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-767))) (IF (|has| |t#1| (-556)) (-15 -2526 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3034 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -3442 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3105 ((-767) $)) (-15 -2748 ((-767) $)) (-15 -3414 ((-641 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4408 "*"))) (PROGN (-15 -2311 (|t#1| $)) (-15 -4360 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -3721 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1209) . T)) +((-3442 ((|#4| |#4|) 96 (|has| |#1| (-307)))) (-3105 (((-767) |#4|) 125 (|has| |#1| (-556)))) (-2748 (((-767) |#4|) 100 (|has| |#1| (-556)))) (-3414 (((-641 |#3|) |#4|) 107 (|has| |#1| (-556)))) (-3445 (((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|) 139 (|has| |#1| (-307)))) (-4360 ((|#1| |#4|) 56)) (-3646 (((-3 |#4| "failed") |#4|) 88 (|has| |#1| (-556)))) (-3721 (((-3 |#4| "failed") |#4|) 104 (|has| |#1| (-363)))) (-2894 ((|#4| |#4|) 92 (|has| |#1| (-556)))) (-3987 ((|#4| |#4| |#1| (-564) (-564)) 64)) (-1674 ((|#4| |#4| (-564) (-564)) 59)) (-3609 ((|#4| |#4| |#1| (-564) (-564)) 69)) (-2311 ((|#1| |#4|) 102)) (-2821 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 93 (|has| |#1| (-556))))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2311 (|#1| |#4|)) (-15 -4360 (|#1| |#4|)) (-15 -1674 (|#4| |#4| (-564) (-564))) (-15 -3987 (|#4| |#4| |#1| (-564) (-564))) (-15 -3609 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -3105 ((-767) |#4|)) (-15 -2748 ((-767) |#4|)) (-15 -3414 ((-641 |#3|) |#4|)) (-15 -2894 (|#4| |#4|)) (-15 -3646 ((-3 |#4| "failed") |#4|)) (-15 -2821 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3442 (|#4| |#4|)) (-15 -3445 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3721 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -684)) +((-3721 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3445 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) (-3442 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3646 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2894 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3414 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3609 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-3987 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-1674 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) (-4 *2 (-683 *4 *5 *6)))) (-4360 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-2311 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))) +(-10 -7 (-15 -2311 (|#1| |#4|)) (-15 -4360 (|#1| |#4|)) (-15 -1674 (|#4| |#4| (-564) (-564))) (-15 -3987 (|#4| |#4| |#1| (-564) (-564))) (-15 -3609 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -3105 ((-767) |#4|)) (-15 -2748 ((-767) |#4|)) (-15 -3414 ((-641 |#3|) |#4|)) (-15 -2894 (|#4| |#4|)) (-15 -3646 ((-3 |#4| "failed") |#4|)) (-15 -2821 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3442 (|#4| |#4|)) (-15 -3445 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3721 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3991 (($ (-767) (-767)) 63)) (-3416 (($ $ $) NIL)) (-3789 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-3390 (((-112) $) NIL)) (-2604 (($ $ (-564) (-564)) 21)) (-3216 (($ $ (-564) (-564)) NIL)) (-2150 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3920 (($ $) NIL)) (-4283 (((-112) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2182 (($ $ (-564) (-564) $) NIL)) (-3750 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-3909 (($ $ (-564) (-1259 |#1|)) NIL)) (-1748 (($ $ (-564) (-1259 |#1|)) NIL)) (-2567 (($ (-767) |#1|) 36)) (-4157 (($) NIL T CONST)) (-3442 (($ $) 45 (|has| |#1| (-307)))) (-1597 (((-1259 |#1|) $ (-564)) NIL)) (-3105 (((-767) $) 47 (|has| |#1| (-556)))) (-1466 ((|#1| $ (-564) (-564) |#1|) 68)) (-1407 ((|#1| $ (-564) (-564)) NIL)) (-3534 (((-641 |#1|) $) NIL)) (-2748 (((-767) $) 49 (|has| |#1| (-556)))) (-3414 (((-641 (-1259 |#1|)) $) 52 (|has| |#1| (-556)))) (-3835 (((-767) $) 31)) (-4121 (($ (-767) (-767) |#1|) 27)) (-3848 (((-767) $) 32)) (-1751 (((-112) $ (-767)) NIL)) (-4360 ((|#1| $) 43 (|has| |#1| (-6 (-4408 "*"))))) (-2615 (((-564) $) 10)) (-1607 (((-564) $) 11)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4253 (((-564) $) 14)) (-3020 (((-564) $) 64)) (-4187 (($ (-641 (-641 |#1|))) NIL)) (-1456 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3818 (((-641 (-641 |#1|)) $) 75)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3721 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-3535 (($ $ $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2981 (($ $ |#1|) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-4289 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL) (($ (-1259 |#1|)) 69)) (-2037 (((-112) $) NIL)) (-2311 ((|#1| $) 41 (|has| |#1| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1582 (((-1259 |#1|) $ (-564)) NIL)) (-2322 (($ (-1259 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2378 (((-112) $) NIL)) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) NIL) (((-1259 |#1|) (-1259 |#1|) $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-685 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -4289 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3721 ((-3 $ "failed") $)) |%noBranch|))) (-1045)) (T -685)) +((-3721 (*1 *1 *1) (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) (-4289 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -4289 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3721 ((-3 $ "failed") $)) |%noBranch|))) +((-1933 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 37)) (-3044 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 34)) (-3784 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-767)) 43)) (-3309 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 27)) (-1495 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 31) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 29)) (-2790 (((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|)) 33)) (-3157 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 25)) (** (((-685 |#1|) (-685 |#1|) (-767)) 46))) +(((-686 |#1|) (-10 -7 (-15 -3157 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3309 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1495 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1495 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2790 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -3044 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1933 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3784 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-767))) (-15 ** ((-685 |#1|) (-685 |#1|) (-767)))) (-1045)) (T -686)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-686 *4)))) (-3784 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-686 *4)))) (-1933 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-3044 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-2790 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-1495 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-1495 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-3309 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-3157 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(-10 -7 (-15 -3157 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3309 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1495 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1495 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2790 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -3044 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1933 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3784 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-767))) (-15 ** ((-685 |#1|) (-685 |#1|) (-767)))) +((-3032 (((-3 |#1| "failed") $) 17)) (-1781 ((|#1| $) NIL)) (-3259 (($) 7 T CONST)) (-2952 (($ |#1|) 8)) (-2322 (($ |#1|) 15) (((-858) $) 22)) (-2377 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -3259)) 11)) (-3806 ((|#1| $) 14))) +(((-687 |#1|) (-13 (-1254) (-1034 |#1|) (-611 (-858)) (-10 -8 (-15 -2952 ($ |#1|)) (-15 -2377 ((-112) $ (|[\|\|]| |#1|))) (-15 -2377 ((-112) $ (|[\|\|]| -3259))) (-15 -3806 (|#1| $)) (-15 -3259 ($) -2255))) (-611 (-858))) (T -687)) +((-2952 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-858))) (-5 *2 (-112)) (-5 *1 (-687 *4)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3259)) (-5 *2 (-112)) (-5 *1 (-687 *4)) (-4 *4 (-611 (-858))))) (-3806 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))) (-3259 (*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858)))))) +(-13 (-1254) (-1034 |#1|) (-611 (-858)) (-10 -8 (-15 -2952 ($ |#1|)) (-15 -2377 ((-112) $ (|[\|\|]| |#1|))) (-15 -2377 ((-112) $ (|[\|\|]| -3259))) (-15 -3806 (|#1| $)) (-15 -3259 ($) -2255))) +((-2722 ((|#2| |#2| |#4|) 33)) (-3796 (((-685 |#2|) |#3| |#4|) 39)) (-3103 (((-685 |#2|) |#2| |#4|) 38)) (-1374 (((-1259 |#2|) |#2| |#4|) 16)) (-2307 ((|#2| |#3| |#4|) 32)) (-3072 (((-685 |#2|) |#3| |#4| (-767) (-767)) 50)) (-3066 (((-685 |#2|) |#2| |#4| (-767)) 49))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1374 ((-1259 |#2|) |#2| |#4|)) (-15 -2307 (|#2| |#3| |#4|)) (-15 -2722 (|#2| |#2| |#4|)) (-15 -3103 ((-685 |#2|) |#2| |#4|)) (-15 -3066 ((-685 |#2|) |#2| |#4| (-767))) (-15 -3796 ((-685 |#2|) |#3| |#4|)) (-15 -3072 ((-685 |#2|) |#3| |#4| (-767) (-767)))) (-1094) (-896 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4406)))) (T -688)) +((-3072 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *7 (-896 *6)) (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406)))))) (-3796 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-896 *5)) (-5 *2 (-685 *6)) (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406)))))) (-3066 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *3 (-896 *6)) (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406)))))) (-3103 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-685 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406)))))) (-2722 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-896 *4)) (-5 *1 (-688 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4406)))))) (-2307 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-896 *5)) (-5 *1 (-688 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406)))))) (-1374 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-1259 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) +(-10 -7 (-15 -1374 ((-1259 |#2|) |#2| |#4|)) (-15 -2307 (|#2| |#3| |#4|)) (-15 -2722 (|#2| |#2| |#4|)) (-15 -3103 ((-685 |#2|) |#2| |#4|)) (-15 -3066 ((-685 |#2|) |#2| |#4| (-767))) (-15 -3796 ((-685 |#2|) |#3| |#4|)) (-15 -3072 ((-685 |#2|) |#3| |#4| (-767) (-767)))) +((-3018 (((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)) 20)) (-2135 ((|#1| (-685 |#2|)) 9)) (-2284 (((-685 |#1|) (-685 |#2|)) 18))) +(((-689 |#1| |#2|) (-10 -7 (-15 -2135 (|#1| (-685 |#2|))) (-15 -2284 ((-685 |#1|) (-685 |#2|))) (-15 -3018 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) (-556) (-988 |#1|)) (T -689)) +((-3018 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) (-5 *1 (-689 *4 *5)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556)) (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-689 *2 *4))))) +(-10 -7 (-15 -2135 (|#1| (-685 |#2|))) (-15 -2284 ((-685 |#1|) (-685 |#2|))) (-15 -3018 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2586 (((-685 (-695))) NIL) (((-685 (-695)) (-1259 $)) NIL)) (-3770 (((-695) $) NIL)) (-3802 (($ $) NIL (|has| (-695) (-1194)))) (-3661 (($ $) NIL (|has| (-695) (-1194)))) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-695) (-349)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-3453 (($ $) NIL (-2789 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-2657 (((-418 $) $) NIL (-2789 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-2387 (($ $) NIL (-12 (|has| (-695) (-998)) (|has| (-695) (-1194))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-3547 (((-112) $ $) NIL (|has| (-695) (-307)))) (-1959 (((-767)) NIL (|has| (-695) (-368)))) (-3779 (($ $) NIL (|has| (-695) (-1194)))) (-3639 (($ $) NIL (|has| (-695) (-1194)))) (-3825 (($ $) NIL (|has| (-695) (-1194)))) (-3684 (($ $) NIL (|has| (-695) (-1194)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-695) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-1034 (-407 (-564)))))) (-1781 (((-564) $) NIL) (((-695) $) NIL) (((-407 (-564)) $) NIL (|has| (-695) (-1034 (-407 (-564)))))) (-3013 (($ (-1259 (-695))) NIL) (($ (-1259 (-695)) (-1259 $)) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-695) (-349)))) (-2574 (($ $ $) NIL (|has| (-695) (-307)))) (-3689 (((-685 (-695)) $) NIL) (((-685 (-695)) $ (-1259 $)) NIL)) (-2750 (((-685 (-695)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-695))) (|:| |vec| (-1259 (-695)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-695) (-637 (-564)))) (((-685 (-564)) (-685 $)) NIL (|has| (-695) (-637 (-564))))) (-3239 (((-3 $ "failed") (-407 (-1166 (-695)))) NIL (|has| (-695) (-363))) (($ (-1166 (-695))) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2401 (((-695) $) 29)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-545)))) (-2446 (((-112) $) NIL (|has| (-695) (-545)))) (-2569 (((-407 (-564)) $) NIL (|has| (-695) (-545)))) (-3105 (((-917)) NIL)) (-3860 (($) NIL (|has| (-695) (-368)))) (-2552 (($ $ $) NIL (|has| (-695) (-307)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| (-695) (-307)))) (-3422 (($) NIL (|has| (-695) (-349)))) (-3261 (((-112) $) NIL (|has| (-695) (-349)))) (-2180 (($ $) NIL (|has| (-695) (-349))) (($ $ (-767)) NIL (|has| (-695) (-349)))) (-4229 (((-112) $) NIL (-2789 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-4313 (((-2 (|:| |r| (-695)) (|:| |phi| (-695))) $) NIL (-12 (|has| (-695) (-1054)) (|has| (-695) (-1194))))) (-4223 (($) NIL (|has| (-695) (-1194)))) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-695) (-882 (-379)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-695) (-882 (-564))))) (-3717 (((-829 (-917)) $) NIL (|has| (-695) (-349))) (((-917) $) NIL (|has| (-695) (-349)))) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (-12 (|has| (-695) (-998)) (|has| (-695) (-1194))))) (-2019 (((-695) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-695) (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-1790 (((-1166 (-695)) $) NIL (|has| (-695) (-363)))) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3123 (($ (-1 (-695) (-695)) $) NIL)) (-1368 (((-917) $) NIL (|has| (-695) (-368)))) (-3439 (($ $) NIL (|has| (-695) (-1194)))) (-3228 (((-1166 (-695)) $) NIL)) (-3202 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| (-695) (-363)))) (-3346 (($) NIL (|has| (-695) (-349)) CONST)) (-1998 (($ (-917)) NIL (|has| (-695) (-368)))) (-3777 (($) NIL)) (-2415 (((-695) $) 31)) (-3840 (((-1114) $) NIL)) (-4095 (($) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-695) (-307)))) (-3235 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-695) (-349)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-2375 (((-418 $) $) NIL (-2789 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-695) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| (-695) (-307)))) (-2526 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-695)) NIL (|has| (-695) (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-3571 (($ $) NIL (|has| (-695) (-1194)))) (-3100 (($ $ (-1170) (-695)) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-1170)) (-641 (-695))) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-294 (-695)))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-294 (-695))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-695) (-695)) NIL (|has| (-695) (-309 (-695)))) (($ $ (-641 (-695)) (-641 (-695))) NIL (|has| (-695) (-309 (-695))))) (-3844 (((-767) $) NIL (|has| (-695) (-307)))) (-4353 (($ $ (-695)) NIL (|has| (-695) (-286 (-695) (-695))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| (-695) (-307)))) (-3392 (((-695)) NIL) (((-695) (-1259 $)) NIL)) (-3337 (((-3 (-767) "failed") $ $) NIL (|has| (-695) (-349))) (((-767) $) NIL (|has| (-695) (-349)))) (-1343 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-767)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-2516 (((-685 (-695)) (-1259 $) (-1 (-695) (-695))) NIL (|has| (-695) (-363)))) (-2400 (((-1166 (-695))) NIL)) (-3836 (($ $) NIL (|has| (-695) (-1194)))) (-3697 (($ $) NIL (|has| (-695) (-1194)))) (-3107 (($) NIL (|has| (-695) (-349)))) (-3814 (($ $) NIL (|has| (-695) (-1194)))) (-3672 (($ $) NIL (|has| (-695) (-1194)))) (-3792 (($ $) NIL (|has| (-695) (-1194)))) (-3650 (($ $) NIL (|has| (-695) (-1194)))) (-3864 (((-685 (-695)) (-1259 $)) NIL) (((-1259 (-695)) $) NIL) (((-685 (-695)) (-1259 $) (-1259 $)) NIL) (((-1259 (-695)) $ (-1259 $)) NIL)) (-3172 (((-536) $) NIL (|has| (-695) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-695) (-1018))) (((-169 (-379)) $) NIL (|has| (-695) (-1018))) (((-888 (-379)) $) NIL (|has| (-695) (-612 (-888 (-379))))) (((-888 (-564)) $) NIL (|has| (-695) (-612 (-888 (-564))))) (($ (-1166 (-695))) NIL) (((-1166 (-695)) $) NIL) (($ (-1259 (-695))) NIL) (((-1259 (-695)) $) NIL)) (-2675 (($ $) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-2789 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-905))) (|has| (-695) (-349))))) (-3570 (($ (-695) (-695)) 12)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-695)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-695))) 28) (($ (-169 (-697))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-2789 (|has| (-695) (-1034 (-407 (-564)))) (|has| (-695) (-363))))) (-2409 (($ $) NIL (|has| (-695) (-349))) (((-3 $ "failed") $) NIL (-2789 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-905))) (|has| (-695) (-145))))) (-2117 (((-1166 (-695)) $) NIL)) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $)) NIL)) (-2672 (($ $) NIL (|has| (-695) (-1194)))) (-3732 (($ $) NIL (|has| (-695) (-1194)))) (-4024 (((-112) $ $) NIL)) (-3849 (($ $) NIL (|has| (-695) (-1194)))) (-3708 (($ $) NIL (|has| (-695) (-1194)))) (-2695 (($ $) NIL (|has| (-695) (-1194)))) (-3757 (($ $) NIL (|has| (-695) (-1194)))) (-2328 (((-695) $) NIL (|has| (-695) (-1194)))) (-1511 (($ $) NIL (|has| (-695) (-1194)))) (-3768 (($ $) NIL (|has| (-695) (-1194)))) (-2684 (($ $) NIL (|has| (-695) (-1194)))) (-3746 (($ $) NIL (|has| (-695) (-1194)))) (-2660 (($ $) NIL (|has| (-695) (-1194)))) (-3720 (($ $) NIL (|has| (-695) (-1194)))) (-3598 (($ $) NIL (|has| (-695) (-1054)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-767)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| (-695) (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| (-695) (-1194))) (($ $ (-407 (-564))) NIL (-12 (|has| (-695) (-998)) (|has| (-695) (-1194)))) (($ $ (-564)) NIL (|has| (-695) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-695) $) NIL) (($ $ (-695)) NIL) (($ (-407 (-564)) $) NIL (|has| (-695) (-363))) (($ $ (-407 (-564))) NIL (|has| (-695) (-363))))) +(((-690) (-13 (-387) (-166 (-695)) (-10 -8 (-15 -2322 ($ (-169 (-379)))) (-15 -2322 ($ (-169 (-564)))) (-15 -2322 ($ (-169 (-695)))) (-15 -2322 ($ (-169 (-697)))) (-15 -2322 ((-169 (-379)) $))))) (T -690)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))) +(-13 (-387) (-166 (-695)) (-10 -8 (-15 -2322 ($ (-169 (-379)))) (-15 -2322 ($ (-169 (-564)))) (-15 -2322 ($ (-169 (-695)))) (-15 -2322 ($ (-169 (-697)))) (-15 -2322 ((-169 (-379)) $)))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4328 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2596 (($ $) 62)) (-2027 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-1931 (((-641 (-2 (|:| -2511 |#1|) (|:| -3852 (-767)))) $) 61)) (-3977 (($) 49) (($ (-641 |#1|)) 48)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 50)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-691 |#1|) (-140) (-1094)) (T -691)) -((-2783 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-4341 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-2 (|:| -1389 *3) (|:| -2791 (-768)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -2783 ($ |t#1| $ (-768))) (-15 -4341 ($ $)) (-15 -4096 ((-641 (-2 (|:| -1389 |t#1|) (|:| -2791 (-768)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1843 (((-641 |#1|) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))) (-564)) 65)) (-2714 ((|#1| |#1| (-564)) 61)) (-2777 ((|#1| |#1| |#1| (-564)) 45)) (-3070 (((-641 |#1|) |#1| (-564)) 48)) (-2173 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-2944 (((-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))) |#1| (-564)) 60))) -(((-692 |#1|) (-10 -7 (-15 -2777 (|#1| |#1| |#1| (-564))) (-15 -2714 (|#1| |#1| (-564))) (-15 -3070 ((-641 |#1|) |#1| (-564))) (-15 -2944 ((-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))) |#1| (-564))) (-15 -1843 ((-641 |#1|) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))) (-564))) (-15 -2173 (|#1| |#1| (-564) |#1| (-564)))) (-1235 (-564))) (T -692)) -((-2173 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| -3070 *5) (|:| -1619 (-564))))) (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) (-5 *1 (-692 *5)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -3070 *3) (|:| -1619 *4)))) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-2714 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2777 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) -(-10 -7 (-15 -2777 (|#1| |#1| |#1| (-564))) (-15 -2714 (|#1| |#1| (-564))) (-15 -3070 ((-641 |#1|) |#1| (-564))) (-15 -2944 ((-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))) |#1| (-564))) (-15 -1843 ((-641 |#1|) (-641 (-2 (|:| -3070 |#1|) (|:| -1619 (-564)))) (-564))) (-15 -2173 (|#1| |#1| (-564) |#1| (-564)))) -((-2970 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-4344 (((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 56) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 58) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 60)) (-2141 (((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263))) NIL)) (-3901 (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 61))) -(((-693) (-10 -7 (-15 -4344 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4344 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4344 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3901 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2141 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2970 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -693)) -((-2970 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693)))) (-2141 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3901 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-4344 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))) (-4344 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-4344 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693))))) -(-10 -7 (-15 -4344 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4344 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4344 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3901 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2141 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2970 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-3070 (((-418 (-1166 |#4|)) (-1166 |#4|)) 89) (((-418 |#4|) |#4|) 269))) -(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 |#4|) |#4|)) (-15 -3070 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-349) (-946 |#3| |#2| |#1|)) (T -694)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) -(-10 -7 (-15 -3070 ((-418 |#4|) |#4|)) (-15 -3070 ((-418 (-1166 |#4|)) (-1166 |#4|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 99)) (-3423 (((-564) $) 34)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-3220 (($ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3083 (($ $) NIL)) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL)) (-1778 (($) NIL T CONST)) (-3015 (($ $) NIL)) (-2347 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-2237 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-1449 (($ $ $) 111)) (-3733 (((-3 $ "failed") $) 102)) (-1424 (($ $ $) 110)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-4292 (((-918)) 92) (((-918) (-918)) 91)) (-1569 (((-112) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-2155 (((-564) $) NIL)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL)) (-3797 (($ $) NIL)) (-2607 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2476 (((-564) (-564)) 96) (((-564)) 97)) (-1925 (($ $ $) NIL) (($) NIL (-12 (-4338 (|has| $ (-6 -4389))) (-4338 (|has| $ (-6 -4397)))))) (-2196 (((-564) (-564)) 94) (((-564)) 95)) (-3375 (($ $ $) NIL) (($) NIL (-12 (-4338 (|has| $ (-6 -4389))) (-4338 (|has| $ (-6 -4397)))))) (-2935 (((-564) $) 17)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 106)) (-4094 (((-918) (-564)) NIL (|has| $ (-6 -4397)))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL)) (-1818 (($ $) NIL)) (-2293 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) 107)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1558 (((-564) $) 24)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 109)) (-2422 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4397)))) (-4169 (((-918) (-564)) NIL (|has| $ (-6 -4397)))) (-2511 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) NIL)) (-1831 (((-859) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-697)) 70)) (-2219 (((-768)) 121 T CONST)) (-1339 (($ (-564) (-564) (-918)) 58)) (-4150 (($ $) NIL)) (-2432 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4397)))) (-3655 (((-918)) 45) (((-918) (-918)) 93)) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL)) (-1293 (($) 37 T CONST)) (-1300 (($) 18 T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 98)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 120)) (-1823 (($ $ $) 80)) (-1808 (($ $) 117) (($ $ $) 118)) (-1797 (($ $ $) 116)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-695) (-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -4292 ((-918) (-918))) (-15 -4292 ((-918))) (-15 -3655 ((-918) (-918))) (-15 -2196 ((-564) (-564))) (-15 -2196 ((-564))) (-15 -2476 ((-564) (-564))) (-15 -2476 ((-564))) (-15 -1831 ((-379) $)) (-15 -1831 ($ (-697))) (-15 -2935 ((-564) $)) (-15 -1558 ((-564) $)) (-15 -1339 ($ (-564) (-564) (-918)))))) (T -695)) -((-1558 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-4292 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-3655 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2196 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2476 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) (-1339 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695))))) -(-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -4292 ((-918) (-918))) (-15 -4292 ((-918))) (-15 -3655 ((-918) (-918))) (-15 -2196 ((-564) (-564))) (-15 -2196 ((-564))) (-15 -2476 ((-564) (-564))) (-15 -2476 ((-564))) (-15 -1831 ((-379) $)) (-15 -1831 ($ (-697))) (-15 -2935 ((-564) $)) (-15 -1558 ((-564) $)) (-15 -1339 ($ (-564) (-564) (-918))))) -((-2379 (((-685 |#1|) (-685 |#1|) |#1| |#1|) 87)) (-3543 (((-685 |#1|) (-685 |#1|) |#1|) 67)) (-2046 (((-685 |#1|) (-685 |#1|) |#1|) 88)) (-3412 (((-685 |#1|) (-685 |#1|)) 68)) (-3196 (((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|) 86))) -(((-696 |#1|) (-10 -7 (-15 -3412 ((-685 |#1|) (-685 |#1|))) (-15 -3543 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2046 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2379 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -3196 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|))) (-307)) (T -696)) -((-3196 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-696 *3)) (-4 *3 (-307)))) (-2379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) -(-10 -7 (-15 -3412 ((-685 |#1|) (-685 |#1|))) (-15 -3543 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2046 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2379 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -3196 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-2487 (($ $ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1689 (($ $ $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL)) (-1815 (($ $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) 31)) (-2237 (((-564) $) 29)) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL)) (-2272 (((-112) $) NIL)) (-3036 (((-407 (-564)) $) NIL)) (-2900 (($ $) NIL) (($) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1447 (($ $ $ $) NIL)) (-2227 (($ $ $) NIL)) (-1569 (((-112) $) NIL)) (-2163 (($ $ $) NIL)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2949 (((-112) $) NIL)) (-4301 (((-112) $) NIL)) (-2619 (((-3 $ "failed") $) NIL)) (-2607 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1584 (($ $ $ $) NIL)) (-1925 (($ $ $) NIL)) (-3535 (((-918) (-918)) 10) (((-918)) 9)) (-3375 (($ $ $) NIL)) (-1781 (($ $) NIL)) (-1502 (($ $) NIL)) (-2740 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3244 (($ $ $) NIL)) (-2884 (($) NIL T CONST)) (-3900 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3839 (($ $) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL) (($ $ (-768)) NIL)) (-3656 (($ $) NIL)) (-1991 (($ $) NIL)) (-2511 (((-225) $) NIL) (((-379) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-2219 (((-768)) NIL T CONST)) (-1935 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (-3655 (($) NIL)) (-3939 (((-112) $ $) NIL)) (-2807 (($ $ $ $) NIL)) (-1849 (($ $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL) (($ $ (-768)) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-697) (-13 (-387) (-545) (-10 -8 (-15 -3535 ((-918) (-918))) (-15 -3535 ((-918))) (-15 -1831 ((-316 $) (-316 (-564))))))) (T -697)) -((-3535 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-3535 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697))))) -(-13 (-387) (-545) (-10 -8 (-15 -3535 ((-918) (-918))) (-15 -3535 ((-918))) (-15 -1831 ((-316 $) (-316 (-564)))))) -((-2216 (((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)) 19)) (-2363 (((-1 |#4| |#2| |#3|) (-1170)) 12))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2363 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -2216 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) (-612 (-536)) (-1209) (-1209) (-1209)) (T -698)) -((-2216 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209))))) -(-10 -7 (-15 -2363 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -2216 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) -((-1817 (((-112) $ $) NIL)) (-2919 (((-1264) $ (-768)) 14)) (-3360 (((-768) $) 12)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 18) (($ |#1|) 24) ((|#1| $) 15)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 28)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 27))) -(((-699 |#1|) (-13 (-132) (-490 |#1|)) (-1094)) (T -699)) -NIL -(-13 (-132) (-490 |#1|)) -((-2867 (((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)) 36) (((-1 (-225) (-225)) |#1| (-1170)) 41))) -(((-700 |#1|) (-10 -7 (-15 -2867 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -2867 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) (-612 (-536))) (T -700)) -((-2867 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-2867 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))) -(-10 -7 (-15 -2867 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -2867 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) -((-2609 (((-1170) |#1| (-1170) (-641 (-1170))) 10) (((-1170) |#1| (-1170) (-1170) (-1170)) 13) (((-1170) |#1| (-1170) (-1170)) 12) (((-1170) |#1| (-1170)) 11))) -(((-701 |#1|) (-10 -7 (-15 -2609 ((-1170) |#1| (-1170))) (-15 -2609 ((-1170) |#1| (-1170) (-1170))) (-15 -2609 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2609 ((-1170) |#1| (-1170) (-641 (-1170))))) (-612 (-536))) (T -701)) -((-2609 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2609 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2609 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2609 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536)))))) -(-10 -7 (-15 -2609 ((-1170) |#1| (-1170))) (-15 -2609 ((-1170) |#1| (-1170) (-1170))) (-15 -2609 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2609 ((-1170) |#1| (-1170) (-641 (-1170))))) -((-3809 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-702 |#1| |#2|) (-10 -7 (-15 -3809 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1209) (-1209)) (T -702)) -((-3809 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209))))) -(-10 -7 (-15 -3809 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1706 (((-1 |#3| |#2|) (-1170)) 11)) (-2216 (((-1 |#3| |#2|) |#1| (-1170)) 21))) -(((-703 |#1| |#2| |#3|) (-10 -7 (-15 -1706 ((-1 |#3| |#2|) (-1170))) (-15 -2216 ((-1 |#3| |#2|) |#1| (-1170)))) (-612 (-536)) (-1209) (-1209)) (T -703)) -((-2216 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) -(-10 -7 (-15 -1706 ((-1 |#3| |#2|) (-1170))) (-15 -2216 ((-1 |#3| |#2|) |#1| (-1170)))) -((-1617 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|) 94)) (-2725 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|) 112)) (-3285 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|) 47))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3285 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -2725 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -1617 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -704)) -((-1617 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) (-5 *7 (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| *13))))) (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10)))) (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13)))) (-2725 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768))) (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12))) (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))) (-3285 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768))) (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847)) (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790)) (-5 *1 (-704 *9 *10 *8 *11))))) -(-10 -7 (-15 -3285 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -2725 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -1617 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3396 (($ $) 42)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-3186 (($ |#1| (-768)) 40)) (-1826 (((-768) $) 44)) (-3370 ((|#1| $) 43)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1619 (((-768) $) 45)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-2742 ((|#1| $ (-768)) 41)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-705 |#1|) (-140) (-1046)) (T -705)) -((-1619 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046))))) -(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1619 ((-768) $)) (-15 -1826 ((-768) $)) (-15 -3370 (|t#1| $)) (-15 -3396 ($ $)) (-15 -2742 (|t#1| $ (-768))) (-15 -3186 ($ |t#1| (-768))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2449 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-706 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2449 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1235 |#1|) (-1235 (-407 |#2|)) (-556) (-1235 |#4|) (-1235 (-407 |#5|))) (T -706)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) (-5 *1 (-706 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7))))) -(-10 -7 (-15 -2449 (|#6| (-1 |#4| |#1|) |#3|))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3468 (((-1152) (-859)) 39)) (-3712 (((-1264) (-1152)) 32)) (-2909 (((-1152) (-859)) 28)) (-4259 (((-1152) (-859)) 29)) (-1831 (((-859) $) NIL) (((-1152) (-859)) 27)) (-1702 (((-112) $ $) NIL))) -(((-707) (-13 (-1094) (-10 -7 (-15 -1831 ((-1152) (-859))) (-15 -2909 ((-1152) (-859))) (-15 -4259 ((-1152) (-859))) (-15 -3468 ((-1152) (-859))) (-15 -3712 ((-1264) (-1152)))))) (T -707)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707))))) -(-13 (-1094) (-10 -7 (-15 -1831 ((-1152) (-859))) (-15 -2909 ((-1152) (-859))) (-15 -4259 ((-1152) (-859))) (-15 -3468 ((-1152) (-859))) (-15 -3712 ((-1264) (-1152))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL)) (-1988 (($ |#1| |#2|) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1691 ((|#2| $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3807 (((-3 $ "failed") $ $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-708 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -1691 (|#2| $)) (-15 -1831 (|#1| $)) (-15 -1988 ($ |#1| |#2|)) (-15 -3807 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -708)) -((-1691 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1831 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1988 (*1 *1 *2 *3) (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3807 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-363) (-10 -8 (-15 -1691 (|#2| $)) (-15 -1831 (|#1| $)) (-15 -1988 ($ |#1| |#2|)) (-15 -3807 ((-3 $ "failed") $ $)))) -((-1817 (((-112) $ $) 91)) (-1615 (((-112) $) 36)) (-3151 (((-1259 |#1|) $ (-768)) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-1730 (($ (-1166 |#1|)) NIL)) (-3040 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) NIL (|has| |#1| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3267 (((-768)) 55 (|has| |#1| (-368)))) (-3048 (($ $ (-768)) NIL)) (-1803 (($ $ (-768)) NIL)) (-3768 ((|#2| |#2|) 51)) (-2011 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-1357 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) 39)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1988 (($ |#2|) 49)) (-3733 (((-3 $ "failed") $) 100)) (-2900 (($) 60 (|has| |#1| (-368)))) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3566 (($ $ $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-556)))) (-1330 (((-2 (|:| -2860 |#1|) (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-1874 (((-955 $)) 93)) (-2055 (($ $ |#1| (-768) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2155 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3198 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2325 (($ $ (-768)) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) 87) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1076)) NIL) (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1691 ((|#2|) 52)) (-1826 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-768) (-768)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3478 (((-1166 |#1|) $) NIL)) (-2169 (((-3 (-1076) "failed") $) NIL)) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-1977 ((|#2| $) 48)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) 34)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2436 (((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768)) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-1076)) (|:| -1558 (-768))) "failed") $) NIL)) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2884 (($) NIL (|has| |#1| (-1145)) CONST)) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3394 (($ $) 92 (|has| |#1| (-349)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3318 (((-3 $ "failed") $ (-768)) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 101 (|has| |#1| (-363)))) (-3190 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3534 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1619 (((-768) $) 37) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3130 (((-955 $)) 41)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-1831 (((-859) $) 70) (($ (-564)) NIL) (($ |#1|) 67) (($ (-1076)) NIL) (($ |#2|) 77) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) 72) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) 25 T CONST)) (-3313 (((-1259 |#1|) $) 85)) (-3241 (($ (-1259 |#1|)) 59)) (-1300 (($) 8 T CONST)) (-3435 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2543 (((-1259 |#1|) $) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) 78)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) 81) (($ $ $) NIL)) (-1797 (($ $ $) 38)) (** (($ $ (-918)) NIL) (($ $ (-768)) 95)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 66) (($ $ $) 84) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 64) (($ $ |#1|) NIL))) -(((-709 |#1| |#2|) (-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -3768 (|#2| |#2|)) (-15 -1691 (|#2|)) (-15 -1988 ($ |#2|)) (-15 -1977 (|#2| $)) (-15 -3313 ((-1259 |#1|) $)) (-15 -3241 ($ (-1259 |#1|))) (-15 -2543 ((-1259 |#1|) $)) (-15 -1874 ((-955 $))) (-15 -3130 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -3394 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1046) (-1235 |#1|)) (T -709)) -((-3768 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-1691 (*1 *2) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-1988 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-1977 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-3313 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-2543 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-1874 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3130 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3394 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3)) (-4 *3 (-1235 *2))))) -(-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -3768 (|#2| |#2|)) (-15 -1691 (|#2|)) (-15 -1988 ($ |#2|)) (-15 -1977 (|#2| $)) (-15 -3313 ((-1259 |#1|) $)) (-15 -3241 ($ (-1259 |#1|))) (-15 -2543 ((-1259 |#1|) $)) (-15 -1874 ((-955 $))) (-15 -3130 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -3394 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 ((|#1| $) 13)) (-2780 (((-1114) $) NIL)) (-1558 ((|#2| $) 12)) (-1842 (($ |#1| |#2|) 16)) (-1831 (((-859) $) NIL) (($ (-2 (|:| -1468 |#1|) (|:| -1558 |#2|))) 15) (((-2 (|:| -1468 |#1|) (|:| -1558 |#2|)) $) 14)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 11))) -(((-710 |#1| |#2| |#3|) (-13 (-847) (-490 (-2 (|:| -1468 |#1|) (|:| -1558 |#2|))) (-10 -8 (-15 -1558 (|#2| $)) (-15 -1468 (|#1| $)) (-15 -1842 ($ |#1| |#2|)))) (-847) (-1094) (-1 (-112) (-2 (|:| -1468 |#1|) (|:| -1558 |#2|)) (-2 (|:| -1468 |#1|) (|:| -1558 |#2|)))) (T -710)) -((-1558 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847)) (-14 *4 (-1 (-112) (-2 (|:| -1468 *3) (|:| -1558 *2)) (-2 (|:| -1468 *3) (|:| -1558 *2)))))) (-1468 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *3)) (-2 (|:| -1468 *2) (|:| -1558 *3)))))) (-1842 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *3)) (-2 (|:| -1468 *2) (|:| -1558 *3))))))) -(-13 (-847) (-490 (-2 (|:| -1468 |#1|) (|:| -1558 |#2|))) (-10 -8 (-15 -1558 (|#2| $)) (-15 -1468 (|#1| $)) (-15 -1842 ($ |#1| |#2|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 66)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2237 ((|#1| $) NIL) (((-114) $) 39)) (-3733 (((-3 $ "failed") $) 106)) (-2045 ((|#2| (-114) |#2|) 92)) (-2949 (((-112) $) NIL)) (-3226 (($ |#1| (-361 (-114))) 14)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3462 (($ $ (-1 |#2| |#2|)) 65)) (-3157 (($ $ (-1 |#2| |#2|)) 44)) (-1350 ((|#2| $ |#2|) 33)) (-2233 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-1831 (((-859) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) 37 T CONST)) (-4057 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1293 (($) 21 T CONST)) (-1300 (($) 9 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) 48) (($ $ $) NIL)) (-1797 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-711 |#1| |#2|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4057 ($ $)) (-15 -4057 ($ $ $)) (-15 -2233 (|#1| |#1|))) |%noBranch|) (-15 -3157 ($ $ (-1 |#2| |#2|))) (-15 -3462 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2045 (|#2| (-114) |#2|)) (-15 -3226 ($ |#1| (-361 (-114)))))) (-1046) (-644 |#1|)) (T -711)) -((-4057 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-4057 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-2233 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *5)) (-4 *5 (-644 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)) (-4 *4 (-644 *3)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2)) (-4 *2 (-644 *4)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4)) (-4 *4 (-644 *2))))) -(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4057 ($ $)) (-15 -4057 ($ $ $)) (-15 -2233 (|#1| |#1|))) |%noBranch|) (-15 -3157 ($ $ (-1 |#2| |#2|))) (-15 -3462 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2045 (|#2| (-114) |#2|)) (-15 -3226 ($ |#1| (-361 (-114)))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 33)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-1988 (($ |#1| |#2|) 25)) (-3733 (((-3 $ "failed") $) 51)) (-2949 (((-112) $) 35)) (-1691 ((|#2| $) 12)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 52)) (-2780 (((-1114) $) NIL)) (-3807 (((-3 $ "failed") $ $) 50)) (-1831 (((-859) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 16 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 41)) (-1808 (($ $) 46) (($ $ $) 40)) (-1797 (($ $ $) 43)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21) (($ $ $) 20))) -(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-1046) (-10 -8 (-15 -1691 (|#2| $)) (-15 -1831 (|#1| $)) (-15 -1988 ($ |#1| |#2|)) (-15 -3807 ((-3 $ "failed") $ $)) (-15 -3733 ((-3 $ "failed") $)) (-15 -3315 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712)) -((-3733 (*1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1831 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1988 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3807 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1046) (-10 -8 (-15 -1691 (|#2| $)) (-15 -1831 (|#1| $)) (-15 -1988 ($ |#1| |#2|)) (-15 -3807 ((-3 $ "failed") $ $)) (-15 -3733 ((-3 $ "failed") $)) (-15 -3315 ($ $)))) -((* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-713 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-714 |#2|) (-172)) (T -713)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-714 |#1|) (-140) (-172)) (T -714)) +((-3861 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-2596 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-2 (|:| -2511 *3) (|:| -3852 (-767)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -3861 ($ |t#1| $ (-767))) (-15 -2596 ($ $)) (-15 -1931 ((-641 (-2 (|:| -2511 |t#1|) (|:| -3852 (-767)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3536 (((-641 |#1|) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))) (-564)) 65)) (-1326 ((|#1| |#1| (-564)) 61)) (-3235 ((|#1| |#1| |#1| (-564)) 45)) (-2375 (((-641 |#1|) |#1| (-564)) 48)) (-3921 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-1786 (((-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))) |#1| (-564)) 60))) +(((-692 |#1|) (-10 -7 (-15 -3235 (|#1| |#1| |#1| (-564))) (-15 -1326 (|#1| |#1| (-564))) (-15 -2375 ((-641 |#1|) |#1| (-564))) (-15 -1786 ((-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))) |#1| (-564))) (-15 -3536 ((-641 |#1|) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))) (-564))) (-15 -3921 (|#1| |#1| (-564) |#1| (-564)))) (-1235 (-564))) (T -692)) +((-3921 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| -2375 *5) (|:| -2073 (-564))))) (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) (-5 *1 (-692 *5)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -2375 *3) (|:| -2073 *4)))) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-1326 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-3235 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -3235 (|#1| |#1| |#1| (-564))) (-15 -1326 (|#1| |#1| (-564))) (-15 -2375 ((-641 |#1|) |#1| (-564))) (-15 -1786 ((-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))) |#1| (-564))) (-15 -3536 ((-641 |#1|) (-641 (-2 (|:| -2375 |#1|) (|:| -2073 (-564)))) (-564))) (-15 -3921 (|#1| |#1| (-564) |#1| (-564)))) +((-2033 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2632 (((-1127 (-225)) (-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 56) (((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 58) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 60)) (-3561 (((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263))) NIL)) (-3647 (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 61))) +(((-693) (-10 -7 (-15 -2632 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2632 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2632 ((-1127 (-225)) (-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3647 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3561 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2033 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -693)) +((-2033 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-693)))) (-3561 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3647 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-2632 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))) (-2632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-2632 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693))))) +(-10 -7 (-15 -2632 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2632 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2632 ((-1127 (-225)) (-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3647 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3561 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2033 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-2375 (((-418 (-1166 |#4|)) (-1166 |#4|)) 89) (((-418 |#4|) |#4|) 269))) +(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 |#4|) |#4|)) (-15 -2375 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-846) (-789) (-349) (-945 |#3| |#2| |#1|)) (T -694)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(-10 -7 (-15 -2375 ((-418 |#4|) |#4|)) (-15 -2375 ((-418 (-1166 |#4|)) (-1166 |#4|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 99)) (-1625 (((-564) $) 34)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-3624 (($ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2387 (($ $) NIL)) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL)) (-4157 (($) NIL T CONST)) (-2362 (($ $) NIL)) (-3032 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-1781 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-2574 (($ $ $) 111)) (-2689 (((-3 $ "failed") $) 102)) (-2552 (($ $ $) 110)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-1442 (((-917)) 92) (((-917) (-917)) 91)) (-2786 (((-112) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3717 (((-564) $) NIL)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL)) (-2019 (($ $) NIL)) (-2783 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3937 (((-564) (-564)) 96) (((-564)) 97)) (-1501 (($ $ $) NIL) (($) NIL (-12 (-2329 (|has| $ (-6 -4389))) (-2329 (|has| $ (-6 -4397)))))) (-2949 (((-564) (-564)) 94) (((-564)) 95)) (-2622 (($ $ $) NIL) (($) NIL (-12 (-2329 (|has| $ (-6 -4389))) (-2329 (|has| $ (-6 -4397)))))) (-3537 (((-564) $) 17)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 106)) (-1910 (((-917) (-564)) NIL (|has| $ (-6 -4397)))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL)) (-1421 (($ $) NIL)) (-2793 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-917)) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) 107)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3866 (((-564) $) 24)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 109)) (-3413 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4397)))) (-1454 (((-917) (-564)) NIL (|has| $ (-6 -4397)))) (-3172 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) NIL)) (-2322 (((-858) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-697)) 70)) (-3179 (((-767)) 121 T CONST)) (-1823 (($ (-564) (-564) (-917)) 58)) (-4381 (($ $) NIL)) (-3503 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4397)))) (-2610 (((-917)) 45) (((-917) (-917)) 93)) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL)) (-2389 (($) 37 T CONST)) (-2403 (($) 18 T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 98)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 120)) (-3034 (($ $ $) 80)) (-3021 (($ $) 117) (($ $ $) 118)) (-3011 (($ $ $) 116)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-695) (-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-564))) (-147) (-10 -8 (-15 -1442 ((-917) (-917))) (-15 -1442 ((-917))) (-15 -2610 ((-917) (-917))) (-15 -2949 ((-564) (-564))) (-15 -2949 ((-564))) (-15 -3937 ((-564) (-564))) (-15 -3937 ((-564))) (-15 -2322 ((-379) $)) (-15 -2322 ($ (-697))) (-15 -3537 ((-564) $)) (-15 -3866 ((-564) $)) (-15 -1823 ($ (-564) (-564) (-917)))))) (T -695)) +((-3866 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-1442 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) (-2610 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2949 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3937 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) (-1823 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-5 *1 (-695))))) +(-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-564))) (-147) (-10 -8 (-15 -1442 ((-917) (-917))) (-15 -1442 ((-917))) (-15 -2610 ((-917) (-917))) (-15 -2949 ((-564) (-564))) (-15 -2949 ((-564))) (-15 -3937 ((-564) (-564))) (-15 -3937 ((-564))) (-15 -2322 ((-379) $)) (-15 -2322 ($ (-697))) (-15 -3537 ((-564) $)) (-15 -3866 ((-564) $)) (-15 -1823 ($ (-564) (-564) (-917))))) +((-4227 (((-685 |#1|) (-685 |#1|) |#1| |#1|) 87)) (-3442 (((-685 |#1|) (-685 |#1|) |#1|) 67)) (-1944 (((-685 |#1|) (-685 |#1|) |#1|) 88)) (-1532 (((-685 |#1|) (-685 |#1|)) 68)) (-3445 (((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|) 86))) +(((-696 |#1|) (-10 -7 (-15 -1532 ((-685 |#1|) (-685 |#1|))) (-15 -3442 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -1944 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -4227 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -3445 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|))) (-307)) (T -696)) +((-3445 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-696 *3)) (-4 *3 (-307)))) (-4227 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-1944 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3442 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(-10 -7 (-15 -1532 ((-685 |#1|) (-685 |#1|))) (-15 -3442 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -1944 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -4227 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -3445 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2842 (($ $ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1472 (($ $ $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL)) (-2308 (($ $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) 31)) (-1781 (((-564) $) 29)) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL)) (-2446 (((-112) $) NIL)) (-2569 (((-407 (-564)) $) NIL)) (-3860 (($ $) NIL) (($) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-3253 (($ $ $) NIL)) (-2786 (((-112) $) NIL)) (-3808 (($ $ $) NIL)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-1828 (((-112) $) NIL)) (-3415 (((-112) $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-2783 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2937 (($ $ $ $) NIL)) (-1501 (($ $ $) NIL)) (-1480 (((-917) (-917)) 10) (((-917)) 9)) (-2622 (($ $ $) NIL)) (-1605 (($ $) NIL)) (-1750 (($ $) NIL)) (-3202 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3855 (($ $ $) NIL)) (-3346 (($) NIL T CONST)) (-1830 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4312 (($ $) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1333 (((-112) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL) (($ $ (-767)) NIL)) (-4122 (($ $) NIL)) (-3772 (($ $) NIL)) (-3172 (((-225) $) NIL) (((-379) $) NIL) (((-888 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-3179 (((-767)) NIL T CONST)) (-3279 (((-112) $ $) NIL)) (-2994 (($ $ $) NIL)) (-2610 (($) NIL)) (-4024 (((-112) $ $) NIL)) (-2885 (($ $ $ $) NIL)) (-3598 (($ $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL) (($ $ (-767)) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-697) (-13 (-387) (-545) (-10 -8 (-15 -1480 ((-917) (-917))) (-15 -1480 ((-917))) (-15 -2322 ((-316 $) (-316 (-564))))))) (T -697)) +((-1480 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697)))) (-1480 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697))))) +(-13 (-387) (-545) (-10 -8 (-15 -1480 ((-917) (-917))) (-15 -1480 ((-917))) (-15 -2322 ((-316 $) (-316 (-564)))))) +((-3149 (((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)) 19)) (-4048 (((-1 |#4| |#2| |#3|) (-1170)) 12))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4048 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3149 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) (-612 (-536)) (-1209) (-1209) (-1209)) (T -698)) +((-3149 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209))))) +(-10 -7 (-15 -4048 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3149 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) +((-2210 (((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)) 36) (((-1 (-225) (-225)) |#1| (-1170)) 41))) +(((-699 |#1|) (-10 -7 (-15 -2210 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -2210 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) (-612 (-536))) (T -699)) +((-2210 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-612 (-536))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-612 (-536)))))) +(-10 -7 (-15 -2210 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -2210 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) +((-3078 (((-1170) |#1| (-1170) (-641 (-1170))) 10) (((-1170) |#1| (-1170) (-1170) (-1170)) 13) (((-1170) |#1| (-1170) (-1170)) 12) (((-1170) |#1| (-1170)) 11))) +(((-700 |#1|) (-10 -7 (-15 -3078 ((-1170) |#1| (-1170))) (-15 -3078 ((-1170) |#1| (-1170) (-1170))) (-15 -3078 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -3078 ((-1170) |#1| (-1170) (-641 (-1170))))) (-612 (-536))) (T -700)) +((-3078 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3078 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3078 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3078 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))) +(-10 -7 (-15 -3078 ((-1170) |#1| (-1170))) (-15 -3078 ((-1170) |#1| (-1170) (-1170))) (-15 -3078 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -3078 ((-1170) |#1| (-1170) (-641 (-1170))))) +((-3023 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-701 |#1| |#2|) (-10 -7 (-15 -3023 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1209) (-1209)) (T -701)) +((-3023 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209))))) +(-10 -7 (-15 -3023 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-1599 (((-1 |#3| |#2|) (-1170)) 11)) (-3149 (((-1 |#3| |#2|) |#1| (-1170)) 21))) +(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -1599 ((-1 |#3| |#2|) (-1170))) (-15 -3149 ((-1 |#3| |#2|) |#1| (-1170)))) (-612 (-536)) (-1209) (-1209)) (T -702)) +((-3149 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) +(-10 -7 (-15 -1599 ((-1 |#3| |#2|) (-1170))) (-15 -3149 ((-1 |#3| |#2|) |#1| (-1170)))) +((-3283 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| |#4|)))) (-641 (-767)) (-1259 (-641 (-1166 |#3|))) |#3|) 94)) (-1440 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-767)) |#3|) 112)) (-2997 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-767)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|) 47))) +(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2997 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-767)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -1440 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-767)) |#3|)) (-15 -3283 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| |#4|)))) (-641 (-767)) (-1259 (-641 (-1166 |#3|))) |#3|))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -703)) +((-3283 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) (-5 *7 (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| *13))))) (-5 *8 (-641 (-767))) (-5 *9 (-1259 (-641 (-1166 *10)))) (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))) (-1440 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-767))) (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-641 (-1166 *12))) (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))) (-2997 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-767))) (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-846)) (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11))))) +(-10 -7 (-15 -2997 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-767)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -1440 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-767)) |#3|)) (-15 -3283 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| |#4|)))) (-641 (-767)) (-1259 (-641 (-1166 |#3|))) |#3|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2710 (($ $) 42)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-2507 (($ |#1| (-767)) 40)) (-3386 (((-767) $) 44)) (-2686 ((|#1| $) 43)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2073 (((-767) $) 45)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-3467 ((|#1| $ (-767)) 41)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-704 |#1|) (-140) (-1045)) (T -704)) +((-2073 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2507 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2073 ((-767) $)) (-15 -3386 ((-767) $)) (-15 -2686 (|t#1| $)) (-15 -2710 ($ $)) (-15 -3467 (|t#1| $ (-767))) (-15 -2507 ($ |t#1| (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3123 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-705 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3123 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1235 |#1|) (-1235 (-407 |#2|)) (-556) (-1235 |#4|) (-1235 (-407 |#5|))) (T -705)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7))))) +(-10 -7 (-15 -3123 (|#6| (-1 |#4| |#1|) |#3|))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2066 (((-1152) (-858)) 39)) (-1624 (((-1264) (-1152)) 32)) (-2671 (((-1152) (-858)) 28)) (-3047 (((-1152) (-858)) 29)) (-2322 (((-858) $) NIL) (((-1152) (-858)) 27)) (-2921 (((-112) $ $) NIL))) +(((-706) (-13 (-1094) (-10 -7 (-15 -2322 ((-1152) (-858))) (-15 -2671 ((-1152) (-858))) (-15 -3047 ((-1152) (-858))) (-15 -2066 ((-1152) (-858))) (-15 -1624 ((-1264) (-1152)))))) (T -706)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-706))))) +(-13 (-1094) (-10 -7 (-15 -2322 ((-1152) (-858))) (-15 -2671 ((-1152) (-858))) (-15 -3047 ((-1152) (-858))) (-15 -2066 ((-1152) (-858))) (-15 -1624 ((-1264) (-1152))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL)) (-3239 (($ |#1| |#2|) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1487 ((|#2| $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2118 (((-3 $ "failed") $ $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-707 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -1487 (|#2| $)) (-15 -2322 (|#1| $)) (-15 -3239 ($ |#1| |#2|)) (-15 -2118 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -707)) +((-1487 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2322 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3239 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2118 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-363) (-10 -8 (-15 -1487 (|#2| $)) (-15 -2322 (|#1| $)) (-15 -3239 ($ |#1| |#2|)) (-15 -2118 ((-3 $ "failed") $ $)))) +((-2310 (((-112) $ $) 91)) (-3264 (((-112) $) 36)) (-4278 (((-1259 |#1|) $ (-767)) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-1837 (($ (-1166 |#1|)) NIL)) (-2340 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) NIL (|has| |#1| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1959 (((-767)) 55 (|has| |#1| (-368)))) (-2687 (($ $ (-767)) NIL)) (-1310 (($ $ (-767)) NIL)) (-1724 ((|#2| |#2|) 51)) (-1561 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1076) $) NIL)) (-2595 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) 39)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3239 (($ |#2|) 49)) (-2689 (((-3 $ "failed") $) 100)) (-3860 (($) 60 (|has| |#1| (-368)))) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3664 (($ $ $) NIL)) (-3906 (($ $ $) NIL (|has| |#1| (-556)))) (-1726 (((-2 (|:| -3139 |#1|) (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-3871 (((-954 $)) 93)) (-2050 (($ $ |#1| (-767) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3717 (((-767) $ $) NIL (|has| |#1| (-556)))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2519 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-1762 (($ $ (-767)) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) 87) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1076)) NIL) (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1487 ((|#2|) 52)) (-3386 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-767) (-767)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-4049 (((-1166 |#1|) $) NIL)) (-3878 (((-3 (-1076) "failed") $) NIL)) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-3228 ((|#2| $) 48)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) 34)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-3548 (((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767)) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-1076)) (|:| -3866 (-767))) "failed") $) NIL)) (-3719 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3346 (($) NIL (|has| |#1| (-1145)) CONST)) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2624 (($ $) 92 (|has| |#1| (-349)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3243 (((-3 $ "failed") $ (-767)) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 101 (|has| |#1| (-363)))) (-3392 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1343 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2073 (((-767) $) 37) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-4094 (((-954 $)) 41)) (-2923 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2322 (((-858) $) 70) (($ (-564)) NIL) (($ |#1|) 67) (($ (-1076)) NIL) (($ |#2|) 77) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) 72) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) 25 T CONST)) (-3219 (((-1259 |#1|) $) 85)) (-3821 (($ (-1259 |#1|)) 59)) (-2403 (($) 8 T CONST)) (-3917 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3368 (((-1259 |#1|) $) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) 78)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) 81) (($ $ $) NIL)) (-3011 (($ $ $) 38)) (** (($ $ (-917)) NIL) (($ $ (-767)) 95)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 66) (($ $ $) 84) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 64) (($ $ |#1|) NIL))) +(((-708 |#1| |#2|) (-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -1724 (|#2| |#2|)) (-15 -1487 (|#2|)) (-15 -3239 ($ |#2|)) (-15 -3228 (|#2| $)) (-15 -3219 ((-1259 |#1|) $)) (-15 -3821 ($ (-1259 |#1|))) (-15 -3368 ((-1259 |#1|) $)) (-15 -3871 ((-954 $))) (-15 -4094 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -2624 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1045) (-1235 |#1|)) (T -708)) +((-1724 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3)))) (-1487 (*1 *2) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-3239 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3)))) (-3228 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-3219 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-3871 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-4094 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-2624 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1235 *2))))) +(-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -1724 (|#2| |#2|)) (-15 -1487 (|#2|)) (-15 -3239 ($ |#2|)) (-15 -3228 (|#2| $)) (-15 -3219 ((-1259 |#1|) $)) (-15 -3821 ($ (-1259 |#1|))) (-15 -3368 ((-1259 |#1|) $)) (-15 -3871 ((-954 $))) (-15 -4094 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -2624 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 ((|#1| $) 13)) (-3840 (((-1114) $) NIL)) (-3866 ((|#2| $) 12)) (-2335 (($ |#1| |#2|) 16)) (-2322 (((-858) $) NIL) (($ (-2 (|:| -1998 |#1|) (|:| -3866 |#2|))) 15) (((-2 (|:| -1998 |#1|) (|:| -3866 |#2|)) $) 14)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 11))) +(((-709 |#1| |#2| |#3|) (-13 (-846) (-490 (-2 (|:| -1998 |#1|) (|:| -3866 |#2|))) (-10 -8 (-15 -3866 (|#2| $)) (-15 -1998 (|#1| $)) (-15 -2335 ($ |#1| |#2|)))) (-846) (-1094) (-1 (-112) (-2 (|:| -1998 |#1|) (|:| -3866 |#2|)) (-2 (|:| -1998 |#1|) (|:| -3866 |#2|)))) (T -709)) +((-3866 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) (-14 *4 (-1 (-112) (-2 (|:| -1998 *3) (|:| -3866 *2)) (-2 (|:| -1998 *3) (|:| -3866 *2)))))) (-1998 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *3)) (-2 (|:| -1998 *2) (|:| -3866 *3)))))) (-2335 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *3)) (-2 (|:| -1998 *2) (|:| -3866 *3))))))) +(-13 (-846) (-490 (-2 (|:| -1998 |#1|) (|:| -3866 |#2|))) (-10 -8 (-15 -3866 (|#2| $)) (-15 -1998 (|#1| $)) (-15 -2335 ($ |#1| |#2|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 66)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-1781 ((|#1| $) NIL) (((-114) $) 39)) (-2689 (((-3 $ "failed") $) 106)) (-1934 ((|#2| (-114) |#2|) 92)) (-1828 (((-112) $) NIL)) (-3669 (($ |#1| (-361 (-114))) 14)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2002 (($ $ (-1 |#2| |#2|)) 65)) (-4331 (($ $ (-1 |#2| |#2|)) 44)) (-4353 ((|#2| $ |#2|) 33)) (-3304 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2322 (((-858) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) 37 T CONST)) (-2821 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-2389 (($) 21 T CONST)) (-2403 (($) 9 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) 48) (($ $ $) NIL)) (-3011 (($ $ $) 83)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) +(((-710 |#1| |#2|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2821 ($ $)) (-15 -2821 ($ $ $)) (-15 -3304 (|#1| |#1|))) |%noBranch|) (-15 -4331 ($ $ (-1 |#2| |#2|))) (-15 -2002 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1934 (|#2| (-114) |#2|)) (-15 -3669 ($ |#1| (-361 (-114)))))) (-1045) (-644 |#1|)) (T -710)) +((-2821 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-644 *2)))) (-2821 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-644 *2)))) (-3304 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-644 *2)))) (-4331 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (-2002 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5)) (-4 *5 (-644 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-644 *3)))) (-1934 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-644 *4)))) (-3669 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) (-4 *4 (-644 *2))))) +(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2821 ($ $)) (-15 -2821 ($ $ $)) (-15 -3304 (|#1| |#1|))) |%noBranch|) (-15 -4331 ($ $ (-1 |#2| |#2|))) (-15 -2002 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1934 (|#2| (-114) |#2|)) (-15 -3669 ($ |#1| (-361 (-114)))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 33)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3239 (($ |#1| |#2|) 25)) (-2689 (((-3 $ "failed") $) 51)) (-1828 (((-112) $) 35)) (-1487 ((|#2| $) 12)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 52)) (-3840 (((-1114) $) NIL)) (-2118 (((-3 $ "failed") $ $) 50)) (-2322 (((-858) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 16 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 41)) (-3021 (($ $) 46) (($ $ $) 40)) (-3011 (($ $ $) 43)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 21) (($ $ $) 20))) +(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-1045) (-10 -8 (-15 -1487 (|#2| $)) (-15 -2322 (|#1| $)) (-15 -3239 ($ |#1| |#2|)) (-15 -2118 ((-3 $ "failed") $ $)) (-15 -2689 ((-3 $ "failed") $)) (-15 -2639 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711)) +((-2689 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1487 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2322 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3239 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2118 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2639 (*1 *1 *1) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1045) (-10 -8 (-15 -1487 (|#2| $)) (-15 -2322 (|#1| $)) (-15 -3239 ($ |#1| |#2|)) (-15 -2118 ((-3 $ "failed") $ $)) (-15 -2689 ((-3 $ "failed") $)) (-15 -2639 ($ $)))) +((* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-712 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-713 |#2|) (-172)) (T -712)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-713 |#1|) (-140) (-172)) (T -713)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1815 (($ |#1|) 17) (($ $ |#1|) 20)) (-3982 (($ |#1|) 18) (($ $ |#1|) 21)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2949 (((-112) $) NIL)) (-1942 (($ |#1| |#1| |#1| |#1|) 8)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 16)) (-2780 (((-1114) $) NIL)) (-2633 ((|#1| $ |#1|) 24) (((-830 |#1|) $ (-830 |#1|)) 32)) (-3047 (($ $ $) NIL)) (-1992 (($ $ $) NIL)) (-1831 (((-859) $) 39)) (-1300 (($) 9 T CONST)) (-1702 (((-112) $ $) 48)) (-1823 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14))) -(((-715 |#1|) (-13 (-473) (-10 -8 (-15 -1942 ($ |#1| |#1| |#1| |#1|)) (-15 -1815 ($ |#1|)) (-15 -3982 ($ |#1|)) (-15 -3733 ($)) (-15 -1815 ($ $ |#1|)) (-15 -3982 ($ $ |#1|)) (-15 -3733 ($ $)) (-15 -2633 (|#1| $ |#1|)) (-15 -2633 ((-830 |#1|) $ (-830 |#1|))))) (-363)) (T -715)) -((-1942 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-1815 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3982 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3733 (*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2633 (*1 *2 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2633 (*1 *2 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-363)) (-5 *1 (-715 *3))))) -(-13 (-473) (-10 -8 (-15 -1942 ($ |#1| |#1| |#1| |#1|)) (-15 -1815 ($ |#1|)) (-15 -3982 ($ |#1|)) (-15 -3733 ($)) (-15 -1815 ($ $ |#1|)) (-15 -3982 ($ $ |#1|)) (-15 -3733 ($ $)) (-15 -2633 (|#1| $ |#1|)) (-15 -2633 ((-830 |#1|) $ (-830 |#1|))))) -((-4221 (($ $ (-918)) 21)) (-2839 (($ $ (-918)) 22)) (** (($ $ (-918)) 10))) -(((-716 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -2839 (|#1| |#1| (-918))) (-15 -4221 (|#1| |#1| (-918)))) (-717)) (T -716)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -2839 (|#1| |#1| (-918))) (-15 -4221 (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-4221 (($ $ (-918)) 15)) (-2839 (($ $ (-918)) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 16))) -(((-717) (-140)) (T -717)) -((* (*1 *1 *1 *1) (-4 *1 (-717))) (-4221 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (-2839 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918))))) -(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -4221 ($ $ (-918))) (-15 -2839 ($ $ (-918))) (-15 ** ($ $ (-918))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-4221 (($ $ (-918)) NIL) (($ $ (-768)) 21)) (-2949 (((-112) $) 10)) (-2839 (($ $ (-918)) NIL) (($ $ (-768)) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) 16))) -(((-718 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -2839 (|#1| |#1| (-768))) (-15 -4221 (|#1| |#1| (-768))) (-15 -2949 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -2839 (|#1| |#1| (-918))) (-15 -4221 (|#1| |#1| (-918)))) (-719)) (T -718)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -2839 (|#1| |#1| (-768))) (-15 -4221 (|#1| |#1| (-768))) (-15 -2949 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -2839 (|#1| |#1| (-918))) (-15 -4221 (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-2767 (((-3 $ "failed") $) 17)) (-4221 (($ $ (-918)) 15) (($ $ (-768)) 22)) (-3733 (((-3 $ "failed") $) 19)) (-2949 (((-112) $) 23)) (-3874 (((-3 $ "failed") $) 18)) (-2839 (($ $ (-918)) 14) (($ $ (-768)) 21)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1300 (($) 24 T CONST)) (-1702 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 20)) (* (($ $ $) 16))) -(((-719) (-140)) (T -719)) -((-1300 (*1 *1) (-4 *1 (-719))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112)))) (-4221 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-2839 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-3733 (*1 *1 *1) (|partial| -4 *1 (-719))) (-3874 (*1 *1 *1) (|partial| -4 *1 (-719))) (-2767 (*1 *1 *1) (|partial| -4 *1 (-719)))) -(-13 (-717) (-10 -8 (-15 (-1300) ($) -1809) (-15 -2949 ((-112) $)) (-15 -4221 ($ $ (-768))) (-15 -2839 ($ $ (-768))) (-15 ** ($ $ (-768))) (-15 -3733 ((-3 $ "failed") $)) (-15 -3874 ((-3 $ "failed") $)) (-15 -2767 ((-3 $ "failed") $)))) -(((-102) . T) ((-611 (-859)) . T) ((-717) . T) ((-1094) . T)) -((-3267 (((-768)) 42)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2237 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-1988 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-3733 (((-3 $ "failed") $) 73)) (-2900 (($) 47)) (-3797 ((|#2| $) 21)) (-1426 (($) 18)) (-3534 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-4027 (((-685 |#2|) (-1259 $) (-1 |#2| |#2|)) 68)) (-2511 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1349 ((|#3| $) 39)) (-3331 (((-1259 $)) 36))) -(((-720 |#1| |#2| |#3|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2900 (|#1|)) (-15 -3267 ((-768))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4027 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1988 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2511 (|#1| |#3|)) (-15 -1988 (|#1| |#3|)) (-15 -1426 (|#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2511 (|#3| |#1|)) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -3331 ((-1259 |#1|))) (-15 -1349 (|#3| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|))) (-721 |#2| |#3|) (-172) (-1235 |#2|)) (T -720)) -((-3267 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768)) (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5))))) -(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2900 (|#1|)) (-15 -3267 ((-768))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4027 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1988 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2511 (|#1| |#3|)) (-15 -1988 (|#1| |#3|)) (-15 -1426 (|#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2511 (|#3| |#1|)) (-15 -2511 (|#1| (-1259 |#2|))) (-15 -2511 ((-1259 |#2|) |#1|)) (-15 -3331 ((-1259 |#1|))) (-15 -1349 (|#3| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3733 ((-3 |#1| "failed") |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-1537 (($ $) 94 (|has| |#1| (-363)))) (-1932 (((-112) $) 96 (|has| |#1| (-363)))) (-3390 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-2713 ((|#1| $) 53)) (-3967 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 113 (|has| |#1| (-363)))) (-3399 (((-418 $) $) 114 (|has| |#1| (-363)))) (-3554 (((-112) $ $) 104 (|has| |#1| (-363)))) (-3267 (((-768)) 87 (|has| |#1| (-368)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2237 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-3624 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1449 (($ $ $) 108 (|has| |#1| (-363)))) (-4206 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-4050 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-1988 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-3733 (((-3 $ "failed") $) 33)) (-3531 (((-918)) 55)) (-2900 (($) 90 (|has| |#1| (-368)))) (-1424 (($ $ $) 107 (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 102 (|has| |#1| (-363)))) (-1830 (($) 148 (|has| |#1| (-349)))) (-4282 (((-112) $) 149 (|has| |#1| (-349)))) (-3340 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-1420 (((-112) $) 115 (|has| |#1| (-363)))) (-2155 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-2949 (((-112) $) 31)) (-3797 ((|#1| $) 52)) (-2619 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-363)))) (-3774 ((|#2| $) 45 (|has| |#1| (-363)))) (-1811 (((-918) $) 89 (|has| |#1| (-368)))) (-1977 ((|#2| $) 155)) (-2740 (($ (-641 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-2723 (((-1152) $) 9)) (-3315 (($ $) 116 (|has| |#1| (-363)))) (-2884 (($) 142 (|has| |#1| (-349)) CONST)) (-1468 (($ (-918)) 88 (|has| |#1| (-368)))) (-2780 (((-1114) $) 10)) (-1426 (($) 159)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| |#1| (-363)))) (-2777 (($ (-641 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) 145 (|has| |#1| (-349)))) (-3070 (((-418 $) $) 112 (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 109 (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-363)))) (-3920 (((-768) $) 105 (|has| |#1| (-363)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 106 (|has| |#1| (-363)))) (-3190 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-1820 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-3534 (($ $) 136 (-4078 (-4348 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 134 (-4078 (-4348 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 132 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 131 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 130 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-4027 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3019 ((|#2|) 158)) (-3297 (($) 147 (|has| |#1| (-349)))) (-2467 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2511 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| |#1| (-349)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-564))) 86 (-4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4018 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1349 ((|#2| $) 46)) (-2219 (((-768)) 28 T CONST)) (-3331 (((-1259 $)) 68)) (-3939 (((-112) $ $) 95 (|has| |#1| (-363)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $) 135 (-4078 (-4348 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 133 (-4078 (-4348 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 128 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 127 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 126 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4348 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 120 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363))))) -(((-721 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -721)) -((-1426 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2)))) (-3019 (*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1988 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-2511 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1988 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-721 *3 *4)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *5))))) -(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1426 ($)) (-15 -3019 (|t#2|)) (-15 -1988 ($ |t#2|)) (-15 -2511 ($ |t#2|)) (-15 -1977 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -1988 ((-3 $ "failed") (-407 |t#2|))) (-15 -4027 ((-685 |t#1|) (-1259 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4078 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -4078 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4078 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170)))) ((-917) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4078 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1213) -4078 (|has| |#1| (-349)) (|has| |#1| (-363)))) -((-1778 (($) 11)) (-3733 (((-3 $ "failed") $) 14)) (-2949 (((-112) $) 10)) (** (($ $ (-918)) NIL) (($ $ (-768)) 20))) -(((-722 |#1|) (-10 -8 (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -2949 ((-112) |#1|)) (-15 -1778 (|#1|)) (-15 ** (|#1| |#1| (-918)))) (-723)) (T -722)) -NIL -(-10 -8 (-15 -3733 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -2949 ((-112) |#1|)) (-15 -1778 (|#1|)) (-15 ** (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-1778 (($) 18 T CONST)) (-3733 (((-3 $ "failed") $) 15)) (-2949 (((-112) $) 17)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1300 (($) 19 T CONST)) (-1702 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 16)) (* (($ $ $) 14))) -(((-723) (-140)) (T -723)) -((-1300 (*1 *1) (-4 *1 (-723))) (-1778 (*1 *1) (-4 *1 (-723))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-768)))) (-3733 (*1 *1 *1) (|partial| -4 *1 (-723)))) -(-13 (-1106) (-10 -8 (-15 (-1300) ($) -1809) (-15 -1778 ($) -1809) (-15 -2949 ((-112) $)) (-15 ** ($ $ (-768))) (-15 -3733 ((-3 $ "failed") $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1106) . T) ((-1094) . T)) -((-4274 (((-2 (|:| -3345 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3838 (((-2 (|:| -3345 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4046 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-1295 (((-2 (|:| |poly| |#2|) (|:| -3345 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48))) -(((-724 |#1| |#2|) (-10 -7 (-15 -3838 ((-2 (|:| -3345 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4274 ((-2 (|:| -3345 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4046 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1295 ((-2 (|:| |poly| |#2|) (|:| -3345 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -724)) -((-1295 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3345 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6)))) (-4046 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-724 *5 *2)) (-4 *5 (-363)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3345 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-724 *5 *3)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3345 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3))))) -(-10 -7 (-15 -3838 ((-2 (|:| -3345 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4274 ((-2 (|:| -3345 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4046 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1295 ((-2 (|:| |poly| |#2|) (|:| -3345 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) -((-1319 ((|#7| (-641 |#5|) |#6|) NIL)) (-2449 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2449 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1319 (|#7| (-641 |#5|) |#6|))) (-847) (-790) (-790) (-1046) (-1046) (-946 |#4| |#2| |#1|) (-946 |#5| |#3| |#1|)) (T -725)) -((-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1046)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5))))) -(-10 -7 (-15 -2449 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1319 (|#7| (-641 |#5|) |#6|))) -((-2449 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-726 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2449 (|#7| (-1 |#2| |#1|) |#6|))) (-847) (-847) (-790) (-790) (-1046) (-946 |#5| |#3| |#1|) (-946 |#5| |#4| |#2|)) (T -726)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-4 *7 (-790)) (-4 *9 (-1046)) (-4 *2 (-946 *9 *8 *6)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-790)) (-4 *4 (-946 *9 *7 *5))))) -(-10 -7 (-15 -2449 (|#7| (-1 |#2| |#1|) |#6|))) -((-3070 (((-418 |#4|) |#4|) 42))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170))))) (-307) (-946 (-949 |#3|) |#1| |#2|)) (T -727)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-946 (-949 *6) *4 *5))))) -(-10 -7 (-15 -3070 ((-418 |#4|) |#4|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-861 |#1|)) $) NIL)) (-3040 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1537 (($ $) NIL (|has| |#2| (-556)))) (-1932 (((-112) $) NIL (|has| |#2| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2427 (($ $) NIL (|has| |#2| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-1357 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-906)))) (-2055 (($ $ |#2| (-531 (-861 |#1|)) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#2| (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-861 |#1|)) NIL)) (-1826 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-1925 (($ $ $) NIL (|has| |#2| (-847)))) (-3375 (($ $ $) NIL (|has| |#2| (-847)))) (-2546 (($ (-1 (-531 (-861 |#1|)) (-531 (-861 |#1|))) $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2169 (((-3 (-861 |#1|) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#2| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -1558 (-768))) "failed") $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#2| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-3190 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3534 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1619 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3008 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))))) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-728 |#1| |#2|) (-946 |#2| (-531 (-861 |#1|)) (-861 |#1|)) (-641 (-1170)) (-1046)) (T -728)) -NIL -(-946 |#2| (-531 (-861 |#1|)) (-861 |#1|)) -((-3617 (((-2 (|:| -1986 (-949 |#3|)) (|:| -1351 (-949 |#3|))) |#4|) 14)) (-3909 ((|#4| |#4| |#2|) 33)) (-1337 ((|#4| (-407 (-949 |#3|)) |#2|) 64)) (-1457 ((|#4| (-1166 (-949 |#3|)) |#2|) 80)) (-4261 ((|#4| (-1166 |#4|) |#2|) 51)) (-1527 ((|#4| |#4| |#2|) 54)) (-3070 (((-418 |#4|) |#4|) 40))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3617 ((-2 (|:| -1986 (-949 |#3|)) (|:| -1351 (-949 |#3|))) |#4|)) (-15 -1527 (|#4| |#4| |#2|)) (-15 -4261 (|#4| (-1166 |#4|) |#2|)) (-15 -3909 (|#4| |#4| |#2|)) (-15 -1457 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -1337 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -3070 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)))) (-556) (-946 (-407 (-949 |#3|)) |#1| |#2|)) (T -729)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))) (-1337 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))))) (-1457 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))))) (-3909 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-4261 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *6 (-556)))) (-1527 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-3617 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -1986 (-949 *6)) (|:| -1351 (-949 *6)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5))))) -(-10 -7 (-15 -3617 ((-2 (|:| -1986 (-949 |#3|)) (|:| -1351 (-949 |#3|))) |#4|)) (-15 -1527 (|#4| |#4| |#2|)) (-15 -4261 (|#4| (-1166 |#4|) |#2|)) (-15 -3909 (|#4| |#4| |#2|)) (-15 -1457 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -1337 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -3070 ((-418 |#4|) |#4|))) -((-3070 (((-418 |#4|) |#4|) 54))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 |#4|) |#4|))) (-790) (-847) (-13 (-307) (-147)) (-946 (-407 |#3|) |#1| |#2|)) (T -730)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-946 (-407 *6) *4 *5))))) -(-10 -7 (-15 -3070 ((-418 |#4|) |#4|))) -((-2449 (((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)) 18))) -(((-731 |#1| |#2| |#3|) (-10 -7 (-15 -2449 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)))) (-1046) (-1046) (-723)) (T -731)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5 *7)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *7 (-723)) (-5 *2 (-732 *6 *7)) (-5 *1 (-731 *5 *6 *7))))) -(-10 -7 (-15 -2449 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 39)) (-4163 (((-641 (-2 (|:| -2860 |#1|) (|:| -1383 |#2|))) $) 40)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3267 (((-768)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2237 ((|#2| $) NIL) ((|#1| $) NIL)) (-3396 (($ $) 104 (|has| |#2| (-847)))) (-3733 (((-3 $ "failed") $) 87)) (-2900 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) 72)) (-3802 (((-641 $) $) 55)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| |#2|) 17)) (-2449 (($ (-1 |#1| |#1|) $) 70)) (-1811 (((-918) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3356 ((|#2| $) 103 (|has| |#2| (-847)))) (-3370 ((|#1| $) 102 (|has| |#2| (-847)))) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-641 (-2 (|:| -2860 |#1|) (|:| -1383 |#2|)))) 11)) (-3227 (((-641 |#1|) $) 57)) (-2742 ((|#1| $ |#2|) 115)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-1293 (($) 12 T CONST)) (-1300 (($) 47 T CONST)) (-1702 (((-112) $ $) 107)) (-1808 (($ $) 63) (($ $ $) NIL)) (-1797 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 68) (($ $ $) 118) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-732 |#1| |#2|) (-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -3186 ($ |#1| |#2|)) (-15 -2742 (|#1| $ |#2|)) (-15 -1831 ($ (-641 (-2 (|:| -2860 |#1|) (|:| -1383 |#2|))))) (-15 -4163 ((-641 (-2 (|:| -2860 |#1|) (|:| -1383 |#2|))) $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (-15 -2003 ((-112) $)) (-15 -3227 ((-641 |#1|) $)) (-15 -3802 ((-641 $) $)) (-15 -4128 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -3356 (|#2| $)) (-15 -3370 (|#1| $)) (-15 -3396 ($ $))) |%noBranch|))) (-1046) (-723)) (T -732)) -((-3186 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-723)))) (-2742 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2860 *3) (|:| -1383 *4)))) (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -2860 *3) (|:| -1383 *4)))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-732 *3 *4)) (-4 *4 (-723)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-3356 (*1 *2 *1) (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1046)))) (-3370 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *3 (-723)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046)) (-4 *3 (-723))))) -(-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -3186 ($ |#1| |#2|)) (-15 -2742 (|#1| $ |#2|)) (-15 -1831 ($ (-641 (-2 (|:| -2860 |#1|) (|:| -1383 |#2|))))) (-15 -4163 ((-641 (-2 (|:| -2860 |#1|) (|:| -1383 |#2|))) $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (-15 -2003 ((-112) $)) (-15 -3227 ((-641 |#1|) $)) (-15 -3802 ((-641 $) $)) (-15 -4128 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -3356 (|#2| $)) (-15 -3370 (|#1| $)) (-15 -3396 ($ $))) |%noBranch|))) -((-1817 (((-112) $ $) 19)) (-3650 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2396 (($ $ $) 72)) (-2172 (((-112) $ $) 73)) (-4010 (((-112) $ (-768)) 8)) (-3810 (($ (-641 |#1|)) 68) (($) 67)) (-4145 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4341 (($ $) 62)) (-3337 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) 64)) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22)) (-3425 (($ $ $) 69)) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-2780 (((-1114) $) 21)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4096 (((-641 (-2 (|:| -1389 |#1|) (|:| -2791 (-768)))) $) 61)) (-3405 (($ $ |#1|) 71) (($ $ $) 70)) (-4232 (($) 49) (($ (-641 |#1|)) 48)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 50)) (-1831 (((-859) $) 18)) (-3131 (($ (-641 |#1|)) 66) (($) 65)) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20)) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-733 |#1|) (-140) (-1094)) (T -733)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-2308 (($ |#1|) 17) (($ $ |#1|) 20)) (-3268 (($ |#1|) 18) (($ $ |#1|) 21)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1828 (((-112) $) NIL)) (-2115 (($ |#1| |#1| |#1| |#1|) 8)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 16)) (-3840 (((-1114) $) NIL)) (-3100 ((|#1| $ |#1|) 24) (((-829 |#1|) $ (-829 |#1|)) 32)) (-2675 (($ $ $) NIL)) (-2617 (($ $ $) NIL)) (-2322 (((-858) $) 39)) (-2403 (($) 9 T CONST)) (-2921 (((-112) $ $) 48)) (-3034 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14))) +(((-714 |#1|) (-13 (-473) (-10 -8 (-15 -2115 ($ |#1| |#1| |#1| |#1|)) (-15 -2308 ($ |#1|)) (-15 -3268 ($ |#1|)) (-15 -2689 ($)) (-15 -2308 ($ $ |#1|)) (-15 -3268 ($ $ |#1|)) (-15 -2689 ($ $)) (-15 -3100 (|#1| $ |#1|)) (-15 -3100 ((-829 |#1|) $ (-829 |#1|))))) (-363)) (T -714)) +((-2115 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2308 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3268 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2689 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3268 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2689 (*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3100 (*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3100 (*1 *2 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3))))) +(-13 (-473) (-10 -8 (-15 -2115 ($ |#1| |#1| |#1| |#1|)) (-15 -2308 ($ |#1|)) (-15 -3268 ($ |#1|)) (-15 -2689 ($)) (-15 -2308 ($ $ |#1|)) (-15 -3268 ($ $ |#1|)) (-15 -2689 ($ $)) (-15 -3100 (|#1| $ |#1|)) (-15 -3100 ((-829 |#1|) $ (-829 |#1|))))) +((-3865 (($ $ (-917)) 21)) (-3200 (($ $ (-917)) 22)) (** (($ $ (-917)) 10))) +(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -3200 (|#1| |#1| (-917))) (-15 -3865 (|#1| |#1| (-917)))) (-716)) (T -715)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -3200 (|#1| |#1| (-917))) (-15 -3865 (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-3865 (($ $ (-917)) 15)) (-3200 (($ $ (-917)) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 16))) +(((-716) (-140)) (T -716)) +((* (*1 *1 *1 *1) (-4 *1 (-716))) (-3865 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (-3200 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))) +(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -3865 ($ $ (-917))) (-15 -3200 ($ $ (-917))) (-15 ** ($ $ (-917))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-3865 (($ $ (-917)) NIL) (($ $ (-767)) 21)) (-1828 (((-112) $) 10)) (-3200 (($ $ (-917)) NIL) (($ $ (-767)) 22)) (** (($ $ (-917)) NIL) (($ $ (-767)) 16))) +(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -3200 (|#1| |#1| (-767))) (-15 -3865 (|#1| |#1| (-767))) (-15 -1828 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -3200 (|#1| |#1| (-917))) (-15 -3865 (|#1| |#1| (-917)))) (-718)) (T -717)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -3200 (|#1| |#1| (-767))) (-15 -3865 (|#1| |#1| (-767))) (-15 -1828 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -3200 (|#1| |#1| (-917))) (-15 -3865 (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-3706 (((-3 $ "failed") $) 17)) (-3865 (($ $ (-917)) 15) (($ $ (-767)) 22)) (-2689 (((-3 $ "failed") $) 19)) (-1828 (((-112) $) 23)) (-1529 (((-3 $ "failed") $) 18)) (-3200 (($ $ (-917)) 14) (($ $ (-767)) 21)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2403 (($) 24 T CONST)) (-2921 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 20)) (* (($ $ $) 16))) +(((-718) (-140)) (T -718)) +((-2403 (*1 *1) (-4 *1 (-718))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) (-3865 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3200 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-2689 (*1 *1 *1) (|partial| -4 *1 (-718))) (-1529 (*1 *1 *1) (|partial| -4 *1 (-718))) (-3706 (*1 *1 *1) (|partial| -4 *1 (-718)))) +(-13 (-716) (-10 -8 (-15 (-2403) ($) -2255) (-15 -1828 ((-112) $)) (-15 -3865 ($ $ (-767))) (-15 -3200 ($ $ (-767))) (-15 ** ($ $ (-767))) (-15 -2689 ((-3 $ "failed") $)) (-15 -1529 ((-3 $ "failed") $)) (-15 -3706 ((-3 $ "failed") $)))) +(((-102) . T) ((-611 (-858)) . T) ((-716) . T) ((-1094) . T)) +((-1959 (((-767)) 42)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-1781 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-3239 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-2689 (((-3 $ "failed") $) 73)) (-3860 (($) 47)) (-2019 ((|#2| $) 21)) (-4095 (($) 18)) (-1343 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2516 (((-685 |#2|) (-1259 $) (-1 |#2| |#2|)) 68)) (-3172 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2117 ((|#3| $) 39)) (-3342 (((-1259 $)) 36))) +(((-719 |#1| |#2| |#3|) (-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3860 (|#1|)) (-15 -1959 ((-767))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2516 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -3239 ((-3 |#1| "failed") (-407 |#3|))) (-15 -3172 (|#1| |#3|)) (-15 -3239 (|#1| |#3|)) (-15 -4095 (|#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3172 (|#3| |#1|)) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3342 ((-1259 |#1|))) (-15 -2117 (|#3| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|))) (-720 |#2| |#3|) (-172) (-1235 |#2|)) (T -719)) +((-1959 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5))))) +(-10 -8 (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3860 (|#1|)) (-15 -1959 ((-767))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2516 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -3239 ((-3 |#1| "failed") (-407 |#3|))) (-15 -3172 (|#1| |#3|)) (-15 -3239 (|#1| |#3|)) (-15 -4095 (|#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -3172 (|#3| |#1|)) (-15 -3172 (|#1| (-1259 |#2|))) (-15 -3172 ((-1259 |#2|) |#1|)) (-15 -3342 ((-1259 |#1|))) (-15 -2117 (|#3| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2689 ((-3 |#1| "failed") |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-3622 (($ $) 94 (|has| |#1| (-363)))) (-3247 (((-112) $) 96 (|has| |#1| (-363)))) (-2586 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3770 ((|#1| $) 53)) (-3109 (((-1182 (-917) (-767)) (-564)) 146 (|has| |#1| (-349)))) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 113 (|has| |#1| (-363)))) (-2657 (((-418 $) $) 114 (|has| |#1| (-363)))) (-3547 (((-112) $ $) 104 (|has| |#1| (-363)))) (-1959 (((-767)) 87 (|has| |#1| (-368)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-1781 (((-564) $) 168 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 165)) (-3013 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-2574 (($ $ $) 108 (|has| |#1| (-363)))) (-3689 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-2750 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-3239 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-2689 (((-3 $ "failed") $) 33)) (-3105 (((-917)) 55)) (-3860 (($) 90 (|has| |#1| (-368)))) (-2552 (($ $ $) 107 (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 102 (|has| |#1| (-363)))) (-3422 (($) 148 (|has| |#1| (-349)))) (-3261 (((-112) $) 149 (|has| |#1| (-349)))) (-2180 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4229 (((-112) $) 115 (|has| |#1| (-363)))) (-3717 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-1828 (((-112) $) 31)) (-2019 ((|#1| $) 52)) (-1620 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-363)))) (-1790 ((|#2| $) 45 (|has| |#1| (-363)))) (-1368 (((-917) $) 89 (|has| |#1| (-368)))) (-3228 ((|#2| $) 155)) (-3202 (($ (-641 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-1418 (((-1152) $) 9)) (-2639 (($ $) 116 (|has| |#1| (-363)))) (-3346 (($) 142 (|has| |#1| (-349)) CONST)) (-1998 (($ (-917)) 88 (|has| |#1| (-368)))) (-3840 (((-1114) $) 10)) (-4095 (($) 159)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| |#1| (-363)))) (-3235 (($ (-641 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) 145 (|has| |#1| (-349)))) (-2375 (((-418 $) $) 112 (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 109 (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-363)))) (-3844 (((-767) $) 105 (|has| |#1| (-363)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 106 (|has| |#1| (-363)))) (-3392 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-3337 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-1343 (($ $) 136 (-2789 (-2342 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 134 (-2789 (-2342 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 132 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 131 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-767)) 130 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-767))) 129 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-2516 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-2400 ((|#2|) 158)) (-3107 (($) 147 (|has| |#1| (-349)))) (-3864 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-3172 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| |#1| (-349)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-564))) 86 (-2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2409 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2117 ((|#2| $) 46)) (-3179 (((-767)) 28 T CONST)) (-3342 (((-1259 $)) 68)) (-4024 (((-112) $ $) 95 (|has| |#1| (-363)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $) 135 (-2789 (-2342 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 133 (-2789 (-2342 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 128 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 127 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-767)) 126 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-767))) 125 (-2342 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 120 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363))))) +(((-720 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -720)) +((-4095 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1235 *2)))) (-2400 (*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-3239 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3)))) (-3172 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-3239 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *5))))) +(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -4095 ($)) (-15 -2400 (|t#2|)) (-15 -3239 ($ |t#2|)) (-15 -3172 ($ |t#2|)) (-15 -3228 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -3239 ((-3 $ "failed") (-407 |t#2|))) (-15 -2516 ((-685 |t#1|) (-1259 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2789 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -2789 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2789 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170)))) ((-916) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) -2789 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1213) -2789 (|has| |#1| (-349)) (|has| |#1| (-363)))) +((-4157 (($) 11)) (-2689 (((-3 $ "failed") $) 14)) (-1828 (((-112) $) 10)) (** (($ $ (-917)) NIL) (($ $ (-767)) 20))) +(((-721 |#1|) (-10 -8 (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -1828 ((-112) |#1|)) (-15 -4157 (|#1|)) (-15 ** (|#1| |#1| (-917)))) (-722)) (T -721)) +NIL +(-10 -8 (-15 -2689 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -1828 ((-112) |#1|)) (-15 -4157 (|#1|)) (-15 ** (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-4157 (($) 18 T CONST)) (-2689 (((-3 $ "failed") $) 15)) (-1828 (((-112) $) 17)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2403 (($) 19 T CONST)) (-2921 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 16)) (* (($ $ $) 14))) +(((-722) (-140)) (T -722)) +((-2403 (*1 *1) (-4 *1 (-722))) (-4157 (*1 *1) (-4 *1 (-722))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) (-2689 (*1 *1 *1) (|partial| -4 *1 (-722)))) +(-13 (-1106) (-10 -8 (-15 (-2403) ($) -2255) (-15 -4157 ($) -2255) (-15 -1828 ((-112) $)) (-15 ** ($ $ (-767))) (-15 -2689 ((-3 $ "failed") $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1106) . T) ((-1094) . T)) +((-3176 (((-2 (|:| -3781 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4302 (((-2 (|:| -3781 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2705 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-1965 (((-2 (|:| |poly| |#2|) (|:| -3781 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48))) +(((-723 |#1| |#2|) (-10 -7 (-15 -4302 ((-2 (|:| -3781 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3176 ((-2 (|:| -3781 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2705 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1965 ((-2 (|:| |poly| |#2|) (|:| -3781 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -723)) +((-1965 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3781 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3781 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-723 *5 *3)))) (-4302 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3781 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3))))) +(-10 -7 (-15 -4302 ((-2 (|:| -3781 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3176 ((-2 (|:| -3781 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2705 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1965 ((-2 (|:| |poly| |#2|) (|:| -3781 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) +((-1836 ((|#7| (-641 |#5|) |#6|) NIL)) (-3123 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3123 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1836 (|#7| (-641 |#5|) |#6|))) (-846) (-789) (-789) (-1045) (-1045) (-945 |#4| |#2| |#1|) (-945 |#5| |#3| |#1|)) (T -724)) +((-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5))))) +(-10 -7 (-15 -3123 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1836 (|#7| (-641 |#5|) |#6|))) +((-3123 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3123 (|#7| (-1 |#2| |#1|) |#6|))) (-846) (-846) (-789) (-789) (-1045) (-945 |#5| |#3| |#1|) (-945 |#5| |#4| |#2|)) (T -725)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) (-4 *4 (-945 *9 *7 *5))))) +(-10 -7 (-15 -3123 (|#7| (-1 |#2| |#1|) |#6|))) +((-2375 (((-418 |#4|) |#4|) 42))) +(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170))))) (-307) (-945 (-948 |#3|) |#1| |#2|)) (T -726)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-945 (-948 *6) *4 *5))))) +(-10 -7 (-15 -2375 ((-418 |#4|) |#4|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-860 |#1|)) $) NIL)) (-2340 (((-1166 $) $ (-860 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3622 (($ $) NIL (|has| |#2| (-556)))) (-3247 (((-112) $) NIL (|has| |#2| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-860 |#1|))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3453 (($ $) NIL (|has| |#2| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2595 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#2| (-905)))) (-2050 (($ $ |#2| (-531 (-860 |#1|)) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#2|) (-860 |#1|)) NIL) (($ (-1166 $) (-860 |#1|)) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#2| (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-860 |#1|)) NIL)) (-3386 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1501 (($ $ $) NIL (|has| |#2| (-846)))) (-2622 (($ $ $) NIL (|has| |#2| (-846)))) (-2168 (($ (-1 (-531 (-860 |#1|)) (-531 (-860 |#1|))) $) NIL)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-3878 (((-3 (-860 |#1|) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#2| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3866 (-767))) "failed") $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#2| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-641 (-860 |#1|)) (-641 $)) NIL)) (-3392 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1343 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2073 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2290 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))))) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-727 |#1| |#2|) (-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) (-641 (-1170)) (-1045)) (T -727)) +NIL +(-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) +((-2945 (((-2 (|:| -2568 (-948 |#3|)) (|:| -3357 (-948 |#3|))) |#4|) 14)) (-3730 ((|#4| |#4| |#2|) 33)) (-1802 ((|#4| (-407 (-948 |#3|)) |#2|) 64)) (-4104 ((|#4| (-1166 (-948 |#3|)) |#2|) 80)) (-3069 ((|#4| (-1166 |#4|) |#2|) 51)) (-3516 ((|#4| |#4| |#2|) 54)) (-2375 (((-418 |#4|) |#4|) 40))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2945 ((-2 (|:| -2568 (-948 |#3|)) (|:| -3357 (-948 |#3|))) |#4|)) (-15 -3516 (|#4| |#4| |#2|)) (-15 -3069 (|#4| (-1166 |#4|) |#2|)) (-15 -3730 (|#4| |#4| |#2|)) (-15 -4104 (|#4| (-1166 (-948 |#3|)) |#2|)) (-15 -1802 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2375 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)))) (-556) (-945 (-407 (-948 |#3|)) |#1| |#2|)) (T -728)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) (-1802 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))))) (-4104 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-948 *6))) (-4 *6 (-556)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))))) (-3730 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *6 (-556)))) (-3516 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-2945 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -2568 (-948 *6)) (|:| -3357 (-948 *6)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))) +(-10 -7 (-15 -2945 ((-2 (|:| -2568 (-948 |#3|)) (|:| -3357 (-948 |#3|))) |#4|)) (-15 -3516 (|#4| |#4| |#2|)) (-15 -3069 (|#4| (-1166 |#4|) |#2|)) (-15 -3730 (|#4| |#4| |#2|)) (-15 -4104 (|#4| (-1166 (-948 |#3|)) |#2|)) (-15 -1802 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2375 ((-418 |#4|) |#4|))) +((-2375 (((-418 |#4|) |#4|) 54))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 |#4|) |#4|))) (-789) (-846) (-13 (-307) (-147)) (-945 (-407 |#3|) |#1| |#2|)) (T -729)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-945 (-407 *6) *4 *5))))) +(-10 -7 (-15 -2375 ((-418 |#4|) |#4|))) +((-3123 (((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)) 18))) +(((-730 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) (-1045) (-1045) (-722)) (T -730)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7))))) +(-10 -7 (-15 -3123 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 39)) (-1412 (((-641 (-2 (|:| -3139 |#1|) (|:| -1955 |#2|))) $) 40)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1959 (((-767)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-1781 ((|#2| $) NIL) ((|#1| $) NIL)) (-2710 (($ $) 104 (|has| |#2| (-846)))) (-2689 (((-3 $ "failed") $) 87)) (-3860 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) 72)) (-2071 (((-641 $) $) 55)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| |#2|) 17)) (-3123 (($ (-1 |#1| |#1|) $) 70)) (-1368 (((-917) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2674 ((|#2| $) 103 (|has| |#2| (-846)))) (-2686 ((|#1| $) 102 (|has| |#2| (-846)))) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-641 (-2 (|:| -3139 |#1|) (|:| -1955 |#2|)))) 11)) (-3680 (((-641 |#1|) $) 57)) (-3467 ((|#1| $ |#2|) 115)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2389 (($) 12 T CONST)) (-2403 (($) 47 T CONST)) (-2921 (((-112) $ $) 107)) (-3021 (($ $) 63) (($ $ $) NIL)) (-3011 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 68) (($ $ $) 118) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-731 |#1| |#2|) (-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2507 ($ |#1| |#2|)) (-15 -3467 (|#1| $ |#2|)) (-15 -2322 ($ (-641 (-2 (|:| -3139 |#1|) (|:| -1955 |#2|))))) (-15 -1412 ((-641 (-2 (|:| -3139 |#1|) (|:| -1955 |#2|))) $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (-15 -1492 ((-112) $)) (-15 -3680 ((-641 |#1|) $)) (-15 -2071 ((-641 $) $)) (-15 -4137 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -2674 (|#2| $)) (-15 -2686 (|#1| $)) (-15 -2710 ($ $))) |%noBranch|))) (-1045) (-722)) (T -731)) +((-2507 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) (-3467 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3139 *3) (|:| -1955 *4)))) (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -3139 *3) (|:| -1955 *4)))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-641 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2674 (*1 *2 *1) (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722)))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722))))) +(-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2507 ($ |#1| |#2|)) (-15 -3467 (|#1| $ |#2|)) (-15 -2322 ($ (-641 (-2 (|:| -3139 |#1|) (|:| -1955 |#2|))))) (-15 -1412 ((-641 (-2 (|:| -3139 |#1|) (|:| -1955 |#2|))) $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (-15 -1492 ((-112) $)) (-15 -3680 ((-641 |#1|) $)) (-15 -2071 ((-641 $) $)) (-15 -4137 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -2674 (|#2| $)) (-15 -2686 (|#1| $)) (-15 -2710 ($ $))) |%noBranch|))) +((-2310 (((-112) $ $) 19)) (-1565 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1294 (($ $ $) 72)) (-3910 (((-112) $ $) 73)) (-2318 (((-112) $ (-767)) 8)) (-1740 (($ (-641 |#1|)) 68) (($) 67)) (-4328 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2596 (($ $) 62)) (-2027 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) 64)) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22)) (-1648 (($ $ $) 69)) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3840 (((-1114) $) 21)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-1931 (((-641 (-2 (|:| -2511 |#1|) (|:| -3852 (-767)))) $) 61)) (-2727 (($ $ |#1|) 71) (($ $ $) 70)) (-3977 (($) 49) (($ (-641 |#1|)) 48)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 50)) (-2322 (((-858) $) 18)) (-2451 (($ (-641 |#1|)) 66) (($) 65)) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20)) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-732 |#1|) (-140) (-1094)) (T -732)) NIL (-13 (-691 |t#1|) (-1092 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-3650 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 94)) (-2396 (($ $ $) 98)) (-2172 (((-112) $ $) 104)) (-4010 (((-112) $ (-768)) NIL)) (-3810 (($ (-641 |#1|)) 26) (($) 17)) (-4145 (($ (-1 (-112) |#1|) $) 82 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4341 (($ $) 84)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) 70 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4406))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 32 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) 103)) (-2524 (($) 15) (($ |#1|) 28) (($ (-641 |#1|)) 23)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) 38)) (-2516 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) 87 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 88)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3425 (($ $ $) 96)) (-2401 ((|#1| $) 62)) (-2783 (($ |#1| $) 63) (($ |#1| $ (-768)) 85)) (-2780 (((-1114) $) NIL)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4153 ((|#1| $) 61)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 56)) (-4012 (($) 14)) (-4096 (((-641 (-2 (|:| -1389 |#1|) (|:| -2791 (-768)))) $) 55)) (-3405 (($ $ |#1|) NIL) (($ $ $) 97)) (-4232 (($) 16) (($ (-641 |#1|)) 25)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) 68 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 79)) (-2511 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 22)) (-1831 (((-859) $) 49)) (-3131 (($ (-641 |#1|)) 27) (($) 18)) (-2321 (($ (-641 |#1|)) 24)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 102)) (-2828 (((-768) $) 67 (|has| $ (-6 -4406))))) -(((-734 |#1|) (-13 (-733 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -2524 ($)) (-15 -2524 ($ |#1|)) (-15 -2524 ($ (-641 |#1|))) (-15 -2640 ((-641 |#1|) $)) (-15 -2576 ($ |#1| $ (-564))) (-15 -2576 ($ (-1 (-112) |#1|) $ (-564))) (-15 -3644 ($ |#1| $ (-564))) (-15 -3644 ($ (-1 (-112) |#1|) $ (-564))))) (-1094)) (T -734)) -((-2524 (*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2524 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2524 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094)))) (-2576 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2576 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4)))) (-3644 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-3644 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4))))) -(-13 (-733 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -2524 ($)) (-15 -2524 ($ |#1|)) (-15 -2524 ($ (-641 |#1|))) (-15 -2640 ((-641 |#1|) $)) (-15 -2576 ($ |#1| $ (-564))) (-15 -2576 ($ (-1 (-112) |#1|) $ (-564))) (-15 -3644 ($ |#1| $ (-564))) (-15 -3644 ($ (-1 (-112) |#1|) $ (-564))))) -((-3299 (((-1264) (-1152)) 8))) -(((-735) (-10 -7 (-15 -3299 ((-1264) (-1152))))) (T -735)) -((-3299 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735))))) -(-10 -7 (-15 -3299 ((-1264) (-1152)))) -((-2398 (((-641 |#1|) (-641 |#1|) (-641 |#1|)) 15))) -(((-736 |#1|) (-10 -7 (-15 -2398 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) (-847)) (T -736)) -((-2398 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3))))) -(-10 -7 (-15 -2398 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 |#2|) $) 139)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 132 (|has| |#1| (-556)))) (-1537 (($ $) 131 (|has| |#1| (-556)))) (-1932 (((-112) $) 129 (|has| |#1| (-556)))) (-3357 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 71 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) 19)) (-3083 (($ $) 70 (|has| |#1| (-38 (-407 (-564)))))) (-3330 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 72 (|has| |#1| (-38 (-407 (-564)))))) (-3384 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 73 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) 17 T CONST)) (-3396 (($ $) 123)) (-3733 (((-3 $ "failed") $) 33)) (-2469 (((-949 |#1|) $ (-768)) 101) (((-949 |#1|) $ (-768) (-768)) 100)) (-3030 (((-112) $) 140)) (-3714 (($) 98 (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-768) $ |#2|) 103) (((-768) $ |#2| (-768)) 102)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 69 (|has| |#1| (-38 (-407 (-564)))))) (-2003 (((-112) $) 121)) (-3186 (($ $ (-641 |#2|) (-641 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-768)) 105) (($ $ (-641 |#2|) (-641 (-768))) 104)) (-2449 (($ (-1 |#1| |#1|) $) 120)) (-2358 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) 118)) (-3370 ((|#1| $) 117)) (-2723 (((-1152) $) 9)) (-3907 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) 10)) (-3951 (($ $ (-768)) 106)) (-1403 (((-3 $ "failed") $ $) 133 (|has| |#1| (-556)))) (-4326 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (($ $ |#2| $) 114) (($ $ (-641 |#2|) (-641 $)) 113) (($ $ (-641 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-641 $) (-641 $)) 109)) (-3534 (($ $ |#2|) 42) (($ $ (-641 |#2|)) 41) (($ $ |#2| (-768)) 40) (($ $ (-641 |#2|) (-641 (-768))) 39)) (-1619 (((-531 |#2|) $) 119)) (-3395 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 74 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 75 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 76 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 141)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-556))) (($ (-407 (-564))) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2742 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-768)) 108) (($ $ (-641 |#2|) (-641 (-768))) 107)) (-4018 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-3427 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) 130 (|has| |#1| (-556)))) (-3406 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-2315 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 78 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 77 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ |#2|) 38) (($ $ (-641 |#2|)) 37) (($ $ |#2| (-768)) 36) (($ $ (-641 |#2|) (-641 (-768))) 35)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 68 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 128 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 127 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 116) (($ $ |#1|) 115))) -(((-737 |#1| |#2|) (-140) (-1046) (-847)) (T -737)) -((-2742 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-2742 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-847)))) (-3186 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-3186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-2155 (*1 *2 *1 *3) (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *2 (-768)))) (-2155 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)))) (-2469 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-2469 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-3907 (*1 *1 *1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)) (-4 *3 (-38 (-407 (-564))))))) -(-13 (-897 |t#2|) (-970 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -2742 ($ $ |t#2| (-768))) (-15 -2742 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -3951 ($ $ (-768))) (-15 -3186 ($ $ |t#2| (-768))) (-15 -3186 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -2155 ((-768) $ |t#2|)) (-15 -2155 ((-768) $ |t#2| (-768))) (-15 -2469 ((-949 |t#1|) $ (-768))) (-15 -2469 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $ |t#2|)) (-6 (-999)) (-6 (-1194))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 |#2|) . T) ((-970 |#1| #0# |#2|) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564))))) -((-3070 (((-418 (-1166 |#4|)) (-1166 |#4|)) 30) (((-418 |#4|) |#4|) 26))) -(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 |#4|) |#4|)) (-15 -3070 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -738)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) -(-10 -7 (-15 -3070 ((-418 |#4|) |#4|)) (-15 -3070 ((-418 (-1166 |#4|)) (-1166 |#4|)))) -((-3697 (((-418 |#4|) |#4| |#2|) 142)) (-4038 (((-418 |#4|) |#4|) NIL)) (-3399 (((-418 (-1166 |#4|)) (-1166 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-3355 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -3070 (-1166 |#4|)) (|:| -1558 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 81)) (-1368 (((-1166 |#3|) (-1166 |#3|) (-564)) 167)) (-1556 (((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768)) 75)) (-1977 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|)) 79)) (-2963 (((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 27)) (-3512 (((-2 (|:| -3194 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564)) 72)) (-1304 (((-564) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564))))) 163)) (-1317 ((|#4| (-564) (-418 |#4|)) 73)) (-2461 (((-112) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564))))) NIL))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3399 ((-418 |#4|) |#4|)) (-15 -3399 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -4038 ((-418 |#4|) |#4|)) (-15 -1304 ((-564) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))))) (-15 -3697 ((-418 |#4|) |#4| |#2|)) (-15 -3512 ((-2 (|:| -3194 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -3355 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -3070 (-1166 |#4|)) (|:| -1558 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2963 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1317 (|#4| (-564) (-418 |#4|))) (-15 -2461 ((-112) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))))) (-15 -1977 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1556 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -1368 ((-1166 |#3|) (-1166 |#3|) (-564)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -739)) -((-1368 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768)))) (-1977 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847)) (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10)) (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5)) (-5 *3 (-1166 *5)))) (-2461 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-2 (|:| -3070 (-1166 *6)) (|:| -1558 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6)) (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-307)))) (-2963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) (|:| |Lfact| (-641 (-2 (|:| -3070 (-1166 *8)) (|:| -1558 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-739 *6 *7 *8 *9)))) (-3355 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-641 (-2 (|:| -3070 (-1166 *9)) (|:| -1558 (-564))))))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))) (-3512 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| -3194 (-1166 *9)) (|:| |polval| (-1166 *8)))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3070 (-1166 *6)) (|:| -1558 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-4038 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) (-3399 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3399 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))) -(-10 -7 (-15 -3399 ((-418 |#4|) |#4|)) (-15 -3399 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -4038 ((-418 |#4|) |#4|)) (-15 -1304 ((-564) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))))) (-15 -3697 ((-418 |#4|) |#4| |#2|)) (-15 -3512 ((-2 (|:| -3194 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -3355 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -3070 (-1166 |#4|)) (|:| -1558 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2963 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1317 (|#4| (-564) (-418 |#4|))) (-15 -2461 ((-112) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))) (-641 (-2 (|:| -3070 (-1166 |#3|)) (|:| -1558 (-564)))))) (-15 -1977 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1556 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -1368 ((-1166 |#3|) (-1166 |#3|) (-564)))) -((-2482 (($ $ (-918)) 17))) -(((-740 |#1| |#2|) (-10 -8 (-15 -2482 (|#1| |#1| (-918)))) (-741 |#2|) (-172)) (T -740)) -NIL -(-10 -8 (-15 -2482 (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-4221 (($ $ (-918)) 28)) (-2482 (($ $ (-918)) 33)) (-2839 (($ $ (-918)) 29)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1992 (($ $ $) 25)) (-1831 (((-859) $) 11)) (-2611 (($ $ $ $) 26)) (-1656 (($ $ $) 24)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-741 |#1|) (-140) (-172)) (T -741)) -((-2482 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172))))) -(-13 (-758) (-714 |t#1|) (-10 -8 (-15 -2482 ($ $ (-918))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-2416 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 25)) (-2585 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 24))) -(((-742) (-10 -7 (-15 -2585 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -2416 ((-1032) (-685 (-225)) (-564) (-112) (-564))))) (T -742)) -((-2416 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742)))) (-2585 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742))))) -(-10 -7 (-15 -2585 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -2416 ((-1032) (-685 (-225)) (-564) (-112) (-564)))) -((-3610 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-1964 (((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-1436 (((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) 32))) -(((-743) (-10 -7 (-15 -1436 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -1964 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -3610 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -743)) -((-3610 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-1964 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-1436 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) (-5 *2 (-1032)) (-5 *1 (-743))))) -(-10 -7 (-15 -1436 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -1964 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -3610 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))))) -((-3005 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 34)) (-1539 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 33)) (-1840 (((-1032) (-564) (-685 (-225)) (-564)) 32)) (-2107 (((-1032) (-564) (-685 (-225)) (-564)) 31)) (-2143 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 30)) (-2391 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-3819 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-3175 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-1981 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-4170 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-3206 (((-1032) (-564) (-685 (-225)) (-564)) 22)) (-2830 (((-1032) (-564) (-685 (-225)) (-564)) 21))) -(((-744) (-10 -7 (-15 -2830 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3206 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4170 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1981 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3175 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3819 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2391 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2143 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2107 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -1840 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -1539 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3005 ((-1032) (-564) (-564) (-685 (-225)) (-564))))) (T -744)) -((-3005 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1539 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1840 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2107 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2143 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2391 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3819 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3175 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1981 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4170 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3206 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2830 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744))))) -(-10 -7 (-15 -2830 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3206 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4170 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1981 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3175 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3819 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2391 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2143 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2107 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -1840 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -1539 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3005 ((-1032) (-564) (-564) (-685 (-225)) (-564)))) -((-3722 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3160 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564)) 51)) (-2597 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1736 (((-1032) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-3042 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-2371 (((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-1936 (((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-3438 (((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-1752 (((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) 38)) (-2494 (((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) 37)) (-2208 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) 33)) (-3853 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) 32))) -(((-745) (-10 -7 (-15 -3853 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -2208 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -2494 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -1752 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -3438 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1936 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2371 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3042 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1736 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2597 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -3160 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -3722 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -745)) -((-3722 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3160 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2597 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1736 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3042 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2371 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1936 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3438 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1752 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2494 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2208 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3853 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) (-5 *2 (-1032)) (-5 *1 (-745))))) -(-10 -7 (-15 -3853 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -2208 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -2494 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -1752 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629))))) (-15 -3438 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1936 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2371 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3042 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1736 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2597 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -3160 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -3722 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))))) -((-3790 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3409 (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2827 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-2967 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-2337 (((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3992 (((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2744 (((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-2845 (((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-746) (-10 -7 (-15 -2845 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2744 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3992 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2337 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2967 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2827 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3409 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3409 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -3790 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -746)) -((-3790 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3409 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3409 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2827 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2967 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2337 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3992 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2744 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2845 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) -(-10 -7 (-15 -2845 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2744 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3992 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2337 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2967 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2827 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3409 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3409 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -3790 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2286 (((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)) 45)) (-2013 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-3441 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 23))) -(((-747) (-10 -7 (-15 -3441 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2013 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2286 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))) (T -747)) -((-2286 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))) (-2013 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032)) (-5 *1 (-747)))) (-3441 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-747))))) -(-10 -7 (-15 -3441 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2013 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2286 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)))) -((-2526 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)) 35)) (-2804 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-2834 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564)) 33)) (-3342 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-1576 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-1301 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564)) 27)) (-4375 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 24)) (-2481 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 23)) (-4283 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 22)) (-4183 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 21))) -(((-748) (-10 -7 (-15 -4183 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -4283 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2481 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -4375 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1301 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -1576 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3342 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2834 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2804 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -2526 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))) (T -748)) -((-2526 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2804 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2834 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3342 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-1576 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-1301 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4375 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2481 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4283 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4183 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748))))) -(-10 -7 (-15 -4183 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -4283 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2481 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -4375 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1301 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -1576 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3342 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2834 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2804 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -2526 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)))) -((-4188 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 45)) (-4118 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564)) 44)) (-1404 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 43)) (-2716 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 42)) (-3567 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564)) 41)) (-2226 (((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 40)) (-2969 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564)) 39)) (-1438 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564))) 38)) (-1732 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 35)) (-1760 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564)) 34)) (-3336 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564)) 33)) (-1324 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 32)) (-2309 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564)) 31)) (-2529 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-1511 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-3872 (((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564)) 28)) (-2305 (((-1032) (-564) (-685 (-225)) (-225) (-564)) 24)) (-2448 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 21))) -(((-749) (-10 -7 (-15 -2448 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2305 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -3872 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -1511 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2529 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -2309 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1324 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3336 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -1760 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -1732 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1438 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -2969 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -2226 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3567 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2716 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1404 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -4118 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4188 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))) (T -749)) -((-4188 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-4118 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1404 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2716 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3567 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2226 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2969 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1438 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1732 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1760 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3336 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1324 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2309 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2529 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1511 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3872 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2305 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2448 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749))))) -(-10 -7 (-15 -2448 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2305 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -3872 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -1511 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2529 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -2309 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1324 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3336 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -1760 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -1732 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1438 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -2969 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -2226 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3567 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2716 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1404 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -4118 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4188 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)))) -((-2085 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)) 63)) (-4212 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3141 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-2922 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564)) 51)) (-2625 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2484 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2942 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3736 (((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-750) (-10 -7 (-15 -3736 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2942 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2484 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -2625 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -2922 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3141 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4212 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2085 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))) (T -750)) -((-2085 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-4212 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3141 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2922 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2625 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2484 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2942 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3736 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750))))) -(-10 -7 (-15 -3736 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2942 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2484 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -2625 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -2922 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3141 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4212 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2085 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)))) -((-3021 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 47)) (-1705 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564)) 46)) (-3529 (((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 45)) (-2712 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 40)) (-2240 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564)) 39)) (-1343 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-564)) 36)) (-2771 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564)) 35)) (-3782 (((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564)) 34)) (-3496 (((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564)) 33)) (-4047 (((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564)) 32))) -(((-751) (-10 -7 (-15 -4047 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -3496 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -3782 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -2771 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1343 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2240 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -2712 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3529 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1705 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3021 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -751)) -((-3021 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1705 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3529 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2712 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2240 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1343 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2771 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3782 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3496 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-4047 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-751))))) -(-10 -7 (-15 -4047 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -3496 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -3782 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -2771 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1343 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2240 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -2712 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3529 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1705 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3021 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)))) -((-2694 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 80)) (-4141 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 69)) (-2010 (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-3177 (((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 37)) (-2331 (((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564)) 33)) (-1321 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-1517 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-1800 (((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-1959 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-1589 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564)) 26)) (-1375 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 25)) (-3126 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-2323 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-4180 (((-1032) (-685 (-225)) (-564) (-564) (-564) (-564)) 22)) (-3301 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 21))) -(((-752) (-10 -7 (-15 -3301 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4180 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -2323 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3126 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1375 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -1589 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1959 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1800 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1517 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1321 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2331 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -3177 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2010 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2010 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -4141 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2694 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -752)) -((-2694 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4141 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2010 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2010 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3177 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2331 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1321 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1517 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1800 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1959 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1589 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1375 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3126 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2323 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4180 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3301 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752))))) -(-10 -7 (-15 -3301 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4180 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -2323 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3126 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1375 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -1589 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1959 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1800 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1517 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1321 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2331 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -3177 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2010 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2010 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -4141 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2694 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)))) -((-3248 (((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-1602 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564)) 60)) (-4181 (((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-4219 (((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 37)) (-3626 (((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564)) 36)) (-4056 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 33)) (-2434 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225))) 32)) (-2319 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564)) 28)) (-2023 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 27)) (-2726 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 26)) (-3217 (((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 22))) -(((-753) (-10 -7 (-15 -3217 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -2726 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2023 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2319 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -2434 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -4056 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3626 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4219 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -4181 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -1602 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3248 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -753)) -((-3248 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-1602 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4181 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4219 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3626 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4056 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2434 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2319 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2023 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2726 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3217 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-753))))) -(-10 -7 (-15 -3217 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -2726 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2023 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2319 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -2434 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -4056 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3626 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4219 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -4181 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -1602 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3248 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))))) -((-2880 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))) 29)) (-2960 (((-1032) (-1152) (-564) (-564) (-685 (-225))) 28)) (-2732 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225))) 27)) (-3039 (((-1032) (-564) (-564) (-564) (-685 (-225))) 21))) -(((-754) (-10 -7 (-15 -3039 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -2732 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -2960 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2880 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))) (T -754)) -((-2880 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-2960 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-2732 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754)))) (-3039 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754))))) -(-10 -7 (-15 -3039 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -2732 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -2960 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2880 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))))) -((-1682 (((-1032) (-225) (-225) (-225) (-225) (-564)) 62)) (-3913 (((-1032) (-225) (-225) (-225) (-564)) 61)) (-1410 (((-1032) (-225) (-225) (-225) (-564)) 60)) (-4268 (((-1032) (-225) (-225) (-564)) 59)) (-3170 (((-1032) (-225) (-564)) 58)) (-2444 (((-1032) (-225) (-564)) 57)) (-4196 (((-1032) (-225) (-564)) 56)) (-2794 (((-1032) (-225) (-564)) 55)) (-2296 (((-1032) (-225) (-564)) 54)) (-2756 (((-1032) (-225) (-564)) 53)) (-3983 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 52)) (-2735 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 51)) (-4033 (((-1032) (-225) (-564)) 50)) (-3860 (((-1032) (-225) (-564)) 49)) (-2527 (((-1032) (-225) (-564)) 48)) (-3397 (((-1032) (-225) (-564)) 47)) (-1528 (((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564)) 46)) (-2056 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 45)) (-2799 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 44)) (-3601 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 43)) (-3940 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 42)) (-2865 (((-1032) (-225) (-564)) 39)) (-4220 (((-1032) (-225) (-564)) 38)) (-1743 (((-1032) (-225) (-564)) 37)) (-2457 (((-1032) (-225) (-564)) 36)) (-2989 (((-1032) (-225) (-564)) 35)) (-3921 (((-1032) (-225) (-564)) 34)) (-1583 (((-1032) (-225) (-564)) 33)) (-2836 (((-1032) (-225) (-564)) 32)) (-3893 (((-1032) (-225) (-564)) 31)) (-2357 (((-1032) (-225) (-564)) 30)) (-1298 (((-1032) (-225) (-225) (-225) (-564)) 29)) (-3122 (((-1032) (-225) (-564)) 28)) (-2207 (((-1032) (-225) (-564)) 27)) (-4014 (((-1032) (-225) (-564)) 26)) (-2464 (((-1032) (-225) (-564)) 25)) (-3734 (((-1032) (-225) (-564)) 24)) (-2170 (((-1032) (-169 (-225)) (-564)) 21))) -(((-755) (-10 -7 (-15 -2170 ((-1032) (-169 (-225)) (-564))) (-15 -3734 ((-1032) (-225) (-564))) (-15 -2464 ((-1032) (-225) (-564))) (-15 -4014 ((-1032) (-225) (-564))) (-15 -2207 ((-1032) (-225) (-564))) (-15 -3122 ((-1032) (-225) (-564))) (-15 -1298 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2357 ((-1032) (-225) (-564))) (-15 -3893 ((-1032) (-225) (-564))) (-15 -2836 ((-1032) (-225) (-564))) (-15 -1583 ((-1032) (-225) (-564))) (-15 -3921 ((-1032) (-225) (-564))) (-15 -2989 ((-1032) (-225) (-564))) (-15 -2457 ((-1032) (-225) (-564))) (-15 -1743 ((-1032) (-225) (-564))) (-15 -4220 ((-1032) (-225) (-564))) (-15 -2865 ((-1032) (-225) (-564))) (-15 -3940 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3601 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2799 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2056 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -1528 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3397 ((-1032) (-225) (-564))) (-15 -2527 ((-1032) (-225) (-564))) (-15 -3860 ((-1032) (-225) (-564))) (-15 -4033 ((-1032) (-225) (-564))) (-15 -2735 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3983 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2756 ((-1032) (-225) (-564))) (-15 -2296 ((-1032) (-225) (-564))) (-15 -2794 ((-1032) (-225) (-564))) (-15 -4196 ((-1032) (-225) (-564))) (-15 -2444 ((-1032) (-225) (-564))) (-15 -3170 ((-1032) (-225) (-564))) (-15 -4268 ((-1032) (-225) (-225) (-564))) (-15 -1410 ((-1032) (-225) (-225) (-225) (-564))) (-15 -3913 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1682 ((-1032) (-225) (-225) (-225) (-225) (-564))))) (T -755)) -((-1682 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3913 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1410 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4268 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3983 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2735 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4033 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1528 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2056 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2799 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3601 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3940 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1298 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2170 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(-10 -7 (-15 -2170 ((-1032) (-169 (-225)) (-564))) (-15 -3734 ((-1032) (-225) (-564))) (-15 -2464 ((-1032) (-225) (-564))) (-15 -4014 ((-1032) (-225) (-564))) (-15 -2207 ((-1032) (-225) (-564))) (-15 -3122 ((-1032) (-225) (-564))) (-15 -1298 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2357 ((-1032) (-225) (-564))) (-15 -3893 ((-1032) (-225) (-564))) (-15 -2836 ((-1032) (-225) (-564))) (-15 -1583 ((-1032) (-225) (-564))) (-15 -3921 ((-1032) (-225) (-564))) (-15 -2989 ((-1032) (-225) (-564))) (-15 -2457 ((-1032) (-225) (-564))) (-15 -1743 ((-1032) (-225) (-564))) (-15 -4220 ((-1032) (-225) (-564))) (-15 -2865 ((-1032) (-225) (-564))) (-15 -3940 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3601 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2799 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2056 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -1528 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3397 ((-1032) (-225) (-564))) (-15 -2527 ((-1032) (-225) (-564))) (-15 -3860 ((-1032) (-225) (-564))) (-15 -4033 ((-1032) (-225) (-564))) (-15 -2735 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3983 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2756 ((-1032) (-225) (-564))) (-15 -2296 ((-1032) (-225) (-564))) (-15 -2794 ((-1032) (-225) (-564))) (-15 -4196 ((-1032) (-225) (-564))) (-15 -2444 ((-1032) (-225) (-564))) (-15 -3170 ((-1032) (-225) (-564))) (-15 -4268 ((-1032) (-225) (-225) (-564))) (-15 -1410 ((-1032) (-225) (-225) (-225) (-564))) (-15 -3913 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1682 ((-1032) (-225) (-225) (-225) (-225) (-564)))) -((-2936 (((-1264)) 21)) (-1996 (((-1152)) 32)) (-2156 (((-1152)) 31)) (-1606 (((-1098) (-1170) (-685 (-564))) 46) (((-1098) (-1170) (-685 (-225))) 42)) (-3889 (((-112)) 19)) (-4239 (((-1152) (-1152)) 35))) -(((-756) (-10 -7 (-15 -2156 ((-1152))) (-15 -1996 ((-1152))) (-15 -4239 ((-1152) (-1152))) (-15 -1606 ((-1098) (-1170) (-685 (-225)))) (-15 -1606 ((-1098) (-1170) (-685 (-564)))) (-15 -3889 ((-112))) (-15 -2936 ((-1264))))) (T -756)) -((-2936 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756)))) (-3889 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756)))) (-1606 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-1606 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-1996 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-2156 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) -(-10 -7 (-15 -2156 ((-1152))) (-15 -1996 ((-1152))) (-15 -4239 ((-1152) (-1152))) (-15 -1606 ((-1098) (-1170) (-685 (-225)))) (-15 -1606 ((-1098) (-1170) (-685 (-564)))) (-15 -3889 ((-112))) (-15 -2936 ((-1264)))) -((-1992 (($ $ $) 10)) (-2611 (($ $ $ $) 9)) (-1656 (($ $ $) 12))) -(((-757 |#1|) (-10 -8 (-15 -1656 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -2611 (|#1| |#1| |#1| |#1|))) (-758)) (T -757)) -NIL -(-10 -8 (-15 -1656 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -2611 (|#1| |#1| |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-4221 (($ $ (-918)) 28)) (-2839 (($ $ (-918)) 29)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1992 (($ $ $) 25)) (-1831 (((-859) $) 11)) (-2611 (($ $ $ $) 26)) (-1656 (($ $ $) 24)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27))) -(((-758) (-140)) (T -758)) -((-2611 (*1 *1 *1 *1 *1) (-4 *1 (-758))) (-1992 (*1 *1 *1 *1) (-4 *1 (-758))) (-1656 (*1 *1 *1 *1) (-4 *1 (-758)))) -(-13 (-21) (-717) (-10 -8 (-15 -2611 ($ $ $ $)) (-15 -1992 ($ $ $)) (-15 -1656 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-717) . T) ((-1094) . T)) -((-1831 (((-859) $) NIL) (($ (-564)) 10))) -(((-759 |#1|) (-10 -8 (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-760)) (T -759)) -NIL -(-10 -8 (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2767 (((-3 $ "failed") $) 40)) (-4221 (($ $ (-918)) 28) (($ $ (-768)) 35)) (-3733 (((-3 $ "failed") $) 38)) (-2949 (((-112) $) 34)) (-3874 (((-3 $ "failed") $) 39)) (-2839 (($ $ (-918)) 29) (($ $ (-768)) 36)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1992 (($ $ $) 25)) (-1831 (((-859) $) 11) (($ (-564)) 31)) (-2219 (((-768)) 32 T CONST)) (-2611 (($ $ $ $) 26)) (-1656 (($ $ $) 24)) (-1293 (($) 18 T CONST)) (-1300 (($) 33 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 30) (($ $ (-768)) 37)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27))) -(((-760) (-140)) (T -760)) -((-2219 (*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760))))) -(-13 (-758) (-719) (-10 -8 (-15 -2219 ((-768)) -1809) (-15 -1831 ($ (-564))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-717) . T) ((-719) . T) ((-758) . T) ((-1094) . T)) -((-2705 (((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|) 33)) (-2077 (((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|) 23)) (-1349 (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170)) 20) (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564))))) 19))) -(((-761 |#1|) (-10 -7 (-15 -1349 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -1349 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -2077 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -2705 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-845))) (T -761)) -((-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 *4))))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-2077 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5)) (-4 *5 (-13 (-363) (-845))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845)))))) -(-10 -7 (-15 -1349 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -1349 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -2077 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -2705 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) -((-4355 (((-174 (-564)) |#1|) 27))) -(((-762 |#1|) (-10 -7 (-15 -4355 ((-174 (-564)) |#1|))) (-404)) (T -762)) -((-4355 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404))))) -(-10 -7 (-15 -4355 ((-174 (-564)) |#1|))) -((-2313 ((|#1| |#1| |#1|) 28)) (-1799 ((|#1| |#1| |#1|) 27)) (-1448 ((|#1| |#1| |#1|) 38)) (-1578 ((|#1| |#1| |#1|) 34)) (-1845 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4176 (((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|) 26))) -(((-763 |#1| |#2|) (-10 -7 (-15 -4176 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -1799 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -1845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1578 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|))) (-705 |#2|) (-363)) (T -763)) -((-1448 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-1578 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-1845 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-2313 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-1799 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-4176 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4))))) -(-10 -7 (-15 -4176 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -1799 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -1845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1578 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|))) -((-3796 (((-687 (-1217)) $ (-1217)) 26)) (-1721 (((-687 (-549)) $ (-549)) 25)) (-1386 (((-768) $ (-128)) 27)) (-2800 (((-687 (-129)) $ (-129)) 24)) (-2721 (((-687 (-1217)) $) 12)) (-3791 (((-687 (-1215)) $) 8)) (-2678 (((-687 (-1214)) $) 10)) (-1356 (((-687 (-549)) $) 13)) (-4005 (((-687 (-547)) $) 9)) (-3687 (((-687 (-546)) $) 11)) (-3633 (((-768) $ (-128)) 7)) (-4350 (((-687 (-129)) $) 14)) (-3413 (((-112) $) 31)) (-1548 (((-687 $) |#1| (-951)) 32)) (-1846 (($ $) 6))) -(((-764 |#1|) (-140) (-1094)) (T -764)) -((-1548 (*1 *2 *3 *4) (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) (-4 *1 (-764 *3)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) -(-13 (-576) (-10 -8 (-15 -1548 ((-687 $) |t#1| (-951))) (-15 -3413 ((-112) $)))) -(((-173) . T) ((-527) . T) ((-576) . T) ((-857) . T)) -((-1509 (((-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)) 71)) (-2359 (((-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) 69)) (-3190 (((-564)) 85))) -(((-765 |#1| |#2|) (-10 -7 (-15 -3190 ((-564))) (-15 -2359 ((-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -1509 ((-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) (-1235 (-564)) (-409 (-564) |#1|)) (T -765)) -((-1509 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2359 (*1 *2) (-12 (-4 *3 (-1235 (-564))) (-5 *2 (-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-3190 (*1 *2) (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 *2 *3))))) -(-10 -7 (-15 -3190 ((-564))) (-15 -2359 ((-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -1509 ((-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) -((-1817 (((-112) $ $) NIL)) (-2237 (((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 20) (($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1702 (((-112) $ $) NIL))) -(((-766) (-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1831 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1831 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2237 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -766)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766))))) -(-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1831 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1831 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2237 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-2882 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 18) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 17)) (-2017 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 20) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 19))) -(((-767 |#1|) (-10 -7 (-15 -2882 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2882 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))))) (-556)) (T -767)) -((-2017 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5))))) -(-10 -7 (-15 -2882 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2882 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1986 (($ $ $) 12)) (-4088 (((-3 $ "failed") $ $) 16)) (-1815 (($ $ (-564)) 13)) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($ $) NIL)) (-1424 (($ $ $) NIL)) (-2949 (((-112) $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2777 (($ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1831 (((-859) $) NIL)) (-1293 (($) 6 T CONST)) (-1300 (($) NIL T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ $ $) NIL))) -(((-768) (-13 (-790) (-723) (-10 -8 (-15 -1424 ($ $ $)) (-15 -1449 ($ $ $)) (-15 -2777 ($ $ $)) (-15 -1922 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -1403 ((-3 $ "failed") $ $)) (-15 -1815 ($ $ (-564))) (-15 -2900 ($ $)) (-6 (-4408 "*"))))) (T -768)) -((-1424 (*1 *1 *1 *1) (-5 *1 (-768))) (-1449 (*1 *1 *1 *1) (-5 *1 (-768))) (-2777 (*1 *1 *1 *1) (-5 *1 (-768))) (-1922 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4347 (-768)) (|:| -1678 (-768)))) (-5 *1 (-768)))) (-1403 (*1 *1 *1 *1) (|partial| -5 *1 (-768))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768)))) (-2900 (*1 *1 *1) (-5 *1 (-768)))) -(-13 (-790) (-723) (-10 -8 (-15 -1424 ($ $ $)) (-15 -1449 ($ $ $)) (-15 -2777 ($ $ $)) (-15 -1922 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -1403 ((-3 $ "failed") $ $)) (-15 -1815 ($ $ (-564))) (-15 -2900 ($ $)) (-6 (-4408 "*")))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-1565 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 94)) (-1294 (($ $ $) 98)) (-3910 (((-112) $ $) 104)) (-2318 (((-112) $ (-767)) NIL)) (-1740 (($ (-641 |#1|)) 26) (($) 17)) (-4328 (($ (-1 (-112) |#1|) $) 82 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2596 (($ $) 84)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) 70 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4406))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 32 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) 103)) (-3174 (($) 15) (($ |#1|) 28) (($ (-641 |#1|)) 23)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) 38)) (-3114 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) 87 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 88)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-1648 (($ $ $) 96)) (-1340 ((|#1| $) 62)) (-3861 (($ |#1| $) 63) (($ |#1| $ (-767)) 85)) (-3840 (((-1114) $) NIL)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1313 ((|#1| $) 61)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 56)) (-2348 (($) 14)) (-1931 (((-641 (-2 (|:| -2511 |#1|) (|:| -3852 (-767)))) $) 55)) (-2727 (($ $ |#1|) NIL) (($ $ $) 97)) (-3977 (($) 16) (($ (-641 |#1|)) 25)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) 68 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 79)) (-3172 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 22)) (-2322 (((-858) $) 49)) (-2451 (($ (-641 |#1|)) 27) (($) 18)) (-1717 (($ (-641 |#1|)) 24)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 102)) (-2059 (((-767) $) 67 (|has| $ (-6 -4406))))) +(((-733 |#1|) (-13 (-732 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -3174 ($)) (-15 -3174 ($ |#1|)) (-15 -3174 ($ (-641 |#1|))) (-15 -1834 ((-641 |#1|) $)) (-15 -3628 ($ |#1| $ (-564))) (-15 -3628 ($ (-1 (-112) |#1|) $ (-564))) (-15 -3175 ($ |#1| $ (-564))) (-15 -3175 ($ (-1 (-112) |#1|) $ (-564))))) (-1094)) (T -733)) +((-3174 (*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-3174 (*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-733 *3)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1094)))) (-3628 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-3628 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-733 *4)))) (-3175 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-3175 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-733 *4))))) +(-13 (-732 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -3174 ($)) (-15 -3174 ($ |#1|)) (-15 -3174 ($ (-641 |#1|))) (-15 -1834 ((-641 |#1|) $)) (-15 -3628 ($ |#1| $ (-564))) (-15 -3628 ($ (-1 (-112) |#1|) $ (-564))) (-15 -3175 ($ |#1| $ (-564))) (-15 -3175 ($ (-1 (-112) |#1|) $ (-564))))) +((-3745 (((-1264) (-1152)) 8))) +(((-734) (-10 -7 (-15 -3745 ((-1264) (-1152))))) (T -734)) +((-3745 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-734))))) +(-10 -7 (-15 -3745 ((-1264) (-1152)))) +((-1312 (((-641 |#1|) (-641 |#1|) (-641 |#1|)) 15))) +(((-735 |#1|) (-10 -7 (-15 -1312 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) (-846)) (T -735)) +((-1312 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3))))) +(-10 -7 (-15 -1312 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 |#2|) $) 139)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 132 (|has| |#1| (-556)))) (-3622 (($ $) 131 (|has| |#1| (-556)))) (-3247 (((-112) $) 129 (|has| |#1| (-556)))) (-3802 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 71 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) 19)) (-2387 (($ $) 70 (|has| |#1| (-38 (-407 (-564)))))) (-3779 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 72 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 73 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) 17 T CONST)) (-2710 (($ $) 123)) (-2689 (((-3 $ "failed") $) 33)) (-1433 (((-948 |#1|) $ (-767)) 101) (((-948 |#1|) $ (-767) (-767)) 100)) (-2506 (((-112) $) 140)) (-4223 (($) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-767) $ |#2|) 103) (((-767) $ |#2| (-767)) 102)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 69 (|has| |#1| (-38 (-407 (-564)))))) (-1492 (((-112) $) 121)) (-2507 (($ $ (-641 |#2|) (-641 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-767)) 105) (($ $ (-641 |#2|) (-641 (-767))) 104)) (-3123 (($ (-1 |#1| |#1|) $) 120)) (-3439 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) 118)) (-2686 ((|#1| $) 117)) (-1418 (((-1152) $) 9)) (-3719 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) 10)) (-2941 (($ $ (-767)) 106)) (-2526 (((-3 $ "failed") $ $) 133 (|has| |#1| (-556)))) (-3571 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (($ $ |#2| $) 114) (($ $ (-641 |#2|) (-641 $)) 113) (($ $ (-641 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-641 $) (-641 $)) 109)) (-1343 (($ $ |#2|) 42) (($ $ (-641 |#2|)) 41) (($ $ |#2| (-767)) 40) (($ $ (-641 |#2|) (-641 (-767))) 39)) (-2073 (((-531 |#2|) $) 119)) (-3836 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 74 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 75 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 76 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 141)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-556))) (($ (-407 (-564))) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3467 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-767)) 108) (($ $ (-641 |#2|) (-641 (-767))) 107)) (-2409 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-2672 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) 130 (|has| |#1| (-556)))) (-3849 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-1511 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 78 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 77 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ |#2|) 38) (($ $ (-641 |#2|)) 37) (($ $ |#2| (-767)) 36) (($ $ (-641 |#2|) (-641 (-767))) 35)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 68 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 128 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 127 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 116) (($ $ |#1|) 115))) +(((-736 |#1| |#2|) (-140) (-1045) (-846)) (T -736)) +((-3467 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-3467 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-3717 (*1 *2 *1 *3) (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3717 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-1433 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3719 (*1 *1 *1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) (-4 *3 (-38 (-407 (-564))))))) +(-13 (-896 |t#2|) (-969 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -3467 ($ $ |t#2| (-767))) (-15 -3467 ($ $ (-641 |t#2|) (-641 (-767)))) (-15 -2941 ($ $ (-767))) (-15 -2507 ($ $ |t#2| (-767))) (-15 -2507 ($ $ (-641 |t#2|) (-641 (-767)))) (-15 -3717 ((-767) $ |t#2|)) (-15 -3717 ((-767) $ |t#2| (-767))) (-15 -1433 ((-948 |t#1|) $ (-767))) (-15 -1433 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $ |t#2|)) (-6 (-998)) (-6 (-1194))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 |#2|) . T) ((-969 |#1| #0# |#2|) . T) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564))))) +((-2375 (((-418 (-1166 |#4|)) (-1166 |#4|)) 30) (((-418 |#4|) |#4|) 26))) +(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 |#4|) |#4|)) (-15 -2375 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -737)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(-10 -7 (-15 -2375 ((-418 |#4|) |#4|)) (-15 -2375 ((-418 (-1166 |#4|)) (-1166 |#4|)))) +((-2339 (((-418 |#4|) |#4| |#2|) 142)) (-2626 (((-418 |#4|) |#4|) NIL)) (-2657 (((-418 (-1166 |#4|)) (-1166 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-2285 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -2375 (-1166 |#4|)) (|:| -3866 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 81)) (-1390 (((-1166 |#3|) (-1166 |#3|) (-564)) 167)) (-3843 (((-641 (-767)) (-1166 |#4|) (-641 |#2|) (-767)) 75)) (-3228 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-767)) (-641 |#3|)) 79)) (-1963 (((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 27)) (-1293 (((-2 (|:| -3429 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564)) 72)) (-2047 (((-564) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564))))) 163)) (-1610 ((|#4| (-564) (-418 |#4|)) 73)) (-3794 (((-112) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564))))) NIL))) +(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2657 ((-418 |#4|) |#4|)) (-15 -2657 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2626 ((-418 |#4|) |#4|)) (-15 -2047 ((-564) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))))) (-15 -2339 ((-418 |#4|) |#4| |#2|)) (-15 -1293 ((-2 (|:| -3429 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -2285 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -2375 (-1166 |#4|)) (|:| -3866 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1963 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1610 (|#4| (-564) (-418 |#4|))) (-15 -3794 ((-112) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))))) (-15 -3228 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-767)) (-641 |#3|))) (-15 -3843 ((-641 (-767)) (-1166 |#4|) (-641 |#2|) (-767))) (-15 -1390 ((-1166 |#3|) (-1166 |#3|) (-564)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -738)) +((-1390 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-846)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-641 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))) (-3228 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) (-5 *7 (-641 (-767))) (-5 *8 (-641 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) (-5 *2 (-641 (-1166 *5))) (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1166 *5)))) (-3794 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-2 (|:| -2375 (-1166 *6)) (|:| -3866 (-564))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))) (-1963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) (|:| |Lfact| (-641 (-2 (|:| -2375 (-1166 *8)) (|:| -3866 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-738 *6 *7 *8 *9)))) (-2285 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-641 (-2 (|:| -2375 (-1166 *9)) (|:| -3866 (-564))))))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))) (-1293 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| -3429 (-1166 *9)) (|:| |polval| (-1166 *8)))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))) (-2339 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2375 (-1166 *6)) (|:| -3866 (-564))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-2626 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) (-2657 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2657 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))) +(-10 -7 (-15 -2657 ((-418 |#4|) |#4|)) (-15 -2657 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2626 ((-418 |#4|) |#4|)) (-15 -2047 ((-564) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))))) (-15 -2339 ((-418 |#4|) |#4| |#2|)) (-15 -1293 ((-2 (|:| -3429 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -2285 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -2375 (-1166 |#4|)) (|:| -3866 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1963 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1610 (|#4| (-564) (-418 |#4|))) (-15 -3794 ((-112) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))) (-641 (-2 (|:| -2375 (-1166 |#3|)) (|:| -3866 (-564)))))) (-15 -3228 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-767)) (-641 |#3|))) (-15 -3843 ((-641 (-767)) (-1166 |#4|) (-641 |#2|) (-767))) (-15 -1390 ((-1166 |#3|) (-1166 |#3|) (-564)))) +((-3996 (($ $ (-917)) 17))) +(((-739 |#1| |#2|) (-10 -8 (-15 -3996 (|#1| |#1| (-917)))) (-740 |#2|) (-172)) (T -739)) +NIL +(-10 -8 (-15 -3996 (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3865 (($ $ (-917)) 28)) (-3996 (($ $ (-917)) 33)) (-3200 (($ $ (-917)) 29)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2617 (($ $ $) 25)) (-2322 (((-858) $) 11)) (-1553 (($ $ $ $) 26)) (-2366 (($ $ $) 24)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-740 |#1|) (-140) (-172)) (T -740)) +((-3996 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172))))) +(-13 (-757) (-713 |t#1|) (-10 -8 (-15 -3996 ($ $ (-917))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-1461 (((-1031) (-685 (-225)) (-564) (-112) (-564)) 25)) (-2570 (((-1031) (-685 (-225)) (-564) (-112) (-564)) 24))) +(((-741) (-10 -7 (-15 -2570 ((-1031) (-685 (-225)) (-564) (-112) (-564))) (-15 -1461 ((-1031) (-685 (-225)) (-564) (-112) (-564))))) (T -741)) +((-1461 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))) (-2570 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741))))) +(-10 -7 (-15 -2570 ((-1031) (-685 (-225)) (-564) (-112) (-564))) (-15 -1461 ((-1031) (-685 (-225)) (-564) (-112) (-564)))) +((-2879 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-2326 (((-1031) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-3908 (((-1031) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) 32))) +(((-742) (-10 -7 (-15 -3908 ((-1031) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -2326 ((-1031) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2879 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -742)) +((-2879 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-2326 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-3908 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) (-5 *2 (-1031)) (-5 *1 (-742))))) +(-10 -7 (-15 -3908 ((-1031) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -2326 ((-1031) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2879 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))))) +((-2267 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 34)) (-3644 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 33)) (-3511 (((-1031) (-564) (-685 (-225)) (-564)) 32)) (-1365 (((-1031) (-564) (-685 (-225)) (-564)) 31)) (-3583 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 30)) (-4347 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-4120 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-1383 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-2505 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-1463 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-3507 (((-1031) (-564) (-685 (-225)) (-564)) 22)) (-3110 (((-1031) (-564) (-685 (-225)) (-564)) 21))) +(((-743) (-10 -7 (-15 -3110 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3507 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -1463 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2505 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1383 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4120 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4347 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3583 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1365 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3511 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3644 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2267 ((-1031) (-564) (-564) (-685 (-225)) (-564))))) (T -743)) +((-2267 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3644 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3511 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1365 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3583 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-4347 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-4120 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1383 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2505 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1463 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3507 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3110 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743))))) +(-10 -7 (-15 -3110 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3507 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -1463 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2505 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1383 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4120 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4347 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3583 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1365 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3511 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3644 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2267 ((-1031) (-564) (-564) (-685 (-225)) (-564)))) +((-2594 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4365 (((-1031) (-685 (-225)) (-685 (-225)) (-564) (-564)) 51)) (-2699 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1906 (((-1031) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-2628 (((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-4136 (((-1031) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-3289 (((-1031) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-1774 (((-1031) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-2044 (((-1031) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) 38)) (-2910 (((-1031) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) 37)) (-3073 (((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) 33)) (-1357 (((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) 32))) +(((-744) (-10 -7 (-15 -1357 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -3073 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -2910 ((-1031) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -2044 ((-1031) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -1774 ((-1031) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3289 ((-1031) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -4136 ((-1031) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2628 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1906 ((-1031) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2699 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -4365 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -2594 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -744)) +((-2594 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-4365 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2699 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1906 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2628 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-4136 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3289 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1774 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2044 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2910 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3073 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1357 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) (-5 *2 (-1031)) (-5 *1 (-744))))) +(-10 -7 (-15 -1357 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -3073 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -2910 ((-1031) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -2044 ((-1031) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286))))) (-15 -1774 ((-1031) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3289 ((-1031) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -4136 ((-1031) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2628 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1906 ((-1031) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2699 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -4365 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -2594 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))))) +((-1936 (((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2759 (((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3089 (((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-2001 (((-1031) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-1896 (((-1031) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3363 (((-1031) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3488 (((-1031) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-3255 (((-1031) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-745) (-10 -7 (-15 -3255 ((-1031) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3488 ((-1031) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3363 ((-1031) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1896 ((-1031) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2001 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3089 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2759 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2759 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -1936 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -745)) +((-1936 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2759 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2759 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3089 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2001 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-1896 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3363 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3488 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3255 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(-10 -7 (-15 -3255 ((-1031) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3488 ((-1031) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3363 ((-1031) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1896 ((-1031) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2001 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3089 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2759 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2759 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -1936 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2613 (((-1031) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)) 45)) (-1581 (((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-1795 (((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 23))) +(((-746) (-10 -7 (-15 -1795 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1581 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2613 ((-1031) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))) (T -746)) +((-2613 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))) (-1581 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) (-5 *1 (-746)))) (-1795 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-746))))) +(-10 -7 (-15 -1795 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1581 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2613 ((-1031) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)))) +((-3194 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)) 35)) (-2857 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-3152 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564)) 33)) (-2190 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-2854 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-2025 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564)) 27)) (-1621 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 24)) (-3985 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 23)) (-3272 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564)) 22)) (-1559 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 21))) +(((-747) (-10 -7 (-15 -1559 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3272 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3985 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1621 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2025 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2854 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2190 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3152 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2857 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -3194 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))) (T -747)) +((-3194 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2857 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3152 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2190 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2854 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2025 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-1621 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3985 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3272 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-1559 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747))))) +(-10 -7 (-15 -1559 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3272 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3985 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1621 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2025 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2854 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2190 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3152 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2857 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -3194 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)))) +((-3505 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 45)) (-2157 (((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564)) 44)) (-4070 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 43)) (-1348 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 42)) (-3675 (((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564)) 41)) (-3242 (((-1031) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 40)) (-2026 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564)) 39)) (-3930 (((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564))) 38)) (-1859 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564)) 35)) (-4005 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564)) 34)) (-2155 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564)) 33)) (-1668 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 32)) (-1590 (((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564)) 31)) (-3227 (((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-3380 (((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-1510 (((-1031) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564)) 28)) (-1548 (((-1031) (-564) (-685 (-225)) (-225) (-564)) 24)) (-3653 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 21))) +(((-748) (-10 -7 (-15 -3653 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1548 ((-1031) (-564) (-685 (-225)) (-225) (-564))) (-15 -1510 ((-1031) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -3380 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -3227 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -1590 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1668 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2155 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -4005 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -1859 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3930 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -2026 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -3242 ((-1031) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3675 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1348 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4070 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -2157 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3505 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))) (T -748)) +((-3505 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2157 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4070 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1348 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3675 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3242 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2026 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3930 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1859 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4005 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2155 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1668 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1590 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3227 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3380 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1510 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1548 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3653 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748))))) +(-10 -7 (-15 -3653 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1548 ((-1031) (-564) (-685 (-225)) (-225) (-564))) (-15 -1510 ((-1031) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -3380 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -3227 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -1590 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1668 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2155 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -4005 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -1859 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3930 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -2026 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -3242 ((-1031) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3675 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1348 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4070 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -2157 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3505 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)))) +((-4258 (((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)) 63)) (-3761 (((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4200 (((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-2810 (((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564)) 51)) (-1689 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2812 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1764 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2712 (((-1031) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-749) (-10 -7 (-15 -2712 ((-1031) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1764 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2812 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -1689 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -2810 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -4200 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3761 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4258 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))) (T -749)) +((-4258 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3761 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4200 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2810 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-1689 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2812 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-1764 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2712 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) +(-10 -7 (-15 -2712 ((-1031) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1764 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2812 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -1689 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -2810 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -4200 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3761 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4258 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)))) +((-2428 (((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 47)) (-1588 (((-1031) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564)) 46)) (-1443 (((-1031) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 45)) (-1318 (((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 40)) (-3343 (((-1031) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564)) 39)) (-1871 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-564)) 36)) (-3755 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564)) 35)) (-1845 (((-1031) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564)) 34)) (-4228 (((-1031) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564)) 33)) (-2717 (((-1031) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564)) 32))) +(((-750) (-10 -7 (-15 -2717 ((-1031) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -4228 ((-1031) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -1845 ((-1031) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -3755 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1871 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -3343 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -1318 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1443 ((-1031) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1588 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -2428 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -750)) +((-2428 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1588 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1443 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1318 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3343 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1871 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3755 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1845 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-4228 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2717 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-750))))) +(-10 -7 (-15 -2717 ((-1031) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -4228 ((-1031) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -1845 ((-1031) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -3755 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1871 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -3343 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -1318 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1443 ((-1031) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1588 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -2428 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)))) +((-4236 (((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 80)) (-4285 (((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 69)) (-1551 (((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-1394 (((-1031) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 37)) (-1827 (((-1031) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564)) 33)) (-1633 (((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-3427 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-4378 (((-1031) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-2279 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-2995 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564)) 26)) (-2784 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 25)) (-4054 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-1739 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-1533 (((-1031) (-685 (-225)) (-564) (-564) (-564) (-564)) 22)) (-3130 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 21))) +(((-751) (-10 -7 (-15 -3130 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -1533 ((-1031) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1739 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4054 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2784 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2995 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2279 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4378 ((-1031) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3427 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1633 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1827 ((-1031) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -1394 ((-1031) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1551 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -1551 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -4285 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4236 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -751)) +((-4236 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-4285 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1551 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1551 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1394 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1827 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1633 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3427 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-4378 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2279 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2995 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2784 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-4054 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1739 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1533 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3130 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751))))) +(-10 -7 (-15 -3130 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -1533 ((-1031) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1739 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4054 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2784 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2995 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2279 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4378 ((-1031) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3427 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1633 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1827 ((-1031) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -1394 ((-1031) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1551 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -1551 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -4285 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4236 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)))) +((-3877 (((-1031) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-3128 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564)) 60)) (-1542 (((-1031) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3841 (((-1031) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 37)) (-3036 (((-1031) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564)) 36)) (-2811 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 33)) (-3522 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225))) 32)) (-1694 (((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564)) 28)) (-1699 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 27)) (-1448 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 26)) (-3593 (((-1031) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 22))) +(((-752) (-10 -7 (-15 -3593 ((-1031) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1448 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1699 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1694 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -3522 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -2811 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3036 ((-1031) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3841 ((-1031) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -1542 ((-1031) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3128 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3877 ((-1031) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -752)) +((-3877 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3128 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1542 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3841 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3036 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2811 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3522 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1694 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1699 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1448 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3593 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752))))) +(-10 -7 (-15 -3593 ((-1031) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1448 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1699 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1694 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -3522 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -2811 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3036 ((-1031) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3841 ((-1031) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -1542 ((-1031) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3128 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3877 ((-1031) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))))) +((-2359 (((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))) 29)) (-1932 (((-1031) (-1152) (-564) (-564) (-685 (-225))) 28)) (-1493 (((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225))) 27)) (-2605 (((-1031) (-564) (-564) (-564) (-685 (-225))) 21))) +(((-753) (-10 -7 (-15 -2605 ((-1031) (-564) (-564) (-564) (-685 (-225)))) (-15 -1493 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -1932 ((-1031) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2359 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))) (T -753)) +((-2359 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-1932 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-1493 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2605 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-753))))) +(-10 -7 (-15 -2605 ((-1031) (-564) (-564) (-564) (-685 (-225)))) (-15 -1493 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -1932 ((-1031) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2359 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))))) +((-2633 (((-1031) (-225) (-225) (-225) (-225) (-564)) 62)) (-3778 (((-1031) (-225) (-225) (-225) (-564)) 61)) (-4138 (((-1031) (-225) (-225) (-225) (-564)) 60)) (-3127 (((-1031) (-225) (-225) (-564)) 59)) (-1346 (((-1031) (-225) (-564)) 58)) (-3620 (((-1031) (-225) (-564)) 57)) (-3590 (((-1031) (-225) (-564)) 56)) (-3954 (((-1031) (-225) (-564)) 55)) (-2715 (((-1031) (-225) (-564)) 54)) (-3605 (((-1031) (-225) (-564)) 53)) (-3276 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 52)) (-1521 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 51)) (-2566 (((-1031) (-225) (-564)) 50)) (-1427 (((-1031) (-225) (-564)) 49)) (-3205 (((-1031) (-225) (-564)) 48)) (-2634 (((-1031) (-225) (-564)) 47)) (-3529 (((-1031) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564)) 46)) (-2061 (((-1031) (-1152) (-169 (-225)) (-1152) (-564)) 45)) (-4004 (((-1031) (-1152) (-169 (-225)) (-1152) (-564)) 44)) (-3997 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 43)) (-4036 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 42)) (-3420 (((-1031) (-225) (-564)) 39)) (-3854 (((-1031) (-225) (-564)) 38)) (-1961 (((-1031) (-225) (-564)) 37)) (-3749 (((-1031) (-225) (-564)) 36)) (-2116 (((-1031) (-225) (-564)) 35)) (-3856 (((-1031) (-225) (-564)) 34)) (-2927 (((-1031) (-225) (-564)) 33)) (-3171 (((-1031) (-225) (-564)) 32)) (-3576 (((-1031) (-225) (-564)) 31)) (-2101 (((-1031) (-225) (-564)) 30)) (-2003 (((-1031) (-225) (-225) (-225) (-564)) 29)) (-4010 (((-1031) (-225) (-564)) 28)) (-3061 (((-1031) (-225) (-564)) 27)) (-2370 (((-1031) (-225) (-564)) 26)) (-3827 (((-1031) (-225) (-564)) 25)) (-2700 (((-1031) (-225) (-564)) 24)) (-3888 (((-1031) (-169 (-225)) (-564)) 21))) +(((-754) (-10 -7 (-15 -3888 ((-1031) (-169 (-225)) (-564))) (-15 -2700 ((-1031) (-225) (-564))) (-15 -3827 ((-1031) (-225) (-564))) (-15 -2370 ((-1031) (-225) (-564))) (-15 -3061 ((-1031) (-225) (-564))) (-15 -4010 ((-1031) (-225) (-564))) (-15 -2003 ((-1031) (-225) (-225) (-225) (-564))) (-15 -2101 ((-1031) (-225) (-564))) (-15 -3576 ((-1031) (-225) (-564))) (-15 -3171 ((-1031) (-225) (-564))) (-15 -2927 ((-1031) (-225) (-564))) (-15 -3856 ((-1031) (-225) (-564))) (-15 -2116 ((-1031) (-225) (-564))) (-15 -3749 ((-1031) (-225) (-564))) (-15 -1961 ((-1031) (-225) (-564))) (-15 -3854 ((-1031) (-225) (-564))) (-15 -3420 ((-1031) (-225) (-564))) (-15 -4036 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3997 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4004 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2061 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3529 ((-1031) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2634 ((-1031) (-225) (-564))) (-15 -3205 ((-1031) (-225) (-564))) (-15 -1427 ((-1031) (-225) (-564))) (-15 -2566 ((-1031) (-225) (-564))) (-15 -1521 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3276 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3605 ((-1031) (-225) (-564))) (-15 -2715 ((-1031) (-225) (-564))) (-15 -3954 ((-1031) (-225) (-564))) (-15 -3590 ((-1031) (-225) (-564))) (-15 -3620 ((-1031) (-225) (-564))) (-15 -1346 ((-1031) (-225) (-564))) (-15 -3127 ((-1031) (-225) (-225) (-564))) (-15 -4138 ((-1031) (-225) (-225) (-225) (-564))) (-15 -3778 ((-1031) (-225) (-225) (-225) (-564))) (-15 -2633 ((-1031) (-225) (-225) (-225) (-225) (-564))))) (T -754)) +((-2633 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3778 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4138 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3127 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3276 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1521 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3529 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2061 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4004 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3997 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4036 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2116 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3171 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2003 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(-10 -7 (-15 -3888 ((-1031) (-169 (-225)) (-564))) (-15 -2700 ((-1031) (-225) (-564))) (-15 -3827 ((-1031) (-225) (-564))) (-15 -2370 ((-1031) (-225) (-564))) (-15 -3061 ((-1031) (-225) (-564))) (-15 -4010 ((-1031) (-225) (-564))) (-15 -2003 ((-1031) (-225) (-225) (-225) (-564))) (-15 -2101 ((-1031) (-225) (-564))) (-15 -3576 ((-1031) (-225) (-564))) (-15 -3171 ((-1031) (-225) (-564))) (-15 -2927 ((-1031) (-225) (-564))) (-15 -3856 ((-1031) (-225) (-564))) (-15 -2116 ((-1031) (-225) (-564))) (-15 -3749 ((-1031) (-225) (-564))) (-15 -1961 ((-1031) (-225) (-564))) (-15 -3854 ((-1031) (-225) (-564))) (-15 -3420 ((-1031) (-225) (-564))) (-15 -4036 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3997 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4004 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2061 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3529 ((-1031) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2634 ((-1031) (-225) (-564))) (-15 -3205 ((-1031) (-225) (-564))) (-15 -1427 ((-1031) (-225) (-564))) (-15 -2566 ((-1031) (-225) (-564))) (-15 -1521 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3276 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3605 ((-1031) (-225) (-564))) (-15 -2715 ((-1031) (-225) (-564))) (-15 -3954 ((-1031) (-225) (-564))) (-15 -3590 ((-1031) (-225) (-564))) (-15 -3620 ((-1031) (-225) (-564))) (-15 -1346 ((-1031) (-225) (-564))) (-15 -3127 ((-1031) (-225) (-225) (-564))) (-15 -4138 ((-1031) (-225) (-225) (-225) (-564))) (-15 -3778 ((-1031) (-225) (-225) (-225) (-564))) (-15 -2633 ((-1031) (-225) (-225) (-225) (-225) (-564)))) +((-1697 (((-1264)) 21)) (-2663 (((-1152)) 32)) (-3728 (((-1152)) 31)) (-3168 (((-1098) (-1170) (-685 (-564))) 46) (((-1098) (-1170) (-685 (-225))) 42)) (-4296 (((-112)) 19)) (-4051 (((-1152) (-1152)) 35))) +(((-755) (-10 -7 (-15 -3728 ((-1152))) (-15 -2663 ((-1152))) (-15 -4051 ((-1152) (-1152))) (-15 -3168 ((-1098) (-1170) (-685 (-225)))) (-15 -3168 ((-1098) (-1170) (-685 (-564)))) (-15 -4296 ((-112))) (-15 -1697 ((-1264))))) (T -755)) +((-1697 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-755)))) (-4296 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) (-5 *1 (-755)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) (-5 *1 (-755)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))) (-2663 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))) (-3728 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755))))) +(-10 -7 (-15 -3728 ((-1152))) (-15 -2663 ((-1152))) (-15 -4051 ((-1152) (-1152))) (-15 -3168 ((-1098) (-1170) (-685 (-225)))) (-15 -3168 ((-1098) (-1170) (-685 (-564)))) (-15 -4296 ((-112))) (-15 -1697 ((-1264)))) +((-2617 (($ $ $) 10)) (-1553 (($ $ $ $) 9)) (-2366 (($ $ $) 12))) +(((-756 |#1|) (-10 -8 (-15 -2366 (|#1| |#1| |#1|)) (-15 -2617 (|#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| |#1| |#1|))) (-757)) (T -756)) +NIL +(-10 -8 (-15 -2366 (|#1| |#1| |#1|)) (-15 -2617 (|#1| |#1| |#1|)) (-15 -1553 (|#1| |#1| |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3865 (($ $ (-917)) 28)) (-3200 (($ $ (-917)) 29)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2617 (($ $ $) 25)) (-2322 (((-858) $) 11)) (-1553 (($ $ $ $) 26)) (-2366 (($ $ $) 24)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 27))) +(((-757) (-140)) (T -757)) +((-1553 (*1 *1 *1 *1 *1) (-4 *1 (-757))) (-2617 (*1 *1 *1 *1) (-4 *1 (-757))) (-2366 (*1 *1 *1 *1) (-4 *1 (-757)))) +(-13 (-21) (-716) (-10 -8 (-15 -1553 ($ $ $ $)) (-15 -2617 ($ $ $)) (-15 -2366 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-716) . T) ((-1094) . T)) +((-2322 (((-858) $) NIL) (($ (-564)) 10))) +(((-758 |#1|) (-10 -8 (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-759)) (T -758)) +NIL +(-10 -8 (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3706 (((-3 $ "failed") $) 40)) (-3865 (($ $ (-917)) 28) (($ $ (-767)) 35)) (-2689 (((-3 $ "failed") $) 38)) (-1828 (((-112) $) 34)) (-1529 (((-3 $ "failed") $) 39)) (-3200 (($ $ (-917)) 29) (($ $ (-767)) 36)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2617 (($ $ $) 25)) (-2322 (((-858) $) 11) (($ (-564)) 31)) (-3179 (((-767)) 32 T CONST)) (-1553 (($ $ $ $) 26)) (-2366 (($ $ $) 24)) (-2389 (($) 18 T CONST)) (-2403 (($) 33 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 30) (($ $ (-767)) 37)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 27))) +(((-759) (-140)) (T -759)) +((-3179 (*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-759))))) +(-13 (-757) (-718) (-10 -8 (-15 -3179 ((-767)) -2255) (-15 -2322 ($ (-564))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-716) . T) ((-718) . T) ((-757) . T) ((-1094) . T)) +((-4344 (((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|) 33)) (-4163 (((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|) 23)) (-2117 (((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170)) 20) (((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564))))) 19))) +(((-760 |#1|) (-10 -7 (-15 -2117 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -2117 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -4163 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -4344 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-844))) (T -760)) +((-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 *4))))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-2117 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *5)) (-4 *5 (-13 (-363) (-844))))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -2117 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -2117 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -4163 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -4344 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) +((-2735 (((-174 (-564)) |#1|) 27))) +(((-761 |#1|) (-10 -7 (-15 -2735 ((-174 (-564)) |#1|))) (-404)) (T -761)) +((-2735 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-761 *3)) (-4 *3 (-404))))) +(-10 -7 (-15 -2735 ((-174 (-564)) |#1|))) +((-1637 ((|#1| |#1| |#1|) 28)) (-4368 ((|#1| |#1| |#1|) 27)) (-4020 ((|#1| |#1| |#1|) 38)) (-2872 ((|#1| |#1| |#1|) 34)) (-3555 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1517 (((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|) 26))) +(((-762 |#1| |#2|) (-10 -7 (-15 -1517 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -3555 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|))) (-704 |#2|) (-363)) (T -762)) +((-4020 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3555 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-1637 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4368 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-1517 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4))))) +(-10 -7 (-15 -1517 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -3555 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|))) +((-2007 (((-687 (-1217)) $ (-1217)) 26)) (-1772 (((-687 (-549)) $ (-549)) 25)) (-3067 (((-767) $ (-128)) 27)) (-4012 (((-687 (-129)) $ (-129)) 24)) (-1397 (((-687 (-1217)) $) 12)) (-1946 (((-687 (-1215)) $) 8)) (-4085 (((-687 (-1214)) $) 10)) (-2492 (((-687 (-549)) $) 13)) (-2265 (((-687 (-547)) $) 9)) (-2280 (((-687 (-546)) $) 11)) (-3102 (((-767) $ (-128)) 7)) (-2690 (((-687 (-129)) $) 14)) (-1538 (((-112) $) 31)) (-3752 (((-687 $) |#1| (-950)) 32)) (-3566 (($ $) 6))) +(((-763 |#1|) (-140) (-1094)) (T -763)) +((-3752 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) (-4 *1 (-763 *3)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(-13 (-576) (-10 -8 (-15 -3752 ((-687 $) |t#1| (-950))) (-15 -1538 ((-112) $)))) +(((-173) . T) ((-527) . T) ((-576) . T) ((-856) . T)) +((-3370 (((-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)) 71)) (-2112 (((-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) 69)) (-3392 (((-564)) 85))) +(((-764 |#1| |#2|) (-10 -7 (-15 -3392 ((-564))) (-15 -2112 ((-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -3370 ((-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) (-1235 (-564)) (-409 (-564) |#1|)) (T -764)) +((-3370 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2112 (*1 *2) (-12 (-4 *3 (-1235 (-564))) (-5 *2 (-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-3392 (*1 *2) (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 *2 *3))))) +(-10 -7 (-15 -3392 ((-564))) (-15 -2112 ((-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -3370 ((-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) +((-2310 (((-112) $ $) NIL)) (-1781 (((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 20) (($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-2921 (((-112) $ $) NIL))) +(((-765) (-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2322 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2322 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1781 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -765)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765))))) +(-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2322 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2322 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1781 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-2382 (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))) 18) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170))) 17)) (-1630 (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))) 20) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170))) 19))) +(((-766 |#1|) (-10 -7 (-15 -2382 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -2382 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))))) (-556)) (T -766)) +((-1630 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))) +(-10 -7 (-15 -2382 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -2382 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2568 (($ $ $) 12)) (-1862 (((-3 $ "failed") $ $) 16)) (-2308 (($ $ (-564)) 13)) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($ $) NIL)) (-2552 (($ $ $) NIL)) (-1828 (((-112) $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3235 (($ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-2322 (((-858) $) NIL)) (-2389 (($) 6 T CONST)) (-2403 (($) NIL T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ $ $) NIL))) +(((-767) (-13 (-789) (-722) (-10 -8 (-15 -2552 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -3235 ($ $ $)) (-15 -3153 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -2526 ((-3 $ "failed") $ $)) (-15 -2308 ($ $ (-564))) (-15 -3860 ($ $)) (-6 (-4408 "*"))))) (T -767)) +((-2552 (*1 *1 *1 *1) (-5 *1 (-767))) (-2574 (*1 *1 *1 *1) (-5 *1 (-767))) (-3235 (*1 *1 *1 *1) (-5 *1 (-767))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2666 (-767)) (|:| -2598 (-767)))) (-5 *1 (-767)))) (-2526 (*1 *1 *1 *1) (|partial| -5 *1 (-767))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-767)))) (-3860 (*1 *1 *1) (-5 *1 (-767)))) +(-13 (-789) (-722) (-10 -8 (-15 -2552 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -3235 ($ $ $)) (-15 -3153 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -2526 ((-3 $ "failed") $ $)) (-15 -2308 ($ $ (-564))) (-15 -3860 ($ $)) (-6 (-4408 "*")))) ((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2017 (((-3 |#2| "failed") |#2| |#2| (-114) (-1170)) 37))) -(((-769 |#1| |#2|) (-10 -7 (-15 -2017 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -769)) -((-2017 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956)))))) -(-10 -7 (-15 -2017 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) -((-1831 (((-771) |#1|) 8))) -(((-770 |#1|) (-10 -7 (-15 -1831 ((-771) |#1|))) (-1209)) (T -770)) -((-1831 (*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209))))) -(-10 -7 (-15 -1831 ((-771) |#1|))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 7)) (-1702 (((-112) $ $) 9))) -(((-771) (-1094)) (T -771)) +((-1630 (((-3 |#2| "failed") |#2| |#2| (-114) (-1170)) 37))) +(((-768 |#1| |#2|) (-10 -7 (-15 -1630 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955))) (T -768)) +((-1630 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-955)))))) +(-10 -7 (-15 -1630 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) +((-2322 (((-770) |#1|) 8))) +(((-769 |#1|) (-10 -7 (-15 -2322 ((-770) |#1|))) (-1209)) (T -769)) +((-2322 (*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1209))))) +(-10 -7 (-15 -2322 ((-770) |#1|))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 7)) (-2921 (((-112) $ $) 9))) +(((-770) (-1094)) (T -770)) NIL (-1094) -((-3797 ((|#2| |#4|) 35))) -(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3797 (|#2| |#4|))) (-452) (-1235 |#1|) (-721 |#1| |#2|) (-1235 |#3|)) (T -772)) -((-3797 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5))))) -(-10 -7 (-15 -3797 (|#2| |#4|))) -((-3733 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3127 (((-1264) (-1152) (-1152) |#4| |#5|) 33)) (-1896 ((|#4| |#4| |#5|) 73)) (-2374 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|) 78)) (-3717 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|) 16))) -(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3733 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1896 (|#4| |#4| |#5|)) (-15 -2374 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3127 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -3717 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -773)) -((-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3127 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264)) (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))) (-2374 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1896 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3)) (-4 *3 (-1066 *4 *5 *6 *2)))) (-3733 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(-10 -7 (-15 -3733 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1896 (|#4| |#4| |#5|)) (-15 -2374 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3127 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -3717 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|))) -((-2347 (((-3 (-1166 (-1166 |#1|)) "failed") |#4|) 53)) (-3757 (((-641 |#4|) |#4|) 24)) (-3962 ((|#4| |#4|) 19))) -(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 ((-641 |#4|) |#4|)) (-15 -2347 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -3962 (|#4| |#4|))) (-349) (-329 |#1|) (-1235 |#2|) (-1235 |#3|) (-918)) (T -774)) -((-3962 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918)))) (-2347 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918))))) -(-10 -7 (-15 -3757 ((-641 |#4|) |#4|)) (-15 -2347 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -3962 (|#4| |#4|))) -((-2333 (((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|)) 74)) (-3613 (((-641 (-768)) |#1|) 20))) -(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2333 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -3613 ((-641 (-768)) |#1|))) (-1235 |#4|) (-790) (-847) (-307) (-946 |#4| |#2| |#3|)) (T -775)) -((-3613 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5)))) (-2333 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307)) (-4 *10 (-946 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-641 (-1166 *10))) (|:| |dterm| (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| *10))))) (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) (-5 *5 (-641 *10))))) -(-10 -7 (-15 -2333 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -3613 ((-641 (-768)) |#1|))) -((-3998 (((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|) 31)) (-2236 (((-641 |#1|) (-685 (-407 (-564))) |#1|) 21)) (-1349 (((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170)) 18) (((-949 (-407 (-564))) (-685 (-407 (-564)))) 17))) -(((-776 |#1|) (-10 -7 (-15 -1349 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -1349 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -2236 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3998 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) (-13 (-363) (-845))) (T -776)) -((-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *4)))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-2236 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-363) (-845))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845)))))) -(-10 -7 (-15 -1349 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -1349 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -2236 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3998 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 36)) (-3209 (((-641 |#2|) $) NIL)) (-3040 (((-1166 $) $ |#2|) NIL) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 |#2|)) NIL)) (-4045 (($ $) 30)) (-2752 (((-112) $ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) 108 (|has| |#1| (-556)))) (-1828 (((-641 $) $ $) 121 (|has| |#1| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) NIL (-4078 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) NIL (-4078 (-12 (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564))))) (-4338 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564))))) (-4338 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-989 (-564))))))) (((-3 (-1119 |#1| |#2|) "failed") $) 21)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4078 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (-4078 (-12 (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564))))) (-4338 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564))))) (-4338 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-989 (-564))))))) (((-1119 |#1| |#2|) $) NIL)) (-1357 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-556)))) (-3396 (($ $) NIL) (($ $ |#2|) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3827 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1371 (((-112) $) NIL)) (-1330 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 79)) (-1695 (($ $) 134 (|has| |#1| (-452)))) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2032 (($ $) NIL (|has| |#1| (-556)))) (-3507 (($ $) NIL (|has| |#1| (-556)))) (-2376 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3748 (($ $ $) 77) (($ $ $ |#2|) NIL)) (-2055 (($ $ |#1| (-531 |#2|) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2949 (((-112) $) 56)) (-4128 (((-768) $) NIL)) (-2021 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1707 (($ $ $ $ $) 105 (|has| |#1| (-556)))) (-1543 ((|#2| $) 22)) (-3198 (($ (-1166 |#1|) |#2|) NIL) (($ (-1166 $) |#2|) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 38) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1387 (($ $ $) 62)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#2|) NIL)) (-1784 (((-112) $) NIL)) (-1826 (((-531 |#2|) $) NIL) (((-768) $ |#2|) NIL) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-1305 (((-768) $) 23)) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2169 (((-3 |#2| "failed") $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-452)))) (-3208 (($ $) NIL (|has| |#1| (-452)))) (-4318 (((-641 $) $) NIL)) (-3161 (($ $) 39)) (-2110 (($ $) NIL (|has| |#1| (-452)))) (-3710 (((-641 $) $) 43)) (-2753 (($ $) 41)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1704 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2491 (-768))) $ $) 94)) (-3915 (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $) 76) (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $ |#2|) NIL)) (-4272 (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $) NIL) (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $ |#2|) NIL)) (-2031 (($ $ $) 81) (($ $ $ |#2|) NIL)) (-2070 (($ $ $) 84) (($ $ $ |#2|) NIL)) (-2723 (((-1152) $) NIL)) (-2624 (($ $ $) 123 (|has| |#1| (-556)))) (-2983 (((-641 $) $) 32)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| |#2|) (|:| -1558 (-768))) "failed") $) NIL)) (-4281 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-2356 (($ $ $) NIL)) (-2884 (($ $) 24)) (-3984 (((-112) $ $) NIL)) (-3253 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1482 (($ $ $) NIL)) (-4202 (($ $) 26)) (-2780 (((-1114) $) NIL)) (-4197 (((-2 (|:| -2777 $) (|:| |coef2| $)) $ $) 114 (|has| |#1| (-556)))) (-2180 (((-2 (|:| -2777 $) (|:| |coef1| $)) $ $) 111 (|has| |#1| (-556)))) (-3326 (((-112) $) 55)) (-3341 ((|#1| $) 57)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 ((|#1| |#1| $) 131 (|has| |#1| (-452))) (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-3848 (((-2 (|:| -2777 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 117 (|has| |#1| (-556)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-556)))) (-3916 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3542 (($ $ |#1|) 126 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-641 |#2|) (-641 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-641 |#2|) (-641 $)) NIL)) (-3190 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3534 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1619 (((-531 |#2|) $) NIL) (((-768) $ |#2|) 45) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-2248 (($ $) NIL)) (-2281 (($ $) 35)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4078 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4338 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (|has| |#2| (-612 (-1170)))) (((-1152) $) NIL (-12 (|has| |#1| (-1035 (-564))) (|has| |#2| (-612 (-1170))))) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170))))) (-3008 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170)))) (((-1119 |#1| |#2|) $) 18) (($ (-1119 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) 47) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) 13 T CONST)) (-2683 (((-3 (-112) "failed") $ $) NIL)) (-1300 (($) 37 T CONST)) (-1892 (($ $ $ $ (-768)) 103 (|has| |#1| (-556)))) (-2891 (($ $ $ (-768)) 102 (|has| |#1| (-556)))) (-3435 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) 73)) (-1797 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) 69)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL))) -(((-777 |#1| |#2|) (-13 (-1060 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1035 (-1119 |#1| |#2|))) (-1046) (-847)) (T -777)) -NIL -(-13 (-1060 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1035 (-1119 |#1| |#2|))) -((-2449 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 13))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2449 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)))) (-1046) (-1046)) (T -778)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6))))) -(-10 -7 (-15 -2449 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 12)) (-3151 (((-1259 |#1|) $ (-768)) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-1730 (($ (-1166 |#1|)) NIL)) (-3040 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1455 (((-641 $) $ $) 54 (|has| |#1| (-556)))) (-2749 (($ $ $) 50 (|has| |#1| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3048 (($ $ (-768)) NIL)) (-1803 (($ $ (-768)) NIL)) (-2011 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL) (((-3 (-1166 |#1|) "failed") $) 10)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL) (((-1166 |#1|) $) NIL)) (-1357 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3566 (($ $ $) NIL)) (-3590 (($ $ $) 87 (|has| |#1| (-556)))) (-1330 (((-2 (|:| -2860 |#1|) (|:| -4347 $) (|:| -1678 $)) $ $) 86 (|has| |#1| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-768) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2155 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3198 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2325 (($ $ (-768)) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-1387 (($ $ $) 27)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1076)) NIL) (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1826 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-768) (-768)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3478 (((-1166 |#1|) $) NIL)) (-2169 (((-3 (-1076) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1704 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2491 (-768))) $ $) 37)) (-1629 (($ $ $) 41)) (-3171 (($ $ $) 47)) (-3915 (((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $) 46)) (-2723 (((-1152) $) NIL)) (-2624 (($ $ $) 56 (|has| |#1| (-556)))) (-2436 (((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768)) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-1076)) (|:| -1558 (-768))) "failed") $) NIL)) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2884 (($) NIL (|has| |#1| (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-4197 (((-2 (|:| -2777 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-2180 (((-2 (|:| -2777 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-1746 (((-2 (|:| -1357 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-4161 (((-2 (|:| -1357 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-3326 (((-112) $) 13)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3798 (($ $ (-768) |#1| $) 26)) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-3848 (((-2 (|:| -2777 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-3671 (((-2 (|:| -1357 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3318 (((-3 $ "failed") $ (-768)) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3190 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3534 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1619 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1076)) NIL) (((-1166 |#1|) $) 7) (($ (-1166 |#1|)) 8) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) 28 T CONST)) (-1300 (($) 32 T CONST)) (-3435 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) 40) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-779 |#1|) (-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -3798 ($ $ (-768) |#1| $)) (-15 -1387 ($ $ $)) (-15 -1704 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2491 (-768))) $ $)) (-15 -1629 ($ $ $)) (-15 -3915 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -3171 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -1455 ((-641 $) $ $)) (-15 -2624 ($ $ $)) (-15 -3848 ((-2 (|:| -2777 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2180 ((-2 (|:| -2777 $) (|:| |coef1| $)) $ $)) (-15 -4197 ((-2 (|:| -2777 $) (|:| |coef2| $)) $ $)) (-15 -3671 ((-2 (|:| -1357 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4161 ((-2 (|:| -1357 |#1|) (|:| |coef1| $)) $ $)) (-15 -1746 ((-2 (|:| -1357 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1046)) (T -779)) -((-3798 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-1387 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-1704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -2491 (-768)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-1629 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-3915 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2860 *3) (|:| |gap| (-768)) (|:| -4347 (-779 *3)) (|:| -1678 (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-3171 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-1455 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2624 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046)))) (-3848 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2777 (-779 *3)) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2180 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2777 (-779 *3)) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-4197 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2777 (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-3671 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1357 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-4161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1357 *3) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-1746 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1357 *3) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) -(-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -3798 ($ $ (-768) |#1| $)) (-15 -1387 ($ $ $)) (-15 -1704 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2491 (-768))) $ $)) (-15 -1629 ($ $ $)) (-15 -3915 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -3171 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -1455 ((-641 $) $ $)) (-15 -2624 ($ $ $)) (-15 -3848 ((-2 (|:| -2777 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2180 ((-2 (|:| -2777 $) (|:| |coef1| $)) $ $)) (-15 -4197 ((-2 (|:| -2777 $) (|:| |coef2| $)) $ $)) (-15 -3671 ((-2 (|:| -1357 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4161 ((-2 (|:| -1357 |#1|) (|:| |coef1| $)) $ $)) (-15 -1746 ((-2 (|:| -1357 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1599 ((|#1| (-768) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-4235 ((|#1| (-768) |#1|) 23)) (-3488 ((|#1| (-768) |#1|) 35 (|has| |#1| (-38 (-407 (-564))))))) -(((-780 |#1|) (-10 -7 (-15 -4235 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3488 (|#1| (-768) |#1|)) (-15 -1599 (|#1| (-768) |#1|))) |%noBranch|)) (-172)) (T -780)) -((-1599 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3488 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-4235 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -4235 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3488 (|#1| (-768) |#1|)) (-15 -1599 (|#1| (-768) |#1|))) |%noBranch|)) -((-1817 (((-112) $ $) 7)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) 85)) (-2951 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-3209 (((-641 |#3|) $) 33)) (-3449 (((-112) $) 26)) (-3961 (((-112) $) 17 (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) 101) (((-112) $) 97)) (-4136 ((|#4| |#4| $) 92)) (-2427 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) 27)) (-4010 (((-112) $ (-768)) 44)) (-3752 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-1778 (($) 45 T CONST)) (-3602 (((-112) $) 22 (|has| |#1| (-556)))) (-2495 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1495 (((-112) $ $) 23 (|has| |#1| (-556)))) (-2536 (((-112) $) 25 (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2338 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 36)) (-2237 (($ (-641 |#4|)) 35)) (-3314 (((-3 $ "failed") $) 82)) (-1470 ((|#4| |#4| $) 89)) (-3337 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3492 ((|#4| |#4| $) 87)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) 105)) (-3843 (((-112) |#4| $) 136)) (-2421 (((-112) |#4| $) 133)) (-4204 (((-112) |#4| $) 137) (((-112) $) 134)) (-1433 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) 104) (((-112) $) 103)) (-1543 ((|#3| $) 34)) (-2324 (((-112) $ (-768)) 43)) (-2640 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 47)) (-3580 (((-641 |#3|) $) 32)) (-3879 (((-112) |#3| $) 31)) (-1713 (((-112) $ (-768)) 42)) (-2723 (((-1152) $) 9)) (-2100 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2624 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| |#4| $) 127)) (-2598 (((-3 |#4| "failed") $) 83)) (-1889 (((-641 $) |#4| $) 129)) (-4369 (((-3 (-112) (-641 $)) |#4| $) 132)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3425 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2817 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3123 (((-641 |#4|) $) 107)) (-4281 (((-112) |#4| $) 99) (((-112) $) 95)) (-2356 ((|#4| |#4| $) 90)) (-3984 (((-112) $ $) 110)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) 100) (((-112) $) 96)) (-1482 ((|#4| |#4| $) 91)) (-2780 (((-1114) $) 10)) (-3303 (((-3 |#4| "failed") $) 84)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3824 (((-3 $ "failed") $ |#4|) 78)) (-3951 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-4077 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) 38)) (-4284 (((-112) $) 41)) (-4012 (($) 40)) (-1619 (((-768) $) 106)) (-2791 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-1991 (($ $) 39)) (-2511 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 60)) (-4287 (($ $ |#3|) 28)) (-1887 (($ $ |#3|) 30)) (-3728 (($ $) 88)) (-3111 (($ $ |#3|) 29)) (-1831 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4321 (((-768) $) 76 (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3635 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1963 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) 81)) (-2637 (((-112) |#4| $) 135)) (-1484 (((-112) |#3| $) 80)) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 46 (|has| $ (-6 -4406))))) -(((-781 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -781)) -NIL -(-13 (-1066 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) -((-2454 (((-3 (-379) "failed") (-316 |#1|) (-918)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-407 (-949 |#1|)) (-918)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-949 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-949 |#1|) (-918)) 31 (|has| |#1| (-1046))) (((-3 (-379) "failed") (-949 |#1|)) 30 (|has| |#1| (-1046)))) (-2648 (((-379) (-316 |#1|) (-918)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-407 (-949 |#1|)) (-918)) 91 (|has| |#1| (-556))) (((-379) (-407 (-949 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-949 |#1|) (-918)) 86 (|has| |#1| (-1046))) (((-379) (-949 |#1|)) 85 (|has| |#1| (-1046))) (((-379) |#1| (-918)) 76) (((-379) |#1|) 22)) (-1400 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-918)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)) 28 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 |#1|)) 26 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3006 (((-169 (-379)) (-316 (-169 |#1|)) (-918)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|) (-918)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|)) (-918)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-949 |#1|) (-918)) 84 (|has| |#1| (-1046))) (((-169 (-379)) (-949 |#1|)) 83 (|has| |#1| (-1046))) (((-169 (-379)) (-949 (-169 |#1|)) (-918)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-949 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-918)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-918)) 27) (((-169 (-379)) |#1|) 25))) -(((-782 |#1|) (-10 -7 (-15 -2648 ((-379) |#1|)) (-15 -2648 ((-379) |#1| (-918))) (-15 -3006 ((-169 (-379)) |#1|)) (-15 -3006 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -3006 ((-169 (-379)) (-169 |#1|))) (-15 -3006 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -3006 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -2648 ((-379) (-949 |#1|))) (-15 -2648 ((-379) (-949 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-949 |#1|))) (-15 -3006 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2648 ((-379) (-407 (-949 |#1|)))) (-15 -2648 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -3006 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -3006 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -3006 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -3006 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -2648 ((-379) (-316 |#1|))) (-15 -2648 ((-379) (-316 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-316 |#1|))) (-15 -3006 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3006 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -2454 ((-3 (-379) "failed") (-949 |#1|))) (-15 -2454 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2454 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -2454 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -2454 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2454 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -782)) -((-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2454 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2454 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2454 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-2648 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))) (-2648 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2))))) -(-10 -7 (-15 -2648 ((-379) |#1|)) (-15 -2648 ((-379) |#1| (-918))) (-15 -3006 ((-169 (-379)) |#1|)) (-15 -3006 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -3006 ((-169 (-379)) (-169 |#1|))) (-15 -3006 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -3006 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -2648 ((-379) (-949 |#1|))) (-15 -2648 ((-379) (-949 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-949 |#1|))) (-15 -3006 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2648 ((-379) (-407 (-949 |#1|)))) (-15 -2648 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -3006 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -3006 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -3006 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -3006 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -2648 ((-379) (-316 |#1|))) (-15 -2648 ((-379) (-316 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-316 |#1|))) (-15 -3006 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -3006 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3006 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -2454 ((-3 (-379) "failed") (-949 |#1|))) (-15 -2454 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2454 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -2454 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -2454 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2454 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -1400 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|)) -((-2192 (((-918) (-1152)) 90)) (-2690 (((-3 (-379) "failed") (-1152)) 35)) (-3895 (((-379) (-1152)) 33)) (-1949 (((-918) (-1152)) 62)) (-2109 (((-1152) (-918)) 76)) (-2465 (((-1152) (-918)) 61))) -(((-783) (-10 -7 (-15 -2465 ((-1152) (-918))) (-15 -1949 ((-918) (-1152))) (-15 -2109 ((-1152) (-918))) (-15 -2192 ((-918) (-1152))) (-15 -3895 ((-379) (-1152))) (-15 -2690 ((-3 (-379) "failed") (-1152))))) (T -783)) -((-2690 (*1 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783))))) -(-10 -7 (-15 -2465 ((-1152) (-918))) (-15 -1949 ((-918) (-1152))) (-15 -2109 ((-1152) (-918))) (-15 -2192 ((-918) (-1152))) (-15 -3895 ((-379) (-1152))) (-15 -2690 ((-3 (-379) "failed") (-1152)))) -((-1817 (((-112) $ $) 7)) (-3014 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 15) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 13)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) -(((-784) (-140)) (T -784)) -((-2620 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3014 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2620 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3014 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1094) (-10 -7 (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3014 ((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3014 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-2472 (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 54) (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 51)) (-2145 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 60)) (-3896 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 49)) (-2456 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 62) (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 61))) -(((-785) (-10 -7 (-15 -2456 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2456 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3896 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2472 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2472 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -2145 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))) (T -785)) -((-2145 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-3896 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-2456 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-2456 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785))))) -(-10 -7 (-15 -2456 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2456 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3896 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2472 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2472 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -2145 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))))) -((-2795 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-2973 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-2182 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-4381 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-2655 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-1461 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-3011 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-2414 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-1722 (((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39))) -(((-786) (-10 -7 (-15 -1722 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2414 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3011 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1461 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4381 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2973 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2655 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2182 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2795 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -786)) -((-2795 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2182 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2655 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2973 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-4381 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1461 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3011 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2414 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1722 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564))))) -(-10 -7 (-15 -1722 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2414 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3011 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1461 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4381 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2973 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2655 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2182 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2795 ((-2 (|:| -1522 (-379)) (|:| -2044 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)))) -((-2332 (((-1204 |#1|) |#1| (-225) (-564)) 68))) -(((-787 |#1|) (-10 -7 (-15 -2332 ((-1204 |#1|) |#1| (-225) (-564)))) (-971)) (T -787)) -((-2332 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) (-5 *1 (-787 *3)) (-4 *3 (-971))))) -(-10 -7 (-15 -2332 ((-1204 |#1|) |#1| (-225) (-564)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 24)) (-4088 (((-3 $ "failed") $ $) 26)) (-1778 (($) 23 T CONST)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 22 T CONST)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1808 (($ $ $) 28) (($ $) 27)) (-1797 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29))) +((-2019 ((|#2| |#4|) 35))) +(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2019 (|#2| |#4|))) (-452) (-1235 |#1|) (-720 |#1| |#2|) (-1235 |#3|)) (T -771)) +((-2019 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -2019 (|#2| |#4|))) +((-2689 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4064 (((-1264) (-1152) (-1152) |#4| |#5|) 33)) (-2890 ((|#4| |#4| |#5|) 73)) (-4170 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|) 78)) (-2537 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|) 16))) +(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2689 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2890 (|#4| |#4| |#5|)) (-15 -4170 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -4064 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -2537 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -772)) +((-2537 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4064 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1264)) (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))) (-4170 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2890 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))) (-2689 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(-10 -7 (-15 -2689 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2890 (|#4| |#4| |#5|)) (-15 -4170 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -4064 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -2537 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|))) +((-3032 (((-3 (-1166 (-1166 |#1|)) "failed") |#4|) 53)) (-1643 (((-641 |#4|) |#4|) 24)) (-3053 ((|#4| |#4|) 19))) +(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1643 ((-641 |#4|) |#4|)) (-15 -3032 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -3053 (|#4| |#4|))) (-349) (-329 |#1|) (-1235 |#2|) (-1235 |#3|) (-917)) (T -773)) +((-3053 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-917)))) (-3032 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-917)))) (-1643 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-641 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-917))))) +(-10 -7 (-15 -1643 ((-641 |#4|) |#4|)) (-15 -3032 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -3053 (|#4| |#4|))) +((-1851 (((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|)) 74)) (-2912 (((-641 (-767)) |#1|) 20))) +(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1851 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -2912 ((-641 (-767)) |#1|))) (-1235 |#4|) (-789) (-846) (-307) (-945 |#4| |#2| |#3|)) (T -774)) +((-2912 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-641 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *6)) (-4 *7 (-945 *6 *4 *5)))) (-1851 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1235 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) (-4 *10 (-945 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-641 (-1166 *10))) (|:| |dterm| (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| *10))))) (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) (-5 *5 (-641 *10))))) +(-10 -7 (-15 -1851 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -2912 ((-641 (-767)) |#1|))) +((-3421 (((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|) 31)) (-3333 (((-641 |#1|) (-685 (-407 (-564))) |#1|) 21)) (-2117 (((-948 (-407 (-564))) (-685 (-407 (-564))) (-1170)) 18) (((-948 (-407 (-564))) (-685 (-407 (-564)))) 17))) +(((-775 |#1|) (-10 -7 (-15 -2117 ((-948 (-407 (-564))) (-685 (-407 (-564))))) (-15 -2117 ((-948 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -3333 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3421 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) (-13 (-363) (-844))) (T -775)) +((-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *4)))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-2117 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) (-5 *2 (-948 (-407 (-564)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-948 (-407 (-564)))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -2117 ((-948 (-407 (-564))) (-685 (-407 (-564))))) (-15 -2117 ((-948 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -3333 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3421 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 36)) (-2534 (((-641 |#2|) $) NIL)) (-2340 (((-1166 $) $ |#2|) NIL) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 |#2|)) NIL)) (-3284 (($ $) 30)) (-3577 (((-112) $ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) 108 (|has| |#1| (-556)))) (-3402 (((-641 $) $ $) 121 (|has| |#1| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (((-3 $ "failed") (-948 (-564))) NIL (-2789 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (((-3 $ "failed") (-948 |#1|)) NIL (-2789 (-12 (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564))))) (-2329 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564))))) (-2329 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-988 (-564))))))) (((-3 (-1119 |#1| |#2|) "failed") $) 21)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) ((|#2| $) NIL) (($ (-948 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-948 (-564))) NIL (-2789 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-948 |#1|)) NIL (-2789 (-12 (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564))))) (-2329 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564))))) (-2329 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-988 (-564))))))) (((-1119 |#1| |#2|) $) NIL)) (-2595 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-556)))) (-2710 (($ $) NIL) (($ $ |#2|) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4203 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3683 (((-112) $) NIL)) (-1726 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 79)) (-1522 (($ $) 134 (|has| |#1| (-452)))) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-1799 (($ $) NIL (|has| |#1| (-556)))) (-4348 (($ $) NIL (|has| |#1| (-556)))) (-4193 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-1563 (($ $ $) 77) (($ $ $ |#2|) NIL)) (-2050 (($ $ |#1| (-531 |#2|) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-1828 (((-112) $) 56)) (-4137 (((-767) $) NIL)) (-1675 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1611 (($ $ $ $ $) 105 (|has| |#1| (-556)))) (-3691 ((|#2| $) 22)) (-2519 (($ (-1166 |#1|) |#2|) NIL) (($ (-1166 $) |#2|) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 38) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-3082 (($ $ $) 62)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#2|) NIL)) (-4214 (((-112) $) NIL)) (-3386 (((-531 |#2|) $) NIL) (((-767) $ |#2|) NIL) (((-641 (-767)) $ (-641 |#2|)) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2121 (((-767) $) 23)) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3878 (((-3 |#2| "failed") $) NIL)) (-3581 (($ $) NIL (|has| |#1| (-452)))) (-3531 (($ $) NIL (|has| |#1| (-452)))) (-2354 (((-641 $) $) NIL)) (-4375 (($ $) 39)) (-1395 (($ $) NIL (|has| |#1| (-452)))) (-2474 (((-641 $) $) 43)) (-3586 (($ $) 41)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1575 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2880 (-767))) $ $) 94)) (-3801 (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $) 76) (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $ |#2|) NIL)) (-3156 (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $) NIL) (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $ |#2|) NIL)) (-1789 (($ $ $) 81) (($ $ $ |#2|) NIL)) (-4083 (($ $ $) 84) (($ $ $ |#2|) NIL)) (-1418 (((-1152) $) NIL)) (-1677 (($ $ $) 123 (|has| |#1| (-556)))) (-2164 (((-641 $) $) 32)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| |#2|) (|:| -3866 (-767))) "failed") $) NIL)) (-3250 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-2093 (($ $ $) NIL)) (-3346 (($ $) 24)) (-3288 (((-112) $ $) NIL)) (-3932 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-4340 (($ $ $) NIL)) (-3654 (($ $) 26)) (-3840 (((-1114) $) NIL)) (-3601 (((-2 (|:| -3235 $) (|:| |coef2| $)) $ $) 114 (|has| |#1| (-556)))) (-2801 (((-2 (|:| -3235 $) (|:| |coef1| $)) $ $) 111 (|has| |#1| (-556)))) (-2649 (((-112) $) 55)) (-2662 ((|#1| $) 57)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 ((|#1| |#1| $) 131 (|has| |#1| (-452))) (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-1308 (((-2 (|:| -3235 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 117 (|has| |#1| (-556)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-556)))) (-3813 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3432 (($ $ |#1|) 126 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-641 |#2|) (-641 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-641 |#2|) (-641 $)) NIL)) (-3392 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1343 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2073 (((-531 |#2|) $) NIL) (((-767) $ |#2|) 45) (((-641 (-767)) $ (-641 |#2|)) NIL)) (-2191 (($ $) NIL)) (-2554 (($ $) 35)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-948 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-948 (-564))) NIL (-2789 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2329 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-948 |#1|)) NIL (|has| |#2| (-612 (-1170)))) (((-1152) $) NIL (-12 (|has| |#1| (-1034 (-564))) (|has| |#2| (-612 (-1170))))) (((-948 |#1|) $) NIL (|has| |#2| (-612 (-1170))))) (-2290 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-948 |#1|) $) NIL (|has| |#2| (-612 (-1170)))) (((-1119 |#1| |#2|) $) 18) (($ (-1119 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) 47) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) 13 T CONST)) (-4132 (((-3 (-112) "failed") $ $) NIL)) (-2403 (($) 37 T CONST)) (-2850 (($ $ $ $ (-767)) 103 (|has| |#1| (-556)))) (-2470 (($ $ $ (-767)) 102 (|has| |#1| (-556)))) (-3917 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) 73)) (-3011 (($ $ $) 83)) (** (($ $ (-917)) NIL) (($ $ (-767)) 69)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL))) +(((-776 |#1| |#2|) (-13 (-1059 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1034 (-1119 |#1| |#2|))) (-1045) (-846)) (T -776)) +NIL +(-13 (-1059 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1034 (-1119 |#1| |#2|))) +((-3123 (((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)) 13))) +(((-777 |#1| |#2|) (-10 -7 (-15 -3123 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) (-1045) (-1045)) (T -777)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6))))) +(-10 -7 (-15 -3123 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 12)) (-4278 (((-1259 |#1|) $ (-767)) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-1837 (($ (-1166 |#1|)) NIL)) (-2340 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4082 (((-641 $) $ $) 54 (|has| |#1| (-556)))) (-3545 (($ $ $) 50 (|has| |#1| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2687 (($ $ (-767)) NIL)) (-1310 (($ $ (-767)) NIL)) (-1561 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL) (((-3 (-1166 |#1|) "failed") $) 10)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1076) $) NIL) (((-1166 |#1|) $) NIL)) (-2595 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3664 (($ $ $) NIL)) (-3906 (($ $ $) 87 (|has| |#1| (-556)))) (-1726 (((-2 (|:| -3139 |#1|) (|:| -2666 $) (|:| -2598 $)) $ $) 86 (|has| |#1| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-767) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3717 (((-767) $ $) NIL (|has| |#1| (-556)))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2519 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-1762 (($ $ (-767)) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-3082 (($ $ $) 27)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1076)) NIL) (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3386 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-767) (-767)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-4049 (((-1166 |#1|) $) NIL)) (-3878 (((-3 (-1076) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1575 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2880 (-767))) $ $) 37)) (-2142 (($ $ $) 41)) (-1354 (($ $ $) 47)) (-3801 (((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $) 46)) (-1418 (((-1152) $) NIL)) (-1677 (($ $ $) 56 (|has| |#1| (-556)))) (-3548 (((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767)) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-1076)) (|:| -3866 (-767))) "failed") $) NIL)) (-3719 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3346 (($) NIL (|has| |#1| (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-3601 (((-2 (|:| -3235 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-2801 (((-2 (|:| -3235 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-1985 (((-2 (|:| -2595 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-1392 (((-2 (|:| -2595 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-2649 (((-112) $) 13)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2031 (($ $ (-767) |#1| $) 26)) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-1308 (((-2 (|:| -3235 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-3388 (((-2 (|:| -2595 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3243 (((-3 $ "failed") $ (-767)) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-3392 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1343 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2073 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2923 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1076)) NIL) (((-1166 |#1|) $) 7) (($ (-1166 |#1|)) 8) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) 28 T CONST)) (-2403 (($) 32 T CONST)) (-3917 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) 40) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-778 |#1|) (-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1034 (-1166 |#1|)) (-10 -8 (-15 -2031 ($ $ (-767) |#1| $)) (-15 -3082 ($ $ $)) (-15 -1575 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2880 (-767))) $ $)) (-15 -2142 ($ $ $)) (-15 -3801 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -1354 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -4082 ((-641 $) $ $)) (-15 -1677 ($ $ $)) (-15 -1308 ((-2 (|:| -3235 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2801 ((-2 (|:| -3235 $) (|:| |coef1| $)) $ $)) (-15 -3601 ((-2 (|:| -3235 $) (|:| |coef2| $)) $ $)) (-15 -3388 ((-2 (|:| -2595 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1392 ((-2 (|:| -2595 |#1|) (|:| |coef1| $)) $ $)) (-15 -1985 ((-2 (|:| -2595 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1045)) (T -778)) +((-2031 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-3082 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-1575 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -2880 (-767)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-2142 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-3801 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 *3) (|:| |gap| (-767)) (|:| -2666 (-778 *3)) (|:| -2598 (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-1354 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-4082 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-1677 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-556)) (-4 *2 (-1045)))) (-1308 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3235 (-778 *3)) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-2801 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3235 (-778 *3)) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3601 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3235 (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3388 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2595 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-1392 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2595 *3) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-1985 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2595 *3) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))) +(-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1034 (-1166 |#1|)) (-10 -8 (-15 -2031 ($ $ (-767) |#1| $)) (-15 -3082 ($ $ $)) (-15 -1575 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2880 (-767))) $ $)) (-15 -2142 ($ $ $)) (-15 -3801 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -1354 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -4082 ((-641 $) $ $)) (-15 -1677 ($ $ $)) (-15 -1308 ((-2 (|:| -3235 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2801 ((-2 (|:| -3235 $) (|:| |coef1| $)) $ $)) (-15 -3601 ((-2 (|:| -3235 $) (|:| |coef2| $)) $ $)) (-15 -3388 ((-2 (|:| -2595 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1392 ((-2 (|:| -2595 |#1|) (|:| |coef1| $)) $ $)) (-15 -1985 ((-2 (|:| -2595 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3095 ((|#1| (-767) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-4007 ((|#1| (-767) |#1|) 23)) (-4147 ((|#1| (-767) |#1|) 35 (|has| |#1| (-38 (-407 (-564))))))) +(((-779 |#1|) (-10 -7 (-15 -4007 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4147 (|#1| (-767) |#1|)) (-15 -3095 (|#1| (-767) |#1|))) |%noBranch|)) (-172)) (T -779)) +((-3095 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-4147 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-4007 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -4007 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4147 (|#1| (-767) |#1|)) (-15 -3095 (|#1| (-767) |#1|))) |%noBranch|)) +((-2310 (((-112) $ $) 7)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) 85)) (-1841 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-2534 (((-641 |#3|) $) 33)) (-1885 (((-112) $) 26)) (-3042 (((-112) $) 17 (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) 101) (((-112) $) 97)) (-4230 ((|#4| |#4| $) 92)) (-3453 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| $) 126)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) 27)) (-2318 (((-112) $ (-767)) 44)) (-2957 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-4157 (($) 45 T CONST)) (-2815 (((-112) $) 22 (|has| |#1| (-556)))) (-2924 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1362 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3300 (((-112) $) 25 (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1907 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 36)) (-1781 (($ (-641 |#4|)) 35)) (-2008 (((-3 $ "failed") $) 82)) (-4220 ((|#4| |#4| $) 89)) (-2027 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4194 ((|#4| |#4| $) 87)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) 105)) (-4356 (((-112) |#4| $) 136)) (-3404 (((-112) |#4| $) 133)) (-3665 (((-112) |#4| $) 137) (((-112) $) 134)) (-3534 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) 104) (((-112) $) 103)) (-3691 ((|#3| $) 34)) (-1751 (((-112) $ (-767)) 43)) (-1834 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 47)) (-3805 (((-641 |#3|) $) 32)) (-3460 (((-112) |#3| $) 31)) (-1681 (((-112) $ (-767)) 42)) (-1418 (((-1152) $) 9)) (-1307 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1677 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| |#4| $) 127)) (-3649 (((-3 |#4| "failed") $) 83)) (-2824 (((-641 $) |#4| $) 129)) (-2836 (((-3 (-112) (-641 $)) |#4| $) 132)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1648 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2987 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4022 (((-641 |#4|) $) 107)) (-3250 (((-112) |#4| $) 99) (((-112) $) 95)) (-2093 ((|#4| |#4| $) 90)) (-3288 (((-112) $ $) 110)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) 100) (((-112) $) 96)) (-4340 ((|#4| |#4| $) 91)) (-3840 (((-1114) $) 10)) (-1995 (((-3 |#4| "failed") $) 84)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4179 (((-3 $ "failed") $ |#4|) 78)) (-2941 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) 38)) (-3282 (((-112) $) 41)) (-2348 (($) 40)) (-2073 (((-767) $) 106)) (-3852 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-3772 (($ $) 39)) (-3172 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 60)) (-3311 (($ $ |#3|) 28)) (-2805 (($ $ |#3|) 30)) (-2631 (($ $) 88)) (-2029 (($ $ |#3|) 29)) (-2322 (((-858) $) 11) (((-641 |#4|) $) 37)) (-2390 (((-767) $) 76 (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3126 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2313 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) 81)) (-1801 (((-112) |#4| $) 135)) (-4363 (((-112) |#3| $) 80)) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 46 (|has| $ (-6 -4406))))) +(((-780 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -780)) +NIL +(-13 (-1065 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-3710 (((-3 (-379) "failed") (-316 |#1|) (-917)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-407 (-948 |#1|)) (-917)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-948 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-948 |#1|) (-917)) 31 (|has| |#1| (-1045))) (((-3 (-379) "failed") (-948 |#1|)) 30 (|has| |#1| (-1045)))) (-1574 (((-379) (-316 |#1|) (-917)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-379) (-407 (-948 |#1|)) (-917)) 91 (|has| |#1| (-556))) (((-379) (-407 (-948 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-948 |#1|) (-917)) 86 (|has| |#1| (-1045))) (((-379) (-948 |#1|)) 85 (|has| |#1| (-1045))) (((-379) |#1| (-917)) 76) (((-379) |#1|) 22)) (-4050 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-917)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)) 28 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 |#1|)) 26 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2301 (((-169 (-379)) (-316 (-169 |#1|)) (-917)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|) (-917)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-948 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-948 |#1|)) (-917)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-948 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-948 |#1|) (-917)) 84 (|has| |#1| (-1045))) (((-169 (-379)) (-948 |#1|)) 83 (|has| |#1| (-1045))) (((-169 (-379)) (-948 (-169 |#1|)) (-917)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-948 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-917)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-917)) 27) (((-169 (-379)) |#1|) 25))) +(((-781 |#1|) (-10 -7 (-15 -1574 ((-379) |#1|)) (-15 -1574 ((-379) |#1| (-917))) (-15 -2301 ((-169 (-379)) |#1|)) (-15 -2301 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -2301 ((-169 (-379)) (-169 |#1|))) (-15 -2301 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -2301 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -1574 ((-379) (-948 |#1|))) (-15 -1574 ((-379) (-948 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-948 |#1|))) (-15 -2301 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1574 ((-379) (-407 (-948 |#1|)))) (-15 -1574 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -2301 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -2301 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -2301 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -2301 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -1574 ((-379) (-316 |#1|))) (-15 -1574 ((-379) (-316 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-316 |#1|))) (-15 -2301 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2301 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3710 ((-3 (-379) "failed") (-948 |#1|))) (-15 -3710 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3710 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -3710 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3710 ((-3 (-379) "failed") (-316 |#1|))) (-15 -3710 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -781)) +((-4050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-4050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3710 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-4050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-4050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3710 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-4050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3710 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-4050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-612 (-379))))) (-2301 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-612 (-379))))) (-1574 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-612 *2)))) (-1574 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-612 *2))))) +(-10 -7 (-15 -1574 ((-379) |#1|)) (-15 -1574 ((-379) |#1| (-917))) (-15 -2301 ((-169 (-379)) |#1|)) (-15 -2301 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -2301 ((-169 (-379)) (-169 |#1|))) (-15 -2301 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -2301 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -1574 ((-379) (-948 |#1|))) (-15 -1574 ((-379) (-948 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-948 |#1|))) (-15 -2301 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1574 ((-379) (-407 (-948 |#1|)))) (-15 -1574 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -2301 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -2301 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -2301 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -2301 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -1574 ((-379) (-316 |#1|))) (-15 -1574 ((-379) (-316 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-316 |#1|))) (-15 -2301 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -2301 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2301 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3710 ((-3 (-379) "failed") (-948 |#1|))) (-15 -3710 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3710 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -3710 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3710 ((-3 (-379) "failed") (-316 |#1|))) (-15 -3710 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -4050 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) +((-2906 (((-917) (-1152)) 90)) (-4202 (((-3 (-379) "failed") (-1152)) 35)) (-3594 (((-379) (-1152)) 33)) (-2185 (((-917) (-1152)) 62)) (-1384 (((-1152) (-917)) 76)) (-3839 (((-1152) (-917)) 61))) +(((-782) (-10 -7 (-15 -3839 ((-1152) (-917))) (-15 -2185 ((-917) (-1152))) (-15 -1384 ((-1152) (-917))) (-15 -2906 ((-917) (-1152))) (-15 -3594 ((-379) (-1152))) (-15 -4202 ((-3 (-379) "failed") (-1152))))) (T -782)) +((-4202 (*1 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782))))) +(-10 -7 (-15 -3839 ((-1152) (-917))) (-15 -2185 ((-917) (-1152))) (-15 -1384 ((-1152) (-917))) (-15 -2906 ((-917) (-1152))) (-15 -3594 ((-379) (-1152))) (-15 -4202 ((-3 (-379) "failed") (-1152)))) +((-2310 (((-112) $ $) 7)) (-2351 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 15) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 13)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) +(((-783) (-140)) (T -783)) +((-1632 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031)))))) (-2351 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-1632 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031)))))) (-2351 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1094) (-10 -7 (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2351 ((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2351 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-3893 (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 54) (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 51)) (-3604 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 60)) (-3606 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 49)) (-3735 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 62) (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 61))) +(((-784) (-10 -7 (-15 -3735 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3735 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3606 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3893 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3893 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3604 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))) (T -784)) +((-3604 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-3893 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-3893 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-3606 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-3735 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-3735 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784))))) +(-10 -7 (-15 -3735 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3735 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3606 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3893 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3893 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3604 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))))) +((-3963 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-2067 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-2819 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-1678 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-1993 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-4151 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-2327 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-1444 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-1783 (((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39))) +(((-785) (-10 -7 (-15 -1783 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1444 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2327 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -4151 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1678 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2067 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1993 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2819 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3963 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -785)) +((-3963 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-2819 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-1993 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-2067 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-1678 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-4151 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-2327 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-1444 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-1783 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564))))) +(-10 -7 (-15 -1783 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1444 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2327 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -4151 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1678 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2067 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1993 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2819 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3963 ((-2 (|:| -2053 (-379)) (|:| -2532 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)))) +((-1839 (((-1204 |#1|) |#1| (-225) (-564)) 68))) +(((-786 |#1|) (-10 -7 (-15 -1839 ((-1204 |#1|) |#1| (-225) (-564)))) (-970)) (T -786)) +((-1839 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) (-5 *1 (-786 *3)) (-4 *3 (-970))))) +(-10 -7 (-15 -1839 ((-1204 |#1|) |#1| (-225) (-564)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 24)) (-1862 (((-3 $ "failed") $ $) 26)) (-4157 (($) 23 T CONST)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 22 T CONST)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3021 (($ $ $) 28) (($ $) 27)) (-3011 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-564) $) 29))) +(((-787) (-140)) (T -787)) +NIL +(-13 (-791) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 24)) (-4157 (($) 23 T CONST)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 22 T CONST)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3011 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) (((-788) (-140)) (T -788)) NIL -(-13 (-792) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 24)) (-1778 (($) 23 T CONST)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 22 T CONST)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1797 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25))) +(-13 (-790) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-790) . T) ((-846) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 24)) (-2568 (($ $ $) 27)) (-1862 (((-3 $ "failed") $ $) 26)) (-4157 (($) 23 T CONST)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 22 T CONST)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3011 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) (((-789) (-140)) (T -789)) -NIL -(-13 (-791) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-791) . T) ((-847) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 24)) (-1986 (($ $ $) 27)) (-4088 (((-3 $ "failed") $ $) 26)) (-1778 (($) 23 T CONST)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 22 T CONST)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1797 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25))) +((-2568 (*1 *1 *1 *1) (-4 *1 (-789)))) +(-13 (-791) (-10 -8 (-15 -2568 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3011 (($ $ $) 20)) (* (($ (-917) $) 21))) (((-790) (-140)) (T -790)) -((-1986 (*1 *1 *1 *1) (-4 *1 (-790)))) -(-13 (-792) (-10 -8 (-15 -1986 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1797 (($ $ $) 20)) (* (($ (-918) $) 21))) +NIL +(-13 (-846) (-25)) +(((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-846) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 24)) (-1862 (((-3 $ "failed") $ $) 26)) (-4157 (($) 23 T CONST)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 22 T CONST)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3011 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) (((-791) (-140)) (T -791)) NIL -(-13 (-847) (-25)) -(((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 24)) (-4088 (((-3 $ "failed") $ $) 26)) (-1778 (($) 23 T CONST)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 22 T CONST)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1797 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25))) -(((-792) (-140)) (T -792)) -NIL -(-13 (-789) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-847) . T) ((-1094) . T)) -((-1615 (((-112) $) 42)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2237 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-2078 (((-3 (-407 (-564)) "failed") $) 78)) (-2272 (((-112) $) 72)) (-3036 (((-407 (-564)) $) 76)) (-3797 ((|#2| $) 26)) (-2449 (($ (-1 |#2| |#2|) $) 23)) (-3315 (($ $) 58)) (-2511 (((-536) $) 67)) (-3047 (($ $) 21)) (-1831 (((-859) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-2219 (((-768)) 10)) (-1849 ((|#2| $) 71)) (-1702 (((-112) $ $) 30)) (-1723 (((-112) $ $) 69)) (-1808 (($ $) 32) (($ $ $) NIL)) (-1797 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-793 |#1| |#2|) (-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-794 |#2|) (-172)) (T -793)) -((-2219 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4)) (-4 *3 (-794 *4))))) -(-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-3267 (((-768)) 52 (|has| |#1| (-368)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 94 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 91 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 88)) (-2237 (((-564) $) 93 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 90 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 89)) (-3733 (((-3 $ "failed") $) 33)) (-3092 ((|#1| $) 78)) (-2078 (((-3 (-407 (-564)) "failed") $) 65 (|has| |#1| (-545)))) (-2272 (((-112) $) 67 (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) 66 (|has| |#1| (-545)))) (-2900 (($) 55 (|has| |#1| (-368)))) (-2949 (((-112) $) 31)) (-1642 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3797 ((|#1| $) 70)) (-1925 (($ $ $) 61 (|has| |#1| (-847)))) (-3375 (($ $ $) 60 (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) 80)) (-1811 (((-918) $) 54 (|has| |#1| (-368)))) (-2723 (((-1152) $) 9)) (-3315 (($ $) 64 (|has| |#1| (-363)))) (-1468 (($ (-918)) 53 (|has| |#1| (-368)))) (-3466 ((|#1| $) 75)) (-3996 ((|#1| $) 76)) (-3050 ((|#1| $) 77)) (-2584 ((|#1| $) 71)) (-2982 ((|#1| $) 72)) (-3661 ((|#1| $) 73)) (-2928 ((|#1| $) 74)) (-2780 (((-1114) $) 10)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 82 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 81 (|has| |#1| (-514 (-1170) |#1|)))) (-1350 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2511 (((-536) $) 62 (|has| |#1| (-612 (-536))))) (-3047 (($ $) 79)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 92 (|has| |#1| (-1035 (-407 (-564)))))) (-4018 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-1849 ((|#1| $) 68 (|has| |#1| (-1055)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 58 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 57 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 59 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 56 (|has| |#1| (-847)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-794 |#1|) (-140) (-172)) (T -794)) -((-3047 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1642 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2078 (*1 *2 *1) (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -3047 ($ $)) (-15 -3092 (|t#1| $)) (-15 -3050 (|t#1| $)) (-15 -3996 (|t#1| $)) (-15 -3466 (|t#1| $)) (-15 -2928 (|t#1| $)) (-15 -3661 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -2584 (|t#1| $)) (-15 -3797 (|t#1| $)) (-15 -1642 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -1849 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3315 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2449 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#3| (-1 |#4| |#2|) |#1|))) (-794 |#2|) (-172) (-794 |#4|) (-172)) (T -795)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-794 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-794 *5))))) -(-10 -7 (-15 -2449 (|#3| (-1 |#4| |#2|) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-996 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-4078 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-4078 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2237 ((|#1| $) NIL) (((-996 |#1|) $) 33) (((-564) $) NIL (-4078 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-407 (-564)) $) NIL (-4078 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3733 (((-3 $ "failed") $) NIL)) (-3092 ((|#1| $) 16)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2272 (((-112) $) NIL (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2900 (($) NIL (|has| |#1| (-368)))) (-2949 (((-112) $) NIL)) (-1642 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-996 |#1|) (-996 |#1|)) 29)) (-3797 ((|#1| $) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-3466 ((|#1| $) 22)) (-3996 ((|#1| $) 20)) (-3050 ((|#1| $) 18)) (-2584 ((|#1| $) 26)) (-2982 ((|#1| $) 25)) (-3661 ((|#1| $) 24)) (-2928 ((|#1| $) 23)) (-2780 (((-1114) $) NIL)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-1350 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3047 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-996 |#1|)) 30) (($ (-407 (-564))) NIL (-4078 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-1849 ((|#1| $) NIL (|has| |#1| (-1055)))) (-1293 (($) 8 T CONST)) (-1300 (($) 12 T CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-796 |#1|) (-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -1642 ($ (-996 |#1|) (-996 |#1|))))) (-172)) (T -796)) -((-1642 (*1 *1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3))))) -(-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -1642 ($ (-996 |#1|) (-996 |#1|))))) -((-1817 (((-112) $ $) 7)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-3231 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-1702 (((-112) $ $) 6))) -(((-797) (-140)) (T -797)) -((-2620 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) (-3231 (*1 *2 *3) (-12 (-4 *1 (-797)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1032))))) -(-13 (-1094) (-10 -7 (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3231 ((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1481 (((-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#3| |#2| (-1170)) 19))) -(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -1481 ((-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#3| |#2| (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -798)) -((-1481 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3331 (-641 *4)))) (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4))))) -(-10 -7 (-15 -1481 ((-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#3| |#2| (-1170)))) -((-2017 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170)) 18) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170)) 24) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170)) 26) (((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170)) 37) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170)) 35))) -(((-799 |#1| |#2|) (-10 -7 (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -2017 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -2017 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -2017 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -799)) -((-2017 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-799 *6 *2)))) (-2017 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))))) (-2017 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3331 (-641 *3))) *3 "failed")) (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956))))) (-2017 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3331 (-641 *7))) *7 "failed")) (-5 *1 (-799 *6 *7)))) (-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3331 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3331 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-2017 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) (-4 *6 (-13 (-29 *5) (-1194) (-956))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6)))) (-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3331 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7))))) -(-10 -7 (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -2017 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3331 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -2017 ((-3 (-2 (|:| |particular| |#2|) (|:| -3331 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -2017 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -2017 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) -((-4360 (($) 9)) (-1567 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-2945 (((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2783 (($ (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-4152 (($ (-641 (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-2889 (((-1264)) 12))) -(((-800) (-10 -8 (-15 -4360 ($)) (-15 -2889 ((-1264))) (-15 -2945 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4152 ($ (-641 (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2783 ($ (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1567 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -800)) -((-1567 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-800)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-800)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-800)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-800)))) (-2889 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800)))) (-4360 (*1 *1) (-5 *1 (-800)))) -(-10 -8 (-15 -4360 ($)) (-15 -2889 ((-1264))) (-15 -2945 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4152 ($ (-641 (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2783 ($ (-2 (|:| -2568 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1389 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1567 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2133 ((|#2| |#2| (-1170)) 17)) (-3505 ((|#2| |#2| (-1170)) 56)) (-1844 (((-1 |#2| |#2|) (-1170)) 11))) -(((-801 |#1| |#2|) (-10 -7 (-15 -2133 (|#2| |#2| (-1170))) (-15 -3505 (|#2| |#2| (-1170))) (-15 -1844 ((-1 |#2| |#2|) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -801)) -((-1844 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-13 (-29 *4) (-1194) (-956))))) (-3505 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))) (-2133 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956)))))) -(-10 -7 (-15 -2133 (|#2| |#2| (-1170))) (-15 -3505 (|#2| |#2| (-1170))) (-15 -1844 ((-1 |#2| |#2|) (-1170)))) -((-2017 (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379)) 131) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379)) 132) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379)) 134) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379)) 136) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379)) 137) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379))) 139) (((-1032) (-805) (-1058)) 123) (((-1032) (-805)) 124)) (-2620 (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058)) 83) (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805)) 85))) -(((-802) (-10 -7 (-15 -2017 ((-1032) (-805))) (-15 -2017 ((-1032) (-805) (-1058))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058))))) (T -802)) -((-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802))))) -(-10 -7 (-15 -2017 ((-1032) (-805))) (-15 -2017 ((-1032) (-805) (-1058))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -2017 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058)))) -((-3469 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3331 (-641 |#4|))) (-649 |#4|) |#4|) 35))) -(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3469 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3331 (-641 |#4|))) (-649 |#4|) |#4|))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -803)) -((-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-803 *5 *6 *7 *4))))) -(-10 -7 (-15 -3469 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3331 (-641 |#4|))) (-649 |#4|) |#4|))) -((-2203 (((-2 (|:| -4252 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))) 53)) (-3625 (((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#4| |#2|) 62) (((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#4|) 61) (((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#3| |#2|) 20) (((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#3|) 21)) (-2896 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1587 ((|#2| |#3| (-641 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109))) -(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1587 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -1587 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#3|)) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#3| |#2|)) (-15 -2896 (|#2| |#3| |#1|)) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#4|)) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#4| |#2|)) (-15 -2896 (|#2| |#4| |#1|)) (-15 -2203 ((-2 (|:| -4252 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -804)) -((-2203 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -4252 *7) (|:| |rh| (-641 (-407 *6))))) (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) (-2896 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2)) (-4 *3 (-652 (-407 *2))))) (-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2513 *4) (|:| -2772 *4)))) (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4)) (-4 *3 (-652 (-407 *4))))) (-3625 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2513 *5) (|:| -2772 *5)))) (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 (-407 *5))))) (-2896 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))) (-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2513 *4) (|:| -2772 *4)))) (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4)) (-4 *6 (-652 (-407 *4))))) (-3625 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2513 *5) (|:| -2772 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 (-407 *2))))) (-1587 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 *4))))) -(-10 -7 (-15 -1587 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -1587 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#3|)) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#3| |#2|)) (-15 -2896 (|#2| |#3| |#1|)) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#4|)) (-15 -3625 ((-641 (-2 (|:| -2513 |#2|) (|:| -2772 |#2|))) |#4| |#2|)) (-15 -2896 (|#2| |#4| |#1|)) (-15 -2203 ((-2 (|:| -4252 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) -((-1817 (((-112) $ $) NIL)) (-2237 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1702 (((-112) $ $) NIL))) -(((-805) (-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2237 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -805)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805))))) -(-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2237 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-2544 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4252 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-3700 (((-641 (-2 (|:| |poly| |#2|) (|:| -4252 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 56)) (-2518 (((-641 (-2 (|:| |deg| (-768)) (|:| -4252 |#2|))) |#3|) 126)) (-4148 ((|#2| |#3|) 45)) (-4080 (((-641 (-2 (|:| -1809 |#1|) (|:| -4252 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 104)) (-1347 ((|#3| |#3| (-407 |#2|)) 75) ((|#3| |#3| |#2|) 101))) -(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4148 (|#2| |#3|)) (-15 -2518 ((-641 (-2 (|:| |deg| (-768)) (|:| -4252 |#2|))) |#3|)) (-15 -4080 ((-641 (-2 (|:| -1809 |#1|) (|:| -4252 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3700 ((-641 (-2 (|:| |poly| |#2|) (|:| -4252 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -2544 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4252 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1347 (|#3| |#3| |#2|)) (-15 -1347 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -806)) -((-1347 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))) (-1347 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3)) (-4 *5 (-652 (-407 *3))))) (-2544 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -4252 *3)))) (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7)) (-4 *8 (-652 (-407 *7))))) (-3700 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4252 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-4080 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -1809 *5) (|:| -4252 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-2518 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -4252 *5)))) (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-4148 (*1 *2 *3) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2)))))) -(-10 -7 (-15 -4148 (|#2| |#3|)) (-15 -2518 ((-641 (-2 (|:| |deg| (-768)) (|:| -4252 |#2|))) |#3|)) (-15 -4080 ((-641 (-2 (|:| -1809 |#1|) (|:| -4252 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3700 ((-641 (-2 (|:| |poly| |#2|) (|:| -4252 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -2544 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4252 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1347 (|#3| |#3| |#2|)) (-15 -1347 (|#3| |#3| (-407 |#2|)))) -((-3615 (((-2 (|:| -3331 (-641 (-407 |#2|))) (|:| -2394 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3331 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -3331 (-641 (-407 |#2|))) (|:| -2394 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3331 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|)) 143)) (-3979 ((|#2| (-650 |#2| (-407 |#2|))) 93) ((|#2| (-649 (-407 |#2|))) 96))) -(((-807 |#1| |#2|) (-10 -7 (-15 -3615 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3331 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -3615 ((-2 (|:| -3331 (-641 (-407 |#2|))) (|:| -2394 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3615 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3331 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -3615 ((-2 (|:| -3331 (-641 (-407 |#2|))) (|:| -2394 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3979 (|#2| (-649 (-407 |#2|)))) (-15 -3979 (|#2| (-650 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -807)) -((-3979 (*1 *2 *3) (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -3331 (-641 (-407 *6))) (|:| -2394 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-807 *5 *6)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -3331 (-641 (-407 *6))) (|:| -2394 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-807 *5 *6))))) -(-10 -7 (-15 -3615 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3331 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -3615 ((-2 (|:| -3331 (-641 (-407 |#2|))) (|:| -2394 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3615 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3331 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -3615 ((-2 (|:| -3331 (-641 (-407 |#2|))) (|:| -2394 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3979 (|#2| (-649 (-407 |#2|)))) (-15 -3979 (|#2| (-650 |#2| (-407 |#2|))))) -((-4004 (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|) 52))) -(((-808 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4004 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) (-363) (-652 |#1|) (-1235 |#1|) (-721 |#1| |#3|) (-652 |#4|)) (T -808)) -((-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7)) (-5 *2 (-2 (|:| -2394 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4))))) -(-10 -7 (-15 -4004 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) -((-2544 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4252 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-3448 (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 170 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|))) 167 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|))) 169 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 39) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 37)) (-3700 (((-641 (-2 (|:| |poly| |#2|) (|:| -4252 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 99))) -(((-809 |#1| |#2|) (-10 -7 (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2544 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4252 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3700 ((-641 (-2 (|:| |poly| |#2|) (|:| -4252 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -809)) -((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4252 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-2544 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *6)) (|:| -4252 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))) -(-10 -7 (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2544 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4252 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3700 ((-641 (-2 (|:| |poly| |#2|) (|:| -4252 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -3448 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -3448 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) -((-2844 (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|)) 109) (((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4252 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|)) 15)) (-2882 (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3331 (-641 |#1|))) |#2| |#1|)) 115)) (-2017 (((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3331 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed") |#2| |#1|)) 52))) -(((-810 |#1| |#2|) (-10 -7 (-15 -2844 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4252 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -2844 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3331 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -2882 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3331 (-641 |#1|))) |#2| |#1|)))) (-363) (-652 |#1|)) (T -810)) -((-2882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3331 (-641 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *6) "failed")) (|:| -3331 (-641 (-1259 *6))))) (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6)))) (-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3331 (-641 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -3331 (-685 *6)))) (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) (-2844 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) (-5 *2 (-2 (|:| -2394 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))) (-2844 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -4252 *6) (|:| |rh| *5)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5))))) -(-10 -7 (-15 -2844 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4252 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -2844 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -2017 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3331 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3331 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -2882 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3331 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3331 (-641 |#1|))) |#2| |#1|)))) -((-4327 (((-685 |#1|) (-641 |#1|) (-768)) 14) (((-685 |#1|) (-641 |#1|)) 15)) (-2121 (((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|)) 39)) (-4257 (((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)) 46))) -(((-811 |#1| |#2|) (-10 -7 (-15 -4327 ((-685 |#1|) (-641 |#1|))) (-15 -4327 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -2121 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -4257 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -811)) -((-4257 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2)))) (-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4)))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4))))) -(-10 -7 (-15 -4327 ((-685 |#1|) (-641 |#1|))) (-15 -4327 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -2121 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -4257 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1615 (((-112) $) NIL (|has| |#2| (-131)))) (-1575 (($ (-918)) NIL (|has| |#2| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1986 (($ $ $) NIL (|has| |#2| (-790)))) (-4088 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| |#2| (-368)))) (-1598 (((-564) $) NIL (|has| |#2| (-845)))) (-1970 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2237 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-4050 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-3733 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2900 (($) NIL (|has| |#2| (-368)))) (-2261 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ (-564)) NIL)) (-1569 (((-112) $) NIL (|has| |#2| (-845)))) (-1433 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL (|has| |#2| (-723)))) (-2607 (((-112) $) NIL (|has| |#2| (-845)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2640 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2250 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#2| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-1468 (($ (-918)) NIL (|has| |#2| (-368)))) (-2780 (((-1114) $) NIL (|has| |#2| (-1094)))) (-3303 ((|#2| $) NIL (|has| (-564) (-847)))) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-3032 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-3112 (($ (-1259 |#2|)) NIL)) (-3548 (((-134)) NIL (|has| |#2| (-363)))) (-3534 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-2791 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4078 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-2219 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1849 (($ $) NIL (|has| |#2| (-845)))) (-1293 (($) NIL (|has| |#2| (-131)) CONST)) (-1300 (($) NIL (|has| |#2| (-723)) CONST)) (-3435 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1762 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1702 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1749 (((-112) $ $) NIL (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1723 (((-112) $ $) 11 (-4078 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1797 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-812 |#1| |#2| |#3|) (-238 |#1| |#2|) (-768) (-790) (-1 (-112) (-1259 |#2|) (-1259 |#2|))) (T -812)) +(-13 (-788) (-131)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-788) . T) ((-790) . T) ((-846) . T) ((-1094) . T)) +((-3264 (((-112) $) 42)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1781 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-4175 (((-3 (-407 (-564)) "failed") $) 78)) (-2446 (((-112) $) 72)) (-2569 (((-407 (-564)) $) 76)) (-2019 ((|#2| $) 26)) (-3123 (($ (-1 |#2| |#2|) $) 23)) (-2639 (($ $) 58)) (-3172 (((-536) $) 67)) (-2675 (($ $) 21)) (-2322 (((-858) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-3179 (((-767)) 10)) (-3598 ((|#2| $) 71)) (-2921 (((-112) $ $) 30)) (-2942 (((-112) $ $) 69)) (-3021 (($ $) 32) (($ $ $) NIL)) (-3011 (($ $ $) 31)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-792 |#1| |#2|) (-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -2639 (|#1| |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -3598 (|#2| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-793 |#2|) (-172)) (T -792)) +((-3179 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) (-4 *3 (-793 *4))))) +(-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -2639 (|#1| |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -3598 (|#2| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-1959 (((-767)) 52 (|has| |#1| (-368)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 94 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 91 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 88)) (-1781 (((-564) $) 93 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 90 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 89)) (-2689 (((-3 $ "failed") $) 33)) (-2401 ((|#1| $) 78)) (-4175 (((-3 (-407 (-564)) "failed") $) 65 (|has| |#1| (-545)))) (-2446 (((-112) $) 67 (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) 66 (|has| |#1| (-545)))) (-3860 (($) 55 (|has| |#1| (-368)))) (-1828 (((-112) $) 31)) (-2239 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-2019 ((|#1| $) 70)) (-1501 (($ $ $) 61 (|has| |#1| (-846)))) (-2622 (($ $ $) 60 (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) 80)) (-1368 (((-917) $) 54 (|has| |#1| (-368)))) (-1418 (((-1152) $) 9)) (-2639 (($ $) 64 (|has| |#1| (-363)))) (-1998 (($ (-917)) 53 (|has| |#1| (-368)))) (-2046 ((|#1| $) 75)) (-3401 ((|#1| $) 76)) (-2708 ((|#1| $) 77)) (-2561 ((|#1| $) 71)) (-2158 ((|#1| $) 72)) (-3291 ((|#1| $) 73)) (-1615 ((|#1| $) 74)) (-3840 (((-1114) $) 10)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 82 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 81 (|has| |#1| (-514 (-1170) |#1|)))) (-4353 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-3172 (((-536) $) 62 (|has| |#1| (-612 (-536))))) (-2675 (($ $) 79)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 92 (|has| |#1| (-1034 (-407 (-564)))))) (-2409 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-3598 ((|#1| $) 68 (|has| |#1| (-1054)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 58 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 57 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 59 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 56 (|has| |#1| (-846)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-793 |#1|) (-140) (-172)) (T -793)) +((-2675 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2239 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-4175 (*1 *2 *1) (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2639 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -2675 ($ $)) (-15 -2401 (|t#1| $)) (-15 -2708 (|t#1| $)) (-15 -3401 (|t#1| $)) (-15 -2046 (|t#1| $)) (-15 -1615 (|t#1| $)) (-15 -3291 (|t#1| $)) (-15 -2158 (|t#1| $)) (-15 -2561 (|t#1| $)) (-15 -2019 (|t#1| $)) (-15 -2239 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3598 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2639 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3123 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#3| (-1 |#4| |#2|) |#1|))) (-793 |#2|) (-172) (-793 |#4|) (-172)) (T -794)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5))))) +(-10 -7 (-15 -3123 (|#3| (-1 |#4| |#2|) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-995 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-2789 (|has| (-995 |#1|) (-1034 (-564))) (|has| |#1| (-1034 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-2789 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-1781 ((|#1| $) NIL) (((-995 |#1|) $) 33) (((-564) $) NIL (-2789 (|has| (-995 |#1|) (-1034 (-564))) (|has| |#1| (-1034 (-564))))) (((-407 (-564)) $) NIL (-2789 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-2689 (((-3 $ "failed") $) NIL)) (-2401 ((|#1| $) 16)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2446 (((-112) $) NIL (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3860 (($) NIL (|has| |#1| (-368)))) (-1828 (((-112) $) NIL)) (-2239 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-995 |#1|) (-995 |#1|)) 29)) (-2019 ((|#1| $) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-2046 ((|#1| $) 22)) (-3401 ((|#1| $) 20)) (-2708 ((|#1| $) 18)) (-2561 ((|#1| $) 26)) (-2158 ((|#1| $) 25)) (-3291 ((|#1| $) 24)) (-1615 ((|#1| $) 23)) (-3840 (((-1114) $) NIL)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4353 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2675 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-995 |#1|)) 30) (($ (-407 (-564))) NIL (-2789 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-3598 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2389 (($) 8 T CONST)) (-2403 (($) 12 T CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-795 |#1|) (-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -2239 ($ (-995 |#1|) (-995 |#1|))))) (-172)) (T -795)) +((-2239 (*1 *1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3))))) +(-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -2239 ($ (-995 |#1|) (-995 |#1|))))) +((-2310 (((-112) $ $) 7)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-3729 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-2921 (((-112) $ $) 6))) +(((-796) (-140)) (T -796)) +((-1632 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) (-3729 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1031))))) +(-13 (-1094) (-10 -7 (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3729 ((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-4329 (((-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#3| |#2| (-1170)) 19))) +(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -4329 ((-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#3| |#2| (-1170)))) (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955)) (-652 |#2|)) (T -797)) +((-4329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1170)) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3342 (-641 *4)))) (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-652 *4))))) +(-10 -7 (-15 -4329 ((-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#3| |#2| (-1170)))) +((-1630 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170)) 18) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170)) 24) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170)) 26) (((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170)) 37) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170)) 35))) +(((-798 |#1| |#2|) (-10 -7 (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -1630 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -1630 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -1630 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955))) (T -798)) +((-1630 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-798 *6 *2)))) (-1630 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-5 *1 (-798 *6 *2)) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3342 (-641 *3))) *3 "failed")) (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-955))))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3342 (-641 *7))) *7 "failed")) (-5 *1 (-798 *6 *7)))) (-1630 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3342 (-641 (-1259 *7))))) (-5 *1 (-798 *6 *7)))) (-1630 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3342 (-641 (-1259 *7))))) (-5 *1 (-798 *6 *7)))) (-1630 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) (-4 *6 (-13 (-29 *5) (-1194) (-955))) (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-1259 *6))) (-5 *1 (-798 *5 *6)))) (-1630 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3342 (-641 (-1259 *7))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1259 *7))))) +(-10 -7 (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -1630 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3342 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -1630 ((-3 (-2 (|:| |particular| |#2|) (|:| -3342 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -1630 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -1630 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) +((-2774 (($) 9)) (-2768 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-2843 (((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-3861 (($ (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-1304 (($ (-641 (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-2459 (((-1264)) 12))) +(((-799) (-10 -8 (-15 -2774 ($)) (-15 -2459 ((-1264))) (-15 -2843 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1304 ($ (-641 (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -3861 ($ (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -2768 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -799)) +((-2768 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-799)))) (-3861 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-799)))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-799)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-799)))) (-2459 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-799)))) (-2774 (*1 *1) (-5 *1 (-799)))) +(-10 -8 (-15 -2774 ($)) (-15 -2459 ((-1264))) (-15 -2843 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1304 ($ (-641 (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -3861 ($ (-2 (|:| -3076 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2511 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -2768 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-3378 ((|#2| |#2| (-1170)) 17)) (-4326 ((|#2| |#2| (-1170)) 56)) (-3546 (((-1 |#2| |#2|) (-1170)) 11))) +(((-800 |#1| |#2|) (-10 -7 (-15 -3378 (|#2| |#2| (-1170))) (-15 -4326 (|#2| |#2| (-1170))) (-15 -3546 ((-1 |#2| |#2|) (-1170)))) (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955))) (T -800)) +((-3546 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-13 (-29 *4) (-1194) (-955))))) (-4326 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955))))) (-3378 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955)))))) +(-10 -7 (-15 -3378 (|#2| |#2| (-1170))) (-15 -4326 (|#2| |#2| (-1170))) (-15 -3546 ((-1 |#2| |#2|) (-1170)))) +((-1630 (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379)) 131) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379)) 132) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379)) 134) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379)) 136) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379)) 137) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379))) 139) (((-1031) (-804) (-1057)) 123) (((-1031) (-804)) 124)) (-1632 (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804) (-1057)) 83) (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804)) 85))) +(((-801) (-10 -7 (-15 -1630 ((-1031) (-804))) (-15 -1630 ((-1031) (-804) (-1057))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804) (-1057))))) (T -801)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-801)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801))))) +(-10 -7 (-15 -1630 ((-1031) (-804))) (-15 -1630 ((-1031) (-804) (-1057))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -1630 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804) (-1057)))) +((-2076 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3342 (-641 |#4|))) (-649 |#4|) |#4|) 35))) +(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2076 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3342 (-641 |#4|))) (-649 |#4|) |#4|))) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -802)) +((-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-802 *5 *6 *7 *4))))) +(-10 -7 (-15 -2076 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3342 (-641 |#4|))) (-649 |#4|) |#4|))) +((-3018 (((-2 (|:| -3482 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))) 53)) (-3025 (((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#4| |#2|) 62) (((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#4|) 61) (((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#3| |#2|) 20) (((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#3|) 21)) (-2531 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2972 ((|#2| |#3| (-641 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109))) +(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2972 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#3|)) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#3| |#2|)) (-15 -2531 (|#2| |#3| |#1|)) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#4|)) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#4| |#2|)) (-15 -2531 (|#2| |#4| |#1|)) (-15 -3018 ((-2 (|:| -3482 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -803)) +((-3018 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -3482 *7) (|:| |rh| (-641 (-407 *6))))) (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) (-2531 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-652 *2)) (-4 *3 (-652 (-407 *2))))) (-3025 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2965 *4) (|:| -1866 *4)))) (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-652 *4)) (-4 *3 (-652 (-407 *4))))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2965 *5) (|:| -1866 *5)))) (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 (-407 *5))))) (-2531 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))) (-3025 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2965 *4) (|:| -1866 *4)))) (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-652 *4)) (-4 *6 (-652 (-407 *4))))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2965 *5) (|:| -1866 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 (-407 *2))))) (-2972 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 *4))))) +(-10 -7 (-15 -2972 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2972 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#3|)) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#3| |#2|)) (-15 -2531 (|#2| |#3| |#1|)) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#4|)) (-15 -3025 ((-641 (-2 (|:| -2965 |#2|) (|:| -1866 |#2|))) |#4| |#2|)) (-15 -2531 (|#2| |#4| |#1|)) (-15 -3018 ((-2 (|:| -3482 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) +((-2310 (((-112) $ $) NIL)) (-1781 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-2921 (((-112) $ $) NIL))) +(((-804) (-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1781 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -804)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804))))) +(-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1781 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-3376 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -3482 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-2373 (((-641 (-2 (|:| |poly| |#2|) (|:| -3482 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 56)) (-3135 (((-641 (-2 (|:| |deg| (-767)) (|:| -3482 |#2|))) |#3|) 126)) (-4361 ((|#2| |#3|) 45)) (-1787 (((-641 (-2 (|:| -2255 |#1|) (|:| -3482 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 104)) (-3538 ((|#3| |#3| (-407 |#2|)) 75) ((|#3| |#3| |#2|) 101))) +(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4361 (|#2| |#3|)) (-15 -3135 ((-641 (-2 (|:| |deg| (-767)) (|:| -3482 |#2|))) |#3|)) (-15 -1787 ((-641 (-2 (|:| -2255 |#1|) (|:| -3482 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -2373 ((-641 (-2 (|:| |poly| |#2|) (|:| -3482 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3376 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -3482 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3538 (|#3| |#3| |#2|)) (-15 -3538 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -805)) +((-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))) (-3538 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-1235 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-652 *3)) (-4 *5 (-652 (-407 *3))))) (-3376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -3482 *3)))) (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-652 *7)) (-4 *8 (-652 (-407 *7))))) (-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -3482 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-1787 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2255 *5) (|:| -3482 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-3135 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -3482 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-4361 (*1 *2 *3) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2)))))) +(-10 -7 (-15 -4361 (|#2| |#3|)) (-15 -3135 ((-641 (-2 (|:| |deg| (-767)) (|:| -3482 |#2|))) |#3|)) (-15 -1787 ((-641 (-2 (|:| -2255 |#1|) (|:| -3482 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -2373 ((-641 (-2 (|:| |poly| |#2|) (|:| -3482 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3376 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -3482 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3538 (|#3| |#3| |#2|)) (-15 -3538 (|#3| |#3| (-407 |#2|)))) +((-2922 (((-2 (|:| -3342 (-641 (-407 |#2|))) (|:| -4379 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3342 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -3342 (-641 (-407 |#2|))) (|:| -4379 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3342 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|)) 143)) (-3233 ((|#2| (-650 |#2| (-407 |#2|))) 93) ((|#2| (-649 (-407 |#2|))) 96))) +(((-806 |#1| |#2|) (-10 -7 (-15 -2922 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3342 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -2922 ((-2 (|:| -3342 (-641 (-407 |#2|))) (|:| -4379 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -2922 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3342 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2922 ((-2 (|:| -3342 (-641 (-407 |#2|))) (|:| -4379 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3233 (|#2| (-649 (-407 |#2|)))) (-15 -3233 (|#2| (-650 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -806)) +((-3233 (*1 *2 *3) (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| -3342 (-641 (-407 *6))) (|:| -4379 (-685 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-806 *5 *6)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| -3342 (-641 (-407 *6))) (|:| -4379 (-685 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-806 *5 *6))))) +(-10 -7 (-15 -2922 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3342 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -2922 ((-2 (|:| -3342 (-641 (-407 |#2|))) (|:| -4379 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -2922 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3342 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2922 ((-2 (|:| -3342 (-641 (-407 |#2|))) (|:| -4379 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3233 (|#2| (-649 (-407 |#2|)))) (-15 -3233 (|#2| (-650 |#2| (-407 |#2|))))) +((-2254 (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|) 52))) +(((-807 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2254 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) (-363) (-652 |#1|) (-1235 |#1|) (-720 |#1| |#3|) (-652 |#4|)) (T -807)) +((-2254 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-720 *5 *7)) (-5 *2 (-2 (|:| -4379 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4))))) +(-10 -7 (-15 -2254 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) +((-3376 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -3482 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-1873 (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 170 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|))) 167 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|))) 169 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 39) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 37)) (-2373 (((-641 (-2 (|:| |poly| |#2|) (|:| -3482 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 99))) +(((-808 |#1| |#2|) (-10 -7 (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3376 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -3482 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2373 ((-641 (-2 (|:| |poly| |#2|) (|:| -3482 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -808)) +((-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -3482 (-650 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *6)) (|:| -3482 (-650 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6))))) +(-10 -7 (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3376 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -3482 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2373 ((-641 (-2 (|:| |poly| |#2|) (|:| -3482 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -1873 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -1873 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) +((-3245 (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|)) 109) (((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -3482 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|)) 15)) (-2382 (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3342 (-641 |#1|))) |#2| |#1|)) 115)) (-1630 (((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3342 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed") |#2| |#1|)) 52))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3245 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -3482 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -3245 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3342 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -2382 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3342 (-641 |#1|))) |#2| |#1|)))) (-363) (-652 |#1|)) (T -809)) +((-2382 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3342 (-641 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *6) "failed")) (|:| -3342 (-641 (-1259 *6))))) (-5 *1 (-809 *6 *7)) (-5 *4 (-1259 *6)))) (-1630 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3342 (-641 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -3342 (-685 *6)))) (-5 *1 (-809 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) (-5 *2 (-2 (|:| -4379 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -3482 *6) (|:| |rh| *5)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5))))) +(-10 -7 (-15 -3245 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -3482 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -3245 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -1630 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3342 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3342 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -2382 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3342 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3342 (-641 |#1|))) |#2| |#1|)))) +((-2454 (((-685 |#1|) (-641 |#1|) (-767)) 14) (((-685 |#1|) (-641 |#1|)) 15)) (-3391 (((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|)) 39)) (-3027 (((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)) 46))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2454 ((-685 |#1|) (-641 |#1|))) (-15 -2454 ((-685 |#1|) (-641 |#1|) (-767))) (-15 -3391 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -3027 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -810)) +((-3027 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-810 *2 *3)) (-4 *3 (-652 *2)))) (-3391 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) (-5 *1 (-810 *4 *3)) (-4 *3 (-652 *4)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-685 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-652 *5)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) (-5 *1 (-810 *4 *5)) (-4 *5 (-652 *4))))) +(-10 -7 (-15 -2454 ((-685 |#1|) (-641 |#1|))) (-15 -2454 ((-685 |#1|) (-641 |#1|) (-767))) (-15 -3391 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -3027 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3264 (((-112) $) NIL (|has| |#2| (-131)))) (-2845 (($ (-917)) NIL (|has| |#2| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2568 (($ $ $) NIL (|has| |#2| (-789)))) (-1862 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| |#2| (-368)))) (-3085 (((-564) $) NIL (|has| |#2| (-844)))) (-3750 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-1781 (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-2750 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1045)))) (-2689 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-3860 (($) NIL (|has| |#2| (-368)))) (-1466 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ (-564)) NIL)) (-2786 (((-112) $) NIL (|has| |#2| (-844)))) (-3534 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL (|has| |#2| (-722)))) (-2783 (((-112) $) NIL (|has| |#2| (-844)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1834 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1456 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#2| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-1998 (($ (-917)) NIL (|has| |#2| (-368)))) (-3840 (((-1114) $) NIL (|has| |#2| (-1094)))) (-1995 ((|#2| $) NIL (|has| (-564) (-846)))) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2535 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2427 (($ (-1259 |#2|)) NIL)) (-3480 (((-134)) NIL (|has| |#2| (-363)))) (-1343 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3852 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-2789 (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-858) $) NIL (|has| |#2| (-611 (-858))))) (-3179 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3598 (($ $) NIL (|has| |#2| (-844)))) (-2389 (($) NIL (|has| |#2| (-131)) CONST)) (-2403 (($) NIL (|has| |#2| (-722)) CONST)) (-3917 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2977 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2921 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-2964 (((-112) $ $) NIL (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2942 (((-112) $ $) 11 (-2789 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3011 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-564) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-811 |#1| |#2| |#3|) (-238 |#1| |#2|) (-767) (-789) (-1 (-112) (-1259 |#2|) (-1259 |#2|))) (T -811)) NIL (-238 |#1| |#2|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2408 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-4129 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-3209 (((-641 (-815 (-1170))) $) NIL)) (-3040 (((-1166 $) $ (-815 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-815 (-1170)))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2946 (($ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-815 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-815 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-1357 (($ $ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-531 (-815 (-1170))) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2155 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#1|) (-815 (-1170))) NIL) (($ (-1166 $) (-815 (-1170))) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-815 (-1170))) NIL)) (-1826 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-531 (-815 (-1170))) (-531 (-815 (-1170)))) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2243 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2169 (((-3 (-815 (-1170)) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-4103 (((-815 (-1170)) $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2194 (((-112) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-815 (-1170))) (|:| -1558 (-768))) "failed") $) NIL)) (-1434 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-815 (-1170)) |#1|) NIL) (($ $ (-641 (-815 (-1170))) (-641 |#1|)) NIL) (($ $ (-815 (-1170)) $) NIL) (($ $ (-641 (-815 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-3190 (($ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-3534 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2722 (((-641 (-1170)) $) NIL)) (-1619 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-815 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-813 |#1|) (-13 (-253 |#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) (-1035 (-1119 |#1| (-1170)))) (-1046)) (T -813)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1399 (((-641 (-767)) $) NIL) (((-641 (-767)) $ (-1170)) NIL)) (-4145 (((-767) $) NIL) (((-767) $ (-1170)) NIL)) (-2534 (((-641 (-814 (-1170))) $) NIL)) (-2340 (((-1166 $) $ (-814 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-814 (-1170)))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1796 (($ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-814 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-814 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-2595 (($ $ $ (-814 (-1170))) NIL (|has| |#1| (-172)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1170))) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-531 (-814 (-1170))) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-814 (-1170)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-814 (-1170)) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3717 (((-767) $ (-1170)) NIL) (((-767) $) NIL)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#1|) (-814 (-1170))) NIL) (($ (-1166 $) (-814 (-1170))) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-531 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-814 (-1170))) NIL)) (-3386 (((-531 (-814 (-1170))) $) NIL) (((-767) $ (-814 (-1170))) NIL) (((-641 (-767)) $ (-641 (-814 (-1170)))) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-531 (-814 (-1170))) (-531 (-814 (-1170)))) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2144 (((-1 $ (-767)) (-1170)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3878 (((-3 (-814 (-1170)) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3938 (((-814 (-1170)) $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-2928 (((-112) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-814 (-1170))) (|:| -3866 (-767))) "failed") $) NIL)) (-1917 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-814 (-1170)) |#1|) NIL) (($ $ (-641 (-814 (-1170))) (-641 |#1|)) NIL) (($ $ (-814 (-1170)) $) NIL) (($ $ (-641 (-814 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-3392 (($ $ (-814 (-1170))) NIL (|has| |#1| (-172)))) (-1343 (($ $ (-814 (-1170))) NIL) (($ $ (-641 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1404 (((-641 (-1170)) $) NIL)) (-2073 (((-531 (-814 (-1170))) $) NIL) (((-767) $ (-814 (-1170))) NIL) (((-641 (-767)) $ (-641 (-814 (-1170)))) NIL) (((-767) $ (-1170)) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-814 (-1170)) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-814 (-1170)) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-814 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1170))) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-814 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-531 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-814 (-1170))) NIL) (($ $ (-641 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-812 |#1|) (-13 (-253 |#1| (-1170) (-814 (-1170)) (-531 (-814 (-1170)))) (-1034 (-1119 |#1| (-1170)))) (-1045)) (T -812)) NIL -(-13 (-253 |#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) (-1035 (-1119 |#1| (-1170)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-1537 (($ $) NIL (|has| |#2| (-363)))) (-1932 (((-112) $) NIL (|has| |#2| (-363)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#2| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3554 (((-112) $ $) NIL (|has| |#2| (-363)))) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL (|has| |#2| (-363)))) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL (|has| |#2| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-1420 (((-112) $) NIL (|has| |#2| (-363)))) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2740 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 20 (|has| |#2| (-363)))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3070 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#2| (-363)))) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3920 (((-768) $) NIL (|has| |#2| (-363)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-363)))) (-3534 (($ $ (-768)) NIL) (($ $) 13)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL (|has| |#2| (-363)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) 15 (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363))))) -(((-814 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1094) (-897 |#1|) |#1|) (T -814)) +(-13 (-253 |#1| (-1170) (-814 (-1170)) (-531 (-814 (-1170)))) (-1034 (-1119 |#1| (-1170)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-3622 (($ $) NIL (|has| |#2| (-363)))) (-3247 (((-112) $) NIL (|has| |#2| (-363)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#2| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3547 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL (|has| |#2| (-363)))) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL (|has| |#2| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-4229 (((-112) $) NIL (|has| |#2| (-363)))) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3202 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 20 (|has| |#2| (-363)))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2375 (((-418 $) $) NIL (|has| |#2| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#2| (-363)))) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3844 (((-767) $) NIL (|has| |#2| (-363)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-363)))) (-1343 (($ $ (-767)) NIL) (($ $) 13)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) 15 (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363))))) +(((-813 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1094) (-896 |#1|) |#1|) (T -813)) NIL (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-4129 (((-768) $) NIL)) (-3871 ((|#1| $) 10)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-2155 (((-768) $) 11)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2243 (($ |#1| (-768)) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3534 (($ $) NIL) (($ $ (-768)) NIL)) (-1831 (((-859) $) NIL) (($ |#1|) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-815 |#1|) (-266 |#1|) (-847)) (T -815)) +((-2310 (((-112) $ $) NIL)) (-4145 (((-767) $) NIL)) (-3256 ((|#1| $) 10)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-3717 (((-767) $) 11)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-2144 (($ |#1| (-767)) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1343 (($ $) NIL) (($ $ (-767)) NIL)) (-2322 (((-858) $) NIL) (($ |#1|) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-814 |#1|) (-266 |#1|) (-846)) (T -814)) NIL (-266 |#1|) -((-1817 (((-112) $ $) NIL)) (-2412 (((-641 |#1|) $) 38)) (-3267 (((-768) $) NIL)) (-1778 (($) NIL T CONST)) (-2113 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-3314 (($ $) 42)) (-3733 (((-3 $ "failed") $) NIL)) (-1456 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2949 (((-112) $) NIL)) (-1765 ((|#1| $ (-564)) NIL)) (-1767 (((-768) $ (-564)) NIL)) (-3156 (($ $) 51)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2674 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2519 (((-112) $ $) 49)) (-1502 (((-768) $) 34)) (-2723 (((-1152) $) NIL)) (-2276 (($ $ $) NIL)) (-4275 (($ $ $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 ((|#1| $) 41)) (-3840 (((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $) NIL)) (-1412 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1831 (((-859) $) NIL) (($ |#1|) NIL)) (-1300 (($) 20 T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 50)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-816 |#1|) (-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -3303 (|#1| $)) (-15 -3314 ($ $)) (-15 -3156 ($ $)) (-15 -2519 ((-112) $ $)) (-15 -4275 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2674 ((-3 $ "failed") $ $)) (-15 -2113 ((-3 $ "failed") $ $)) (-15 -2674 ((-3 $ "failed") $ |#1|)) (-15 -2113 ((-3 $ "failed") $ |#1|)) (-15 -1412 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1456 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3267 ((-768) $)) (-15 -1767 ((-768) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3840 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $)) (-15 -1502 ((-768) $)) (-15 -2412 ((-641 |#1|) $)))) (-847)) (T -816)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3303 (*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3314 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2519 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-4275 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2276 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2674 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2113 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2674 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2113 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-1412 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-1456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-1767 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 (-768))))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-816 *3)) (-4 *3 (-847))))) -(-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -3303 (|#1| $)) (-15 -3314 ($ $)) (-15 -3156 ($ $)) (-15 -2519 ((-112) $ $)) (-15 -4275 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2674 ((-3 $ "failed") $ $)) (-15 -2113 ((-3 $ "failed") $ $)) (-15 -2674 ((-3 $ "failed") $ |#1|)) (-15 -2113 ((-3 $ "failed") $ |#1|)) (-15 -1412 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1456 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3267 ((-768) $)) (-15 -1767 ((-768) $ (-564))) (-15 -1765 (|#1| $ (-564))) (-15 -3840 ((-641 (-2 (|:| |gen| |#1|) (|:| -4326 (-768)))) $)) (-15 -1502 ((-768) $)) (-15 -2412 ((-641 |#1|) $)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-1598 (((-564) $) 54)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-1569 (((-112) $) 52)) (-2949 (((-112) $) 31)) (-2607 (((-112) $) 53)) (-1925 (($ $ $) 51)) (-3375 (($ $ $) 50)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ $) 43)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1849 (($ $) 55)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 48)) (-1737 (((-112) $ $) 47)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 49)) (-1723 (((-112) $ $) 46)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-817) (-140)) (T -817)) -NIL -(-13 (-556) (-845)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2971 (($ (-1114)) 7)) (-1928 (((-112) $ (-1152) (-1114)) 15)) (-3259 (((-819) $) 12)) (-3672 (((-819) $) 11)) (-1329 (((-1264) $) 9)) (-4174 (((-112) $ (-1114)) 16))) -(((-818) (-10 -8 (-15 -2971 ($ (-1114))) (-15 -1329 ((-1264) $)) (-15 -3672 ((-819) $)) (-15 -3259 ((-819) $)) (-15 -1928 ((-112) $ (-1152) (-1114))) (-15 -4174 ((-112) $ (-1114))))) (T -818)) -((-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-1928 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818))))) -(-10 -8 (-15 -2971 ($ (-1114))) (-15 -1329 ((-1264) $)) (-15 -3672 ((-819) $)) (-15 -3259 ((-819) $)) (-15 -1928 ((-112) $ (-1152) (-1114))) (-15 -4174 ((-112) $ (-1114)))) -((-2335 (((-1264) $ (-820)) 12)) (-1611 (((-1264) $ (-1170)) 32)) (-3037 (((-1264) $ (-1152) (-1152)) 34)) (-3619 (((-1264) $ (-1152)) 33)) (-1660 (((-1264) $) 19)) (-3680 (((-1264) $ (-564)) 28)) (-2446 (((-1264) $ (-225)) 30)) (-2737 (((-1264) $) 18)) (-1683 (((-1264) $) 26)) (-1318 (((-1264) $) 25)) (-4040 (((-1264) $) 23)) (-1429 (((-1264) $) 24)) (-2887 (((-1264) $) 22)) (-1658 (((-1264) $) 21)) (-1766 (((-1264) $) 20)) (-1545 (((-1264) $) 16)) (-2318 (((-1264) $) 17)) (-3634 (((-1264) $) 15)) (-1562 (((-1264) $) 14)) (-4126 (((-1264) $) 13)) (-3786 (($ (-1152) (-820)) 9)) (-1450 (($ (-1152) (-1152) (-820)) 8)) (-2280 (((-1170) $) 51)) (-1897 (((-1170) $) 55)) (-2606 (((-2 (|:| |cd| (-1152)) (|:| -1316 (-1152))) $) 54)) (-3381 (((-1152) $) 52)) (-2048 (((-1264) $) 41)) (-1296 (((-564) $) 49)) (-2841 (((-225) $) 50)) (-4374 (((-1264) $) 40)) (-2191 (((-1264) $) 48)) (-2274 (((-1264) $) 47)) (-3897 (((-1264) $) 45)) (-1600 (((-1264) $) 46)) (-4166 (((-1264) $) 44)) (-3831 (((-1264) $) 43)) (-3551 (((-1264) $) 42)) (-2366 (((-1264) $) 38)) (-2698 (((-1264) $) 39)) (-1633 (((-1264) $) 37)) (-3023 (((-1264) $) 36)) (-3079 (((-1264) $) 35)) (-1761 (((-1264) $) 11))) -(((-819) (-10 -8 (-15 -1450 ($ (-1152) (-1152) (-820))) (-15 -3786 ($ (-1152) (-820))) (-15 -1761 ((-1264) $)) (-15 -2335 ((-1264) $ (-820))) (-15 -4126 ((-1264) $)) (-15 -1562 ((-1264) $)) (-15 -3634 ((-1264) $)) (-15 -1545 ((-1264) $)) (-15 -2318 ((-1264) $)) (-15 -2737 ((-1264) $)) (-15 -1660 ((-1264) $)) (-15 -1766 ((-1264) $)) (-15 -1658 ((-1264) $)) (-15 -2887 ((-1264) $)) (-15 -4040 ((-1264) $)) (-15 -1429 ((-1264) $)) (-15 -1318 ((-1264) $)) (-15 -1683 ((-1264) $)) (-15 -3680 ((-1264) $ (-564))) (-15 -2446 ((-1264) $ (-225))) (-15 -1611 ((-1264) $ (-1170))) (-15 -3619 ((-1264) $ (-1152))) (-15 -3037 ((-1264) $ (-1152) (-1152))) (-15 -3079 ((-1264) $)) (-15 -3023 ((-1264) $)) (-15 -1633 ((-1264) $)) (-15 -2366 ((-1264) $)) (-15 -2698 ((-1264) $)) (-15 -4374 ((-1264) $)) (-15 -2048 ((-1264) $)) (-15 -3551 ((-1264) $)) (-15 -3831 ((-1264) $)) (-15 -4166 ((-1264) $)) (-15 -3897 ((-1264) $)) (-15 -1600 ((-1264) $)) (-15 -2274 ((-1264) $)) (-15 -2191 ((-1264) $)) (-15 -1296 ((-564) $)) (-15 -2841 ((-225) $)) (-15 -2280 ((-1170) $)) (-15 -3381 ((-1152) $)) (-15 -2606 ((-2 (|:| |cd| (-1152)) (|:| -1316 (-1152))) $)) (-15 -1897 ((-1170) $)))) (T -819)) -((-1897 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -1316 (-1152)))) (-5 *1 (-819)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3037 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1611 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1766 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2335 (*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3786 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))) (-1450 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819))))) -(-10 -8 (-15 -1450 ($ (-1152) (-1152) (-820))) (-15 -3786 ($ (-1152) (-820))) (-15 -1761 ((-1264) $)) (-15 -2335 ((-1264) $ (-820))) (-15 -4126 ((-1264) $)) (-15 -1562 ((-1264) $)) (-15 -3634 ((-1264) $)) (-15 -1545 ((-1264) $)) (-15 -2318 ((-1264) $)) (-15 -2737 ((-1264) $)) (-15 -1660 ((-1264) $)) (-15 -1766 ((-1264) $)) (-15 -1658 ((-1264) $)) (-15 -2887 ((-1264) $)) (-15 -4040 ((-1264) $)) (-15 -1429 ((-1264) $)) (-15 -1318 ((-1264) $)) (-15 -1683 ((-1264) $)) (-15 -3680 ((-1264) $ (-564))) (-15 -2446 ((-1264) $ (-225))) (-15 -1611 ((-1264) $ (-1170))) (-15 -3619 ((-1264) $ (-1152))) (-15 -3037 ((-1264) $ (-1152) (-1152))) (-15 -3079 ((-1264) $)) (-15 -3023 ((-1264) $)) (-15 -1633 ((-1264) $)) (-15 -2366 ((-1264) $)) (-15 -2698 ((-1264) $)) (-15 -4374 ((-1264) $)) (-15 -2048 ((-1264) $)) (-15 -3551 ((-1264) $)) (-15 -3831 ((-1264) $)) (-15 -4166 ((-1264) $)) (-15 -3897 ((-1264) $)) (-15 -1600 ((-1264) $)) (-15 -2274 ((-1264) $)) (-15 -2191 ((-1264) $)) (-15 -1296 ((-564) $)) (-15 -2841 ((-225) $)) (-15 -2280 ((-1170) $)) (-15 -3381 ((-1152) $)) (-15 -2606 ((-2 (|:| |cd| (-1152)) (|:| -1316 (-1152))) $)) (-15 -1897 ((-1170) $))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 13)) (-1643 (($) 16)) (-1953 (($) 14)) (-4267 (($) 17)) (-3152 (($) 15)) (-1702 (((-112) $ $) 9))) -(((-820) (-13 (-1094) (-10 -8 (-15 -1953 ($)) (-15 -1643 ($)) (-15 -4267 ($)) (-15 -3152 ($))))) (T -820)) -((-1953 (*1 *1) (-5 *1 (-820))) (-1643 (*1 *1) (-5 *1 (-820))) (-4267 (*1 *1) (-5 *1 (-820))) (-3152 (*1 *1) (-5 *1 (-820)))) -(-13 (-1094) (-10 -8 (-15 -1953 ($)) (-15 -1643 ($)) (-15 -4267 ($)) (-15 -3152 ($)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 23) (($ (-1170)) 19)) (-4365 (((-112) $) 10)) (-1361 (((-112) $) 9)) (-1868 (((-112) $) 11)) (-1787 (((-112) $) 8)) (-1702 (((-112) $ $) 21))) -(((-821) (-13 (-1094) (-10 -8 (-15 -1831 ($ (-1170))) (-15 -1787 ((-112) $)) (-15 -1361 ((-112) $)) (-15 -4365 ((-112) $)) (-15 -1868 ((-112) $))))) (T -821)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) -(-13 (-1094) (-10 -8 (-15 -1831 ($ (-1170))) (-15 -1787 ((-112) $)) (-15 -1361 ((-112) $)) (-15 -4365 ((-112) $)) (-15 -1868 ((-112) $)))) -((-1817 (((-112) $ $) NIL)) (-2269 (($ (-821) (-641 (-1170))) 32)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3473 (((-821) $) 33)) (-1359 (((-641 (-1170)) $) 34)) (-1831 (((-859) $) 31)) (-1702 (((-112) $ $) NIL))) -(((-822) (-13 (-1094) (-10 -8 (-15 -3473 ((-821) $)) (-15 -1359 ((-641 (-1170)) $)) (-15 -2269 ($ (-821) (-641 (-1170))))))) (T -822)) -((-3473 (*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822)))) (-2269 (*1 *1 *2 *3) (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822))))) -(-13 (-1094) (-10 -8 (-15 -3473 ((-821) $)) (-15 -1359 ((-641 (-1170)) $)) (-15 -2269 ($ (-821) (-641 (-1170)))))) -((-3213 (((-1264) (-819) (-316 |#1|) (-112)) 24) (((-1264) (-819) (-316 |#1|)) 90) (((-1152) (-316 |#1|) (-112)) 89) (((-1152) (-316 |#1|)) 88))) -(((-823 |#1|) (-10 -7 (-15 -3213 ((-1152) (-316 |#1|))) (-15 -3213 ((-1152) (-316 |#1|) (-112))) (-15 -3213 ((-1264) (-819) (-316 |#1|))) (-15 -3213 ((-1264) (-819) (-316 |#1|) (-112)))) (-13 (-825) (-847) (-1046))) (T -823)) -((-3213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *6)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *5)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *5)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *4))))) -(-10 -7 (-15 -3213 ((-1152) (-316 |#1|))) (-15 -3213 ((-1152) (-316 |#1|) (-112))) (-15 -3213 ((-1264) (-819) (-316 |#1|))) (-15 -3213 ((-1264) (-819) (-316 |#1|) (-112)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2001 ((|#1| $) 10)) (-3581 (($ |#1|) 9)) (-2949 (((-112) $) NIL)) (-3186 (($ |#2| (-768)) NIL)) (-1826 (((-768) $) NIL)) (-3370 ((|#2| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3534 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1619 (((-768) $) NIL)) (-1831 (((-859) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2742 ((|#2| $ (-768)) NIL)) (-2219 (((-768)) NIL T CONST)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-824 |#1| |#2|) (-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3581 ($ |#1|)) (-15 -2001 (|#1| $)))) (-705 |#2|) (-1046)) (T -824)) -((-3581 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3)))) (-2001 (*1 *2 *1) (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046))))) -(-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3581 ($ |#1|)) (-15 -2001 (|#1| $)))) -((-3213 (((-1264) (-819) $ (-112)) 9) (((-1264) (-819) $) 8) (((-1152) $ (-112)) 7) (((-1152) $) 6))) -(((-825) (-140)) (T -825)) -((-3213 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264)))) (-3213 (*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264)))) (-3213 (*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152))))) -(-13 (-10 -8 (-15 -3213 ((-1152) $)) (-15 -3213 ((-1152) $ (-112))) (-15 -3213 ((-1264) (-819) $)) (-15 -3213 ((-1264) (-819) $ (-112))))) -((-2996 (((-312) (-1152) (-1152)) 12)) (-4130 (((-112) (-1152) (-1152)) 33)) (-2700 (((-112) (-1152)) 32)) (-3071 (((-52) (-1152)) 25)) (-1593 (((-52) (-1152)) 23)) (-2151 (((-52) (-819)) 17)) (-1856 (((-641 (-1152)) (-1152)) 28)) (-1533 (((-641 (-1152))) 27))) -(((-826) (-10 -7 (-15 -2151 ((-52) (-819))) (-15 -1593 ((-52) (-1152))) (-15 -3071 ((-52) (-1152))) (-15 -1533 ((-641 (-1152)))) (-15 -1856 ((-641 (-1152)) (-1152))) (-15 -2700 ((-112) (-1152))) (-15 -4130 ((-112) (-1152) (-1152))) (-15 -2996 ((-312) (-1152) (-1152))))) (T -826)) -((-2996 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826)))) (-4130 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152)))) (-1533 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826))))) -(-10 -7 (-15 -2151 ((-52) (-819))) (-15 -1593 ((-52) (-1152))) (-15 -3071 ((-52) (-1152))) (-15 -1533 ((-641 (-1152)))) (-15 -1856 ((-641 (-1152)) (-1152))) (-15 -2700 ((-112) (-1152))) (-15 -4130 ((-112) (-1152) (-1152))) (-15 -2996 ((-312) (-1152) (-1152)))) -((-1817 (((-112) $ $) 19)) (-3650 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2396 (($ $ $) 72)) (-2172 (((-112) $ $) 73)) (-4010 (((-112) $ (-768)) 8)) (-3810 (($ (-641 |#1|)) 68) (($) 67)) (-4145 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4341 (($ $) 62)) (-3337 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) 64)) (-2324 (((-112) $ (-768)) 9)) (-1925 ((|#1| $) 78)) (-2429 (($ $ $) 81)) (-3956 (($ $ $) 80)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3375 ((|#1| $) 79)) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22)) (-3425 (($ $ $) 69)) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-2780 (((-1114) $) 21)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4096 (((-641 (-2 (|:| -1389 |#1|) (|:| -2791 (-768)))) $) 61)) (-3405 (($ $ |#1|) 71) (($ $ $) 70)) (-4232 (($) 49) (($ (-641 |#1|)) 48)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 50)) (-1831 (((-859) $) 18)) (-3131 (($ (-641 |#1|)) 66) (($) 65)) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20)) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-827 |#1|) (-140) (-847)) (T -827)) -((-1925 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847))))) -(-13 (-733 |t#1|) (-965 |t#1|) (-10 -8 (-15 -1925 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-733 |#1|) . T) ((-965 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) -((-2754 (((-1264) (-1114) (-1114)) 48)) (-4007 (((-1264) (-818) (-52)) 45)) (-1622 (((-52) (-818)) 16))) -(((-828) (-10 -7 (-15 -1622 ((-52) (-818))) (-15 -4007 ((-1264) (-818) (-52))) (-15 -2754 ((-1264) (-1114) (-1114))))) (T -828)) -((-2754 (*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828))))) -(-10 -7 (-15 -1622 ((-52) (-818))) (-15 -4007 ((-1264) (-818) (-52))) (-15 -2754 ((-1264) (-1114) (-1114)))) -((-2449 (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)) 12) (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)) 13))) -(((-829 |#1| |#2|) (-10 -7 (-15 -2449 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2449 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)))) (-1094) (-1094)) (T -829)) -((-2449 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6))))) -(-10 -7 (-15 -2449 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2449 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-21)))) (-4088 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1598 (((-564) $) NIL (|has| |#1| (-845)))) (-1778 (($) NIL (|has| |#1| (-21)) CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-3733 (((-3 $ "failed") $) 42 (|has| |#1| (-845)))) (-2078 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-2272 (((-112) $) 46 (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-1569 (((-112) $) NIL (|has| |#1| (-845)))) (-2949 (((-112) $) NIL (|has| |#1| (-845)))) (-2607 (((-112) $) NIL (|has| |#1| (-845)))) (-1925 (($ $ $) NIL (|has| |#1| (-845)))) (-3375 (($ $ $) NIL (|has| |#1| (-845)))) (-2723 (((-1152) $) NIL)) (-3726 (($) 13)) (-1382 (((-112) $) 12)) (-2780 (((-1114) $) NIL)) (-2334 (((-112) $) 11)) (-1831 (((-859) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4078 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-2219 (((-768)) 36 (|has| |#1| (-845)) CONST)) (-1849 (($ $) NIL (|has| |#1| (-845)))) (-1293 (($) 23 (|has| |#1| (-21)) CONST)) (-1300 (($) 33 (|has| |#1| (-845)) CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1702 (((-112) $ $) 21)) (-1749 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1723 (((-112) $ $) 45 (|has| |#1| (-845)))) (-1808 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-1797 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 39 (|has| |#1| (-845))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21))))) -(((-830 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -3726 ($)) (-15 -2334 ((-112) $)) (-15 -1382 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -830)) -((-3726 (*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2078 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))) -(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -3726 ($)) (-15 -2334 ((-112) $)) (-15 -1382 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) -((-1831 (((-859) $) 11))) -(((-831 |#1| |#2|) (-10 -8 (-15 -1831 ((-859) |#1|))) (-832 |#2|) (-1094)) (T -831)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1316 ((|#1| $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-2450 (((-55) $) 13)) (-1702 (((-112) $ $) 6))) -(((-832 |#1|) (-140) (-1094)) (T -832)) -((-1316 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55))))) -(-13 (-1094) (-10 -8 (-15 -1316 (|t#1| $)) (-15 -2450 ((-55) $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2237 ((|#1| $) NIL) (((-114) $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2045 ((|#1| (-114) |#1|) NIL)) (-2949 (((-112) $) NIL)) (-3226 (($ |#1| (-361 (-114))) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3462 (($ $ (-1 |#1| |#1|)) NIL)) (-3157 (($ $ (-1 |#1| |#1|)) NIL)) (-1350 ((|#1| $ |#1|) NIL)) (-2233 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-4057 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-833 |#1|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4057 ($ $)) (-15 -4057 ($ $ $)) (-15 -2233 (|#1| |#1|))) |%noBranch|) (-15 -3157 ($ $ (-1 |#1| |#1|))) (-15 -3462 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2045 (|#1| (-114) |#1|)) (-15 -3226 ($ |#1| (-361 (-114)))))) (-1046)) (T -833)) -((-4057 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-4057 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-2233 (*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-833 *4)) (-4 *4 (-1046)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-833 *3)) (-4 *3 (-1046)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046))))) -(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4057 ($ $)) (-15 -4057 ($ $ $)) (-15 -2233 (|#1| |#1|))) |%noBranch|) (-15 -3157 ($ $ (-1 |#1| |#1|))) (-15 -3462 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2045 (|#1| (-114) |#1|)) (-15 -3226 ($ |#1| (-361 (-114)))))) -((-2038 (((-214 (-502)) (-1152)) 9))) -(((-834) (-10 -7 (-15 -2038 ((-214 (-502)) (-1152))))) (T -834)) -((-2038 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834))))) -(-10 -7 (-15 -2038 ((-214 (-502)) (-1152)))) -((-1817 (((-112) $ $) NIL)) (-3080 (((-1112) $) 10)) (-1316 (((-506) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1842 (($ (-506) (-1112)) 8)) (-1831 (((-859) $) 25)) (-2450 (((-55) $) 20)) (-1702 (((-112) $ $) 12))) -(((-835) (-13 (-832 (-506)) (-10 -8 (-15 -3080 ((-1112) $)) (-15 -1842 ($ (-506) (-1112)))))) (T -835)) -((-3080 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835))))) -(-13 (-832 (-506)) (-10 -8 (-15 -3080 ((-1112) $)) (-15 -1842 ($ (-506) (-1112))))) -((-1817 (((-112) $ $) 7)) (-3407 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 14) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 13)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 16) (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 15)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) -(((-836) (-140)) (T -836)) -((-2620 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) (-2620 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) (-3407 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) (-5 *2 (-1032)))) (-3407 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-1032))))) -(-13 (-1094) (-10 -7 (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -3407 ((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -3407 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-3908 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 169) (((-1032) (-316 (-379)) (-641 (-379))) 167) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379)))) 165) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379)))) 163) (((-1032) (-838)) 128) (((-1032) (-838) (-1058)) 127)) (-2620 (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058)) 88) (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838)) 90)) (-2026 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 170) (((-1032) (-838)) 153))) -(((-837) (-10 -7 (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -3908 ((-1032) (-838) (-1058))) (-15 -3908 ((-1032) (-838))) (-15 -2026 ((-1032) (-838))) (-15 -3908 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -3908 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -3908 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -3908 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2026 ((-1032) (-641 (-316 (-379))) (-641 (-379)))))) (T -837)) -((-2026 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3908 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3908 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837))))) -(-10 -7 (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -3908 ((-1032) (-838) (-1058))) (-15 -3908 ((-1032) (-838))) (-15 -2026 ((-1032) (-838))) (-15 -3908 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -3908 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -3908 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -3908 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2026 ((-1032) (-641 (-316 (-379))) (-641 (-379))))) -((-1817 (((-112) $ $) NIL)) (-2237 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) $) 21)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 14) (($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))))) 18)) (-1702 (((-112) $ $) NIL))) -(((-838) (-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -1831 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -1831 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))))) (-15 -2237 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) $))))) (T -838)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-838)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) (-5 *1 (-838)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))))) (-5 *1 (-838)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))))) (-5 *1 (-838))))) -(-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -1831 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) (-15 -1831 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))))) (-15 -2237 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225)))))) $)))) -((-2449 (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)) 13) (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|)) 14))) -(((-839 |#1| |#2|) (-10 -7 (-15 -2449 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2449 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)))) (-1094) (-1094)) (T -839)) -((-2449 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-840 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-840 *6)) (-5 *1 (-839 *5 *6))))) -(-10 -7 (-15 -2449 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2449 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-21)))) (-1555 (((-1114) $) 31)) (-4088 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1598 (((-564) $) NIL (|has| |#1| (-845)))) (-1778 (($) NIL (|has| |#1| (-21)) CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-3733 (((-3 $ "failed") $) 55 (|has| |#1| (-845)))) (-2078 (((-3 (-407 (-564)) "failed") $) 62 (|has| |#1| (-545)))) (-2272 (((-112) $) 57 (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) 60 (|has| |#1| (-545)))) (-1569 (((-112) $) NIL (|has| |#1| (-845)))) (-1626 (($) 14)) (-2949 (((-112) $) NIL (|has| |#1| (-845)))) (-2607 (((-112) $) NIL (|has| |#1| (-845)))) (-1640 (($) 16)) (-1925 (($ $ $) NIL (|has| |#1| (-845)))) (-3375 (($ $ $) NIL (|has| |#1| (-845)))) (-2723 (((-1152) $) NIL)) (-1382 (((-112) $) 12)) (-2780 (((-1114) $) NIL)) (-2334 (((-112) $) 11)) (-1831 (((-859) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4078 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-2219 (((-768)) 49 (|has| |#1| (-845)) CONST)) (-1849 (($ $) NIL (|has| |#1| (-845)))) (-1293 (($) 36 (|has| |#1| (-21)) CONST)) (-1300 (($) 46 (|has| |#1| (-845)) CONST)) (-1762 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1702 (((-112) $ $) 34)) (-1749 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1723 (((-112) $ $) 56 (|has| |#1| (-845)))) (-1808 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1797 (($ $ $) 44 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 52 (|has| |#1| (-845))) (($ (-564) $) 40 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21))))) -(((-840 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1626 ($)) (-15 -1640 ($)) (-15 -2334 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1555 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -840)) -((-1626 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-1640 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2078 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))) -(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1626 ($)) (-15 -1640 ($)) (-15 -2334 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1555 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) -((-1817 (((-112) $ $) 7)) (-3267 (((-768)) 22)) (-2900 (($) 25)) (-1925 (($ $ $) 13) (($) 21 T CONST)) (-3375 (($ $ $) 14) (($) 20 T CONST)) (-1811 (((-918) $) 24)) (-2723 (((-1152) $) 9)) (-1468 (($ (-918)) 23)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) -(((-841) (-140)) (T -841)) -((-1925 (*1 *1) (-4 *1 (-841))) (-3375 (*1 *1) (-4 *1 (-841)))) -(-13 (-847) (-368) (-10 -8 (-15 -1925 ($) -1809) (-15 -3375 ($) -1809))) -(((-102) . T) ((-611 (-859)) . T) ((-368) . T) ((-847) . T) ((-1094) . T)) -((-4207 (((-112) (-1259 |#2|) (-1259 |#2|)) 23)) (-1378 (((-112) (-1259 |#2|) (-1259 |#2|)) 24)) (-2768 (((-112) (-1259 |#2|) (-1259 |#2|)) 20))) -(((-842 |#1| |#2|) (-10 -7 (-15 -2768 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4207 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -1378 ((-112) (-1259 |#2|) (-1259 |#2|)))) (-768) (-789)) (T -842)) -((-1378 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-4207 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-2768 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) -(-10 -7 (-15 -2768 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4207 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -1378 ((-112) (-1259 |#2|) (-1259 |#2|)))) -((-1817 (((-112) $ $) 7)) (-1778 (($) 23 T CONST)) (-3733 (((-3 $ "failed") $) 26)) (-2949 (((-112) $) 24)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1300 (($) 22 T CONST)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (** (($ $ (-918)) 21) (($ $ (-768)) 25)) (* (($ $ $) 20))) -(((-843) (-140)) (T -843)) -NIL -(-13 (-854) (-723)) -(((-102) . T) ((-611 (-859)) . T) ((-723) . T) ((-854) . T) ((-847) . T) ((-1106) . T) ((-1094) . T)) -((-1598 (((-564) $) 20)) (-1569 (((-112) $) 10)) (-2607 (((-112) $) 11)) (-1849 (($ $) 22))) -(((-844 |#1|) (-10 -8 (-15 -1849 (|#1| |#1|)) (-15 -1598 ((-564) |#1|)) (-15 -2607 ((-112) |#1|)) (-15 -1569 ((-112) |#1|))) (-845)) (T -844)) -NIL -(-10 -8 (-15 -1849 (|#1| |#1|)) (-15 -1598 ((-564) |#1|)) (-15 -2607 ((-112) |#1|)) (-15 -1569 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 24)) (-4088 (((-3 $ "failed") $ $) 26)) (-1598 (((-564) $) 34)) (-1778 (($) 23 T CONST)) (-3733 (((-3 $ "failed") $) 39)) (-1569 (((-112) $) 36)) (-2949 (((-112) $) 41)) (-2607 (((-112) $) 35)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 43)) (-2219 (((-768)) 44 T CONST)) (-1849 (($ $) 33)) (-1293 (($) 22 T CONST)) (-1300 (($) 42 T CONST)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1808 (($ $ $) 28) (($ $) 27)) (-1797 (($ $ $) 20)) (** (($ $ (-768)) 40) (($ $ (-918)) 37)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29) (($ $ $) 38))) -(((-845) (-140)) (T -845)) -((-1569 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564)))) (-1849 (*1 *1 *1) (-4 *1 (-845)))) -(-13 (-788) (-1046) (-723) (-10 -8 (-15 -1569 ((-112) $)) (-15 -2607 ((-112) $)) (-15 -1598 ((-564) $)) (-15 -1849 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1925 (($ $ $) 10)) (-3375 (($ $ $) 9)) (-1762 (((-112) $ $) 12)) (-1737 (((-112) $ $) 11)) (-1749 (((-112) $ $) 13))) -(((-846 |#1|) (-10 -8 (-15 -1925 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#1|)) (-15 -1749 ((-112) |#1| |#1|)) (-15 -1762 ((-112) |#1| |#1|)) (-15 -1737 ((-112) |#1| |#1|))) (-847)) (T -846)) -NIL -(-10 -8 (-15 -1925 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#1|)) (-15 -1749 ((-112) |#1| |#1|)) (-15 -1762 ((-112) |#1| |#1|)) (-15 -1737 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) -(((-847) (-140)) (T -847)) -((-1723 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1737 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1762 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-3375 (*1 *1 *1 *1) (-4 *1 (-847))) (-1925 (*1 *1 *1 *1) (-4 *1 (-847)))) -(-13 (-1094) (-10 -8 (-15 -1723 ((-112) $ $)) (-15 -1737 ((-112) $ $)) (-15 -1762 ((-112) $ $)) (-15 -1749 ((-112) $ $)) (-15 -3375 ($ $ $)) (-15 -1925 ($ $ $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-3249 (($ $ $) 49)) (-2850 (($ $ $) 48)) (-3321 (($ $ $) 46)) (-3703 (($ $ $) 55)) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 50)) (-2525 (((-3 $ "failed") $ $) 53)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3031 (($ $) 39)) (-2313 (($ $ $) 43)) (-1799 (($ $ $) 42)) (-1448 (($ $ $) 51)) (-1578 (($ $ $) 57)) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 45)) (-1845 (((-3 $ "failed") $ $) 52)) (-1403 (((-3 $ "failed") $ |#2|) 32)) (-3008 ((|#2| $) 36)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-3227 (((-641 |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-848 |#1| |#2|) (-10 -8 (-15 -1448 (|#1| |#1| |#1|)) (-15 -3401 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1426 |#1|)) |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -2525 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)) (-15 -2850 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -2387 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1426 |#1|)) |#1| |#1|)) (-15 -1578 (|#1| |#1| |#1|)) (-15 -1845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -1799 (|#1| |#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3227 ((-641 |#2|) |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1831 ((-859) |#1|))) (-849 |#2|) (-1046)) (T -848)) -NIL -(-10 -8 (-15 -1448 (|#1| |#1| |#1|)) (-15 -3401 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1426 |#1|)) |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -2525 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)) (-15 -2850 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -2387 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1426 |#1|)) |#1| |#1|)) (-15 -1578 (|#1| |#1| |#1|)) (-15 -1845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -1799 (|#1| |#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -1403 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3227 ((-641 |#2|) |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3249 (($ $ $) 44 (|has| |#1| (-363)))) (-2850 (($ $ $) 45 (|has| |#1| (-363)))) (-3321 (($ $ $) 47 (|has| |#1| (-363)))) (-3703 (($ $ $) 42 (|has| |#1| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 41 (|has| |#1| (-363)))) (-2525 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 46 (|has| |#1| (-363)))) (-2347 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2237 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-3031 (($ $) 54 (|has| |#1| (-452)))) (-2949 (((-112) $) 31)) (-3186 (($ |#1| (-768)) 61)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 56 (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 57 (|has| |#1| (-556)))) (-1826 (((-768) $) 65)) (-2313 (($ $ $) 51 (|has| |#1| (-363)))) (-1799 (($ $ $) 52 (|has| |#1| (-363)))) (-1448 (($ $ $) 40 (|has| |#1| (-363)))) (-1578 (($ $ $) 49 (|has| |#1| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 48 (|has| |#1| (-363)))) (-1845 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 53 (|has| |#1| (-363)))) (-3370 ((|#1| $) 64)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-1619 (((-768) $) 66)) (-3008 ((|#1| $) 55 (|has| |#1| (-452)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-3227 (((-641 |#1|) $) 60)) (-2742 ((|#1| $ (-768)) 62)) (-2219 (((-768)) 28 T CONST)) (-3246 ((|#1| $ |#1| |#1|) 59)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-849 |#1|) (-140) (-1046)) (T -849)) -((-1619 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3)))) (-3246 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1403 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-3372 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) (-3970 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-3031 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-4176 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) (-1799 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2313 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1845 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1578 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2387 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1426 *1))) (-4 *1 (-849 *3)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1798 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) (-2850 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3249 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2525 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3401 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1426 *1))) (-4 *1 (-849 *3)))) (-1448 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(-13 (-1046) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -1619 ((-768) $)) (-15 -1826 ((-768) $)) (-15 -3370 (|t#1| $)) (-15 -3396 ($ $)) (-15 -2742 (|t#1| $ (-768))) (-15 -3186 ($ |t#1| (-768))) (-15 -3227 ((-641 |t#1|) $)) (-15 -3246 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1403 ((-3 $ "failed") $ |t#1|)) (-15 -3372 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -3970 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3008 (|t#1| $)) (-15 -3031 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4176 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -1799 ($ $ $)) (-15 -2313 ($ $ $)) (-15 -1845 ((-3 $ "failed") $ $)) (-15 -1578 ($ $ $)) (-15 -2387 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $)) (-15 -3321 ($ $ $)) (-15 -1798 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -2850 ($ $ $)) (-15 -3249 ($ $ $)) (-15 -2525 ((-3 $ "failed") $ $)) (-15 -3703 ($ $ $)) (-15 -3401 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $)) (-15 -1448 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1345 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1798 (((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-3970 (((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-4176 (((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-3246 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-850 |#1| |#2|) (-10 -7 (-15 -1345 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3246 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -3372 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3970 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4176 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1798 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1046) (-849 |#1|)) (T -850)) -((-1798 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-4176 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-3970 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-3372 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-3246 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046)) (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2)))) (-1345 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046)) (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5))))) -(-10 -7 (-15 -1345 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3246 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -3372 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3970 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4176 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1798 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3249 (($ $ $) NIL (|has| |#1| (-363)))) (-2850 (($ $ $) NIL (|has| |#1| (-363)))) (-3321 (($ $ $) NIL (|has| |#1| (-363)))) (-3703 (($ $ $) NIL (|has| |#1| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-2525 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 34 (|has| |#1| (-363)))) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452)))) (-4286 (((-859) $ (-859)) NIL)) (-2949 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) NIL)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 30 (|has| |#1| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 28 (|has| |#1| (-556)))) (-1826 (((-768) $) NIL)) (-2313 (($ $ $) NIL (|has| |#1| (-363)))) (-1799 (($ $ $) NIL (|has| |#1| (-363)))) (-1448 (($ $ $) NIL (|has| |#1| (-363)))) (-1578 (($ $ $) NIL (|has| |#1| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1845 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 32 (|has| |#1| (-363)))) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1619 (((-768) $) NIL)) (-3008 ((|#1| $) NIL (|has| |#1| (-452)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) NIL)) (-2219 (((-768)) NIL T CONST)) (-3246 ((|#1| $ |#1| |#1|) 15)) (-1293 (($) NIL T CONST)) (-1300 (($) 23 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) 19) (($ $ (-768)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-851 |#1| |#2| |#3|) (-13 (-849 |#1|) (-10 -8 (-15 -4286 ((-859) $ (-859))))) (-1046) (-99 |#1|) (-1 |#1| |#1|)) (T -851)) -((-4286 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-849 |#1|) (-10 -8 (-15 -4286 ((-859) $ (-859))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3249 (($ $ $) NIL (|has| |#2| (-363)))) (-2850 (($ $ $) NIL (|has| |#2| (-363)))) (-3321 (($ $ $) NIL (|has| |#2| (-363)))) (-3703 (($ $ $) NIL (|has| |#2| (-363)))) (-3401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#2| (-363)))) (-2525 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1798 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-363)))) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#2| (-452)))) (-2949 (((-112) $) NIL)) (-3186 (($ |#2| (-768)) 17)) (-3970 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-556)))) (-3372 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-556)))) (-1826 (((-768) $) NIL)) (-2313 (($ $ $) NIL (|has| |#2| (-363)))) (-1799 (($ $ $) NIL (|has| |#2| (-363)))) (-1448 (($ $ $) NIL (|has| |#2| (-363)))) (-1578 (($ $ $) NIL (|has| |#2| (-363)))) (-2387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#2| (-363)))) (-1845 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4176 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-363)))) (-3370 ((|#2| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-1619 (((-768) $) NIL)) (-3008 ((|#2| $) NIL (|has| |#2| (-452)))) (-1831 (((-859) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (($ (-1255 |#1|)) 19)) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-768)) NIL)) (-2219 (((-768)) NIL T CONST)) (-3246 ((|#2| $ |#2| |#2|) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) 13 T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-852 |#1| |#2| |#3| |#4|) (-13 (-849 |#2|) (-614 (-1255 |#1|))) (-1170) (-1046) (-99 |#2|) (-1 |#2| |#2|)) (T -852)) -NIL -(-13 (-849 |#2|) (-614 (-1255 |#1|))) -((-1413 ((|#1| (-768) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-1982 ((|#1| (-768) (-768) |#1|) 39) ((|#1| (-768) |#1|) 27)) (-2053 ((|#1| (-768) |#1|) 43)) (-4062 ((|#1| (-768) |#1|) 41)) (-1396 ((|#1| (-768) |#1|) 40))) -(((-853 |#1|) (-10 -7 (-15 -1396 (|#1| (-768) |#1|)) (-15 -4062 (|#1| (-768) |#1|)) (-15 -2053 (|#1| (-768) |#1|)) (-15 -1982 (|#1| (-768) |#1|)) (-15 -1982 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -1413 (|#1| (-768) |#1|)) |%noBranch|)) (-172)) (T -853)) -((-1413 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-1982 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-1982 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-4062 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-1396 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -1396 (|#1| (-768) |#1|)) (-15 -4062 (|#1| (-768) |#1|)) (-15 -2053 (|#1| (-768) |#1|)) (-15 -1982 (|#1| (-768) |#1|)) (-15 -1982 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -1413 (|#1| (-768) |#1|)) |%noBranch|)) -((-1817 (((-112) $ $) 7)) (-1925 (($ $ $) 13)) (-3375 (($ $ $) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1762 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (** (($ $ (-918)) 21)) (* (($ $ $) 20))) -(((-854) (-140)) (T -854)) -NIL -(-13 (-847) (-1106)) -(((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1522 (((-564) $) 14)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 20) (($ (-564)) 13)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 9)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 11))) -(((-855) (-13 (-847) (-10 -8 (-15 -1831 ($ (-564))) (-15 -1522 ((-564) $))))) (T -855)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855))))) -(-13 (-847) (-10 -8 (-15 -1831 ($ (-564))) (-15 -1522 ((-564) $)))) -((-3796 (((-687 (-1217)) $ (-1217)) 15)) (-1721 (((-687 (-549)) $ (-549)) 12)) (-1386 (((-768) $ (-128)) 30))) -(((-856 |#1|) (-10 -8 (-15 -1386 ((-768) |#1| (-128))) (-15 -3796 ((-687 (-1217)) |#1| (-1217))) (-15 -1721 ((-687 (-549)) |#1| (-549)))) (-857)) (T -856)) -NIL -(-10 -8 (-15 -1386 ((-768) |#1| (-128))) (-15 -3796 ((-687 (-1217)) |#1| (-1217))) (-15 -1721 ((-687 (-549)) |#1| (-549)))) -((-3796 (((-687 (-1217)) $ (-1217)) 8)) (-1721 (((-687 (-549)) $ (-549)) 9)) (-1386 (((-768) $ (-128)) 7)) (-2800 (((-687 (-129)) $ (-129)) 10)) (-1846 (($ $) 6))) -(((-857) (-140)) (T -857)) -((-2800 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))) (-3796 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))) (-1386 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768))))) -(-13 (-173) (-10 -8 (-15 -2800 ((-687 (-129)) $ (-129))) (-15 -1721 ((-687 (-549)) $ (-549))) (-15 -3796 ((-687 (-1217)) $ (-1217))) (-15 -1386 ((-768) $ (-128))))) +((-2310 (((-112) $ $) NIL)) (-2966 (((-641 |#1|) $) 38)) (-1959 (((-767) $) NIL)) (-4157 (($) NIL T CONST)) (-1417 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-2008 (($ $) 42)) (-2689 (((-3 $ "failed") $) NIL)) (-4093 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1828 (((-112) $) NIL)) (-4047 ((|#1| $ (-564)) NIL)) (-4067 (((-767) $ (-564)) NIL)) (-4321 (($ $) 51)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-2152 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3145 (((-112) $ $) 49)) (-1750 (((-767) $) 34)) (-1418 (((-1152) $) NIL)) (-2489 (($ $ $) NIL)) (-3186 (($ $ $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 ((|#1| $) 41)) (-4322 (((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $) NIL)) (-2540 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2322 (((-858) $) NIL) (($ |#1|) NIL)) (-2403 (($) 20 T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 50)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-815 |#1|) (-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -1995 (|#1| $)) (-15 -2008 ($ $)) (-15 -4321 ($ $)) (-15 -3145 ((-112) $ $)) (-15 -3186 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -2152 ((-3 $ "failed") $ $)) (-15 -1417 ((-3 $ "failed") $ $)) (-15 -2152 ((-3 $ "failed") $ |#1|)) (-15 -1417 ((-3 $ "failed") $ |#1|)) (-15 -2540 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4093 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1959 ((-767) $)) (-15 -4067 ((-767) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -4322 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $)) (-15 -1750 ((-767) $)) (-15 -2966 ((-641 |#1|) $)))) (-846)) (T -815)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1995 (*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3186 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2489 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2152 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1417 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2152 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1417 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2540 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-4093 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 (-767))))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -1995 (|#1| $)) (-15 -2008 ($ $)) (-15 -4321 ($ $)) (-15 -3145 ((-112) $ $)) (-15 -3186 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -2152 ((-3 $ "failed") $ $)) (-15 -1417 ((-3 $ "failed") $ $)) (-15 -2152 ((-3 $ "failed") $ |#1|)) (-15 -1417 ((-3 $ "failed") $ |#1|)) (-15 -2540 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4093 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1959 ((-767) $)) (-15 -4067 ((-767) $ (-564))) (-15 -4047 (|#1| $ (-564))) (-15 -4322 ((-641 (-2 (|:| |gen| |#1|) (|:| -3571 (-767)))) $)) (-15 -1750 ((-767) $)) (-15 -2966 ((-641 |#1|) $)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-3085 (((-564) $) 54)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-2786 (((-112) $) 52)) (-1828 (((-112) $) 31)) (-2783 (((-112) $) 53)) (-1501 (($ $ $) 51)) (-2622 (($ $ $) 50)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ $) 43)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-3598 (($ $) 55)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 48)) (-2953 (((-112) $ $) 47)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 49)) (-2942 (((-112) $ $) 46)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-816) (-140)) (T -816)) +NIL +(-13 (-556) (-844)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2048 (($ (-1114)) 7)) (-3203 (((-112) $ (-1152) (-1114)) 15)) (-2788 (((-818) $) 12)) (-2169 (((-818) $) 11)) (-1715 (((-1264) $) 9)) (-1498 (((-112) $ (-1114)) 16))) +(((-817) (-10 -8 (-15 -2048 ($ (-1114))) (-15 -1715 ((-1264) $)) (-15 -2169 ((-818) $)) (-15 -2788 ((-818) $)) (-15 -3203 ((-112) $ (-1152) (-1114))) (-15 -1498 ((-112) $ (-1114))))) (T -817)) +((-1498 (*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-817)))) (-3203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-817)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-817)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-817))))) +(-10 -8 (-15 -2048 ($ (-1114))) (-15 -1715 ((-1264) $)) (-15 -2169 ((-818) $)) (-15 -2788 ((-818) $)) (-15 -3203 ((-112) $ (-1152) (-1114))) (-15 -1498 ((-112) $ (-1114)))) +((-1874 (((-1264) $ (-819)) 12)) (-3218 (((-1264) $ (-1170)) 32)) (-2580 (((-1264) $ (-1152) (-1152)) 34)) (-2969 (((-1264) $ (-1152)) 33)) (-2421 (((-1264) $) 19)) (-2213 (((-1264) $ (-564)) 28)) (-3632 (((-1264) $ (-225)) 30)) (-3437 (((-1264) $) 18)) (-2644 (((-1264) $) 26)) (-1622 (((-1264) $) 25)) (-2648 (((-1264) $) 23)) (-4307 (((-1264) $) 24)) (-2437 (((-1264) $) 22)) (-2391 (((-1264) $) 21)) (-4057 (((-1264) $) 20)) (-3715 (((-1264) $) 16)) (-1683 (((-1264) $) 17)) (-3113 (((-1264) $) 15)) (-2714 (((-1264) $) 14)) (-4127 (((-1264) $) 13)) (-1892 (($ (-1152) (-819)) 9)) (-4032 (($ (-1152) (-1152) (-819)) 8)) (-2541 (((-1170) $) 51)) (-2900 (((-1170) $) 55)) (-2773 (((-2 (|:| |cd| (-1152)) (|:| -2420 (-1152))) $) 54)) (-2513 (((-1152) $) 52)) (-1968 (((-1264) $) 41)) (-1976 (((-564) $) 49)) (-3212 (((-225) $) 50)) (-2862 (((-1264) $) 40)) (-2895 (((-1264) $) 48)) (-2467 (((-1264) $) 47)) (-3615 (((-1264) $) 45)) (-3106 (((-1264) $) 46)) (-1434 (((-1264) $) 44)) (-4247 (((-1264) $) 43)) (-3512 (((-1264) $) 42)) (-4078 (((-1264) $) 38)) (-4270 (((-1264) $) 39)) (-2179 (((-1264) $) 37)) (-2449 (((-1264) $) 36)) (-1711 (((-1264) $) 35)) (-4014 (((-1264) $) 11))) +(((-818) (-10 -8 (-15 -4032 ($ (-1152) (-1152) (-819))) (-15 -1892 ($ (-1152) (-819))) (-15 -4014 ((-1264) $)) (-15 -1874 ((-1264) $ (-819))) (-15 -4127 ((-1264) $)) (-15 -2714 ((-1264) $)) (-15 -3113 ((-1264) $)) (-15 -3715 ((-1264) $)) (-15 -1683 ((-1264) $)) (-15 -3437 ((-1264) $)) (-15 -2421 ((-1264) $)) (-15 -4057 ((-1264) $)) (-15 -2391 ((-1264) $)) (-15 -2437 ((-1264) $)) (-15 -2648 ((-1264) $)) (-15 -4307 ((-1264) $)) (-15 -1622 ((-1264) $)) (-15 -2644 ((-1264) $)) (-15 -2213 ((-1264) $ (-564))) (-15 -3632 ((-1264) $ (-225))) (-15 -3218 ((-1264) $ (-1170))) (-15 -2969 ((-1264) $ (-1152))) (-15 -2580 ((-1264) $ (-1152) (-1152))) (-15 -1711 ((-1264) $)) (-15 -2449 ((-1264) $)) (-15 -2179 ((-1264) $)) (-15 -4078 ((-1264) $)) (-15 -4270 ((-1264) $)) (-15 -2862 ((-1264) $)) (-15 -1968 ((-1264) $)) (-15 -3512 ((-1264) $)) (-15 -4247 ((-1264) $)) (-15 -1434 ((-1264) $)) (-15 -3615 ((-1264) $)) (-15 -3106 ((-1264) $)) (-15 -2467 ((-1264) $)) (-15 -2895 ((-1264) $)) (-15 -1976 ((-564) $)) (-15 -3212 ((-225) $)) (-15 -2541 ((-1170) $)) (-15 -2513 ((-1152) $)) (-15 -2773 ((-2 (|:| |cd| (-1152)) (|:| -2420 (-1152))) $)) (-15 -2900 ((-1170) $)))) (T -818)) +((-2900 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -2420 (-1152)))) (-5 *1 (-818)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-818)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-818)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2580 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2969 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-3218 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-3632 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2213 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1874 (*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1892 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818)))) (-4032 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818))))) +(-10 -8 (-15 -4032 ($ (-1152) (-1152) (-819))) (-15 -1892 ($ (-1152) (-819))) (-15 -4014 ((-1264) $)) (-15 -1874 ((-1264) $ (-819))) (-15 -4127 ((-1264) $)) (-15 -2714 ((-1264) $)) (-15 -3113 ((-1264) $)) (-15 -3715 ((-1264) $)) (-15 -1683 ((-1264) $)) (-15 -3437 ((-1264) $)) (-15 -2421 ((-1264) $)) (-15 -4057 ((-1264) $)) (-15 -2391 ((-1264) $)) (-15 -2437 ((-1264) $)) (-15 -2648 ((-1264) $)) (-15 -4307 ((-1264) $)) (-15 -1622 ((-1264) $)) (-15 -2644 ((-1264) $)) (-15 -2213 ((-1264) $ (-564))) (-15 -3632 ((-1264) $ (-225))) (-15 -3218 ((-1264) $ (-1170))) (-15 -2969 ((-1264) $ (-1152))) (-15 -2580 ((-1264) $ (-1152) (-1152))) (-15 -1711 ((-1264) $)) (-15 -2449 ((-1264) $)) (-15 -2179 ((-1264) $)) (-15 -4078 ((-1264) $)) (-15 -4270 ((-1264) $)) (-15 -2862 ((-1264) $)) (-15 -1968 ((-1264) $)) (-15 -3512 ((-1264) $)) (-15 -4247 ((-1264) $)) (-15 -1434 ((-1264) $)) (-15 -3615 ((-1264) $)) (-15 -3106 ((-1264) $)) (-15 -2467 ((-1264) $)) (-15 -2895 ((-1264) $)) (-15 -1976 ((-564) $)) (-15 -3212 ((-225) $)) (-15 -2541 ((-1170) $)) (-15 -2513 ((-1152) $)) (-15 -2773 ((-2 (|:| |cd| (-1152)) (|:| -2420 (-1152))) $)) (-15 -2900 ((-1170) $))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 13)) (-2251 (($) 16)) (-2211 (($) 14)) (-3116 (($) 17)) (-4288 (($) 15)) (-2921 (((-112) $ $) 9))) +(((-819) (-13 (-1094) (-10 -8 (-15 -2211 ($)) (-15 -2251 ($)) (-15 -3116 ($)) (-15 -4288 ($))))) (T -819)) +((-2211 (*1 *1) (-5 *1 (-819))) (-2251 (*1 *1) (-5 *1 (-819))) (-3116 (*1 *1) (-5 *1 (-819))) (-4288 (*1 *1) (-5 *1 (-819)))) +(-13 (-1094) (-10 -8 (-15 -2211 ($)) (-15 -2251 ($)) (-15 -3116 ($)) (-15 -4288 ($)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 23) (($ (-1170)) 19)) (-2817 (((-112) $) 10)) (-3702 (((-112) $) 9)) (-3804 (((-112) $) 11)) (-4251 (((-112) $) 8)) (-2921 (((-112) $ $) 21))) +(((-820) (-13 (-1094) (-10 -8 (-15 -2322 ($ (-1170))) (-15 -4251 ((-112) $)) (-15 -3702 ((-112) $)) (-15 -2817 ((-112) $)) (-15 -3804 ((-112) $))))) (T -820)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-820)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(-13 (-1094) (-10 -8 (-15 -2322 ($ (-1170))) (-15 -4251 ((-112) $)) (-15 -3702 ((-112) $)) (-15 -2817 ((-112) $)) (-15 -3804 ((-112) $)))) +((-2310 (((-112) $ $) NIL)) (-2407 (($ (-820) (-641 (-1170))) 32)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2111 (((-820) $) 33)) (-2608 (((-641 (-1170)) $) 34)) (-2322 (((-858) $) 31)) (-2921 (((-112) $ $) NIL))) +(((-821) (-13 (-1094) (-10 -8 (-15 -2111 ((-820) $)) (-15 -2608 ((-641 (-1170)) $)) (-15 -2407 ($ (-820) (-641 (-1170))))))) (T -821)) +((-2111 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-821)))) (-2407 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-641 (-1170))) (-5 *1 (-821))))) +(-13 (-1094) (-10 -8 (-15 -2111 ((-820) $)) (-15 -2608 ((-641 (-1170)) $)) (-15 -2407 ($ (-820) (-641 (-1170)))))) +((-3552 (((-1264) (-818) (-316 |#1|) (-112)) 24) (((-1264) (-818) (-316 |#1|)) 90) (((-1152) (-316 |#1|) (-112)) 89) (((-1152) (-316 |#1|)) 88))) +(((-822 |#1|) (-10 -7 (-15 -3552 ((-1152) (-316 |#1|))) (-15 -3552 ((-1152) (-316 |#1|) (-112))) (-15 -3552 ((-1264) (-818) (-316 |#1|))) (-15 -3552 ((-1264) (-818) (-316 |#1|) (-112)))) (-13 (-824) (-846) (-1045))) (T -822)) +((-3552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1264)) (-5 *1 (-822 *6)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1264)) (-5 *1 (-822 *5)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1152)) (-5 *1 (-822 *5)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) (-5 *2 (-1152)) (-5 *1 (-822 *4))))) +(-10 -7 (-15 -3552 ((-1152) (-316 |#1|))) (-15 -3552 ((-1152) (-316 |#1|) (-112))) (-15 -3552 ((-1264) (-818) (-316 |#1|))) (-15 -3552 ((-1264) (-818) (-316 |#1|) (-112)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2720 ((|#1| $) 10)) (-1513 (($ |#1|) 9)) (-1828 (((-112) $) NIL)) (-2507 (($ |#2| (-767)) NIL)) (-3386 (((-767) $) NIL)) (-2686 ((|#2| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1343 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2073 (((-767) $) NIL)) (-2322 (((-858) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-3467 ((|#2| $ (-767)) NIL)) (-3179 (((-767)) NIL T CONST)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-823 |#1| |#2|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1513 ($ |#1|)) (-15 -2720 (|#1| $)))) (-704 |#2|) (-1045)) (T -823)) +((-1513 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))) (-2720 (*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045))))) +(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1513 ($ |#1|)) (-15 -2720 (|#1| $)))) +((-3552 (((-1264) (-818) $ (-112)) 9) (((-1264) (-818) $) 8) (((-1152) $ (-112)) 7) (((-1152) $) 6))) +(((-824) (-140)) (T -824)) +((-3552 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1264)))) (-3552 (*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1264)))) (-3552 (*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1152)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1152))))) +(-13 (-10 -8 (-15 -3552 ((-1152) $)) (-15 -3552 ((-1152) $ (-112))) (-15 -3552 ((-1264) (-818) $)) (-15 -3552 ((-1264) (-818) $ (-112))))) +((-2186 (((-312) (-1152) (-1152)) 12)) (-4161 (((-112) (-1152) (-1152)) 33)) (-4291 (((-112) (-1152)) 32)) (-1629 (((-52) (-1152)) 25)) (-3039 (((-52) (-1152)) 23)) (-3668 (((-52) (-818)) 17)) (-3662 (((-641 (-1152)) (-1152)) 28)) (-3582 (((-641 (-1152))) 27))) +(((-825) (-10 -7 (-15 -3668 ((-52) (-818))) (-15 -3039 ((-52) (-1152))) (-15 -1629 ((-52) (-1152))) (-15 -3582 ((-641 (-1152)))) (-15 -3662 ((-641 (-1152)) (-1152))) (-15 -4291 ((-112) (-1152))) (-15 -4161 ((-112) (-1152) (-1152))) (-15 -2186 ((-312) (-1152) (-1152))))) (T -825)) +((-2186 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-825)))) (-4161 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825)))) (-3662 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)) (-5 *3 (-1152)))) (-3582 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825))))) +(-10 -7 (-15 -3668 ((-52) (-818))) (-15 -3039 ((-52) (-1152))) (-15 -1629 ((-52) (-1152))) (-15 -3582 ((-641 (-1152)))) (-15 -3662 ((-641 (-1152)) (-1152))) (-15 -4291 ((-112) (-1152))) (-15 -4161 ((-112) (-1152) (-1152))) (-15 -2186 ((-312) (-1152) (-1152)))) +((-2310 (((-112) $ $) 19)) (-1565 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1294 (($ $ $) 72)) (-3910 (((-112) $ $) 73)) (-2318 (((-112) $ (-767)) 8)) (-1740 (($ (-641 |#1|)) 68) (($) 67)) (-4328 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2596 (($ $) 62)) (-2027 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ |#1| $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) 64)) (-1751 (((-112) $ (-767)) 9)) (-1501 ((|#1| $) 78)) (-3471 (($ $ $) 81)) (-2988 (($ $ $) 80)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2622 ((|#1| $) 79)) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22)) (-1648 (($ $ $) 69)) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3840 (((-1114) $) 21)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-1931 (((-641 (-2 (|:| -2511 |#1|) (|:| -3852 (-767)))) $) 61)) (-2727 (($ $ |#1|) 71) (($ $ $) 70)) (-3977 (($) 49) (($ (-641 |#1|)) 48)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 50)) (-2322 (((-858) $) 18)) (-2451 (($ (-641 |#1|)) 66) (($) 65)) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20)) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-826 |#1|) (-140) (-846)) (T -826)) +((-1501 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846))))) +(-13 (-732 |t#1|) (-964 |t#1|) (-10 -8 (-15 -1501 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-732 |#1|) . T) ((-964 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) +((-3595 (((-1264) (-1114) (-1114)) 48)) (-2288 (((-1264) (-817) (-52)) 45)) (-2091 (((-52) (-817)) 16))) +(((-827) (-10 -7 (-15 -2091 ((-52) (-817))) (-15 -2288 ((-1264) (-817) (-52))) (-15 -3595 ((-1264) (-1114) (-1114))))) (T -827)) +((-3595 (*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-827)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-827)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827))))) +(-10 -7 (-15 -2091 ((-52) (-817))) (-15 -2288 ((-1264) (-817) (-52))) (-15 -3595 ((-1264) (-1114) (-1114)))) +((-3123 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)) 12) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 13))) +(((-828 |#1| |#2|) (-10 -7 (-15 -3123 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -3123 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) (-1094) (-1094)) (T -828)) +((-3123 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-828 *5 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))) +(-10 -7 (-15 -3123 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -3123 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL (|has| |#1| (-21)))) (-1862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3085 (((-564) $) NIL (|has| |#1| (-844)))) (-4157 (($) NIL (|has| |#1| (-21)) CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 9)) (-2689 (((-3 $ "failed") $) 42 (|has| |#1| (-844)))) (-4175 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-2446 (((-112) $) 46 (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-2786 (((-112) $) NIL (|has| |#1| (-844)))) (-1828 (((-112) $) NIL (|has| |#1| (-844)))) (-2783 (((-112) $) NIL (|has| |#1| (-844)))) (-1501 (($ $ $) NIL (|has| |#1| (-844)))) (-2622 (($ $ $) NIL (|has| |#1| (-844)))) (-1418 (((-1152) $) NIL)) (-4235 (($) 13)) (-4133 (((-112) $) 12)) (-3840 (((-1114) $) NIL)) (-1861 (((-112) $) 11)) (-2322 (((-858) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2789 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))))) (-3179 (((-767)) 36 (|has| |#1| (-844)) CONST)) (-3598 (($ $) NIL (|has| |#1| (-844)))) (-2389 (($) 23 (|has| |#1| (-21)) CONST)) (-2403 (($) 33 (|has| |#1| (-844)) CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2921 (((-112) $ $) 21)) (-2964 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2942 (((-112) $ $) 45 (|has| |#1| (-844)))) (-3021 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3011 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 39 (|has| |#1| (-844))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) +(((-829 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -4235 ($)) (-15 -1861 ((-112) $)) (-15 -4133 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -829)) +((-4235 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1094)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-4175 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))) +(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -4235 ($)) (-15 -1861 ((-112) $)) (-15 -4133 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) +((-2322 (((-858) $) 11))) +(((-830 |#1| |#2|) (-10 -8 (-15 -2322 ((-858) |#1|))) (-831 |#2|) (-1094)) (T -830)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-2420 ((|#1| $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-3663 (((-55) $) 13)) (-2921 (((-112) $ $) 6))) +(((-831 |#1|) (-140) (-1094)) (T -831)) +((-2420 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1094)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1094)) (-5 *2 (-55))))) +(-13 (-1094) (-10 -8 (-15 -2420 (|t#1| $)) (-15 -3663 ((-55) $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1781 ((|#1| $) NIL) (((-114) $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-1934 ((|#1| (-114) |#1|) NIL)) (-1828 (((-112) $) NIL)) (-3669 (($ |#1| (-361 (-114))) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2002 (($ $ (-1 |#1| |#1|)) NIL)) (-4331 (($ $ (-1 |#1| |#1|)) NIL)) (-4353 ((|#1| $ |#1|) NIL)) (-3304 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2821 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-832 |#1|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2821 ($ $)) (-15 -2821 ($ $ $)) (-15 -3304 (|#1| |#1|))) |%noBranch|) (-15 -4331 ($ $ (-1 |#1| |#1|))) (-15 -2002 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1934 (|#1| (-114) |#1|)) (-15 -3669 ($ |#1| (-361 (-114)))))) (-1045)) (T -832)) +((-2821 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2821 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-3304 (*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-4331 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (-2002 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) (-1934 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))) (-3669 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2821 ($ $)) (-15 -2821 ($ $ $)) (-15 -3304 (|#1| |#1|))) |%noBranch|) (-15 -4331 ($ $ (-1 |#1| |#1|))) (-15 -2002 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1934 (|#1| (-114) |#1|)) (-15 -3669 ($ |#1| (-361 (-114)))))) +((-1867 (((-214 (-502)) (-1152)) 9))) +(((-833) (-10 -7 (-15 -1867 ((-214 (-502)) (-1152))))) (T -833)) +((-1867 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-833))))) +(-10 -7 (-15 -1867 ((-214 (-502)) (-1152)))) +((-2310 (((-112) $ $) NIL)) (-3685 (((-1112) $) 10)) (-2420 (((-506) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2335 (($ (-506) (-1112)) 8)) (-2322 (((-858) $) 25)) (-3663 (((-55) $) 20)) (-2921 (((-112) $ $) 12))) +(((-834) (-13 (-831 (-506)) (-10 -8 (-15 -3685 ((-1112) $)) (-15 -2335 ($ (-506) (-1112)))))) (T -834)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-834)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-834))))) +(-13 (-831 (-506)) (-10 -8 (-15 -3685 ((-1112) $)) (-15 -2335 ($ (-506) (-1112))))) +((-2310 (((-112) $ $) 7)) (-2738 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 14) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 13)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 16) (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 15)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) +(((-835) (-140)) (T -835)) +((-1632 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) (-1632 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) (-2738 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) (-5 *2 (-1031)))) (-2738 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *2 (-1031))))) +(-13 (-1094) (-10 -7 (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2738 ((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2738 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-1849 (((-1031) (-641 (-316 (-379))) (-641 (-379))) 169) (((-1031) (-316 (-379)) (-641 (-379))) 167) (((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-839 (-379)))) 165) (((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-316 (-379))) (-641 (-839 (-379)))) 163) (((-1031) (-837)) 128) (((-1031) (-837) (-1057)) 127)) (-1632 (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837) (-1057)) 88) (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837)) 90)) (-1733 (((-1031) (-641 (-316 (-379))) (-641 (-379))) 170) (((-1031) (-837)) 153))) +(((-836) (-10 -7 (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837) (-1057))) (-15 -1849 ((-1031) (-837) (-1057))) (-15 -1849 ((-1031) (-837))) (-15 -1733 ((-1031) (-837))) (-15 -1849 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-316 (-379))) (-641 (-839 (-379))))) (-15 -1849 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-839 (-379))))) (-15 -1849 ((-1031) (-316 (-379)) (-641 (-379)))) (-15 -1849 ((-1031) (-641 (-316 (-379))) (-641 (-379)))) (-15 -1733 ((-1031) (-641 (-316 (-379))) (-641 (-379)))))) (T -836)) +((-1733 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1849 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *5 (-641 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1849 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-839 (-379)))) (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-836)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-836))))) +(-10 -7 (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837) (-1057))) (-15 -1849 ((-1031) (-837) (-1057))) (-15 -1849 ((-1031) (-837))) (-15 -1733 ((-1031) (-837))) (-15 -1849 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-316 (-379))) (-641 (-839 (-379))))) (-15 -1849 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-839 (-379))))) (-15 -1849 ((-1031) (-316 (-379)) (-641 (-379)))) (-15 -1849 ((-1031) (-641 (-316 (-379))) (-641 (-379)))) (-15 -1733 ((-1031) (-641 (-316 (-379))) (-641 (-379))))) +((-2310 (((-112) $ $) NIL)) (-1781 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) $) 21)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 14) (($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))))) 18)) (-2921 (((-112) $ $) NIL))) +(((-837) (-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -2322 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2322 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))))) (-15 -1781 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) $))))) (T -837)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *1 (-837)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) (-5 *1 (-837)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))))) (-5 *1 (-837)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))))) (-5 *1 (-837))))) +(-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -2322 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) (-15 -2322 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))))) (-15 -1781 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225)))))) $)))) +((-3123 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)) 13) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 14))) +(((-838 |#1| |#2|) (-10 -7 (-15 -3123 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -3123 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) (-1094) (-1094)) (T -838)) +((-3123 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-838 *5 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))) +(-10 -7 (-15 -3123 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -3123 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL (|has| |#1| (-21)))) (-3830 (((-1114) $) 31)) (-1862 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3085 (((-564) $) NIL (|has| |#1| (-844)))) (-4157 (($) NIL (|has| |#1| (-21)) CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 9)) (-2689 (((-3 $ "failed") $) 55 (|has| |#1| (-844)))) (-4175 (((-3 (-407 (-564)) "failed") $) 62 (|has| |#1| (-545)))) (-2446 (((-112) $) 57 (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) 60 (|has| |#1| (-545)))) (-2786 (((-112) $) NIL (|has| |#1| (-844)))) (-2756 (($) 14)) (-1828 (((-112) $) NIL (|has| |#1| (-844)))) (-2783 (((-112) $) NIL (|has| |#1| (-844)))) (-2767 (($) 16)) (-1501 (($ $ $) NIL (|has| |#1| (-844)))) (-2622 (($ $ $) NIL (|has| |#1| (-844)))) (-1418 (((-1152) $) NIL)) (-4133 (((-112) $) 12)) (-3840 (((-1114) $) NIL)) (-1861 (((-112) $) 11)) (-2322 (((-858) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2789 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))))) (-3179 (((-767)) 49 (|has| |#1| (-844)) CONST)) (-3598 (($ $) NIL (|has| |#1| (-844)))) (-2389 (($) 36 (|has| |#1| (-21)) CONST)) (-2403 (($) 46 (|has| |#1| (-844)) CONST)) (-2977 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2921 (((-112) $ $) 34)) (-2964 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2942 (((-112) $ $) 56 (|has| |#1| (-844)))) (-3021 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-3011 (($ $ $) 44 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 52 (|has| |#1| (-844))) (($ (-564) $) 40 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) +(((-839 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -2756 ($)) (-15 -2767 ($)) (-15 -1861 ((-112) $)) (-15 -4133 ((-112) $)) (-15 -3830 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -839)) +((-2756 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094)))) (-2767 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-4175 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))) +(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -2756 ($)) (-15 -2767 ($)) (-15 -1861 ((-112) $)) (-15 -4133 ((-112) $)) (-15 -3830 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) +((-2310 (((-112) $ $) 7)) (-1959 (((-767)) 22)) (-3860 (($) 25)) (-1501 (($ $ $) 13) (($) 21 T CONST)) (-2622 (($ $ $) 14) (($) 20 T CONST)) (-1368 (((-917) $) 24)) (-1418 (((-1152) $) 9)) (-1998 (($ (-917)) 23)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18))) +(((-840) (-140)) (T -840)) +((-1501 (*1 *1) (-4 *1 (-840))) (-2622 (*1 *1) (-4 *1 (-840)))) +(-13 (-846) (-368) (-10 -8 (-15 -1501 ($) -2255) (-15 -2622 ($) -2255))) +(((-102) . T) ((-611 (-858)) . T) ((-368) . T) ((-846) . T) ((-1094) . T)) +((-3701 (((-112) (-1259 |#2|) (-1259 |#2|)) 23)) (-1988 (((-112) (-1259 |#2|) (-1259 |#2|)) 24)) (-3718 (((-112) (-1259 |#2|) (-1259 |#2|)) 20))) +(((-841 |#1| |#2|) (-10 -7 (-15 -3718 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3701 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -1988 ((-112) (-1259 |#2|) (-1259 |#2|)))) (-767) (-788)) (T -841)) +((-1988 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-3718 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(-10 -7 (-15 -3718 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3701 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -1988 ((-112) (-1259 |#2|) (-1259 |#2|)))) +((-2310 (((-112) $ $) 7)) (-4157 (($) 23 T CONST)) (-2689 (((-3 $ "failed") $) 26)) (-1828 (((-112) $) 24)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2403 (($) 22 T CONST)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (** (($ $ (-917)) 21) (($ $ (-767)) 25)) (* (($ $ $) 20))) +(((-842) (-140)) (T -842)) +NIL +(-13 (-853) (-722)) +(((-102) . T) ((-611 (-858)) . T) ((-722) . T) ((-853) . T) ((-846) . T) ((-1106) . T) ((-1094) . T)) +((-3085 (((-564) $) 20)) (-2786 (((-112) $) 10)) (-2783 (((-112) $) 11)) (-3598 (($ $) 22))) +(((-843 |#1|) (-10 -8 (-15 -3598 (|#1| |#1|)) (-15 -3085 ((-564) |#1|)) (-15 -2783 ((-112) |#1|)) (-15 -2786 ((-112) |#1|))) (-844)) (T -843)) +NIL +(-10 -8 (-15 -3598 (|#1| |#1|)) (-15 -3085 ((-564) |#1|)) (-15 -2783 ((-112) |#1|)) (-15 -2786 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 24)) (-1862 (((-3 $ "failed") $ $) 26)) (-3085 (((-564) $) 34)) (-4157 (($) 23 T CONST)) (-2689 (((-3 $ "failed") $) 39)) (-2786 (((-112) $) 36)) (-1828 (((-112) $) 41)) (-2783 (((-112) $) 35)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 43)) (-3179 (((-767)) 44 T CONST)) (-3598 (($ $) 33)) (-2389 (($) 22 T CONST)) (-2403 (($) 42 T CONST)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (-3021 (($ $ $) 28) (($ $) 27)) (-3011 (($ $ $) 20)) (** (($ $ (-767)) 40) (($ $ (-917)) 37)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-564) $) 29) (($ $ $) 38))) +(((-844) (-140)) (T -844)) +((-2786 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-564)))) (-3598 (*1 *1 *1) (-4 *1 (-844)))) +(-13 (-787) (-1045) (-722) (-10 -8 (-15 -2786 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -3085 ((-564) $)) (-15 -3598 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-1501 (($ $ $) 10)) (-2622 (($ $ $) 9)) (-2977 (((-112) $ $) 12)) (-2953 (((-112) $ $) 11)) (-2964 (((-112) $ $) 13))) +(((-845 |#1|) (-10 -8 (-15 -1501 (|#1| |#1| |#1|)) (-15 -2622 (|#1| |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2953 ((-112) |#1| |#1|))) (-846)) (T -845)) +NIL +(-10 -8 (-15 -1501 (|#1| |#1| |#1|)) (-15 -2622 (|#1| |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2953 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18))) +(((-846) (-140)) (T -846)) +((-2942 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2953 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2622 (*1 *1 *1 *1) (-4 *1 (-846))) (-1501 (*1 *1 *1 *1) (-4 *1 (-846)))) +(-13 (-1094) (-10 -8 (-15 -2942 ((-112) $ $)) (-15 -2953 ((-112) $ $)) (-15 -2977 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -2622 ($ $ $)) (-15 -1501 ($ $ $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-3889 (($ $ $) 49)) (-3305 (($ $ $) 48)) (-3275 (($ $ $) 46)) (-2416 (($ $ $) 55)) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 50)) (-3185 (((-3 $ "failed") $ $) 53)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2520 (($ $) 39)) (-1637 (($ $ $) 43)) (-4368 (($ $ $) 42)) (-4020 (($ $ $) 51)) (-2872 (($ $ $) 57)) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 45)) (-3555 (((-3 $ "failed") $ $) 52)) (-2526 (((-3 $ "failed") $ |#2|) 32)) (-2290 ((|#2| $) 36)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-3680 (((-641 |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-847 |#1| |#2|) (-10 -8 (-15 -4020 (|#1| |#1| |#1|)) (-15 -2681 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4095 |#1|)) |#1| |#1|)) (-15 -2416 (|#1| |#1| |#1|)) (-15 -3185 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -3275 (|#1| |#1| |#1|)) (-15 -4304 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4095 |#1|)) |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -3555 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3680 ((-641 |#2|) |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2322 ((-858) |#1|))) (-848 |#2|) (-1045)) (T -847)) +NIL +(-10 -8 (-15 -4020 (|#1| |#1| |#1|)) (-15 -2681 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4095 |#1|)) |#1| |#1|)) (-15 -2416 (|#1| |#1| |#1|)) (-15 -3185 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -3275 (|#1| |#1| |#1|)) (-15 -4304 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4095 |#1|)) |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -3555 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3680 ((-641 |#2|) |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3889 (($ $ $) 44 (|has| |#1| (-363)))) (-3305 (($ $ $) 45 (|has| |#1| (-363)))) (-3275 (($ $ $) 47 (|has| |#1| (-363)))) (-2416 (($ $ $) 42 (|has| |#1| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 41 (|has| |#1| (-363)))) (-3185 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 46 (|has| |#1| (-363)))) (-3032 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-1781 (((-564) $) 73 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 69)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2520 (($ $) 54 (|has| |#1| (-452)))) (-1828 (((-112) $) 31)) (-2507 (($ |#1| (-767)) 61)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 56 (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 57 (|has| |#1| (-556)))) (-3386 (((-767) $) 65)) (-1637 (($ $ $) 51 (|has| |#1| (-363)))) (-4368 (($ $ $) 52 (|has| |#1| (-363)))) (-4020 (($ $ $) 40 (|has| |#1| (-363)))) (-2872 (($ $ $) 49 (|has| |#1| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 48 (|has| |#1| (-363)))) (-3555 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 53 (|has| |#1| (-363)))) (-2686 ((|#1| $) 64)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-2073 (((-767) $) 66)) (-2290 ((|#1| $) 55 (|has| |#1| (-452)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 67)) (-3680 (((-641 |#1|) $) 60)) (-3467 ((|#1| $ (-767)) 62)) (-3179 (((-767)) 28 T CONST)) (-1937 ((|#1| $ |#1| |#1|) 59)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-848 |#1|) (-140) (-1045)) (T -848)) +((-2073 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2507 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-641 *3)))) (-1937 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2526 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-2436 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) (-3142 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-1517 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) (-4368 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3555 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2872 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4304 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4095 *1))) (-4 *1 (-848 *3)))) (-3275 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4358 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) (-3305 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3889 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3185 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2416 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4095 *1))) (-4 *1 (-848 *3)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(-13 (-1045) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -2073 ((-767) $)) (-15 -3386 ((-767) $)) (-15 -2686 (|t#1| $)) (-15 -2710 ($ $)) (-15 -3467 (|t#1| $ (-767))) (-15 -2507 ($ |t#1| (-767))) (-15 -3680 ((-641 |t#1|) $)) (-15 -1937 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2526 ((-3 $ "failed") $ |t#1|)) (-15 -2436 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -3142 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2290 (|t#1| $)) (-15 -2520 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -1517 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -4368 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -3555 ((-3 $ "failed") $ $)) (-15 -2872 ($ $ $)) (-15 -4304 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $)) (-15 -3275 ($ $ $)) (-15 -4358 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -3305 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -3185 ((-3 $ "failed") $ $)) (-15 -2416 ($ $ $)) (-15 -2681 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $)) (-15 -4020 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-1912 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4358 (((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-3142 (((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-1517 (((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-1937 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-849 |#1| |#2|) (-10 -7 (-15 -1912 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1937 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2436 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3142 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1517 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4358 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1045) (-848 |#1|)) (T -849)) +((-4358 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-1517 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3142 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2436 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-1937 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))) (-1912 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5))))) +(-10 -7 (-15 -1912 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1937 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2436 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3142 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1517 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4358 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3305 (($ $ $) NIL (|has| |#1| (-363)))) (-3275 (($ $ $) NIL (|has| |#1| (-363)))) (-2416 (($ $ $) NIL (|has| |#1| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3185 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 34 (|has| |#1| (-363)))) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452)))) (-3301 (((-858) $ (-858)) NIL)) (-1828 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) NIL)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 30 (|has| |#1| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 28 (|has| |#1| (-556)))) (-3386 (((-767) $) NIL)) (-1637 (($ $ $) NIL (|has| |#1| (-363)))) (-4368 (($ $ $) NIL (|has| |#1| (-363)))) (-4020 (($ $ $) NIL (|has| |#1| (-363)))) (-2872 (($ $ $) NIL (|has| |#1| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-3555 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 32 (|has| |#1| (-363)))) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2073 (((-767) $) NIL)) (-2290 ((|#1| $) NIL (|has| |#1| (-452)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) NIL)) (-3179 (((-767)) NIL T CONST)) (-1937 ((|#1| $ |#1| |#1|) 15)) (-2389 (($) NIL T CONST)) (-2403 (($) 23 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) 19) (($ $ (-767)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-850 |#1| |#2| |#3|) (-13 (-848 |#1|) (-10 -8 (-15 -3301 ((-858) $ (-858))))) (-1045) (-99 |#1|) (-1 |#1| |#1|)) (T -850)) +((-3301 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-848 |#1|) (-10 -8 (-15 -3301 ((-858) $ (-858))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3889 (($ $ $) NIL (|has| |#2| (-363)))) (-3305 (($ $ $) NIL (|has| |#2| (-363)))) (-3275 (($ $ $) NIL (|has| |#2| (-363)))) (-2416 (($ $ $) NIL (|has| |#2| (-363)))) (-2681 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#2| (-363)))) (-3185 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4358 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-363)))) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#2| (-452)))) (-1828 (((-112) $) NIL)) (-2507 (($ |#2| (-767)) 17)) (-3142 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-556)))) (-2436 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-556)))) (-3386 (((-767) $) NIL)) (-1637 (($ $ $) NIL (|has| |#2| (-363)))) (-4368 (($ $ $) NIL (|has| |#2| (-363)))) (-4020 (($ $ $) NIL (|has| |#2| (-363)))) (-2872 (($ $ $) NIL (|has| |#2| (-363)))) (-4304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#2| (-363)))) (-3555 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1517 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-363)))) (-2686 ((|#2| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2073 (((-767) $) NIL)) (-2290 ((|#2| $) NIL (|has| |#2| (-452)))) (-2322 (((-858) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) NIL) (($ (-1255 |#1|)) 19)) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-767)) NIL)) (-3179 (((-767)) NIL T CONST)) (-1937 ((|#2| $ |#2| |#2|) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) 13 T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-851 |#1| |#2| |#3| |#4|) (-13 (-848 |#2|) (-614 (-1255 |#1|))) (-1170) (-1045) (-99 |#2|) (-1 |#2| |#2|)) (T -851)) +NIL +(-13 (-848 |#2|) (-614 (-1255 |#1|))) +((-4160 ((|#1| (-767) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-2518 ((|#1| (-767) (-767) |#1|) 39) ((|#1| (-767) |#1|) 27)) (-2028 ((|#1| (-767) |#1|) 43)) (-1616 ((|#1| (-767) |#1|) 41)) (-4006 ((|#1| (-767) |#1|) 40))) +(((-852 |#1|) (-10 -7 (-15 -4006 (|#1| (-767) |#1|)) (-15 -1616 (|#1| (-767) |#1|)) (-15 -2028 (|#1| (-767) |#1|)) (-15 -2518 (|#1| (-767) |#1|)) (-15 -2518 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4160 (|#1| (-767) |#1|)) |%noBranch|)) (-172)) (T -852)) +((-4160 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2518 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-2028 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-1616 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-4006 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -4006 (|#1| (-767) |#1|)) (-15 -1616 (|#1| (-767) |#1|)) (-15 -2028 (|#1| (-767) |#1|)) (-15 -2518 (|#1| (-767) |#1|)) (-15 -2518 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4160 (|#1| (-767) |#1|)) |%noBranch|)) +((-2310 (((-112) $ $) 7)) (-1501 (($ $ $) 13)) (-2622 (($ $ $) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2977 (((-112) $ $) 16)) (-2953 (((-112) $ $) 17)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 15)) (-2942 (((-112) $ $) 18)) (** (($ $ (-917)) 21)) (* (($ $ $) 20))) +(((-853) (-140)) (T -853)) +NIL +(-13 (-846) (-1106)) +(((-102) . T) ((-611 (-858)) . T) ((-846) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-2053 (((-564) $) 14)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 20) (($ (-564)) 13)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 9)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 11))) +(((-854) (-13 (-846) (-10 -8 (-15 -2322 ($ (-564))) (-15 -2053 ((-564) $))))) (T -854)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-854)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-854))))) +(-13 (-846) (-10 -8 (-15 -2322 ($ (-564))) (-15 -2053 ((-564) $)))) +((-2007 (((-687 (-1217)) $ (-1217)) 15)) (-1772 (((-687 (-549)) $ (-549)) 12)) (-3067 (((-767) $ (-128)) 30))) +(((-855 |#1|) (-10 -8 (-15 -3067 ((-767) |#1| (-128))) (-15 -2007 ((-687 (-1217)) |#1| (-1217))) (-15 -1772 ((-687 (-549)) |#1| (-549)))) (-856)) (T -855)) +NIL +(-10 -8 (-15 -3067 ((-767) |#1| (-128))) (-15 -2007 ((-687 (-1217)) |#1| (-1217))) (-15 -1772 ((-687 (-549)) |#1| (-549)))) +((-2007 (((-687 (-1217)) $ (-1217)) 8)) (-1772 (((-687 (-549)) $ (-549)) 9)) (-3067 (((-767) $ (-128)) 7)) (-4012 (((-687 (-129)) $ (-129)) 10)) (-3566 (($ $) 6))) +(((-856) (-140)) (T -856)) +((-4012 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))) (-1772 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))) (-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))) (-3067 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767))))) +(-13 (-173) (-10 -8 (-15 -4012 ((-687 (-129)) $ (-129))) (-15 -1772 ((-687 (-549)) $ (-549))) (-15 -2007 ((-687 (-1217)) $ (-1217))) (-15 -3067 ((-767) $ (-128))))) (((-173) . T)) -((-3796 (((-687 (-1217)) $ (-1217)) NIL)) (-1721 (((-687 (-549)) $ (-549)) NIL)) (-1386 (((-768) $ (-128)) NIL)) (-2800 (((-687 (-129)) $ (-129)) 21)) (-2418 (($ (-388)) 12) (($ (-1152)) 14)) (-4310 (((-112) $) 18)) (-1831 (((-859) $) 25)) (-1846 (($ $) 22))) -(((-858) (-13 (-857) (-611 (-859)) (-10 -8 (-15 -2418 ($ (-388))) (-15 -2418 ($ (-1152))) (-15 -4310 ((-112) $))))) (T -858)) -((-2418 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) -(-13 (-857) (-611 (-859)) (-10 -8 (-15 -2418 ($ (-388))) (-15 -2418 ($ (-1152))) (-15 -4310 ((-112) $)))) -((-1817 (((-112) $ $) NIL) (($ $ $) 86)) (-3084 (($ $ $) 126)) (-2820 (((-564) $) 31) (((-564)) 36)) (-2348 (($ (-564)) 54)) (-1973 (($ $ $) 55) (($ (-641 $)) 85)) (-2977 (($ $ (-641 $)) 83)) (-2586 (((-564) $) 34)) (-2755 (($ $ $) 74)) (-3837 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-2976 (((-564) $) 33)) (-3946 (($ $ $) 73)) (-1307 (($ $) 115)) (-3113 (($ $ $) 130)) (-3708 (($ (-641 $)) 62)) (-1514 (($ $ (-641 $)) 80)) (-4346 (($ (-564) (-564)) 56)) (-4317 (($ $) 127) (($ $ $) 128)) (-3777 (($ $ (-564)) 43) (($ $) 46)) (-1449 (($ $ $) 98)) (-1632 (($ $ $) 133)) (-2801 (($ $) 116)) (-1424 (($ $ $) 99)) (-1565 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-3536 (((-1264) $) 10)) (-3053 (($ $) 119) (($ $ (-768)) 123)) (-1999 (($ $ $) 76)) (-3377 (($ $ $) 75)) (-3057 (($ $ (-641 $)) 111)) (-3404 (($ $ $) 114)) (-2941 (($ (-641 $)) 60)) (-3352 (($ $) 71) (($ (-641 $)) 72)) (-1542 (($ $ $) 124)) (-3132 (($ $) 117)) (-2868 (($ $ $) 129)) (-4286 (($ (-564)) 21) (($ (-1170)) 23) (($ (-1152)) 30) (($ (-225)) 25)) (-4358 (($ $ $) 102)) (-4338 (($ $) 103)) (-1335 (((-1264) (-1152)) 15)) (-4203 (($ (-1152)) 14)) (-4309 (($ (-641 (-641 $))) 59)) (-3766 (($ $ (-564)) 42) (($ $) 45)) (-2723 (((-1152) $) NIL)) (-3950 (($ $ $) 132)) (-2133 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-1769 (((-112) $) 109)) (-3073 (($ $ (-641 $)) 112) (($ $ $ $) 113)) (-2204 (($ (-564)) 39)) (-3926 (((-564) $) 32) (((-564)) 35)) (-3203 (($ $ $) 40) (($ (-641 $)) 84)) (-2780 (((-1114) $) NIL)) (-1403 (($ $ $) 100)) (-4012 (($) 13)) (-1350 (($ $ (-641 $)) 110)) (-3398 (((-1152) (-1152)) 8)) (-3032 (($ $) 118) (($ $ (-768)) 122)) (-1412 (($ $ $) 97)) (-3534 (($ $ (-768)) 140)) (-2689 (($ (-641 $)) 61)) (-1831 (((-859) $) 19)) (-2513 (($ $ (-564)) 41) (($ $) 44)) (-2372 (($ $) 69) (($ (-641 $)) 70)) (-3131 (($ $) 67) (($ (-641 $)) 68)) (-4264 (($ $) 125)) (-2730 (($ (-641 $)) 66)) (-4254 (($ $ $) 106)) (-4081 (($ $ $) 131)) (-4348 (($ $ $) 101)) (-2966 (($ $ $) 104) (($ $) 105)) (-1762 (($ $ $) 90)) (-1737 (($ $ $) 88)) (-1702 (((-112) $ $) 16) (($ $ $) 17)) (-1749 (($ $ $) 89)) (-1723 (($ $ $) 87)) (-1823 (($ $ $) 95)) (-1808 (($ $ $) 92) (($ $) 93)) (-1797 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94))) -(((-859) (-13 (-1094) (-10 -8 (-15 -3536 ((-1264) $)) (-15 -4203 ($ (-1152))) (-15 -1335 ((-1264) (-1152))) (-15 -4286 ($ (-564))) (-15 -4286 ($ (-1170))) (-15 -4286 ($ (-1152))) (-15 -4286 ($ (-225))) (-15 -4012 ($)) (-15 -3398 ((-1152) (-1152))) (-15 -2820 ((-564) $)) (-15 -3926 ((-564) $)) (-15 -2820 ((-564))) (-15 -3926 ((-564))) (-15 -2976 ((-564) $)) (-15 -2586 ((-564) $)) (-15 -2204 ($ (-564))) (-15 -2348 ($ (-564))) (-15 -4346 ($ (-564) (-564))) (-15 -3766 ($ $ (-564))) (-15 -3777 ($ $ (-564))) (-15 -2513 ($ $ (-564))) (-15 -3766 ($ $)) (-15 -3777 ($ $)) (-15 -2513 ($ $)) (-15 -3203 ($ $ $)) (-15 -1973 ($ $ $)) (-15 -3203 ($ (-641 $))) (-15 -1973 ($ (-641 $))) (-15 -3057 ($ $ (-641 $))) (-15 -3073 ($ $ (-641 $))) (-15 -3073 ($ $ $ $)) (-15 -3404 ($ $ $)) (-15 -1769 ((-112) $)) (-15 -1350 ($ $ (-641 $))) (-15 -1307 ($ $)) (-15 -3950 ($ $ $)) (-15 -4264 ($ $)) (-15 -4309 ($ (-641 (-641 $)))) (-15 -3084 ($ $ $)) (-15 -4317 ($ $)) (-15 -4317 ($ $ $)) (-15 -2868 ($ $ $)) (-15 -3113 ($ $ $)) (-15 -4081 ($ $ $)) (-15 -1632 ($ $ $)) (-15 -3534 ($ $ (-768))) (-15 -4254 ($ $ $)) (-15 -3946 ($ $ $)) (-15 -2755 ($ $ $)) (-15 -3377 ($ $ $)) (-15 -1999 ($ $ $)) (-15 -1514 ($ $ (-641 $))) (-15 -2977 ($ $ (-641 $))) (-15 -2801 ($ $)) (-15 -3032 ($ $)) (-15 -3032 ($ $ (-768))) (-15 -3053 ($ $)) (-15 -3053 ($ $ (-768))) (-15 -3132 ($ $)) (-15 -1542 ($ $ $)) (-15 -3837 ($ $)) (-15 -3837 ($ $ $)) (-15 -3837 ($ $ $ $)) (-15 -1565 ($ $)) (-15 -1565 ($ $ $)) (-15 -1565 ($ $ $ $)) (-15 -2133 ($ $)) (-15 -2133 ($ $ $)) (-15 -2133 ($ $ $ $)) (-15 -3131 ($ $)) (-15 -3131 ($ (-641 $))) (-15 -2372 ($ $)) (-15 -2372 ($ (-641 $))) (-15 -3352 ($ $)) (-15 -3352 ($ (-641 $))) (-15 -2941 ($ (-641 $))) (-15 -2689 ($ (-641 $))) (-15 -3708 ($ (-641 $))) (-15 -2730 ($ (-641 $))) (-15 -1702 ($ $ $)) (-15 -1817 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -1808 ($ $ $)) (-15 -1808 ($ $)) (-15 * ($ $ $)) (-15 -1823 ($ $ $)) (-15 ** ($ $ $)) (-15 -1412 ($ $ $)) (-15 -1449 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1403 ($ $ $)) (-15 -4348 ($ $ $)) (-15 -4358 ($ $ $)) (-15 -4338 ($ $)) (-15 -2966 ($ $ $)) (-15 -2966 ($ $))))) (T -859)) -((-3536 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859)))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) (-4012 (*1 *1) (-5 *1 (-859))) (-3398 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2820 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3926 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2348 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-4346 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3766 (*1 *1 *1) (-5 *1 (-859))) (-3777 (*1 *1 *1) (-5 *1 (-859))) (-2513 (*1 *1 *1) (-5 *1 (-859))) (-3203 (*1 *1 *1 *1) (-5 *1 (-859))) (-1973 (*1 *1 *1 *1) (-5 *1 (-859))) (-3203 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3073 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-3404 (*1 *1 *1 *1) (-5 *1 (-859))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1307 (*1 *1 *1) (-5 *1 (-859))) (-3950 (*1 *1 *1 *1) (-5 *1 (-859))) (-4264 (*1 *1 *1) (-5 *1 (-859))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859)))) (-3084 (*1 *1 *1 *1) (-5 *1 (-859))) (-4317 (*1 *1 *1) (-5 *1 (-859))) (-4317 (*1 *1 *1 *1) (-5 *1 (-859))) (-2868 (*1 *1 *1 *1) (-5 *1 (-859))) (-3113 (*1 *1 *1 *1) (-5 *1 (-859))) (-4081 (*1 *1 *1 *1) (-5 *1 (-859))) (-1632 (*1 *1 *1 *1) (-5 *1 (-859))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-4254 (*1 *1 *1 *1) (-5 *1 (-859))) (-3946 (*1 *1 *1 *1) (-5 *1 (-859))) (-2755 (*1 *1 *1 *1) (-5 *1 (-859))) (-3377 (*1 *1 *1 *1) (-5 *1 (-859))) (-1999 (*1 *1 *1 *1) (-5 *1 (-859))) (-1514 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2977 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2801 (*1 *1 *1) (-5 *1 (-859))) (-3032 (*1 *1 *1) (-5 *1 (-859))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-3053 (*1 *1 *1) (-5 *1 (-859))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-3132 (*1 *1 *1) (-5 *1 (-859))) (-1542 (*1 *1 *1 *1) (-5 *1 (-859))) (-3837 (*1 *1 *1) (-5 *1 (-859))) (-3837 (*1 *1 *1 *1) (-5 *1 (-859))) (-3837 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-1565 (*1 *1 *1) (-5 *1 (-859))) (-1565 (*1 *1 *1 *1) (-5 *1 (-859))) (-1565 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2133 (*1 *1 *1) (-5 *1 (-859))) (-2133 (*1 *1 *1 *1) (-5 *1 (-859))) (-2133 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-3131 (*1 *1 *1) (-5 *1 (-859))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2372 (*1 *1 *1) (-5 *1 (-859))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3352 (*1 *1 *1) (-5 *1 (-859))) (-3352 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2730 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1702 (*1 *1 *1 *1) (-5 *1 (-859))) (-1817 (*1 *1 *1 *1) (-5 *1 (-859))) (-1723 (*1 *1 *1 *1) (-5 *1 (-859))) (-1737 (*1 *1 *1 *1) (-5 *1 (-859))) (-1749 (*1 *1 *1 *1) (-5 *1 (-859))) (-1762 (*1 *1 *1 *1) (-5 *1 (-859))) (-1797 (*1 *1 *1 *1) (-5 *1 (-859))) (-1808 (*1 *1 *1 *1) (-5 *1 (-859))) (-1808 (*1 *1 *1) (-5 *1 (-859))) (* (*1 *1 *1 *1) (-5 *1 (-859))) (-1823 (*1 *1 *1 *1) (-5 *1 (-859))) (** (*1 *1 *1 *1) (-5 *1 (-859))) (-1412 (*1 *1 *1 *1) (-5 *1 (-859))) (-1449 (*1 *1 *1 *1) (-5 *1 (-859))) (-1424 (*1 *1 *1 *1) (-5 *1 (-859))) (-1403 (*1 *1 *1 *1) (-5 *1 (-859))) (-4348 (*1 *1 *1 *1) (-5 *1 (-859))) (-4358 (*1 *1 *1 *1) (-5 *1 (-859))) (-4338 (*1 *1 *1) (-5 *1 (-859))) (-2966 (*1 *1 *1 *1) (-5 *1 (-859))) (-2966 (*1 *1 *1) (-5 *1 (-859)))) -(-13 (-1094) (-10 -8 (-15 -3536 ((-1264) $)) (-15 -4203 ($ (-1152))) (-15 -1335 ((-1264) (-1152))) (-15 -4286 ($ (-564))) (-15 -4286 ($ (-1170))) (-15 -4286 ($ (-1152))) (-15 -4286 ($ (-225))) (-15 -4012 ($)) (-15 -3398 ((-1152) (-1152))) (-15 -2820 ((-564) $)) (-15 -3926 ((-564) $)) (-15 -2820 ((-564))) (-15 -3926 ((-564))) (-15 -2976 ((-564) $)) (-15 -2586 ((-564) $)) (-15 -2204 ($ (-564))) (-15 -2348 ($ (-564))) (-15 -4346 ($ (-564) (-564))) (-15 -3766 ($ $ (-564))) (-15 -3777 ($ $ (-564))) (-15 -2513 ($ $ (-564))) (-15 -3766 ($ $)) (-15 -3777 ($ $)) (-15 -2513 ($ $)) (-15 -3203 ($ $ $)) (-15 -1973 ($ $ $)) (-15 -3203 ($ (-641 $))) (-15 -1973 ($ (-641 $))) (-15 -3057 ($ $ (-641 $))) (-15 -3073 ($ $ (-641 $))) (-15 -3073 ($ $ $ $)) (-15 -3404 ($ $ $)) (-15 -1769 ((-112) $)) (-15 -1350 ($ $ (-641 $))) (-15 -1307 ($ $)) (-15 -3950 ($ $ $)) (-15 -4264 ($ $)) (-15 -4309 ($ (-641 (-641 $)))) (-15 -3084 ($ $ $)) (-15 -4317 ($ $)) (-15 -4317 ($ $ $)) (-15 -2868 ($ $ $)) (-15 -3113 ($ $ $)) (-15 -4081 ($ $ $)) (-15 -1632 ($ $ $)) (-15 -3534 ($ $ (-768))) (-15 -4254 ($ $ $)) (-15 -3946 ($ $ $)) (-15 -2755 ($ $ $)) (-15 -3377 ($ $ $)) (-15 -1999 ($ $ $)) (-15 -1514 ($ $ (-641 $))) (-15 -2977 ($ $ (-641 $))) (-15 -2801 ($ $)) (-15 -3032 ($ $)) (-15 -3032 ($ $ (-768))) (-15 -3053 ($ $)) (-15 -3053 ($ $ (-768))) (-15 -3132 ($ $)) (-15 -1542 ($ $ $)) (-15 -3837 ($ $)) (-15 -3837 ($ $ $)) (-15 -3837 ($ $ $ $)) (-15 -1565 ($ $)) (-15 -1565 ($ $ $)) (-15 -1565 ($ $ $ $)) (-15 -2133 ($ $)) (-15 -2133 ($ $ $)) (-15 -2133 ($ $ $ $)) (-15 -3131 ($ $)) (-15 -3131 ($ (-641 $))) (-15 -2372 ($ $)) (-15 -2372 ($ (-641 $))) (-15 -3352 ($ $)) (-15 -3352 ($ (-641 $))) (-15 -2941 ($ (-641 $))) (-15 -2689 ($ (-641 $))) (-15 -3708 ($ (-641 $))) (-15 -2730 ($ (-641 $))) (-15 -1702 ($ $ $)) (-15 -1817 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -1808 ($ $ $)) (-15 -1808 ($ $)) (-15 * ($ $ $)) (-15 -1823 ($ $ $)) (-15 ** ($ $ $)) (-15 -1412 ($ $ $)) (-15 -1449 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1403 ($ $ $)) (-15 -4348 ($ $ $)) (-15 -4358 ($ $ $)) (-15 -4338 ($ $)) (-15 -2966 ($ $ $)) (-15 -2966 ($ $)))) -((-3483 (((-1264) (-641 (-52))) 24)) (-1478 (((-1264) (-1152) (-859)) 14) (((-1264) (-859)) 9) (((-1264) (-1152)) 11))) -(((-860) (-10 -7 (-15 -1478 ((-1264) (-1152))) (-15 -1478 ((-1264) (-859))) (-15 -1478 ((-1264) (-1152) (-859))) (-15 -3483 ((-1264) (-641 (-52)))))) (T -860)) -((-3483 (*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860))))) -(-10 -7 (-15 -1478 ((-1264) (-1152))) (-15 -1478 ((-1264) (-859))) (-15 -1478 ((-1264) (-1152) (-859))) (-15 -3483 ((-1264) (-641 (-52))))) -((-1817 (((-112) $ $) NIL)) (-3871 (((-3 $ "failed") (-1170)) 39)) (-3267 (((-768)) 32)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) 29)) (-2723 (((-1152) $) 46)) (-1468 (($ (-918)) 28)) (-2780 (((-1114) $) NIL)) (-2511 (((-1170) $) 13) (((-536) $) 19) (((-889 (-379)) $) 26) (((-889 (-564)) $) 22)) (-1831 (((-859) $) 16)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 43)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 41))) -(((-861 |#1|) (-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3871 ((-3 $ "failed") (-1170))))) (-641 (-1170))) (T -861)) -((-3871 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2))))) -(-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3871 ((-3 $ "failed") (-1170))))) -((-1817 (((-112) $ $) NIL)) (-1316 (((-506) $) 9)) (-2640 (((-641 (-439)) $) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 21)) (-1702 (((-112) $ $) 16))) -(((-862) (-13 (-1094) (-10 -8 (-15 -1316 ((-506) $)) (-15 -2640 ((-641 (-439)) $))))) (T -862)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-862)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862))))) -(-13 (-1094) (-10 -8 (-15 -1316 ((-506) $)) (-15 -2640 ((-641 (-439)) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-949 |#1|)) NIL) (((-949 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2219 (((-768)) NIL T CONST)) (-1489 (((-1264) (-768)) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-863 |#1| |#2| |#3| |#4|) (-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1823 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1489 ((-1264) (-768))))) (-1046) (-641 (-1170)) (-641 (-768)) (-768)) (T -863)) -((-1823 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-863 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-768))) (-14 *5 (-768)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) (-14 *7 *3)))) -(-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1823 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1489 ((-1264) (-768))))) -((-3922 (((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|) 43)) (-3415 (((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|) 34))) -(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3415 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -3922 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|))) (-363) (-1250 |#1|) (-1235 |#1|)) (T -864)) -((-3922 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) (-3415 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))) -(-10 -7 (-15 -3415 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -3922 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|))) -((-3415 (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) 28))) -(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -3415 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -3415 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)))) (-363) (-1170) |#1|) (T -865)) -((-3415 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7)))) (-3415 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7))))) -(-10 -7 (-15 -3415 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -3415 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-3083 (($ $ (-564)) 63)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-4317 (($ (-1166 (-564)) (-564)) 62)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-2905 (($ $) 65)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-2155 (((-768) $) 70)) (-2949 (((-112) $) 31)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1691 (((-564)) 67)) (-1822 (((-564) $) 66)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3951 (($ $ (-564)) 69)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-2422 (((-1150 (-564)) $) 71)) (-4037 (($ $) 68)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-2508 (((-564) $ (-564)) 64)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-866 |#1|) (-140) (-564)) (T -866)) -((-2422 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564))))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-4037 (*1 *1 *1) (-4 *1 (-866 *2))) (-1691 (*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2905 (*1 *1 *1) (-4 *1 (-866 *2))) (-2508 (*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-3083 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-4317 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4))))) -(-13 (-307) (-147) (-10 -8 (-15 -2422 ((-1150 (-564)) $)) (-15 -2155 ((-768) $)) (-15 -3951 ($ $ (-564))) (-15 -4037 ($ $)) (-15 -1691 ((-564))) (-15 -1822 ((-564) $)) (-15 -2905 ($ $)) (-15 -2508 ((-564) $ (-564))) (-15 -3083 ($ $ (-564))) (-15 -4317 ($ (-1166 (-564)) (-564))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $ (-564)) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-4317 (($ (-1166 (-564)) (-564)) NIL)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2905 (($ $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-2155 (((-768) $) NIL)) (-2949 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1691 (((-564)) NIL)) (-1822 (((-564) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3951 (($ $ (-564)) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-2422 (((-1150 (-564)) $) NIL)) (-4037 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-2508 (((-564) $ (-564)) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-867 |#1|) (-866 |#1|) (-564)) (T -867)) -NIL -(-866 |#1|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-867 |#1|) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-867 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-2237 (((-867 |#1|) $) NIL) (((-1170) $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-3588 (($ $) NIL) (($ (-564) $) NIL)) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-867 |#1|))) (|:| |vec| (-1259 (-867 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-867 |#1|)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-867 |#1|) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-867 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-867 |#1|) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-867 |#1|) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| (-867 |#1|) (-1145)))) (-2607 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-3375 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-2449 (($ (-1 (-867 |#1|) (-867 |#1|)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-867 |#1|) (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-867 |#1|) (-307)))) (-1818 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-867 |#1|)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-867 |#1|) (-867 |#1|)) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-294 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-294 (-867 |#1|)))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-1170)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|)))) (($ $ (-1170) (-867 |#1|)) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-867 |#1|)) NIL (|has| (-867 |#1|) (-286 (-867 |#1|) (-867 |#1|))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-867 |#1|) $) NIL)) (-2511 (((-889 (-564)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-867 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-867 |#1|) (-1019))) (((-225) $) NIL (|has| (-867 |#1|) (-1019)))) (-4355 (((-174 (-407 (-564))) $) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-867 |#1|)) NIL) (($ (-1170)) NIL (|has| (-867 |#1|) (-1035 (-1170))))) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))) (|has| (-867 |#1|) (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-3939 (((-112) $ $) NIL)) (-2508 (((-407 (-564)) $ (-564)) NIL)) (-1849 (($ $) NIL (|has| (-867 |#1|) (-817)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1823 (($ $ $) NIL) (($ (-867 |#1|) (-867 |#1|)) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-867 |#1|) $) NIL) (($ $ (-867 |#1|)) NIL))) -(((-868 |#1|) (-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2508 ((-407 (-564)) $ (-564))) (-15 -4355 ((-174 (-407 (-564))) $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)))) (-564)) (T -868)) -((-2508 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-868 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564)))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564)))) (-3588 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2)))) -(-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2508 ((-407 (-564)) $ (-564))) (-15 -4355 ((-174 (-407 (-564))) $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 ((|#2| $) NIL (|has| |#2| (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| |#2| (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| |#2| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564))))) (-2237 ((|#2| $) NIL) (((-1170) $) NIL (|has| |#2| (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-564)))) (((-564) $) NIL (|has| |#2| (-1035 (-564))))) (-3588 (($ $) 35) (($ (-564) $) 38)) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) 63)) (-2900 (($) NIL (|has| |#2| (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) NIL (|has| |#2| (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#2| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#2| (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 ((|#2| $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-2607 (((-112) $) NIL (|has| |#2| (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| |#2| (-847)))) (-3375 (($ $ $) NIL (|has| |#2| (-847)))) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 59)) (-2884 (($) NIL (|has| |#2| (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| |#2| (-307)))) (-1818 ((|#2| $) NIL (|has| |#2| (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 |#2|) (-641 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (|has| |#2| (-514 (-1170) |#2|))) (($ $ (-1170) |#2|) NIL (|has| |#2| (-514 (-1170) |#2|)))) (-3920 (((-768) $) NIL)) (-1350 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2644 (($ $) NIL)) (-3693 ((|#2| $) NIL)) (-2511 (((-889 (-564)) $) NIL (|has| |#2| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#2| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1019))) (((-225) $) NIL (|has| |#2| (-1019)))) (-4355 (((-174 (-407 (-564))) $) 77)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1831 (((-859) $) 106) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1170)) NIL (|has| |#2| (-1035 (-1170))))) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-2219 (((-768)) NIL T CONST)) (-4150 ((|#2| $) NIL (|has| |#2| (-545)))) (-3939 (((-112) $ $) NIL)) (-2508 (((-407 (-564)) $ (-564)) 70)) (-1849 (($ $) NIL (|has| |#2| (-817)))) (-1293 (($) 15 T CONST)) (-1300 (($) 17 T CONST)) (-3435 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1702 (((-112) $ $) 45)) (-1749 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1823 (($ $ $) 24) (($ |#2| |#2|) 64)) (-1808 (($ $) 49) (($ $ $) 51)) (-1797 (($ $ $) 47)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 60)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL))) -(((-869 |#1| |#2|) (-13 (-989 |#2|) (-10 -8 (-15 -2508 ((-407 (-564)) $ (-564))) (-15 -4355 ((-174 (-407 (-564))) $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)))) (-564) (-866 |#1|)) (T -869)) -((-2508 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-869 *4 *5)) (-5 *3 (-564)) (-4 *5 (-866 *4)))) (-4355 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))) (-3588 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2)))) (-3588 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3))))) -(-13 (-989 |#2|) (-10 -8 (-15 -2508 ((-407 (-564)) $ (-564))) (-15 -4355 ((-174 (-407 (-564))) $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)))) -((-1817 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3137 ((|#2| $) 12)) (-1504 (($ |#1| |#2|) 9)) (-2723 (((-1152) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2780 (((-1114) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#1| $) 11)) (-1842 (($ |#1| |#2|) 10)) (-1831 (((-859) $) 18 (-4078 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-1702 (((-112) $ $) 23 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) -(((-870 |#1| |#2|) (-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -1504 ($ |#1| |#2|)) (-15 -1842 ($ |#1| |#2|)) (-15 -3303 (|#1| $)) (-15 -3137 (|#2| $)))) (-1209) (-1209)) (T -870)) -((-1504 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-3303 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209))))) -(-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -1504 ($ |#1| |#2|)) (-15 -1842 ($ |#1| |#2|)) (-15 -3303 (|#1| $)) (-15 -3137 (|#2| $)))) -((-1817 (((-112) $ $) NIL)) (-2122 (((-564) $) 16)) (-2833 (($ (-157)) 13)) (-3608 (($ (-157)) 14)) (-2723 (((-1152) $) NIL)) (-3018 (((-157) $) 15)) (-2780 (((-1114) $) NIL)) (-1727 (($ (-157)) 11)) (-2530 (($ (-157)) 10)) (-1831 (((-859) $) 24) (($ (-157)) 17)) (-1950 (($ (-157)) 12)) (-1702 (((-112) $ $) NIL))) -(((-871) (-13 (-1094) (-10 -8 (-15 -2530 ($ (-157))) (-15 -1727 ($ (-157))) (-15 -1950 ($ (-157))) (-15 -2833 ($ (-157))) (-15 -3608 ($ (-157))) (-15 -3018 ((-157) $)) (-15 -2122 ((-564) $)) (-15 -1831 ($ (-157)))))) (T -871)) -((-2530 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1727 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) -(-13 (-1094) (-10 -8 (-15 -2530 ($ (-157))) (-15 -1727 ($ (-157))) (-15 -1950 ($ (-157))) (-15 -2833 ($ (-157))) (-15 -3608 ($ (-157))) (-15 -3018 ((-157) $)) (-15 -2122 ((-564) $)) (-15 -1831 ($ (-157))))) -((-1831 (((-316 (-564)) (-407 (-949 (-48)))) 23) (((-316 (-564)) (-949 (-48))) 18))) -(((-872) (-10 -7 (-15 -1831 ((-316 (-564)) (-949 (-48)))) (-15 -1831 ((-316 (-564)) (-407 (-949 (-48))))))) (T -872)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872))))) -(-10 -7 (-15 -1831 ((-316 (-564)) (-949 (-48)))) (-15 -1831 ((-316 (-564)) (-407 (-949 (-48)))))) -((-2449 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 15))) -(((-873 |#1| |#2|) (-10 -7 (-15 -2449 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1209) (-1209)) (T -873)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6))))) -(-10 -7 (-15 -2449 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) -((-1352 (($ |#1| |#1|) 8)) (-2634 ((|#1| $ (-768)) 15))) -(((-874 |#1|) (-10 -8 (-15 -1352 ($ |#1| |#1|)) (-15 -2634 (|#1| $ (-768)))) (-1209)) (T -874)) -((-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209)))) (-1352 (*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209))))) -(-10 -8 (-15 -1352 ($ |#1| |#1|)) (-15 -2634 (|#1| $ (-768)))) -((-2449 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 15))) -(((-875 |#1| |#2|) (-10 -7 (-15 -2449 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-1209) (-1209)) (T -875)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-876 *6)) (-5 *1 (-875 *5 *6))))) -(-10 -7 (-15 -2449 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) -((-1352 (($ |#1| |#1| |#1|) 8)) (-2634 ((|#1| $ (-768)) 15))) -(((-876 |#1|) (-10 -8 (-15 -1352 ($ |#1| |#1| |#1|)) (-15 -2634 (|#1| $ (-768)))) (-1209)) (T -876)) -((-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209)))) (-1352 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209))))) -(-10 -8 (-15 -1352 ($ |#1| |#1| |#1|)) (-15 -2634 (|#1| $ (-768)))) -((-2897 (((-641 (-1175)) (-1152)) 9))) -(((-877) (-10 -7 (-15 -2897 ((-641 (-1175)) (-1152))))) (T -877)) -((-2897 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877))))) -(-10 -7 (-15 -2897 ((-641 (-1175)) (-1152)))) -((-2449 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) -(((-878 |#1| |#2|) (-10 -7 (-15 -2449 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1209) (-1209)) (T -878)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) -(-10 -7 (-15 -2449 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) -((-1937 (($ |#1| |#1| |#1|) 8)) (-2634 ((|#1| $ (-768)) 15))) -(((-879 |#1|) (-10 -8 (-15 -1937 ($ |#1| |#1| |#1|)) (-15 -2634 (|#1| $ (-768)))) (-1209)) (T -879)) -((-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209)))) (-1937 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209))))) -(-10 -8 (-15 -1937 ($ |#1| |#1| |#1|)) (-15 -2634 (|#1| $ (-768)))) -((-1418 (((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564)))) 47)) (-2009 (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 43)) (-4065 (((-1150 (-641 (-564))) (-641 (-564))) 57) (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 55)) (-3499 (((-1150 (-641 (-564))) (-564)) 58)) (-1967 (((-1150 (-641 (-564))) (-564) (-564)) 34) (((-1150 (-641 (-564))) (-564)) 23) (((-1150 (-641 (-564))) (-564) (-564) (-564)) 19)) (-2842 (((-1150 (-641 (-564))) (-1150 (-641 (-564)))) 41)) (-3047 (((-641 (-564)) (-641 (-564))) 40))) -(((-880) (-10 -7 (-15 -1967 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -1967 ((-1150 (-641 (-564))) (-564))) (-15 -1967 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -3047 ((-641 (-564)) (-641 (-564)))) (-15 -2842 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -2009 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1418 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -4065 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4065 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -3499 ((-1150 (-641 (-564))) (-564))))) (T -880)) -((-3499 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-4065 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-4065 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-1418 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) (-5 *1 (-880)))) (-2009 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-2842 (*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880)))) (-1967 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-1967 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-1967 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))) -(-10 -7 (-15 -1967 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -1967 ((-1150 (-641 (-564))) (-564))) (-15 -1967 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -3047 ((-641 (-564)) (-641 (-564)))) (-15 -2842 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -2009 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1418 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -4065 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4065 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -3499 ((-1150 (-641 (-564))) (-564)))) -((-2511 (((-889 (-379)) $) 9 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 8 (|has| |#1| (-612 (-889 (-564))))))) -(((-881 |#1|) (-140) (-1209)) (T -881)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|))) -(((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564))))) -((-1817 (((-112) $ $) NIL)) (-3654 (($) 14)) (-3181 (($ (-886 |#1| |#2|) (-886 |#1| |#3|)) 28)) (-3607 (((-886 |#1| |#3|) $) 16)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3225 (((-112) $) 22)) (-2105 (($) 19)) (-1831 (((-859) $) 31)) (-3530 (((-886 |#1| |#2|) $) 15)) (-1702 (((-112) $ $) 26))) -(((-882 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -3225 ((-112) $)) (-15 -2105 ($)) (-15 -3654 ($)) (-15 -3181 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -3530 ((-886 |#1| |#2|) $)) (-15 -3607 ((-886 |#1| |#3|) $)))) (-1094) (-1094) (-662 |#2|)) (T -882)) -((-3225 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-2105 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-3654 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6)))) (-3530 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-3607 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4))))) -(-13 (-1094) (-10 -8 (-15 -3225 ((-112) $)) (-15 -2105 ($)) (-15 -3654 ($)) (-15 -3181 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -3530 ((-886 |#1| |#2|) $)) (-15 -3607 ((-886 |#1| |#3|) $)))) -((-1817 (((-112) $ $) 7)) (-2131 (((-886 |#1| $) $ (-889 |#1|) (-886 |#1| $)) 13)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) -(((-883 |#1|) (-140) (-1094)) (T -883)) -((-2131 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4)) (-4 *4 (-1094))))) -(-13 (-1094) (-10 -8 (-15 -2131 ((-886 |t#1| $) $ (-889 |t#1|) (-886 |t#1| $))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1657 (((-112) (-641 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1441 (((-886 |#1| |#2|) |#2| |#3|) 44 (-12 (-4338 (|has| |#2| (-1035 (-1170)))) (-4338 (|has| |#2| (-1046))))) (((-641 (-294 (-949 |#2|))) |#2| |#3|) 43 (-12 (|has| |#2| (-1046)) (-4338 (|has| |#2| (-1035 (-1170)))))) (((-641 (-294 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1035 (-1170)))) (((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|) 20))) -(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -1657 ((-112) |#2| |#3|)) (-15 -1657 ((-112) (-641 |#2|) |#3|)) (-15 -1441 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1441 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -1441 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -1441 ((-886 |#1| |#2|) |#2| |#3|))))) (-1094) (-883 |#1|) (-612 (-889 |#1|))) (T -884)) -((-1441 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4)) (-4338 (-4 *3 (-1035 (-1170)))) (-4338 (-4 *3 (-1046))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1441 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3)))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046)) (-4338 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1441 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1441 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6))) (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5))))) (-1657 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))) -(-10 -7 (-15 -1657 ((-112) |#2| |#3|)) (-15 -1657 ((-112) (-641 |#2|) |#3|)) (-15 -1441 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1441 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -1441 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -1441 ((-886 |#1| |#2|) |#2| |#3|))))) -((-2449 (((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)) 22))) -(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -2449 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -885)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-886 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-886 *5 *7)) (-5 *1 (-885 *5 *6 *7))))) -(-10 -7 (-15 -2449 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)))) -((-1817 (((-112) $ $) NIL)) (-3650 (($ $ $) 40)) (-3064 (((-3 (-112) "failed") $ (-889 |#1|)) 37)) (-3654 (($) 12)) (-2723 (((-1152) $) NIL)) (-1560 (($ (-889 |#1|) |#2| $) 20)) (-2780 (((-1114) $) NIL)) (-1326 (((-3 |#2| "failed") (-889 |#1|) $) 51)) (-3225 (((-112) $) 15)) (-2105 (($) 13)) (-3143 (((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 |#2|))) $) 25)) (-1842 (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 |#2|)))) 23)) (-1831 (((-859) $) 45)) (-1857 (($ (-889 |#1|) |#2| $ |#2|) 49)) (-1728 (($ (-889 |#1|) |#2| $) 48)) (-1702 (((-112) $ $) 42))) -(((-886 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3225 ((-112) $)) (-15 -2105 ($)) (-15 -3654 ($)) (-15 -3650 ($ $ $)) (-15 -1326 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -1728 ($ (-889 |#1|) |#2| $)) (-15 -1560 ($ (-889 |#1|) |#2| $)) (-15 -1857 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -3143 ((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 |#2|))) $)) (-15 -1842 ($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 |#2|))))) (-15 -3064 ((-3 (-112) "failed") $ (-889 |#1|))))) (-1094) (-1094)) (T -886)) -((-3225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2105 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3654 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3650 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1326 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-886 *4 *2)))) (-1728 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-1560 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-1857 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 *4)))) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 *4)))) (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)))) (-3064 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1094))))) -(-13 (-1094) (-10 -8 (-15 -3225 ((-112) $)) (-15 -2105 ($)) (-15 -3654 ($)) (-15 -3650 ($ $ $)) (-15 -1326 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -1728 ($ (-889 |#1|) |#2| $)) (-15 -1560 ($ (-889 |#1|) |#2| $)) (-15 -1857 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -3143 ((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 |#2|))) $)) (-15 -1842 ($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 |#2|))))) (-15 -3064 ((-3 (-112) "failed") $ (-889 |#1|))))) -((-3724 (((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|))) 32) (((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|))) 46) (((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|)) 35)) (-3064 (((-112) (-641 |#2|) (-889 |#1|)) 42) (((-112) |#2| (-889 |#1|)) 36)) (-1649 (((-1 (-112) |#2|) (-889 |#1|)) 16)) (-3906 (((-641 |#2|) (-889 |#1|)) 24)) (-1917 (((-889 |#1|) (-889 |#1|) |#2|) 20))) -(((-887 |#1| |#2|) (-10 -7 (-15 -3724 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -3724 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -3724 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -1649 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3064 ((-112) |#2| (-889 |#1|))) (-15 -3064 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -1917 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -3906 ((-641 |#2|) (-889 |#1|)))) (-1094) (-1209)) (T -887)) -((-3906 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-1917 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1209)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3)) (-4 *3 (-1209)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-3724 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170))) (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-887 *5 *6)))) (-3724 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) (-3724 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5))))) -(-10 -7 (-15 -3724 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -3724 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -3724 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -1649 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3064 ((-112) |#2| (-889 |#1|))) (-15 -3064 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -1917 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -3906 ((-641 |#2|) (-889 |#1|)))) -((-2449 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 19))) -(((-888 |#1| |#2|) (-10 -7 (-15 -2449 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1094) (-1094)) (T -888)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))) -(-10 -7 (-15 -2449 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) -((-1817 (((-112) $ $) NIL)) (-2837 (($ $ (-641 (-52))) 73)) (-3209 (((-641 $) $) 137)) (-2308 (((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $) 29)) (-2246 (((-112) $) 34)) (-4328 (($ $ (-641 (-1170)) (-52)) 30)) (-3257 (($ $ (-641 (-52))) 72)) (-2347 (((-3 |#1| "failed") $) 70) (((-3 (-1170) "failed") $) 161)) (-2237 ((|#1| $) 67) (((-1170) $) NIL)) (-3350 (($ $) 125)) (-2760 (((-112) $) 54)) (-4034 (((-641 (-52)) $) 49)) (-3420 (($ (-1170) (-112) (-112) (-112)) 74)) (-3569 (((-3 (-641 $) "failed") (-641 $)) 81)) (-1334 (((-112) $) 57)) (-1779 (((-112) $) 56)) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) 40)) (-3875 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 47)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -1558 $)) "failed") $) 96)) (-2512 (((-3 (-641 $) "failed") $) 39)) (-2913 (((-3 (-641 $) "failed") $ (-114)) 123) (((-3 (-2 (|:| -3581 (-114)) (|:| |arg| (-641 $))) "failed") $) 106)) (-1390 (((-3 (-641 $) "failed") $) 41)) (-4059 (((-3 (-2 (|:| |val| $) (|:| -1558 (-768))) "failed") $) 44)) (-1653 (((-112) $) 33)) (-2780 (((-1114) $) NIL)) (-3787 (((-112) $) 27)) (-2643 (((-112) $) 51)) (-1961 (((-641 (-52)) $) 129)) (-2914 (((-112) $) 55)) (-1350 (($ (-114) (-641 $)) 103)) (-2950 (((-768) $) 32)) (-1991 (($ $) 71)) (-2511 (($ (-641 $)) 68)) (-3859 (((-112) $) 31)) (-1831 (((-859) $) 62) (($ |#1|) 23) (($ (-1170)) 75)) (-1917 (($ $ (-52)) 128)) (-1293 (($) 102 T CONST)) (-1300 (($) 82 T CONST)) (-1702 (((-112) $ $) 92)) (-1823 (($ $ $) 116)) (-1797 (($ $ $) 120)) (** (($ $ (-768)) 114) (($ $ $) 63)) (* (($ $ $) 121))) -(((-889 |#1|) (-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 0 ($) -1809) (-15 1 ($) -1809) (-15 -2512 ((-3 (-641 $) "failed") $)) (-15 -2955 ((-3 (-641 $) "failed") $)) (-15 -2913 ((-3 (-641 $) "failed") $ (-114))) (-15 -2913 ((-3 (-2 (|:| -3581 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -4059 ((-3 (-2 (|:| |val| $) (|:| -1558 (-768))) "failed") $)) (-15 -3875 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1390 ((-3 (-641 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -1558 $)) "failed") $)) (-15 -1350 ($ (-114) (-641 $))) (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1823 ($ $ $)) (-15 -2950 ((-768) $)) (-15 -2511 ($ (-641 $))) (-15 -1991 ($ $)) (-15 -1653 ((-112) $)) (-15 -2760 ((-112) $)) (-15 -2246 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -2914 ((-112) $)) (-15 -1779 ((-112) $)) (-15 -1334 ((-112) $)) (-15 -2643 ((-112) $)) (-15 -4034 ((-641 (-52)) $)) (-15 -3257 ($ $ (-641 (-52)))) (-15 -2837 ($ $ (-641 (-52)))) (-15 -3420 ($ (-1170) (-112) (-112) (-112))) (-15 -4328 ($ $ (-641 (-1170)) (-52))) (-15 -2308 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3787 ((-112) $)) (-15 -3350 ($ $)) (-15 -1917 ($ $ (-52))) (-15 -1961 ((-641 (-52)) $)) (-15 -3209 ((-641 $) $)) (-15 -3569 ((-3 (-641 $) "failed") (-641 $))))) (-1094)) (T -889)) -((-1293 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1300 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-2512 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2955 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2913 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-2913 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3581 (-114)) (|:| |arg| (-641 (-889 *3))))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4059 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -1558 (-768)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3875 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1390 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -1558 (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1797 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1823 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3257 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3420 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3350 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1917 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3569 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 (-1293) ($) -1809) (-15 (-1300) ($) -1809) (-15 -2512 ((-3 (-641 $) "failed") $)) (-15 -2955 ((-3 (-641 $) "failed") $)) (-15 -2913 ((-3 (-641 $) "failed") $ (-114))) (-15 -2913 ((-3 (-2 (|:| -3581 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -4059 ((-3 (-2 (|:| |val| $) (|:| -1558 (-768))) "failed") $)) (-15 -3875 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1390 ((-3 (-641 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -1558 $)) "failed") $)) (-15 -1350 ($ (-114) (-641 $))) (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1823 ($ $ $)) (-15 -2950 ((-768) $)) (-15 -2511 ($ (-641 $))) (-15 -1991 ($ $)) (-15 -1653 ((-112) $)) (-15 -2760 ((-112) $)) (-15 -2246 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -2914 ((-112) $)) (-15 -1779 ((-112) $)) (-15 -1334 ((-112) $)) (-15 -2643 ((-112) $)) (-15 -4034 ((-641 (-52)) $)) (-15 -3257 ($ $ (-641 (-52)))) (-15 -2837 ($ $ (-641 (-52)))) (-15 -3420 ($ (-1170) (-112) (-112) (-112))) (-15 -4328 ($ $ (-641 (-1170)) (-52))) (-15 -2308 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3787 ((-112) $)) (-15 -3350 ($ $)) (-15 -1917 ($ $ (-52))) (-15 -1961 ((-641 (-52)) $)) (-15 -3209 ((-641 $) $)) (-15 -3569 ((-3 (-641 $) "failed") (-641 $))))) -((-1817 (((-112) $ $) NIL)) (-2412 (((-641 |#1|) $) 19)) (-1384 (((-112) $) 49)) (-2347 (((-3 (-668 |#1|) "failed") $) 56)) (-2237 (((-668 |#1|) $) 54)) (-3314 (($ $) 23)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-1502 (((-768) $) 61)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-668 |#1|) $) 21)) (-1831 (((-859) $) 47) (($ (-668 |#1|)) 26) (((-816 |#1|) $) 36) (($ |#1|) 25)) (-1300 (($) 9 T CONST)) (-1430 (((-641 (-668 |#1|)) $) 28)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 12)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 67))) -(((-890 |#1|) (-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 1 ($) -1809) (-15 -1831 ((-816 |#1|) $)) (-15 -1831 ($ |#1|)) (-15 -3303 ((-668 |#1|) $)) (-15 -1502 ((-768) $)) (-15 -1430 ((-641 (-668 |#1|)) $)) (-15 -3314 ($ $)) (-15 -1384 ((-112) $)) (-15 -2412 ((-641 |#1|) $)))) (-847)) (T -890)) -((-1300 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-1831 (*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3314 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847))))) -(-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 (-1300) ($) -1809) (-15 -1831 ((-816 |#1|) $)) (-15 -1831 ($ |#1|)) (-15 -3303 ((-668 |#1|) $)) (-15 -1502 ((-768) $)) (-15 -1430 ((-641 (-668 |#1|)) $)) (-15 -3314 ($ $)) (-15 -1384 ((-112) $)) (-15 -2412 ((-641 |#1|) $)))) -((-2049 ((|#1| |#1| |#1|) 19))) -(((-891 |#1| |#2|) (-10 -7 (-15 -2049 (|#1| |#1| |#1|))) (-1235 |#2|) (-1046)) (T -891)) -((-2049 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3))))) -(-10 -7 (-15 -2049 (|#1| |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-2620 (((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 14)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1810 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 13)) (-1702 (((-112) $ $) 6))) -(((-892) (-140)) (T -892)) -((-2620 (*1 *2 *3 *4) (-12 (-4 *1 (-892)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) (-1810 (*1 *2 *3) (-12 (-4 *1 (-892)) (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-1032))))) -(-13 (-1094) (-10 -7 (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -1810 ((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-2506 ((|#1| |#1| (-768)) 29)) (-2275 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1295 (((-3 (-2 (|:| -3766 |#1|) (|:| -3777 |#1|)) "failed") |#1| (-768) (-768)) 32) (((-641 |#1|) |#1|) 39))) -(((-893 |#1| |#2|) (-10 -7 (-15 -1295 ((-641 |#1|) |#1|)) (-15 -1295 ((-3 (-2 (|:| -3766 |#1|) (|:| -3777 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2275 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2506 (|#1| |#1| (-768)))) (-1235 |#2|) (-363)) (T -893)) -((-2506 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4)) (-4 *2 (-1235 *4)))) (-2275 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3)) (-4 *2 (-1235 *3)))) (-1295 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3766 *3) (|:| -3777 *3))) (-5 *1 (-893 *3 *5)) (-4 *3 (-1235 *5)))) (-1295 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -1295 ((-641 |#1|) |#1|)) (-15 -1295 ((-3 (-2 (|:| -3766 |#1|) (|:| -3777 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2275 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2506 (|#1| |#1| (-768)))) -((-2017 (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152)) 106) (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225)) 102) (((-1032) (-895) (-1058)) 94) (((-1032) (-895)) 95)) (-2620 (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058)) 65) (((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895)) 67))) -(((-894) (-10 -7 (-15 -2017 ((-1032) (-895))) (-15 -2017 ((-1032) (-895) (-1058))) (-15 -2017 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -2017 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058))))) (T -894)) -((-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-2017 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-2017 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894))))) -(-10 -7 (-15 -2017 ((-1032) (-895))) (-15 -2017 ((-1032) (-895) (-1058))) (-15 -2017 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -2017 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -2620 ((-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058)))) -((-1817 (((-112) $ $) NIL)) (-2237 (((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $) 19)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 21) (($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 18)) (-1702 (((-112) $ $) NIL))) -(((-895) (-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2237 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))) (T -895)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895))))) -(-13 (-1094) (-10 -8 (-15 -1831 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2237 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $)))) -((-3534 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) 10) (($ $ |#2| (-768)) 15) (($ $ (-641 |#2|) (-641 (-768))) 18)) (-3435 (($ $ |#2|) 19) (($ $ (-641 |#2|)) 21) (($ $ |#2| (-768)) 22) (($ $ (-641 |#2|) (-641 (-768))) 24))) -(((-896 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3435 (|#1| |#1| |#2| (-768))) (-15 -3435 (|#1| |#1| (-641 |#2|))) (-15 -3435 (|#1| |#1| |#2|)) (-15 -3534 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3534 (|#1| |#1| |#2| (-768))) (-15 -3534 (|#1| |#1| (-641 |#2|))) (-15 -3534 (|#1| |#1| |#2|))) (-897 |#2|) (-1094)) (T -896)) -NIL -(-10 -8 (-15 -3435 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3435 (|#1| |#1| |#2| (-768))) (-15 -3435 (|#1| |#1| (-641 |#2|))) (-15 -3435 (|#1| |#1| |#2|)) (-15 -3534 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3534 (|#1| |#1| |#2| (-768))) (-15 -3534 (|#1| |#1| (-641 |#2|))) (-15 -3534 (|#1| |#1| |#2|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3534 (($ $ |#1|) 42) (($ $ (-641 |#1|)) 41) (($ $ |#1| (-768)) 40) (($ $ (-641 |#1|) (-641 (-768))) 39)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ |#1|) 38) (($ $ (-641 |#1|)) 37) (($ $ |#1| (-768)) 36) (($ $ (-641 |#1|) (-641 (-768))) 35)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-897 |#1|) (-140) (-1094)) (T -897)) -((-3534 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-3534 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3534 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094)))) (-3435 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-3435 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3435 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094))))) -(-13 (-1046) (-10 -8 (-15 -3534 ($ $ |t#1|)) (-15 -3534 ($ $ (-641 |t#1|))) (-15 -3534 ($ $ |t#1| (-768))) (-15 -3534 ($ $ (-641 |t#1|) (-641 (-768)))) (-15 -3435 ($ $ |t#1|)) (-15 -3435 ($ $ (-641 |t#1|))) (-15 -3435 ($ $ |t#1| (-768))) (-15 -3435 ($ $ (-641 |t#1|) (-641 (-768)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) 26)) (-4010 (((-112) $ (-768)) NIL)) (-2373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-2127 (($ $ $) NIL (|has| $ (-6 -4407)))) (-1793 (($ $ $) NIL (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-3777 (($ $) 25)) (-2612 (($ |#1|) 12) (($ $ $) 17)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-3766 (($ $) 23)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) 20)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4190 (((-564) $ $) NIL)) (-1899 (((-112) $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1195 |#1|) $) 9) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-898 |#1|) (-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -2612 ($ |#1|)) (-15 -2612 ($ $ $)))) (-1094)) (T -898)) -((-2612 (*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))) (-2612 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094))))) -(-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -2612 ($ |#1|)) (-15 -2612 ($ $ $)))) -((-1325 ((|#2| (-1136 |#1| |#2|)) 53))) -(((-899 |#1| |#2|) (-10 -7 (-15 -1325 (|#2| (-1136 |#1| |#2|)))) (-918) (-13 (-1046) (-10 -7 (-6 (-4408 "*"))))) (T -899)) -((-1325 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918)) (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4408 "*"))))) (-5 *1 (-899 *4 *2))))) -(-10 -7 (-15 -1325 (|#2| (-1136 |#1| |#2|)))) -((-1817 (((-112) $ $) 7)) (-1778 (($) 18 T CONST)) (-3733 (((-3 $ "failed") $) 15)) (-4250 (((-1096 |#1|) $ |#1|) 32)) (-2949 (((-112) $) 17)) (-1925 (($ $ $) 30 (-4078 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-3375 (($ $ $) 29 (-4078 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-2723 (((-1152) $) 9)) (-3315 (($ $) 24)) (-2780 (((-1114) $) 10)) (-2633 ((|#1| $ |#1|) 34)) (-1350 ((|#1| $ |#1|) 33)) (-3603 (($ (-641 (-641 |#1|))) 35)) (-3570 (($ (-641 |#1|)) 36)) (-3047 (($ $ $) 21)) (-1992 (($ $ $) 20)) (-1831 (((-859) $) 11)) (-1300 (($) 19 T CONST)) (-1762 (((-112) $ $) 27 (-4078 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1737 (((-112) $ $) 26 (-4078 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 28 (-4078 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1723 (((-112) $ $) 31)) (-1823 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14))) -(((-900 |#1|) (-140) (-1094)) (T -900)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-2633 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1350 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4250 (*1 *2 *1 *3) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) (-1723 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) -(-13 (-473) (-10 -8 (-15 -3570 ($ (-641 |t#1|))) (-15 -3603 ($ (-641 (-641 |t#1|)))) (-15 -2633 (|t#1| $ |t#1|)) (-15 -1350 (|t#1| $ |t#1|)) (-15 -4250 ((-1096 |t#1|) $ |t#1|)) (-15 -1723 ((-112) $ $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-847)) |%noBranch|))) -(((-102) . T) ((-611 (-859)) . T) ((-473) . T) ((-723) . T) ((-847) -4078 (|has| |#1| (-847)) (|has| |#1| (-368))) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-2613 (((-641 (-641 (-768))) $) 164)) (-1507 (((-641 (-768)) (-902 |#1|) $) 192)) (-2002 (((-641 (-768)) (-902 |#1|) $) 193)) (-3275 (((-641 (-902 |#1|)) $) 153)) (-2900 (((-902 |#1|) $ (-564)) 158) (((-902 |#1|) $) 159)) (-3426 (($ (-641 (-902 |#1|))) 166)) (-2155 (((-768) $) 160)) (-3327 (((-1096 (-1096 |#1|)) $) 190)) (-4250 (((-1096 |#1|) $ |#1|) 181) (((-1096 (-1096 |#1|)) $ (-1096 |#1|)) 201) (((-1096 (-641 |#1|)) $ (-641 |#1|)) 204)) (-1297 (((-1096 |#1|) $) 156)) (-2516 (((-112) (-902 |#1|) $) 142)) (-2723 (((-1152) $) NIL)) (-4006 (((-1264) $) 146) (((-1264) $ (-564) (-564)) 205)) (-2780 (((-1114) $) NIL)) (-3743 (((-641 (-902 |#1|)) $) 147)) (-1350 (((-902 |#1|) $ (-768)) 154)) (-1619 (((-768) $) 161)) (-1831 (((-859) $) 178) (((-641 (-902 |#1|)) $) 28) (($ (-641 (-902 |#1|))) 165)) (-3655 (((-641 |#1|) $) 163)) (-1702 (((-112) $ $) 198)) (-1749 (((-112) $ $) 196)) (-1723 (((-112) $ $) 195))) -(((-901 |#1|) (-13 (-1094) (-10 -8 (-15 -1831 ((-641 (-902 |#1|)) $)) (-15 -3743 ((-641 (-902 |#1|)) $)) (-15 -1350 ((-902 |#1|) $ (-768))) (-15 -2900 ((-902 |#1|) $ (-564))) (-15 -2900 ((-902 |#1|) $)) (-15 -2155 ((-768) $)) (-15 -1619 ((-768) $)) (-15 -3655 ((-641 |#1|) $)) (-15 -3275 ((-641 (-902 |#1|)) $)) (-15 -2613 ((-641 (-641 (-768))) $)) (-15 -1831 ($ (-641 (-902 |#1|)))) (-15 -3426 ($ (-641 (-902 |#1|)))) (-15 -4250 ((-1096 |#1|) $ |#1|)) (-15 -3327 ((-1096 (-1096 |#1|)) $)) (-15 -4250 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -4250 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -2516 ((-112) (-902 |#1|) $)) (-15 -1507 ((-641 (-768)) (-902 |#1|) $)) (-15 -2002 ((-641 (-768)) (-902 |#1|) $)) (-15 -1297 ((-1096 |#1|) $)) (-15 -1723 ((-112) $ $)) (-15 -1749 ((-112) $ $)) (-15 -4006 ((-1264) $)) (-15 -4006 ((-1264) $ (-564) (-564))))) (-1094)) (T -901)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2900 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-902 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-4250 (*1 *2 *1 *3) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4250 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4)) (-5 *3 (-1096 *4)))) (-4250 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4)) (-5 *3 (-641 *4)))) (-2516 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-901 *4)))) (-1507 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-2002 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1723 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4006 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4)) (-4 *4 (-1094))))) -(-13 (-1094) (-10 -8 (-15 -1831 ((-641 (-902 |#1|)) $)) (-15 -3743 ((-641 (-902 |#1|)) $)) (-15 -1350 ((-902 |#1|) $ (-768))) (-15 -2900 ((-902 |#1|) $ (-564))) (-15 -2900 ((-902 |#1|) $)) (-15 -2155 ((-768) $)) (-15 -1619 ((-768) $)) (-15 -3655 ((-641 |#1|) $)) (-15 -3275 ((-641 (-902 |#1|)) $)) (-15 -2613 ((-641 (-641 (-768))) $)) (-15 -1831 ($ (-641 (-902 |#1|)))) (-15 -3426 ($ (-641 (-902 |#1|)))) (-15 -4250 ((-1096 |#1|) $ |#1|)) (-15 -3327 ((-1096 (-1096 |#1|)) $)) (-15 -4250 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -4250 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -2516 ((-112) (-902 |#1|) $)) (-15 -1507 ((-641 (-768)) (-902 |#1|) $)) (-15 -2002 ((-641 (-768)) (-902 |#1|) $)) (-15 -1297 ((-1096 |#1|) $)) (-15 -1723 ((-112) $ $)) (-15 -1749 ((-112) $ $)) (-15 -4006 ((-1264) $)) (-15 -4006 ((-1264) $ (-564) (-564))))) -((-1817 (((-112) $ $) NIL)) (-2861 (((-641 $) (-641 $)) 104)) (-1598 (((-564) $) 85)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2155 (((-768) $) 82)) (-4250 (((-1096 |#1|) $ |#1|) 73)) (-2949 (((-112) $) NIL)) (-4301 (((-112) $) 89)) (-1985 (((-768) $) 86)) (-1297 (((-1096 |#1|) $) 62)) (-1925 (($ $ $) NIL (-4078 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-3375 (($ $ $) NIL (-4078 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-3402 (((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $) 57)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 132)) (-2780 (((-1114) $) NIL)) (-2610 (((-1096 |#1|) $) 140 (|has| |#1| (-368)))) (-1492 (((-112) $) 83)) (-2633 ((|#1| $ |#1|) 71)) (-1350 ((|#1| $ |#1|) 134)) (-1619 (((-768) $) 64)) (-3603 (($ (-641 (-641 |#1|))) 119)) (-2253 (((-968) $) 77)) (-3570 (($ (-641 |#1|)) 35)) (-3047 (($ $ $) NIL)) (-1992 (($ $ $) NIL)) (-1458 (($ (-641 (-641 |#1|))) 59)) (-2560 (($ (-641 (-641 |#1|))) 124)) (-3147 (($ (-641 |#1|)) 136)) (-1831 (((-859) $) 118) (($ (-641 (-641 |#1|))) 92) (($ (-641 |#1|)) 93)) (-1300 (($) 27 T CONST)) (-1762 (((-112) $ $) NIL (-4078 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1702 (((-112) $ $) 69)) (-1749 (((-112) $ $) NIL (-4078 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1723 (((-112) $ $) 91)) (-1823 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36))) -(((-902 |#1|) (-13 (-900 |#1|) (-10 -8 (-15 -3402 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1458 ($ (-641 (-641 |#1|)))) (-15 -1831 ($ (-641 (-641 |#1|)))) (-15 -1831 ($ (-641 |#1|))) (-15 -2560 ($ (-641 (-641 |#1|)))) (-15 -1619 ((-768) $)) (-15 -1297 ((-1096 |#1|) $)) (-15 -2253 ((-968) $)) (-15 -2155 ((-768) $)) (-15 -1985 ((-768) $)) (-15 -1598 ((-564) $)) (-15 -1492 ((-112) $)) (-15 -4301 ((-112) $)) (-15 -2861 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -2610 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3147 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -3147 ($ (-641 |#1|))) |%noBranch|)))) (-1094)) (T -902)) -((-3402 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) -(-13 (-900 |#1|) (-10 -8 (-15 -3402 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1458 ($ (-641 (-641 |#1|)))) (-15 -1831 ($ (-641 (-641 |#1|)))) (-15 -1831 ($ (-641 |#1|))) (-15 -2560 ($ (-641 (-641 |#1|)))) (-15 -1619 ((-768) $)) (-15 -1297 ((-1096 |#1|) $)) (-15 -2253 ((-968) $)) (-15 -2155 ((-768) $)) (-15 -1985 ((-768) $)) (-15 -1598 ((-564) $)) (-15 -1492 ((-112) $)) (-15 -4301 ((-112) $)) (-15 -2861 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -2610 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3147 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -3147 ($ (-641 |#1|))) |%noBranch|)))) -((-1677 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|)) 162)) (-1878 ((|#1|) 101)) (-3541 (((-418 (-1166 |#4|)) (-1166 |#4|)) 171)) (-4099 (((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)) 88)) (-3197 (((-418 (-1166 |#4|)) (-1166 |#4|)) 181)) (-4228 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|) 117))) -(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1677 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -3197 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3541 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1878 (|#1|)) (-15 -4228 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -4099 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) (-906) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -903)) -((-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) (-4228 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7)))) (-1878 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1677 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-903 *4 *5 *6 *7))))) -(-10 -7 (-15 -1677 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -3197 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3541 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1878 (|#1|)) (-15 -4228 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -4099 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) -((-1677 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 41)) (-1878 ((|#1|) 74)) (-3541 (((-418 (-1166 |#2|)) (-1166 |#2|)) 130)) (-4099 (((-418 (-1166 |#2|)) (-1166 |#2|)) 114)) (-3197 (((-418 (-1166 |#2|)) (-1166 |#2|)) 141))) -(((-904 |#1| |#2|) (-10 -7 (-15 -1677 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -3197 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3541 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1878 (|#1|)) (-15 -4099 ((-418 (-1166 |#2|)) (-1166 |#2|)))) (-906) (-1235 |#1|)) (T -904)) -((-4099 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-1878 (*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2)))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-1677 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5))))) -(-10 -7 (-15 -1677 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -3197 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3541 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1878 (|#1|)) (-15 -4099 ((-418 (-1166 |#2|)) (-1166 |#2|)))) -((-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 18)) (-4018 (((-3 $ "failed") $) 36))) -(((-905 |#1|) (-10 -8 (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-906)) (T -905)) -NIL -(-10 -8 (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-2345 (((-418 (-1166 $)) (-1166 $)) 61)) (-2427 (($ $) 52)) (-3399 (((-418 $) $) 53)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 58)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-1420 (((-112) $) 54)) (-2949 (((-112) $) 31)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-1469 (((-418 (-1166 $)) (-1166 $)) 59)) (-2165 (((-418 (-1166 $)) (-1166 $)) 60)) (-3070 (((-418 $) $) 51)) (-1403 (((-3 $ "failed") $ $) 43)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 57 (|has| $ (-145)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-4018 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-906) (-140)) (T -906)) -((-1574 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906)))) (-2345 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2165 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-1469 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2601 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) (-4 *1 (-906)))) (-4160 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906)) (-5 *2 (-1259 *1)))) (-4018 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906))))) -(-13 (-1213) (-10 -8 (-15 -2345 ((-418 (-1166 $)) (-1166 $))) (-15 -2165 ((-418 (-1166 $)) (-1166 $))) (-15 -1469 ((-418 (-1166 $)) (-1166 $))) (-15 -1574 ((-1166 $) (-1166 $) (-1166 $))) (-15 -2601 ((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $))) (IF (|has| $ (-145)) (PROGN (-15 -4160 ((-3 (-1259 $) "failed") (-685 $))) (-15 -4018 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4048 (((-112) $) NIL)) (-4142 (((-768)) NIL)) (-2713 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3967 (((-1182 (-918) (-768)) (-564)) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 $ "failed") $) NIL)) (-2237 (($ $) NIL)) (-3624 (($ (-1259 $)) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1830 (($) NIL)) (-4282 (((-112) $) NIL)) (-3340 (($ $) NIL) (($ $ (-768)) NIL)) (-1420 (((-112) $) NIL)) (-2155 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-2949 (((-112) $) NIL)) (-4311 (($) NIL (|has| $ (-368)))) (-2370 (((-112) $) NIL (|has| $ (-368)))) (-3797 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-2619 (((-3 $ "failed") $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3774 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) NIL)) (-1811 (((-918) $) NIL)) (-3696 (((-1166 $) $) NIL (|has| $ (-368)))) (-2402 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-1372 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL T CONST)) (-1468 (($ (-918)) NIL)) (-1927 (((-112) $) NIL)) (-2780 (((-1114) $) NIL)) (-1426 (($) NIL (|has| $ (-368)))) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL)) (-3070 (((-418 $) $) NIL)) (-4085 (((-918)) NIL) (((-830 (-918))) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1820 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-3548 (((-134)) NIL)) (-3534 (($ $ (-768)) NIL) (($ $) NIL)) (-1619 (((-918) $) NIL) (((-830 (-918)) $) NIL)) (-3019 (((-1166 $)) NIL)) (-3297 (($) NIL)) (-1974 (($) NIL (|has| $ (-368)))) (-2467 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) NIL)) (-2511 (((-564) $) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-4018 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2219 (((-768)) NIL T CONST)) (-3331 (((-1259 $) (-918)) NIL) (((-1259 $)) NIL)) (-3939 (((-112) $ $) NIL)) (-1484 (((-112) $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3962 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-907 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-918)) (T -907)) +((-2007 (((-687 (-1217)) $ (-1217)) NIL)) (-1772 (((-687 (-549)) $ (-549)) NIL)) (-3067 (((-767) $ (-128)) NIL)) (-4012 (((-687 (-129)) $ (-129)) 21)) (-1481 (($ (-388)) 12) (($ (-1152)) 14)) (-2260 (((-112) $) 18)) (-2322 (((-858) $) 25)) (-3566 (($ $) 22))) +(((-857) (-13 (-856) (-611 (-858)) (-10 -8 (-15 -1481 ($ (-388))) (-15 -1481 ($ (-1152))) (-15 -2260 ((-112) $))))) (T -857)) +((-1481 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-857)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) +(-13 (-856) (-611 (-858)) (-10 -8 (-15 -1481 ($ (-388))) (-15 -1481 ($ (-1152))) (-15 -2260 ((-112) $)))) +((-2310 (((-112) $ $) NIL) (($ $ $) 86)) (-1743 (($ $ $) 126)) (-3318 (((-564) $) 31) (((-564)) 36)) (-2013 (($ (-564)) 54)) (-2429 (($ $ $) 55) (($ (-641 $)) 85)) (-2103 (($ $ (-641 $)) 83)) (-2583 (((-564) $) 34)) (-3968 (($ $ $) 74)) (-4281 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-2094 (((-564) $) 33)) (-2897 (($ $ $) 73)) (-4177 (($ $) 115)) (-2039 (($ $ $) 130)) (-2452 (($ (-641 $)) 62)) (-1761 (($ $ (-641 $)) 80)) (-2654 (($ (-564) (-564)) 56)) (-2343 (($ $) 127) (($ $ $) 128)) (-4250 (($ $ (-564)) 43) (($ $) 46)) (-2574 (($ $ $) 98)) (-2170 (($ $ $) 133)) (-4025 (($ $) 116)) (-2552 (($ $ $) 99)) (-2747 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-2814 (((-1264) $) 10)) (-1491 (($ $) 119) (($ $ (-767)) 123)) (-2696 (($ $ $) 76)) (-2468 (($ $ $) 75)) (-3498 (($ $ (-641 $)) 111)) (-2716 (($ $ $) 114)) (-1752 (($ (-641 $)) 60)) (-2252 (($ $) 71) (($ (-641 $)) 72)) (-3677 (($ $ $) 124)) (-4105 (($ $) 117)) (-2221 (($ $ $) 129)) (-3301 (($ (-564)) 21) (($ (-1170)) 23) (($ (-1152)) 30) (($ (-225)) 25)) (-2353 (($ $ $) 102)) (-2329 (($ $) 103)) (-1782 (((-1264) (-1152)) 15)) (-1578 (($ (-1152)) 14)) (-4187 (($ (-641 (-641 $))) 59)) (-4237 (($ $ (-564)) 42) (($ $) 45)) (-1418 (((-1152) $) NIL)) (-1339 (($ $ $) 132)) (-3378 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-1596 (((-112) $) 109)) (-1653 (($ $ (-641 $)) 112) (($ $ $ $) 113)) (-3031 (($ (-564)) 39)) (-3162 (((-564) $) 32) (((-564)) 35)) (-3486 (($ $ $) 40) (($ (-641 $)) 84)) (-3840 (((-1114) $) NIL)) (-2526 (($ $ $) 100)) (-2348 (($) 13)) (-4353 (($ $ (-641 $)) 110)) (-2646 (((-1152) (-1152)) 8)) (-2535 (($ $) 118) (($ $ (-767)) 122)) (-2540 (($ $ $) 97)) (-1343 (($ $ (-767)) 140)) (-4191 (($ (-641 $)) 61)) (-2322 (((-858) $) 19)) (-2965 (($ $ (-564)) 41) (($ $) 44)) (-4148 (($ $) 69) (($ (-641 $)) 70)) (-2451 (($ $) 67) (($ (-641 $)) 68)) (-1389 (($ $) 125)) (-1477 (($ (-641 $)) 66)) (-2994 (($ $ $) 106)) (-1797 (($ $ $) 131)) (-2342 (($ $ $) 101)) (-3454 (($ $ $) 104) (($ $) 105)) (-2977 (($ $ $) 90)) (-2953 (($ $ $) 88)) (-2921 (((-112) $ $) 16) (($ $ $) 17)) (-2964 (($ $ $) 89)) (-2942 (($ $ $) 87)) (-3034 (($ $ $) 95)) (-3021 (($ $ $) 92) (($ $) 93)) (-3011 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94))) +(((-858) (-13 (-1094) (-10 -8 (-15 -2814 ((-1264) $)) (-15 -1578 ($ (-1152))) (-15 -1782 ((-1264) (-1152))) (-15 -3301 ($ (-564))) (-15 -3301 ($ (-1170))) (-15 -3301 ($ (-1152))) (-15 -3301 ($ (-225))) (-15 -2348 ($)) (-15 -2646 ((-1152) (-1152))) (-15 -3318 ((-564) $)) (-15 -3162 ((-564) $)) (-15 -3318 ((-564))) (-15 -3162 ((-564))) (-15 -2094 ((-564) $)) (-15 -2583 ((-564) $)) (-15 -3031 ($ (-564))) (-15 -2013 ($ (-564))) (-15 -2654 ($ (-564) (-564))) (-15 -4237 ($ $ (-564))) (-15 -4250 ($ $ (-564))) (-15 -2965 ($ $ (-564))) (-15 -4237 ($ $)) (-15 -4250 ($ $)) (-15 -2965 ($ $)) (-15 -3486 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -3486 ($ (-641 $))) (-15 -2429 ($ (-641 $))) (-15 -3498 ($ $ (-641 $))) (-15 -1653 ($ $ (-641 $))) (-15 -1653 ($ $ $ $)) (-15 -2716 ($ $ $)) (-15 -1596 ((-112) $)) (-15 -4353 ($ $ (-641 $))) (-15 -4177 ($ $)) (-15 -1339 ($ $ $)) (-15 -1389 ($ $)) (-15 -4187 ($ (-641 (-641 $)))) (-15 -1743 ($ $ $)) (-15 -2343 ($ $)) (-15 -2343 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2039 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -2170 ($ $ $)) (-15 -1343 ($ $ (-767))) (-15 -2994 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -3968 ($ $ $)) (-15 -2468 ($ $ $)) (-15 -2696 ($ $ $)) (-15 -1761 ($ $ (-641 $))) (-15 -2103 ($ $ (-641 $))) (-15 -4025 ($ $)) (-15 -2535 ($ $)) (-15 -2535 ($ $ (-767))) (-15 -1491 ($ $)) (-15 -1491 ($ $ (-767))) (-15 -4105 ($ $)) (-15 -3677 ($ $ $)) (-15 -4281 ($ $)) (-15 -4281 ($ $ $)) (-15 -4281 ($ $ $ $)) (-15 -2747 ($ $)) (-15 -2747 ($ $ $)) (-15 -2747 ($ $ $ $)) (-15 -3378 ($ $)) (-15 -3378 ($ $ $)) (-15 -3378 ($ $ $ $)) (-15 -2451 ($ $)) (-15 -2451 ($ (-641 $))) (-15 -4148 ($ $)) (-15 -4148 ($ (-641 $))) (-15 -2252 ($ $)) (-15 -2252 ($ (-641 $))) (-15 -1752 ($ (-641 $))) (-15 -4191 ($ (-641 $))) (-15 -2452 ($ (-641 $))) (-15 -1477 ($ (-641 $))) (-15 -2921 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -2953 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -3011 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3021 ($ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ $)) (-15 -2540 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -2552 ($ $ $)) (-15 -2526 ($ $ $)) (-15 -2342 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -2329 ($ $)) (-15 -3454 ($ $ $)) (-15 -3454 ($ $))))) (T -858)) +((-2814 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-858)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-858)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-858)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) (-2348 (*1 *1) (-5 *1 (-858))) (-2646 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3318 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3162 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3031 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2654 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-4250 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2965 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-4237 (*1 *1 *1) (-5 *1 (-858))) (-4250 (*1 *1 *1) (-5 *1 (-858))) (-2965 (*1 *1 *1) (-5 *1 (-858))) (-3486 (*1 *1 *1 *1) (-5 *1 (-858))) (-2429 (*1 *1 *1 *1) (-5 *1 (-858))) (-3486 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2429 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1653 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1653 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2716 (*1 *1 *1 *1) (-5 *1 (-858))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-4177 (*1 *1 *1) (-5 *1 (-858))) (-1339 (*1 *1 *1 *1) (-5 *1 (-858))) (-1389 (*1 *1 *1) (-5 *1 (-858))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-858)))) (-1743 (*1 *1 *1 *1) (-5 *1 (-858))) (-2343 (*1 *1 *1) (-5 *1 (-858))) (-2343 (*1 *1 *1 *1) (-5 *1 (-858))) (-2221 (*1 *1 *1 *1) (-5 *1 (-858))) (-2039 (*1 *1 *1 *1) (-5 *1 (-858))) (-1797 (*1 *1 *1 *1) (-5 *1 (-858))) (-2170 (*1 *1 *1 *1) (-5 *1 (-858))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-2994 (*1 *1 *1 *1) (-5 *1 (-858))) (-2897 (*1 *1 *1 *1) (-5 *1 (-858))) (-3968 (*1 *1 *1 *1) (-5 *1 (-858))) (-2468 (*1 *1 *1 *1) (-5 *1 (-858))) (-2696 (*1 *1 *1 *1) (-5 *1 (-858))) (-1761 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-4025 (*1 *1 *1) (-5 *1 (-858))) (-2535 (*1 *1 *1) (-5 *1 (-858))) (-2535 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-1491 (*1 *1 *1) (-5 *1 (-858))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-4105 (*1 *1 *1) (-5 *1 (-858))) (-3677 (*1 *1 *1 *1) (-5 *1 (-858))) (-4281 (*1 *1 *1) (-5 *1 (-858))) (-4281 (*1 *1 *1 *1) (-5 *1 (-858))) (-4281 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2747 (*1 *1 *1) (-5 *1 (-858))) (-2747 (*1 *1 *1 *1) (-5 *1 (-858))) (-2747 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-3378 (*1 *1 *1) (-5 *1 (-858))) (-3378 (*1 *1 *1 *1) (-5 *1 (-858))) (-3378 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2451 (*1 *1 *1) (-5 *1 (-858))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-4148 (*1 *1 *1) (-5 *1 (-858))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2252 (*1 *1 *1) (-5 *1 (-858))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1752 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-4191 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2921 (*1 *1 *1 *1) (-5 *1 (-858))) (-2310 (*1 *1 *1 *1) (-5 *1 (-858))) (-2942 (*1 *1 *1 *1) (-5 *1 (-858))) (-2953 (*1 *1 *1 *1) (-5 *1 (-858))) (-2964 (*1 *1 *1 *1) (-5 *1 (-858))) (-2977 (*1 *1 *1 *1) (-5 *1 (-858))) (-3011 (*1 *1 *1 *1) (-5 *1 (-858))) (-3021 (*1 *1 *1 *1) (-5 *1 (-858))) (-3021 (*1 *1 *1) (-5 *1 (-858))) (* (*1 *1 *1 *1) (-5 *1 (-858))) (-3034 (*1 *1 *1 *1) (-5 *1 (-858))) (** (*1 *1 *1 *1) (-5 *1 (-858))) (-2540 (*1 *1 *1 *1) (-5 *1 (-858))) (-2574 (*1 *1 *1 *1) (-5 *1 (-858))) (-2552 (*1 *1 *1 *1) (-5 *1 (-858))) (-2526 (*1 *1 *1 *1) (-5 *1 (-858))) (-2342 (*1 *1 *1 *1) (-5 *1 (-858))) (-2353 (*1 *1 *1 *1) (-5 *1 (-858))) (-2329 (*1 *1 *1) (-5 *1 (-858))) (-3454 (*1 *1 *1 *1) (-5 *1 (-858))) (-3454 (*1 *1 *1) (-5 *1 (-858)))) +(-13 (-1094) (-10 -8 (-15 -2814 ((-1264) $)) (-15 -1578 ($ (-1152))) (-15 -1782 ((-1264) (-1152))) (-15 -3301 ($ (-564))) (-15 -3301 ($ (-1170))) (-15 -3301 ($ (-1152))) (-15 -3301 ($ (-225))) (-15 -2348 ($)) (-15 -2646 ((-1152) (-1152))) (-15 -3318 ((-564) $)) (-15 -3162 ((-564) $)) (-15 -3318 ((-564))) (-15 -3162 ((-564))) (-15 -2094 ((-564) $)) (-15 -2583 ((-564) $)) (-15 -3031 ($ (-564))) (-15 -2013 ($ (-564))) (-15 -2654 ($ (-564) (-564))) (-15 -4237 ($ $ (-564))) (-15 -4250 ($ $ (-564))) (-15 -2965 ($ $ (-564))) (-15 -4237 ($ $)) (-15 -4250 ($ $)) (-15 -2965 ($ $)) (-15 -3486 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -3486 ($ (-641 $))) (-15 -2429 ($ (-641 $))) (-15 -3498 ($ $ (-641 $))) (-15 -1653 ($ $ (-641 $))) (-15 -1653 ($ $ $ $)) (-15 -2716 ($ $ $)) (-15 -1596 ((-112) $)) (-15 -4353 ($ $ (-641 $))) (-15 -4177 ($ $)) (-15 -1339 ($ $ $)) (-15 -1389 ($ $)) (-15 -4187 ($ (-641 (-641 $)))) (-15 -1743 ($ $ $)) (-15 -2343 ($ $)) (-15 -2343 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2039 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -2170 ($ $ $)) (-15 -1343 ($ $ (-767))) (-15 -2994 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -3968 ($ $ $)) (-15 -2468 ($ $ $)) (-15 -2696 ($ $ $)) (-15 -1761 ($ $ (-641 $))) (-15 -2103 ($ $ (-641 $))) (-15 -4025 ($ $)) (-15 -2535 ($ $)) (-15 -2535 ($ $ (-767))) (-15 -1491 ($ $)) (-15 -1491 ($ $ (-767))) (-15 -4105 ($ $)) (-15 -3677 ($ $ $)) (-15 -4281 ($ $)) (-15 -4281 ($ $ $)) (-15 -4281 ($ $ $ $)) (-15 -2747 ($ $)) (-15 -2747 ($ $ $)) (-15 -2747 ($ $ $ $)) (-15 -3378 ($ $)) (-15 -3378 ($ $ $)) (-15 -3378 ($ $ $ $)) (-15 -2451 ($ $)) (-15 -2451 ($ (-641 $))) (-15 -4148 ($ $)) (-15 -4148 ($ (-641 $))) (-15 -2252 ($ $)) (-15 -2252 ($ (-641 $))) (-15 -1752 ($ (-641 $))) (-15 -4191 ($ (-641 $))) (-15 -2452 ($ (-641 $))) (-15 -1477 ($ (-641 $))) (-15 -2921 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -2953 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -3011 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3021 ($ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ $)) (-15 -2540 ($ $ $)) (-15 -2574 ($ $ $)) (-15 -2552 ($ $ $)) (-15 -2526 ($ $ $)) (-15 -2342 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -2329 ($ $)) (-15 -3454 ($ $ $)) (-15 -3454 ($ $)))) +((-3307 (((-1264) (-641 (-52))) 24)) (-1363 (((-1264) (-1152) (-858)) 14) (((-1264) (-858)) 9) (((-1264) (-1152)) 11))) +(((-859) (-10 -7 (-15 -1363 ((-1264) (-1152))) (-15 -1363 ((-1264) (-858))) (-15 -1363 ((-1264) (-1152) (-858))) (-15 -3307 ((-1264) (-641 (-52)))))) (T -859)) +((-3307 (*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-859)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859))))) +(-10 -7 (-15 -1363 ((-1264) (-1152))) (-15 -1363 ((-1264) (-858))) (-15 -1363 ((-1264) (-1152) (-858))) (-15 -3307 ((-1264) (-641 (-52))))) +((-2310 (((-112) $ $) NIL)) (-3256 (((-3 $ "failed") (-1170)) 39)) (-1959 (((-767)) 32)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) 29)) (-1418 (((-1152) $) 46)) (-1998 (($ (-917)) 28)) (-3840 (((-1114) $) NIL)) (-3172 (((-1170) $) 13) (((-536) $) 19) (((-888 (-379)) $) 26) (((-888 (-564)) $) 22)) (-2322 (((-858) $) 16)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 43)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 41))) +(((-860 |#1|) (-13 (-840) (-612 (-1170)) (-612 (-536)) (-612 (-888 (-379))) (-612 (-888 (-564))) (-10 -8 (-15 -3256 ((-3 $ "failed") (-1170))))) (-641 (-1170))) (T -860)) +((-3256 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-860 *3)) (-14 *3 (-641 *2))))) +(-13 (-840) (-612 (-1170)) (-612 (-536)) (-612 (-888 (-379))) (-612 (-888 (-564))) (-10 -8 (-15 -3256 ((-3 $ "failed") (-1170))))) +((-2310 (((-112) $ $) NIL)) (-2420 (((-506) $) 9)) (-1834 (((-641 (-439)) $) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 21)) (-2921 (((-112) $ $) 16))) +(((-861) (-13 (-1094) (-10 -8 (-15 -2420 ((-506) $)) (-15 -1834 ((-641 (-439)) $))))) (T -861)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-861))))) +(-13 (-1094) (-10 -8 (-15 -2420 ((-506) $)) (-15 -1834 ((-641 (-439)) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-948 |#1|)) NIL) (((-948 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3179 (((-767)) NIL T CONST)) (-1305 (((-1264) (-767)) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-862 |#1| |#2| |#3| |#4|) (-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1305 ((-1264) (-767))))) (-1045) (-641 (-1170)) (-641 (-767)) (-767)) (T -862)) +((-3034 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-767))) (-14 *5 (-767)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *4 (-1045)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) (-14 *7 *3)))) +(-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1305 ((-1264) (-767))))) +((-3870 (((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|) 43)) (-1557 (((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|) 34))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1557 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -3870 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) (-363) (-1250 |#1|) (-1235 |#1|)) (T -863)) +((-3870 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) (-1557 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))) +(-10 -7 (-15 -1557 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -3870 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) +((-1557 (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) 28))) +(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -1557 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -1557 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|)))) (-363) (-1170) |#1|) (T -864)) +((-1557 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-864 *5 *6 *7)))) (-1557 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-864 *5 *6 *7))))) +(-10 -7 (-15 -1557 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -1557 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-2387 (($ $ (-564)) 63)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-2343 (($ (-1166 (-564)) (-564)) 62)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2627 (($ $) 65)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-3717 (((-767) $) 70)) (-1828 (((-112) $) 31)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1487 (((-564)) 67)) (-3358 (((-564) $) 66)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2941 (($ $ (-564)) 69)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3413 (((-1150 (-564)) $) 71)) (-2614 (($ $) 68)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-3564 (((-564) $ (-564)) 64)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-865 |#1|) (-140) (-564)) (T -865)) +((-3413 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1150 (-564))))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) (-2941 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-2614 (*1 *1 *1) (-4 *1 (-865 *2))) (-1487 (*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-2627 (*1 *1 *1) (-4 *1 (-865 *2))) (-3564 (*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-2387 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-2343 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-865 *4))))) +(-13 (-307) (-147) (-10 -8 (-15 -3413 ((-1150 (-564)) $)) (-15 -3717 ((-767) $)) (-15 -2941 ($ $ (-564))) (-15 -2614 ($ $)) (-15 -1487 ((-564))) (-15 -3358 ((-564) $)) (-15 -2627 ($ $)) (-15 -3564 ((-564) $ (-564))) (-15 -2387 ($ $ (-564))) (-15 -2343 ($ (-1166 (-564)) (-564))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $ (-564)) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2343 (($ (-1166 (-564)) (-564)) NIL)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2627 (($ $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3717 (((-767) $) NIL)) (-1828 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1487 (((-564)) NIL)) (-3358 (((-564) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2941 (($ $ (-564)) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3413 (((-1150 (-564)) $) NIL)) (-2614 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL)) (-3564 (((-564) $ (-564)) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-866 |#1|) (-865 |#1|) (-564)) (T -866)) +NIL +(-865 |#1|) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-866 |#1|) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-866 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-564))))) (-1781 (((-866 |#1|) $) NIL) (((-1170) $) NIL (|has| (-866 |#1|) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-866 |#1|) (-1034 (-564)))) (((-564) $) NIL (|has| (-866 |#1|) (-1034 (-564))))) (-3884 (($ $) NIL) (($ (-564) $) NIL)) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-866 |#1|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-866 |#1|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-866 |#1|))) (|:| |vec| (-1259 (-866 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-866 |#1|)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-866 |#1|) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-866 |#1|) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-866 |#1|) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-866 |#1|) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| (-866 |#1|) (-1145)))) (-2783 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-2622 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-3123 (($ (-1 (-866 |#1|) (-866 |#1|)) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-866 |#1|) (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-866 |#1|) (-307)))) (-1421 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-866 |#1|)) (-641 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-866 |#1|) (-866 |#1|)) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-294 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-641 (-294 (-866 |#1|)))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-641 (-1170)) (-641 (-866 |#1|))) NIL (|has| (-866 |#1|) (-514 (-1170) (-866 |#1|)))) (($ $ (-1170) (-866 |#1|)) NIL (|has| (-866 |#1|) (-514 (-1170) (-866 |#1|))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-866 |#1|)) NIL (|has| (-866 |#1|) (-286 (-866 |#1|) (-866 |#1|))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-866 |#1|) $) NIL)) (-3172 (((-888 (-564)) $) NIL (|has| (-866 |#1|) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-866 |#1|) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-866 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-866 |#1|) (-1018))) (((-225) $) NIL (|has| (-866 |#1|) (-1018)))) (-2735 (((-174 (-407 (-564))) $) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-866 |#1|)) NIL) (($ (-1170)) NIL (|has| (-866 |#1|) (-1034 (-1170))))) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))) (|has| (-866 |#1|) (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-4024 (((-112) $ $) NIL)) (-3564 (((-407 (-564)) $ (-564)) NIL)) (-3598 (($ $) NIL (|has| (-866 |#1|) (-816)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-3034 (($ $ $) NIL) (($ (-866 |#1|) (-866 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-866 |#1|) $) NIL) (($ $ (-866 |#1|)) NIL))) +(((-867 |#1|) (-13 (-988 (-866 |#1|)) (-10 -8 (-15 -3564 ((-407 (-564)) $ (-564))) (-15 -2735 ((-174 (-407 (-564))) $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)))) (-564)) (T -867)) +((-3564 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-867 *3)) (-14 *3 (-564)))) (-3884 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-564)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-867 *3)) (-14 *3 *2)))) +(-13 (-988 (-866 |#1|)) (-10 -8 (-15 -3564 ((-407 (-564)) $ (-564))) (-15 -2735 ((-174 (-407 (-564))) $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 ((|#2| $) NIL (|has| |#2| (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| |#2| (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| |#2| (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564))))) (-1781 ((|#2| $) NIL) (((-1170) $) NIL (|has| |#2| (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-564)))) (((-564) $) NIL (|has| |#2| (-1034 (-564))))) (-3884 (($ $) 35) (($ (-564) $) 38)) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) 63)) (-3860 (($) NIL (|has| |#2| (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) NIL (|has| |#2| (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| |#2| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#2| (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 ((|#2| $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-2783 (((-112) $) NIL (|has| |#2| (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| |#2| (-846)))) (-2622 (($ $ $) NIL (|has| |#2| (-846)))) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 59)) (-3346 (($) NIL (|has| |#2| (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| |#2| (-307)))) (-1421 ((|#2| $) NIL (|has| |#2| (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 |#2|) (-641 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (|has| |#2| (-514 (-1170) |#2|))) (($ $ (-1170) |#2|) NIL (|has| |#2| (-514 (-1170) |#2|)))) (-3844 (((-767) $) NIL)) (-4353 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1881 (($ $) NIL)) (-4201 ((|#2| $) NIL)) (-3172 (((-888 (-564)) $) NIL (|has| |#2| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#2| (-612 (-888 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1018))) (((-225) $) NIL (|has| |#2| (-1018)))) (-2735 (((-174 (-407 (-564))) $) 77)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2322 (((-858) $) 106) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1170)) NIL (|has| |#2| (-1034 (-1170))))) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4381 ((|#2| $) NIL (|has| |#2| (-545)))) (-4024 (((-112) $ $) NIL)) (-3564 (((-407 (-564)) $ (-564)) 70)) (-3598 (($ $) NIL (|has| |#2| (-816)))) (-2389 (($) 15 T CONST)) (-2403 (($) 17 T CONST)) (-3917 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2921 (((-112) $ $) 45)) (-2964 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3034 (($ $ $) 24) (($ |#2| |#2|) 64)) (-3021 (($ $) 49) (($ $ $) 51)) (-3011 (($ $ $) 47)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 60)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL))) +(((-868 |#1| |#2|) (-13 (-988 |#2|) (-10 -8 (-15 -3564 ((-407 (-564)) $ (-564))) (-15 -2735 ((-174 (-407 (-564))) $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)))) (-564) (-865 |#1|)) (T -868)) +((-3564 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-868 *4 *5)) (-5 *3 (-564)) (-4 *5 (-865 *4)))) (-2735 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))) (-3884 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3))))) +(-13 (-988 |#2|) (-10 -8 (-15 -3564 ((-407 (-564)) $ (-564))) (-15 -2735 ((-174 (-407 (-564))) $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)))) +((-2310 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3667 ((|#2| $) 12)) (-2036 (($ |#1| |#2|) 9)) (-1418 (((-1152) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3840 (((-1114) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#1| $) 11)) (-2335 (($ |#1| |#2|) 10)) (-2322 (((-858) $) 18 (-2789 (-12 (|has| |#1| (-611 (-858))) (|has| |#2| (-611 (-858)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-2921 (((-112) $ $) 23 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) +(((-869 |#1| |#2|) (-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-858))) (IF (|has| |#2| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -2036 ($ |#1| |#2|)) (-15 -2335 ($ |#1| |#2|)) (-15 -1995 (|#1| $)) (-15 -3667 (|#2| $)))) (-1209) (-1209)) (T -869)) +((-2036 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-1995 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1209)))) (-3667 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1209))))) +(-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-858))) (IF (|has| |#2| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -2036 ($ |#1| |#2|)) (-15 -2335 ($ |#1| |#2|)) (-15 -1995 (|#1| $)) (-15 -3667 (|#2| $)))) +((-2310 (((-112) $ $) NIL)) (-3398 (((-564) $) 16)) (-3143 (($ (-157)) 13)) (-2860 (($ (-157)) 14)) (-1418 (((-1152) $) NIL)) (-2386 (((-157) $) 15)) (-3840 (((-1114) $) NIL)) (-2268 (($ (-157)) 11)) (-3237 (($ (-157)) 10)) (-2322 (((-858) $) 24) (($ (-157)) 17)) (-3048 (($ (-157)) 12)) (-2921 (((-112) $ $) NIL))) +(((-870) (-13 (-1094) (-10 -8 (-15 -3237 ($ (-157))) (-15 -2268 ($ (-157))) (-15 -3048 ($ (-157))) (-15 -3143 ($ (-157))) (-15 -2860 ($ (-157))) (-15 -2386 ((-157) $)) (-15 -3398 ((-564) $)) (-15 -2322 ($ (-157)))))) (T -870)) +((-3237 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3048 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3143 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-870)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(-13 (-1094) (-10 -8 (-15 -3237 ($ (-157))) (-15 -2268 ($ (-157))) (-15 -3048 ($ (-157))) (-15 -3143 ($ (-157))) (-15 -2860 ($ (-157))) (-15 -2386 ((-157) $)) (-15 -3398 ((-564) $)) (-15 -2322 ($ (-157))))) +((-2322 (((-316 (-564)) (-407 (-948 (-48)))) 23) (((-316 (-564)) (-948 (-48))) 18))) +(((-871) (-10 -7 (-15 -2322 ((-316 (-564)) (-948 (-48)))) (-15 -2322 ((-316 (-564)) (-407 (-948 (-48))))))) (T -871)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-871)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-871))))) +(-10 -7 (-15 -2322 ((-316 (-564)) (-948 (-48)))) (-15 -2322 ((-316 (-564)) (-407 (-948 (-48)))))) +((-3123 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 15))) +(((-872 |#1| |#2|) (-10 -7 (-15 -3123 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1209) (-1209)) (T -872)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))) +(-10 -7 (-15 -3123 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) +((-3365 (($ |#1| |#1|) 8)) (-1768 ((|#1| $ (-767)) 15))) +(((-873 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -1768 (|#1| $ (-767)))) (-1209)) (T -873)) +((-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1209)))) (-3365 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1209))))) +(-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -1768 (|#1| $ (-767)))) +((-3123 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 15))) +(((-874 |#1| |#2|) (-10 -7 (-15 -3123 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1209) (-1209)) (T -874)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))) +(-10 -7 (-15 -3123 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) +((-3365 (($ |#1| |#1| |#1|) 8)) (-1768 ((|#1| $ (-767)) 15))) +(((-875 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -1768 (|#1| $ (-767)))) (-1209)) (T -875)) +((-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1209)))) (-3365 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1209))))) +(-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -1768 (|#1| $ (-767)))) +((-2543 (((-641 (-1175)) (-1152)) 9))) +(((-876) (-10 -7 (-15 -2543 ((-641 (-1175)) (-1152))))) (T -876)) +((-2543 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-876))))) +(-10 -7 (-15 -2543 ((-641 (-1175)) (-1152)))) +((-3123 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 15))) +(((-877 |#1| |#2|) (-10 -7 (-15 -3123 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1209) (-1209)) (T -877)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))) +(-10 -7 (-15 -3123 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) +((-3297 (($ |#1| |#1| |#1|) 8)) (-1768 ((|#1| $ (-767)) 15))) +(((-878 |#1|) (-10 -8 (-15 -3297 ($ |#1| |#1| |#1|)) (-15 -1768 (|#1| $ (-767)))) (-1209)) (T -878)) +((-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1209)))) (-3297 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1209))))) +(-10 -8 (-15 -3297 ($ |#1| |#1| |#1|)) (-15 -1768 (|#1| $ (-767)))) +((-4207 (((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564)))) 47)) (-1544 (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 43)) (-1651 (((-1150 (-641 (-564))) (-641 (-564))) 57) (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 55)) (-4263 (((-1150 (-641 (-564))) (-564)) 58)) (-2361 (((-1150 (-641 (-564))) (-564) (-564)) 34) (((-1150 (-641 (-564))) (-564)) 23) (((-1150 (-641 (-564))) (-564) (-564) (-564)) 19)) (-3221 (((-1150 (-641 (-564))) (-1150 (-641 (-564)))) 41)) (-2675 (((-641 (-564)) (-641 (-564))) 40))) +(((-879) (-10 -7 (-15 -2361 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -2361 ((-1150 (-641 (-564))) (-564))) (-15 -2361 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -2675 ((-641 (-564)) (-641 (-564)))) (-15 -3221 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -1544 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4207 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -1651 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1651 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -4263 ((-1150 (-641 (-564))) (-564))))) (T -879)) +((-4263 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) (-1651 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-641 (-564))))) (-1651 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-641 (-564))))) (-4207 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) (-5 *1 (-879)))) (-1544 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-641 (-564))))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-879)))) (-2361 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) (-2361 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) (-2361 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564))))) +(-10 -7 (-15 -2361 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -2361 ((-1150 (-641 (-564))) (-564))) (-15 -2361 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -2675 ((-641 (-564)) (-641 (-564)))) (-15 -3221 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -1544 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4207 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -1651 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1651 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -4263 ((-1150 (-641 (-564))) (-564)))) +((-3172 (((-888 (-379)) $) 9 (|has| |#1| (-612 (-888 (-379))))) (((-888 (-564)) $) 8 (|has| |#1| (-612 (-888 (-564))))))) +(((-880 |#1|) (-140) (-1209)) (T -880)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-612 (-888 (-564)))) (-6 (-612 (-888 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-888 (-379)))) (-6 (-612 (-888 (-379)))) |%noBranch|))) +(((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564))))) +((-2310 (((-112) $ $) NIL)) (-4121 (($) 14)) (-1439 (($ (-885 |#1| |#2|) (-885 |#1| |#3|)) 28)) (-3177 (((-885 |#1| |#3|) $) 16)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3656 (((-112) $) 22)) (-3208 (($) 19)) (-2322 (((-858) $) 31)) (-1453 (((-885 |#1| |#2|) $) 15)) (-2921 (((-112) $ $) 26))) +(((-881 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -3656 ((-112) $)) (-15 -3208 ($)) (-15 -4121 ($)) (-15 -1439 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -1453 ((-885 |#1| |#2|) $)) (-15 -3177 ((-885 |#1| |#3|) $)))) (-1094) (-1094) (-662 |#2|)) (T -881)) +((-3656 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-3208 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-4121 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-1439 (*1 *1 *2 *3) (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-881 *4 *5 *6)))) (-1453 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-3177 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4))))) +(-13 (-1094) (-10 -8 (-15 -3656 ((-112) $)) (-15 -3208 ($)) (-15 -4121 ($)) (-15 -1439 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -1453 ((-885 |#1| |#2|) $)) (-15 -3177 ((-885 |#1| |#3|) $)))) +((-2310 (((-112) $ $) 7)) (-3466 (((-885 |#1| $) $ (-888 |#1|) (-885 |#1| $)) 13)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) +(((-882 |#1|) (-140) (-1094)) (T -882)) +((-3466 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) (-4 *4 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -3466 ((-885 |t#1| $) $ (-888 |t#1|) (-885 |t#1| $))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2379 (((-112) (-641 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3950 (((-885 |#1| |#2|) |#2| |#3|) 44 (-12 (-2329 (|has| |#2| (-1034 (-1170)))) (-2329 (|has| |#2| (-1045))))) (((-641 (-294 (-948 |#2|))) |#2| |#3|) 43 (-12 (|has| |#2| (-1045)) (-2329 (|has| |#2| (-1034 (-1170)))))) (((-641 (-294 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1034 (-1170)))) (((-881 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|) 20))) +(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2379 ((-112) |#2| |#3|)) (-15 -2379 ((-112) (-641 |#2|) |#3|)) (-15 -3950 ((-881 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1170))) (-15 -3950 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -3950 ((-641 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -3950 ((-885 |#1| |#2|) |#2| |#3|))))) (-1094) (-882 |#1|) (-612 (-888 |#1|))) (T -883)) +((-3950 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) (-2329 (-4 *3 (-1034 (-1170)))) (-2329 (-4 *3 (-1045))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) (-3950 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-948 *3)))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) (-2329 (-4 *3 (-1034 (-1170)))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) (-3950 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1034 (-1170))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) (-3950 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-641 *6))) (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-888 *5))))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-612 (-888 *5))))) (-2379 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5)))))) +(-10 -7 (-15 -2379 ((-112) |#2| |#3|)) (-15 -2379 ((-112) (-641 |#2|) |#3|)) (-15 -3950 ((-881 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1170))) (-15 -3950 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -3950 ((-641 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -3950 ((-885 |#1| |#2|) |#2| |#3|))))) +((-3123 (((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)) 22))) +(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -884)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-885 *5 *7)) (-5 *1 (-884 *5 *6 *7))))) +(-10 -7 (-15 -3123 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) +((-2310 (((-112) $ $) NIL)) (-1565 (($ $ $) 40)) (-1570 (((-3 (-112) "failed") $ (-888 |#1|)) 37)) (-4121 (($) 12)) (-1418 (((-1152) $) NIL)) (-3887 (($ (-888 |#1|) |#2| $) 20)) (-3840 (((-1114) $) NIL)) (-1691 (((-3 |#2| "failed") (-888 |#1|) $) 51)) (-3656 (((-112) $) 15)) (-3208 (($) 13)) (-2461 (((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 |#2|))) $) 25)) (-2335 (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 |#2|)))) 23)) (-2322 (((-858) $) 45)) (-3673 (($ (-888 |#1|) |#2| $ |#2|) 49)) (-1813 (($ (-888 |#1|) |#2| $) 48)) (-2921 (((-112) $ $) 42))) +(((-885 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3656 ((-112) $)) (-15 -3208 ($)) (-15 -4121 ($)) (-15 -1565 ($ $ $)) (-15 -1691 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -1813 ($ (-888 |#1|) |#2| $)) (-15 -3887 ($ (-888 |#1|) |#2| $)) (-15 -3673 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2461 ((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 |#2|))) $)) (-15 -2335 ($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 |#2|))))) (-15 -1570 ((-3 (-112) "failed") $ (-888 |#1|))))) (-1094) (-1094)) (T -885)) +((-3656 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3208 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4121 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1565 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1691 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-885 *4 *2)))) (-1813 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094)))) (-3887 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094)))) (-3673 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 *4)))) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 *4)))) (-4 *4 (-1094)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)))) (-1570 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -3656 ((-112) $)) (-15 -3208 ($)) (-15 -4121 ($)) (-15 -1565 ($ $ $)) (-15 -1691 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -1813 ($ (-888 |#1|) |#2| $)) (-15 -3887 ($ (-888 |#1|) |#2| $)) (-15 -3673 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2461 ((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 |#2|))) $)) (-15 -2335 ($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 |#2|))))) (-15 -1570 ((-3 (-112) "failed") $ (-888 |#1|))))) +((-2792 (((-888 |#1|) (-888 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|))) 32) (((-888 |#1|) (-888 |#1|) (-641 (-1 (-112) |#2|))) 46) (((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|)) 35)) (-1570 (((-112) (-641 |#2|) (-888 |#1|)) 42) (((-112) |#2| (-888 |#1|)) 36)) (-2913 (((-1 (-112) |#2|) (-888 |#1|)) 16)) (-3707 (((-641 |#2|) (-888 |#1|)) 24)) (-3101 (((-888 |#1|) (-888 |#1|) |#2|) 20))) +(((-886 |#1| |#2|) (-10 -7 (-15 -2792 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -2792 ((-888 |#1|) (-888 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2792 ((-888 |#1|) (-888 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -2913 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -1570 ((-112) |#2| (-888 |#1|))) (-15 -1570 ((-112) (-641 |#2|) (-888 |#1|))) (-15 -3101 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -3707 ((-641 |#2|) (-888 |#1|)))) (-1094) (-1209)) (T -886)) +((-3707 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1209)))) (-3101 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1209)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-886 *5 *3)) (-4 *3 (-1209)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1209)))) (-2792 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-888 *5)) (-5 *3 (-641 (-1170))) (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-886 *5 *6)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-886 *4 *5)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-886 *4 *5))))) +(-10 -7 (-15 -2792 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -2792 ((-888 |#1|) (-888 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2792 ((-888 |#1|) (-888 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -2913 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -1570 ((-112) |#2| (-888 |#1|))) (-15 -1570 ((-112) (-641 |#2|) (-888 |#1|))) (-15 -3101 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -3707 ((-641 |#2|) (-888 |#1|)))) +((-3123 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 19))) +(((-887 |#1| |#2|) (-10 -7 (-15 -3123 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1094) (-1094)) (T -887)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) +(-10 -7 (-15 -3123 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3182 (($ $ (-641 (-52))) 73)) (-2534 (((-641 $) $) 137)) (-1576 (((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $) 29)) (-2172 (((-112) $) 34)) (-2465 (($ $ (-641 (-1170)) (-52)) 30)) (-3962 (($ $ (-641 (-52))) 72)) (-3032 (((-3 |#1| "failed") $) 70) (((-3 (-1170) "failed") $) 161)) (-1781 ((|#1| $) 67) (((-1170) $) NIL)) (-2229 (($ $) 125)) (-3648 (((-112) $) 54)) (-2577 (((-641 (-52)) $) 49)) (-1601 (($ (-1170) (-112) (-112) (-112)) 74)) (-3687 (((-3 (-641 $) "failed") (-641 $)) 81)) (-1770 (((-112) $) 57)) (-4168 (((-112) $) 56)) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) 40)) (-3111 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 47)) (-3074 (((-3 (-2 (|:| |val| $) (|:| -3866 $)) "failed") $) 96)) (-3081 (((-3 (-641 $) "failed") $) 39)) (-2718 (((-3 (-641 $) "failed") $ (-114)) 123) (((-3 (-2 (|:| -1513 (-114)) (|:| |arg| (-641 $))) "failed") $) 106)) (-2217 (((-3 (-641 $) "failed") $) 41)) (-1580 (((-3 (-2 (|:| |val| $) (|:| -3866 (-767))) "failed") $) 44)) (-2332 (((-112) $) 33)) (-3840 (((-1114) $) NIL)) (-1902 (((-112) $) 27)) (-1869 (((-112) $) 51)) (-2289 (((-641 (-52)) $) 129)) (-2729 (((-112) $) 55)) (-4353 (($ (-114) (-641 $)) 103)) (-1413 (((-767) $) 32)) (-3772 (($ $) 71)) (-3172 (($ (-641 $)) 68)) (-1419 (((-112) $) 31)) (-2322 (((-858) $) 62) (($ |#1|) 23) (($ (-1170)) 75)) (-3101 (($ $ (-52)) 128)) (-2389 (($) 102 T CONST)) (-2403 (($) 82 T CONST)) (-2921 (((-112) $ $) 92)) (-3034 (($ $ $) 116)) (-3011 (($ $ $) 120)) (** (($ $ (-767)) 114) (($ $ $) 63)) (* (($ $ $) 121))) +(((-888 |#1|) (-13 (-1094) (-1034 |#1|) (-1034 (-1170)) (-10 -8 (-15 0 ($) -2255) (-15 1 ($) -2255) (-15 -3081 ((-3 (-641 $) "failed") $)) (-15 -1888 ((-3 (-641 $) "failed") $)) (-15 -2718 ((-3 (-641 $) "failed") $ (-114))) (-15 -2718 ((-3 (-2 (|:| -1513 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -1580 ((-3 (-2 (|:| |val| $) (|:| -3866 (-767))) "failed") $)) (-15 -3111 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2217 ((-3 (-641 $) "failed") $)) (-15 -3074 ((-3 (-2 (|:| |val| $) (|:| -3866 $)) "failed") $)) (-15 -4353 ($ (-114) (-641 $))) (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -3034 ($ $ $)) (-15 -1413 ((-767) $)) (-15 -3172 ($ (-641 $))) (-15 -3772 ($ $)) (-15 -2332 ((-112) $)) (-15 -3648 ((-112) $)) (-15 -2172 ((-112) $)) (-15 -1419 ((-112) $)) (-15 -2729 ((-112) $)) (-15 -4168 ((-112) $)) (-15 -1770 ((-112) $)) (-15 -1869 ((-112) $)) (-15 -2577 ((-641 (-52)) $)) (-15 -3962 ($ $ (-641 (-52)))) (-15 -3182 ($ $ (-641 (-52)))) (-15 -1601 ($ (-1170) (-112) (-112) (-112))) (-15 -2465 ($ $ (-641 (-1170)) (-52))) (-15 -1576 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -1902 ((-112) $)) (-15 -2229 ($ $)) (-15 -3101 ($ $ (-52))) (-15 -2289 ((-641 (-52)) $)) (-15 -2534 ((-641 $) $)) (-15 -3687 ((-3 (-641 $) "failed") (-641 $))))) (-1094)) (T -888)) +((-2389 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-2403 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-3081 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1888 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2718 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-2718 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1513 (-114)) (|:| |arg| (-641 (-888 *3))))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1580 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3866 (-767)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3111 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2217 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3074 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3866 (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-3011 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-3034 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3772 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3182 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1601 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-2465 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2229 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-3101 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3687 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(-13 (-1094) (-1034 |#1|) (-1034 (-1170)) (-10 -8 (-15 (-2389) ($) -2255) (-15 (-2403) ($) -2255) (-15 -3081 ((-3 (-641 $) "failed") $)) (-15 -1888 ((-3 (-641 $) "failed") $)) (-15 -2718 ((-3 (-641 $) "failed") $ (-114))) (-15 -2718 ((-3 (-2 (|:| -1513 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -1580 ((-3 (-2 (|:| |val| $) (|:| -3866 (-767))) "failed") $)) (-15 -3111 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2217 ((-3 (-641 $) "failed") $)) (-15 -3074 ((-3 (-2 (|:| |val| $) (|:| -3866 $)) "failed") $)) (-15 -4353 ($ (-114) (-641 $))) (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -3034 ($ $ $)) (-15 -1413 ((-767) $)) (-15 -3172 ($ (-641 $))) (-15 -3772 ($ $)) (-15 -2332 ((-112) $)) (-15 -3648 ((-112) $)) (-15 -2172 ((-112) $)) (-15 -1419 ((-112) $)) (-15 -2729 ((-112) $)) (-15 -4168 ((-112) $)) (-15 -1770 ((-112) $)) (-15 -1869 ((-112) $)) (-15 -2577 ((-641 (-52)) $)) (-15 -3962 ($ $ (-641 (-52)))) (-15 -3182 ($ $ (-641 (-52)))) (-15 -1601 ($ (-1170) (-112) (-112) (-112))) (-15 -2465 ($ $ (-641 (-1170)) (-52))) (-15 -1576 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -1902 ((-112) $)) (-15 -2229 ($ $)) (-15 -3101 ($ $ (-52))) (-15 -2289 ((-641 (-52)) $)) (-15 -2534 ((-641 $) $)) (-15 -3687 ((-3 (-641 $) "failed") (-641 $))))) +((-2310 (((-112) $ $) NIL)) (-2966 (((-641 |#1|) $) 19)) (-4156 (((-112) $) 49)) (-3032 (((-3 (-668 |#1|) "failed") $) 56)) (-1781 (((-668 |#1|) $) 54)) (-2008 (($ $) 23)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1750 (((-767) $) 61)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-668 |#1|) $) 21)) (-2322 (((-858) $) 47) (($ (-668 |#1|)) 26) (((-815 |#1|) $) 36) (($ |#1|) 25)) (-2403 (($) 9 T CONST)) (-4318 (((-641 (-668 |#1|)) $) 28)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 12)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 67))) +(((-889 |#1|) (-13 (-846) (-1034 (-668 |#1|)) (-10 -8 (-15 1 ($) -2255) (-15 -2322 ((-815 |#1|) $)) (-15 -2322 ($ |#1|)) (-15 -1995 ((-668 |#1|) $)) (-15 -1750 ((-767) $)) (-15 -4318 ((-641 (-668 |#1|)) $)) (-15 -2008 ($ $)) (-15 -4156 ((-112) $)) (-15 -2966 ((-641 |#1|) $)))) (-846)) (T -889)) +((-2403 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2322 (*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))) +(-13 (-846) (-1034 (-668 |#1|)) (-10 -8 (-15 (-2403) ($) -2255) (-15 -2322 ((-815 |#1|) $)) (-15 -2322 ($ |#1|)) (-15 -1995 ((-668 |#1|) $)) (-15 -1750 ((-767) $)) (-15 -4318 ((-641 (-668 |#1|)) $)) (-15 -2008 ($ $)) (-15 -4156 ((-112) $)) (-15 -2966 ((-641 |#1|) $)))) +((-1980 ((|#1| |#1| |#1|) 19))) +(((-890 |#1| |#2|) (-10 -7 (-15 -1980 (|#1| |#1| |#1|))) (-1235 |#2|) (-1045)) (T -890)) +((-1980 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -1980 (|#1| |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-1632 (((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 14)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-1358 (((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 13)) (-2921 (((-112) $ $) 6))) +(((-891) (-140)) (T -891)) +((-1632 (*1 *2 *3 *4) (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) (-1358 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-1031))))) +(-13 (-1094) (-10 -7 (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -1358 ((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-3037 ((|#1| |#1| (-767)) 29)) (-2477 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1965 (((-3 (-2 (|:| -4237 |#1|) (|:| -4250 |#1|)) "failed") |#1| (-767) (-767)) 32) (((-641 |#1|) |#1|) 39))) +(((-892 |#1| |#2|) (-10 -7 (-15 -1965 ((-641 |#1|) |#1|)) (-15 -1965 ((-3 (-2 (|:| -4237 |#1|) (|:| -4250 |#1|)) "failed") |#1| (-767) (-767))) (-15 -2477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3037 (|#1| |#1| (-767)))) (-1235 |#2|) (-363)) (T -892)) +((-3037 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1235 *4)))) (-2477 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1235 *3)))) (-1965 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -4237 *3) (|:| -4250 *3))) (-5 *1 (-892 *3 *5)) (-4 *3 (-1235 *5)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -1965 ((-641 |#1|) |#1|)) (-15 -1965 ((-3 (-2 (|:| -4237 |#1|) (|:| -4250 |#1|)) "failed") |#1| (-767) (-767))) (-15 -2477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3037 (|#1| |#1| (-767)))) +((-1630 (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152)) 106) (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225)) 102) (((-1031) (-894) (-1057)) 94) (((-1031) (-894)) 95)) (-1632 (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894) (-1057)) 65) (((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894)) 67))) +(((-893) (-10 -7 (-15 -1630 ((-1031) (-894))) (-15 -1630 ((-1031) (-894) (-1057))) (-15 -1630 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -1630 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894) (-1057))))) (T -893)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-893)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-893)))) (-1630 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1630 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893))))) +(-10 -7 (-15 -1630 ((-1031) (-894))) (-15 -1630 ((-1031) (-894) (-1057))) (-15 -1630 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -1630 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894))) (-15 -1632 ((-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894) (-1057)))) +((-2310 (((-112) $ $) NIL)) (-1781 (((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $) 19)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 21) (($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 18)) (-2921 (((-112) $ $) NIL))) +(((-894) (-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -1781 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))) (T -894)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-894)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-894))))) +(-13 (-1094) (-10 -8 (-15 -2322 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -1781 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $)))) +((-1343 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) 10) (($ $ |#2| (-767)) 15) (($ $ (-641 |#2|) (-641 (-767))) 18)) (-3917 (($ $ |#2|) 19) (($ $ (-641 |#2|)) 21) (($ $ |#2| (-767)) 22) (($ $ (-641 |#2|) (-641 (-767))) 24))) +(((-895 |#1| |#2|) (-10 -8 (-15 -3917 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -3917 (|#1| |#1| |#2| (-767))) (-15 -3917 (|#1| |#1| (-641 |#2|))) (-15 -3917 (|#1| |#1| |#2|)) (-15 -1343 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -1343 (|#1| |#1| |#2| (-767))) (-15 -1343 (|#1| |#1| (-641 |#2|))) (-15 -1343 (|#1| |#1| |#2|))) (-896 |#2|) (-1094)) (T -895)) +NIL +(-10 -8 (-15 -3917 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -3917 (|#1| |#1| |#2| (-767))) (-15 -3917 (|#1| |#1| (-641 |#2|))) (-15 -3917 (|#1| |#1| |#2|)) (-15 -1343 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -1343 (|#1| |#1| |#2| (-767))) (-15 -1343 (|#1| |#1| (-641 |#2|))) (-15 -1343 (|#1| |#1| |#2|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1343 (($ $ |#1|) 42) (($ $ (-641 |#1|)) 41) (($ $ |#1| (-767)) 40) (($ $ (-641 |#1|) (-641 (-767))) 39)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ |#1|) 38) (($ $ (-641 |#1|)) 37) (($ $ |#1| (-767)) 36) (($ $ (-641 |#1|) (-641 (-767))) 35)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-896 |#1|) (-140) (-1094)) (T -896)) +((-1343 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-1343 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1094)))) (-3917 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) (-3917 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-3917 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1094))))) +(-13 (-1045) (-10 -8 (-15 -1343 ($ $ |t#1|)) (-15 -1343 ($ $ (-641 |t#1|))) (-15 -1343 ($ $ |t#1| (-767))) (-15 -1343 ($ $ (-641 |t#1|) (-641 (-767)))) (-15 -3917 ($ $ |t#1|)) (-15 -3917 ($ $ (-641 |t#1|))) (-15 -3917 ($ $ |t#1| (-767))) (-15 -3917 ($ $ (-641 |t#1|) (-641 (-767)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) 26)) (-2318 (((-112) $ (-767)) NIL)) (-4159 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3426 (($ $ $) NIL (|has| $ (-6 -4407)))) (-4314 (($ $ $) NIL (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) (($ $ "left" $) NIL (|has| $ (-6 -4407))) (($ $ "right" $) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-4250 (($ $) 25)) (-3068 (($ |#1|) 12) (($ $ $) 17)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-4237 (($ $) 23)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) 20)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3526 (((-564) $ $) NIL)) (-2911 (((-112) $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1195 |#1|) $) 9) (((-858) $) 29 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-897 |#1|) (-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -3068 ($ |#1|)) (-15 -3068 ($ $ $)))) (-1094)) (T -897)) +((-3068 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))) (-3068 (*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094))))) +(-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -3068 ($ |#1|)) (-15 -3068 ($ $ $)))) +((-1679 ((|#2| (-1136 |#1| |#2|)) 53))) +(((-898 |#1| |#2|) (-10 -7 (-15 -1679 (|#2| (-1136 |#1| |#2|)))) (-917) (-13 (-1045) (-10 -7 (-6 (-4408 "*"))))) (T -898)) +((-1679 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4408 "*"))))) (-5 *1 (-898 *4 *2))))) +(-10 -7 (-15 -1679 (|#2| (-1136 |#1| |#2|)))) +((-2310 (((-112) $ $) 7)) (-4157 (($) 18 T CONST)) (-2689 (((-3 $ "failed") $) 15)) (-2971 (((-1096 |#1|) $ |#1|) 32)) (-1828 (((-112) $) 17)) (-1501 (($ $ $) 30 (-2789 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2622 (($ $ $) 29 (-2789 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1418 (((-1152) $) 9)) (-2639 (($ $) 24)) (-3840 (((-1114) $) 10)) (-3100 ((|#1| $ |#1|) 34)) (-4353 ((|#1| $ |#1|) 33)) (-2826 (($ (-641 (-641 |#1|))) 35)) (-3700 (($ (-641 |#1|)) 36)) (-2675 (($ $ $) 21)) (-2617 (($ $ $) 20)) (-2322 (((-858) $) 11)) (-2403 (($) 19 T CONST)) (-2977 (((-112) $ $) 27 (-2789 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2953 (((-112) $ $) 26 (-2789 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 28 (-2789 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2942 (((-112) $ $) 31)) (-3034 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14))) +(((-899 |#1|) (-140) (-1094)) (T -899)) +((-3700 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-899 *3)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-899 *3)))) (-3100 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094)))) (-4353 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094)))) (-2971 (*1 *2 *1 *3) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) (-2942 (*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(-13 (-473) (-10 -8 (-15 -3700 ($ (-641 |t#1|))) (-15 -2826 ($ (-641 (-641 |t#1|)))) (-15 -3100 (|t#1| $ |t#1|)) (-15 -4353 (|t#1| $ |t#1|)) (-15 -2971 ((-1096 |t#1|) $ |t#1|)) (-15 -2942 ((-112) $ $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-846)) |%noBranch|))) +(((-102) . T) ((-611 (-858)) . T) ((-473) . T) ((-722) . T) ((-846) -2789 (|has| |#1| (-846)) (|has| |#1| (-368))) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-1562 (((-641 (-641 (-767))) $) 164)) (-3352 (((-641 (-767)) (-901 |#1|) $) 192)) (-1484 (((-641 (-767)) (-901 |#1|) $) 193)) (-2917 (((-641 (-901 |#1|)) $) 153)) (-3860 (((-901 |#1|) $ (-564)) 158) (((-901 |#1|) $) 159)) (-1659 (($ (-641 (-901 |#1|))) 166)) (-3717 (((-767) $) 160)) (-3325 (((-1096 (-1096 |#1|)) $) 190)) (-2971 (((-1096 |#1|) $ |#1|) 181) (((-1096 (-1096 |#1|)) $ (-1096 |#1|)) 201) (((-1096 (-641 |#1|)) $ (-641 |#1|)) 204)) (-1987 (((-1096 |#1|) $) 156)) (-3114 (((-112) (-901 |#1|) $) 142)) (-1418 (((-1152) $) NIL)) (-2277 (((-1264) $) 146) (((-1264) $ (-564) (-564)) 205)) (-3840 (((-1114) $) NIL)) (-2782 (((-641 (-901 |#1|)) $) 147)) (-4353 (((-901 |#1|) $ (-767)) 154)) (-2073 (((-767) $) 161)) (-2322 (((-858) $) 178) (((-641 (-901 |#1|)) $) 28) (($ (-641 (-901 |#1|))) 165)) (-2610 (((-641 |#1|) $) 163)) (-2921 (((-112) $ $) 198)) (-2964 (((-112) $ $) 196)) (-2942 (((-112) $ $) 195))) +(((-900 |#1|) (-13 (-1094) (-10 -8 (-15 -2322 ((-641 (-901 |#1|)) $)) (-15 -2782 ((-641 (-901 |#1|)) $)) (-15 -4353 ((-901 |#1|) $ (-767))) (-15 -3860 ((-901 |#1|) $ (-564))) (-15 -3860 ((-901 |#1|) $)) (-15 -3717 ((-767) $)) (-15 -2073 ((-767) $)) (-15 -2610 ((-641 |#1|) $)) (-15 -2917 ((-641 (-901 |#1|)) $)) (-15 -1562 ((-641 (-641 (-767))) $)) (-15 -2322 ($ (-641 (-901 |#1|)))) (-15 -1659 ($ (-641 (-901 |#1|)))) (-15 -2971 ((-1096 |#1|) $ |#1|)) (-15 -3325 ((-1096 (-1096 |#1|)) $)) (-15 -2971 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -2971 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3114 ((-112) (-901 |#1|) $)) (-15 -3352 ((-641 (-767)) (-901 |#1|) $)) (-15 -1484 ((-641 (-767)) (-901 |#1|) $)) (-15 -1987 ((-1096 |#1|) $)) (-15 -2942 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -2277 ((-1264) $)) (-15 -2277 ((-1264) $ (-564) (-564))))) (-1094)) (T -900)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1094)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1094)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3)))) (-1659 (*1 *1 *2) (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3)))) (-2971 (*1 *2 *1 *3) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2971 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-900 *4)) (-5 *3 (-1096 *4)))) (-2971 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-900 *4)) (-5 *3 (-641 *4)))) (-3114 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-900 *4)))) (-3352 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767))) (-5 *1 (-900 *4)))) (-1484 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767))) (-5 *1 (-900 *4)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2942 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2277 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-900 *4)) (-4 *4 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -2322 ((-641 (-901 |#1|)) $)) (-15 -2782 ((-641 (-901 |#1|)) $)) (-15 -4353 ((-901 |#1|) $ (-767))) (-15 -3860 ((-901 |#1|) $ (-564))) (-15 -3860 ((-901 |#1|) $)) (-15 -3717 ((-767) $)) (-15 -2073 ((-767) $)) (-15 -2610 ((-641 |#1|) $)) (-15 -2917 ((-641 (-901 |#1|)) $)) (-15 -1562 ((-641 (-641 (-767))) $)) (-15 -2322 ($ (-641 (-901 |#1|)))) (-15 -1659 ($ (-641 (-901 |#1|)))) (-15 -2971 ((-1096 |#1|) $ |#1|)) (-15 -3325 ((-1096 (-1096 |#1|)) $)) (-15 -2971 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -2971 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3114 ((-112) (-901 |#1|) $)) (-15 -3352 ((-641 (-767)) (-901 |#1|) $)) (-15 -1484 ((-641 (-767)) (-901 |#1|) $)) (-15 -1987 ((-1096 |#1|) $)) (-15 -2942 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -2277 ((-1264) $)) (-15 -2277 ((-1264) $ (-564) (-564))))) +((-2310 (((-112) $ $) NIL)) (-3811 (((-641 $) (-641 $)) 104)) (-3085 (((-564) $) 85)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-3717 (((-767) $) 82)) (-2971 (((-1096 |#1|) $ |#1|) 73)) (-1828 (((-112) $) NIL)) (-3415 (((-112) $) 89)) (-2559 (((-767) $) 86)) (-1987 (((-1096 |#1|) $) 62)) (-1501 (($ $ $) NIL (-2789 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2622 (($ $ $) NIL (-2789 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2692 (((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $) 57)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 132)) (-3840 (((-1114) $) NIL)) (-1546 (((-1096 |#1|) $) 140 (|has| |#1| (-368)))) (-1333 (((-112) $) 83)) (-3100 ((|#1| $ |#1|) 71)) (-4353 ((|#1| $ |#1|) 134)) (-2073 (((-767) $) 64)) (-2826 (($ (-641 (-641 |#1|))) 119)) (-2230 (((-967) $) 77)) (-3700 (($ (-641 |#1|)) 35)) (-2675 (($ $ $) NIL)) (-2617 (($ $ $) NIL)) (-4117 (($ (-641 (-641 |#1|))) 59)) (-2303 (($ (-641 (-641 |#1|))) 124)) (-4248 (($ (-641 |#1|)) 136)) (-2322 (((-858) $) 118) (($ (-641 (-641 |#1|))) 92) (($ (-641 |#1|)) 93)) (-2403 (($) 27 T CONST)) (-2977 (((-112) $ $) NIL (-2789 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2921 (((-112) $ $) 69)) (-2964 (((-112) $ $) NIL (-2789 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2942 (((-112) $ $) 91)) (-3034 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36))) +(((-901 |#1|) (-13 (-899 |#1|) (-10 -8 (-15 -2692 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -4117 ($ (-641 (-641 |#1|)))) (-15 -2322 ($ (-641 (-641 |#1|)))) (-15 -2322 ($ (-641 |#1|))) (-15 -2303 ($ (-641 (-641 |#1|)))) (-15 -2073 ((-767) $)) (-15 -1987 ((-1096 |#1|) $)) (-15 -2230 ((-967) $)) (-15 -3717 ((-767) $)) (-15 -2559 ((-767) $)) (-15 -3085 ((-564) $)) (-15 -1333 ((-112) $)) (-15 -3415 ((-112) $)) (-15 -3811 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -1546 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -4248 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -4248 ($ (-641 |#1|))) |%noBranch|)))) (-1094)) (T -901)) +((-2692 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3))))) +(-13 (-899 |#1|) (-10 -8 (-15 -2692 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -4117 ($ (-641 (-641 |#1|)))) (-15 -2322 ($ (-641 (-641 |#1|)))) (-15 -2322 ($ (-641 |#1|))) (-15 -2303 ($ (-641 (-641 |#1|)))) (-15 -2073 ((-767) $)) (-15 -1987 ((-1096 |#1|) $)) (-15 -2230 ((-967) $)) (-15 -3717 ((-767) $)) (-15 -2559 ((-767) $)) (-15 -3085 ((-564) $)) (-15 -1333 ((-112) $)) (-15 -3415 ((-112) $)) (-15 -3811 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -1546 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -4248 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -4248 ($ (-641 |#1|))) |%noBranch|)))) +((-2585 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|)) 162)) (-3915 ((|#1|) 101)) (-3423 (((-418 (-1166 |#4|)) (-1166 |#4|)) 171)) (-1966 (((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)) 88)) (-3458 (((-418 (-1166 |#4|)) (-1166 |#4|)) 181)) (-3939 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|) 117))) +(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2585 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -3458 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3423 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3915 (|#1|)) (-15 -3939 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -1966 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) (-905) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -902)) +((-1966 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) (-3939 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))) (-3915 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3458 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2585 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7))))) +(-10 -7 (-15 -2585 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -3458 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3423 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3915 (|#1|)) (-15 -3939 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -1966 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) +((-2585 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 41)) (-3915 ((|#1|) 74)) (-3423 (((-418 (-1166 |#2|)) (-1166 |#2|)) 130)) (-1966 (((-418 (-1166 |#2|)) (-1166 |#2|)) 114)) (-3458 (((-418 (-1166 |#2|)) (-1166 |#2|)) 141))) +(((-903 |#1| |#2|) (-10 -7 (-15 -2585 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -3458 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3423 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3915 (|#1|)) (-15 -1966 ((-418 (-1166 |#2|)) (-1166 |#2|)))) (-905) (-1235 |#1|)) (T -903)) +((-1966 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))) (-3915 (*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1235 *2)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))) (-3458 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))) (-2585 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5))))) +(-10 -7 (-15 -2585 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -3458 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3423 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3915 (|#1|)) (-15 -1966 ((-418 (-1166 |#2|)) (-1166 |#2|)))) +((-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 18)) (-2409 (((-3 $ "failed") $) 36))) +(((-904 |#1|) (-10 -8 (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-905)) (T -904)) +NIL +(-10 -8 (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-1986 (((-418 (-1166 $)) (-1166 $)) 61)) (-3453 (($ $) 52)) (-2657 (((-418 $) $) 53)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 58)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-4229 (((-112) $) 54)) (-1828 (((-112) $) 31)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-4209 (((-418 (-1166 $)) (-1166 $)) 59)) (-3832 (((-418 (-1166 $)) (-1166 $)) 60)) (-2375 (((-418 $) $) 51)) (-2526 (((-3 $ "failed") $ $) 43)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 57 (|has| $ (-145)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-2409 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-905) (-140)) (T -905)) +((-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-905)))) (-1986 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-3832 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-4209 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2732 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) (-4 *1 (-905)))) (-1381 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-905)) (-5 *2 (-1259 *1)))) (-2409 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905))))) +(-13 (-1213) (-10 -8 (-15 -1986 ((-418 (-1166 $)) (-1166 $))) (-15 -3832 ((-418 (-1166 $)) (-1166 $))) (-15 -4209 ((-418 (-1166 $)) (-1166 $))) (-15 -2837 ((-1166 $) (-1166 $) (-1166 $))) (-15 -2732 ((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $))) (IF (|has| $ (-145)) (PROGN (-15 -1381 ((-3 (-1259 $) "failed") (-685 $))) (-15 -2409 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2730 (((-112) $) NIL)) (-4297 (((-767)) NIL)) (-3770 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-3109 (((-1182 (-917) (-767)) (-564)) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 $ "failed") $) NIL)) (-1781 (($ $) NIL)) (-3013 (($ (-1259 $)) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-3422 (($) NIL)) (-3261 (((-112) $) NIL)) (-2180 (($ $) NIL) (($ $ (-767)) NIL)) (-4229 (((-112) $) NIL)) (-3717 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-1828 (((-112) $) NIL)) (-2272 (($) NIL (|has| $ (-368)))) (-4124 (((-112) $) NIL (|has| $ (-368)))) (-2019 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1790 (((-1166 $) $ (-917)) NIL (|has| $ (-368))) (((-1166 $) $) NIL)) (-1368 (((-917) $) NIL)) (-2325 (((-1166 $) $) NIL (|has| $ (-368)))) (-1350 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-3696 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL T CONST)) (-1998 (($ (-917)) NIL)) (-3193 (((-112) $) NIL)) (-3840 (((-1114) $) NIL)) (-4095 (($) NIL (|has| $ (-368)))) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL)) (-2375 (((-418 $) $) NIL)) (-1829 (((-917)) NIL) (((-829 (-917))) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3337 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-3480 (((-134)) NIL)) (-1343 (($ $ (-767)) NIL) (($ $) NIL)) (-2073 (((-917) $) NIL) (((-829 (-917)) $) NIL)) (-2400 (((-1166 $)) NIL)) (-3107 (($) NIL)) (-2439 (($) NIL (|has| $ (-368)))) (-3864 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) NIL)) (-3172 (((-564) $) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2409 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3179 (((-767)) NIL T CONST)) (-3342 (((-1259 $) (-917)) NIL) (((-1259 $)) NIL)) (-4024 (((-112) $ $) NIL)) (-4363 (((-112) $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3053 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-906 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-917)) (T -906)) NIL (-13 (-349) (-329 $) (-612 (-564))) -((-1943 (((-3 (-2 (|:| -2155 (-768)) (|:| -2609 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-1993 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-2155 (((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) -(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2155 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1993 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1943 ((-3 (-2 (|:| -2155 (-768)) (|:| -2609 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -908)) -((-1943 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-2 (|:| -2155 (-768)) (|:| -2609 *8))) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-2155 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768)) (-5 *1 (-908 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2155 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1993 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1943 ((-3 (-2 (|:| -2155 (-768)) (|:| -2609 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) -((-1943 (((-3 (-2 (|:| -2155 (-768)) (|:| -2609 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-1993 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-2155 (((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14))) -(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -2155 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1993 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1943 ((-3 (-2 (|:| -2155 (-768)) (|:| -2609 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1235 (-407 (-564))) (-1235 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -909)) -((-1943 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -2155 (-768)) (|:| -2609 *6))) (-5 *1 (-909 *4 *5 *6)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6)))) (-2155 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768)) (-5 *1 (-909 *4 *5 *6))))) -(-10 -7 (-15 -2155 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1993 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1943 ((-3 (-2 (|:| -2155 (-768)) (|:| -2609 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) -((-3928 ((|#2| |#2|) 26)) (-4351 (((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-1376 (((-918) (-564)) 38)) (-1645 (((-564) |#2|) 45)) (-1531 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20))) -(((-910 |#1| |#2|) (-10 -7 (-15 -1376 ((-918) (-564))) (-15 -1531 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -1531 ((-564) |#2|)) (-15 -4351 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -1645 ((-564) |#2|)) (-15 -3928 (|#2| |#2|))) (-1235 (-407 (-564))) (-1235 (-407 |#1|))) (T -910)) -((-3928 (*1 *2 *2) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2)) (-4 *2 (-1235 (-407 *3))))) (-1645 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))) (-1531 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-1531 (*1 *2 *3) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3))))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4)))))) -(-10 -7 (-15 -1376 ((-918) (-564))) (-15 -1531 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -1531 ((-564) |#2|)) (-15 -4351 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -1645 ((-564) |#2|)) (-15 -3928 (|#2| |#2|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 ((|#1| $) 99)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-1449 (($ $ $) NIL)) (-3733 (((-3 $ "failed") $) 93)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-4312 (($ |#1| (-418 |#1|)) 91)) (-3571 (((-1166 |#1|) |#1| |#1|) 53)) (-3968 (($ $) 61)) (-2949 (((-112) $) NIL)) (-2961 (((-564) $) 96)) (-2221 (($ $ (-564)) 98)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2344 ((|#1| $) 95)) (-2539 (((-418 |#1|) $) 94)) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) 92)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1789 (($ $) 50)) (-1831 (((-859) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-2219 (((-768)) 70 T CONST)) (-3939 (((-112) $ $) NIL)) (-1293 (($) 26 T CONST)) (-1300 (($) 15 T CONST)) (-1702 (((-112) $ $) 86)) (-1823 (($ $ $) NIL)) (-1808 (($ $) 107) (($ $ $) NIL)) (-1797 (($ $ $) 49)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL))) -(((-911 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -1831 ((-407 |#1|) $)) (-15 -1831 ($ (-407 (-418 |#1|)))) (-15 -1789 ($ $)) (-15 -2539 ((-418 |#1|) $)) (-15 -2344 (|#1| $)) (-15 -2221 ($ $ (-564))) (-15 -2961 ((-564) $)) (-15 -3571 ((-1166 |#1|) |#1| |#1|)) (-15 -3968 ($ $)) (-15 -4312 ($ |#1| (-418 |#1|))) (-15 -3423 (|#1| $)))) (-307)) (T -911)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3)))) (-1789 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-2344 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3571 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3968 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-4312 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2)))) (-3423 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) -(-13 (-363) (-38 |#1|) (-10 -8 (-15 -1831 ((-407 |#1|) $)) (-15 -1831 ($ (-407 (-418 |#1|)))) (-15 -1789 ($ $)) (-15 -2539 ((-418 |#1|) $)) (-15 -2344 (|#1| $)) (-15 -2221 ($ $ (-564))) (-15 -2961 ((-564) $)) (-15 -3571 ((-1166 |#1|) |#1| |#1|)) (-15 -3968 ($ $)) (-15 -4312 ($ |#1| (-418 |#1|))) (-15 -3423 (|#1| $)))) -((-4312 (((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)) 17) (((-52) (-407 (-949 |#1|)) (-1170)) 18))) -(((-912 |#1|) (-10 -7 (-15 -4312 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -4312 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -912)) -((-4312 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5))))) -(-10 -7 (-15 -4312 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -4312 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)))) -((-4106 ((|#4| (-641 |#4|)) 149) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-2777 (((-1166 |#4|) (-641 (-1166 |#4|))) 140) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 63) ((|#4| (-641 |#4|)) 71) ((|#4| |#4| |#4|) 108))) -(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2777 (|#4| |#4| |#4|)) (-15 -2777 (|#4| (-641 |#4|))) (-15 -2777 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2777 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -4106 (|#4| |#4| |#4|)) (-15 -4106 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -4106 (|#4| (-641 |#4|)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -913)) -((-4106 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-4106 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-4106 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2777 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-2777 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4))))) -(-10 -7 (-15 -2777 (|#4| |#4| |#4|)) (-15 -2777 (|#4| (-641 |#4|))) (-15 -2777 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2777 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -4106 (|#4| |#4| |#4|)) (-15 -4106 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -4106 (|#4| (-641 |#4|)))) -((-2859 (((-901 (-564)) (-968)) 37) (((-901 (-564)) (-641 (-564))) 34)) (-1506 (((-901 (-564)) (-641 (-564))) 68) (((-901 (-564)) (-918)) 69)) (-4230 (((-901 (-564))) 38)) (-2463 (((-901 (-564))) 54) (((-901 (-564)) (-641 (-564))) 53)) (-3140 (((-901 (-564))) 52) (((-901 (-564)) (-641 (-564))) 51)) (-1355 (((-901 (-564))) 50) (((-901 (-564)) (-641 (-564))) 49)) (-3433 (((-901 (-564))) 48) (((-901 (-564)) (-641 (-564))) 47)) (-2400 (((-901 (-564))) 46) (((-901 (-564)) (-641 (-564))) 45)) (-2090 (((-901 (-564))) 56) (((-901 (-564)) (-641 (-564))) 55)) (-2361 (((-901 (-564)) (-641 (-564))) 73) (((-901 (-564)) (-918)) 75)) (-1855 (((-901 (-564)) (-641 (-564))) 70) (((-901 (-564)) (-918)) 71)) (-2152 (((-901 (-564)) (-641 (-564))) 66) (((-901 (-564)) (-918)) 67)) (-3959 (((-901 (-564)) (-641 (-918))) 59))) -(((-914) (-10 -7 (-15 -1506 ((-901 (-564)) (-918))) (-15 -1506 ((-901 (-564)) (-641 (-564)))) (-15 -2152 ((-901 (-564)) (-918))) (-15 -2152 ((-901 (-564)) (-641 (-564)))) (-15 -3959 ((-901 (-564)) (-641 (-918)))) (-15 -1855 ((-901 (-564)) (-918))) (-15 -1855 ((-901 (-564)) (-641 (-564)))) (-15 -2361 ((-901 (-564)) (-918))) (-15 -2361 ((-901 (-564)) (-641 (-564)))) (-15 -2400 ((-901 (-564)) (-641 (-564)))) (-15 -2400 ((-901 (-564)))) (-15 -3433 ((-901 (-564)) (-641 (-564)))) (-15 -3433 ((-901 (-564)))) (-15 -1355 ((-901 (-564)) (-641 (-564)))) (-15 -1355 ((-901 (-564)))) (-15 -3140 ((-901 (-564)) (-641 (-564)))) (-15 -3140 ((-901 (-564)))) (-15 -2463 ((-901 (-564)) (-641 (-564)))) (-15 -2463 ((-901 (-564)))) (-15 -2090 ((-901 (-564)) (-641 (-564)))) (-15 -2090 ((-901 (-564)))) (-15 -4230 ((-901 (-564)))) (-15 -2859 ((-901 (-564)) (-641 (-564)))) (-15 -2859 ((-901 (-564)) (-968))))) (T -914)) -((-2859 (*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4230 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2090 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2090 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2463 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3140 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1355 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3433 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2400 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(-10 -7 (-15 -1506 ((-901 (-564)) (-918))) (-15 -1506 ((-901 (-564)) (-641 (-564)))) (-15 -2152 ((-901 (-564)) (-918))) (-15 -2152 ((-901 (-564)) (-641 (-564)))) (-15 -3959 ((-901 (-564)) (-641 (-918)))) (-15 -1855 ((-901 (-564)) (-918))) (-15 -1855 ((-901 (-564)) (-641 (-564)))) (-15 -2361 ((-901 (-564)) (-918))) (-15 -2361 ((-901 (-564)) (-641 (-564)))) (-15 -2400 ((-901 (-564)) (-641 (-564)))) (-15 -2400 ((-901 (-564)))) (-15 -3433 ((-901 (-564)) (-641 (-564)))) (-15 -3433 ((-901 (-564)))) (-15 -1355 ((-901 (-564)) (-641 (-564)))) (-15 -1355 ((-901 (-564)))) (-15 -3140 ((-901 (-564)) (-641 (-564)))) (-15 -3140 ((-901 (-564)))) (-15 -2463 ((-901 (-564)) (-641 (-564)))) (-15 -2463 ((-901 (-564)))) (-15 -2090 ((-901 (-564)) (-641 (-564)))) (-15 -2090 ((-901 (-564)))) (-15 -4230 ((-901 (-564)))) (-15 -2859 ((-901 (-564)) (-641 (-564)))) (-15 -2859 ((-901 (-564)) (-968)))) -((-4109 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 14)) (-3286 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 13))) -(((-915 |#1|) (-10 -7 (-15 -3286 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -4109 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))))) (-452)) (T -915)) -((-4109 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4)))) (-3286 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4))))) -(-10 -7 (-15 -3286 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -4109 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))))) -((-1831 (((-316 |#1|) (-477)) 16))) -(((-916 |#1|) (-10 -7 (-15 -1831 ((-316 |#1|) (-477)))) (-13 (-847) (-556))) (T -916)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4)) (-4 *4 (-13 (-847) (-556)))))) -(-10 -7 (-15 -1831 ((-316 |#1|) (-477)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-2949 (((-112) $) 31)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-917) (-140)) (T -917)) -((-3300 (*1 *2 *3) (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -2860 (-641 *1)) (|:| -1426 *1))) (-5 *3 (-641 *1)))) (-2106 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917))))) -(-13 (-452) (-10 -8 (-15 -3300 ((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $))) (-15 -2106 ((-3 (-641 $) "failed") (-641 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2777 (($ $ $) NIL)) (-1831 (((-859) $) NIL)) (-1300 (($) NIL T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ $ $) NIL))) -(((-918) (-13 (-791) (-723) (-10 -8 (-15 -2777 ($ $ $)) (-6 (-4408 "*"))))) (T -918)) -((-2777 (*1 *1 *1 *1) (-5 *1 (-918)))) -(-13 (-791) (-723) (-10 -8 (-15 -2777 ($ $ $)) (-6 (-4408 "*")))) +((-2124 (((-3 (-2 (|:| -3717 (-767)) (|:| -3078 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-2629 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-3717 (((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) +(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3717 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2629 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -2124 ((-3 (-2 (|:| -3717 (-767)) (|:| -3078 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-846) (-556) (-1034 (-564))) (-430 |#1|) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -907)) +((-2124 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-2 (|:| -3717 (-767)) (|:| -3078 *8))) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-3717 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3717 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2629 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -2124 ((-3 (-2 (|:| -3717 (-767)) (|:| -3078 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) +((-2124 (((-3 (-2 (|:| -3717 (-767)) (|:| -3078 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-2629 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-3717 (((-3 (-767) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14))) +(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3717 ((-3 (-767) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2629 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2124 ((-3 (-2 (|:| -3717 (-767)) (|:| -3078 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1235 (-407 (-564))) (-1235 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -908)) +((-2124 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -3717 (-767)) (|:| -3078 *6))) (-5 *1 (-908 *4 *5 *6)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6)))) (-3717 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6))))) +(-10 -7 (-15 -3717 ((-3 (-767) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2629 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2124 ((-3 (-2 (|:| -3717 (-767)) (|:| -3078 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) +((-3922 ((|#2| |#2|) 26)) (-2701 (((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-2798 (((-917) (-564)) 38)) (-2261 (((-564) |#2|) 45)) (-3560 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20))) +(((-909 |#1| |#2|) (-10 -7 (-15 -2798 ((-917) (-564))) (-15 -3560 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -3560 ((-564) |#2|)) (-15 -2701 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -2261 ((-564) |#2|)) (-15 -3922 (|#2| |#2|))) (-1235 (-407 (-564))) (-1235 (-407 |#1|))) (T -909)) +((-3922 (*1 *2 *2) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1235 (-407 *3))))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1235 (-407 *4))))) (-3560 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3560 (*1 *2 *3) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1235 (-407 *3))))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1235 (-407 *4)))))) +(-10 -7 (-15 -2798 ((-917) (-564))) (-15 -3560 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -3560 ((-564) |#2|)) (-15 -2701 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -2261 ((-564) |#2|)) (-15 -3922 (|#2| |#2|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 ((|#1| $) 99)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2574 (($ $ $) NIL)) (-2689 (((-3 $ "failed") $) 93)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2282 (($ |#1| (-418 |#1|)) 91)) (-3711 (((-1166 |#1|) |#1| |#1|) 53)) (-3122 (($ $) 61)) (-1828 (((-112) $) NIL)) (-1943 (((-564) $) 96)) (-3199 (($ $ (-564)) 98)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1973 ((|#1| $) 95)) (-3329 (((-418 |#1|) $) 94)) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) 92)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-4271 (($ $) 50)) (-2322 (((-858) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-3179 (((-767)) 70 T CONST)) (-4024 (((-112) $ $) NIL)) (-2389 (($) 26 T CONST)) (-2403 (($) 15 T CONST)) (-2921 (((-112) $ $) 86)) (-3034 (($ $ $) NIL)) (-3021 (($ $) 107) (($ $ $) NIL)) (-3011 (($ $ $) 49)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL))) +(((-910 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -2322 ((-407 |#1|) $)) (-15 -2322 ($ (-407 (-418 |#1|)))) (-15 -4271 ($ $)) (-15 -3329 ((-418 |#1|) $)) (-15 -1973 (|#1| $)) (-15 -3199 ($ $ (-564))) (-15 -1943 ((-564) $)) (-15 -3711 ((-1166 |#1|) |#1| |#1|)) (-15 -3122 ($ $)) (-15 -2282 ($ |#1| (-418 |#1|))) (-15 -1625 (|#1| $)))) (-307)) (T -910)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) (-4271 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-1973 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3199 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3711 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-2282 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) (-1625 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(-13 (-363) (-38 |#1|) (-10 -8 (-15 -2322 ((-407 |#1|) $)) (-15 -2322 ($ (-407 (-418 |#1|)))) (-15 -4271 ($ $)) (-15 -3329 ((-418 |#1|) $)) (-15 -1973 (|#1| $)) (-15 -3199 ($ $ (-564))) (-15 -1943 ((-564) $)) (-15 -3711 ((-1166 |#1|) |#1| |#1|)) (-15 -3122 ($ $)) (-15 -2282 ($ |#1| (-418 |#1|))) (-15 -1625 (|#1| $)))) +((-2282 (((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1170)) 17) (((-52) (-407 (-948 |#1|)) (-1170)) 18))) +(((-911 |#1|) (-10 -7 (-15 -2282 ((-52) (-407 (-948 |#1|)) (-1170))) (-15 -2282 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -911)) +((-2282 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1170)) (-5 *3 (-948 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5))))) +(-10 -7 (-15 -2282 ((-52) (-407 (-948 |#1|)) (-1170))) (-15 -2282 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1170)))) +((-2038 ((|#4| (-641 |#4|)) 149) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-3235 (((-1166 |#4|) (-641 (-1166 |#4|))) 140) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 63) ((|#4| (-641 |#4|)) 71) ((|#4| |#4| |#4|) 108))) +(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3235 (|#4| |#4| |#4|)) (-15 -3235 (|#4| (-641 |#4|))) (-15 -3235 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3235 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -2038 (|#4| |#4| |#4|)) (-15 -2038 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2038 (|#4| (-641 |#4|)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -912)) +((-2038 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-2038 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-2038 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3235 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-3235 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))) +(-10 -7 (-15 -3235 (|#4| |#4| |#4|)) (-15 -3235 (|#4| (-641 |#4|))) (-15 -3235 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3235 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -2038 (|#4| |#4| |#4|)) (-15 -2038 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2038 (|#4| (-641 |#4|)))) +((-3384 (((-900 (-564)) (-967)) 37) (((-900 (-564)) (-641 (-564))) 34)) (-3341 (((-900 (-564)) (-641 (-564))) 68) (((-900 (-564)) (-917)) 69)) (-3959 (((-900 (-564))) 38)) (-3817 (((-900 (-564))) 54) (((-900 (-564)) (-641 (-564))) 53)) (-4188 (((-900 (-564))) 52) (((-900 (-564)) (-641 (-564))) 51)) (-2481 (((-900 (-564))) 50) (((-900 (-564)) (-641 (-564))) 49)) (-1728 (((-900 (-564))) 48) (((-900 (-564)) (-641 (-564))) 47)) (-1330 (((-900 (-564))) 46) (((-900 (-564)) (-641 (-564))) 45)) (-4311 (((-900 (-564))) 56) (((-900 (-564)) (-641 (-564))) 55)) (-4028 (((-900 (-564)) (-641 (-564))) 73) (((-900 (-564)) (-917)) 75)) (-3651 (((-900 (-564)) (-641 (-564))) 70) (((-900 (-564)) (-917)) 71)) (-3679 (((-900 (-564)) (-641 (-564))) 66) (((-900 (-564)) (-917)) 67)) (-3019 (((-900 (-564)) (-641 (-917))) 59))) +(((-913) (-10 -7 (-15 -3341 ((-900 (-564)) (-917))) (-15 -3341 ((-900 (-564)) (-641 (-564)))) (-15 -3679 ((-900 (-564)) (-917))) (-15 -3679 ((-900 (-564)) (-641 (-564)))) (-15 -3019 ((-900 (-564)) (-641 (-917)))) (-15 -3651 ((-900 (-564)) (-917))) (-15 -3651 ((-900 (-564)) (-641 (-564)))) (-15 -4028 ((-900 (-564)) (-917))) (-15 -4028 ((-900 (-564)) (-641 (-564)))) (-15 -1330 ((-900 (-564)) (-641 (-564)))) (-15 -1330 ((-900 (-564)))) (-15 -1728 ((-900 (-564)) (-641 (-564)))) (-15 -1728 ((-900 (-564)))) (-15 -2481 ((-900 (-564)) (-641 (-564)))) (-15 -2481 ((-900 (-564)))) (-15 -4188 ((-900 (-564)) (-641 (-564)))) (-15 -4188 ((-900 (-564)))) (-15 -3817 ((-900 (-564)) (-641 (-564)))) (-15 -3817 ((-900 (-564)))) (-15 -4311 ((-900 (-564)) (-641 (-564)))) (-15 -4311 ((-900 (-564)))) (-15 -3959 ((-900 (-564)))) (-15 -3384 ((-900 (-564)) (-641 (-564)))) (-15 -3384 ((-900 (-564)) (-967))))) (T -913)) +((-3384 (*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3959 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4311 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3817 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4188 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2481 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1728 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1330 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-641 (-917))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(-10 -7 (-15 -3341 ((-900 (-564)) (-917))) (-15 -3341 ((-900 (-564)) (-641 (-564)))) (-15 -3679 ((-900 (-564)) (-917))) (-15 -3679 ((-900 (-564)) (-641 (-564)))) (-15 -3019 ((-900 (-564)) (-641 (-917)))) (-15 -3651 ((-900 (-564)) (-917))) (-15 -3651 ((-900 (-564)) (-641 (-564)))) (-15 -4028 ((-900 (-564)) (-917))) (-15 -4028 ((-900 (-564)) (-641 (-564)))) (-15 -1330 ((-900 (-564)) (-641 (-564)))) (-15 -1330 ((-900 (-564)))) (-15 -1728 ((-900 (-564)) (-641 (-564)))) (-15 -1728 ((-900 (-564)))) (-15 -2481 ((-900 (-564)) (-641 (-564)))) (-15 -2481 ((-900 (-564)))) (-15 -4188 ((-900 (-564)) (-641 (-564)))) (-15 -4188 ((-900 (-564)))) (-15 -3817 ((-900 (-564)) (-641 (-564)))) (-15 -3817 ((-900 (-564)))) (-15 -4311 ((-900 (-564)) (-641 (-564)))) (-15 -4311 ((-900 (-564)))) (-15 -3959 ((-900 (-564)))) (-15 -3384 ((-900 (-564)) (-641 (-564)))) (-15 -3384 ((-900 (-564)) (-967)))) +((-2068 (((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))) 14)) (-3008 (((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))) 13))) +(((-914 |#1|) (-10 -7 (-15 -3008 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -2068 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))))) (-452)) (T -914)) +((-2068 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-914 *4)))) (-3008 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-914 *4))))) +(-10 -7 (-15 -3008 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -2068 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))))) +((-2322 (((-316 |#1|) (-477)) 16))) +(((-915 |#1|) (-10 -7 (-15 -2322 ((-316 |#1|) (-477)))) (-13 (-846) (-556))) (T -915)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) (-4 *4 (-13 (-846) (-556)))))) +(-10 -7 (-15 -2322 ((-316 |#1|) (-477)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-1828 (((-112) $) 31)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-916) (-140)) (T -916)) +((-3121 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -3139 (-641 *1)) (|:| -4095 *1))) (-5 *3 (-641 *1)))) (-1355 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-916))))) +(-13 (-452) (-10 -8 (-15 -3121 ((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $))) (-15 -1355 ((-3 (-641 $) "failed") (-641 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3235 (($ $ $) NIL)) (-2322 (((-858) $) NIL)) (-2403 (($) NIL T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ $ $) NIL))) +(((-917) (-13 (-790) (-722) (-10 -8 (-15 -3235 ($ $ $)) (-6 (-4408 "*"))))) (T -917)) +((-3235 (*1 *1 *1 *1) (-5 *1 (-917)))) +(-13 (-790) (-722) (-10 -8 (-15 -3235 ($ $ $)) (-6 (-4408 "*")))) ((|NonNegativeInteger|) (< 0 |#1|)) -((-2811 ((|#2| (-641 |#1|) (-641 |#1|)) 29))) -(((-919 |#1| |#2|) (-10 -7 (-15 -2811 (|#2| (-641 |#1|) (-641 |#1|)))) (-363) (-1235 |#1|)) (T -919)) -((-2811 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) (-5 *1 (-919 *4 *2))))) -(-10 -7 (-15 -2811 (|#2| (-641 |#1|) (-641 |#1|)))) -((-1947 (((-1166 |#2|) (-641 |#2|) (-641 |#2|)) 17) (((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|)) 13))) -(((-920 |#1| |#2|) (-10 -7 (-15 -1947 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -1947 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) (-1170) (-363)) (T -920)) -((-1947 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-1170)))) (-1947 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) (-4 *5 (-363)) (-5 *1 (-920 *4 *5))))) -(-10 -7 (-15 -1947 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -1947 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) -((-3846 (((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 176)) (-1790 ((|#4| |#4|) 195)) (-2277 (((-641 (-407 (-949 |#1|))) (-641 (-1170))) 149)) (-3153 (((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564)) 88)) (-3933 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|)) 69)) (-3620 (((-685 |#4|) (-685 |#4|) (-641 |#4|)) 65)) (-2925 (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 188)) (-2295 (((-564) (-685 |#4|) (-918) (-1152)) 169) (((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152)) 168) (((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152)) 167) (((-564) (-685 |#4|) (-1152)) 157) (((-564) (-685 |#4|) (-641 (-1170)) (-1152)) 156) (((-564) (-685 |#4|) (-641 |#4|) (-1152)) 155) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918)) 154) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918)) 153) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918)) 152) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|)) 151) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170))) 150) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|)) 146)) (-3351 ((|#4| (-949 |#1|)) 80)) (-2410 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 192)) (-4222 (((-641 (-641 (-564))) (-564) (-564)) 162)) (-4246 (((-641 (-641 |#4|)) (-641 (-641 |#4|))) 107)) (-2159 (((-768) (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 102)) (-2222 (((-768) (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 101)) (-3815 (((-112) (-641 (-949 |#1|))) 19) (((-112) (-641 |#4|)) 15)) (-2278 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|)) 84)) (-1984 (((-641 |#4|) |#4|) 57)) (-2167 (((-641 (-407 (-949 |#1|))) (-641 |#4|)) 145) (((-685 (-407 (-949 |#1|))) (-685 |#4|)) 66) (((-407 (-949 |#1|)) |#4|) 142)) (-3869 (((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564)) 113)) (-2016 (((-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768)) 100)) (-3953 (((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768)) 124)) (-1918 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -2394 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -3531 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) 56))) -(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -2295 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -3846 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -2925 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -3869 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2167 ((-407 (-949 |#1|)) |#4|)) (-15 -2167 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2167 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -2277 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3351 (|#4| (-949 |#1|))) (-15 -2278 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -2016 ((-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -3933 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -1918 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -2394 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -3531 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -1984 ((-641 |#4|) |#4|)) (-15 -2222 ((-768) (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -2159 ((-768) (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -4246 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -4222 ((-641 (-641 (-564))) (-564) (-564))) (-15 -2410 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3953 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -3620 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3153 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -1790 (|#4| |#4|)) (-15 -3815 ((-112) (-641 |#4|))) (-15 -3815 ((-112) (-641 (-949 |#1|))))) (-13 (-307) (-147)) (-13 (-847) (-612 (-1170))) (-790) (-946 |#1| |#3| |#2|)) (T -921)) -((-3815 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))) (-3153 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9)))) (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790)) (-5 *2 (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) (|:| |wcond| (-641 (-949 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *9)))) (|:| -3331 (-641 (-1259 (-407 (-949 *9))))))))) (-5 *1 (-921 *9 *10 *11 *12)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *5 *6 *7 *8)))) (-4222 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5)))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1984 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2394 (-685 (-407 (-949 *4)))) (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -3531 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3331 (-641 (-1259 (-407 (-949 *4))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3933 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3331 (-641 (-1259 (-407 (-949 *4))))))) (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *8))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768)))) (-2278 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-685 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2167 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-3869 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8)))) (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170)))) (-4 *10 (-790)) (-5 *2 (-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) (|:| |wcond| (-641 (-949 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *8)))) (|:| -3331 (-641 (-1259 (-407 (-949 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3331 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-918)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-2295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -3331 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -3331 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3331 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) -(-10 -7 (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -2295 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -2295 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -2295 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -3846 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -2925 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -3869 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2167 ((-407 (-949 |#1|)) |#4|)) (-15 -2167 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2167 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -2277 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3351 (|#4| (-949 |#1|))) (-15 -2278 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -2016 ((-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -3933 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -1918 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -2394 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -3531 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -1984 ((-641 |#4|) |#4|)) (-15 -2222 ((-768) (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -2159 ((-768) (-641 (-2 (|:| -3531 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -4246 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -4222 ((-641 (-641 (-564))) (-564) (-564))) (-15 -2410 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3953 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -3620 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3153 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3331 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -1790 (|#4| |#4|)) (-15 -3815 ((-112) (-641 |#4|))) (-15 -3815 ((-112) (-641 (-949 |#1|))))) -((-3932 (((-924) |#1| (-1170)) 17) (((-924) |#1| (-1170) (-1088 (-225))) 21)) (-3564 (((-924) |#1| |#1| (-1170) (-1088 (-225))) 19) (((-924) |#1| (-1170) (-1088 (-225))) 15))) -(((-922 |#1|) (-10 -7 (-15 -3564 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -3564 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3932 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -3932 ((-924) |#1| (-1170)))) (-612 (-536))) (T -922)) -((-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-3564 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-3564 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536)))))) -(-10 -7 (-15 -3564 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -3564 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3932 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -3932 ((-924) |#1| (-1170)))) -((-1315 (($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 122)) (-2238 (((-1088 (-225)) $) 63)) (-2225 (((-1088 (-225)) $) 62)) (-2213 (((-1088 (-225)) $) 61)) (-2796 (((-641 (-641 (-225))) $) 68)) (-1541 (((-1088 (-225)) $) 64)) (-2504 (((-564) (-564)) 56)) (-3945 (((-564) (-564)) 52)) (-3338 (((-564) (-564)) 54)) (-1866 (((-112) (-112)) 58)) (-4108 (((-564)) 55)) (-2264 (($ $ (-1088 (-225))) 125) (($ $) 126)) (-4066 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 132) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 133)) (-3564 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 135) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 136) (($ $ (-1088 (-225))) 128)) (-4213 (((-564)) 59)) (-2060 (((-564)) 50)) (-2287 (((-564)) 53)) (-2279 (((-641 (-641 (-940 (-225)))) $) 152)) (-2974 (((-112) (-112)) 60)) (-1831 (((-859) $) 150)) (-4234 (((-112)) 57))) -(((-923) (-13 (-971) (-10 -8 (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ $ (-1088 (-225)))) (-15 -1315 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2264 ($ $ (-1088 (-225)))) (-15 -2264 ($ $)) (-15 -1541 ((-1088 (-225)) $)) (-15 -2796 ((-641 (-641 (-225))) $)) (-15 -2060 ((-564))) (-15 -3945 ((-564) (-564))) (-15 -2287 ((-564))) (-15 -3338 ((-564) (-564))) (-15 -4108 ((-564))) (-15 -2504 ((-564) (-564))) (-15 -4234 ((-112))) (-15 -1866 ((-112) (-112))) (-15 -4213 ((-564))) (-15 -2974 ((-112) (-112)))))) (T -923)) -((-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-4066 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3564 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3564 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-1315 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2264 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2264 (*1 *1 *1) (-5 *1 (-923))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923)))) (-2060 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2287 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3338 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-4108 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2504 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-4234 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-4213 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(-13 (-971) (-10 -8 (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ $ (-1088 (-225)))) (-15 -1315 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2264 ($ $ (-1088 (-225)))) (-15 -2264 ($ $)) (-15 -1541 ((-1088 (-225)) $)) (-15 -2796 ((-641 (-641 (-225))) $)) (-15 -2060 ((-564))) (-15 -3945 ((-564) (-564))) (-15 -2287 ((-564))) (-15 -3338 ((-564) (-564))) (-15 -4108 ((-564))) (-15 -2504 ((-564) (-564))) (-15 -4234 ((-112))) (-15 -1866 ((-112) (-112))) (-15 -4213 ((-564))) (-15 -2974 ((-112) (-112))))) -((-1315 (($ $ (-1088 (-225))) 123) (($ $ (-1088 (-225)) (-1088 (-225))) 124)) (-2225 (((-1088 (-225)) $) 72)) (-2213 (((-1088 (-225)) $) 71)) (-1541 (((-1088 (-225)) $) 73)) (-2420 (((-564) (-564)) 65)) (-3506 (((-564) (-564)) 61)) (-3911 (((-564) (-564)) 63)) (-4001 (((-112) (-112)) 67)) (-2932 (((-564)) 64)) (-2264 (($ $ (-1088 (-225))) 127) (($ $) 128)) (-4066 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 142) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 143)) (-3932 (($ (-1 (-225) (-225)) (-1088 (-225))) 150) (($ (-1 (-225) (-225))) 154)) (-3564 (($ (-1 (-225) (-225)) (-1088 (-225))) 138) (($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225))) 139) (($ (-641 (-1 (-225) (-225))) (-1088 (-225))) 147) (($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225))) 148) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 140) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 141) (($ $ (-1088 (-225))) 129)) (-3863 (((-112) $) 68)) (-3374 (((-564)) 69)) (-1552 (((-564)) 59)) (-2047 (((-564)) 62)) (-2279 (((-641 (-641 (-940 (-225)))) $) 35)) (-3422 (((-112) (-112)) 70)) (-1831 (((-859) $) 168)) (-3716 (((-112)) 66))) -(((-924) (-13 (-952) (-10 -8 (-15 -3564 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -3564 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3932 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3932 ($ (-1 (-225) (-225)))) (-15 -3564 ($ $ (-1088 (-225)))) (-15 -3863 ((-112) $)) (-15 -1315 ($ $ (-1088 (-225)))) (-15 -1315 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2264 ($ $ (-1088 (-225)))) (-15 -2264 ($ $)) (-15 -1541 ((-1088 (-225)) $)) (-15 -1552 ((-564))) (-15 -3506 ((-564) (-564))) (-15 -2047 ((-564))) (-15 -3911 ((-564) (-564))) (-15 -2932 ((-564))) (-15 -2420 ((-564) (-564))) (-15 -3716 ((-112))) (-15 -4001 ((-112) (-112))) (-15 -3374 ((-564))) (-15 -3422 ((-112) (-112)))))) (T -924)) -((-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3564 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3564 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3564 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3564 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-4066 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-924)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-1315 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-1315 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2264 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2264 (*1 *1 *1) (-5 *1 (-924))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-1552 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2047 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2932 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3716 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-3374 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3422 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(-13 (-952) (-10 -8 (-15 -3564 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -3564 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3564 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -4066 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3932 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3932 ($ (-1 (-225) (-225)))) (-15 -3564 ($ $ (-1088 (-225)))) (-15 -3863 ((-112) $)) (-15 -1315 ($ $ (-1088 (-225)))) (-15 -1315 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2264 ($ $ (-1088 (-225)))) (-15 -2264 ($ $)) (-15 -1541 ((-1088 (-225)) $)) (-15 -1552 ((-564))) (-15 -3506 ((-564) (-564))) (-15 -2047 ((-564))) (-15 -3911 ((-564) (-564))) (-15 -2932 ((-564))) (-15 -2420 ((-564) (-564))) (-15 -3716 ((-112))) (-15 -4001 ((-112) (-112))) (-15 -3374 ((-564))) (-15 -3422 ((-112) (-112))))) -((-2355 (((-641 (-1088 (-225))) (-641 (-641 (-940 (-225))))) 34))) -(((-925) (-10 -7 (-15 -2355 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225)))))))) (T -925)) -((-2355 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925))))) -(-10 -7 (-15 -2355 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225))))))) -((-2890 ((|#2| |#2|) 28)) (-3638 ((|#2| |#2|) 29)) (-1809 ((|#2| |#2|) 27)) (-2058 ((|#2| |#2| (-1152)) 26))) -(((-926 |#1| |#2|) (-10 -7 (-15 -2058 (|#2| |#2| (-1152))) (-15 -1809 (|#2| |#2|)) (-15 -2890 (|#2| |#2|)) (-15 -3638 (|#2| |#2|))) (-847) (-430 |#1|)) (T -926)) -((-3638 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-2890 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-1809 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-2058 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2)) (-4 *2 (-430 *4))))) -(-10 -7 (-15 -2058 (|#2| |#2| (-1152))) (-15 -1809 (|#2| |#2|)) (-15 -2890 (|#2| |#2|)) (-15 -3638 (|#2| |#2|))) -((-2890 (((-316 (-564)) (-1170)) 16)) (-3638 (((-316 (-564)) (-1170)) 14)) (-1809 (((-316 (-564)) (-1170)) 12)) (-2058 (((-316 (-564)) (-1170) (-1152)) 19))) -(((-927) (-10 -7 (-15 -2058 ((-316 (-564)) (-1170) (-1152))) (-15 -1809 ((-316 (-564)) (-1170))) (-15 -2890 ((-316 (-564)) (-1170))) (-15 -3638 ((-316 (-564)) (-1170))))) (T -927)) -((-3638 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))) -(-10 -7 (-15 -2058 ((-316 (-564)) (-1170) (-1152))) (-15 -1809 ((-316 (-564)) (-1170))) (-15 -2890 ((-316 (-564)) (-1170))) (-15 -3638 ((-316 (-564)) (-1170)))) -((-2131 (((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)) 25)) (-4178 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -4178 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2131 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-883 |#1|) (-13 (-1094) (-1035 |#2|))) (T -928)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5)) (-5 *1 (-928 *5 *3 *6)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5))) (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-928 *4 *5 *6))))) -(-10 -7 (-15 -4178 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2131 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)))) -((-2131 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 30))) -(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -2131 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-847) (-883 |#1|)) (-13 (-430 |#2|) (-612 (-889 |#1|)) (-883 |#1|) (-1035 (-610 $)))) (T -929)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $)))) (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5))) (-5 *1 (-929 *5 *6 *3))))) -(-10 -7 (-15 -2131 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) -((-2131 (((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)) 13))) -(((-930 |#1|) (-10 -7 (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)))) (-545)) (T -930)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545)) (-5 *1 (-930 *3))))) -(-10 -7 (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)))) -((-2131 (((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)) 57))) -(((-931 |#1| |#2|) (-10 -7 (-15 -2131 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)))) (-1094) (-13 (-847) (-1035 (-610 $)) (-612 (-889 |#1|)) (-883 |#1|))) (T -931)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5))) (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6))))) -(-10 -7 (-15 -2131 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)))) -((-2131 (((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)) 17))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2131 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)))) (-1094) (-883 |#1|) (-662 |#2|)) (T -932)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3))))) -(-10 -7 (-15 -2131 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)))) -((-2131 (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|)) 17 (|has| |#3| (-883 |#1|))) (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|))) 16))) -(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2131 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -2131 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|)) (-1094) (-790) (-847) (-13 (-1046) (-847) (-883 |#1|)) (-13 (-946 |#4| |#2| |#3|) (-612 (-889 |#1|)))) (T -933)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5)) (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-13 (-1046) (-847) (-883 *5))) (-5 *1 (-933 *5 *6 *7 *8 *3)))) (-2131 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3))) (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4))) (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6))) (-5 *1 (-933 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2131 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -2131 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|)) -((-3724 ((|#2| |#2| (-641 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3724 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3724 (|#2| |#2| (-641 (-1 (-112) |#3|))))) (-847) (-430 |#1|) (-1209)) (T -934)) -((-3724 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) (-3724 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4))))) -(-10 -7 (-15 -3724 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3724 (|#2| |#2| (-641 (-1 (-112) |#3|))))) -((-3724 (((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1170) (-1 (-112) |#1|)) 15))) -(((-935 |#1|) (-10 -7 (-15 -3724 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -3724 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) (-1209)) (T -935)) -((-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5))))) -(-10 -7 (-15 -3724 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -3724 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) -((-2131 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 25))) -(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -2131 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-883 |#1|) (-612 (-889 |#1|))) (-989 |#2|)) (T -936)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6)) (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5)) (-5 *1 (-936 *5 *6 *3))))) -(-10 -7 (-15 -2131 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) -((-2131 (((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))) 18))) -(((-937 |#1|) (-10 -7 (-15 -2131 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))))) (-1094)) (T -937)) -((-2131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *1 (-937 *5))))) -(-10 -7 (-15 -2131 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))))) -((-2594 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 34)) (-2131 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 33))) -(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -2131 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -2594 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))) (-1094) (-13 (-1046) (-847)) (-13 (-1046) (-612 (-889 |#1|)) (-1035 |#2|))) (T -938)) -((-2594 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6))) (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7))) (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847))) (-5 *1 (-938 *6 *7 *8)))) (-2131 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9))) (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8))) (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847))) (-5 *1 (-938 *7 *8 *9))))) -(-10 -7 (-15 -2131 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -2594 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))) -((-3729 (((-1166 (-407 (-564))) (-564)) 80)) (-4182 (((-1166 (-564)) (-564)) 83)) (-2306 (((-1166 (-564)) (-564)) 77)) (-1975 (((-564) (-1166 (-564))) 73)) (-2452 (((-1166 (-407 (-564))) (-564)) 64)) (-4235 (((-1166 (-564)) (-564)) 48)) (-4062 (((-1166 (-564)) (-564)) 85)) (-1396 (((-1166 (-564)) (-564)) 84)) (-1393 (((-1166 (-407 (-564))) (-564)) 66))) -(((-939) (-10 -7 (-15 -1393 ((-1166 (-407 (-564))) (-564))) (-15 -1396 ((-1166 (-564)) (-564))) (-15 -4062 ((-1166 (-564)) (-564))) (-15 -4235 ((-1166 (-564)) (-564))) (-15 -2452 ((-1166 (-407 (-564))) (-564))) (-15 -1975 ((-564) (-1166 (-564)))) (-15 -2306 ((-1166 (-564)) (-564))) (-15 -4182 ((-1166 (-564)) (-564))) (-15 -3729 ((-1166 (-407 (-564))) (-564))))) (T -939)) -((-3729 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2306 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939)))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-4235 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1396 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) -(-10 -7 (-15 -1393 ((-1166 (-407 (-564))) (-564))) (-15 -1396 ((-1166 (-564)) (-564))) (-15 -4062 ((-1166 (-564)) (-564))) (-15 -4235 ((-1166 (-564)) (-564))) (-15 -2452 ((-1166 (-407 (-564))) (-564))) (-15 -1975 ((-564) (-1166 (-564)))) (-15 -2306 ((-1166 (-564)) (-564))) (-15 -4182 ((-1166 (-564)) (-564))) (-15 -3729 ((-1166 (-407 (-564))) (-564)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1463 (($ (-768)) NIL (|has| |#1| (-23)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1850 (($ (-641 |#1|)) 9)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3167 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2117 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1713 (((-112) $ (-768)) NIL)) (-1502 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-3951 (($ $ (-641 |#1|)) 25)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 18) (($ $ (-1226 (-564))) NIL)) (-3032 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-3548 (((-918) $) 13)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4231 (($ $ $) 23)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 14)) (-1842 (($ (-641 |#1|)) NIL)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1808 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1797 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2828 (((-768) $) 11 (|has| $ (-6 -4406))))) -(((-940 |#1|) (-977 |#1|) (-1046)) (T -940)) -NIL -(-977 |#1|) -((-3545 (((-481 |#1| |#2|) (-949 |#2|)) 22)) (-2132 (((-247 |#1| |#2|) (-949 |#2|)) 35)) (-2758 (((-949 |#2|) (-481 |#1| |#2|)) 27)) (-2750 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-2626 (((-949 |#2|) (-247 |#1| |#2|)) 32)) (-3813 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-941 |#1| |#2|) (-10 -7 (-15 -3813 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2750 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3545 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -2758 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -2626 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -2132 ((-247 |#1| |#2|) (-949 |#2|)))) (-641 (-1170)) (-1046)) (T -941)) -((-2132 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5))))) -(-10 -7 (-15 -3813 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2750 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3545 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -2758 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -2626 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -2132 ((-247 |#1| |#2|) (-949 |#2|)))) -((-1614 (((-641 |#2|) |#2| |#2|) 10)) (-3621 (((-768) (-641 |#1|)) 49 (|has| |#1| (-845)))) (-3867 (((-641 |#2|) |#2|) 11)) (-4020 (((-768) (-641 |#1|) (-564) (-564)) 53 (|has| |#1| (-845)))) (-4229 ((|#1| |#2|) 40 (|has| |#1| (-845))))) -(((-942 |#1| |#2|) (-10 -7 (-15 -1614 ((-641 |#2|) |#2| |#2|)) (-15 -3867 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -4229 (|#1| |#2|)) (-15 -3621 ((-768) (-641 |#1|))) (-15 -4020 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1235 |#1|)) (T -942)) -((-4020 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4)))) (-4229 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1235 *2)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4)))) (-1614 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -1614 ((-641 |#2|) |#2| |#2|)) (-15 -3867 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -4229 (|#1| |#2|)) (-15 -3621 ((-768) (-641 |#1|))) (-15 -4020 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|)) -((-2449 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 19))) -(((-943 |#1| |#2|) (-10 -7 (-15 -2449 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1046) (-1046)) (T -943)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-949 *6)) (-5 *1 (-943 *5 *6))))) -(-10 -7 (-15 -2449 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) -((-3040 (((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)) 18))) -(((-944 |#1| |#2|) (-10 -7 (-15 -3040 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)))) (-1170) (-1046)) (T -944)) -((-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-5 *2 (-1232 *5 (-949 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-949 *6))))) -(-10 -7 (-15 -3040 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)))) -((-2291 (((-768) $) 88) (((-768) $ (-641 |#4|)) 93)) (-2427 (($ $) 204)) (-3399 (((-418 $) $) 196)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 140)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-1357 (($ $ $ |#4|) 95)) (-4050 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 130) (((-685 |#2|) (-685 $)) 120)) (-3031 (($ $) 211) (($ $ |#4|) 214)) (-3383 (((-641 $) $) 77)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 230) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 223)) (-3802 (((-641 $) $) 34)) (-3186 (($ |#2| |#3|) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) 71)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#4|) 193)) (-2955 (((-3 (-641 $) "failed") $) 52)) (-2512 (((-3 (-641 $) "failed") $) 39)) (-4059 (((-3 (-2 (|:| |var| |#4|) (|:| -1558 (-768))) "failed") $) 57)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 133)) (-1469 (((-418 (-1166 $)) (-1166 $)) 146)) (-2165 (((-418 (-1166 $)) (-1166 $)) 144)) (-3070 (((-418 $) $) 164)) (-2633 (($ $ (-641 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL)) (-3190 (($ $ |#4|) 97)) (-2511 (((-889 (-379)) $) 244) (((-889 (-564)) $) 237) (((-536) $) 252)) (-3008 ((|#2| $) NIL) (($ $ |#4|) 206)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 183)) (-2742 ((|#2| $ |#3|) NIL) (($ $ |#4| (-768)) 62) (($ $ (-641 |#4|) (-641 (-768))) 69)) (-4018 (((-3 $ "failed") $) 185)) (-1723 (((-112) $ $) 217))) -(((-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2165 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1469 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4160 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -3031 (|#1| |#1| |#4|)) (-15 -3008 (|#1| |#1| |#4|)) (-15 -3190 (|#1| |#1| |#4|)) (-15 -1357 (|#1| |#1| |#1| |#4|)) (-15 -3383 ((-641 |#1|) |#1|)) (-15 -2291 ((-768) |#1| (-641 |#4|))) (-15 -2291 ((-768) |#1|)) (-15 -4059 ((-3 (-2 (|:| |var| |#4|) (|:| -1558 (-768))) "failed") |#1|)) (-15 -2955 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2512 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3186 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3186 (|#1| |#1| |#4| (-768))) (-15 -2282 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1| |#4|)) (-15 -3802 ((-641 |#1|) |#1|)) (-15 -2742 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -2742 (|#1| |#1| |#4| (-768))) (-15 -4050 ((-685 |#2|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -2347 ((-3 |#4| "failed") |#1|)) (-15 -2237 (|#4| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#4| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#4| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3186 (|#1| |#2| |#3|)) (-15 -2742 (|#2| |#1| |#3|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -3031 (|#1| |#1|))) (-946 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -945)) -NIL -(-10 -8 (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -4018 ((-3 |#1| "failed") |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2165 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1469 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4160 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -3031 (|#1| |#1| |#4|)) (-15 -3008 (|#1| |#1| |#4|)) (-15 -3190 (|#1| |#1| |#4|)) (-15 -1357 (|#1| |#1| |#1| |#4|)) (-15 -3383 ((-641 |#1|) |#1|)) (-15 -2291 ((-768) |#1| (-641 |#4|))) (-15 -2291 ((-768) |#1|)) (-15 -4059 ((-3 (-2 (|:| |var| |#4|) (|:| -1558 (-768))) "failed") |#1|)) (-15 -2955 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2512 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3186 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3186 (|#1| |#1| |#4| (-768))) (-15 -2282 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1| |#4|)) (-15 -3802 ((-641 |#1|) |#1|)) (-15 -2742 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -2742 (|#1| |#1| |#4| (-768))) (-15 -4050 ((-685 |#2|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -2347 ((-3 |#4| "failed") |#1|)) (-15 -2237 (|#4| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#4| |#1|)) (-15 -2633 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2633 (|#1| |#1| |#4| |#2|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3186 (|#1| |#2| |#3|)) (-15 -2742 (|#2| |#1| |#3|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -3031 (|#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 |#3|) $) 110)) (-3040 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1537 (($ $) 88 (|has| |#1| (-556)))) (-1932 (((-112) $) 90 (|has| |#1| (-556)))) (-2291 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-4088 (((-3 $ "failed") $ $) 19)) (-2345 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2427 (($ $) 98 (|has| |#1| (-452)))) (-3399 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136)) (-2237 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137)) (-1357 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-3396 (($ $) 154)) (-4050 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3733 (((-3 $ "failed") $) 33)) (-3031 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3383 (((-641 $) $) 109)) (-1420 (((-112) $) 96 (|has| |#1| (-906)))) (-2055 (($ $ |#1| |#2| $) 172)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2949 (((-112) $) 31)) (-4128 (((-768) $) 169)) (-3198 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-3802 (((-641 $) $) 126)) (-2003 (((-112) $) 152)) (-3186 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#3|) 120)) (-1826 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-1925 (($ $ $) 79 (|has| |#1| (-847)))) (-3375 (($ $ $) 78 (|has| |#1| (-847)))) (-2546 (($ (-1 |#2| |#2|) $) 171)) (-2449 (($ (-1 |#1| |#1|) $) 151)) (-2169 (((-3 |#3| "failed") $) 123)) (-3356 (($ $) 149)) (-3370 ((|#1| $) 148)) (-2740 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2723 (((-1152) $) 9)) (-2955 (((-3 (-641 $) "failed") $) 114)) (-2512 (((-3 (-641 $) "failed") $) 115)) (-4059 (((-3 (-2 (|:| |var| |#3|) (|:| -1558 (-768))) "failed") $) 113)) (-2780 (((-1114) $) 10)) (-3326 (((-112) $) 166)) (-3341 ((|#1| $) 167)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2777 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-3070 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-3190 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-3534 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-1619 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-2511 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4348 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-556))) (($ (-407 (-564))) 72 (-4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3227 (((-641 |#1|) $) 168)) (-2742 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4018 (((-3 $ "failed") $) 73 (-4078 (-4348 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) 28 T CONST)) (-3154 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3939 (((-112) $ $) 89 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1762 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1823 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-946 |#1| |#2| |#3|) (-140) (-1046) (-790) (-847)) (T -946)) -((-3031 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-1619 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-2742 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-2742 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-3802 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3040 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)))) (-3040 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *3)))) (-2169 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1826 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-2282 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-946 *4 *5 *3)))) (-3186 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-3186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-3198 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1046)) (-4 *1 (-946 *4 *5 *3)) (-4 *5 (-790)) (-4 *3 (-847)))) (-3198 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)))) (-2512 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-2955 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-4059 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -1558 (-768)))))) (-2291 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-2291 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-3383 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-1357 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-3190 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-3008 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-2427 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5))))) -(-13 (-897 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1035 |t#3|) (-377 |t#1|) (-10 -8 (-15 -1619 ((-768) $ |t#3|)) (-15 -1619 ((-641 (-768)) $ (-641 |t#3|))) (-15 -2742 ($ $ |t#3| (-768))) (-15 -2742 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -3802 ((-641 $) $)) (-15 -3040 ((-1166 $) $ |t#3|)) (-15 -3040 ((-1166 |t#1|) $)) (-15 -2169 ((-3 |t#3| "failed") $)) (-15 -1826 ((-768) $ |t#3|)) (-15 -1826 ((-641 (-768)) $ (-641 |t#3|))) (-15 -2282 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |t#3|)) (-15 -3186 ($ $ |t#3| (-768))) (-15 -3186 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -3198 ($ (-1166 |t#1|) |t#3|)) (-15 -3198 ($ (-1166 $) |t#3|)) (-15 -2512 ((-3 (-641 $) "failed") $)) (-15 -2955 ((-3 (-641 $) "failed") $)) (-15 -4059 ((-3 (-2 (|:| |var| |t#3|) (|:| -1558 (-768))) "failed") $)) (-15 -2291 ((-768) $)) (-15 -2291 ((-768) $ (-641 |t#3|))) (-15 -3209 ((-641 |t#3|) $)) (-15 -3383 ((-641 $) $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-564)))) (IF (|has| |t#3| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (IF (|has| |t#3| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-564))) (IF (|has| |t#3| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (IF (|has| |t#3| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1357 ($ $ $ |t#3|)) (-15 -3190 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -3008 ($ $ |t#3|)) (-15 -3031 ($ $)) (-15 -3031 ($ $ |t#3|)) (-15 -3399 ((-418 $) $)) (-15 -2427 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-290) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4078 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906))) -((-3209 (((-641 |#2|) |#5|) 40)) (-3040 (((-1166 |#5|) |#5| |#2| (-1166 |#5|)) 23) (((-407 (-1166 |#5|)) |#5| |#2|) 16)) (-3198 ((|#5| (-407 (-1166 |#5|)) |#2|) 30)) (-2169 (((-3 |#2| "failed") |#5|) 71)) (-2955 (((-3 (-641 |#5|) "failed") |#5|) 65)) (-2826 (((-3 (-2 (|:| |val| |#5|) (|:| -1558 (-564))) "failed") |#5|) 53)) (-2512 (((-3 (-641 |#5|) "failed") |#5|) 67)) (-4059 (((-3 (-2 (|:| |var| |#2|) (|:| -1558 (-564))) "failed") |#5|) 57))) -(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3209 ((-641 |#2|) |#5|)) (-15 -2169 ((-3 |#2| "failed") |#5|)) (-15 -3040 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -3198 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -3040 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -2512 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -2955 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -4059 ((-3 (-2 (|:| |var| |#2|) (|:| -1558 (-564))) "failed") |#5|)) (-15 -2826 ((-3 (-2 (|:| |val| |#5|) (|:| -1558 (-564))) "failed") |#5|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1831 ($ |#4|)) (-15 -3678 (|#4| $)) (-15 -3693 (|#4| $))))) (T -947)) -((-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1558 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) (-4059 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1558 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) (-2955 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) (-2512 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) (-3040 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))) (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *2 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))) (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) (-3040 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) (-5 *1 (-947 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) (-2169 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2)) (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *6)) (-15 -3678 (*6 $)) (-15 -3693 (*6 $))))))) (-3209 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *5)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $)))))))) -(-10 -7 (-15 -3209 ((-641 |#2|) |#5|)) (-15 -2169 ((-3 |#2| "failed") |#5|)) (-15 -3040 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -3198 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -3040 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -2512 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -2955 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -4059 ((-3 (-2 (|:| |var| |#2|) (|:| -1558 (-564))) "failed") |#5|)) (-15 -2826 ((-3 (-2 (|:| |val| |#5|) (|:| -1558 (-564))) "failed") |#5|))) -((-2449 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) -(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (T -948)) -((-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *6 (-790)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7))))) -(-10 -7 (-15 -2449 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1170)) $) 16)) (-3040 (((-1166 $) $ (-1170)) 21) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1170))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) NIL)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1170) $) NIL)) (-1357 (($ $ $ (-1170)) NIL (|has| |#1| (-172)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-531 (-1170)) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1170) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1170) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#1|) (-1170)) NIL) (($ (-1166 $) (-1170)) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1170)) NIL)) (-1826 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-531 (-1170)) (-531 (-1170))) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2169 (((-3 (-1170) "failed") $) 19)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-1170)) (|:| -1558 (-768))) "failed") $) NIL)) (-3907 (($ $ (-1170)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1170) |#1|) NIL) (($ $ (-641 (-1170)) (-641 |#1|)) NIL) (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL)) (-3190 (($ $ (-1170)) NIL (|has| |#1| (-172)))) (-3534 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1619 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1170) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1170)) 27) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-949 |#1|) (-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1170))) |%noBranch|))) (-1046)) (T -949)) -((-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046))))) -(-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1170))) |%noBranch|))) -((-2979 (((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) |#3| (-768)) 49)) (-3778 (((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768)) 44)) (-3269 (((-2 (|:| -1558 (-768)) (|:| -2860 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)) 65)) (-3835 (((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) |#5| (-768)) 74 (|has| |#3| (-452))))) -(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2979 ((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -3778 ((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -3835 ((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -3269 ((-2 (|:| -1558 (-768)) (|:| -2860 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1831 ($ |#4|)) (-15 -3678 (|#4| $)) (-15 -3693 (|#4| $))))) (T -950)) -((-3269 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *3 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *3) (|:| |radicand| (-641 *3)))) (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1831 ($ *3)) (-15 -3678 (*3 $)) (-15 -3693 (*3 $))))))) (-3835 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *3) (|:| |radicand| *3))) (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1831 ($ *8)) (-15 -3678 (*8 $)) (-15 -3693 (*8 $))))))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *9) (|:| |radicand| *9))) (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768)) (-4 *9 (-13 (-363) (-10 -8 (-15 -1831 ($ *8)) (-15 -3678 (*8 $)) (-15 -3693 (*8 $))))))) (-2979 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556)) (-4 *7 (-946 *3 *5 *6)) (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *8) (|:| |radicand| *8))) (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $)))))))) -(-10 -7 (-15 -2979 ((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -3778 ((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -3835 ((-2 (|:| -1558 (-768)) (|:| -2860 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -3269 ((-2 (|:| -1558 (-768)) (|:| -2860 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)))) -((-1817 (((-112) $ $) NIL)) (-1379 (($ (-1114)) 8)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 15) (((-1114) $) 12)) (-1702 (((-112) $ $) 11))) -(((-951) (-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1379 ($ (-1114)))))) (T -951)) -((-1379 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951))))) -(-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1379 ($ (-1114))))) -((-2225 (((-1088 (-225)) $) 8)) (-2213 (((-1088 (-225)) $) 9)) (-2279 (((-641 (-641 (-940 (-225)))) $) 10)) (-1831 (((-859) $) 6))) -(((-952) (-140)) (T -952)) -((-2279 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225)))))) -(-13 (-611 (-859)) (-10 -8 (-15 -2279 ((-641 (-641 (-940 (-225)))) $)) (-15 -2213 ((-1088 (-225)) $)) (-15 -2225 ((-1088 (-225)) $)))) -(((-611 (-859)) . T)) -((-2623 (((-3 (-685 |#1|) "failed") |#2| (-918)) 18))) -(((-953 |#1| |#2|) (-10 -7 (-15 -2623 ((-3 (-685 |#1|) "failed") |#2| (-918)))) (-556) (-652 |#1|)) (T -953)) -((-2623 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5)) (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5))))) -(-10 -7 (-15 -2623 ((-3 (-685 |#1|) "failed") |#2| (-918)))) -((-1694 (((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 16)) (-1988 ((|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 18)) (-2449 (((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)) 13))) -(((-954 |#1| |#2|) (-10 -7 (-15 -1694 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2449 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)))) (-1209) (-1209)) (T -954)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-955 *6)) (-5 *1 (-954 *5 *6)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-954 *5 *2)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5))))) -(-10 -7 (-15 -1694 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2449 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) |#1|) 19 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 18 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 16)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) |#1|) 15)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) 11 (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) 20 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 17) (($ $ (-1226 (-564))) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) 21)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 14)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2828 (((-768) $) 8 (|has| $ (-6 -4406))))) -(((-955 |#1|) (-19 |#1|) (-1209)) (T -955)) +((-2931 ((|#2| (-641 |#1|) (-641 |#1|)) 29))) +(((-918 |#1| |#2|) (-10 -7 (-15 -2931 (|#2| (-641 |#1|) (-641 |#1|)))) (-363) (-1235 |#1|)) (T -918)) +((-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) (-5 *1 (-918 *4 *2))))) +(-10 -7 (-15 -2931 (|#2| (-641 |#1|) (-641 |#1|)))) +((-2167 (((-1166 |#2|) (-641 |#2|) (-641 |#2|)) 17) (((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|)) 13))) +(((-919 |#1| |#2|) (-10 -7 (-15 -2167 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -2167 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) (-1170) (-363)) (T -919)) +((-2167 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1170)))) (-2167 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) (-4 *5 (-363)) (-5 *1 (-919 *4 *5))))) +(-10 -7 (-15 -2167 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -2167 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) +((-4386 (((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152)) 176)) (-4282 ((|#4| |#4|) 195)) (-2502 (((-641 (-407 (-948 |#1|))) (-641 (-1170))) 149)) (-4300 (((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-641 (-641 |#4|)) (-767) (-767) (-564)) 88)) (-3971 (((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-641 |#4|)) 69)) (-2979 (((-685 |#4|) (-685 |#4|) (-641 |#4|)) 65)) (-1579 (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152)) 188)) (-2704 (((-564) (-685 |#4|) (-917) (-1152)) 169) (((-564) (-685 |#4|) (-641 (-1170)) (-917) (-1152)) 168) (((-564) (-685 |#4|) (-641 |#4|) (-917) (-1152)) 167) (((-564) (-685 |#4|) (-1152)) 157) (((-564) (-685 |#4|) (-641 (-1170)) (-1152)) 156) (((-564) (-685 |#4|) (-641 |#4|) (-1152)) 155) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-917)) 154) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-917)) 153) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-917)) 152) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|)) 151) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170))) 150) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|)) 146)) (-2241 ((|#4| (-948 |#1|)) 80)) (-1411 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 192)) (-3874 (((-641 (-641 (-564))) (-564) (-564)) 162)) (-2926 (((-641 (-641 |#4|)) (-641 (-641 |#4|))) 107)) (-3763 (((-767) (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 102)) (-3211 (((-767) (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 101)) (-4075 (((-112) (-641 (-948 |#1|))) 19) (((-112) (-641 |#4|)) 15)) (-2514 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|)) 84)) (-2547 (((-641 |#4|) |#4|) 57)) (-3859 (((-641 (-407 (-948 |#1|))) (-641 |#4|)) 145) (((-685 (-407 (-948 |#1|))) (-685 |#4|)) 66) (((-407 (-948 |#1|)) |#4|) 142)) (-1494 (((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-767) (-1152) (-564)) 113)) (-1618 (((-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-767)) 100)) (-2963 (((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-767)) 124)) (-3112 (((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| -4379 (-685 (-407 (-948 |#1|)))) (|:| |vec| (-641 (-407 (-948 |#1|)))) (|:| -3105 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) 56))) +(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-917))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-917))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-917))) (-15 -2704 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-641 |#4|) (-917) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-641 (-1170)) (-917) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-917) (-1152))) (-15 -4386 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -1579 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -1494 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-767) (-1152) (-564))) (-15 -3859 ((-407 (-948 |#1|)) |#4|)) (-15 -3859 ((-685 (-407 (-948 |#1|))) (-685 |#4|))) (-15 -3859 ((-641 (-407 (-948 |#1|))) (-641 |#4|))) (-15 -2502 ((-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2241 (|#4| (-948 |#1|))) (-15 -2514 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -1618 ((-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-767))) (-15 -3971 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-641 |#4|))) (-15 -3112 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| -4379 (-685 (-407 (-948 |#1|)))) (|:| |vec| (-641 (-407 (-948 |#1|)))) (|:| -3105 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -2547 ((-641 |#4|) |#4|)) (-15 -3211 ((-767) (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3763 ((-767) (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -2926 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -3874 ((-641 (-641 (-564))) (-564) (-564))) (-15 -1411 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -2963 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-767))) (-15 -2979 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -4300 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-641 (-641 |#4|)) (-767) (-767) (-564))) (-15 -4282 (|#4| |#4|)) (-15 -4075 ((-112) (-641 |#4|))) (-15 -4075 ((-112) (-641 (-948 |#1|))))) (-13 (-307) (-147)) (-13 (-846) (-612 (-1170))) (-789) (-945 |#1| |#3| |#2|)) (T -920)) +((-4075 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) (-4282 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))) (-4300 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-948 *9)))) (-5 *6 (-641 (-641 *12))) (-5 *7 (-767)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) (-4 *10 (-13 (-846) (-612 (-1170)))) (-4 *11 (-789)) (-5 *2 (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) (|:| |wcond| (-641 (-948 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *9)))) (|:| -3342 (-641 (-1259 (-407 (-948 *9))))))))) (-5 *1 (-920 *9 *10 *11 *12)))) (-2979 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-2963 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-1411 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3874 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *6 *5)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-945 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-2547 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 *3)) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4379 (-685 (-407 (-948 *4)))) (|:| |vec| (-641 (-407 (-948 *4)))) (|:| -3105 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -3342 (-641 (-1259 (-407 (-948 *4))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3971 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -3342 (-641 (-1259 (-407 (-948 *4))))))) (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *8))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))) (-2514 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-685 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-1494 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-948 *8)))) (-5 *5 (-767)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-612 (-1170)))) (-4 *10 (-789)) (-5 *2 (-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) (|:| |wcond| (-641 (-948 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *8)))) (|:| -3342 (-641 (-1259 (-407 (-948 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-564)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -3342 (-641 (-1259 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *5 *6 *7 *8)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-917)) (-5 *5 (-1152)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-917)) (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *7 *8 *9 *10)))) (-2704 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-917)) (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *7 *8 *9 *10)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *5 *6 *7 *8)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *6)))) (|:| -3342 (-641 (-1259 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *6)))) (|:| -3342 (-641 (-1259 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -3342 (-641 (-1259 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(-10 -7 (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-917))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-917))) (-15 -2704 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-917))) (-15 -2704 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-641 |#4|) (-917) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-641 (-1170)) (-917) (-1152))) (-15 -2704 ((-564) (-685 |#4|) (-917) (-1152))) (-15 -4386 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -1579 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -1494 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-767) (-1152) (-564))) (-15 -3859 ((-407 (-948 |#1|)) |#4|)) (-15 -3859 ((-685 (-407 (-948 |#1|))) (-685 |#4|))) (-15 -3859 ((-641 (-407 (-948 |#1|))) (-641 |#4|))) (-15 -2502 ((-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2241 (|#4| (-948 |#1|))) (-15 -2514 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -1618 ((-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-767))) (-15 -3971 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-641 |#4|))) (-15 -3112 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| -4379 (-685 (-407 (-948 |#1|)))) (|:| |vec| (-641 (-407 (-948 |#1|)))) (|:| -3105 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -2547 ((-641 |#4|) |#4|)) (-15 -3211 ((-767) (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3763 ((-767) (-641 (-2 (|:| -3105 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -2926 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -3874 ((-641 (-641 (-564))) (-564) (-564))) (-15 -1411 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -2963 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-767))) (-15 -2979 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -4300 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -3342 (-641 (-1259 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-641 (-641 |#4|)) (-767) (-767) (-564))) (-15 -4282 (|#4| |#4|)) (-15 -4075 ((-112) (-641 |#4|))) (-15 -4075 ((-112) (-641 (-948 |#1|))))) +((-3964 (((-923) |#1| (-1170)) 17) (((-923) |#1| (-1170) (-1088 (-225))) 21)) (-3642 (((-923) |#1| |#1| (-1170) (-1088 (-225))) 19) (((-923) |#1| (-1170) (-1088 (-225))) 15))) +(((-921 |#1|) (-10 -7 (-15 -3642 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -3642 ((-923) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3964 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -3964 ((-923) |#1| (-1170)))) (-612 (-536))) (T -921)) +((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) (-3964 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) (-3642 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) (-3642 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536)))))) +(-10 -7 (-15 -3642 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -3642 ((-923) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3964 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -3964 ((-923) |#1| (-1170)))) +((-1598 (($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 122)) (-1449 (((-1088 (-225)) $) 63)) (-1441 (((-1088 (-225)) $) 62)) (-1428 (((-1088 (-225)) $) 61)) (-3972 (((-641 (-641 (-225))) $) 68)) (-3666 (((-1088 (-225)) $) 64)) (-3014 (((-564) (-564)) 56)) (-2886 (((-564) (-564)) 52)) (-2162 (((-564) (-564)) 54)) (-3780 (((-112) (-112)) 58)) (-2058 (((-564)) 55)) (-2346 (($ $ (-1088 (-225))) 125) (($ $) 126)) (-1662 (($ (-1 (-939 (-225)) (-225)) (-1088 (-225))) 132) (($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 133)) (-3642 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 135) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 136) (($ $ (-1088 (-225))) 128)) (-3773 (((-564)) 59)) (-3980 (((-564)) 50)) (-2625 (((-564)) 53)) (-2529 (((-641 (-641 (-939 (-225)))) $) 152)) (-2077 (((-112) (-112)) 60)) (-2322 (((-858) $) 150)) (-3999 (((-112)) 57))) +(((-922) (-13 (-970) (-10 -8 (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ $ (-1088 (-225)))) (-15 -1598 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2346 ($ $ (-1088 (-225)))) (-15 -2346 ($ $)) (-15 -3666 ((-1088 (-225)) $)) (-15 -3972 ((-641 (-641 (-225))) $)) (-15 -3980 ((-564))) (-15 -2886 ((-564) (-564))) (-15 -2625 ((-564))) (-15 -2162 ((-564) (-564))) (-15 -2058 ((-564))) (-15 -3014 ((-564) (-564))) (-15 -3999 ((-112))) (-15 -3780 ((-112) (-112))) (-15 -3773 ((-564))) (-15 -2077 ((-112) (-112)))))) (T -922)) +((-1662 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-1662 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-3642 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-3642 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-3642 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-1598 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-2346 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-2346 (*1 *1 *1) (-5 *1 (-922))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-922)))) (-3980 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2625 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2058 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-3999 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-3773 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(-13 (-970) (-10 -8 (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ $ (-1088 (-225)))) (-15 -1598 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2346 ($ $ (-1088 (-225)))) (-15 -2346 ($ $)) (-15 -3666 ((-1088 (-225)) $)) (-15 -3972 ((-641 (-641 (-225))) $)) (-15 -3980 ((-564))) (-15 -2886 ((-564) (-564))) (-15 -2625 ((-564))) (-15 -2162 ((-564) (-564))) (-15 -2058 ((-564))) (-15 -3014 ((-564) (-564))) (-15 -3999 ((-112))) (-15 -3780 ((-112) (-112))) (-15 -3773 ((-564))) (-15 -2077 ((-112) (-112))))) +((-1598 (($ $ (-1088 (-225))) 123) (($ $ (-1088 (-225)) (-1088 (-225))) 124)) (-1441 (((-1088 (-225)) $) 72)) (-1428 (((-1088 (-225)) $) 71)) (-3666 (((-1088 (-225)) $) 73)) (-1496 (((-564) (-564)) 65)) (-4337 (((-564) (-564)) 61)) (-3756 (((-564) (-564)) 63)) (-2222 (((-112) (-112)) 67)) (-1661 (((-564)) 64)) (-2346 (($ $ (-1088 (-225))) 127) (($ $) 128)) (-1662 (($ (-1 (-939 (-225)) (-225)) (-1088 (-225))) 142) (($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 143)) (-3964 (($ (-1 (-225) (-225)) (-1088 (-225))) 150) (($ (-1 (-225) (-225))) 154)) (-3642 (($ (-1 (-225) (-225)) (-1088 (-225))) 138) (($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225))) 139) (($ (-641 (-1 (-225) (-225))) (-1088 (-225))) 147) (($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225))) 148) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 140) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 141) (($ $ (-1088 (-225))) 129)) (-1450 (((-112) $) 68)) (-2445 (((-564)) 69)) (-3797 (((-564)) 59)) (-1957 (((-564)) 62)) (-2529 (((-641 (-641 (-939 (-225)))) $) 35)) (-3905 (((-112) (-112)) 70)) (-2322 (((-858) $) 168)) (-2522 (((-112)) 66))) +(((-923) (-13 (-951) (-10 -8 (-15 -3642 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -3642 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3964 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3964 ($ (-1 (-225) (-225)))) (-15 -3642 ($ $ (-1088 (-225)))) (-15 -1450 ((-112) $)) (-15 -1598 ($ $ (-1088 (-225)))) (-15 -1598 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2346 ($ $ (-1088 (-225)))) (-15 -2346 ($ $)) (-15 -3666 ((-1088 (-225)) $)) (-15 -3797 ((-564))) (-15 -4337 ((-564) (-564))) (-15 -1957 ((-564))) (-15 -3756 ((-564) (-564))) (-15 -1661 ((-564))) (-15 -1496 ((-564) (-564))) (-15 -2522 ((-112))) (-15 -2222 ((-112) (-112))) (-15 -2445 ((-564))) (-15 -3905 ((-112) (-112)))))) (T -923)) +((-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3642 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3642 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3642 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3642 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-1662 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-1662 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3964 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) (-3642 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1598 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-1598 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2346 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2346 (*1 *1 *1) (-5 *1 (-923))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-3797 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-4337 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1957 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1661 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2522 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-2445 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(-13 (-951) (-10 -8 (-15 -3642 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -3642 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3642 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1662 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3964 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3964 ($ (-1 (-225) (-225)))) (-15 -3642 ($ $ (-1088 (-225)))) (-15 -1450 ((-112) $)) (-15 -1598 ($ $ (-1088 (-225)))) (-15 -1598 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2346 ($ $ (-1088 (-225)))) (-15 -2346 ($ $)) (-15 -3666 ((-1088 (-225)) $)) (-15 -3797 ((-564))) (-15 -4337 ((-564) (-564))) (-15 -1957 ((-564))) (-15 -3756 ((-564) (-564))) (-15 -1661 ((-564))) (-15 -1496 ((-564) (-564))) (-15 -2522 ((-112))) (-15 -2222 ((-112) (-112))) (-15 -2445 ((-564))) (-15 -3905 ((-112) (-112))))) +((-2085 (((-641 (-1088 (-225))) (-641 (-641 (-939 (-225))))) 34))) +(((-924) (-10 -7 (-15 -2085 ((-641 (-1088 (-225))) (-641 (-641 (-939 (-225)))))))) (T -924)) +((-2085 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-924))))) +(-10 -7 (-15 -2085 ((-641 (-1088 (-225))) (-641 (-641 (-939 (-225))))))) +((-3383 ((|#2| |#2|) 28)) (-2719 ((|#2| |#2|) 29)) (-2255 ((|#2| |#2|) 27)) (-2545 ((|#2| |#2| (-1152)) 26))) +(((-925 |#1| |#2|) (-10 -7 (-15 -2545 (|#2| |#2| (-1152))) (-15 -2255 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (-15 -2719 (|#2| |#2|))) (-846) (-430 |#1|)) (T -925)) +((-2719 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2545 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) (-4 *2 (-430 *4))))) +(-10 -7 (-15 -2545 (|#2| |#2| (-1152))) (-15 -2255 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (-15 -2719 (|#2| |#2|))) +((-3383 (((-316 (-564)) (-1170)) 16)) (-2719 (((-316 (-564)) (-1170)) 14)) (-2255 (((-316 (-564)) (-1170)) 12)) (-2545 (((-316 (-564)) (-1170) (-1152)) 19))) +(((-926) (-10 -7 (-15 -2545 ((-316 (-564)) (-1170) (-1152))) (-15 -2255 ((-316 (-564)) (-1170))) (-15 -3383 ((-316 (-564)) (-1170))) (-15 -2719 ((-316 (-564)) (-1170))))) (T -926)) +((-2719 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) (-5 *1 (-926))))) +(-10 -7 (-15 -2545 ((-316 (-564)) (-1170) (-1152))) (-15 -2255 ((-316 (-564)) (-1170))) (-15 -3383 ((-316 (-564)) (-1170))) (-15 -2719 ((-316 (-564)) (-1170)))) +((-3466 (((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)) 25)) (-1525 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -1525 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3466 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) (-1094) (-882 |#1|) (-13 (-1094) (-1034 |#2|))) (T -927)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1034 *5))) (-4 *5 (-882 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-927 *4 *5 *6))))) +(-10 -7 (-15 -1525 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3466 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) +((-3466 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 30))) +(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3466 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1094) (-13 (-556) (-846) (-882 |#1|)) (-13 (-430 |#2|) (-612 (-888 |#1|)) (-882 |#1|) (-1034 (-610 $)))) (T -928)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-430 *6) (-612 *4) (-882 *5) (-1034 (-610 $)))) (-5 *4 (-888 *5)) (-4 *6 (-13 (-556) (-846) (-882 *5))) (-5 *1 (-928 *5 *6 *3))))) +(-10 -7 (-15 -3466 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) +((-3466 (((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|)) 13))) +(((-929 |#1|) (-10 -7 (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|)))) (-545)) (T -929)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 (-564) *3)) (-5 *4 (-888 (-564))) (-4 *3 (-545)) (-5 *1 (-929 *3))))) +(-10 -7 (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|)))) +((-3466 (((-885 |#1| |#2|) (-610 |#2|) (-888 |#1|) (-885 |#1| |#2|)) 57))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3466 ((-885 |#1| |#2|) (-610 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) (-1094) (-13 (-846) (-1034 (-610 $)) (-612 (-888 |#1|)) (-882 |#1|))) (T -930)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-846) (-1034 (-610 $)) (-612 *4) (-882 *5))) (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6))))) +(-10 -7 (-15 -3466 ((-885 |#1| |#2|) (-610 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) +((-3466 (((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)) 17))) +(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3466 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) (-1094) (-882 |#1|) (-662 |#2|)) (T -931)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-4 *3 (-662 *6)) (-5 *1 (-931 *5 *6 *3))))) +(-10 -7 (-15 -3466 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) +((-3466 (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|)) 17 (|has| |#3| (-882 |#1|))) (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|))) 16))) +(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3466 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -3466 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) (-1094) (-789) (-846) (-13 (-1045) (-846) (-882 |#1|)) (-13 (-945 |#4| |#2| |#3|) (-612 (-888 |#1|)))) (T -932)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-945 *8 *6 *7) (-612 *4))) (-5 *4 (-888 *5)) (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-846) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3)))) (-3466 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-945 *9 *7 *8) (-612 *4))) (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3466 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -3466 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) +((-2792 ((|#2| |#2| (-641 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -2792 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2792 (|#2| |#2| (-641 (-1 (-112) |#3|))))) (-846) (-430 |#1|) (-1209)) (T -933)) +((-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))) +(-10 -7 (-15 -2792 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2792 (|#2| |#2| (-641 (-1 (-112) |#3|))))) +((-2792 (((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1170) (-1 (-112) |#1|)) 15))) +(((-934 |#1|) (-10 -7 (-15 -2792 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2792 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) (-1209)) (T -934)) +((-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-934 *5)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-934 *5))))) +(-10 -7 (-15 -2792 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2792 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) +((-3466 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 25))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3466 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1094) (-13 (-556) (-882 |#1|) (-612 (-888 |#1|))) (-988 |#2|)) (T -935)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-988 *6)) (-4 *6 (-13 (-556) (-882 *5) (-612 *4))) (-5 *4 (-888 *5)) (-5 *1 (-935 *5 *6 *3))))) +(-10 -7 (-15 -3466 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) +((-3466 (((-885 |#1| (-1170)) (-1170) (-888 |#1|) (-885 |#1| (-1170))) 18))) +(((-936 |#1|) (-10 -7 (-15 -3466 ((-885 |#1| (-1170)) (-1170) (-888 |#1|) (-885 |#1| (-1170))))) (-1094)) (T -936)) +((-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-5 *1 (-936 *5))))) +(-10 -7 (-15 -3466 ((-885 |#1| (-1170)) (-1170) (-888 |#1|) (-885 |#1| (-1170))))) +((-2664 (((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 34)) (-3466 (((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-1 |#3| (-641 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 33))) +(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3466 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-1 |#3| (-641 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -2664 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) (-1094) (-13 (-1045) (-846)) (-13 (-1045) (-612 (-888 |#1|)) (-1034 |#2|))) (T -937)) +((-2664 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-888 *6))) (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1045) (-612 (-888 *6)) (-1034 *7))) (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) (-5 *1 (-937 *6 *7 *8)))) (-3466 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-641 (-888 *7))) (-5 *5 (-1 *9 (-641 *9))) (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1045) (-612 (-888 *7)) (-1034 *8))) (-5 *2 (-885 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1045) (-846))) (-5 *1 (-937 *7 *8 *9))))) +(-10 -7 (-15 -3466 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-1 |#3| (-641 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -2664 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) +((-2641 (((-1166 (-407 (-564))) (-564)) 80)) (-1550 (((-1166 (-564)) (-564)) 83)) (-1558 (((-1166 (-564)) (-564)) 77)) (-2450 (((-564) (-1166 (-564))) 73)) (-3688 (((-1166 (-407 (-564))) (-564)) 64)) (-4007 (((-1166 (-564)) (-564)) 48)) (-1616 (((-1166 (-564)) (-564)) 85)) (-4006 (((-1166 (-564)) (-564)) 84)) (-2993 (((-1166 (-407 (-564))) (-564)) 66))) +(((-938) (-10 -7 (-15 -2993 ((-1166 (-407 (-564))) (-564))) (-15 -4006 ((-1166 (-564)) (-564))) (-15 -1616 ((-1166 (-564)) (-564))) (-15 -4007 ((-1166 (-564)) (-564))) (-15 -3688 ((-1166 (-407 (-564))) (-564))) (-15 -2450 ((-564) (-1166 (-564)))) (-15 -1558 ((-1166 (-564)) (-564))) (-15 -1550 ((-1166 (-564)) (-564))) (-15 -2641 ((-1166 (-407 (-564))) (-564))))) (T -938)) +((-2641 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-1558 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-938)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))) (-4007 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-1616 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-2993 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564))))) +(-10 -7 (-15 -2993 ((-1166 (-407 (-564))) (-564))) (-15 -4006 ((-1166 (-564)) (-564))) (-15 -1616 ((-1166 (-564)) (-564))) (-15 -4007 ((-1166 (-564)) (-564))) (-15 -3688 ((-1166 (-407 (-564))) (-564))) (-15 -2450 ((-564) (-1166 (-564)))) (-15 -1558 ((-1166 (-564)) (-564))) (-15 -1550 ((-1166 (-564)) (-564))) (-15 -2641 ((-1166 (-407 (-564))) (-564)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3991 (($ (-767)) NIL (|has| |#1| (-23)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1437 (($ (-641 |#1|)) 9)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3611 (((-685 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1457 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1681 (((-112) $ (-767)) NIL)) (-1750 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-2941 (($ $ (-641 |#1|)) 25)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 18) (($ $ (-1226 (-564))) NIL)) (-2535 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-3480 (((-917) $) 13)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3969 (($ $ $) 23)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 14)) (-2335 (($ (-641 |#1|)) NIL)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3021 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3011 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-2059 (((-767) $) 11 (|has| $ (-6 -4406))))) +(((-939 |#1|) (-976 |#1|) (-1045)) (T -939)) +NIL +(-976 |#1|) +((-3463 (((-481 |#1| |#2|) (-948 |#2|)) 22)) (-3474 (((-247 |#1| |#2|) (-948 |#2|)) 35)) (-3625 (((-948 |#2|) (-481 |#1| |#2|)) 27)) (-3554 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-1701 (((-948 |#2|) (-247 |#1| |#2|)) 32)) (-4055 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48))) +(((-940 |#1| |#2|) (-10 -7 (-15 -4055 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3554 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3463 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -3625 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -1701 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -3474 ((-247 |#1| |#2|) (-948 |#2|)))) (-641 (-1170)) (-1045)) (T -940)) +((-3474 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170))))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170))))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5))))) +(-10 -7 (-15 -4055 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3554 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3463 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -3625 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -1701 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -3474 ((-247 |#1| |#2|) (-948 |#2|)))) +((-3252 (((-641 |#2|) |#2| |#2|) 10)) (-2991 (((-767) (-641 |#1|)) 49 (|has| |#1| (-844)))) (-1478 (((-641 |#2|) |#2|) 11)) (-2438 (((-767) (-641 |#1|) (-564) (-564)) 53 (|has| |#1| (-844)))) (-3949 ((|#1| |#2|) 40 (|has| |#1| (-844))))) +(((-941 |#1| |#2|) (-10 -7 (-15 -3252 ((-641 |#2|) |#2| |#2|)) (-15 -1478 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3949 (|#1| |#2|)) (-15 -2991 ((-767) (-641 |#1|))) (-15 -2438 ((-767) (-641 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1235 |#1|)) (T -941)) +((-2438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-844)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1235 *5)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1235 *4)))) (-3949 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1235 *2)))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1235 *4)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -3252 ((-641 |#2|) |#2| |#2|)) (-15 -1478 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3949 (|#1| |#2|)) (-15 -2991 ((-767) (-641 |#1|))) (-15 -2438 ((-767) (-641 |#1|) (-564) (-564)))) |%noBranch|)) +((-3123 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 19))) +(((-942 |#1| |#2|) (-10 -7 (-15 -3123 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1045) (-1045)) (T -942)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6))))) +(-10 -7 (-15 -3123 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) +((-2340 (((-1232 |#1| (-948 |#2|)) (-948 |#2|) (-1255 |#1|)) 18))) +(((-943 |#1| |#2|) (-10 -7 (-15 -2340 ((-1232 |#1| (-948 |#2|)) (-948 |#2|) (-1255 |#1|)))) (-1170) (-1045)) (T -943)) +((-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1045)) (-5 *2 (-1232 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6))))) +(-10 -7 (-15 -2340 ((-1232 |#1| (-948 |#2|)) (-948 |#2|) (-1255 |#1|)))) +((-2669 (((-767) $) 88) (((-767) $ (-641 |#4|)) 93)) (-3453 (($ $) 204)) (-2657 (((-418 $) $) 196)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 140)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-2595 (($ $ $ |#4|) 95)) (-2750 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 130) (((-685 |#2|) (-685 $)) 120)) (-2520 (($ $) 211) (($ $ |#4|) 214)) (-2697 (((-641 $) $) 77)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 230) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 223)) (-2071 (((-641 $) $) 34)) (-2507 (($ |#2| |#3|) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-641 |#4|) (-641 (-767))) 71)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#4|) 193)) (-1888 (((-3 (-641 $) "failed") $) 52)) (-3081 (((-3 (-641 $) "failed") $) 39)) (-1580 (((-3 (-2 (|:| |var| |#4|) (|:| -3866 (-767))) "failed") $) 57)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 133)) (-4209 (((-418 (-1166 $)) (-1166 $)) 146)) (-3832 (((-418 (-1166 $)) (-1166 $)) 144)) (-2375 (((-418 $) $) 164)) (-3100 (($ $ (-641 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL)) (-3392 (($ $ |#4|) 97)) (-3172 (((-888 (-379)) $) 244) (((-888 (-564)) $) 237) (((-536) $) 252)) (-2290 ((|#2| $) NIL) (($ $ |#4|) 206)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 183)) (-3467 ((|#2| $ |#3|) NIL) (($ $ |#4| (-767)) 62) (($ $ (-641 |#4|) (-641 (-767))) 69)) (-2409 (((-3 $ "failed") $) 185)) (-2942 (((-112) $ $) 217))) +(((-944 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -3832 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1381 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2520 (|#1| |#1| |#4|)) (-15 -2290 (|#1| |#1| |#4|)) (-15 -3392 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#1| |#4|)) (-15 -2697 ((-641 |#1|) |#1|)) (-15 -2669 ((-767) |#1| (-641 |#4|))) (-15 -2669 ((-767) |#1|)) (-15 -1580 ((-3 (-2 (|:| |var| |#4|) (|:| -3866 (-767))) "failed") |#1|)) (-15 -1888 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3081 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2507 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -2507 (|#1| |#1| |#4| (-767))) (-15 -2565 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1| |#4|)) (-15 -2071 ((-641 |#1|) |#1|)) (-15 -3467 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -3467 (|#1| |#1| |#4| (-767))) (-15 -2750 ((-685 |#2|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -3032 ((-3 |#4| "failed") |#1|)) (-15 -1781 (|#4| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#4| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#4| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2507 (|#1| |#2| |#3|)) (-15 -3467 (|#2| |#1| |#3|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -2520 (|#1| |#1|))) (-945 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -944)) +NIL +(-10 -8 (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -2409 ((-3 |#1| "failed") |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -3832 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1381 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2520 (|#1| |#1| |#4|)) (-15 -2290 (|#1| |#1| |#4|)) (-15 -3392 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#1| |#4|)) (-15 -2697 ((-641 |#1|) |#1|)) (-15 -2669 ((-767) |#1| (-641 |#4|))) (-15 -2669 ((-767) |#1|)) (-15 -1580 ((-3 (-2 (|:| |var| |#4|) (|:| -3866 (-767))) "failed") |#1|)) (-15 -1888 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3081 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2507 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -2507 (|#1| |#1| |#4| (-767))) (-15 -2565 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1| |#4|)) (-15 -2071 ((-641 |#1|) |#1|)) (-15 -3467 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -3467 (|#1| |#1| |#4| (-767))) (-15 -2750 ((-685 |#2|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -3032 ((-3 |#4| "failed") |#1|)) (-15 -1781 (|#4| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#4| |#1|)) (-15 -3100 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3100 (|#1| |#1| |#4| |#2|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2507 (|#1| |#2| |#3|)) (-15 -3467 (|#2| |#1| |#3|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -2520 (|#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 |#3|) $) 110)) (-2340 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-3622 (($ $) 88 (|has| |#1| (-556)))) (-3247 (((-112) $) 90 (|has| |#1| (-556)))) (-2669 (((-767) $) 112) (((-767) $ (-641 |#3|)) 111)) (-1862 (((-3 $ "failed") $ $) 19)) (-1986 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-905)))) (-3453 (($ $) 98 (|has| |#1| (-452)))) (-2657 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-905)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) 136)) (-1781 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1034 (-564)))) ((|#3| $) 137)) (-2595 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-2710 (($ $) 154)) (-2750 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-2689 (((-3 $ "failed") $) 33)) (-2520 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2697 (((-641 $) $) 109)) (-4229 (((-112) $) 96 (|has| |#1| (-905)))) (-2050 (($ $ |#1| |#2| $) 172)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 83 (-12 (|has| |#3| (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-1828 (((-112) $) 31)) (-4137 (((-767) $) 169)) (-2519 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-2071 (((-641 $) $) 126)) (-1492 (((-112) $) 152)) (-2507 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-641 |#3|) (-641 (-767))) 118)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#3|) 120)) (-3386 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-641 (-767)) $ (-641 |#3|)) 121)) (-1501 (($ $ $) 79 (|has| |#1| (-846)))) (-2622 (($ $ $) 78 (|has| |#1| (-846)))) (-2168 (($ (-1 |#2| |#2|) $) 171)) (-3123 (($ (-1 |#1| |#1|) $) 151)) (-3878 (((-3 |#3| "failed") $) 123)) (-2674 (($ $) 149)) (-2686 ((|#1| $) 148)) (-3202 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1418 (((-1152) $) 9)) (-1888 (((-3 (-641 $) "failed") $) 114)) (-3081 (((-3 (-641 $) "failed") $) 115)) (-1580 (((-3 (-2 (|:| |var| |#3|) (|:| -3866 (-767))) "failed") $) 113)) (-3840 (((-1114) $) 10)) (-2649 (((-112) $) 166)) (-2662 ((|#1| $) 167)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-3235 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-905)))) (-2375 (((-418 $) $) 99 (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-3392 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-1343 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-641 |#3|) (-641 (-767))) 39)) (-2073 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-641 (-767)) $ (-641 |#3|)) 129)) (-3172 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 81 (-12 (|has| |#3| (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 104 (-2342 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-556))) (($ (-407 (-564))) 72 (-2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3680 (((-641 |#1|) $) 168)) (-3467 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-641 |#3|) (-641 (-767))) 127)) (-2409 (((-3 $ "failed") $) 73 (-2789 (-2342 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) 28 T CONST)) (-4310 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-4024 (((-112) $ $) 89 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-641 |#3|) (-641 (-767))) 35)) (-2977 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3034 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-945 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -945)) +((-2520 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2073 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767))))) (-3467 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-3467 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-2071 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2340 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1166 *1)) (-4 *1 (-945 *4 *5 *3)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1166 *3)))) (-3878 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3386 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767))))) (-2565 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-945 *4 *5 *3)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-2519 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) (-4 *5 (-789)) (-4 *3 (-846)))) (-2519 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)))) (-3081 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-1888 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-1580 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -3866 (-767)))))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-2669 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2595 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-2290 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-2520 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2657 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5))))) +(-13 (-896 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1034 |t#3|) (-377 |t#1|) (-10 -8 (-15 -2073 ((-767) $ |t#3|)) (-15 -2073 ((-641 (-767)) $ (-641 |t#3|))) (-15 -3467 ($ $ |t#3| (-767))) (-15 -3467 ($ $ (-641 |t#3|) (-641 (-767)))) (-15 -2071 ((-641 $) $)) (-15 -2340 ((-1166 $) $ |t#3|)) (-15 -2340 ((-1166 |t#1|) $)) (-15 -3878 ((-3 |t#3| "failed") $)) (-15 -3386 ((-767) $ |t#3|)) (-15 -3386 ((-641 (-767)) $ (-641 |t#3|))) (-15 -2565 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |t#3|)) (-15 -2507 ($ $ |t#3| (-767))) (-15 -2507 ($ $ (-641 |t#3|) (-641 (-767)))) (-15 -2519 ($ (-1166 |t#1|) |t#3|)) (-15 -2519 ($ (-1166 $) |t#3|)) (-15 -3081 ((-3 (-641 $) "failed") $)) (-15 -1888 ((-3 (-641 $) "failed") $)) (-15 -1580 ((-3 (-2 (|:| |var| |t#3|) (|:| -3866 (-767))) "failed") $)) (-15 -2669 ((-767) $)) (-15 -2669 ((-767) $ (-641 |t#3|))) (-15 -2534 ((-641 |t#3|) $)) (-15 -2697 ((-641 $) $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-888 (-564)))) (IF (|has| |t#3| (-612 (-888 (-564)))) (-6 (-612 (-888 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-888 (-379)))) (IF (|has| |t#3| (-612 (-888 (-379)))) (-6 (-612 (-888 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-564))) (IF (|has| |t#3| (-882 (-564))) (-6 (-882 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (IF (|has| |t#3| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2595 ($ $ $ |t#3|)) (-15 -3392 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -2290 ($ $ |t#3|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ |t#3|)) (-15 -2657 ((-418 $) $)) (-15 -3453 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) ((-290) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2789 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-905))) +((-2534 (((-641 |#2|) |#5|) 40)) (-2340 (((-1166 |#5|) |#5| |#2| (-1166 |#5|)) 23) (((-407 (-1166 |#5|)) |#5| |#2|) 16)) (-2519 ((|#5| (-407 (-1166 |#5|)) |#2|) 30)) (-3878 (((-3 |#2| "failed") |#5|) 71)) (-1888 (((-3 (-641 |#5|) "failed") |#5|) 65)) (-3074 (((-3 (-2 (|:| |val| |#5|) (|:| -3866 (-564))) "failed") |#5|) 53)) (-3081 (((-3 (-641 |#5|) "failed") |#5|) 67)) (-1580 (((-3 (-2 (|:| |var| |#2|) (|:| -3866 (-564))) "failed") |#5|) 57))) +(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2534 ((-641 |#2|) |#5|)) (-15 -3878 ((-3 |#2| "failed") |#5|)) (-15 -2340 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -2519 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -2340 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -3081 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1888 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1580 ((-3 (-2 (|:| |var| |#2|) (|:| -3866 (-564))) "failed") |#5|)) (-15 -3074 ((-3 (-2 (|:| |val| |#5|) (|:| -3866 (-564))) "failed") |#5|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2322 ($ |#4|)) (-15 -4189 (|#4| $)) (-15 -4201 (|#4| $))))) (T -946)) +((-3074 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3866 (-564)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) (-1580 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3866 (-564)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) (-1888 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) (-3081 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) (-2340 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))) (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *2 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))) (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) (-5 *1 (-946 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) (-3878 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *6)) (-15 -4189 (*6 $)) (-15 -4201 (*6 $))))))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *5)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $)))))))) +(-10 -7 (-15 -2534 ((-641 |#2|) |#5|)) (-15 -3878 ((-3 |#2| "failed") |#5|)) (-15 -2340 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -2519 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -2340 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -3081 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1888 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1580 ((-3 (-2 (|:| |var| |#2|) (|:| -3866 (-564))) "failed") |#5|)) (-15 -3074 ((-3 (-2 (|:| |val| |#5|) (|:| -3866 (-564))) "failed") |#5|))) +((-3123 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) +(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3123 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (T -947)) +((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7))))) +(-10 -7 (-15 -3123 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1170)) $) 16)) (-2340 (((-1166 $) $ (-1170)) 21) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1170))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1170) "failed") $) NIL)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1170) $) NIL)) (-2595 (($ $ $ (-1170)) NIL (|has| |#1| (-172)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-531 (-1170)) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1170) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1170) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#1|) (-1170)) NIL) (($ (-1166 $) (-1170)) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1170)) NIL)) (-3386 (((-531 (-1170)) $) NIL) (((-767) $ (-1170)) NIL) (((-641 (-767)) $ (-641 (-1170))) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-531 (-1170)) (-531 (-1170))) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3878 (((-3 (-1170) "failed") $) 19)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-1170)) (|:| -3866 (-767))) "failed") $) NIL)) (-3719 (($ $ (-1170)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1170) |#1|) NIL) (($ $ (-641 (-1170)) (-641 |#1|)) NIL) (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL)) (-3392 (($ $ (-1170)) NIL (|has| |#1| (-172)))) (-1343 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2073 (((-531 (-1170)) $) NIL) (((-767) $ (-1170)) NIL) (((-641 (-767)) $ (-641 (-1170))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-1170) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1170) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1170) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1170)) 27) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-948 |#1|) (-13 (-945 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1170))) |%noBranch|))) (-1045)) (T -948)) +((-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045))))) +(-13 (-945 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1170))) |%noBranch|))) +((-2122 (((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) |#3| (-767)) 49)) (-1811 (((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-767)) 44)) (-2855 (((-2 (|:| -3866 (-767)) (|:| -3139 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-767)) 65)) (-4280 (((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) |#5| (-767)) 74 (|has| |#3| (-452))))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2122 ((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -1811 ((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-767))) (IF (|has| |#3| (-452)) (-15 -4280 ((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -2855 ((-2 (|:| -3866 (-767)) (|:| -3139 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-767)))) (-789) (-846) (-556) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2322 ($ |#4|)) (-15 -4189 (|#4| $)) (-15 -4201 (|#4| $))))) (T -949)) +((-2855 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *3 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *3) (|:| |radicand| (-641 *3)))) (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2322 ($ *3)) (-15 -4189 (*3 $)) (-15 -4201 (*3 $))))))) (-4280 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *3) (|:| |radicand| *3))) (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2322 ($ *8)) (-15 -4189 (*8 $)) (-15 -4201 (*8 $))))))) (-1811 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *9) (|:| |radicand| *9))) (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) (-4 *9 (-13 (-363) (-10 -8 (-15 -2322 ($ *8)) (-15 -4189 (*8 $)) (-15 -4201 (*8 $))))))) (-2122 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-556)) (-4 *7 (-945 *3 *5 *6)) (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *8) (|:| |radicand| *8))) (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $)))))))) +(-10 -7 (-15 -2122 ((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -1811 ((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-767))) (IF (|has| |#3| (-452)) (-15 -4280 ((-2 (|:| -3866 (-767)) (|:| -3139 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -2855 ((-2 (|:| -3866 (-767)) (|:| -3139 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-767)))) +((-2310 (((-112) $ $) NIL)) (-2499 (($ (-1114)) 8)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 15) (((-1114) $) 12)) (-2921 (((-112) $ $) 11))) +(((-950) (-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -2499 ($ (-1114)))))) (T -950)) +((-2499 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-950))))) +(-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -2499 ($ (-1114))))) +((-1441 (((-1088 (-225)) $) 8)) (-1428 (((-1088 (-225)) $) 9)) (-2529 (((-641 (-641 (-939 (-225)))) $) 10)) (-2322 (((-858) $) 6))) +(((-951) (-140)) (T -951)) +((-2529 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-641 (-641 (-939 (-225))))))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225)))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2529 ((-641 (-641 (-939 (-225)))) $)) (-15 -1428 ((-1088 (-225)) $)) (-15 -1441 ((-1088 (-225)) $)))) +(((-611 (-858)) . T)) +((-1665 (((-3 (-685 |#1|) "failed") |#2| (-917)) 18))) +(((-952 |#1| |#2|) (-10 -7 (-15 -1665 ((-3 (-685 |#1|) "failed") |#2| (-917)))) (-556) (-652 |#1|)) (T -952)) +((-1665 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-556)) (-5 *2 (-685 *5)) (-5 *1 (-952 *5 *3)) (-4 *3 (-652 *5))))) +(-10 -7 (-15 -1665 ((-3 (-685 |#1|) "failed") |#2| (-917)))) +((-1514 (((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 16)) (-3239 ((|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 18)) (-3123 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 13))) +(((-953 |#1| |#2|) (-10 -7 (-15 -1514 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -3123 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1209) (-1209)) (T -953)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-953 *5 *2)))) (-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5))))) +(-10 -7 (-15 -1514 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -3123 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) |#1|) 19 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 18 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 16)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) |#1|) 15)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) 11 (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) 20 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 17) (($ $ (-1226 (-564))) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) 21)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 14)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2059 (((-767) $) 8 (|has| $ (-6 -4406))))) +(((-954 |#1|) (-19 |#1|) (-1209)) (T -954)) NIL (-19 |#1|) -((-3165 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6))) -(((-956) (-140)) (T -956)) -((-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956)))) (-3165 (*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170))))) -(-13 (-10 -8 (-15 -3165 ($ $ (-1170))) (-15 -3165 ($ $ (-1086 $))))) -((-1830 (((-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)) 30) (((-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170)) 49))) -(((-957 |#1|) (-10 -7 (-15 -1830 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -1830 ((-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1830 ((-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)))) (-13 (-363) (-147))) (T -957)) -((-1830 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) (|:| |prim| (-1166 *6)))) (-5 *1 (-957 *6)))) (-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5)))) (-1830 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5))))) -(-10 -7 (-15 -1830 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -1830 ((-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1830 ((-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)))) -((-2679 (((-641 |#1|) |#1| |#1|) 46)) (-1420 (((-112) |#1|) 43)) (-1661 ((|#1| |#1|) 80)) (-2064 ((|#1| |#1|) 79))) -(((-958 |#1|) (-10 -7 (-15 -1420 ((-112) |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -2679 ((-641 |#1|) |#1| |#1|))) (-545)) (T -958)) -((-2679 (*1 *2 *3 *3) (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) (-1661 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-2064 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-1420 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -1420 ((-112) |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -2679 ((-641 |#1|) |#1| |#1|))) -((-3536 (((-1264) (-859)) 9))) -(((-959) (-10 -7 (-15 -3536 ((-1264) (-859))))) (T -959)) -((-3536 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959))))) -(-10 -7 (-15 -3536 ((-1264) (-859)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 76 (|has| |#1| (-556)))) (-1537 (($ $) 77 (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3396 (($ $) 31)) (-3733 (((-3 $ "failed") $) 41)) (-3031 (($ $) NIL (|has| |#1| (-452)))) (-2055 (($ $ |#1| |#2| $) 60)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) 17)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| |#2|) NIL)) (-1826 ((|#2| $) 24)) (-2546 (($ (-1 |#2| |#2|) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3356 (($ $) 28)) (-3370 ((|#1| $) 26)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) 50)) (-3341 ((|#1| $) NIL)) (-3798 (($ $ |#2| |#1| $) 88 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-1403 (((-3 $ "failed") $ $) 89 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 83 (|has| |#1| (-556)))) (-1619 ((|#2| $) 22)) (-3008 ((|#1| $) NIL (|has| |#1| (-452)))) (-1831 (((-859) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ |#2|) 37)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) 15 T CONST)) (-3154 (($ $ $ (-768)) 72 (|has| |#1| (-172)))) (-3939 (((-112) $ $) 82 (|has| |#1| (-556)))) (-1293 (($) 27 T CONST)) (-1300 (($) 12 T CONST)) (-1702 (((-112) $ $) 81)) (-1823 (($ $ |#1|) 90 (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) 67) (($ $ (-768)) 65)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ |#1|) 62) (($ |#1| $) 61) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-960 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -3798 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) (-1046) (-789)) (T -960)) -((-3798 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *2 (-789))))) -(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -3798 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-1986 (($ $ $) 65 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (-4088 (((-3 $ "failed") $ $) 52 (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-3267 (((-768)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3110 ((|#2| $) 22)) (-4314 ((|#1| $) 21)) (-1778 (($) NIL (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-3733 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-2900 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2949 (((-112) $) NIL (-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-1925 (($ $ $) NIL (-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-3375 (($ $ $) NIL (-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-2990 (($ |#1| |#2|) 20)) (-1811 (((-918) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1468 (($ (-918)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2780 (((-1114) $) NIL)) (-3047 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1992 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1831 (((-859) $) 14)) (-1293 (($) 42 (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-1300 (($) 25 (-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-1762 (((-112) $ $) NIL (-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1737 (((-112) $ $) NIL (-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1702 (((-112) $ $) 19)) (-1749 (((-112) $ $) NIL (-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1723 (((-112) $ $) 69 (-4078 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1823 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1808 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1797 (($ $ $) 45 (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-768)) 32 (-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ $ (-918)) NIL (-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-768) $) 48 (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ (-918) $) NIL (-4078 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ $ $) 28 (-4078 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))))) -(((-961 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -2990 ($ |#1| |#2|)) (-15 -4314 (|#1| $)) (-15 -3110 (|#2| $)))) (-1094) (-1094)) (T -961)) -((-2990 (*1 *1 *2 *3) (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4314 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094))))) -(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -2990 ($ |#1| |#2|)) (-15 -4314 (|#1| $)) (-15 -3110 (|#2| $)))) -((-1522 (((-1098) $) 13)) (-2483 (($ (-1170) (-1098)) 14)) (-1316 (((-1170) $) 11)) (-1831 (((-859) $) 24))) -(((-962) (-13 (-611 (-859)) (-10 -8 (-15 -1316 ((-1170) $)) (-15 -1522 ((-1098) $)) (-15 -2483 ($ (-1170) (-1098)))))) (T -962)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-962)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962)))) (-2483 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962))))) -(-13 (-611 (-859)) (-10 -8 (-15 -1316 ((-1170) $)) (-15 -1522 ((-1098) $)) (-15 -2483 ($ (-1170) (-1098))))) -((-1817 (((-112) $ $) NIL)) (-4358 (($ $ $) 11)) (-4338 (($ $) 9)) (-2723 (((-1152) $) NIL)) (-3291 (((-687 |#1|) $) 23)) (-3305 (((-687 (-870 $ $)) $) 35)) (-3319 (((-687 $) $) 28)) (-3333 (((-687 (-870 $ $)) $) 36)) (-3347 (((-687 (-870 $ $)) $) 37)) (-3361 (((-687 (-870 $ $)) $) 34)) (-2957 (($ $ $) 12)) (-2780 (((-1114) $) NIL)) (-4134 (($ $ $) 13)) (-1831 (((-859) $) 39) (($ |#1|) 8)) (-4348 (($ $ $) 10)) (-1702 (((-112) $ $) NIL))) -(((-963 |#1|) (-13 (-964) (-614 |#1|) (-10 -8 (-15 -3291 ((-687 |#1|) $)) (-15 -3319 ((-687 $) $)) (-15 -3361 ((-687 (-870 $ $)) $)) (-15 -3305 ((-687 (-870 $ $)) $)) (-15 -3333 ((-687 (-870 $ $)) $)) (-15 -3347 ((-687 (-870 $ $)) $)))) (-1094)) (T -963)) -((-3291 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-963 *3)) (-4 *3 (-1094)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-687 (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-1094)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) (-4 *3 (-1094)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) (-4 *3 (-1094)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) (-4 *3 (-1094)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) (-4 *3 (-1094))))) -(-13 (-964) (-614 |#1|) (-10 -8 (-15 -3291 ((-687 |#1|) $)) (-15 -3319 ((-687 $) $)) (-15 -3361 ((-687 (-870 $ $)) $)) (-15 -3305 ((-687 (-870 $ $)) $)) (-15 -3333 ((-687 (-870 $ $)) $)) (-15 -3347 ((-687 (-870 $ $)) $)))) -((-1817 (((-112) $ $) 7)) (-4358 (($ $ $) 15)) (-4338 (($ $) 17)) (-2723 (((-1152) $) 9)) (-2957 (($ $ $) 14)) (-2780 (((-1114) $) 10)) (-4134 (($ $ $) 13)) (-1831 (((-859) $) 11)) (-4348 (($ $ $) 16)) (-1702 (((-112) $ $) 6))) -(((-964) (-140)) (T -964)) -((-4338 (*1 *1 *1) (-4 *1 (-964))) (-4348 (*1 *1 *1 *1) (-4 *1 (-964))) (-4358 (*1 *1 *1 *1) (-4 *1 (-964))) (-2957 (*1 *1 *1 *1) (-4 *1 (-964))) (-4134 (*1 *1 *1 *1) (-4 *1 (-964)))) -(-13 (-1094) (-10 -8 (-15 -4338 ($ $)) (-15 -4348 ($ $ $)) (-15 -4358 ($ $ $)) (-15 -2957 ($ $ $)) (-15 -4134 ($ $ $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2429 (($ $ $) 43)) (-3956 (($ $ $) 44)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3375 ((|#1| $) 45)) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-965 |#1|) (-140) (-847)) (T -965)) -((-3375 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-3956 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-2429 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4406) (-15 -3375 (|t#1| $)) (-15 -3956 ($ $ $)) (-15 -2429 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-2425 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2777 |#2|)) |#2| |#2|) 104)) (-2749 ((|#2| |#2| |#2|) 102)) (-2081 (((-2 (|:| |coef2| |#2|) (|:| -2777 |#2|)) |#2| |#2|) 106)) (-3029 (((-2 (|:| |coef1| |#2|) (|:| -2777 |#2|)) |#2| |#2|) 108)) (-2987 (((-2 (|:| |coef2| |#2|) (|:| -2362 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-1807 (((-2 (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|) 56)) (-4074 (((-2 (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|) 80)) (-4044 (((-2 (|:| |coef1| |#2|) (|:| -1357 |#1|)) |#2| |#2|) 82)) (-3978 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2247 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 88)) (-1921 (((-2 (|:| |coef2| |#2|) (|:| -3190 |#1|)) |#2|) 120)) (-3101 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 91)) (-2426 (((-641 (-768)) |#2| |#2|) 101)) (-1487 ((|#1| |#2| |#2|) 50)) (-1646 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2362 |#1|)) |#2| |#2|) 128 (|has| |#1| (-452)))) (-2362 ((|#1| |#2| |#2|) 126 (|has| |#1| (-452)))) (-1796 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|) 54)) (-3022 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|) 79)) (-1357 ((|#1| |#2| |#2|) 76)) (-1330 (((-2 (|:| -2860 |#1|) (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2|) 41)) (-1700 ((|#2| |#2| |#2| |#2| |#1|) 66)) (-2602 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 93)) (-2624 ((|#2| |#2| |#2|) 92)) (-1612 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 86)) (-4386 ((|#2| |#2| |#2| (-768)) 84)) (-2777 ((|#2| |#2| |#2|) 134 (|has| |#1| (-452)))) (-1403 (((-1259 |#2|) (-1259 |#2|) |#1|) 22)) (-1922 (((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2|) 46)) (-1756 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3190 |#1|)) |#2|) 118)) (-3190 ((|#1| |#2|) 115)) (-1659 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 90)) (-1859 ((|#2| |#2| |#2| (-768)) 89)) (-3532 (((-641 |#2|) |#2| |#2|) 98)) (-2099 ((|#2| |#2| |#1| |#1| (-768)) 61)) (-4237 ((|#1| |#1| |#1| (-768)) 60)) (* (((-1259 |#2|) |#1| (-1259 |#2|)) 17))) -(((-966 |#1| |#2|) (-10 -7 (-15 -1357 (|#1| |#2| |#2|)) (-15 -3022 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -4074 ((-2 (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -4044 ((-2 (|:| |coef1| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -4386 (|#2| |#2| |#2| (-768))) (-15 -1612 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2247 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -1859 (|#2| |#2| |#2| (-768))) (-15 -1659 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3101 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2624 (|#2| |#2| |#2|)) (-15 -2602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3978 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2749 (|#2| |#2| |#2|)) (-15 -2425 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2777 |#2|)) |#2| |#2|)) (-15 -2081 ((-2 (|:| |coef2| |#2|) (|:| -2777 |#2|)) |#2| |#2|)) (-15 -3029 ((-2 (|:| |coef1| |#2|) (|:| -2777 |#2|)) |#2| |#2|)) (-15 -3190 (|#1| |#2|)) (-15 -1756 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3190 |#1|)) |#2|)) (-15 -1921 ((-2 (|:| |coef2| |#2|) (|:| -3190 |#1|)) |#2|)) (-15 -3532 ((-641 |#2|) |#2| |#2|)) (-15 -2426 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2362 (|#1| |#2| |#2|)) (-15 -1646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2362 |#1|)) |#2| |#2|)) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| -2362 |#1|)) |#2| |#2|)) (-15 -2777 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1403 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -1330 ((-2 (|:| -2860 |#1|) (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2|)) (-15 -1922 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2|)) (-15 -4237 (|#1| |#1| |#1| (-768))) (-15 -2099 (|#2| |#2| |#1| |#1| (-768))) (-15 -1700 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1487 (|#1| |#2| |#2|)) (-15 -1796 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -1807 ((-2 (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|))) (-556) (-1235 |#1|)) (T -966)) -((-1807 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1357 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1796 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1357 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1487 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-1700 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2099 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-4237 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4)) (-4 *4 (-1235 *2)))) (-1922 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1330 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2860 *4) (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1403 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (-2777 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2987 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2362 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1646 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2362 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2362 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-2426 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3532 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3190 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1756 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3190 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3190 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-3029 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2777 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2081 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2777 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2425 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2777 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2749 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-3978 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2602 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2624 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-3101 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-1659 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-1859 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-2247 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-1612 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-4386 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-4044 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1357 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4074 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1357 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3022 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1357 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1357 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))) -(-10 -7 (-15 -1357 (|#1| |#2| |#2|)) (-15 -3022 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -4074 ((-2 (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -4044 ((-2 (|:| |coef1| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -4386 (|#2| |#2| |#2| (-768))) (-15 -1612 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2247 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -1859 (|#2| |#2| |#2| (-768))) (-15 -1659 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3101 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2624 (|#2| |#2| |#2|)) (-15 -2602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3978 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2749 (|#2| |#2| |#2|)) (-15 -2425 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2777 |#2|)) |#2| |#2|)) (-15 -2081 ((-2 (|:| |coef2| |#2|) (|:| -2777 |#2|)) |#2| |#2|)) (-15 -3029 ((-2 (|:| |coef1| |#2|) (|:| -2777 |#2|)) |#2| |#2|)) (-15 -3190 (|#1| |#2|)) (-15 -1756 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3190 |#1|)) |#2|)) (-15 -1921 ((-2 (|:| |coef2| |#2|) (|:| -3190 |#1|)) |#2|)) (-15 -3532 ((-641 |#2|) |#2| |#2|)) (-15 -2426 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2362 (|#1| |#2| |#2|)) (-15 -1646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2362 |#1|)) |#2| |#2|)) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| -2362 |#1|)) |#2| |#2|)) (-15 -2777 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1403 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -1330 ((-2 (|:| -2860 |#1|) (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2|)) (-15 -1922 ((-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) |#2| |#2|)) (-15 -4237 (|#1| |#1| |#1| (-768))) (-15 -2099 (|#2| |#2| |#1| |#1| (-768))) (-15 -1700 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1487 (|#1| |#2| |#2|)) (-15 -1796 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|)) (-15 -1807 ((-2 (|:| |coef2| |#2|) (|:| -1357 |#1|)) |#2| |#2|))) -((-1817 (((-112) $ $) NIL)) (-4352 (((-1208) $) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3877 (((-1129) $) 10)) (-1831 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-967) (-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4352 ((-1208) $))))) (T -967)) -((-3877 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967))))) -(-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4352 ((-1208) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) 37)) (-1778 (($) NIL T CONST)) (-1550 (((-641 (-641 (-564))) (-641 (-564))) 46)) (-4307 (((-564) $) 70)) (-1983 (($ (-641 (-564))) 18)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2511 (((-641 (-564)) $) 13)) (-3047 (($ $) 50)) (-1831 (((-859) $) 66) (((-641 (-564)) $) 11)) (-1293 (($) 8 T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 25)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 24)) (-1797 (($ $ $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 35))) -(((-968) (-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -1983 ($ (-641 (-564)))) (-15 -1550 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -4307 ((-564) $)) (-15 -3047 ($ $))))) (T -968)) -((-1983 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968)))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968)) (-5 *3 (-641 (-564))))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968)))) (-3047 (*1 *1 *1) (-5 *1 (-968)))) -(-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -1983 ($ (-641 (-564)))) (-15 -1550 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -4307 ((-564) $)) (-15 -3047 ($ $)))) -((-1823 (($ $ |#2|) 31)) (-1808 (($ $) 23) (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29))) -(((-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1823 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-970 |#2| |#3| |#4|) (-1046) (-789) (-847)) (T -969)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1823 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 |#3|) $) 77)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-3030 (((-112) $) 76)) (-2949 (((-112) $) 31)) (-2003 (((-112) $) 65)) (-3186 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-641 |#3|) (-641 |#2|)) 78)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-1619 ((|#2| $) 67)) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-2742 ((|#1| $ |#2|) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-970 |#1| |#2| |#3|) (-140) (-1046) (-789) (-847)) (T -970)) -((-3370 (*1 *2 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *2 *4)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *2 (-789)))) (-3186 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789)) (-4 *2 (-847)))) (-3186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-789)) (-4 *6 (-847)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3186 ($ $ |t#3| |t#2|)) (-15 -3186 ($ $ (-641 |t#3|) (-641 |t#2|))) (-15 -3356 ($ $)) (-15 -3370 (|t#1| $)) (-15 -1619 (|t#2| $)) (-15 -3209 ((-641 |t#3|) $)) (-15 -3030 ((-112) $)) (-15 -4037 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2238 (((-1088 (-225)) $) 8)) (-2225 (((-1088 (-225)) $) 9)) (-2213 (((-1088 (-225)) $) 10)) (-2279 (((-641 (-641 (-940 (-225)))) $) 11)) (-1831 (((-859) $) 6))) -(((-971) (-140)) (T -971)) -((-2279 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) -(-13 (-611 (-859)) (-10 -8 (-15 -2279 ((-641 (-641 (-940 (-225)))) $)) (-15 -2213 ((-1088 (-225)) $)) (-15 -2225 ((-1088 (-225)) $)) (-15 -2238 ((-1088 (-225)) $)))) -(((-611 (-859)) . T)) -((-3209 (((-641 |#4|) $) 23)) (-3449 (((-112) $) 53)) (-3961 (((-112) $) 52)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#4|) 40)) (-3602 (((-112) $) 54)) (-2495 (((-112) $ $) 60)) (-1495 (((-112) $ $) 63)) (-2536 (((-112) $) 58)) (-2338 (((-641 |#5|) (-641 |#5|) $) 96)) (-3814 (((-641 |#5|) (-641 |#5|) $) 93)) (-1678 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 86)) (-3580 (((-641 |#4|) $) 27)) (-3879 (((-112) |#4| $) 33)) (-2706 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-4287 (($ $ |#4|) 37)) (-1887 (($ $ |#4|) 36)) (-3111 (($ $ |#4|) 38)) (-1702 (((-112) $ $) 44))) -(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3961 ((-112) |#1|)) (-15 -2338 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -3814 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -1678 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2706 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3602 ((-112) |#1|)) (-15 -1495 ((-112) |#1| |#1|)) (-15 -2495 ((-112) |#1| |#1|)) (-15 -2536 ((-112) |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2861 ((-2 (|:| |under| |#1|) (|:| -1818 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4287 (|#1| |#1| |#4|)) (-15 -3111 (|#1| |#1| |#4|)) (-15 -1887 (|#1| |#1| |#4|)) (-15 -3879 ((-112) |#4| |#1|)) (-15 -3580 ((-641 |#4|) |#1|)) (-15 -3209 ((-641 |#4|) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-973 |#2| |#3| |#4| |#5|) (-1046) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -972)) -NIL -(-10 -8 (-15 -3961 ((-112) |#1|)) (-15 -2338 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -3814 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -1678 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2706 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3602 ((-112) |#1|)) (-15 -1495 ((-112) |#1| |#1|)) (-15 -2495 ((-112) |#1| |#1|)) (-15 -2536 ((-112) |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2861 ((-2 (|:| |under| |#1|) (|:| -1818 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4287 (|#1| |#1| |#4|)) (-15 -3111 (|#1| |#1| |#4|)) (-15 -1887 (|#1| |#1| |#4|)) (-15 -3879 ((-112) |#4| |#1|)) (-15 -3580 ((-641 |#4|) |#1|)) (-15 -3209 ((-641 |#4|) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-3209 (((-641 |#3|) $) 33)) (-3449 (((-112) $) 26)) (-3961 (((-112) $) 17 (|has| |#1| (-556)))) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) 27)) (-4010 (((-112) $ (-768)) 44)) (-3752 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406)))) (-1778 (($) 45 T CONST)) (-3602 (((-112) $) 22 (|has| |#1| (-556)))) (-2495 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1495 (((-112) $ $) 23 (|has| |#1| (-556)))) (-2536 (((-112) $) 25 (|has| |#1| (-556)))) (-2338 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 36)) (-2237 (($ (-641 |#4|)) 35)) (-3337 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406)))) (-1433 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-1543 ((|#3| $) 34)) (-2324 (((-112) $ (-768)) 43)) (-2640 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 47)) (-3580 (((-641 |#3|) $) 32)) (-3879 (((-112) |#3| $) 31)) (-1713 (((-112) $ (-768)) 42)) (-2723 (((-1152) $) 9)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-2780 (((-1114) $) 10)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4077 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) 38)) (-4284 (((-112) $) 41)) (-4012 (($) 40)) (-2791 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-1991 (($ $) 39)) (-2511 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 60)) (-4287 (($ $ |#3|) 28)) (-1887 (($ $ |#3|) 30)) (-3111 (($ $ |#3|) 29)) (-1831 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1963 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 46 (|has| $ (-6 -4406))))) -(((-973 |#1| |#2| |#3| |#4|) (-140) (-1046) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -973)) -((-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3879 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-1887 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-3111 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-4287 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2861 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1818 *1) (|:| |upper| *1))) (-4 *1 (-973 *4 *5 *3 *6)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2495 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1495 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2706 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1678 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3814 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-2338 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112))))) -(-13 (-1094) (-151 |t#4|) (-611 (-641 |t#4|)) (-10 -8 (-6 -4406) (-15 -2347 ((-3 $ "failed") (-641 |t#4|))) (-15 -2237 ($ (-641 |t#4|))) (-15 -1543 (|t#3| $)) (-15 -3209 ((-641 |t#3|) $)) (-15 -3580 ((-641 |t#3|) $)) (-15 -3879 ((-112) |t#3| $)) (-15 -1887 ($ $ |t#3|)) (-15 -3111 ($ $ |t#3|)) (-15 -4287 ($ $ |t#3|)) (-15 -2861 ((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |t#3|)) (-15 -3449 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -2536 ((-112) $)) (-15 -2495 ((-112) $ $)) (-15 -1495 ((-112) $ $)) (-15 -3602 ((-112) $)) (-15 -2706 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1678 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3814 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -2338 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -3961 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-1094) . T) ((-1209) . T)) -((-2724 (((-641 |#4|) |#4| |#4|) 134)) (-1594 (((-641 |#4|) (-641 |#4|) (-112)) 123 (|has| |#1| (-452))) (((-641 |#4|) (-641 |#4|)) 124 (|has| |#1| (-452)))) (-1344 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 43)) (-1795 (((-112) |#4|) 42)) (-2082 (((-641 |#4|) |#4|) 119 (|has| |#1| (-452)))) (-2938 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|)) 23)) (-1814 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 29)) (-3086 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 30)) (-1714 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|)) 88)) (-2790 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 101)) (-3138 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127)) (-2538 (((-641 |#4|) (-641 |#4|)) 126)) (-1851 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112)) 57) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 59)) (-3855 ((|#4| |#4| (-641 |#4|)) 58)) (-4111 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 130 (|has| |#1| (-452)))) (-3713 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 133 (|has| |#1| (-452)))) (-3162 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 132 (|has| |#1| (-452)))) (-2174 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|))) 103) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 105) (((-641 |#4|) (-641 |#4|) |#4|) 139) (((-641 |#4|) |#4| |#4|) 135) (((-641 |#4|) (-641 |#4|)) 104)) (-4137 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2994 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 50)) (-2218 (((-112) (-641 |#4|)) 77)) (-2245 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 65)) (-3557 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 36)) (-2392 (((-112) |#4|) 35)) (-4008 (((-641 |#4|) (-641 |#4|)) 114 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3414 (((-641 |#4|) (-641 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2490 (((-641 |#4|) (-641 |#4|)) 81)) (-1870 (((-641 |#4|) (-641 |#4|)) 95)) (-3776 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-1924 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 48)) (-3989 (((-112) |#4|) 44))) -(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-641 |#4|) (-641 |#4|))) (-15 -2174 ((-641 |#4|) |#4| |#4|)) (-15 -2538 ((-641 |#4|) (-641 |#4|))) (-15 -2724 ((-641 |#4|) |#4| |#4|)) (-15 -2174 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -2174 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2174 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3776 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2245 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -2218 ((-112) (-641 |#4|))) (-15 -2938 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -1814 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -3086 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2994 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1795 ((-112) |#4|)) (-15 -1344 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2392 ((-112) |#4|)) (-15 -3557 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3989 ((-112) |#4|)) (-15 -1924 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1851 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1851 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -3855 (|#4| |#4| (-641 |#4|))) (-15 -2490 ((-641 |#4|) (-641 |#4|))) (-15 -1714 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -1870 ((-641 |#4|) (-641 |#4|))) (-15 -2790 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3138 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2082 ((-641 |#4|) |#4|)) (-15 -1594 ((-641 |#4|) (-641 |#4|))) (-15 -1594 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -4111 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3162 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3713 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3414 ((-641 |#4|) (-641 |#4|))) (-15 -4008 ((-641 |#4|) (-641 |#4|))) (-15 -4137 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -974)) -((-4137 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3713 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3162 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4111 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1594 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3138 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8)))) (-2790 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1714 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3155 (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3855 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2)))) (-1851 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-1851 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3989 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2392 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2994 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8)))) (-3776 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2174 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2174 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2174 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3)))) (-2724 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2174 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) -(-10 -7 (-15 -2174 ((-641 |#4|) (-641 |#4|))) (-15 -2174 ((-641 |#4|) |#4| |#4|)) (-15 -2538 ((-641 |#4|) (-641 |#4|))) (-15 -2724 ((-641 |#4|) |#4| |#4|)) (-15 -2174 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -2174 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2174 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3776 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2245 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -2218 ((-112) (-641 |#4|))) (-15 -2938 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -1814 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -3086 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2994 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1795 ((-112) |#4|)) (-15 -1344 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2392 ((-112) |#4|)) (-15 -3557 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3989 ((-112) |#4|)) (-15 -1924 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1851 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1851 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -3855 (|#4| |#4| (-641 |#4|))) (-15 -2490 ((-641 |#4|) (-641 |#4|))) (-15 -1714 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -1870 ((-641 |#4|) (-641 |#4|))) (-15 -2790 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3138 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2082 ((-641 |#4|) |#4|)) (-15 -1594 ((-641 |#4|) (-641 |#4|))) (-15 -1594 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -4111 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3162 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3713 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3414 ((-641 |#4|) (-641 |#4|))) (-15 -4008 ((-641 |#4|) (-641 |#4|))) (-15 -4137 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) -((-2120 (((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2139 (((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 43)) (-1339 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-975 |#1|) (-10 -7 (-15 -2120 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1339 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2139 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -975)) -((-2139 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))) (-1339 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-975 *5)))) (-2120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) (-5 *1 (-975 *6)) (-5 *3 (-685 *6))))) -(-10 -7 (-15 -2120 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1339 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2139 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) -((-3399 (((-418 |#4|) |#4|) 56))) -(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3399 ((-418 |#4|) |#4|))) (-847) (-790) (-452) (-946 |#3| |#2| |#1|)) (T -976)) -((-3399 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) -(-10 -7 (-15 -3399 ((-418 |#4|) |#4|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1463 (($ (-768)) 112 (|has| |#1| (-23)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4325 (($ $) 90 (|has| $ (-6 -4407)))) (-3919 (($ $) 100)) (-3337 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 51)) (-3360 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-1850 (($ (-641 |#1|)) 118)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3167 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-3654 (($ (-768) |#1|) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 87 (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 86 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2117 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-1713 (((-112) $ (-768)) 10)) (-1502 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 42 (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4253 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-3951 (($ $ (-641 |#1|)) 116)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-3032 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-3548 (((-918) $) 117)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-4231 (($ $ $) 104)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 119)) (-1842 (($ (-641 |#1|)) 70)) (-3043 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1808 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1797 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-977 |#1|) (-140) (-1046)) (T -977)) -((-1850 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918)))) (-4231 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-977 *3)) (-4 *3 (-1046))))) -(-13 (-1257 |t#1|) (-616 (-641 |t#1|)) (-10 -8 (-15 -1850 ($ (-641 |t#1|))) (-15 -3548 ((-918) $)) (-15 -4231 ($ $ $)) (-15 -3951 ($ $ (-641 |t#1|))))) -(((-34) . T) ((-102) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-616 (-641 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T) ((-1257 |#1|) . T)) -((-2449 (((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)) 17))) -(((-978 |#1| |#2|) (-10 -7 (-15 -2449 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) (-1046) (-1046)) (T -978)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-940 *6)) (-5 *1 (-978 *5 *6))))) -(-10 -7 (-15 -2449 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) -((-3443 ((|#1| (-940 |#1|)) 14)) (-3359 ((|#1| (-940 |#1|)) 13)) (-2266 ((|#1| (-940 |#1|)) 12)) (-4209 ((|#1| (-940 |#1|)) 16)) (-2122 ((|#1| (-940 |#1|)) 24)) (-3912 ((|#1| (-940 |#1|)) 15)) (-1867 ((|#1| (-940 |#1|)) 17)) (-3018 ((|#1| (-940 |#1|)) 23)) (-2092 ((|#1| (-940 |#1|)) 22))) -(((-979 |#1|) (-10 -7 (-15 -2266 (|#1| (-940 |#1|))) (-15 -3359 (|#1| (-940 |#1|))) (-15 -3443 (|#1| (-940 |#1|))) (-15 -3912 (|#1| (-940 |#1|))) (-15 -4209 (|#1| (-940 |#1|))) (-15 -1867 (|#1| (-940 |#1|))) (-15 -2092 (|#1| (-940 |#1|))) (-15 -3018 (|#1| (-940 |#1|))) (-15 -2122 (|#1| (-940 |#1|)))) (-1046)) (T -979)) -((-2122 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(-10 -7 (-15 -2266 (|#1| (-940 |#1|))) (-15 -3359 (|#1| (-940 |#1|))) (-15 -3443 (|#1| (-940 |#1|))) (-15 -3912 (|#1| (-940 |#1|))) (-15 -4209 (|#1| (-940 |#1|))) (-15 -1867 (|#1| (-940 |#1|))) (-15 -2092 (|#1| (-940 |#1|))) (-15 -3018 (|#1| (-940 |#1|))) (-15 -2122 (|#1| (-940 |#1|)))) -((-3017 (((-3 |#1| "failed") |#1|) 18)) (-4019 (((-3 |#1| "failed") |#1|) 6)) (-1425 (((-3 |#1| "failed") |#1|) 16)) (-2569 (((-3 |#1| "failed") |#1|) 4)) (-2438 (((-3 |#1| "failed") |#1|) 20)) (-3701 (((-3 |#1| "failed") |#1|) 8)) (-3215 (((-3 |#1| "failed") |#1| (-768)) 1)) (-2778 (((-3 |#1| "failed") |#1|) 3)) (-3431 (((-3 |#1| "failed") |#1|) 2)) (-1891 (((-3 |#1| "failed") |#1|) 21)) (-3804 (((-3 |#1| "failed") |#1|) 9)) (-2311 (((-3 |#1| "failed") |#1|) 19)) (-2501 (((-3 |#1| "failed") |#1|) 7)) (-1750 (((-3 |#1| "failed") |#1|) 17)) (-3445 (((-3 |#1| "failed") |#1|) 5)) (-3942 (((-3 |#1| "failed") |#1|) 24)) (-3470 (((-3 |#1| "failed") |#1|) 12)) (-2943 (((-3 |#1| "failed") |#1|) 22)) (-3202 (((-3 |#1| "failed") |#1|) 10)) (-4171 (((-3 |#1| "failed") |#1|) 26)) (-1563 (((-3 |#1| "failed") |#1|) 14)) (-1716 (((-3 |#1| "failed") |#1|) 27)) (-1405 (((-3 |#1| "failed") |#1|) 15)) (-2986 (((-3 |#1| "failed") |#1|) 25)) (-4016 (((-3 |#1| "failed") |#1|) 13)) (-1901 (((-3 |#1| "failed") |#1|) 23)) (-3727 (((-3 |#1| "failed") |#1|) 11))) -(((-980 |#1|) (-140) (-1194)) (T -980)) -((-1716 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4171 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3942 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1901 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2943 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1891 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2438 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2311 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3017 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1750 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1425 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1405 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1563 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4016 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3470 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3727 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3202 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3804 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3701 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2501 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4019 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3445 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2569 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2778 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3431 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3215 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(-13 (-10 -7 (-15 -3215 ((-3 |t#1| "failed") |t#1| (-768))) (-15 -3431 ((-3 |t#1| "failed") |t#1|)) (-15 -2778 ((-3 |t#1| "failed") |t#1|)) (-15 -2569 ((-3 |t#1| "failed") |t#1|)) (-15 -3445 ((-3 |t#1| "failed") |t#1|)) (-15 -4019 ((-3 |t#1| "failed") |t#1|)) (-15 -2501 ((-3 |t#1| "failed") |t#1|)) (-15 -3701 ((-3 |t#1| "failed") |t#1|)) (-15 -3804 ((-3 |t#1| "failed") |t#1|)) (-15 -3202 ((-3 |t#1| "failed") |t#1|)) (-15 -3727 ((-3 |t#1| "failed") |t#1|)) (-15 -3470 ((-3 |t#1| "failed") |t#1|)) (-15 -4016 ((-3 |t#1| "failed") |t#1|)) (-15 -1563 ((-3 |t#1| "failed") |t#1|)) (-15 -1405 ((-3 |t#1| "failed") |t#1|)) (-15 -1425 ((-3 |t#1| "failed") |t#1|)) (-15 -1750 ((-3 |t#1| "failed") |t#1|)) (-15 -3017 ((-3 |t#1| "failed") |t#1|)) (-15 -2311 ((-3 |t#1| "failed") |t#1|)) (-15 -2438 ((-3 |t#1| "failed") |t#1|)) (-15 -1891 ((-3 |t#1| "failed") |t#1|)) (-15 -2943 ((-3 |t#1| "failed") |t#1|)) (-15 -1901 ((-3 |t#1| "failed") |t#1|)) (-15 -3942 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)) (-15 -4171 ((-3 |t#1| "failed") |t#1|)) (-15 -1716 ((-3 |t#1| "failed") |t#1|)))) -((-3909 ((|#4| |#4| (-641 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1527 ((|#4| |#4| (-641 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2449 ((|#4| (-1 |#4| (-949 |#1|)) |#4|) 31))) -(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1527 (|#4| |#4| |#3|)) (-15 -1527 (|#4| |#4| (-641 |#3|))) (-15 -3909 (|#4| |#4| |#3|)) (-15 -3909 (|#4| |#4| (-641 |#3|))) (-15 -2449 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) (-1046) (-790) (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170))))) (-946 (-949 |#1|) |#2| |#3|)) (T -981)) -((-2449 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1046)) (-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *6 *2)))) (-3909 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-3909 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) (-1527 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-1527 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)) (-15 -3871 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3))))) -(-10 -7 (-15 -1527 (|#4| |#4| |#3|)) (-15 -1527 (|#4| |#4| (-641 |#3|))) (-15 -3909 (|#4| |#4| |#3|)) (-15 -3909 (|#4| |#4| (-641 |#3|))) (-15 -2449 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) -((-1370 ((|#2| |#3|) 35)) (-1509 (((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 86)) (-2359 (((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 106))) -(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2359 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -1509 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -1370 (|#2| |#3|))) (-349) (-1235 |#1|) (-1235 |#2|) (-721 |#2| |#3|)) (T -982)) -((-1370 (*1 *2 *3) (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-721 *2 *3)))) (-1509 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5)))) (-2359 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3331 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5))))) -(-10 -7 (-15 -2359 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -1509 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -1370 (|#2| |#3|))) -((-2540 (((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))) 83))) -(((-983 |#1| |#2|) (-10 -7 (-15 -2540 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))))) (-641 (-1170)) (-768)) (T -983)) -((-2540 (*1 *2 *2) (-12 (-5 *2 (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768)) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4))))) -(-10 -7 (-15 -2540 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))))) -((-1817 (((-112) $ $) NIL)) (-1358 (((-3 (-112) "failed") $) 71)) (-2507 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3296 (($ $ (-3 (-112) "failed")) 72)) (-2153 (($ (-641 |#4|) |#4|) 25)) (-2723 (((-1152) $) NIL)) (-1821 (($ $) 69)) (-2780 (((-1114) $) NIL)) (-4284 (((-112) $) 70)) (-4012 (($) 30)) (-1579 ((|#4| $) 74)) (-3636 (((-641 |#4|) $) 73)) (-1831 (((-859) $) 68)) (-1702 (((-112) $ $) NIL))) -(((-984 |#1| |#2| |#3| |#4|) (-13 (-1094) (-611 (-859)) (-10 -8 (-15 -4012 ($)) (-15 -2153 ($ (-641 |#4|) |#4|)) (-15 -1358 ((-3 (-112) "failed") $)) (-15 -3296 ($ $ (-3 (-112) "failed"))) (-15 -4284 ((-112) $)) (-15 -3636 ((-641 |#4|) $)) (-15 -1579 (|#4| $)) (-15 -1821 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -2507 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-847) (-790) (-946 |#1| |#3| |#2|)) (T -984)) -((-4012 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3)))) (-1358 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-4284 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3636 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-1579 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)))) (-1821 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-2507 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))) -(-13 (-1094) (-611 (-859)) (-10 -8 (-15 -4012 ($)) (-15 -2153 ($ (-641 |#4|) |#4|)) (-15 -1358 ((-3 (-112) "failed") $)) (-15 -3296 ($ $ (-3 (-112) "failed"))) (-15 -4284 ((-112) $)) (-15 -3636 ((-641 |#4|) $)) (-15 -1579 (|#4| $)) (-15 -1821 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -2507 ($ $)) |%noBranch|) |%noBranch|))) -((-3133 (((-112) |#5| |#5|) 43)) (-3193 (((-112) |#5| |#5|) 57)) (-2687 (((-112) |#5| (-641 |#5|)) 79) (((-112) |#5| |#5|) 66)) (-2883 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-2330 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) 68)) (-3958 (((-1264)) 33)) (-3770 (((-1264) (-1152) (-1152) (-1152)) 29)) (-4306 (((-641 |#5|) (-641 |#5|)) 98)) (-2244 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) 90)) (-1670 (((-641 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 120)) (-2580 (((-112) |#5| |#5|) 52)) (-4175 (((-3 (-112) "failed") |#5| |#5|) 76)) (-4225 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-3585 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3984 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2297 (((-3 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 115)) (-2808 (((-641 |#5|) (-641 |#5|)) 48))) -(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-1264) (-1152) (-1152) (-1152))) (-15 -3958 ((-1264))) (-15 -3133 ((-112) |#5| |#5|)) (-15 -2808 ((-641 |#5|) (-641 |#5|))) (-15 -2580 ((-112) |#5| |#5|)) (-15 -3193 ((-112) |#5| |#5|)) (-15 -2883 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4225 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3585 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3984 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2687 ((-112) |#5| |#5|)) (-15 -2687 ((-112) |#5| (-641 |#5|))) (-15 -4306 ((-641 |#5|) (-641 |#5|))) (-15 -2330 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -2244 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-15 -1670 ((-641 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2297 ((-3 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -985)) -((-2297 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -4252 (-641 *9)) (|:| -2956 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-1670 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -4252 (-641 *9)) (|:| -2956 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2956 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-2330 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3)))) (-2687 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4175 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3984 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3585 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2883 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2580 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2808 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3958 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3770 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(-10 -7 (-15 -3770 ((-1264) (-1152) (-1152) (-1152))) (-15 -3958 ((-1264))) (-15 -3133 ((-112) |#5| |#5|)) (-15 -2808 ((-641 |#5|) (-641 |#5|))) (-15 -2580 ((-112) |#5| |#5|)) (-15 -3193 ((-112) |#5| |#5|)) (-15 -2883 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4225 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3585 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3984 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2687 ((-112) |#5| |#5|)) (-15 -2687 ((-112) |#5| (-641 |#5|))) (-15 -4306 ((-641 |#5|) (-641 |#5|))) (-15 -2330 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -2244 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-15 -1670 ((-641 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2297 ((-3 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3871 (((-1170) $) 15)) (-1522 (((-1152) $) 16)) (-2772 (($ (-1170) (-1152)) 14)) (-1831 (((-859) $) 13))) -(((-986) (-13 (-611 (-859)) (-10 -8 (-15 -2772 ($ (-1170) (-1152))) (-15 -3871 ((-1170) $)) (-15 -1522 ((-1152) $))))) (T -986)) -((-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986))))) -(-13 (-611 (-859)) (-10 -8 (-15 -2772 ($ (-1170) (-1152))) (-15 -3871 ((-1170) $)) (-15 -1522 ((-1152) $)))) -((-2449 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-989 |#1|) (-989 |#2|)) (T -987)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-989 *6)) (-5 *1 (-987 *5 *6 *4 *2)) (-4 *4 (-989 *5))))) -(-10 -7 (-15 -2449 (|#4| (-1 |#2| |#1|) |#3|))) -((-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-2237 ((|#2| $) NIL) (((-1170) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-4050 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 115) (((-685 |#2|) (-685 $)) 28)) (-2900 (($) 99)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 76) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 85)) (-4157 (($ $) 10)) (-2619 (((-3 $ "failed") $) 20)) (-2449 (($ (-1 |#2| |#2|) $) 22)) (-2884 (($) 16)) (-3191 (($ $) 55)) (-3534 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2644 (($ $) 12)) (-2511 (((-889 (-564)) $) 71) (((-889 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1170)) 58)) (-2219 (((-768)) 31)) (-1723 (((-112) $ $) 51))) -(((-988 |#1| |#2|) (-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2511 ((-225) |#1|)) (-15 -2511 ((-379) |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -1831 (|#1| (-1170))) (-15 -2347 ((-3 (-1170) "failed") |#1|)) (-15 -2237 ((-1170) |#1|)) (-15 -2900 (|#1|)) (-15 -3191 (|#1| |#1|)) (-15 -2644 (|#1| |#1|)) (-15 -4157 (|#1| |#1|)) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -4050 ((-685 |#2|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| |#1|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-989 |#2|) (-556)) (T -988)) -((-2219 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4)) (-4 *3 (-989 *4))))) -(-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2511 ((-225) |#1|)) (-15 -2511 ((-379) |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -1831 (|#1| (-1170))) (-15 -2347 ((-3 (-1170) "failed") |#1|)) (-15 -2237 ((-1170) |#1|)) (-15 -2900 (|#1|)) (-15 -3191 (|#1| |#1|)) (-15 -2644 (|#1| |#1|)) (-15 -4157 (|#1| |#1|)) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2131 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -4050 ((-685 |#2|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| |#1|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3423 ((|#1| $) 138 (|has| |#1| (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-2345 (((-418 (-1166 $)) (-1166 $)) 129 (|has| |#1| (-906)))) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 132 (|has| |#1| (-906)))) (-3554 (((-112) $ $) 60)) (-1598 (((-564) $) 119 (|has| |#1| (-817)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 176) (((-3 (-1170) "failed") $) 127 (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 110 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) 108 (|has| |#1| (-1035 (-564))))) (-2237 ((|#1| $) 177) (((-1170) $) 128 (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 111 (|has| |#1| (-1035 (-564)))) (((-564) $) 109 (|has| |#1| (-1035 (-564))))) (-1449 (($ $ $) 56)) (-4050 (((-685 (-564)) (-685 $)) 151 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 150 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 149) (((-685 |#1|) (-685 $)) 148)) (-3733 (((-3 $ "failed") $) 33)) (-2900 (($) 136 (|has| |#1| (-545)))) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1420 (((-112) $) 72)) (-1569 (((-112) $) 121 (|has| |#1| (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 145 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 144 (|has| |#1| (-883 (-379))))) (-2949 (((-112) $) 31)) (-4157 (($ $) 140)) (-3678 ((|#1| $) 142)) (-2619 (((-3 $ "failed") $) 107 (|has| |#1| (-1145)))) (-2607 (((-112) $) 120 (|has| |#1| (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1925 (($ $ $) 117 (|has| |#1| (-847)))) (-3375 (($ $ $) 116 (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) 168)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2884 (($) 106 (|has| |#1| (-1145)) CONST)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3191 (($ $) 137 (|has| |#1| (-307)))) (-1818 ((|#1| $) 134 (|has| |#1| (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 131 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 130 (|has| |#1| (-906)))) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 170 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 169 (|has| |#1| (-514 (-1170) |#1|)))) (-3920 (((-768) $) 59)) (-1350 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-3534 (($ $) 167 (|has| |#1| (-233))) (($ $ (-768)) 165 (|has| |#1| (-233))) (($ $ (-1170)) 163 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 162 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 161 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 160 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2644 (($ $) 139)) (-3693 ((|#1| $) 141)) (-2511 (((-889 (-564)) $) 147 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 146 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 124 (|has| |#1| (-612 (-536)))) (((-379) $) 123 (|has| |#1| (-1019))) (((-225) $) 122 (|has| |#1| (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 133 (-4348 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 180) (($ (-1170)) 126 (|has| |#1| (-1035 (-1170))))) (-4018 (((-3 $ "failed") $) 125 (-4078 (|has| |#1| (-145)) (-4348 (|has| $ (-145)) (|has| |#1| (-906)))))) (-2219 (((-768)) 28 T CONST)) (-4150 ((|#1| $) 135 (|has| |#1| (-545)))) (-3939 (((-112) $ $) 40)) (-1849 (($ $) 118 (|has| |#1| (-817)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $) 166 (|has| |#1| (-233))) (($ $ (-768)) 164 (|has| |#1| (-233))) (($ $ (-1170)) 159 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 158 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 157 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 156 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1762 (((-112) $ $) 114 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 113 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 115 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 112 (|has| |#1| (-847)))) (-1823 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) -(((-989 |#1|) (-140) (-556)) (T -989)) -((-1823 (*1 *1 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-4157 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-2644 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2900 (*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545))))) -(-13 (-363) (-38 |t#1|) (-1035 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-881 |t#1|) (-400 |t#1|) (-10 -8 (-15 -1823 ($ |t#1| |t#1|)) (-15 -3678 (|t#1| $)) (-15 -3693 (|t#1| $)) (-15 -4157 ($ $)) (-15 -2644 ($ $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-564))) (PROGN (-6 (-1035 (-564))) (-6 (-1035 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-817)) (-6 (-817)) |%noBranch|) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-1170))) (-6 (-1035 (-1170))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3423 (|t#1| $)) (-15 -3191 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2900 ($)) (-15 -4150 (|t#1| $)) (-15 -1818 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1170)) |has| |#1| (-1035 (-1170))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1019)) ((-612 (-379)) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-788) |has| |#1| (-817)) ((-789) |has| |#1| (-817)) ((-791) |has| |#1| (-817)) ((-792) |has| |#1| (-817)) ((-817) |has| |#1| (-817)) ((-845) |has| |#1| (-817)) ((-847) -4078 (|has| |#1| (-847)) (|has| |#1| (-817))) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) |has| |#1| (-906)) ((-917) . T) ((-1019) |has| |#1| (-1019)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-564))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #1#) |has| |#1| (-1035 (-1170))) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1209) . T) ((-1213) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3577 (($ (-1136 |#1| |#2|)) 11)) (-4309 (((-1136 |#1| |#2|) $) 12)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1350 ((|#2| $ (-240 |#1| |#2|)) 16)) (-1831 (((-859) $) NIL)) (-1293 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL))) -(((-990 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3577 ($ (-1136 |#1| |#2|))) (-15 -4309 ((-1136 |#1| |#2|) $)) (-15 -1350 (|#2| $ (-240 |#1| |#2|))))) (-918) (-363)) (T -990)) -((-3577 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)) (-5 *1 (-990 *3 *4)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-918)) (-4 *2 (-363)) (-5 *1 (-990 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3577 ($ (-1136 |#1| |#2|))) (-15 -4309 ((-1136 |#1| |#2|) $)) (-15 -1350 (|#2| $ (-240 |#1| |#2|))))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3877 (((-1129) $) 9)) (-1831 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-991) (-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $))))) (T -991)) -((-3877 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991))))) -(-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-1411 (($ $) 46)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-1502 (((-768) $) 45)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1480 ((|#1| $) 44)) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3477 ((|#1| |#1| $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-4371 ((|#1| $) 47)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-4361 ((|#1| $) 43)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-992 |#1|) (-140) (-1209)) (T -992)) -((-3477 (*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-1411 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4406) (-15 -3477 (|t#1| |t#1| $)) (-15 -4371 (|t#1| $)) (-15 -1411 ($ $)) (-15 -1502 ((-768) $)) (-15 -1480 (|t#1| $)) (-15 -4361 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-1615 (((-112) $) 43)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2237 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-2078 (((-3 (-407 (-564)) "failed") $) 78)) (-2272 (((-112) $) 72)) (-3036 (((-407 (-564)) $) 76)) (-2949 (((-112) $) 42)) (-3797 ((|#2| $) 22)) (-2449 (($ (-1 |#2| |#2|) $) 19)) (-3315 (($ $) 58)) (-3534 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2511 (((-536) $) 67)) (-3047 (($ $) 17)) (-1831 (((-859) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-2219 (((-768)) 10)) (-1849 ((|#2| $) 71)) (-1702 (((-112) $ $) 26)) (-1723 (((-112) $ $) 69)) (-1808 (($ $) 30) (($ $ $) 29)) (-1797 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-993 |#1| |#2|) (-10 -8 (-15 -1831 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -3315 (|#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 -2949 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-994 |#2|) (-172)) (T -993)) -((-2219 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))) -(-10 -8 (-15 -1831 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -3315 (|#1| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 -2949 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1797 (|#1| |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2347 (((-3 (-564) "failed") $) 118 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 116 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 113)) (-2237 (((-564) $) 117 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 115 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 114)) (-4050 (((-685 (-564)) (-685 $)) 88 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 86) (((-685 |#1|) (-685 $)) 85)) (-3733 (((-3 $ "failed") $) 33)) (-3092 ((|#1| $) 78)) (-2078 (((-3 (-407 (-564)) "failed") $) 74 (|has| |#1| (-545)))) (-2272 (((-112) $) 76 (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) 75 (|has| |#1| (-545)))) (-3474 (($ |#1| |#1| |#1| |#1|) 79)) (-2949 (((-112) $) 31)) (-3797 ((|#1| $) 80)) (-1925 (($ $ $) 67 (|has| |#1| (-847)))) (-3375 (($ $ $) 66 (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) 89)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71 (|has| |#1| (-363)))) (-2584 ((|#1| $) 81)) (-2982 ((|#1| $) 82)) (-3661 ((|#1| $) 83)) (-2780 (((-1114) $) 10)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 91 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 90 (|has| |#1| (-514 (-1170) |#1|)))) (-1350 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-3534 (($ $) 112 (|has| |#1| (-233))) (($ $ (-768)) 110 (|has| |#1| (-233))) (($ $ (-1170)) 108 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 107 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 106 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 105 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2511 (((-536) $) 72 (|has| |#1| (-612 (-536))))) (-3047 (($ $) 84)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 61 (-4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4018 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-1849 ((|#1| $) 77 (|has| |#1| (-1055)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $) 111 (|has| |#1| (-233))) (($ $ (-768)) 109 (|has| |#1| (-233))) (($ $ (-1170)) 104 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 103 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 102 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 101 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1762 (((-112) $ $) 64 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 63 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 65 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 62 (|has| |#1| (-847)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-564))) 69 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-363))))) -(((-994 |#1|) (-140) (-172)) (T -994)) -((-3047 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3474 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2078 (*1 *2 *1) (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -3047 ($ $)) (-15 -3661 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -2584 (|t#1| $)) (-15 -3797 (|t#1| $)) (-15 -3474 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3092 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -1849 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2272 ((-112) $)) (-15 -3036 ((-407 (-564)) $)) (-15 -2078 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4078 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-363)) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-363)) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2449 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#3| (-1 |#4| |#2|) |#1|))) (-994 |#2|) (-172) (-994 |#4|) (-172)) (T -995)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5))))) -(-10 -7 (-15 -2449 (|#3| (-1 |#4| |#2|) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3092 ((|#1| $) 12)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2272 (((-112) $) NIL (|has| |#1| (-545)))) (-3036 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3474 (($ |#1| |#1| |#1| |#1|) 16)) (-2949 (((-112) $) NIL)) (-3797 ((|#1| $) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-2584 ((|#1| $) 15)) (-2982 ((|#1| $) 14)) (-3661 ((|#1| $) 13)) (-2780 (((-1114) $) NIL)) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-1350 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3534 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3047 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-1849 ((|#1| $) NIL (|has| |#1| (-1055)))) (-1293 (($) 8 T CONST)) (-1300 (($) 10 T CONST)) (-3435 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))))) -(((-996 |#1|) (-994 |#1|) (-172)) (T -996)) -NIL -(-994 |#1|) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4010 (((-112) $ (-768)) NIL)) (-1778 (($) NIL T CONST)) (-1411 (($ $) 23)) (-4315 (($ (-641 |#1|)) 33)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-1502 (((-768) $) 26)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2401 ((|#1| $) 28)) (-2783 (($ |#1| $) 17)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1480 ((|#1| $) 27)) (-4153 ((|#1| $) 22)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3477 ((|#1| |#1| $) 16)) (-4284 (((-112) $) 18)) (-4012 (($) NIL)) (-4371 ((|#1| $) 21)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) NIL)) (-4361 ((|#1| $) 30)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-997 |#1|) (-13 (-992 |#1|) (-10 -8 (-15 -4315 ($ (-641 |#1|))))) (-1094)) (T -997)) -((-4315 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3))))) -(-13 (-992 |#1|) (-10 -8 (-15 -4315 ($ (-641 |#1|))))) -((-3083 (($ $) 12)) (-2915 (($ $ (-564)) 13))) -(((-998 |#1|) (-10 -8 (-15 -3083 (|#1| |#1|)) (-15 -2915 (|#1| |#1| (-564)))) (-999)) (T -998)) -NIL -(-10 -8 (-15 -3083 (|#1| |#1|)) (-15 -2915 (|#1| |#1| (-564)))) -((-3083 (($ $) 6)) (-2915 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8))) -(((-999) (-140)) (T -999)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-407 (-564))))) (-2915 (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564)))) (-3083 (*1 *1 *1) (-4 *1 (-999)))) -(-13 (-10 -8 (-15 -3083 ($ $)) (-15 -2915 ($ $ (-564))) (-15 ** ($ $ (-407 (-564)))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2084 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1537 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1932 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3390 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-2713 (((-407 |#2|) $) NIL)) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3399 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3554 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3267 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-2927 (((-112)) NIL)) (-2135 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3624 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 81) (($ (-1259 |#2|) |#2|) NIL)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1449 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4206 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-4107 (((-1259 $) (-1259 $)) NIL)) (-1988 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3733 (((-3 $ "failed") $) NIL)) (-3238 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-4349 (((-112) |#1| |#1|) NIL)) (-3531 (((-918)) NIL)) (-2900 (($) NIL (|has| (-407 |#2|) (-368)))) (-3272 (((-112)) NIL)) (-3260 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-1424 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-3031 (($ $) NIL)) (-1830 (($) NIL (|has| (-407 |#2|) (-349)))) (-4282 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3340 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1420 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2155 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-2949 (((-112) $) NIL)) (-4002 (((-768)) NIL)) (-1388 (((-1259 $) (-1259 $)) NIL)) (-3797 (((-407 |#2|) $) NIL)) (-3099 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-2619 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3774 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1811 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-1977 ((|#3| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2723 (((-1152) $) NIL)) (-3105 (((-685 (-407 |#2|))) 57)) (-1835 (((-685 (-407 |#2|))) 56)) (-3315 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4101 (($ (-1259 |#2|) |#2|) 82)) (-3749 (((-685 (-407 |#2|))) 55)) (-3093 (((-685 (-407 |#2|))) 54)) (-3485 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1777 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 88)) (-1718 (((-1259 $)) 51)) (-2359 (((-1259 $)) 50)) (-1978 (((-112) $) NIL)) (-3683 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2884 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1468 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-4105 (((-3 |#2| "failed")) 70)) (-2780 (((-1114) $) NIL)) (-3878 (((-768)) NIL)) (-1426 (($) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2777 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-3070 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1403 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3920 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-1350 ((|#1| $ |#1| |#1|) NIL)) (-1759 (((-3 |#2| "failed")) 68)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3190 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 47)) (-1820 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3534 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-4027 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3019 ((|#3|) 58)) (-3297 (($) NIL (|has| (-407 |#2|) (-349)))) (-2467 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 83) (((-685 (-407 |#2|)) (-1259 $)) NIL)) (-2511 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-3562 (((-1259 $) (-1259 $)) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4078 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4018 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1349 ((|#3| $) NIL)) (-2219 (((-768)) NIL T CONST)) (-2368 (((-112)) 65)) (-4147 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3331 (((-1259 $)) 143)) (-3939 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2806 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3487 (((-112)) NIL)) (-1293 (($) 109 T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4078 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) -(((-1000 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-407 |#2|) (-768)) (T -1000)) +((-1306 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6))) +(((-955) (-140)) (T -955)) +((-1306 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-955)))) (-1306 (*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1170))))) +(-13 (-10 -8 (-15 -1306 ($ $ (-1170))) (-15 -1306 ($ $ (-1086 $))))) +((-3422 (((-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)) (-1170)) 30) (((-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-948 |#1|) (-1170) (-948 |#1|) (-1170)) 49))) +(((-956 |#1|) (-10 -7 (-15 -3422 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-948 |#1|) (-1170) (-948 |#1|) (-1170))) (-15 -3422 ((-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -3422 ((-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)) (-1170)))) (-13 (-363) (-147))) (T -956)) +((-3422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) (|:| |prim| (-1166 *6)))) (-5 *1 (-956 *6)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-956 *5)))) (-3422 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 *5)))) (-5 *1 (-956 *5))))) +(-10 -7 (-15 -3422 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-948 |#1|) (-1170) (-948 |#1|) (-1170))) (-15 -3422 ((-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -3422 ((-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)) (-1170)))) +((-4096 (((-641 |#1|) |#1| |#1|) 46)) (-4229 (((-112) |#1|) 43)) (-2434 ((|#1| |#1|) 80)) (-4021 ((|#1| |#1|) 79))) +(((-957 |#1|) (-10 -7 (-15 -4229 ((-112) |#1|)) (-15 -4021 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -4096 ((-641 |#1|) |#1| |#1|))) (-545)) (T -957)) +((-4096 (*1 *2 *3 *3) (-12 (-5 *2 (-641 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) (-2434 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-4021 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-4229 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -4229 ((-112) |#1|)) (-15 -4021 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -4096 ((-641 |#1|) |#1| |#1|))) +((-2814 (((-1264) (-858)) 9))) +(((-958) (-10 -7 (-15 -2814 ((-1264) (-858))))) (T -958)) +((-2814 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-958))))) +(-10 -7 (-15 -2814 ((-1264) (-858)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 76 (|has| |#1| (-556)))) (-3622 (($ $) 77 (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2710 (($ $) 31)) (-2689 (((-3 $ "failed") $) 41)) (-2520 (($ $) NIL (|has| |#1| (-452)))) (-2050 (($ $ |#1| |#2| $) 60)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) 17)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| |#2|) NIL)) (-3386 ((|#2| $) 24)) (-2168 (($ (-1 |#2| |#2|) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2674 (($ $) 28)) (-2686 ((|#1| $) 26)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) 50)) (-2662 ((|#1| $) NIL)) (-2031 (($ $ |#2| |#1| $) 88 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-2526 (((-3 $ "failed") $ $) 89 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 83 (|has| |#1| (-556)))) (-2073 ((|#2| $) 22)) (-2290 ((|#1| $) NIL (|has| |#1| (-452)))) (-2322 (((-858) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ |#2|) 37)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) 15 T CONST)) (-4310 (($ $ $ (-767)) 72 (|has| |#1| (-172)))) (-4024 (((-112) $ $) 82 (|has| |#1| (-556)))) (-2389 (($) 27 T CONST)) (-2403 (($) 12 T CONST)) (-2921 (((-112) $ $) 81)) (-3034 (($ $ |#1|) 90 (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) 67) (($ $ (-767)) 65)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ |#1|) 62) (($ |#1| $) 61) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-959 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2031 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) (-1045) (-788)) (T -959)) +((-2031 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2031 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2568 (($ $ $) 65 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (-1862 (((-3 $ "failed") $ $) 52 (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-1959 (((-767)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2018 ((|#2| $) 22)) (-2304 ((|#1| $) 21)) (-4157 (($) NIL (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-2689 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-3860 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1828 (((-112) $) NIL (-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-1501 (($ $ $) NIL (-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2622 (($ $ $) NIL (-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2125 (($ |#1| |#2|) 20)) (-1368 (((-917) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1998 (($ (-917)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3840 (((-1114) $) NIL)) (-2675 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2617 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2322 (((-858) $) 14)) (-2389 (($) 42 (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-2403 (($) 25 (-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) CONST)) (-2977 (((-112) $ $) NIL (-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2953 (((-112) $ $) NIL (-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2921 (((-112) $ $) 19)) (-2964 (((-112) $ $) NIL (-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2942 (((-112) $ $) 69 (-2789 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3034 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3021 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3011 (($ $ $) 45 (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-767)) 32 (-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))) (($ $ (-917)) NIL (-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-767) $) 48 (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ (-917) $) NIL (-2789 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ $ $) 28 (-2789 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))))) +(((-960 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -2125 ($ |#1| |#2|)) (-15 -2304 (|#1| $)) (-15 -2018 (|#2| $)))) (-1094) (-1094)) (T -960)) +((-2125 (*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-2304 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1094)))) (-2018 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1094))))) +(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -2125 ($ |#1| |#2|)) (-15 -2304 (|#1| $)) (-15 -2018 (|#2| $)))) +((-2053 (((-1098) $) 13)) (-2992 (($ (-1170) (-1098)) 14)) (-2420 (((-1170) $) 11)) (-2322 (((-858) $) 24))) +(((-961) (-13 (-611 (-858)) (-10 -8 (-15 -2420 ((-1170) $)) (-15 -2053 ((-1098) $)) (-15 -2992 ($ (-1170) (-1098)))))) (T -961)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-961)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-961)))) (-2992 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-961))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2420 ((-1170) $)) (-15 -2053 ((-1098) $)) (-15 -2992 ($ (-1170) (-1098))))) +((-2310 (((-112) $ $) NIL)) (-2353 (($ $ $) 11)) (-2329 (($ $) 9)) (-1418 (((-1152) $) NIL)) (-3040 (((-687 |#1|) $) 23)) (-3150 (((-687 (-869 $ $)) $) 35)) (-3254 (((-687 $) $) 28)) (-3354 (((-687 (-869 $ $)) $) 36)) (-2207 (((-687 (-869 $ $)) $) 37)) (-2321 (((-687 (-869 $ $)) $) 34)) (-1897 (($ $ $) 12)) (-3840 (((-1114) $) NIL)) (-4208 (($ $ $) 13)) (-2322 (((-858) $) 39) (($ |#1|) 8)) (-2342 (($ $ $) 10)) (-2921 (((-112) $ $) NIL))) +(((-962 |#1|) (-13 (-963) (-614 |#1|) (-10 -8 (-15 -3040 ((-687 |#1|) $)) (-15 -3254 ((-687 $) $)) (-15 -2321 ((-687 (-869 $ $)) $)) (-15 -3150 ((-687 (-869 $ $)) $)) (-15 -3354 ((-687 (-869 $ $)) $)) (-15 -2207 ((-687 (-869 $ $)) $)))) (-1094)) (T -962)) +((-3040 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-687 (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094))))) +(-13 (-963) (-614 |#1|) (-10 -8 (-15 -3040 ((-687 |#1|) $)) (-15 -3254 ((-687 $) $)) (-15 -2321 ((-687 (-869 $ $)) $)) (-15 -3150 ((-687 (-869 $ $)) $)) (-15 -3354 ((-687 (-869 $ $)) $)) (-15 -2207 ((-687 (-869 $ $)) $)))) +((-2310 (((-112) $ $) 7)) (-2353 (($ $ $) 15)) (-2329 (($ $) 17)) (-1418 (((-1152) $) 9)) (-1897 (($ $ $) 14)) (-3840 (((-1114) $) 10)) (-4208 (($ $ $) 13)) (-2322 (((-858) $) 11)) (-2342 (($ $ $) 16)) (-2921 (((-112) $ $) 6))) +(((-963) (-140)) (T -963)) +((-2329 (*1 *1 *1) (-4 *1 (-963))) (-2342 (*1 *1 *1 *1) (-4 *1 (-963))) (-2353 (*1 *1 *1 *1) (-4 *1 (-963))) (-1897 (*1 *1 *1 *1) (-4 *1 (-963))) (-4208 (*1 *1 *1 *1) (-4 *1 (-963)))) +(-13 (-1094) (-10 -8 (-15 -2329 ($ $)) (-15 -2342 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -1897 ($ $ $)) (-15 -4208 ($ $ $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-3471 (($ $ $) 43)) (-2988 (($ $ $) 44)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2622 ((|#1| $) 45)) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-964 |#1|) (-140) (-846)) (T -964)) +((-2622 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-2988 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-3471 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4406) (-15 -2622 (|t#1| $)) (-15 -2988 ($ $ $)) (-15 -3471 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3431 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3235 |#2|)) |#2| |#2|) 104)) (-3545 ((|#2| |#2| |#2|) 102)) (-4211 (((-2 (|:| |coef2| |#2|) (|:| -3235 |#2|)) |#2| |#2|) 106)) (-2495 (((-2 (|:| |coef1| |#2|) (|:| -3235 |#2|)) |#2| |#2|) 108)) (-2097 (((-2 (|:| |coef2| |#2|) (|:| -4039 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-1349 (((-2 (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|) 56)) (-1731 (((-2 (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|) 80)) (-2694 (((-2 (|:| |coef1| |#2|) (|:| -2595 |#1|)) |#2| |#2|) 82)) (-3222 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2181 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 88)) (-3144 (((-2 (|:| |coef2| |#2|) (|:| -3392 |#1|)) |#2|) 120)) (-1925 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 91)) (-3441 (((-641 (-767)) |#2| |#2|) 101)) (-4382 ((|#1| |#2| |#2|) 50)) (-2273 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4039 |#1|)) |#2| |#2|) 128 (|has| |#1| (-452)))) (-4039 ((|#1| |#2| |#2|) 126 (|has| |#1| (-452)))) (-4346 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|) 54)) (-2440 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|) 79)) (-2595 ((|#1| |#2| |#2|) 76)) (-1726 (((-2 (|:| -3139 |#1|) (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2|) 41)) (-1547 ((|#2| |#2| |#2| |#2| |#1|) 66)) (-2744 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 93)) (-1677 ((|#2| |#2| |#2|) 92)) (-3230 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 86)) (-1725 ((|#2| |#2| |#2| (-767)) 84)) (-3235 ((|#2| |#2| |#2|) 134 (|has| |#1| (-452)))) (-2526 (((-1259 |#2|) (-1259 |#2|) |#1|) 22)) (-3153 (((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2|) 46)) (-3974 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3392 |#1|)) |#2|) 118)) (-3392 ((|#1| |#2|) 115)) (-2406 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 90)) (-3698 ((|#2| |#2| |#2| (-767)) 89)) (-1462 (((-641 |#2|) |#2| |#2|) 98)) (-1297 ((|#2| |#2| |#1| |#1| (-767)) 61)) (-4030 ((|#1| |#1| |#1| (-767)) 60)) (* (((-1259 |#2|) |#1| (-1259 |#2|)) 17))) +(((-965 |#1| |#2|) (-10 -7 (-15 -2595 (|#1| |#2| |#2|)) (-15 -2440 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -1731 ((-2 (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -2694 ((-2 (|:| |coef1| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -1725 (|#2| |#2| |#2| (-767))) (-15 -3230 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2181 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3698 (|#2| |#2| |#2| (-767))) (-15 -2406 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1925 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1677 (|#2| |#2| |#2|)) (-15 -2744 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3222 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3431 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -4211 ((-2 (|:| |coef2| |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -2495 ((-2 (|:| |coef1| |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3392 (|#1| |#2|)) (-15 -3974 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3392 |#1|)) |#2|)) (-15 -3144 ((-2 (|:| |coef2| |#2|) (|:| -3392 |#1|)) |#2|)) (-15 -1462 ((-641 |#2|) |#2| |#2|)) (-15 -3441 ((-641 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -4039 (|#1| |#2| |#2|)) (-15 -2273 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4039 |#1|)) |#2| |#2|)) (-15 -2097 ((-2 (|:| |coef2| |#2|) (|:| -4039 |#1|)) |#2| |#2|)) (-15 -3235 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -2526 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -1726 ((-2 (|:| -3139 |#1|) (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2|)) (-15 -3153 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2|)) (-15 -4030 (|#1| |#1| |#1| (-767))) (-15 -1297 (|#2| |#2| |#1| |#1| (-767))) (-15 -1547 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4382 (|#1| |#2| |#2|)) (-15 -4346 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -1349 ((-2 (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|))) (-556) (-1235 |#1|)) (T -965)) +((-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2595 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-4346 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2595 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-4382 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) (-1547 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-1297 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-4030 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *2 (-556)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1235 *2)))) (-3153 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1726 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3139 *4) (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2526 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-965 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-965 *3 *4)))) (-3235 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-2097 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4039 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2273 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4039 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-4039 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) (-3441 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-767))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1462 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3144 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3392 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3392 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3392 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) (-2495 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3235 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-4211 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3235 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3431 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3235 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-3222 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2744 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1677 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-1925 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-2406 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-3698 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1235 *4)))) (-2181 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-3230 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-1725 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1235 *4)))) (-2694 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2595 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1731 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2595 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2440 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2595 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2595 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2))))) +(-10 -7 (-15 -2595 (|#1| |#2| |#2|)) (-15 -2440 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -1731 ((-2 (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -2694 ((-2 (|:| |coef1| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -1725 (|#2| |#2| |#2| (-767))) (-15 -3230 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2181 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3698 (|#2| |#2| |#2| (-767))) (-15 -2406 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1925 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1677 (|#2| |#2| |#2|)) (-15 -2744 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3222 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3431 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -4211 ((-2 (|:| |coef2| |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -2495 ((-2 (|:| |coef1| |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3392 (|#1| |#2|)) (-15 -3974 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3392 |#1|)) |#2|)) (-15 -3144 ((-2 (|:| |coef2| |#2|) (|:| -3392 |#1|)) |#2|)) (-15 -1462 ((-641 |#2|) |#2| |#2|)) (-15 -3441 ((-641 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -4039 (|#1| |#2| |#2|)) (-15 -2273 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4039 |#1|)) |#2| |#2|)) (-15 -2097 ((-2 (|:| |coef2| |#2|) (|:| -4039 |#1|)) |#2| |#2|)) (-15 -3235 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -2526 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -1726 ((-2 (|:| -3139 |#1|) (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2|)) (-15 -3153 ((-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) |#2| |#2|)) (-15 -4030 (|#1| |#1| |#1| (-767))) (-15 -1297 (|#2| |#2| |#1| |#1| (-767))) (-15 -1547 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4382 (|#1| |#2| |#2|)) (-15 -4346 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|)) (-15 -1349 ((-2 (|:| |coef2| |#2|) (|:| -2595 |#1|)) |#2| |#2|))) +((-2310 (((-112) $ $) NIL)) (-1767 (((-1208) $) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4366 (((-1129) $) 10)) (-2322 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-966) (-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -1767 ((-1208) $))))) (T -966)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-966)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-966))))) +(-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -1767 ((-1208) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) 37)) (-4157 (($) NIL T CONST)) (-3774 (((-641 (-641 (-564))) (-641 (-564))) 46)) (-2249 (((-564) $) 70)) (-2533 (($ (-641 (-564))) 18)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3172 (((-641 (-564)) $) 13)) (-2675 (($ $) 50)) (-2322 (((-858) $) 66) (((-641 (-564)) $) 11)) (-2389 (($) 8 T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 25)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 24)) (-3011 (($ $ $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) 35))) +(((-967) (-13 (-791) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -2533 ($ (-641 (-564)))) (-15 -3774 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -2249 ((-564) $)) (-15 -2675 ($ $))))) (T -967)) +((-2533 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-967)))) (-3774 (*1 *2 *3) (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-967)) (-5 *3 (-641 (-564))))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-967)))) (-2675 (*1 *1 *1) (-5 *1 (-967)))) +(-13 (-791) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -2533 ($ (-641 (-564)))) (-15 -3774 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -2249 ((-564) $)) (-15 -2675 ($ $)))) +((-3034 (($ $ |#2|) 31)) (-3021 (($ $) 23) (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29))) +(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3034 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-969 |#2| |#3| |#4|) (-1045) (-788) (-846)) (T -968)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3034 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 |#3|) $) 77)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2506 (((-112) $) 76)) (-1828 (((-112) $) 31)) (-1492 (((-112) $) 65)) (-2507 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-641 |#3|) (-641 |#2|)) 78)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2073 ((|#2| $) 67)) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3467 ((|#1| $ |#2|) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-969 |#1| |#2| |#3|) (-140) (-1045) (-788) (-846)) (T -969)) +((-2686 (*1 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-2674 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-641 *5)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2614 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2507 ($ $ |t#3| |t#2|)) (-15 -2507 ($ $ (-641 |t#3|) (-641 |t#2|))) (-15 -2674 ($ $)) (-15 -2686 (|t#1| $)) (-15 -2073 (|t#2| $)) (-15 -2534 ((-641 |t#3|) $)) (-15 -2506 ((-112) $)) (-15 -2614 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-1449 (((-1088 (-225)) $) 8)) (-1441 (((-1088 (-225)) $) 9)) (-1428 (((-1088 (-225)) $) 10)) (-2529 (((-641 (-641 (-939 (-225)))) $) 11)) (-2322 (((-858) $) 6))) +(((-970) (-140)) (T -970)) +((-2529 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-641 (-641 (-939 (-225))))))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225)))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2529 ((-641 (-641 (-939 (-225)))) $)) (-15 -1428 ((-1088 (-225)) $)) (-15 -1441 ((-1088 (-225)) $)) (-15 -1449 ((-1088 (-225)) $)))) +(((-611 (-858)) . T)) +((-2534 (((-641 |#4|) $) 23)) (-1885 (((-112) $) 53)) (-3042 (((-112) $) 52)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#4|) 40)) (-2815 (((-112) $) 54)) (-2924 (((-112) $ $) 60)) (-1362 (((-112) $ $) 63)) (-3300 (((-112) $) 58)) (-1907 (((-641 |#5|) (-641 |#5|) $) 96)) (-4066 (((-641 |#5|) (-641 |#5|) $) 93)) (-2598 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 86)) (-3805 (((-641 |#4|) $) 27)) (-3460 (((-112) |#4| $) 33)) (-4352 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-3311 (($ $ |#4|) 37)) (-2805 (($ $ |#4|) 36)) (-2029 (($ $ |#4|) 38)) (-2921 (((-112) $ $) 44))) +(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3042 ((-112) |#1|)) (-15 -1907 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -4066 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2598 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4352 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2815 ((-112) |#1|)) (-15 -1362 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|)) (-15 -3300 ((-112) |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -3811 ((-2 (|:| |under| |#1|) (|:| -1421 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -2029 (|#1| |#1| |#4|)) (-15 -2805 (|#1| |#1| |#4|)) (-15 -3460 ((-112) |#4| |#1|)) (-15 -3805 ((-641 |#4|) |#1|)) (-15 -2534 ((-641 |#4|) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4| |#5|) (-1045) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -971)) +NIL +(-10 -8 (-15 -3042 ((-112) |#1|)) (-15 -1907 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -4066 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2598 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4352 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2815 ((-112) |#1|)) (-15 -1362 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|)) (-15 -3300 ((-112) |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -3811 ((-2 (|:| |under| |#1|) (|:| -1421 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -2029 (|#1| |#1| |#4|)) (-15 -2805 (|#1| |#1| |#4|)) (-15 -3460 ((-112) |#4| |#1|)) (-15 -3805 ((-641 |#4|) |#1|)) (-15 -2534 ((-641 |#4|) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-2534 (((-641 |#3|) $) 33)) (-1885 (((-112) $) 26)) (-3042 (((-112) $) 17 (|has| |#1| (-556)))) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) 27)) (-2318 (((-112) $ (-767)) 44)) (-2957 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406)))) (-4157 (($) 45 T CONST)) (-2815 (((-112) $) 22 (|has| |#1| (-556)))) (-2924 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1362 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3300 (((-112) $) 25 (|has| |#1| (-556)))) (-1907 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 36)) (-1781 (($ (-641 |#4|)) 35)) (-2027 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406)))) (-3534 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-3691 ((|#3| $) 34)) (-1751 (((-112) $ (-767)) 43)) (-1834 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 47)) (-3805 (((-641 |#3|) $) 32)) (-3460 (((-112) |#3| $) 31)) (-1681 (((-112) $ (-767)) 42)) (-1418 (((-1152) $) 9)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3840 (((-1114) $) 10)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) 38)) (-3282 (((-112) $) 41)) (-2348 (($) 40)) (-3852 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-3772 (($ $) 39)) (-3172 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 60)) (-3311 (($ $ |#3|) 28)) (-2805 (($ $ |#3|) 30)) (-2029 (($ $ |#3|) 29)) (-2322 (((-858) $) 11) (((-641 |#4|) $) 37)) (-2313 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 46 (|has| $ (-6 -4406))))) +(((-972 |#1| |#2| |#3| |#4|) (-140) (-1045) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -972)) +((-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3460 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-2805 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-2029 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3811 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1421 *1) (|:| |upper| *1))) (-4 *1 (-972 *4 *5 *3 *6)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2924 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1362 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-4352 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2598 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4066 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))) (-1907 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112))))) +(-13 (-1094) (-151 |t#4|) (-611 (-641 |t#4|)) (-10 -8 (-6 -4406) (-15 -3032 ((-3 $ "failed") (-641 |t#4|))) (-15 -1781 ($ (-641 |t#4|))) (-15 -3691 (|t#3| $)) (-15 -2534 ((-641 |t#3|) $)) (-15 -3805 ((-641 |t#3|) $)) (-15 -3460 ((-112) |t#3| $)) (-15 -2805 ($ $ |t#3|)) (-15 -2029 ($ $ |t#3|)) (-15 -3311 ($ $ |t#3|)) (-15 -3811 ((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |t#3|)) (-15 -1885 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -3300 ((-112) $)) (-15 -2924 ((-112) $ $)) (-15 -1362 ((-112) $ $)) (-15 -2815 ((-112) $)) (-15 -4352 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2598 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4066 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -1907 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -3042 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-1094) . T) ((-1209) . T)) +((-1429 (((-641 |#4|) |#4| |#4|) 134)) (-3049 (((-641 |#4|) (-641 |#4|) (-112)) 123 (|has| |#1| (-452))) (((-641 |#4|) (-641 |#4|)) 124 (|has| |#1| (-452)))) (-1883 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 43)) (-4335 (((-112) |#4|) 42)) (-4221 (((-641 |#4|) |#4|) 119 (|has| |#1| (-452)))) (-1720 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|)) 23)) (-1398 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 29)) (-1765 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 30)) (-1693 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|)) 88)) (-3923 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 101)) (-4164 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127)) (-3321 (((-641 |#4|) (-641 |#4|)) 126)) (-3607 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112)) 57) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 59)) (-1376 ((|#4| |#4| (-641 |#4|)) 58)) (-2087 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 130 (|has| |#1| (-452)))) (-2496 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 133 (|has| |#1| (-452)))) (-4384 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 132 (|has| |#1| (-452)))) (-3931 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|))) 103) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 105) (((-641 |#4|) (-641 |#4|) |#4|) 139) (((-641 |#4|) |#4| |#4|) 135) (((-641 |#4|) (-641 |#4|)) 104)) (-4243 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2166 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 50)) (-3170 (((-112) (-641 |#4|)) 77)) (-2163 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 65)) (-3580 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 36)) (-4359 (((-112) |#4|) 35)) (-2298 (((-641 |#4|) (-641 |#4|)) 114 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1549 (((-641 |#4|) (-641 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2871 (((-641 |#4|) (-641 |#4|)) 81)) (-3826 (((-641 |#4|) (-641 |#4|)) 95)) (-1800 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3173 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 48)) (-3335 (((-112) |#4|) 44))) +(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3931 ((-641 |#4|) (-641 |#4|))) (-15 -3931 ((-641 |#4|) |#4| |#4|)) (-15 -3321 ((-641 |#4|) (-641 |#4|))) (-15 -1429 ((-641 |#4|) |#4| |#4|)) (-15 -3931 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -3931 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3931 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -1800 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2163 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3170 ((-112) (-641 |#4|))) (-15 -1720 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -1398 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1765 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2166 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -4335 ((-112) |#4|)) (-15 -1883 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -4359 ((-112) |#4|)) (-15 -3580 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3335 ((-112) |#4|)) (-15 -3173 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3607 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3607 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1376 (|#4| |#4| (-641 |#4|))) (-15 -2871 ((-641 |#4|) (-641 |#4|))) (-15 -1693 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -3826 ((-641 |#4|) (-641 |#4|))) (-15 -3923 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4164 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -4221 ((-641 |#4|) |#4|)) (-15 -3049 ((-641 |#4|) (-641 |#4|))) (-15 -3049 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -2087 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4384 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2496 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -1549 ((-641 |#4|) (-641 |#4|))) (-15 -2298 ((-641 |#4|) (-641 |#4|))) (-15 -4243 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -973)) +((-4243 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2496 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-4384 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2087 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-4221 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-4164 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3923 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1693 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -1846 (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1376 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))) (-3607 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3607 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-4359 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-4335 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-2166 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-1398 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))) (-1800 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3931 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3931 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3931 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) (-1429 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3321 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3931 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(-10 -7 (-15 -3931 ((-641 |#4|) (-641 |#4|))) (-15 -3931 ((-641 |#4|) |#4| |#4|)) (-15 -3321 ((-641 |#4|) (-641 |#4|))) (-15 -1429 ((-641 |#4|) |#4| |#4|)) (-15 -3931 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -3931 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3931 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -1800 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2163 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3170 ((-112) (-641 |#4|))) (-15 -1720 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -1398 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1765 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2166 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -4335 ((-112) |#4|)) (-15 -1883 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -4359 ((-112) |#4|)) (-15 -3580 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3335 ((-112) |#4|)) (-15 -3173 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3607 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3607 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1376 (|#4| |#4| (-641 |#4|))) (-15 -2871 ((-641 |#4|) (-641 |#4|))) (-15 -1693 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -3826 ((-641 |#4|) (-641 |#4|))) (-15 -3923 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4164 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -4221 ((-641 |#4|) |#4|)) (-15 -3049 ((-641 |#4|) (-641 |#4|))) (-15 -3049 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -2087 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4384 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2496 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -1549 ((-641 |#4|) (-641 |#4|))) (-15 -2298 ((-641 |#4|) (-641 |#4|))) (-15 -4243 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) +((-3381 (((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3543 (((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 43)) (-1823 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-974 |#1|) (-10 -7 (-15 -3381 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1823 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3543 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -974)) +((-3543 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) (-5 *1 (-974 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))) (-1823 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-974 *5)))) (-3381 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) (-5 *1 (-974 *6)) (-5 *3 (-685 *6))))) +(-10 -7 (-15 -3381 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1823 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3543 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) +((-2657 (((-418 |#4|) |#4|) 56))) +(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2657 ((-418 |#4|) |#4|))) (-846) (-789) (-452) (-945 |#3| |#2| |#1|)) (T -975)) +((-2657 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(-10 -7 (-15 -2657 ((-418 |#4|) |#4|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3991 (($ (-767)) 112 (|has| |#1| (-23)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2443 (($ $) 90 (|has| $ (-6 -4407)))) (-2493 (($ $) 100)) (-2027 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 51)) (-3847 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-1437 (($ (-641 |#1|)) 118)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3611 (((-685 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-4121 (($ (-767) |#1|) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 87 (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 86 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1457 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-1681 (((-112) $ (-767)) 10)) (-1750 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 42 (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2981 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-2941 (($ $ (-641 |#1|)) 116)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2535 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-3480 (((-917) $) 117)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3969 (($ $ $) 104)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 119)) (-2335 (($ (-641 |#1|)) 70)) (-3533 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2964 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3021 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3011 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-976 |#1|) (-140) (-1045)) (T -976)) +((-1437 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) (-3969 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045))))) +(-13 (-1257 |t#1|) (-616 (-641 |t#1|)) (-10 -8 (-15 -1437 ($ (-641 |t#1|))) (-15 -3480 ((-917) $)) (-15 -3969 ($ $ $)) (-15 -2941 ($ $ (-641 |t#1|))))) +(((-34) . T) ((-102) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-616 (-641 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T) ((-1257 |#1|) . T)) +((-3123 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 17))) +(((-977 |#1| |#2|) (-10 -7 (-15 -3123 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1045) (-1045)) (T -977)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6))))) +(-10 -7 (-15 -3123 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) +((-1814 ((|#1| (-939 |#1|)) 14)) (-2309 ((|#1| (-939 |#1|)) 13)) (-2367 ((|#1| (-939 |#1|)) 12)) (-3724 ((|#1| (-939 |#1|)) 16)) (-3398 ((|#1| (-939 |#1|)) 24)) (-3765 ((|#1| (-939 |#1|)) 15)) (-3793 ((|#1| (-939 |#1|)) 17)) (-2386 ((|#1| (-939 |#1|)) 23)) (-4332 ((|#1| (-939 |#1|)) 22))) +(((-978 |#1|) (-10 -7 (-15 -2367 (|#1| (-939 |#1|))) (-15 -2309 (|#1| (-939 |#1|))) (-15 -1814 (|#1| (-939 |#1|))) (-15 -3765 (|#1| (-939 |#1|))) (-15 -3724 (|#1| (-939 |#1|))) (-15 -3793 (|#1| (-939 |#1|))) (-15 -4332 (|#1| (-939 |#1|))) (-15 -2386 (|#1| (-939 |#1|))) (-15 -3398 (|#1| (-939 |#1|)))) (-1045)) (T -978)) +((-3398 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-4332 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(-10 -7 (-15 -2367 (|#1| (-939 |#1|))) (-15 -2309 (|#1| (-939 |#1|))) (-15 -1814 (|#1| (-939 |#1|))) (-15 -3765 (|#1| (-939 |#1|))) (-15 -3724 (|#1| (-939 |#1|))) (-15 -3793 (|#1| (-939 |#1|))) (-15 -4332 (|#1| (-939 |#1|))) (-15 -2386 (|#1| (-939 |#1|))) (-15 -3398 (|#1| (-939 |#1|)))) +((-2374 (((-3 |#1| "failed") |#1|) 18)) (-2425 (((-3 |#1| "failed") |#1|) 6)) (-4275 (((-3 |#1| "failed") |#1|) 16)) (-2402 (((-3 |#1| "failed") |#1|) 4)) (-3567 (((-3 |#1| "failed") |#1|) 20)) (-2385 (((-3 |#1| "failed") |#1|) 8)) (-3575 (((-3 |#1| "failed") |#1| (-767)) 1)) (-3812 (((-3 |#1| "failed") |#1|) 3)) (-1705 (((-3 |#1| "failed") |#1|) 2)) (-2840 (((-3 |#1| "failed") |#1|) 21)) (-2090 (((-3 |#1| "failed") |#1|) 9)) (-1613 (((-3 |#1| "failed") |#1|) 19)) (-2980 (((-3 |#1| "failed") |#1|) 7)) (-2022 (((-3 |#1| "failed") |#1|) 17)) (-1838 (((-3 |#1| "failed") |#1|) 5)) (-2858 (((-3 |#1| "failed") |#1|) 24)) (-2086 (((-3 |#1| "failed") |#1|) 12)) (-1775 (((-3 |#1| "failed") |#1|) 22)) (-3475 (((-3 |#1| "failed") |#1|) 10)) (-1475 (((-3 |#1| "failed") |#1|) 26)) (-2725 (((-3 |#1| "failed") |#1|) 14)) (-1716 (((-3 |#1| "failed") |#1|) 27)) (-4080 (((-3 |#1| "failed") |#1|) 15)) (-2183 (((-3 |#1| "failed") |#1|) 25)) (-2383 (((-3 |#1| "failed") |#1|) 13)) (-2933 (((-3 |#1| "failed") |#1|) 23)) (-2620 (((-3 |#1| "failed") |#1|) 11))) +(((-979 |#1|) (-140) (-1194)) (T -979)) +((-1716 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1475 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2183 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2858 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2933 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1775 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2840 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3567 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1613 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2374 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-4275 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-4080 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2725 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2383 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2086 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2620 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3475 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2090 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2385 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2425 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1838 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2402 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3812 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1705 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3575 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(-13 (-10 -7 (-15 -3575 ((-3 |t#1| "failed") |t#1| (-767))) (-15 -1705 ((-3 |t#1| "failed") |t#1|)) (-15 -3812 ((-3 |t#1| "failed") |t#1|)) (-15 -2402 ((-3 |t#1| "failed") |t#1|)) (-15 -1838 ((-3 |t#1| "failed") |t#1|)) (-15 -2425 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2385 ((-3 |t#1| "failed") |t#1|)) (-15 -2090 ((-3 |t#1| "failed") |t#1|)) (-15 -3475 ((-3 |t#1| "failed") |t#1|)) (-15 -2620 ((-3 |t#1| "failed") |t#1|)) (-15 -2086 ((-3 |t#1| "failed") |t#1|)) (-15 -2383 ((-3 |t#1| "failed") |t#1|)) (-15 -2725 ((-3 |t#1| "failed") |t#1|)) (-15 -4080 ((-3 |t#1| "failed") |t#1|)) (-15 -4275 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -2374 ((-3 |t#1| "failed") |t#1|)) (-15 -1613 ((-3 |t#1| "failed") |t#1|)) (-15 -3567 ((-3 |t#1| "failed") |t#1|)) (-15 -2840 ((-3 |t#1| "failed") |t#1|)) (-15 -1775 ((-3 |t#1| "failed") |t#1|)) (-15 -2933 ((-3 |t#1| "failed") |t#1|)) (-15 -2858 ((-3 |t#1| "failed") |t#1|)) (-15 -2183 ((-3 |t#1| "failed") |t#1|)) (-15 -1475 ((-3 |t#1| "failed") |t#1|)) (-15 -1716 ((-3 |t#1| "failed") |t#1|)))) +((-3730 ((|#4| |#4| (-641 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3516 ((|#4| |#4| (-641 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3123 ((|#4| (-1 |#4| (-948 |#1|)) |#4|) 31))) +(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| |#4| |#3|)) (-15 -3516 (|#4| |#4| (-641 |#3|))) (-15 -3730 (|#4| |#4| |#3|)) (-15 -3730 (|#4| |#4| (-641 |#3|))) (-15 -3123 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) (-1045) (-789) (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170))))) (-945 (-948 |#1|) |#2| |#3|)) (T -980)) +((-3123 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-5 *1 (-980 *4 *5 *6 *2)))) (-3730 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-3730 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) (-3516 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-3516 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)) (-15 -3256 ((-3 $ "failed") (-1170)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))) +(-10 -7 (-15 -3516 (|#4| |#4| |#3|)) (-15 -3516 (|#4| |#4| (-641 |#3|))) (-15 -3730 (|#4| |#4| |#3|)) (-15 -3730 (|#4| |#4| (-641 |#3|))) (-15 -3123 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) +((-3627 ((|#2| |#3|) 35)) (-3370 (((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 86)) (-2112 (((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 106))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2112 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3370 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -3627 (|#2| |#3|))) (-349) (-1235 |#1|) (-1235 |#2|) (-720 |#2| |#3|)) (T -981)) +((-3627 (*1 *2 *3) (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-981 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))) (-3370 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) (-2112 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3342 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5))))) +(-10 -7 (-15 -2112 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3370 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -3627 (|#2| |#3|))) +((-3338 (((-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))) (-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564))))) 83))) +(((-982 |#1| |#2|) (-10 -7 (-15 -3338 ((-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))) (-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564))))))) (-641 (-1170)) (-767)) (T -982)) +((-3338 (*1 *2 *2) (-12 (-5 *2 (-983 (-407 (-564)) (-860 *3) (-240 *4 (-767)) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4))))) +(-10 -7 (-15 -3338 ((-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))) (-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564))))))) +((-2310 (((-112) $ $) NIL)) (-2984 (((-3 (-112) "failed") $) 71)) (-3046 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3097 (($ $ (-3 (-112) "failed")) 72)) (-3693 (($ (-641 |#4|) |#4|) 25)) (-1418 (((-1152) $) NIL)) (-3347 (($ $) 69)) (-3840 (((-1114) $) NIL)) (-3282 (((-112) $) 70)) (-2348 (($) 30)) (-2883 ((|#4| $) 74)) (-3136 (((-641 |#4|) $) 73)) (-2322 (((-858) $) 68)) (-2921 (((-112) $ $) NIL))) +(((-983 |#1| |#2| |#3| |#4|) (-13 (-1094) (-611 (-858)) (-10 -8 (-15 -2348 ($)) (-15 -3693 ($ (-641 |#4|) |#4|)) (-15 -2984 ((-3 (-112) "failed") $)) (-15 -3097 ($ $ (-3 (-112) "failed"))) (-15 -3282 ((-112) $)) (-15 -3136 ((-641 |#4|) $)) (-15 -2883 (|#4| $)) (-15 -3347 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3046 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-846) (-789) (-945 |#1| |#3| |#2|)) (T -983)) +((-2348 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-3693 (*1 *1 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))) (-2984 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3282 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3136 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-641 *6)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-2883 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))) (-3347 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-3046 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))) +(-13 (-1094) (-611 (-858)) (-10 -8 (-15 -2348 ($)) (-15 -3693 ($ (-641 |#4|) |#4|)) (-15 -2984 ((-3 (-112) "failed") $)) (-15 -3097 ($ $ (-3 (-112) "failed"))) (-15 -3282 ((-112) $)) (-15 -3136 ((-641 |#4|) $)) (-15 -2883 (|#4| $)) (-15 -3347 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3046 ($ $)) |%noBranch|) |%noBranch|))) +((-4119 (((-112) |#5| |#5|) 43)) (-3418 (((-112) |#5| |#5|) 57)) (-4166 (((-112) |#5| (-641 |#5|)) 79) (((-112) |#5| |#5|) 66)) (-2394 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-1815 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) 68)) (-3010 (((-1264)) 33)) (-1746 (((-1264) (-1152) (-1152) (-1152)) 29)) (-2238 (((-641 |#5|) (-641 |#5|)) 98)) (-2156 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) 90)) (-2512 (((-641 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 120)) (-2509 (((-112) |#5| |#5|) 52)) (-1507 (((-3 (-112) "failed") |#5| |#5|) 76)) (-3907 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-3853 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3288 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2728 (((-3 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 115)) (-2898 (((-641 |#5|) (-641 |#5|)) 48))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1746 ((-1264) (-1152) (-1152) (-1152))) (-15 -3010 ((-1264))) (-15 -4119 ((-112) |#5| |#5|)) (-15 -2898 ((-641 |#5|) (-641 |#5|))) (-15 -2509 ((-112) |#5| |#5|)) (-15 -3418 ((-112) |#5| |#5|)) (-15 -2394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3907 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3853 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3288 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1507 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4166 ((-112) |#5| |#5|)) (-15 -4166 ((-112) |#5| (-641 |#5|))) (-15 -2238 ((-641 |#5|) (-641 |#5|))) (-15 -1815 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -2156 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-15 -2512 ((-641 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2728 ((-3 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -984)) +((-2728 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -3482 (-641 *9)) (|:| -2244 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-2512 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -3482 (-641 *9)) (|:| -2244 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2244 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-1815 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) (-4166 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-1507 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3288 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3853 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3907 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2394 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2509 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-4119 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3010 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-1746 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -1746 ((-1264) (-1152) (-1152) (-1152))) (-15 -3010 ((-1264))) (-15 -4119 ((-112) |#5| |#5|)) (-15 -2898 ((-641 |#5|) (-641 |#5|))) (-15 -2509 ((-112) |#5| |#5|)) (-15 -3418 ((-112) |#5| |#5|)) (-15 -2394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3907 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3853 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3288 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1507 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4166 ((-112) |#5| |#5|)) (-15 -4166 ((-112) |#5| (-641 |#5|))) (-15 -2238 ((-641 |#5|) (-641 |#5|))) (-15 -1815 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -2156 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-15 -2512 ((-641 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2728 ((-3 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3256 (((-1170) $) 15)) (-2053 (((-1152) $) 16)) (-1866 (($ (-1170) (-1152)) 14)) (-2322 (((-858) $) 13))) +(((-985) (-13 (-611 (-858)) (-10 -8 (-15 -1866 ($ (-1170) (-1152))) (-15 -3256 ((-1170) $)) (-15 -2053 ((-1152) $))))) (T -985)) +((-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-985)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-985)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-985))))) +(-13 (-611 (-858)) (-10 -8 (-15 -1866 ($ (-1170) (-1152))) (-15 -3256 ((-1170) $)) (-15 -2053 ((-1152) $)))) +((-3123 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-988 |#1|) (-988 |#2|)) (T -986)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5))))) +(-10 -7 (-15 -3123 (|#4| (-1 |#2| |#1|) |#3|))) +((-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-1781 ((|#2| $) NIL) (((-1170) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-2750 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 115) (((-685 |#2|) (-685 $)) 28)) (-3860 (($) 99)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 76) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 85)) (-1352 (($ $) 10)) (-1620 (((-3 $ "failed") $) 20)) (-3123 (($ (-1 |#2| |#2|) $) 22)) (-3346 (($) 16)) (-3399 (($ $) 55)) (-1343 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1881 (($ $) 12)) (-3172 (((-888 (-564)) $) 71) (((-888 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1170)) 58)) (-3179 (((-767)) 31)) (-2942 (((-112) $ $) 51))) +(((-987 |#1| |#2|) (-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3172 ((-225) |#1|)) (-15 -3172 ((-379) |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -2322 (|#1| (-1170))) (-15 -3032 ((-3 (-1170) "failed") |#1|)) (-15 -1781 ((-1170) |#1|)) (-15 -3860 (|#1|)) (-15 -3399 (|#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -2750 ((-685 |#2|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| |#1|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-988 |#2|) (-556)) (T -987)) +((-3179 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) (-4 *3 (-988 *4))))) +(-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3172 ((-225) |#1|)) (-15 -3172 ((-379) |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -2322 (|#1| (-1170))) (-15 -3032 ((-3 (-1170) "failed") |#1|)) (-15 -1781 ((-1170) |#1|)) (-15 -3860 (|#1|)) (-15 -3399 (|#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3466 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -2750 ((-685 |#2|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| |#1|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1625 ((|#1| $) 138 (|has| |#1| (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-1986 (((-418 (-1166 $)) (-1166 $)) 129 (|has| |#1| (-905)))) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 132 (|has| |#1| (-905)))) (-3547 (((-112) $ $) 60)) (-3085 (((-564) $) 119 (|has| |#1| (-816)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 176) (((-3 (-1170) "failed") $) 127 (|has| |#1| (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) 110 (|has| |#1| (-1034 (-564)))) (((-3 (-564) "failed") $) 108 (|has| |#1| (-1034 (-564))))) (-1781 ((|#1| $) 177) (((-1170) $) 128 (|has| |#1| (-1034 (-1170)))) (((-407 (-564)) $) 111 (|has| |#1| (-1034 (-564)))) (((-564) $) 109 (|has| |#1| (-1034 (-564))))) (-2574 (($ $ $) 56)) (-2750 (((-685 (-564)) (-685 $)) 151 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 150 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 149) (((-685 |#1|) (-685 $)) 148)) (-2689 (((-3 $ "failed") $) 33)) (-3860 (($) 136 (|has| |#1| (-545)))) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-4229 (((-112) $) 72)) (-2786 (((-112) $) 121 (|has| |#1| (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 145 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 144 (|has| |#1| (-882 (-379))))) (-1828 (((-112) $) 31)) (-1352 (($ $) 140)) (-4189 ((|#1| $) 142)) (-1620 (((-3 $ "failed") $) 107 (|has| |#1| (-1145)))) (-2783 (((-112) $) 120 (|has| |#1| (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1501 (($ $ $) 117 (|has| |#1| (-846)))) (-2622 (($ $ $) 116 (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) 168)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3346 (($) 106 (|has| |#1| (-1145)) CONST)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-3399 (($ $) 137 (|has| |#1| (-307)))) (-1421 ((|#1| $) 134 (|has| |#1| (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 131 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 130 (|has| |#1| (-905)))) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 170 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 169 (|has| |#1| (-514 (-1170) |#1|)))) (-3844 (((-767) $) 59)) (-4353 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-1343 (($ $) 167 (|has| |#1| (-233))) (($ $ (-767)) 165 (|has| |#1| (-233))) (($ $ (-1170)) 163 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 162 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 161 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 160 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-1881 (($ $) 139)) (-4201 ((|#1| $) 141)) (-3172 (((-888 (-564)) $) 147 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 146 (|has| |#1| (-612 (-888 (-379))))) (((-536) $) 124 (|has| |#1| (-612 (-536)))) (((-379) $) 123 (|has| |#1| (-1018))) (((-225) $) 122 (|has| |#1| (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 133 (-2342 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 180) (($ (-1170)) 126 (|has| |#1| (-1034 (-1170))))) (-2409 (((-3 $ "failed") $) 125 (-2789 (|has| |#1| (-145)) (-2342 (|has| $ (-145)) (|has| |#1| (-905)))))) (-3179 (((-767)) 28 T CONST)) (-4381 ((|#1| $) 135 (|has| |#1| (-545)))) (-4024 (((-112) $ $) 40)) (-3598 (($ $) 118 (|has| |#1| (-816)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $) 166 (|has| |#1| (-233))) (($ $ (-767)) 164 (|has| |#1| (-233))) (($ $ (-1170)) 159 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 158 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 157 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 156 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-2977 (((-112) $ $) 114 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 113 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 115 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 112 (|has| |#1| (-846)))) (-3034 (($ $ $) 66) (($ |#1| |#1|) 143)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) +(((-988 |#1|) (-140) (-556)) (T -988)) +((-3034 (*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-1352 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3399 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3860 (*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545))))) +(-13 (-363) (-38 |t#1|) (-1034 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-880 |t#1|) (-400 |t#1|) (-10 -8 (-15 -3034 ($ |t#1| |t#1|)) (-15 -4189 (|t#1| $)) (-15 -4201 (|t#1| $)) (-15 -1352 ($ $)) (-15 -1881 ($ $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-564))) (PROGN (-6 (-1034 (-564))) (-6 (-1034 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-1170))) (-6 (-1034 (-1170))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -1625 (|t#1| $)) (-15 -3399 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3860 ($)) (-15 -4381 (|t#1| $)) (-15 -1421 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1170)) |has| |#1| (-1034 (-1170))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1018)) ((-612 (-379)) |has| |#1| (-1018)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-787) |has| |#1| (-816)) ((-788) |has| |#1| (-816)) ((-790) |has| |#1| (-816)) ((-791) |has| |#1| (-816)) ((-816) |has| |#1| (-816)) ((-844) |has| |#1| (-816)) ((-846) -2789 (|has| |#1| (-846)) (|has| |#1| (-816))) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-905) |has| |#1| (-905)) ((-916) . T) ((-1018) |has| |#1| (-1018)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-564))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #1#) |has| |#1| (-1034 (-1170))) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1209) . T) ((-1213) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3769 (($ (-1136 |#1| |#2|)) 11)) (-4187 (((-1136 |#1| |#2|) $) 12)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4353 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2322 (((-858) $) NIL)) (-2389 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL))) +(((-989 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3769 ($ (-1136 |#1| |#2|))) (-15 -4187 ((-1136 |#1| |#2|) $)) (-15 -4353 (|#2| $ (-240 |#1| |#2|))))) (-917) (-363)) (T -989)) +((-3769 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) (-5 *1 (-989 *3 *4)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) (-5 *1 (-989 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3769 ($ (-1136 |#1| |#2|))) (-15 -4187 ((-1136 |#1| |#2|) $)) (-15 -4353 (|#2| $ (-240 |#1| |#2|))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4366 (((-1129) $) 9)) (-2322 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-990) (-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $))))) (T -990)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-990))))) +(-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-4149 (($ $) 46)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1750 (((-767) $) 45)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4319 ((|#1| $) 44)) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-4040 ((|#1| |#1| $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-2853 ((|#1| $) 47)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2785 ((|#1| $) 43)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-991 |#1|) (-140) (-1209)) (T -991)) +((-4040 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-4149 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-4319 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-2785 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4406) (-15 -4040 (|t#1| |t#1| $)) (-15 -2853 (|t#1| $)) (-15 -4149 ($ $)) (-15 -1750 ((-767) $)) (-15 -4319 (|t#1| $)) (-15 -2785 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3264 (((-112) $) 43)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-1781 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-4175 (((-3 (-407 (-564)) "failed") $) 78)) (-2446 (((-112) $) 72)) (-2569 (((-407 (-564)) $) 76)) (-1828 (((-112) $) 42)) (-2019 ((|#2| $) 22)) (-3123 (($ (-1 |#2| |#2|) $) 19)) (-2639 (($ $) 58)) (-1343 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3172 (((-536) $) 67)) (-2675 (($ $) 17)) (-2322 (((-858) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-3179 (((-767)) 10)) (-3598 ((|#2| $) 71)) (-2921 (((-112) $ $) 26)) (-2942 (((-112) $ $) 69)) (-3021 (($ $) 30) (($ $ $) 29)) (-3011 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-992 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| (-407 (-564)))) (-15 -2942 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -2639 (|#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -3598 (|#2| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 -1828 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-993 |#2|) (-172)) (T -992)) +((-3179 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4))))) +(-10 -8 (-15 -2322 (|#1| (-407 (-564)))) (-15 -2942 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -2639 (|#1| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -3598 (|#2| |#1|)) (-15 -2019 (|#2| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -3123 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 -1828 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-3032 (((-3 (-564) "failed") $) 118 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 116 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 113)) (-1781 (((-564) $) 117 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 115 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 114)) (-2750 (((-685 (-564)) (-685 $)) 88 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 86) (((-685 |#1|) (-685 $)) 85)) (-2689 (((-3 $ "failed") $) 33)) (-2401 ((|#1| $) 78)) (-4175 (((-3 (-407 (-564)) "failed") $) 74 (|has| |#1| (-545)))) (-2446 (((-112) $) 76 (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) 75 (|has| |#1| (-545)))) (-4016 (($ |#1| |#1| |#1| |#1|) 79)) (-1828 (((-112) $) 31)) (-2019 ((|#1| $) 80)) (-1501 (($ $ $) 67 (|has| |#1| (-846)))) (-2622 (($ $ $) 66 (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) 89)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71 (|has| |#1| (-363)))) (-2561 ((|#1| $) 81)) (-2158 ((|#1| $) 82)) (-3291 ((|#1| $) 83)) (-3840 (((-1114) $) 10)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 91 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 90 (|has| |#1| (-514 (-1170) |#1|)))) (-4353 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-1343 (($ $) 112 (|has| |#1| (-233))) (($ $ (-767)) 110 (|has| |#1| (-233))) (($ $ (-1170)) 108 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 107 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 106 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 105 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-3172 (((-536) $) 72 (|has| |#1| (-612 (-536))))) (-2675 (($ $) 84)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 61 (-2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2409 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-3598 ((|#1| $) 77 (|has| |#1| (-1054)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $) 111 (|has| |#1| (-233))) (($ $ (-767)) 109 (|has| |#1| (-233))) (($ $ (-1170)) 104 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 103 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 102 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 101 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2977 (((-112) $ $) 64 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 63 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 65 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 62 (|has| |#1| (-846)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-564))) 69 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-363))))) +(((-993 |#1|) (-140) (-172)) (T -993)) +((-2675 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-4016 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-4175 (*1 *2 *1) (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) +(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2675 ($ $)) (-15 -3291 (|t#1| $)) (-15 -2158 (|t#1| $)) (-15 -2561 (|t#1| $)) (-15 -2019 (|t#1| $)) (-15 -4016 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2401 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3598 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2446 ((-112) $)) (-15 -2569 ((-407 (-564)) $)) (-15 -4175 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2789 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-363)) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-363)) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3123 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#3| (-1 |#4| |#2|) |#1|))) (-993 |#2|) (-172) (-993 |#4|) (-172)) (T -994)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5))))) +(-10 -7 (-15 -3123 (|#3| (-1 |#4| |#2|) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2401 ((|#1| $) 12)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2446 (((-112) $) NIL (|has| |#1| (-545)))) (-2569 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-4016 (($ |#1| |#1| |#1| |#1|) 16)) (-1828 (((-112) $) NIL)) (-2019 ((|#1| $) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-2561 ((|#1| $) 15)) (-2158 ((|#1| $) 14)) (-3291 ((|#1| $) 13)) (-3840 (((-1114) $) NIL)) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4353 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1343 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2675 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-3598 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2389 (($) 8 T CONST)) (-2403 (($) 10 T CONST)) (-3917 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))))) +(((-995 |#1|) (-993 |#1|) (-172)) (T -995)) +NIL +(-993 |#1|) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2318 (((-112) $ (-767)) NIL)) (-4157 (($) NIL T CONST)) (-4149 (($ $) 23)) (-2317 (($ (-641 |#1|)) 33)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1750 (((-767) $) 26)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1340 ((|#1| $) 28)) (-3861 (($ |#1| $) 17)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4319 ((|#1| $) 27)) (-1313 ((|#1| $) 22)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-4040 ((|#1| |#1| $) 16)) (-3282 (((-112) $) 18)) (-2348 (($) NIL)) (-2853 ((|#1| $) 21)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) NIL)) (-2785 ((|#1| $) 30)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-996 |#1|) (-13 (-991 |#1|) (-10 -8 (-15 -2317 ($ (-641 |#1|))))) (-1094)) (T -996)) +((-2317 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-996 *3))))) +(-13 (-991 |#1|) (-10 -8 (-15 -2317 ($ (-641 |#1|))))) +((-2387 (($ $) 12)) (-2739 (($ $ (-564)) 13))) +(((-997 |#1|) (-10 -8 (-15 -2387 (|#1| |#1|)) (-15 -2739 (|#1| |#1| (-564)))) (-998)) (T -997)) +NIL +(-10 -8 (-15 -2387 (|#1| |#1|)) (-15 -2739 (|#1| |#1| (-564)))) +((-2387 (($ $) 6)) (-2739 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8))) +(((-998) (-140)) (T -998)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-564))))) (-2739 (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-564)))) (-2387 (*1 *1 *1) (-4 *1 (-998)))) +(-13 (-10 -8 (-15 -2387 ($ $)) (-15 -2739 ($ $ (-564))) (-15 ** ($ $ (-407 (-564)))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-4246 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-3622 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3247 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2586 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3770 (((-407 |#2|) $) NIL)) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2657 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3547 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1959 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1603 (((-112)) NIL)) (-3493 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3013 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 81) (($ (-1259 |#2|) |#2|) NIL)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2574 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3689 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-2045 (((-1259 $) (-1259 $)) NIL)) (-3239 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-2689 (((-3 $ "failed") $) NIL)) (-3787 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-2678 (((-112) |#1| |#1|) NIL)) (-3105 (((-917)) NIL)) (-3860 (($) NIL (|has| (-407 |#2|) (-368)))) (-2882 (((-112)) NIL)) (-2800 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2552 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2520 (($ $) NIL)) (-3422 (($) NIL (|has| (-407 |#2|) (-349)))) (-3261 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-2180 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-4229 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3717 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-1828 (((-112) $) NIL)) (-2232 (((-767)) NIL)) (-1535 (((-1259 $) (-1259 $)) NIL)) (-2019 (((-407 |#2|) $) NIL)) (-1899 (((-641 (-948 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-1620 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1790 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1368 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-3228 ((|#3| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1418 (((-1152) $) NIL)) (-1956 (((-685 (-407 |#2|))) 57)) (-3461 (((-685 (-407 |#2|))) 56)) (-2639 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1983 (($ (-1259 |#2|) |#2|) 82)) (-1572 (((-685 (-407 |#2|))) 55)) (-1831 (((-685 (-407 |#2|))) 54)) (-4111 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-4146 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 88)) (-1737 (((-1259 $)) 51)) (-2112 (((-1259 $)) 50)) (-2471 (((-112) $) NIL)) (-2247 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3346 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1998 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-2021 (((-3 |#2| "failed")) 70)) (-3840 (((-1114) $) NIL)) (-3447 (((-767)) NIL)) (-4095 (($) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-3235 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-2375 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2526 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3844 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-4353 ((|#1| $ |#1| |#1|) NIL)) (-3995 (((-3 |#2| "failed")) 68)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3392 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 47)) (-3337 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-1343 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2516 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-2400 ((|#3|) 58)) (-3107 (($) NIL (|has| (-407 |#2|) (-349)))) (-3864 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 83) (((-685 (-407 |#2|)) (-1259 $)) NIL)) (-3172 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-3619 (((-1259 $) (-1259 $)) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2789 (|has| (-407 |#2|) (-1034 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2409 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2117 ((|#3| $) NIL)) (-3179 (((-767)) NIL T CONST)) (-4099 (((-112)) 65)) (-4350 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3342 (((-1259 $)) 143)) (-4024 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2876 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4135 (((-112)) NIL)) (-2389 (($) 109 T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2789 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) +(((-999 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-407 |#2|) (-767)) (T -999)) NIL (-342 |#1| |#2| |#3|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3067 (((-641 (-564)) $) 73)) (-3792 (($ (-641 (-564))) 81)) (-3423 (((-564) $) 48 (|has| (-564) (-307)))) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL (|has| (-564) (-817)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) 60) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1035 (-564))))) (-2237 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1449 (($ $ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2900 (($) NIL (|has| (-564) (-545)))) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-3479 (((-641 (-564)) $) 79)) (-1569 (((-112) $) NIL (|has| (-564) (-817)))) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL)) (-3678 (((-564) $) 45)) (-2619 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2607 (((-112) $) NIL (|has| (-564) (-817)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-564) (-847)))) (-2449 (($ (-1 (-564) (-564)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL)) (-2884 (($) NIL (|has| (-564) (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3191 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-1926 (((-1150 (-564)) $) 78)) (-2555 (($ (-641 (-564)) (-641 (-564))) 82)) (-1818 (((-564) $) 64 (|has| (-564) (-545)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3070 (((-418 $) $) NIL)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2633 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3920 (((-768) $) NIL)) (-1350 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $) 15 (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2644 (($ $) NIL)) (-3693 (((-564) $) 47)) (-1780 (((-641 (-564)) $) 80)) (-2511 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1831 (((-859) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) 25)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-2219 (((-768)) 13 T CONST)) (-4150 (((-564) $) 62 (|has| (-564) (-545)))) (-3939 (((-112) $ $) NIL)) (-1849 (($ $) NIL (|has| (-564) (-817)))) (-1293 (($) 14 T CONST)) (-1300 (($) 17 T CONST)) (-3435 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1762 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1702 (((-112) $ $) 21)) (-1749 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) 40 (|has| (-564) (-847)))) (-1823 (($ $ $) 36) (($ (-564) (-564)) 38)) (-1808 (($ $) 23) (($ $ $) 30)) (-1797 (($ $ $) 28)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL))) -(((-1001 |#1|) (-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -3067 ((-641 (-564)) $)) (-15 -1926 ((-1150 (-564)) $)) (-15 -3479 ((-641 (-564)) $)) (-15 -1780 ((-641 (-564)) $)) (-15 -3792 ($ (-641 (-564)))) (-15 -2555 ($ (-641 (-564)) (-641 (-564)))))) (-564)) (T -1001)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2555 (*1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -3191 ((-407 (-564)) $)) (-15 -3067 ((-641 (-564)) $)) (-15 -1926 ((-1150 (-564)) $)) (-15 -3479 ((-641 (-564)) $)) (-15 -1780 ((-641 (-564)) $)) (-15 -3792 ($ (-641 (-564)))) (-15 -2555 ($ (-641 (-564)) (-641 (-564)))))) -((-3232 (((-52) (-407 (-564)) (-564)) 9))) -(((-1002) (-10 -7 (-15 -3232 ((-52) (-407 (-564)) (-564))))) (T -1002)) -((-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1002))))) -(-10 -7 (-15 -3232 ((-52) (-407 (-564)) (-564)))) -((-3267 (((-564)) 23)) (-1367 (((-564)) 28)) (-3421 (((-1264) (-564)) 26)) (-2037 (((-564) (-564)) 29) (((-564)) 22))) -(((-1003) (-10 -7 (-15 -2037 ((-564))) (-15 -3267 ((-564))) (-15 -2037 ((-564) (-564))) (-15 -3421 ((-1264) (-564))) (-15 -1367 ((-564))))) (T -1003)) -((-1367 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003)))) (-2037 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-3267 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-2037 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))) -(-10 -7 (-15 -2037 ((-564))) (-15 -3267 ((-564))) (-15 -2037 ((-564) (-564))) (-15 -3421 ((-1264) (-564))) (-15 -1367 ((-564)))) -((-2999 (((-418 |#1|) |#1|) 43)) (-3070 (((-418 |#1|) |#1|) 41))) -(((-1004 |#1|) (-10 -7 (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2999 ((-418 |#1|) |#1|))) (-1235 (-407 (-564)))) (T -1004)) -((-2999 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-3070 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564))))))) -(-10 -7 (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2999 ((-418 |#1|) |#1|))) -((-2078 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-2272 (((-112) |#1|) 14)) (-3036 (((-407 (-564)) |#1|) 10))) -(((-1005 |#1|) (-10 -7 (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|))) (-1035 (-407 (-564)))) (T -1005)) -((-2078 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))) (-2272 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564)))))) (-3036 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2))))) -(-10 -7 (-15 -3036 ((-407 (-564)) |#1|)) (-15 -2272 ((-112) |#1|)) (-15 -2078 ((-3 (-407 (-564)) "failed") |#1|))) -((-1970 ((|#2| $ "value" |#2|) 12)) (-1350 ((|#2| $ "value") 10)) (-2054 (((-112) $ $) 18))) -(((-1006 |#1| |#2|) (-10 -8 (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -2054 ((-112) |#1| |#1|)) (-15 -1350 (|#2| |#1| "value"))) (-1007 |#2|) (-1209)) (T -1006)) -NIL -(-10 -8 (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -2054 ((-112) |#1| |#1|)) (-15 -1350 (|#2| |#1| "value"))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-1778 (($) 7 T CONST)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47)) (-4190 (((-564) $ $) 44)) (-1899 (((-112) $) 46)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) -(((-1007 |#1|) (-140) (-1209)) (T -1007)) -((-2926 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-3128 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-4190 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-2054 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-4376 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4407)) (-4 *1 (-1007 *3)) (-4 *3 (-1209)))) (-1970 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4407)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-2373 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1007 *2)) (-4 *2 (-1209))))) -(-13 (-489 |t#1|) (-10 -8 (-15 -2926 ((-641 $) $)) (-15 -3128 ((-641 $) $)) (-15 -2033 ((-112) $)) (-15 -1522 (|t#1| $)) (-15 -1350 (|t#1| $ "value")) (-15 -1899 ((-112) $)) (-15 -4119 ((-641 |t#1|) $)) (-15 -4190 ((-564) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -2054 ((-112) $ $)) (-15 -4376 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1801 ($ $ (-641 $))) (-15 -1970 (|t#1| $ "value" |t#1|)) (-15 -2373 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-3083 (($ $) 9) (($ $ (-918)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-2929 (((-3 $ "failed") (-1166 $) (-918) (-859)) 24) (((-3 $ "failed") (-1166 $) (-918)) 32)) (-2915 (($ $ (-564)) 58)) (-2219 (((-768)) 18)) (-1496 (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 (-407 (-564)))) 63) (((-641 $) (-1166 (-564))) 68) (((-641 $) (-949 $)) 72) (((-641 $) (-949 (-407 (-564)))) 76) (((-641 $) (-949 (-564))) 80)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53))) -(((-1008 |#1|) (-10 -8 (-15 -3083 (|#1| (-564))) (-15 -3083 (|#1| (-407 (-564)))) (-15 -3083 (|#1| |#1| (-918))) (-15 -1496 ((-641 |#1|) (-949 (-564)))) (-15 -1496 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -1496 ((-641 |#1|) (-949 |#1|))) (-15 -1496 ((-641 |#1|) (-1166 (-564)))) (-15 -1496 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -1496 ((-641 |#1|) (-1166 |#1|))) (-15 -2929 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -2929 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2915 (|#1| |#1| (-564))) (-15 -3083 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2219 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-1009)) (T -1008)) -((-2219 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009))))) -(-10 -8 (-15 -3083 (|#1| (-564))) (-15 -3083 (|#1| (-407 (-564)))) (-15 -3083 (|#1| |#1| (-918))) (-15 -1496 ((-641 |#1|) (-949 (-564)))) (-15 -1496 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -1496 ((-641 |#1|) (-949 |#1|))) (-15 -1496 ((-641 |#1|) (-1166 (-564)))) (-15 -1496 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -1496 ((-641 |#1|) (-1166 |#1|))) (-15 -2929 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -2929 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2915 (|#1| |#1| (-564))) (-15 -3083 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2219 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 91)) (-1537 (($ $) 92)) (-1932 (((-112) $) 94)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 111)) (-3399 (((-418 $) $) 112)) (-3083 (($ $) 75) (($ $ (-918)) 61) (($ (-407 (-564))) 60) (($ (-564)) 59)) (-3554 (((-112) $ $) 102)) (-1598 (((-564) $) 128)) (-1778 (($) 17 T CONST)) (-2929 (((-3 $ "failed") (-1166 $) (-918) (-859)) 69) (((-3 $ "failed") (-1166 $) (-918)) 68)) (-2347 (((-3 (-564) "failed") $) 88 (|has| (-407 (-564)) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 86 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 83)) (-2237 (((-564) $) 87 (|has| (-407 (-564)) (-1035 (-564)))) (((-407 (-564)) $) 85 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 84)) (-2094 (($ $ (-859)) 58)) (-4117 (($ $ (-859)) 57)) (-1449 (($ $ $) 106)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 105)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 100)) (-1420 (((-112) $) 113)) (-1569 (((-112) $) 126)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 74)) (-2607 (((-112) $) 127)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 109)) (-1925 (($ $ $) 125)) (-3375 (($ $ $) 124)) (-1536 (((-3 (-1166 $) "failed") $) 70)) (-1327 (((-3 (-859) "failed") $) 72)) (-4276 (((-3 (-1166 $) "failed") $) 71)) (-2740 (($ (-641 $)) 98) (($ $ $) 97)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 114)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 99)) (-2777 (($ (-641 $)) 96) (($ $ $) 95)) (-3070 (((-418 $) $) 110)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 107)) (-1403 (((-3 $ "failed") $ $) 90)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 101)) (-3920 (((-768) $) 103)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 104)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 118) (($ $) 89) (($ (-407 (-564))) 82) (($ (-564)) 81) (($ (-407 (-564))) 78)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 93)) (-2508 (((-407 (-564)) $ $) 56)) (-1496 (((-641 $) (-1166 $)) 67) (((-641 $) (-1166 (-407 (-564)))) 66) (((-641 $) (-1166 (-564))) 65) (((-641 $) (-949 $)) 64) (((-641 $) (-949 (-407 (-564)))) 63) (((-641 $) (-949 (-564))) 62)) (-1849 (($ $) 129)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 122)) (-1737 (((-112) $ $) 121)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 123)) (-1723 (((-112) $ $) 120)) (-1823 (($ $ $) 119)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 115) (($ $ (-407 (-564))) 73)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 117) (($ $ (-407 (-564))) 116) (($ (-564) $) 80) (($ $ (-564)) 79) (($ (-407 (-564)) $) 77) (($ $ (-407 (-564))) 76))) -(((-1009) (-140)) (T -1009)) -((-3083 (*1 *1 *1) (-4 *1 (-1009))) (-1327 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-4276 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-1536 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-2929 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859)) (-4 *1 (-1009)))) (-2929 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-3083 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1009)))) (-2094 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-2508 (*1 *2 *1 *1) (-12 (-4 *1 (-1009)) (-5 *2 (-407 (-564)))))) -(-13 (-147) (-845) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-999) (-10 -8 (-15 -1327 ((-3 (-859) "failed") $)) (-15 -4276 ((-3 (-1166 $) "failed") $)) (-15 -1536 ((-3 (-1166 $) "failed") $)) (-15 -2929 ((-3 $ "failed") (-1166 $) (-918) (-859))) (-15 -2929 ((-3 $ "failed") (-1166 $) (-918))) (-15 -1496 ((-641 $) (-1166 $))) (-15 -1496 ((-641 $) (-1166 (-407 (-564))))) (-15 -1496 ((-641 $) (-1166 (-564)))) (-15 -1496 ((-641 $) (-949 $))) (-15 -1496 ((-641 $) (-949 (-407 (-564))))) (-15 -1496 ((-641 $) (-949 (-564)))) (-15 -3083 ($ $ (-918))) (-15 -3083 ($ $)) (-15 -3083 ($ (-407 (-564)))) (-15 -3083 ($ (-564))) (-15 -2094 ($ $ (-859))) (-15 -4117 ($ $ (-859))) (-15 -2508 ((-407 (-564)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 #1#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 #1#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) |has| (-407 (-564)) (-1035 (-564))) ((-1052 #0#) . T) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-4335 (((-2 (|:| |ans| |#2|) (|:| -3777 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -4335 ((-2 (|:| |ans| |#2|) (|:| -3777 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1010)) -((-4335 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3521 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3777 *4) (|:| |sol?| (-112)))) (-5 *1 (-1010 *8 *4))))) -(-10 -7 (-15 -4335 ((-2 (|:| |ans| |#2|) (|:| -3777 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1427 (((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -1427 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1011)) -((-1427 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3521 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4))))) -(-10 -7 (-15 -1427 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -3521 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2249 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4252 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-2988 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1401 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-2235 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74))) -(((-1012 |#1| |#2|) (-10 -7 (-15 -2988 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1401 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2235 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2249 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4252 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1012)) -((-2249 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4252 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1012 *6 *3)))) (-2235 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-2988 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1401 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -2988 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1401 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2235 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2249 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4252 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) -((-2729 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1401 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3523 (((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34))) -(((-1013 |#1| |#2|) (-10 -7 (-15 -2729 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1401 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3523 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1013)) -((-3523 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))) (-2729 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1401 *6))) (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -2729 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1401 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3523 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) -((-2364 (((-1 |#1|) (-641 (-2 (|:| -1522 |#1|) (|:| -4129 (-564))))) 37)) (-2769 (((-1 |#1|) (-1096 |#1|)) 45)) (-2184 (((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)) 34))) -(((-1014 |#1|) (-10 -7 (-15 -2769 ((-1 |#1|) (-1096 |#1|))) (-15 -2364 ((-1 |#1|) (-641 (-2 (|:| -1522 |#1|) (|:| -4129 (-564)))))) (-15 -2184 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) (-1094)) (T -1014)) -((-2184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -1522 *4) (|:| -4129 (-564))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4))))) -(-10 -7 (-15 -2769 ((-1 |#1|) (-1096 |#1|))) (-15 -2364 ((-1 |#1|) (-641 (-2 (|:| -1522 |#1|) (|:| -4129 (-564)))))) (-15 -2184 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) -((-2155 (((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1015 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2155 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1015)) -((-2155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768)) (-5 *1 (-1015 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2155 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1817 (((-112) $ $) NIL)) (-1841 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-1129) $) 11)) (-1702 (((-112) $ $) NIL))) -(((-1016) (-13 (-1077) (-10 -8 (-15 -1841 ((-1129) $)) (-15 -1328 ((-1129) $))))) (T -1016)) -((-1841 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016))))) -(-13 (-1077) (-10 -8 (-15 -1841 ((-1129) $)) (-15 -1328 ((-1129) $)))) -((-2264 (((-3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) "failed") |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) 32) (((-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564))) 29)) (-2608 (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564))) 34) (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) 33) (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1|) 28)) (-1816 (((-641 (-407 (-564))) (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) 20)) (-2665 (((-407 (-564)) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) 17))) -(((-1017 |#1|) (-10 -7 (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1|)) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) "failed") |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -2665 ((-407 (-564)) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -1816 ((-641 (-407 (-564))) (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))))) (-1235 (-564))) (T -1017)) -((-1816 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2264 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-2264 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-2608 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -3766 *5) (|:| -3777 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -3766 *5) (|:| -3777 *5))))) (-2608 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) (-2608 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) (-2608 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))) -(-10 -7 (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1|)) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) "failed") |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -2665 ((-407 (-564)) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -1816 ((-641 (-407 (-564))) (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))))) -((-2264 (((-3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) "failed") |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) 35) (((-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564))) 32)) (-2608 (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564))) 30) (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) 28) (((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1|) 24))) -(((-1018 |#1|) (-10 -7 (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1|)) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) "failed") |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) (-1235 (-407 (-564)))) (T -1018)) -((-2264 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-2264 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-2608 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -3766 *5) (|:| -3777 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -3766 *5) (|:| -3777 *5))))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -3766 *4) (|:| -3777 *4)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))) (-5 *4 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) (-2608 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))))) -(-10 -7 (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1|)) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2608 ((-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-407 (-564)))) (-15 -2264 ((-3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) "failed") |#1| (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))) (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) -((-2511 (((-225) $) 6) (((-379) $) 9))) -(((-1019) (-140)) (T -1019)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1606 (((-641 (-564)) $) 73)) (-1958 (($ (-641 (-564))) 81)) (-1625 (((-564) $) 48 (|has| (-564) (-307)))) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL (|has| (-564) (-816)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) 60) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1034 (-564))))) (-1781 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2574 (($ $ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3860 (($) NIL (|has| (-564) (-545)))) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-4058 (((-641 (-564)) $) 79)) (-2786 (((-112) $) NIL (|has| (-564) (-816)))) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL)) (-4189 (((-564) $) 45)) (-1620 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2783 (((-112) $) NIL (|has| (-564) (-816)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-564) (-846)))) (-3123 (($ (-1 (-564) (-564)) $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL)) (-3346 (($) NIL (|has| (-564) (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3399 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-3183 (((-1150 (-564)) $) 78)) (-2248 (($ (-641 (-564)) (-641 (-564))) 82)) (-1421 (((-564) $) 64 (|has| (-564) (-545)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2375 (((-418 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3100 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3844 (((-767) $) NIL)) (-4353 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $) 15 (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1881 (($ $) NIL)) (-4201 (((-564) $) 47)) (-4180 (((-641 (-564)) $) 80)) (-3172 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2322 (((-858) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) 25)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3179 (((-767)) 13 T CONST)) (-4381 (((-564) $) 62 (|has| (-564) (-545)))) (-4024 (((-112) $ $) NIL)) (-3598 (($ $) NIL (|has| (-564) (-816)))) (-2389 (($) 14 T CONST)) (-2403 (($) 17 T CONST)) (-3917 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2977 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2921 (((-112) $ $) 21)) (-2964 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2942 (((-112) $ $) 40 (|has| (-564) (-846)))) (-3034 (($ $ $) 36) (($ (-564) (-564)) 38)) (-3021 (($ $) 23) (($ $ $) 30)) (-3011 (($ $ $) 28)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL))) +(((-1000 |#1|) (-13 (-988 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -1606 ((-641 (-564)) $)) (-15 -3183 ((-1150 (-564)) $)) (-15 -4058 ((-641 (-564)) $)) (-15 -4180 ((-641 (-564)) $)) (-15 -1958 ($ (-641 (-564)))) (-15 -2248 ($ (-641 (-564)) (-641 (-564)))))) (-564)) (T -1000)) +((-3399 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-2248 (*1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) +(-13 (-988 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -3399 ((-407 (-564)) $)) (-15 -1606 ((-641 (-564)) $)) (-15 -3183 ((-1150 (-564)) $)) (-15 -4058 ((-641 (-564)) $)) (-15 -4180 ((-641 (-564)) $)) (-15 -1958 ($ (-641 (-564)))) (-15 -2248 ($ (-641 (-564)) (-641 (-564)))))) +((-3740 (((-52) (-407 (-564)) (-564)) 9))) +(((-1001) (-10 -7 (-15 -3740 ((-52) (-407 (-564)) (-564))))) (T -1001)) +((-3740 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1001))))) +(-10 -7 (-15 -3740 ((-52) (-407 (-564)) (-564)))) +((-1959 (((-564)) 23)) (-1379 (((-564)) 28)) (-1614 (((-1264) (-564)) 26)) (-1855 (((-564) (-564)) 29) (((-564)) 22))) +(((-1002) (-10 -7 (-15 -1855 ((-564))) (-15 -1959 ((-564))) (-15 -1855 ((-564) (-564))) (-15 -1614 ((-1264) (-564))) (-15 -1379 ((-564))))) (T -1002)) +((-1379 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1002)))) (-1855 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) (-1959 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) (-1855 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002))))) +(-10 -7 (-15 -1855 ((-564))) (-15 -1959 ((-564))) (-15 -1855 ((-564) (-564))) (-15 -1614 ((-1264) (-564))) (-15 -1379 ((-564)))) +((-2212 (((-418 |#1|) |#1|) 43)) (-2375 (((-418 |#1|) |#1|) 41))) +(((-1003 |#1|) (-10 -7 (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2212 ((-418 |#1|) |#1|))) (-1235 (-407 (-564)))) (T -1003)) +((-2212 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1235 (-407 (-564))))))) +(-10 -7 (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2212 ((-418 |#1|) |#1|))) +((-4175 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-2446 (((-112) |#1|) 14)) (-2569 (((-407 (-564)) |#1|) 10))) +(((-1004 |#1|) (-10 -7 (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|))) (-1034 (-407 (-564)))) (T -1004)) +((-4175 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))) (-2446 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-564)))))) (-2569 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2))))) +(-10 -7 (-15 -2569 ((-407 (-564)) |#1|)) (-15 -2446 ((-112) |#1|)) (-15 -4175 ((-3 (-407 (-564)) "failed") |#1|))) +((-3750 ((|#2| $ "value" |#2|) 12)) (-4353 ((|#2| $ "value") 10)) (-2040 (((-112) $ $) 18))) +(((-1005 |#1| |#2|) (-10 -8 (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -4353 (|#2| |#1| "value"))) (-1006 |#2|) (-1209)) (T -1005)) +NIL +(-10 -8 (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -4353 (|#2| |#1| "value"))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-4157 (($) 7 T CONST)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47)) (-3526 (((-564) $ $) 44)) (-2911 (((-112) $) 46)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) +(((-1006 |#1|) (-140) (-1209)) (T -1006)) +((-1591 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3)))) (-4074 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3526 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-2040 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1634 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1292 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4407)) (-4 *1 (-1006 *3)) (-4 *3 (-1209)))) (-3750 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4407)) (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) (-4159 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1006 *2)) (-4 *2 (-1209))))) +(-13 (-489 |t#1|) (-10 -8 (-15 -1591 ((-641 $) $)) (-15 -4074 ((-641 $) $)) (-15 -1808 ((-112) $)) (-15 -2053 (|t#1| $)) (-15 -4353 (|t#1| $ "value")) (-15 -2911 ((-112) $)) (-15 -1502 ((-641 |t#1|) $)) (-15 -3526 ((-564) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -2040 ((-112) $ $)) (-15 -1634 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1292 ($ $ (-641 $))) (-15 -3750 (|t#1| $ "value" |t#1|)) (-15 -4159 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2387 (($ $) 9) (($ $ (-917)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-1627 (((-3 $ "failed") (-1166 $) (-917) (-858)) 24) (((-3 $ "failed") (-1166 $) (-917)) 32)) (-2739 (($ $ (-564)) 58)) (-3179 (((-767)) 18)) (-1372 (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 (-407 (-564)))) 63) (((-641 $) (-1166 (-564))) 68) (((-641 $) (-948 $)) 72) (((-641 $) (-948 (-407 (-564)))) 76) (((-641 $) (-948 (-564))) 80)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53))) +(((-1007 |#1|) (-10 -8 (-15 -2387 (|#1| (-564))) (-15 -2387 (|#1| (-407 (-564)))) (-15 -2387 (|#1| |#1| (-917))) (-15 -1372 ((-641 |#1|) (-948 (-564)))) (-15 -1372 ((-641 |#1|) (-948 (-407 (-564))))) (-15 -1372 ((-641 |#1|) (-948 |#1|))) (-15 -1372 ((-641 |#1|) (-1166 (-564)))) (-15 -1372 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -1372 ((-641 |#1|) (-1166 |#1|))) (-15 -1627 ((-3 |#1| "failed") (-1166 |#1|) (-917))) (-15 -1627 ((-3 |#1| "failed") (-1166 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2739 (|#1| |#1| (-564))) (-15 -2387 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3179 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-1008)) (T -1007)) +((-3179 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008))))) +(-10 -8 (-15 -2387 (|#1| (-564))) (-15 -2387 (|#1| (-407 (-564)))) (-15 -2387 (|#1| |#1| (-917))) (-15 -1372 ((-641 |#1|) (-948 (-564)))) (-15 -1372 ((-641 |#1|) (-948 (-407 (-564))))) (-15 -1372 ((-641 |#1|) (-948 |#1|))) (-15 -1372 ((-641 |#1|) (-1166 (-564)))) (-15 -1372 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -1372 ((-641 |#1|) (-1166 |#1|))) (-15 -1627 ((-3 |#1| "failed") (-1166 |#1|) (-917))) (-15 -1627 ((-3 |#1| "failed") (-1166 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2739 (|#1| |#1| (-564))) (-15 -2387 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3179 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 91)) (-3622 (($ $) 92)) (-3247 (((-112) $) 94)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 111)) (-2657 (((-418 $) $) 112)) (-2387 (($ $) 75) (($ $ (-917)) 61) (($ (-407 (-564))) 60) (($ (-564)) 59)) (-3547 (((-112) $ $) 102)) (-3085 (((-564) $) 128)) (-4157 (($) 17 T CONST)) (-1627 (((-3 $ "failed") (-1166 $) (-917) (-858)) 69) (((-3 $ "failed") (-1166 $) (-917)) 68)) (-3032 (((-3 (-564) "failed") $) 88 (|has| (-407 (-564)) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 86 (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 83)) (-1781 (((-564) $) 87 (|has| (-407 (-564)) (-1034 (-564)))) (((-407 (-564)) $) 85 (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-407 (-564)) $) 84)) (-4354 (($ $ (-858)) 58)) (-2147 (($ $ (-858)) 57)) (-2574 (($ $ $) 106)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 105)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 100)) (-4229 (((-112) $) 113)) (-2786 (((-112) $) 126)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 74)) (-2783 (((-112) $) 127)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 109)) (-1501 (($ $ $) 125)) (-2622 (($ $ $) 124)) (-3612 (((-3 (-1166 $) "failed") $) 70)) (-1703 (((-3 (-858) "failed") $) 72)) (-3196 (((-3 (-1166 $) "failed") $) 71)) (-3202 (($ (-641 $)) 98) (($ $ $) 97)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 114)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 99)) (-3235 (($ (-641 $)) 96) (($ $ $) 95)) (-2375 (((-418 $) $) 110)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 107)) (-2526 (((-3 $ "failed") $ $) 90)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 101)) (-3844 (((-767) $) 103)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 104)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 118) (($ $) 89) (($ (-407 (-564))) 82) (($ (-564)) 81) (($ (-407 (-564))) 78)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 93)) (-3564 (((-407 (-564)) $ $) 56)) (-1372 (((-641 $) (-1166 $)) 67) (((-641 $) (-1166 (-407 (-564)))) 66) (((-641 $) (-1166 (-564))) 65) (((-641 $) (-948 $)) 64) (((-641 $) (-948 (-407 (-564)))) 63) (((-641 $) (-948 (-564))) 62)) (-3598 (($ $) 129)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 122)) (-2953 (((-112) $ $) 121)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 123)) (-2942 (((-112) $ $) 120)) (-3034 (($ $ $) 119)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 115) (($ $ (-407 (-564))) 73)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 117) (($ $ (-407 (-564))) 116) (($ (-564) $) 80) (($ $ (-564)) 79) (($ (-407 (-564)) $) 77) (($ $ (-407 (-564))) 76))) +(((-1008) (-140)) (T -1008)) +((-2387 (*1 *1 *1) (-4 *1 (-1008))) (-1703 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3196 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008)))) (-3612 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008)))) (-1627 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-5 *4 (-858)) (-4 *1 (-1008)))) (-1627 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-2387 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1008)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1008)))) (-4354 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3564 (*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-564)))))) +(-13 (-147) (-844) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-998) (-10 -8 (-15 -1703 ((-3 (-858) "failed") $)) (-15 -3196 ((-3 (-1166 $) "failed") $)) (-15 -3612 ((-3 (-1166 $) "failed") $)) (-15 -1627 ((-3 $ "failed") (-1166 $) (-917) (-858))) (-15 -1627 ((-3 $ "failed") (-1166 $) (-917))) (-15 -1372 ((-641 $) (-1166 $))) (-15 -1372 ((-641 $) (-1166 (-407 (-564))))) (-15 -1372 ((-641 $) (-1166 (-564)))) (-15 -1372 ((-641 $) (-948 $))) (-15 -1372 ((-641 $) (-948 (-407 (-564))))) (-15 -1372 ((-641 $) (-948 (-564)))) (-15 -2387 ($ $ (-917))) (-15 -2387 ($ $)) (-15 -2387 ($ (-407 (-564)))) (-15 -2387 ($ (-564))) (-15 -4354 ($ $ (-858))) (-15 -2147 ($ $ (-858))) (-15 -3564 ((-407 (-564)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 #1#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-564))) . T) ((-1034 (-564)) |has| (-407 (-564)) (-1034 (-564))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2538 (((-2 (|:| |ans| |#2|) (|:| -4250 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1009 |#1| |#2|) (-10 -7 (-15 -2538 ((-2 (|:| |ans| |#2|) (|:| -4250 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1009)) +((-2538 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1370 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112)))) (-5 *1 (-1009 *8 *4))))) +(-10 -7 (-15 -2538 ((-2 (|:| |ans| |#2|) (|:| -4250 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4286 (((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -4286 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1010)) +((-4286 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1370 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1010 *8 *4))))) +(-10 -7 (-15 -4286 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -1370 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2198 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3482 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-2106 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2525 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-3326 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -2106 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2525 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3326 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2198 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3482 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1034 (-564))) (-1235 |#1|)) (T -1011)) +((-2198 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3482 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1011 *6 *3)))) (-3326 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))) (-2106 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -2525 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -2106 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2525 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3326 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2198 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3482 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) +((-1471 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2525 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-1391 (((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -1471 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2525 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1391 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-564))) (-1235 |#1|)) (T -1012)) +((-1391 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-1471 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -2525 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -1471 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2525 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1391 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) +((-4059 (((-1 |#1|) (-641 (-2 (|:| -2053 |#1|) (|:| -4145 (-564))))) 37)) (-3731 (((-1 |#1|) (-1096 |#1|)) 45)) (-2838 (((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)) 34))) +(((-1013 |#1|) (-10 -7 (-15 -3731 ((-1 |#1|) (-1096 |#1|))) (-15 -4059 ((-1 |#1|) (-641 (-2 (|:| -2053 |#1|) (|:| -4145 (-564)))))) (-15 -2838 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) (-1094)) (T -1013)) +((-2838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2053 *4) (|:| -4145 (-564))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))) +(-10 -7 (-15 -3731 ((-1 |#1|) (-1096 |#1|))) (-15 -4059 ((-1 |#1|) (-641 (-2 (|:| -2053 |#1|) (|:| -4145 (-564)))))) (-15 -2838 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) +((-3717 (((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3717 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1014)) +((-3717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3717 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3523 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-1129) $) 11)) (-2921 (((-112) $ $) NIL))) +(((-1015) (-13 (-1077) (-10 -8 (-15 -3523 ((-1129) $)) (-15 -2433 ((-1129) $))))) (T -1015)) +((-3523 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015))))) +(-13 (-1077) (-10 -8 (-15 -3523 ((-1129) $)) (-15 -2433 ((-1129) $)))) +((-2346 (((-3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) "failed") |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) 32) (((-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564))) 29)) (-2796 (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564))) 34) (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) 33) (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1|) 28)) (-1409 (((-641 (-407 (-564))) (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) 20)) (-2072 (((-407 (-564)) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) 17))) +(((-1016 |#1|) (-10 -7 (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1|)) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) "failed") |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -2072 ((-407 (-564)) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -1409 ((-641 (-407 (-564))) (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))))) (-1235 (-564))) (T -1016)) +((-1409 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1016 *4)) (-4 *4 (-1235 (-564))))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1016 *4)) (-4 *4 (-1235 (-564))))) (-2346 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) (-2346 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) (-2796 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -4237 *5) (|:| -4250 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -4237 *5) (|:| -4250 *5))))) (-2796 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) (-2796 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564)))))) +(-10 -7 (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1|)) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) "failed") |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -2072 ((-407 (-564)) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -1409 ((-641 (-407 (-564))) (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))))) +((-2346 (((-3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) "failed") |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) 35) (((-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564))) 32)) (-2796 (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564))) 30) (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) 28) (((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1|) 24))) +(((-1017 |#1|) (-10 -7 (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1|)) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) "failed") |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) (-1235 (-407 (-564)))) (T -1017)) +((-2346 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-2346 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *4)))) (-2796 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -4237 *5) (|:| -4250 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -4237 *5) (|:| -4250 *5))))) (-2796 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -4237 *4) (|:| -4250 *4)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *4)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))) (-5 *4 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564))))))) +(-10 -7 (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1|)) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2796 ((-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-407 (-564)))) (-15 -2346 ((-3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) "failed") |#1| (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))) (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) +((-3172 (((-225) $) 6) (((-379) $) 9))) +(((-1018) (-140)) (T -1018)) NIL (-13 (-612 (-225)) (-612 (-379))) (((-612 (-225)) . T) ((-612 (-379)) . T)) -((-2017 (((-641 (-379)) (-949 (-564)) (-379)) 28) (((-641 (-379)) (-949 (-407 (-564))) (-379)) 27)) (-3589 (((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379)) 37))) -(((-1020) (-10 -7 (-15 -2017 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -2017 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -3589 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379))))) (T -1020)) -((-3589 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379))))) -(-10 -7 (-15 -2017 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -2017 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -3589 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 75)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3083 (($ $) NIL) (($ $ (-918)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) 70)) (-1778 (($) NIL T CONST)) (-2929 (((-3 $ "failed") (-1166 $) (-918) (-859)) NIL) (((-3 $ "failed") (-1166 $) (-918)) 55)) (-2347 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-4078 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-2237 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-4078 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-2094 (($ $ (-859)) 47)) (-4117 (($ $ (-859)) 48)) (-1449 (($ $ $) NIL)) (-1751 (((-407 (-564)) $ $) 21)) (-3733 (((-3 $ "failed") $) 88)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1569 (((-112) $) 66)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL)) (-2607 (((-112) $) 69)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-1536 (((-3 (-1166 $) "failed") $) 83)) (-1327 (((-3 (-859) "failed") $) 82)) (-4276 (((-3 (-1166 $) "failed") $) 80)) (-2542 (((-3 (-1056 $ (-1166 $)) "failed") $) 78)) (-2740 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 89)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1831 (((-859) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-2219 (((-768)) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-2508 (((-407 (-564)) $ $) 27)) (-1496 (((-641 $) (-1166 $)) 61) (((-641 $) (-1166 (-407 (-564)))) NIL) (((-641 $) (-1166 (-564))) NIL) (((-641 $) (-949 $)) NIL) (((-641 $) (-949 (-407 (-564)))) NIL) (((-641 $) (-949 (-564))) NIL)) (-1610 (($ (-1056 $ (-1166 $)) (-859)) 46)) (-1849 (($ $) 22)) (-1293 (($) 32 T CONST)) (-1300 (($) 39 T CONST)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 76)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 24)) (-1823 (($ $ $) 37)) (-1808 (($ $) 38) (($ $ $) 74)) (-1797 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1021 |#1|) (-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -1610 ($ (-1056 $ (-1166 $)) (-859))) (-15 -2542 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -1751 ((-407 (-564)) $ $)))) (-13 (-845) (-363) (-1019))) (T -1021)) -((-1610 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859)) (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019))))) (-2542 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3)))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))) (-1751 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019)))))) -(-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -1610 ($ (-1056 $ (-1166 $)) (-859))) (-15 -2542 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -1751 ((-407 (-564)) $ $)))) -((-2677 (((-2 (|:| -4252 |#2|) (|:| -3581 (-641 |#1|))) |#2| (-641 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1022 |#1| |#2|) (-10 -7 (-15 -2677 (|#2| |#2| |#1|)) (-15 -2677 ((-2 (|:| -4252 |#2|) (|:| -3581 (-641 |#1|))) |#2| (-641 |#1|)))) (-363) (-652 |#1|)) (T -1022)) -((-2677 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -4252 *3) (|:| -3581 (-641 *5)))) (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))) (-2677 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3))))) -(-10 -7 (-15 -2677 (|#2| |#2| |#1|)) (-15 -2677 ((-2 (|:| -4252 |#2|) (|:| -3581 (-641 |#1|))) |#2| (-641 |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3941 ((|#1| $ |#1|) 14)) (-1970 ((|#1| $ |#1|) 12)) (-3465 (($ |#1|) 10)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1350 ((|#1| $) 11)) (-2757 ((|#1| $) 13)) (-1831 (((-859) $) 21 (|has| |#1| (-1094)))) (-1702 (((-112) $ $) 9))) -(((-1023 |#1|) (-13 (-1209) (-10 -8 (-15 -3465 ($ |#1|)) (-15 -1350 (|#1| $)) (-15 -1970 (|#1| $ |#1|)) (-15 -2757 (|#1| $)) (-15 -3941 (|#1| $ |#1|)) (-15 -1702 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1023)) -((-3465 (*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1350 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1970 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-2757 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-3941 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1702 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209))))) -(-13 (-1209) (-10 -8 (-15 -3465 ($ |#1|)) (-15 -1350 (|#1| $)) (-15 -1970 (|#1| $ |#1|)) (-15 -2757 (|#1| $)) (-15 -3941 (|#1| $ |#1|)) (-15 -1702 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2951 (((-641 $) (-641 |#4|)) 115) (((-641 $) (-641 |#4|) (-112)) 116) (((-641 $) (-641 |#4|) (-112) (-112)) 114) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 117)) (-3209 (((-641 |#3|) $) NIL)) (-3449 (((-112) $) NIL)) (-3961 (((-112) $) NIL (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-2427 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| $) 109)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3752 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 63)) (-1778 (($) NIL T CONST)) (-3602 (((-112) $) 29 (|has| |#1| (-556)))) (-2495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2536 (((-112) $) NIL (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2338 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2237 (($ (-641 |#4|)) NIL)) (-3314 (((-3 $ "failed") $) 45)) (-1470 ((|#4| |#4| $) 66)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2576 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 82 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) NIL)) (-3843 (((-112) |#4| $) NIL)) (-2421 (((-112) |#4| $) NIL)) (-4204 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2954 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 130)) (-1433 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1543 ((|#3| $) 38)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#4|) $) 19 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2250 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 23)) (-3580 (((-641 |#3|) $) NIL)) (-3879 (((-112) |#3| $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2100 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2624 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| |#4| $) 107)) (-2598 (((-3 |#4| "failed") $) 42)) (-1889 (((-641 $) |#4| $) 90)) (-4369 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |#4| $) 100) (((-112) |#4| $) 61)) (-3425 (((-641 $) |#4| $) 112) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 113) (((-641 $) |#4| (-641 $)) NIL)) (-2603 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 125)) (-2817 (($ |#4| $) 79) (($ (-641 |#4|) $) 80) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 76)) (-3123 (((-641 |#4|) $) NIL)) (-4281 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3984 (((-112) $ $) NIL)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1482 ((|#4| |#4| $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-3 |#4| "failed") $) 40)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3824 (((-3 $ "failed") $ |#4|) 57)) (-3951 (($ $ |#4|) NIL) (((-641 $) |#4| $) 92) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 86)) (-4077 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 17)) (-4012 (($) 14)) (-1619 (((-768) $) NIL)) (-2791 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) 13)) (-2511 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 22)) (-4287 (($ $ |#3|) 52)) (-1887 (($ $ |#3|) 53)) (-3728 (($ $) NIL)) (-3111 (($ $ |#3|) NIL)) (-1831 (((-859) $) 35) (((-641 |#4|) $) 46)) (-4321 (((-768) $) NIL (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3635 (((-641 $) |#4| $) 89) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-1963 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) NIL)) (-2637 (((-112) |#4| $) NIL)) (-1484 (((-112) |#3| $) 62)) (-1702 (((-112) $ $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1024 |#1| |#2| |#3| |#4|) (-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2817 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2603 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2954 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1024)) -((-2817 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2951 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2603 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2954 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1024 *5 *6 *7 *8))))) (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) -(-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2817 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2603 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2954 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) -((-3051 (((-641 (-685 |#1|)) (-641 (-685 |#1|))) 73) (((-685 |#1|) (-685 |#1|)) 72) (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 71) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 68)) (-2316 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 66) (((-685 |#1|) (-685 |#1|) (-918)) 65)) (-2947 (((-641 (-685 (-564))) (-641 (-641 (-564)))) 84) (((-641 (-685 (-564))) (-641 (-902 (-564))) (-564)) 83) (((-685 (-564)) (-641 (-564))) 80) (((-685 (-564)) (-902 (-564)) (-564)) 78)) (-1592 (((-685 (-949 |#1|)) (-768)) 98)) (-1591 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 52 (|has| |#1| (-6 (-4408 "*")))) (((-685 |#1|) (-685 |#1|) (-918)) 50 (|has| |#1| (-6 (-4408 "*")))))) -(((-1025 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -1591 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -1591 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -1592 ((-685 (-949 |#1|)) (-768))) (-15 -2316 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -2316 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -3051 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3051 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3051 ((-685 |#1|) (-685 |#1|))) (-15 -3051 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2947 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2947 ((-685 (-564)) (-641 (-564)))) (-15 -2947 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2947 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) (-1046)) (T -1025)) -((-2947 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564)) (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-3051 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-3051 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-2316 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-2316 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-1591 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (|has| *4 (-6 (-4408 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-1591 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4408 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -1591 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -1591 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -1592 ((-685 (-949 |#1|)) (-768))) (-15 -2316 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -2316 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -3051 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3051 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3051 ((-685 |#1|) (-685 |#1|))) (-15 -3051 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2947 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2947 ((-685 (-564)) (-641 (-564)))) (-15 -2947 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2947 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) -((-4087 (((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)) 69 (|has| |#1| (-307)))) (-3838 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))) 110 (|has| |#1| (-363))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|)) 117 (|has| |#1| (-363)))) (-1654 (((-1259 |#1|) (-641 (-1259 |#1|)) (-564)) 134 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2136 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|))) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564)) 120 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2433 (((-112) (-641 (-685 |#1|))) 103 (|has| |#1| (-363))) (((-112) (-641 (-685 |#1|)) (-564)) 106 (|has| |#1| (-363)))) (-2995 (((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|)) 66 (|has| |#1| (-307)))) (-3430 (((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|)) 47)) (-3934 (((-685 |#1|) (-1259 (-1259 |#1|))) 40)) (-2695 (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564)) 94 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 93 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564)) 101 (|has| |#1| (-363))))) -(((-1026 |#1|) (-10 -7 (-15 -3934 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3430 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2995 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -4087 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2695 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -2695 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2695 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -2433 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -2433 ((-112) (-641 (-685 |#1|)))) (-15 -3838 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3838 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -1654 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1046)) (T -1026)) -((-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)))) (-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2136 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046)) (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4)) (-5 *3 (-641 (-685 *4))))) (-2136 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6)) (-5 *3 (-641 (-685 *6))))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *4)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) (-2695 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046)))) (-2695 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)) (-4 *4 (-363)) (-4 *4 (-1046)))) (-2695 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)))) (-2995 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5)))) (-3430 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1026 *4)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4))))) -(-10 -7 (-15 -3934 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3430 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2995 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -4087 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2695 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -2695 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2695 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -2433 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -2433 ((-112) (-641 (-685 |#1|)))) (-15 -3838 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3838 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2136 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -1654 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) -((-3684 ((|#1| (-918) |#1|) 18))) -(((-1027 |#1|) (-10 -7 (-15 -3684 (|#1| (-918) |#1|))) (-13 (-1094) (-10 -8 (-15 -1797 ($ $ $))))) (T -1027)) -((-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1797 ($ $ $)))))))) -(-10 -7 (-15 -3684 (|#1| (-918) |#1|))) -((-1923 (((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564))))) 67)) (-2157 (((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564))))) 52)) (-1553 (((-641 (-316 (-564))) (-685 (-407 (-949 (-564))))) 45)) (-3091 (((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564))))) 87)) (-4269 (((-685 (-316 (-564))) (-685 (-316 (-564)))) 38)) (-4356 (((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564))))) 76)) (-2423 (((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564))))) 85))) -(((-1028) (-10 -7 (-15 -1923 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -2157 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -1553 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -2423 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -4269 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -4356 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3091 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564)))))))) (T -1028)) -((-3091 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-4356 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-2423 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564)))) (-5 *1 (-1028)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *4 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)) (-5 *3 (-316 (-564))))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564)))))))) (-5 *1 (-1028))))) -(-10 -7 (-15 -1923 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -2157 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -1553 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -2423 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -4269 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -4356 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3091 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564))))))) -((-3192 ((|#1| |#1| (-918)) 18))) -(((-1029 |#1|) (-10 -7 (-15 -3192 (|#1| |#1| (-918)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1029)) -((-3192 (*1 *2 *2 *3) (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3192 (|#1| |#1| (-918)))) -((-1831 ((|#1| (-312)) 11) (((-1264) |#1|) 9))) -(((-1030 |#1|) (-10 -7 (-15 -1831 ((-1264) |#1|)) (-15 -1831 (|#1| (-312)))) (-1209)) (T -1030)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209)))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209))))) -(-10 -7 (-15 -1831 ((-1264) |#1|)) (-15 -1831 (|#1| (-312)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-1988 (($ |#4|) 25)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-1977 ((|#4| $) 27)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2219 (((-768)) 43 T CONST)) (-1293 (($) 21 T CONST)) (-1300 (($) 23 T CONST)) (-1702 (((-112) $ $) 40)) (-1808 (($ $) 31) (($ $ $) NIL)) (-1797 (($ $ $) 29)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1031 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1988 ($ |#4|)) (-15 -1831 ($ |#4|)) (-15 -1977 (|#4| $)))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|) (-641 |#4|)) (T -1031)) -((-1988 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-1831 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-1977 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1988 ($ |#4|)) (-15 -1831 ($ |#4|)) (-15 -1977 (|#4| $)))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-1956 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-3503 (((-112) (-112)) 43)) (-1806 (((-112) (-112)) 42)) (-1970 (((-52) $ (-1170) (-52)) NIL)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 (-52) "failed") (-1170) $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-3644 (($ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2576 (($ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2261 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4407)))) (-2190 (((-52) $ (-1170)) NIL)) (-1433 (((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2640 (((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-3440 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-2945 (((-641 (-1170)) $) 37)) (-2554 (((-112) (-1170) $) NIL)) (-2401 (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL)) (-2783 (($ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL)) (-3883 (((-641 (-1170)) $) NIL)) (-4336 (((-112) (-1170) $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-3303 (((-52) $) NIL (|has| (-1170) (-847)))) (-3995 (((-3 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) "failed") (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL)) (-4253 (($ $ (-52)) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-1794 (((-641 (-52)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 (((-52) $ (-1170)) 39) (((-52) $ (-1170) (-52)) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-1831 (((-859) $) 41 (-4078 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1032) (-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -3503 ((-112) (-112))) (-15 -1806 ((-112) (-112))) (-6 -4406)))) (T -1032)) -((-3503 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032))))) -(-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -3503 ((-112) (-112))) (-15 -1806 ((-112) (-112))) (-6 -4406))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3877 (((-1129) $) 9)) (-1831 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1033) (-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $))))) (T -1033)) -((-3877 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033))))) -(-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)))) -((-2237 ((|#2| $) 10))) -(((-1034 |#1| |#2|) (-10 -8 (-15 -2237 (|#2| |#1|))) (-1035 |#2|) (-1209)) (T -1034)) -NIL -(-10 -8 (-15 -2237 (|#2| |#1|))) -((-2347 (((-3 |#1| "failed") $) 9)) (-2237 ((|#1| $) 8)) (-1831 (($ |#1|) 6))) -(((-1035 |#1|) (-140) (-1209)) (T -1035)) -((-2347 (*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209))))) -(-13 (-614 |t#1|) (-10 -8 (-15 -2347 ((-3 |t#1| "failed") $)) (-15 -2237 (|t#1| $)))) +((-1630 (((-641 (-379)) (-948 (-564)) (-379)) 28) (((-641 (-379)) (-948 (-407 (-564))) (-379)) 27)) (-3894 (((-641 (-641 (-379))) (-641 (-948 (-564))) (-641 (-1170)) (-379)) 37))) +(((-1019) (-10 -7 (-15 -1630 ((-641 (-379)) (-948 (-407 (-564))) (-379))) (-15 -1630 ((-641 (-379)) (-948 (-564)) (-379))) (-15 -3894 ((-641 (-641 (-379))) (-641 (-948 (-564))) (-641 (-1170)) (-379))))) (T -1019)) +((-3894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 (-379))) (-5 *1 (-1019)) (-5 *4 (-379))))) +(-10 -7 (-15 -1630 ((-641 (-379)) (-948 (-407 (-564))) (-379))) (-15 -1630 ((-641 (-379)) (-948 (-564)) (-379))) (-15 -3894 ((-641 (-641 (-379))) (-641 (-948 (-564))) (-641 (-1170)) (-379)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 75)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-2387 (($ $) NIL) (($ $ (-917)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) 70)) (-4157 (($) NIL T CONST)) (-1627 (((-3 $ "failed") (-1166 $) (-917) (-858)) NIL) (((-3 $ "failed") (-1166 $) (-917)) 55)) (-3032 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-2789 (|has| (-407 (-564)) (-1034 (-564))) (|has| |#1| (-1034 (-564)))))) (-1781 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-2789 (|has| (-407 (-564)) (-1034 (-564))) (|has| |#1| (-1034 (-564)))))) (-4354 (($ $ (-858)) 47)) (-2147 (($ $ (-858)) 48)) (-2574 (($ $ $) NIL)) (-2034 (((-407 (-564)) $ $) 21)) (-2689 (((-3 $ "failed") $) 88)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-2786 (((-112) $) 66)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL)) (-2783 (((-112) $) 69)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-3612 (((-3 (-1166 $) "failed") $) 83)) (-1703 (((-3 (-858) "failed") $) 82)) (-3196 (((-3 (-1166 $) "failed") $) 80)) (-3359 (((-3 (-1055 $ (-1166 $)) "failed") $) 78)) (-3202 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 89)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-2322 (((-858) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-3179 (((-767)) NIL T CONST)) (-4024 (((-112) $ $) NIL)) (-3564 (((-407 (-564)) $ $) 27)) (-1372 (((-641 $) (-1166 $)) 61) (((-641 $) (-1166 (-407 (-564)))) NIL) (((-641 $) (-1166 (-564))) NIL) (((-641 $) (-948 $)) NIL) (((-641 $) (-948 (-407 (-564)))) NIL) (((-641 $) (-948 (-564))) NIL)) (-3209 (($ (-1055 $ (-1166 $)) (-858)) 46)) (-3598 (($ $) 22)) (-2389 (($) 32 T CONST)) (-2403 (($) 39 T CONST)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 76)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 24)) (-3034 (($ $ $) 37)) (-3021 (($ $) 38) (($ $ $) 74)) (-3011 (($ $ $) 112)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1020 |#1|) (-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3209 ($ (-1055 $ (-1166 $)) (-858))) (-15 -3359 ((-3 (-1055 $ (-1166 $)) "failed") $)) (-15 -2034 ((-407 (-564)) $ $)))) (-13 (-844) (-363) (-1018))) (T -1020)) +((-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-1020 *4) (-1166 (-1020 *4)))) (-5 *3 (-858)) (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))) (-3359 (*1 *2 *1) (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1166 (-1020 *3)))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))) (-2034 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018)))))) +(-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3209 ($ (-1055 $ (-1166 $)) (-858))) (-15 -3359 ((-3 (-1055 $ (-1166 $)) "failed") $)) (-15 -2034 ((-407 (-564)) $ $)))) +((-4076 (((-2 (|:| -3482 |#2|) (|:| -1513 (-641 |#1|))) |#2| (-641 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1021 |#1| |#2|) (-10 -7 (-15 -4076 (|#2| |#2| |#1|)) (-15 -4076 ((-2 (|:| -3482 |#2|) (|:| -1513 (-641 |#1|))) |#2| (-641 |#1|)))) (-363) (-652 |#1|)) (T -1021)) +((-4076 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3482 *3) (|:| -1513 (-641 *5)))) (-5 *1 (-1021 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))) (-4076 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-652 *3))))) +(-10 -7 (-15 -4076 (|#2| |#2| |#1|)) (-15 -4076 ((-2 (|:| -3482 |#2|) (|:| -1513 (-641 |#1|))) |#2| (-641 |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2848 ((|#1| $ |#1|) 14)) (-3750 ((|#1| $ |#1|) 12)) (-2035 (($ |#1|) 10)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4353 ((|#1| $) 11)) (-3616 ((|#1| $) 13)) (-2322 (((-858) $) 21 (|has| |#1| (-1094)))) (-2921 (((-112) $ $) 9))) +(((-1022 |#1|) (-13 (-1209) (-10 -8 (-15 -2035 ($ |#1|)) (-15 -4353 (|#1| $)) (-15 -3750 (|#1| $ |#1|)) (-15 -3616 (|#1| $)) (-15 -2848 (|#1| $ |#1|)) (-15 -2921 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1022)) +((-2035 (*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-4353 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-3750 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-3616 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-2848 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-2921 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1209))))) +(-13 (-1209) (-10 -8 (-15 -2035 ($ |#1|)) (-15 -4353 (|#1| $)) (-15 -3750 (|#1| $ |#1|)) (-15 -3616 (|#1| $)) (-15 -2848 (|#1| $ |#1|)) (-15 -2921 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1841 (((-641 $) (-641 |#4|)) 115) (((-641 $) (-641 |#4|) (-112)) 116) (((-641 $) (-641 |#4|) (-112) (-112)) 114) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 117)) (-2534 (((-641 |#3|) $) NIL)) (-1885 (((-112) $) NIL)) (-3042 (((-112) $) NIL (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4230 ((|#4| |#4| $) NIL)) (-3453 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| $) 109)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2957 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 63)) (-4157 (($) NIL T CONST)) (-2815 (((-112) $) 29 (|has| |#1| (-556)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1362 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-112) $) NIL (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1907 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) NIL)) (-1781 (($ (-641 |#4|)) NIL)) (-2008 (((-3 $ "failed") $) 45)) (-4220 ((|#4| |#4| $) 66)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 82 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4194 ((|#4| |#4| $) NIL)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) NIL)) (-4356 (((-112) |#4| $) NIL)) (-3404 (((-112) |#4| $) NIL)) (-3665 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1876 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 130)) (-3534 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3691 ((|#3| $) 38)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#4|) $) 19 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1456 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 23)) (-3805 (((-641 |#3|) $) NIL)) (-3460 (((-112) |#3| $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-1307 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-1677 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| |#4| $) 107)) (-3649 (((-3 |#4| "failed") $) 42)) (-2824 (((-641 $) |#4| $) 90)) (-2836 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |#4| $) 100) (((-112) |#4| $) 61)) (-1648 (((-641 $) |#4| $) 112) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 113) (((-641 $) |#4| (-641 $)) NIL)) (-2754 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 125)) (-2987 (($ |#4| $) 79) (($ (-641 |#4|) $) 80) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 76)) (-4022 (((-641 |#4|) $) NIL)) (-3250 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2093 ((|#4| |#4| $) NIL)) (-3288 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4340 ((|#4| |#4| $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-3 |#4| "failed") $) 40)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4179 (((-3 $ "failed") $ |#4|) 57)) (-2941 (($ $ |#4|) NIL) (((-641 $) |#4| $) 92) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 86)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 17)) (-2348 (($) 14)) (-2073 (((-767) $) NIL)) (-3852 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) 13)) (-3172 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-2805 (($ $ |#3|) 53)) (-2631 (($ $) NIL)) (-2029 (($ $ |#3|) NIL)) (-2322 (((-858) $) 35) (((-641 |#4|) $) 46)) (-2390 (((-767) $) NIL (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3126 (((-641 $) |#4| $) 89) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-2313 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) NIL)) (-1801 (((-112) |#4| $) NIL)) (-4363 (((-112) |#3| $) 62)) (-2921 (((-112) $ $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1023 |#1| |#2| |#3| |#4|) (-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2987 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2754 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1876 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1023)) +((-2987 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-1841 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-1841 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-2754 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-1876 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1023 *5 *6 *7 *8))))) (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2987 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2754 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1876 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) +((-2721 (((-641 (-685 |#1|)) (-641 (-685 |#1|))) 73) (((-685 |#1|) (-685 |#1|)) 72) (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 71) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 68)) (-1660 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917)) 66) (((-685 |#1|) (-685 |#1|) (-917)) 65)) (-1806 (((-641 (-685 (-564))) (-641 (-641 (-564)))) 84) (((-641 (-685 (-564))) (-641 (-901 (-564))) (-564)) 83) (((-685 (-564)) (-641 (-564))) 80) (((-685 (-564)) (-901 (-564)) (-564)) 78)) (-3029 (((-685 (-948 |#1|)) (-767)) 98)) (-3016 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917)) 52 (|has| |#1| (-6 (-4408 "*")))) (((-685 |#1|) (-685 |#1|) (-917)) 50 (|has| |#1| (-6 (-4408 "*")))))) +(((-1024 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -3016 ((-685 |#1|) (-685 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -3016 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) |%noBranch|) (-15 -3029 ((-685 (-948 |#1|)) (-767))) (-15 -1660 ((-685 |#1|) (-685 |#1|) (-917))) (-15 -1660 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) (-15 -2721 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2721 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2721 ((-685 |#1|) (-685 |#1|))) (-15 -2721 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1806 ((-685 (-564)) (-901 (-564)) (-564))) (-15 -1806 ((-685 (-564)) (-641 (-564)))) (-15 -1806 ((-641 (-685 (-564))) (-641 (-901 (-564))) (-564))) (-15 -1806 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) (-1045)) (T -1024)) +((-1806 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-901 (-564)))) (-5 *4 (-564)) (-5 *2 (-641 (-685 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-2721 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-2721 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-1660 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-1660 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-685 (-948 *4))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-3016 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4408 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-3016 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4408 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -3016 ((-685 |#1|) (-685 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4408 "*"))) (-15 -3016 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) |%noBranch|) (-15 -3029 ((-685 (-948 |#1|)) (-767))) (-15 -1660 ((-685 |#1|) (-685 |#1|) (-917))) (-15 -1660 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) (-15 -2721 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2721 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2721 ((-685 |#1|) (-685 |#1|))) (-15 -2721 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1806 ((-685 (-564)) (-901 (-564)) (-564))) (-15 -1806 ((-685 (-564)) (-641 (-564)))) (-15 -1806 ((-641 (-685 (-564))) (-641 (-901 (-564))) (-564))) (-15 -1806 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) +((-1853 (((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)) 69 (|has| |#1| (-307)))) (-4302 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))) 110 (|has| |#1| (-363))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|)) 117 (|has| |#1| (-363)))) (-2344 (((-1259 |#1|) (-641 (-1259 |#1|)) (-564)) 134 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3508 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-917)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|))) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564)) 120 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3513 (((-112) (-641 (-685 |#1|))) 103 (|has| |#1| (-363))) (((-112) (-641 (-685 |#1|)) (-564)) 106 (|has| |#1| (-363)))) (-2176 (((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|)) 66 (|has| |#1| (-307)))) (-1695 (((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|)) 47)) (-3982 (((-685 |#1|) (-1259 (-1259 |#1|))) 40)) (-4249 (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564)) 94 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 93 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564)) 101 (|has| |#1| (-363))))) +(((-1025 |#1|) (-10 -7 (-15 -3982 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -1695 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2176 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1853 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4249 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -4249 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -4249 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3513 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3513 ((-112) (-641 (-685 |#1|)))) (-15 -4302 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -4302 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-917))) (-15 -2344 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1045)) (T -1025)) +((-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1025 *4)) (-5 *3 (-641 (-685 *4))))) (-3508 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1045)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1025 *6)) (-5 *3 (-641 (-685 *6))))) (-4302 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-4302 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *4)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) (-4249 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1025 *4)) (-4 *4 (-363)) (-4 *4 (-1045)))) (-4249 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-685 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-685 *5)) (-5 *1 (-1025 *5)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1259 *5)))) (-1695 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1045)) (-5 *2 (-685 *4)) (-5 *1 (-1025 *4))))) +(-10 -7 (-15 -3982 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -1695 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2176 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1853 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4249 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -4249 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -4249 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3513 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3513 ((-112) (-641 (-685 |#1|)))) (-15 -4302 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -4302 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -3508 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-917))) (-15 -2344 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) +((-3449 ((|#1| (-917) |#1|) 18))) +(((-1026 |#1|) (-10 -7 (-15 -3449 (|#1| (-917) |#1|))) (-13 (-1094) (-10 -8 (-15 -3011 ($ $ $))))) (T -1026)) +((-3449 (*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -3011 ($ $ $)))))))) +(-10 -7 (-15 -3449 (|#1| (-917) |#1|))) +((-3163 (((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-948 (-564))))) 67)) (-3741 (((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-948 (-564))))) 52)) (-3809 (((-641 (-316 (-564))) (-685 (-407 (-948 (-564))))) 45)) (-1818 (((-641 (-685 (-316 (-564)))) (-685 (-407 (-948 (-564))))) 87)) (-3137 (((-685 (-316 (-564))) (-685 (-316 (-564)))) 38)) (-2746 (((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564))))) 76)) (-3424 (((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-948 (-564))))) 85))) +(((-1027) (-10 -7 (-15 -3163 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-948 (-564)))))) (-15 -3741 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-948 (-564)))))) (-15 -3809 ((-641 (-316 (-564))) (-685 (-407 (-948 (-564)))))) (-15 -3424 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-948 (-564)))))) (-15 -3137 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -2746 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -1818 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-948 (-564)))))))) (T -1027)) +((-1818 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027)))) (-3424 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-316 (-564)))) (-5 *1 (-1027)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *4 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)) (-5 *3 (-316 (-564))))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564)))))))) (-5 *1 (-1027))))) +(-10 -7 (-15 -3163 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-948 (-564)))))) (-15 -3741 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-948 (-564)))))) (-15 -3809 ((-641 (-316 (-564))) (-685 (-407 (-948 (-564)))))) (-15 -3424 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-948 (-564)))))) (-15 -3137 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -2746 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -1818 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-948 (-564))))))) +((-3408 ((|#1| |#1| (-917)) 18))) +(((-1028 |#1|) (-10 -7 (-15 -3408 (|#1| |#1| (-917)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1028)) +((-3408 (*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3408 (|#1| |#1| (-917)))) +((-2322 ((|#1| (-312)) 11) (((-1264) |#1|) 9))) +(((-1029 |#1|) (-10 -7 (-15 -2322 ((-1264) |#1|)) (-15 -2322 (|#1| (-312)))) (-1209)) (T -1029)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1209)))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1029 *3)) (-4 *3 (-1209))))) +(-10 -7 (-15 -2322 ((-1264) |#1|)) (-15 -2322 (|#1| (-312)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3239 (($ |#4|) 25)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-3228 ((|#4| $) 27)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3179 (((-767)) 43 T CONST)) (-2389 (($) 21 T CONST)) (-2403 (($) 23 T CONST)) (-2921 (((-112) $ $) 40)) (-3021 (($ $) 31) (($ $ $) NIL)) (-3011 (($ $ $) 29)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1030 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -3239 ($ |#4|)) (-15 -2322 ($ |#4|)) (-15 -3228 (|#4| $)))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|) (-641 |#4|)) (T -1030)) +((-3239 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-641 *2)))) (-2322 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-641 *2)))) (-3228 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-641 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -3239 ($ |#4|)) (-15 -2322 ($ |#4|)) (-15 -3228 (|#4| $)))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-2246 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-4305 (((-112) (-112)) 43)) (-1338 (((-112) (-112)) 42)) (-3750 (((-52) $ (-1170) (-52)) NIL)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 (-52) "failed") (-1170) $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-3175 (($ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-3 (-52) "failed") (-1170) $) NIL)) (-3628 (($ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1466 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4407)))) (-1407 (((-52) $ (-1170)) NIL)) (-3534 (((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-1170) $) NIL (|has| (-1170) (-846)))) (-1834 (((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-1785 (((-1170) $) NIL (|has| (-1170) (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-2843 (((-641 (-1170)) $) 37)) (-2237 (((-112) (-1170) $) NIL)) (-1340 (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL)) (-3861 (($ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL)) (-3487 (((-641 (-1170)) $) NIL)) (-2550 (((-112) (-1170) $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-1995 (((-52) $) NIL (|has| (-1170) (-846)))) (-3393 (((-3 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) "failed") (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL)) (-2981 (($ $ (-52)) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-4324 (((-641 (-52)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 (((-52) $ (-1170)) 39) (((-52) $ (-1170) (-52)) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-2322 (((-858) $) 41 (-2789 (|has| (-52) (-611 (-858))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1031) (-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -4305 ((-112) (-112))) (-15 -1338 ((-112) (-112))) (-6 -4406)))) (T -1031)) +((-4305 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))) (-1338 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) +(-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -4305 ((-112) (-112))) (-15 -1338 ((-112) (-112))) (-6 -4406))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4366 (((-1129) $) 9)) (-2322 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1032) (-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $))))) (T -1032)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1032))))) +(-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)))) +((-1781 ((|#2| $) 10))) +(((-1033 |#1| |#2|) (-10 -8 (-15 -1781 (|#2| |#1|))) (-1034 |#2|) (-1209)) (T -1033)) +NIL +(-10 -8 (-15 -1781 (|#2| |#1|))) +((-3032 (((-3 |#1| "failed") $) 9)) (-1781 ((|#1| $) 8)) (-2322 (($ |#1|) 6))) +(((-1034 |#1|) (-140) (-1209)) (T -1034)) +((-3032 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1209)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1209))))) +(-13 (-614 |t#1|) (-10 -8 (-15 -3032 ((-3 |t#1| "failed") $)) (-15 -1781 (|t#1| $)))) (((-614 |#1|) . T)) -((-3659 (((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))) 38))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -3659 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))))) (-556) (-13 (-556) (-1035 |#1|))) (T -1036)) -((-3659 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6))))) -(-10 -7 (-15 -3659 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))))) -((-2027 (((-379)) 17)) (-2769 (((-1 (-379)) (-379) (-379)) 22)) (-1401 (((-1 (-379)) (-768)) 50)) (-3089 (((-379)) 37)) (-3345 (((-1 (-379)) (-379) (-379)) 38)) (-4332 (((-379)) 29)) (-2579 (((-1 (-379)) (-379)) 30)) (-2563 (((-379) (-768)) 45)) (-1681 (((-1 (-379)) (-768)) 46)) (-3629 (((-1 (-379)) (-768) (-768)) 49)) (-2496 (((-1 (-379)) (-768) (-768)) 47))) -(((-1037) (-10 -7 (-15 -2027 ((-379))) (-15 -3089 ((-379))) (-15 -4332 ((-379))) (-15 -2563 ((-379) (-768))) (-15 -2769 ((-1 (-379)) (-379) (-379))) (-15 -3345 ((-1 (-379)) (-379) (-379))) (-15 -2579 ((-1 (-379)) (-379))) (-15 -1681 ((-1 (-379)) (-768))) (-15 -2496 ((-1 (-379)) (-768) (-768))) (-15 -3629 ((-1 (-379)) (-768) (-768))) (-15 -1401 ((-1 (-379)) (-768))))) (T -1037)) -((-1401 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-3629 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2496 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2579 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-3345 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-2769 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037)))) (-4332 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-3089 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-2027 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) -(-10 -7 (-15 -2027 ((-379))) (-15 -3089 ((-379))) (-15 -4332 ((-379))) (-15 -2563 ((-379) (-768))) (-15 -2769 ((-1 (-379)) (-379) (-379))) (-15 -3345 ((-1 (-379)) (-379) (-379))) (-15 -2579 ((-1 (-379)) (-379))) (-15 -1681 ((-1 (-379)) (-768))) (-15 -2496 ((-1 (-379)) (-768) (-768))) (-15 -3629 ((-1 (-379)) (-768) (-768))) (-15 -1401 ((-1 (-379)) (-768)))) -((-3070 (((-418 |#1|) |#1|) 33))) -(((-1038 |#1|) (-10 -7 (-15 -3070 ((-418 |#1|) |#1|))) (-1235 (-407 (-949 (-564))))) (T -1038)) -((-3070 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1235 (-407 (-949 (-564)))))))) -(-10 -7 (-15 -3070 ((-418 |#1|) |#1|))) -((-4162 (((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))) 14))) -(((-1039 |#1|) (-10 -7 (-15 -4162 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))))) (-307)) (T -1039)) -((-4162 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4))))) -(-10 -7 (-15 -4162 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))))) -((-3209 (((-641 (-1170)) (-407 (-949 |#1|))) 17)) (-3040 (((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 24)) (-3198 (((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170)) 26)) (-2169 (((-3 (-1170) "failed") (-407 (-949 |#1|))) 20)) (-2633 (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|))))) 32) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 33) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|)))) 28) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 29)) (-1831 (((-407 (-949 |#1|)) |#1|) 11))) -(((-1040 |#1|) (-10 -7 (-15 -3209 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -2169 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -3040 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -3198 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1831 ((-407 (-949 |#1|)) |#1|))) (-556)) (T -1040)) -((-1831 (*1 *2 *3) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556)))) (-2633 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2633 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2633 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-949 *5)))) (-5 *2 (-407 (-949 *5))) (-4 *5 (-556)) (-5 *1 (-1040 *5)))) (-2633 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170)) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5)) (-5 *3 (-407 (-949 *5))))) (-2169 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-1170)) (-5 *1 (-1040 *4)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) (-5 *1 (-1040 *4))))) -(-10 -7 (-15 -3209 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -2169 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -3040 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -3198 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2633 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1831 ((-407 (-949 |#1|)) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-1778 (($) 17 T CONST)) (-4112 ((|#1| $) 22)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-2651 ((|#1| $) 21)) (-3829 ((|#1|) 19 T CONST)) (-1831 (((-859) $) 11)) (-2255 ((|#1| $) 20)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) +((-3271 (((-641 (-641 (-294 (-407 (-948 |#2|))))) (-641 (-948 |#2|)) (-641 (-1170))) 38))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -3271 ((-641 (-641 (-294 (-407 (-948 |#2|))))) (-641 (-948 |#2|)) (-641 (-1170))))) (-556) (-13 (-556) (-1034 |#1|))) (T -1035)) +((-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-13 (-556) (-1034 *5))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6))))) +(-10 -7 (-15 -3271 ((-641 (-641 (-294 (-407 (-948 |#2|))))) (-641 (-948 |#2|)) (-641 (-1170))))) +((-1744 (((-379)) 17)) (-3731 (((-1 (-379)) (-379) (-379)) 22)) (-2525 (((-1 (-379)) (-767)) 50)) (-1798 (((-379)) 37)) (-3781 (((-1 (-379)) (-379) (-379)) 38)) (-2498 (((-379)) 29)) (-2497 (((-1 (-379)) (-379)) 30)) (-2341 (((-379) (-767)) 45)) (-2623 (((-1 (-379)) (-767)) 46)) (-2286 (((-1 (-379)) (-767) (-767)) 49)) (-2934 (((-1 (-379)) (-767) (-767)) 47))) +(((-1036) (-10 -7 (-15 -1744 ((-379))) (-15 -1798 ((-379))) (-15 -2498 ((-379))) (-15 -2341 ((-379) (-767))) (-15 -3731 ((-1 (-379)) (-379) (-379))) (-15 -3781 ((-1 (-379)) (-379) (-379))) (-15 -2497 ((-1 (-379)) (-379))) (-15 -2623 ((-1 (-379)) (-767))) (-15 -2934 ((-1 (-379)) (-767) (-767))) (-15 -2286 ((-1 (-379)) (-767) (-767))) (-15 -2525 ((-1 (-379)) (-767))))) (T -1036)) +((-2525 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2286 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2934 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2497 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-3781 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-3731 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))) (-2498 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-1798 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-1744 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(-10 -7 (-15 -1744 ((-379))) (-15 -1798 ((-379))) (-15 -2498 ((-379))) (-15 -2341 ((-379) (-767))) (-15 -3731 ((-1 (-379)) (-379) (-379))) (-15 -3781 ((-1 (-379)) (-379) (-379))) (-15 -2497 ((-1 (-379)) (-379))) (-15 -2623 ((-1 (-379)) (-767))) (-15 -2934 ((-1 (-379)) (-767) (-767))) (-15 -2286 ((-1 (-379)) (-767) (-767))) (-15 -2525 ((-1 (-379)) (-767)))) +((-2375 (((-418 |#1|) |#1|) 33))) +(((-1037 |#1|) (-10 -7 (-15 -2375 ((-418 |#1|) |#1|))) (-1235 (-407 (-948 (-564))))) (T -1037)) +((-2375 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1235 (-407 (-948 (-564)))))))) +(-10 -7 (-15 -2375 ((-418 |#1|) |#1|))) +((-1401 (((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))) 14))) +(((-1038 |#1|) (-10 -7 (-15 -1401 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) (-307)) (T -1038)) +((-1401 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4))))) +(-10 -7 (-15 -1401 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) +((-2534 (((-641 (-1170)) (-407 (-948 |#1|))) 17)) (-2340 (((-407 (-1166 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170)) 24)) (-2519 (((-407 (-948 |#1|)) (-407 (-1166 (-407 (-948 |#1|)))) (-1170)) 26)) (-3878 (((-3 (-1170) "failed") (-407 (-948 |#1|))) 20)) (-3100 (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-294 (-407 (-948 |#1|))))) 32) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 33) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-1170)) (-641 (-407 (-948 |#1|)))) 28) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))) 29)) (-2322 (((-407 (-948 |#1|)) |#1|) 11))) +(((-1039 |#1|) (-10 -7 (-15 -2534 ((-641 (-1170)) (-407 (-948 |#1|)))) (-15 -3878 ((-3 (-1170) "failed") (-407 (-948 |#1|)))) (-15 -2340 ((-407 (-1166 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -2519 ((-407 (-948 |#1|)) (-407 (-1166 (-407 (-948 |#1|)))) (-1170))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-1170)) (-641 (-407 (-948 |#1|))))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -2322 ((-407 (-948 |#1|)) |#1|))) (-556)) (T -1039)) +((-2322 (*1 *2 *3) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-556)))) (-3100 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *1 (-1039 *4)))) (-3100 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *1 (-1039 *4)))) (-3100 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-948 *5)))) (-5 *2 (-407 (-948 *5))) (-4 *5 (-556)) (-5 *1 (-1039 *5)))) (-3100 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-1039 *4)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 (-407 (-948 *5))))) (-5 *4 (-1170)) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-556)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-407 (-1166 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) (-5 *3 (-407 (-948 *5))))) (-3878 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-1170)) (-5 *1 (-1039 *4)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) (-5 *1 (-1039 *4))))) +(-10 -7 (-15 -2534 ((-641 (-1170)) (-407 (-948 |#1|)))) (-15 -3878 ((-3 (-1170) "failed") (-407 (-948 |#1|)))) (-15 -2340 ((-407 (-1166 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -2519 ((-407 (-948 |#1|)) (-407 (-1166 (-407 (-948 |#1|)))) (-1170))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-1170)) (-641 (-407 (-948 |#1|))))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3100 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -2322 ((-407 (-948 |#1|)) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-4157 (($) 17 T CONST)) (-2095 ((|#1| $) 22)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1947 ((|#1| $) 21)) (-4225 ((|#1|) 19 T CONST)) (-2322 (((-858) $) 11)) (-2253 ((|#1| $) 20)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +(((-1040 |#1|) (-140) (-23)) (T -1040)) +((-2095 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-2253 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-4225 (*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2095 (|t#1| $)) (-15 -1947 (|t#1| $)) (-15 -2253 (|t#1| $)) (-15 -4225 (|t#1|) -2255))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2970 (($) 24 T CONST)) (-4157 (($) 17 T CONST)) (-2095 ((|#1| $) 22)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1947 ((|#1| $) 21)) (-4225 ((|#1|) 19 T CONST)) (-2322 (((-858) $) 11)) (-2253 ((|#1| $) 20)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) (((-1041 |#1|) (-140) (-23)) (T -1041)) -((-4112 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-3829 (*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -4112 (|t#1| $)) (-15 -2651 (|t#1| $)) (-15 -2255 (|t#1| $)) (-15 -3829 (|t#1|) -1809))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-1391 (($) 24 T CONST)) (-1778 (($) 17 T CONST)) (-4112 ((|#1| $) 22)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-2651 ((|#1| $) 21)) (-3829 ((|#1|) 19 T CONST)) (-1831 (((-859) $) 11)) (-2255 ((|#1| $) 20)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) -(((-1042 |#1|) (-140) (-23)) (T -1042)) -((-1391 (*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) -(-13 (-1041 |t#1|) (-10 -8 (-15 -1391 ($) -1809))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1041 |#1|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 (-777 |#1| (-861 |#2|)))))) (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2951 (((-641 $) (-641 (-777 |#1| (-861 |#2|)))) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112)) NIL)) (-3209 (((-641 (-861 |#2|)) $) NIL)) (-3449 (((-112) $) NIL)) (-3961 (((-112) $) NIL (|has| |#1| (-556)))) (-1712 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-4136 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2427 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -2956 $))) (-777 |#1| (-861 |#2|)) $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ (-861 |#2|)) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3752 (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 (-777 |#1| (-861 |#2|)) "failed") $ (-861 |#2|)) NIL)) (-1778 (($) NIL T CONST)) (-3602 (((-112) $) NIL (|has| |#1| (-556)))) (-2495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2536 (((-112) $) NIL (|has| |#1| (-556)))) (-2559 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-2338 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-3814 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2237 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-3314 (((-3 $ "failed") $) NIL)) (-1470 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2576 (($ (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-3827 (((-112) (-777 |#1| (-861 |#2|)) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-3492 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1988 (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|))) NIL (|has| $ (-6 -4406))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-4236 (((-2 (|:| -3689 (-641 (-777 |#1| (-861 |#2|)))) (|:| -1669 (-641 (-777 |#1| (-861 |#2|))))) $) NIL)) (-3843 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2421 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-4204 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-1433 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2021 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-1543 (((-861 |#2|) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2250 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL)) (-3580 (((-641 (-861 |#2|)) $) NIL)) (-3879 (((-112) (-861 |#2|) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2100 (((-3 (-777 |#1| (-861 |#2|)) (-641 $)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2624 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -2956 $))) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2598 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-1889 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL)) (-4369 (((-3 (-112) (-641 $)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-3425 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL)) (-2817 (($ (-777 |#1| (-861 |#2|)) $) NIL) (($ (-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-3123 (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-4281 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-2356 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3984 (((-112) $ $) NIL)) (-2706 (((-2 (|:| |num| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-3253 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-1482 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-3995 (((-3 (-777 |#1| (-861 |#2|)) "failed") (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL)) (-3824 (((-3 $ "failed") $ (-777 |#1| (-861 |#2|))) NIL)) (-3951 (($ $ (-777 |#1| (-861 |#2|))) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-4077 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-294 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-641 (-294 (-777 |#1| (-861 |#2|))))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1619 (((-768) $) NIL)) (-2791 (((-768) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-768) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-777 |#1| (-861 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-4287 (($ $ (-861 |#2|)) NIL)) (-1887 (($ $ (-861 |#2|)) NIL)) (-3728 (($ $) NIL)) (-3111 (($ $ (-861 |#2|)) NIL)) (-1831 (((-859) $) NIL) (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-4321 (((-768) $) NIL (|has| (-861 |#2|) (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-2885 (((-112) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-641 (-777 |#1| (-861 |#2|))))) NIL)) (-3635 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-1963 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2014 (((-641 (-861 |#2|)) $) NIL)) (-2637 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-1484 (((-112) (-861 |#2|) $) NIL)) (-1702 (((-112) $ $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1043 |#1| |#2|) (-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -2951 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112))))) (-452) (-641 (-1170))) (T -1043)) -((-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1043 *5 *6))))) -(-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -2951 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112))))) -((-2769 (((-1 (-564)) (-1088 (-564))) 33)) (-1854 (((-564) (-564) (-564) (-564) (-564)) 30)) (-3418 (((-1 (-564)) |RationalNumber|) NIL)) (-2193 (((-1 (-564)) |RationalNumber|) NIL)) (-4254 (((-1 (-564)) (-564) |RationalNumber|) NIL))) -(((-1044) (-10 -7 (-15 -2769 ((-1 (-564)) (-1088 (-564)))) (-15 -4254 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3418 ((-1 (-564)) |RationalNumber|)) (-15 -2193 ((-1 (-564)) |RationalNumber|)) (-15 -1854 ((-564) (-564) (-564) (-564) (-564))))) (T -1044)) -((-1854 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044)))) (-2193 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-3418 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-4254 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)) (-5 *3 (-564)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) -(-10 -7 (-15 -2769 ((-1 (-564)) (-1088 (-564)))) (-15 -4254 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3418 ((-1 (-564)) |RationalNumber|)) (-15 -2193 ((-1 (-564)) |RationalNumber|)) (-15 -1854 ((-564) (-564) (-564) (-564) (-564)))) -((-1831 (((-859) $) NIL) (($ (-564)) 10))) -(((-1045 |#1|) (-10 -8 (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-1046)) (T -1045)) -NIL -(-10 -8 (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-1046) (-140)) (T -1046)) -((-2219 (*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768))))) -(-13 (-1053) (-723) (-644 $) (-614 (-564)) (-10 -7 (-15 -2219 ((-768)) -1809) (-6 -4403))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1947 (((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)) 60))) -(((-1047 |#1| |#2|) (-10 -7 (-15 -1947 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)))) (-1170) (-363)) (T -1047)) -((-1947 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363)) (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170))))) -(-10 -7 (-15 -1947 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)))) -((-1512 (((-112) $) 40)) (-2385 (((-112) $) 17)) (-1745 (((-768) $) 13)) (-1757 (((-768) $) 14)) (-1302 (((-112) $) 30)) (-4320 (((-112) $) 42))) -(((-1048 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1757 ((-768) |#1|)) (-15 -1745 ((-768) |#1|)) (-15 -4320 ((-112) |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1302 ((-112) |#1|)) (-15 -2385 ((-112) |#1|))) (-1049 |#2| |#3| |#4| |#5| |#6|) (-768) (-768) (-1046) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1048)) -NIL -(-10 -8 (-15 -1757 ((-768) |#1|)) (-15 -1745 ((-768) |#1|)) (-15 -4320 ((-112) |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1302 ((-112) |#1|)) (-15 -2385 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-1512 (((-112) $) 51)) (-4088 (((-3 $ "failed") $ $) 19)) (-2385 (((-112) $) 53)) (-4010 (((-112) $ (-768)) 61)) (-1778 (($) 17 T CONST)) (-3543 (($ $) 34 (|has| |#3| (-307)))) (-3751 ((|#4| $ (-564)) 39)) (-3531 (((-768) $) 33 (|has| |#3| (-556)))) (-2190 ((|#3| $ (-564) (-564)) 41)) (-1433 (((-641 |#3|) $) 68 (|has| $ (-6 -4406)))) (-3408 (((-768) $) 32 (|has| |#3| (-556)))) (-3540 (((-641 |#5|) $) 31 (|has| |#3| (-556)))) (-1745 (((-768) $) 45)) (-1757 (((-768) $) 44)) (-2324 (((-112) $ (-768)) 60)) (-2904 (((-564) $) 49)) (-2015 (((-564) $) 47)) (-2640 (((-641 |#3|) $) 69 (|has| $ (-6 -4406)))) (-2516 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4406))))) (-2381 (((-564) $) 48)) (-2821 (((-564) $) 46)) (-4309 (($ (-641 (-641 |#3|))) 54)) (-2250 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4217 (((-641 (-641 |#3|)) $) 43)) (-1713 (((-112) $ (-768)) 59)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-556)))) (-4077 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#3|) (-641 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3565 (((-112) $ $) 55)) (-4284 (((-112) $) 58)) (-4012 (($) 57)) (-1350 ((|#3| $ (-564) (-564)) 42) ((|#3| $ (-564) (-564) |#3|) 40)) (-1302 (((-112) $) 52)) (-2791 (((-768) |#3| $) 70 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4406)))) (-1991 (($ $) 56)) (-3065 ((|#5| $ (-564)) 38)) (-1831 (((-859) $) 11)) (-1963 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4406)))) (-4320 (((-112) $) 50)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2828 (((-768) $) 62 (|has| $ (-6 -4406))))) -(((-1049 |#1| |#2| |#3| |#4| |#5|) (-140) (-768) (-768) (-1046) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1049)) -((-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) (-1350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-2190 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-1350 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *2 (-1046)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3751 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2449 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1403 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-1823 (*1 *1 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-641 *7))))) -(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4406) (IF (|has| |t#3| (-172)) (-6 (-714 |t#3|)) |%noBranch|) (-15 -4309 ($ (-641 (-641 |t#3|)))) (-15 -2385 ((-112) $)) (-15 -1302 ((-112) $)) (-15 -1512 ((-112) $)) (-15 -4320 ((-112) $)) (-15 -2904 ((-564) $)) (-15 -2381 ((-564) $)) (-15 -2015 ((-564) $)) (-15 -2821 ((-564) $)) (-15 -1745 ((-768) $)) (-15 -1757 ((-768) $)) (-15 -4217 ((-641 (-641 |t#3|)) $)) (-15 -1350 (|t#3| $ (-564) (-564))) (-15 -2190 (|t#3| $ (-564) (-564))) (-15 -1350 (|t#3| $ (-564) (-564) |t#3|)) (-15 -3751 (|t#4| $ (-564))) (-15 -3065 (|t#5| $ (-564))) (-15 -2449 ($ (-1 |t#3| |t#3|) $)) (-15 -2449 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -1403 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -1823 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -3543 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -3531 ((-768) $)) (-15 -3408 ((-768) $)) (-15 -3540 ((-641 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-859)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-644 |#3|) . T) ((-714 |#3|) |has| |#3| (-172)) ((-1052 |#3|) . T) ((-1094) . T) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-1512 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2385 (((-112) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-1778 (($) NIL T CONST)) (-3543 (($ $) 47 (|has| |#3| (-307)))) (-3751 (((-240 |#2| |#3|) $ (-564)) 36)) (-2710 (($ (-685 |#3|)) 45)) (-3531 (((-768) $) 49 (|has| |#3| (-556)))) (-2190 ((|#3| $ (-564) (-564)) NIL)) (-1433 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-3408 (((-768) $) 51 (|has| |#3| (-556)))) (-3540 (((-641 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-1745 (((-768) $) NIL)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-2904 (((-564) $) NIL)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-2381 (((-564) $) NIL)) (-2821 (((-564) $) NIL)) (-4309 (($ (-641 (-641 |#3|))) 31)) (-2250 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4217 (((-641 (-641 |#3|)) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-4077 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-3548 (((-134)) 59 (|has| |#3| (-363)))) (-1302 (((-112) $) NIL)) (-2791 (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094)))) (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-3065 (((-240 |#1| |#3|) $ (-564)) 40)) (-1831 (((-859) $) 19) (((-685 |#3|) $) 42)) (-1963 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-4320 (((-112) $) NIL)) (-1293 (($) 16 T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1050 |#1| |#2| |#3|) (-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -2710 ($ (-685 |#3|))))) (-768) (-768) (-1046)) (T -1050)) -((-2710 (*1 *1 *2) (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768))))) -(-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -2710 ($ (-685 |#3|))))) -((-1988 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2449 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1051 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2449 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1988 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-768) (-768) (-1046) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1049 |#1| |#2| |#3| |#4| |#5|) (-1046) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1049 |#1| |#2| |#7| |#8| |#9|)) (T -1051)) -((-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1046)) (-4 *10 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1049 *5 *6 *10 *11 *12)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -2449 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1988 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ |#1|) 23))) -(((-1052 |#1|) (-140) (-1053)) (T -1052)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053))))) +((-2970 (*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -2970 ($) -2255))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1040 |#1|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 (-776 |#1| (-860 |#2|)))))) (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-1841 (((-641 $) (-641 (-776 |#1| (-860 |#2|)))) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112)) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112) (-112)) NIL)) (-2534 (((-641 (-860 |#2|)) $) NIL)) (-1885 (((-112) $) NIL)) (-3042 (((-112) $) NIL (|has| |#1| (-556)))) (-1669 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4230 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3453 (((-641 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -2244 $))) (-776 |#1| (-860 |#2|)) $) NIL)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ (-860 |#2|)) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2957 (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 (-776 |#1| (-860 |#2|)) "failed") $ (-860 |#2|)) NIL)) (-4157 (($) NIL T CONST)) (-2815 (((-112) $) NIL (|has| |#1| (-556)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1362 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-112) $) NIL (|has| |#1| (-556)))) (-2292 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-1907 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-556)))) (-4066 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-1781 (($ (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-2008 (((-3 $ "failed") $) NIL)) (-4220 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-3628 (($ (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-556)))) (-4203 (((-112) (-776 |#1| (-860 |#2|)) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-4194 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3239 (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|))) NIL (|has| $ (-6 -4406))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-4019 (((-2 (|:| -1600 (-641 (-776 |#1| (-860 |#2|)))) (|:| -4197 (-641 (-776 |#1| (-860 |#2|))))) $) NIL)) (-4356 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3404 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3665 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3534 (((-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1675 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3691 (((-860 |#2|) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-1456 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL)) (-3805 (((-641 (-860 |#2|)) $) NIL)) (-3460 (((-112) (-860 |#2|) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-1307 (((-3 (-776 |#1| (-860 |#2|)) (-641 $)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1677 (((-641 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -2244 $))) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3649 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-2824 (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL)) (-2836 (((-3 (-112) (-641 $)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1648 (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-641 $)) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) (-641 $)) NIL)) (-2987 (($ (-776 |#1| (-860 |#2|)) $) NIL) (($ (-641 (-776 |#1| (-860 |#2|))) $) NIL)) (-4022 (((-641 (-776 |#1| (-860 |#2|))) $) NIL)) (-3250 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2093 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3288 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-556)))) (-3932 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4340 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-3393 (((-3 (-776 |#1| (-860 |#2|)) "failed") (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL)) (-4179 (((-3 $ "failed") $ (-776 |#1| (-860 |#2|))) NIL)) (-2941 (($ $ (-776 |#1| (-860 |#2|))) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-641 $)) NIL)) (-1763 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-294 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-641 (-294 (-776 |#1| (-860 |#2|))))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-2073 (((-767) $) NIL)) (-3852 (((-767) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (((-767) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-776 |#1| (-860 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-3311 (($ $ (-860 |#2|)) NIL)) (-2805 (($ $ (-860 |#2|)) NIL)) (-2631 (($ $) NIL)) (-2029 (($ $ (-860 |#2|)) NIL)) (-2322 (((-858) $) NIL) (((-641 (-776 |#1| (-860 |#2|))) $) NIL)) (-2390 (((-767) $) NIL (|has| (-860 |#2|) (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 (-776 |#1| (-860 |#2|))))) "failed") (-641 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 (-776 |#1| (-860 |#2|))))) "failed") (-641 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2410 (((-112) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-641 (-776 |#1| (-860 |#2|))))) NIL)) (-3126 (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-641 $)) NIL)) (-2313 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1595 (((-641 (-860 |#2|)) $) NIL)) (-1801 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-4363 (((-112) (-860 |#2|) $) NIL)) (-2921 (((-112) $ $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1042 |#1| |#2|) (-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -1841 ((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112) (-112))))) (-452) (-641 (-1170))) (T -1042)) +((-1841 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6))))) +(-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -1841 ((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112) (-112))))) +((-3731 (((-1 (-564)) (-1088 (-564))) 33)) (-3640 (((-564) (-564) (-564) (-564) (-564)) 30)) (-1577 (((-1 (-564)) |RationalNumber|) NIL)) (-2918 (((-1 (-564)) |RationalNumber|) NIL)) (-2994 (((-1 (-564)) (-564) |RationalNumber|) NIL))) +(((-1043) (-10 -7 (-15 -3731 ((-1 (-564)) (-1088 (-564)))) (-15 -2994 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -1577 ((-1 (-564)) |RationalNumber|)) (-15 -2918 ((-1 (-564)) |RationalNumber|)) (-15 -3640 ((-564) (-564) (-564) (-564) (-564))))) (T -1043)) +((-3640 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1043)))) (-2918 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))) (-1577 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)) (-5 *3 (-564)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1043))))) +(-10 -7 (-15 -3731 ((-1 (-564)) (-1088 (-564)))) (-15 -2994 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -1577 ((-1 (-564)) |RationalNumber|)) (-15 -2918 ((-1 (-564)) |RationalNumber|)) (-15 -3640 ((-564) (-564) (-564) (-564) (-564)))) +((-2322 (((-858) $) NIL) (($ (-564)) 10))) +(((-1044 |#1|) (-10 -8 (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-1045)) (T -1044)) +NIL +(-10 -8 (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-1045) (-140)) (T -1045)) +((-3179 (*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767))))) +(-13 (-1052) (-722) (-644 $) (-614 (-564)) (-10 -7 (-15 -3179 ((-767)) -2255) (-6 -4403))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2167 (((-407 (-948 |#2|)) (-641 |#2|) (-641 |#2|) (-767) (-767)) 60))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -2167 ((-407 (-948 |#2|)) (-641 |#2|) (-641 |#2|) (-767) (-767)))) (-1170) (-363)) (T -1046)) +((-2167 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1170))))) +(-10 -7 (-15 -2167 ((-407 (-948 |#2|)) (-641 |#2|) (-641 |#2|) (-767) (-767)))) +((-3390 (((-112) $) 40)) (-4283 (((-112) $) 17)) (-3835 (((-767) $) 13)) (-3848 (((-767) $) 14)) (-2037 (((-112) $) 30)) (-2378 (((-112) $) 42))) +(((-1047 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3848 ((-767) |#1|)) (-15 -3835 ((-767) |#1|)) (-15 -2378 ((-112) |#1|)) (-15 -3390 ((-112) |#1|)) (-15 -2037 ((-112) |#1|)) (-15 -4283 ((-112) |#1|))) (-1048 |#2| |#3| |#4| |#5| |#6|) (-767) (-767) (-1045) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1047)) +NIL +(-10 -8 (-15 -3848 ((-767) |#1|)) (-15 -3835 ((-767) |#1|)) (-15 -2378 ((-112) |#1|)) (-15 -3390 ((-112) |#1|)) (-15 -2037 ((-112) |#1|)) (-15 -4283 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-3390 (((-112) $) 51)) (-1862 (((-3 $ "failed") $ $) 19)) (-4283 (((-112) $) 53)) (-2318 (((-112) $ (-767)) 61)) (-4157 (($) 17 T CONST)) (-3442 (($ $) 34 (|has| |#3| (-307)))) (-1597 ((|#4| $ (-564)) 39)) (-3105 (((-767) $) 33 (|has| |#3| (-556)))) (-1407 ((|#3| $ (-564) (-564)) 41)) (-3534 (((-641 |#3|) $) 68 (|has| $ (-6 -4406)))) (-2748 (((-767) $) 32 (|has| |#3| (-556)))) (-3414 (((-641 |#5|) $) 31 (|has| |#3| (-556)))) (-3835 (((-767) $) 45)) (-3848 (((-767) $) 44)) (-1751 (((-112) $ (-767)) 60)) (-2615 (((-564) $) 49)) (-1607 (((-564) $) 47)) (-1834 (((-641 |#3|) $) 69 (|has| $ (-6 -4406)))) (-3114 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4406))))) (-4253 (((-564) $) 48)) (-3020 (((-564) $) 46)) (-4187 (($ (-641 (-641 |#3|))) 54)) (-1456 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3818 (((-641 (-641 |#3|)) $) 43)) (-1681 (((-112) $ (-767)) 59)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-556)))) (-1763 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#3|) (-641 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3652 (((-112) $ $) 55)) (-3282 (((-112) $) 58)) (-2348 (($) 57)) (-4353 ((|#3| $ (-564) (-564)) 42) ((|#3| $ (-564) (-564) |#3|) 40)) (-2037 (((-112) $) 52)) (-3852 (((-767) |#3| $) 70 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4406)))) (-3772 (($ $) 56)) (-1582 ((|#5| $ (-564)) 38)) (-2322 (((-858) $) 11)) (-2313 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4406)))) (-2378 (((-112) $) 50)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2059 (((-767) $) 62 (|has| $ (-6 -4406))))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-140) (-767) (-767) (-1045) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1048)) +((-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4283 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-1407 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-4353 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3123 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2526 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-3442 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-641 *7))))) +(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4406) (IF (|has| |t#3| (-172)) (-6 (-713 |t#3|)) |%noBranch|) (-15 -4187 ($ (-641 (-641 |t#3|)))) (-15 -4283 ((-112) $)) (-15 -2037 ((-112) $)) (-15 -3390 ((-112) $)) (-15 -2378 ((-112) $)) (-15 -2615 ((-564) $)) (-15 -4253 ((-564) $)) (-15 -1607 ((-564) $)) (-15 -3020 ((-564) $)) (-15 -3835 ((-767) $)) (-15 -3848 ((-767) $)) (-15 -3818 ((-641 (-641 |t#3|)) $)) (-15 -4353 (|t#3| $ (-564) (-564))) (-15 -1407 (|t#3| $ (-564) (-564))) (-15 -4353 (|t#3| $ (-564) (-564) |t#3|)) (-15 -1597 (|t#4| $ (-564))) (-15 -1582 (|t#5| $ (-564))) (-15 -3123 ($ (-1 |t#3| |t#3|) $)) (-15 -3123 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -2526 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -3034 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -3442 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -3105 ((-767) $)) (-15 -2748 ((-767) $)) (-15 -3414 ((-641 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-858)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-644 |#3|) . T) ((-713 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1094) . T) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-3390 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4283 (((-112) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-4157 (($) NIL T CONST)) (-3442 (($ $) 47 (|has| |#3| (-307)))) (-1597 (((-240 |#2| |#3|) $ (-564)) 36)) (-1300 (($ (-685 |#3|)) 45)) (-3105 (((-767) $) 49 (|has| |#3| (-556)))) (-1407 ((|#3| $ (-564) (-564)) NIL)) (-3534 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-2748 (((-767) $) 51 (|has| |#3| (-556)))) (-3414 (((-641 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-3835 (((-767) $) NIL)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-2615 (((-564) $) NIL)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-4253 (((-564) $) NIL)) (-3020 (((-564) $) NIL)) (-4187 (($ (-641 (-641 |#3|))) 31)) (-1456 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3818 (((-641 (-641 |#3|)) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-1763 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-3480 (((-134)) 59 (|has| |#3| (-363)))) (-2037 (((-112) $) NIL)) (-3852 (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094)))) (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-1582 (((-240 |#1| |#3|) $ (-564)) 40)) (-2322 (((-858) $) 19) (((-685 |#3|) $) 42)) (-2313 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-2378 (((-112) $) NIL)) (-2389 (($) 16 T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1049 |#1| |#2| |#3|) (-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -1300 ($ (-685 |#3|))))) (-767) (-767) (-1045)) (T -1049)) +((-1300 (*1 *1 *2) (-12 (-5 *2 (-685 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767))))) +(-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -1300 ($ (-685 |#3|))))) +((-3239 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3123 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1050 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3123 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3239 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-767) (-767) (-1045) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1048 |#1| |#2| |#7| |#8| |#9|)) (T -1050)) +((-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -3123 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3239 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ |#1|) 23))) +(((-1051 |#1|) (-140) (-1052)) (T -1051)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) -(((-1053) (-140)) (T -1053)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-1052) (-140)) (T -1052)) NIL (-13 (-21) (-1106)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1106) . T) ((-1094) . T)) -((-3220 (($ $) 17)) (-3015 (($ $) 25)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 54)) (-3797 (($ $) 27)) (-3191 (($ $) 12)) (-1818 (($ $) 43)) (-2511 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) 36)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-2219 (((-768)) 9)) (-4150 (($ $) 44))) -(((-1054 |#1|) (-10 -8 (-15 -3015 (|#1| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3191 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| (-564))) (-15 -2511 ((-225) |#1|)) (-15 -2511 ((-379) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| |#1|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-1055)) (T -1054)) -((-2219 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055))))) -(-10 -8 (-15 -3015 (|#1| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 -3191 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2131 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| (-564))) (-15 -2511 ((-225) |#1|)) (-15 -2511 ((-379) |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| |#1|)) (-15 -2219 ((-768))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3423 (((-564) $) 90)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-3220 (($ $) 88)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3083 (($ $) 98)) (-3554 (((-112) $ $) 60)) (-1598 (((-564) $) 115)) (-1778 (($) 17 T CONST)) (-3015 (($ $) 87)) (-2347 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2237 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-1420 (((-112) $) 72)) (-1569 (((-112) $) 113)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 97)) (-3797 (($ $) 93)) (-2607 (((-112) $) 114)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1925 (($ $ $) 112)) (-3375 (($ $ $) 111)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3191 (($ $) 89)) (-1818 (($ $) 91)) (-3070 (((-418 $) $) 75)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-2511 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-2219 (((-768)) 28 T CONST)) (-4150 (($ $) 92)) (-3939 (((-112) $ $) 40)) (-1849 (($ $) 116)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1762 (((-112) $ $) 109)) (-1737 (((-112) $ $) 108)) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 110)) (-1723 (((-112) $ $) 107)) (-1823 (($ $ $) 66)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) -(((-1055) (-140)) (T -1055)) -((-1849 (*1 *1 *1) (-4 *1 (-1055))) (-3797 (*1 *1 *1) (-4 *1 (-1055))) (-4150 (*1 *1 *1) (-4 *1 (-1055))) (-1818 (*1 *1 *1) (-4 *1 (-1055))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564)))) (-3191 (*1 *1 *1) (-4 *1 (-1055))) (-3220 (*1 *1 *1) (-4 *1 (-1055))) (-3015 (*1 *1 *1) (-4 *1 (-1055)))) -(-13 (-363) (-845) (-1019) (-1035 (-564)) (-1035 (-407 (-564))) (-999) (-612 (-889 (-379))) (-883 (-379)) (-147) (-10 -8 (-15 -3797 ($ $)) (-15 -4150 ($ $)) (-15 -1818 ($ $)) (-15 -3423 ((-564) $)) (-15 -3191 ($ $)) (-15 -3220 ($ $)) (-15 -3015 ($ $)) (-15 -1849 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-889 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-883 (-379)) . T) ((-917) . T) ((-999) . T) ((-1019) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) |#2| $) 26)) (-3267 ((|#1| $) 10)) (-1598 (((-564) |#2| $) 114)) (-2929 (((-3 $ "failed") |#2| (-918)) 75)) (-3777 ((|#1| $) 31)) (-1751 ((|#1| |#2| $ |#1|) 40)) (-2264 (($ $) 28)) (-3733 (((-3 |#2| "failed") |#2| $) 110)) (-1569 (((-112) |#2| $) NIL)) (-2607 (((-112) |#2| $) NIL)) (-2575 (((-112) |#2| $) 27)) (-3887 ((|#1| $) 115)) (-3766 ((|#1| $) 30)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3019 ((|#2| $) 102)) (-1831 (((-859) $) 94)) (-2508 ((|#1| |#2| $ |#1|) 41)) (-1496 (((-641 $) |#2|) 77)) (-1702 (((-112) $ $) 97))) -(((-1056 |#1| |#2|) (-13 (-1063 |#1| |#2|) (-10 -8 (-15 -3766 (|#1| $)) (-15 -3777 (|#1| $)) (-15 -3267 (|#1| $)) (-15 -3887 (|#1| $)) (-15 -2264 ($ $)) (-15 -2575 ((-112) |#2| $)) (-15 -1751 (|#1| |#2| $ |#1|)))) (-13 (-845) (-363)) (-1235 |#1|)) (T -1056)) -((-1751 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3766 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3777 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3267 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3887 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2264 (*1 *1 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2575 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3)) (-4 *3 (-1235 *4))))) -(-13 (-1063 |#1| |#2|) (-10 -8 (-15 -3766 (|#1| $)) (-15 -3777 (|#1| $)) (-15 -3267 (|#1| $)) (-15 -3887 (|#1| $)) (-15 -2264 ($ $)) (-15 -2575 ((-112) |#2| $)) (-15 -1751 (|#1| |#2| $ |#1|)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-2487 (($ $ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1689 (($ $ $ $) NIL)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-1598 (((-564) $) NIL)) (-1815 (($ $ $) NIL)) (-1778 (($) NIL T CONST)) (-1314 (($ (-1170)) 10) (($ (-564)) 7)) (-2347 (((-3 (-564) "failed") $) NIL)) (-2237 (((-564) $) NIL)) (-1449 (($ $ $) NIL)) (-4050 (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL)) (-2272 (((-112) $) NIL)) (-3036 (((-407 (-564)) $) NIL)) (-2900 (($) NIL) (($ $) NIL)) (-1424 (($ $ $) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1447 (($ $ $ $) NIL)) (-2227 (($ $ $) NIL)) (-1569 (((-112) $) NIL)) (-2163 (($ $ $) NIL)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2949 (((-112) $) NIL)) (-4301 (((-112) $) NIL)) (-2619 (((-3 $ "failed") $) NIL)) (-2607 (((-112) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1584 (($ $ $ $) NIL)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-1781 (($ $) NIL)) (-1502 (($ $) NIL)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3244 (($ $ $) NIL)) (-2884 (($) NIL T CONST)) (-3900 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3839 (($ $) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-3534 (($ $ (-768)) NIL) (($ $) NIL)) (-3656 (($ $) NIL)) (-1991 (($ $) NIL)) (-2511 (((-564) $) 16) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1170)) 9)) (-1831 (((-859) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-2219 (((-768)) NIL T CONST)) (-1935 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (-3655 (($) NIL)) (-3939 (((-112) $ $) NIL)) (-2807 (($ $ $ $) NIL)) (-1849 (($ $) NIL)) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1808 (($ $) 22) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-1057) (-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -1314 ($ (-1170))) (-15 -1314 ($ (-564)))))) (T -1057)) -((-1314 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057))))) -(-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -1314 ($ (-1170))) (-15 -1314 ($ (-564))))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-1956 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-3663 (($) 9)) (-1970 (((-52) $ (-1170) (-52)) NIL)) (-2592 (($ $) 32)) (-2076 (($ $) 30)) (-3670 (($ $) 29)) (-2764 (($ $) 31)) (-3268 (($ $) 35)) (-3346 (($ $) 36)) (-3045 (($ $) 28)) (-3578 (($ $) 33)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) 27 (|has| $ (-6 -4406)))) (-1725 (((-3 (-52) "failed") (-1170) $) 43)) (-1778 (($) NIL T CONST)) (-4092 (($) 7)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-3644 (($ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) 53 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2576 (($ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3943 (((-3 (-1152) "failed") $ (-1152) (-564)) 74)) (-2261 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4407)))) (-2190 (((-52) $ (-1170)) NIL)) (-1433 (((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2640 (((-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) 38 (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-3440 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-2945 (((-641 (-1170)) $) NIL)) (-2554 (((-112) (-1170) $) NIL)) (-2401 (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL)) (-2783 (($ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) 46)) (-3883 (((-641 (-1170)) $) NIL)) (-4336 (((-112) (-1170) $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-2646 (((-379) $ (-1170)) 52)) (-3552 (((-641 (-1152)) $ (-1152)) 76)) (-3303 (((-52) $) NIL (|has| (-1170) (-847)))) (-3995 (((-3 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) "failed") (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL)) (-4253 (($ $ (-52)) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL (-12 (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-309 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-1794 (((-641 (-52)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 (((-52) $ (-1170)) NIL) (((-52) $ (-1170) (-52)) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-2853 (($ $ (-1170)) 54)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) 40)) (-3043 (($ $ $) 41)) (-1831 (((-859) $) NIL (-4078 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-611 (-859)))))) (-4061 (($ $ (-1170) (-379)) 50)) (-4110 (($ $ (-1170) (-379)) 51)) (-2321 (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 (-1170)) (|:| -1389 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-52) (-1094)) (|has| (-2 (|:| -2568 (-1170)) (|:| -1389 (-52))) (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1058) (-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -3043 ($ $ $)) (-15 -4092 ($)) (-15 -3045 ($ $)) (-15 -3670 ($ $)) (-15 -2076 ($ $)) (-15 -2764 ($ $)) (-15 -3578 ($ $)) (-15 -2592 ($ $)) (-15 -3268 ($ $)) (-15 -3346 ($ $)) (-15 -4061 ($ $ (-1170) (-379))) (-15 -4110 ($ $ (-1170) (-379))) (-15 -2646 ((-379) $ (-1170))) (-15 -3552 ((-641 (-1152)) $ (-1152))) (-15 -2853 ($ $ (-1170))) (-15 -3663 ($)) (-15 -3943 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4406)))) (T -1058)) -((-3043 (*1 *1 *1 *1) (-5 *1 (-1058))) (-4092 (*1 *1) (-5 *1 (-1058))) (-3045 (*1 *1 *1) (-5 *1 (-1058))) (-3670 (*1 *1 *1) (-5 *1 (-1058))) (-2076 (*1 *1 *1) (-5 *1 (-1058))) (-2764 (*1 *1 *1) (-5 *1 (-1058))) (-3578 (*1 *1 *1) (-5 *1 (-1058))) (-2592 (*1 *1 *1) (-5 *1 (-1058))) (-3268 (*1 *1 *1) (-5 *1 (-1058))) (-3346 (*1 *1 *1) (-5 *1 (-1058))) (-4061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-2646 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058)))) (-3552 (*1 *2 *1 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058)))) (-3663 (*1 *1) (-5 *1 (-1058))) (-3943 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058))))) -(-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -3043 ($ $ $)) (-15 -4092 ($)) (-15 -3045 ($ $)) (-15 -3670 ($ $)) (-15 -2076 ($ $)) (-15 -2764 ($ $)) (-15 -3578 ($ $)) (-15 -2592 ($ $)) (-15 -3268 ($ $)) (-15 -3346 ($ $)) (-15 -4061 ($ $ (-1170) (-379))) (-15 -4110 ($ $ (-1170) (-379))) (-15 -2646 ((-379) $ (-1170))) (-15 -3552 ((-641 (-1152)) $ (-1152))) (-15 -2853 ($ $ (-1170))) (-15 -3663 ($)) (-15 -3943 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4406))) -((-4045 (($ $) 46)) (-2752 (((-112) $ $) 80)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) 248) (((-3 $ "failed") (-949 (-564))) 247) (((-3 $ "failed") (-949 |#2|)) 250)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-949 (-407 (-564)))) 236) (($ (-949 (-564))) 232) (($ (-949 |#2|)) 252)) (-3396 (($ $) NIL) (($ $ |#4|) 44)) (-3827 (((-112) $ $) 126) (((-112) $ (-641 $)) 130)) (-1371 (((-112) $) 60)) (-1330 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 120)) (-1695 (($ $) 155)) (-2032 (($ $) 151)) (-3507 (($ $) 150)) (-2376 (($ $ $) 85) (($ $ $ |#4|) 90)) (-3748 (($ $ $) 88) (($ $ $ |#4|) 92)) (-2021 (((-112) $ $) 138) (((-112) $ (-641 $)) 139)) (-1543 ((|#4| $) 32)) (-1387 (($ $ $) 123)) (-1784 (((-112) $) 59)) (-1305 (((-768) $) 35)) (-4195 (($ $) 169)) (-3208 (($ $) 166)) (-4318 (((-641 $) $) 72)) (-3161 (($ $) 62)) (-2110 (($ $) 162)) (-3710 (((-641 $) $) 69)) (-2753 (($ $) 64)) (-3370 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1704 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2491 (-768))) $ $) 125)) (-3915 (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $) 121) (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $ |#4|) 122)) (-4272 (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $) 116) (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $ |#4|) 118)) (-2031 (($ $ $) 95) (($ $ $ |#4|) 103)) (-2070 (($ $ $) 96) (($ $ $ |#4|) 104)) (-2983 (((-641 $) $) 54)) (-4281 (((-112) $ $) 135) (((-112) $ (-641 $)) 136)) (-2356 (($ $ $) 111)) (-2884 (($ $) 37)) (-3984 (((-112) $ $) 78)) (-3253 (((-112) $ $) 131) (((-112) $ (-641 $)) 133)) (-1482 (($ $ $) 109)) (-4202 (($ $) 41)) (-2777 ((|#2| |#2| $) 159) (($ (-641 $)) NIL) (($ $ $) NIL)) (-3916 (($ $ |#2|) NIL) (($ $ $) 148)) (-3542 (($ $ |#2|) 143) (($ $ $) 146)) (-2248 (($ $) 49)) (-2281 (($ $) 55)) (-2511 (((-889 (-379)) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (($ (-949 (-407 (-564)))) 238) (($ (-949 (-564))) 234) (($ (-949 |#2|)) 249) (((-1152) $) 277) (((-949 |#2|) $) 179)) (-1831 (((-859) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-949 |#2|) $) 180) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2683 (((-3 (-112) "failed") $ $) 77))) -(((-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1831 (|#1| |#1|)) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2777 (|#1| (-641 |#1|))) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 ((-949 |#2|) |#1|)) (-15 -2511 ((-949 |#2|) |#1|)) (-15 -2511 ((-1152) |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -2777 (|#2| |#2| |#1|)) (-15 -3916 (|#1| |#1| |#1|)) (-15 -3542 (|#1| |#1| |#1|)) (-15 -3916 (|#1| |#1| |#2|)) (-15 -3542 (|#1| |#1| |#2|)) (-15 -2032 (|#1| |#1|)) (-15 -3507 (|#1| |#1|)) (-15 -2511 (|#1| (-949 |#2|))) (-15 -2237 (|#1| (-949 |#2|))) (-15 -2347 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2511 (|#1| (-949 (-564)))) (-15 -2237 (|#1| (-949 (-564)))) (-15 -2347 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2511 (|#1| (-949 (-407 (-564))))) (-15 -2237 (|#1| (-949 (-407 (-564))))) (-15 -2347 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -2356 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -1704 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2491 (-768))) |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1330 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3915 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1| |#4|)) (-15 -3915 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -4272 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -1678 |#1|)) |#1| |#1| |#4|)) (-15 -4272 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -2070 (|#1| |#1| |#1| |#4|)) (-15 -2031 (|#1| |#1| |#1| |#4|)) (-15 -2070 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1| |#4|)) (-15 -2376 (|#1| |#1| |#1| |#4|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -2376 (|#1| |#1| |#1|)) (-15 -2021 ((-112) |#1| (-641 |#1|))) (-15 -2021 ((-112) |#1| |#1|)) (-15 -4281 ((-112) |#1| (-641 |#1|))) (-15 -4281 ((-112) |#1| |#1|)) (-15 -3253 ((-112) |#1| (-641 |#1|))) (-15 -3253 ((-112) |#1| |#1|)) (-15 -3827 ((-112) |#1| (-641 |#1|))) (-15 -3827 ((-112) |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -2683 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4318 ((-641 |#1|) |#1|)) (-15 -3710 ((-641 |#1|) |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -1371 ((-112) |#1|)) (-15 -1784 ((-112) |#1|)) (-15 -3396 (|#1| |#1| |#4|)) (-15 -3370 (|#1| |#1| |#4|)) (-15 -2281 (|#1| |#1|)) (-15 -2983 ((-641 |#1|) |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -1305 ((-768) |#1|)) (-15 -1543 (|#4| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -1831 (|#1| |#4|)) (-15 -2347 ((-3 |#4| "failed") |#1|)) (-15 -2237 (|#4| |#1|)) (-15 -3370 (|#2| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-1060 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -1059)) -NIL -(-10 -8 (-15 -1831 (|#1| |#1|)) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2777 (|#1| (-641 |#1|))) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 ((-949 |#2|) |#1|)) (-15 -2511 ((-949 |#2|) |#1|)) (-15 -2511 ((-1152) |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -2777 (|#2| |#2| |#1|)) (-15 -3916 (|#1| |#1| |#1|)) (-15 -3542 (|#1| |#1| |#1|)) (-15 -3916 (|#1| |#1| |#2|)) (-15 -3542 (|#1| |#1| |#2|)) (-15 -2032 (|#1| |#1|)) (-15 -3507 (|#1| |#1|)) (-15 -2511 (|#1| (-949 |#2|))) (-15 -2237 (|#1| (-949 |#2|))) (-15 -2347 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2511 (|#1| (-949 (-564)))) (-15 -2237 (|#1| (-949 (-564)))) (-15 -2347 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2511 (|#1| (-949 (-407 (-564))))) (-15 -2237 (|#1| (-949 (-407 (-564))))) (-15 -2347 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -2356 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -1704 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2491 (-768))) |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1330 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3915 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1| |#4|)) (-15 -3915 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -4272 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -1678 |#1|)) |#1| |#1| |#4|)) (-15 -4272 ((-2 (|:| -2860 |#1|) (|:| |gap| (-768)) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -2070 (|#1| |#1| |#1| |#4|)) (-15 -2031 (|#1| |#1| |#1| |#4|)) (-15 -2070 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1| |#4|)) (-15 -2376 (|#1| |#1| |#1| |#4|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -2376 (|#1| |#1| |#1|)) (-15 -2021 ((-112) |#1| (-641 |#1|))) (-15 -2021 ((-112) |#1| |#1|)) (-15 -4281 ((-112) |#1| (-641 |#1|))) (-15 -4281 ((-112) |#1| |#1|)) (-15 -3253 ((-112) |#1| (-641 |#1|))) (-15 -3253 ((-112) |#1| |#1|)) (-15 -3827 ((-112) |#1| (-641 |#1|))) (-15 -3827 ((-112) |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -2683 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4318 ((-641 |#1|) |#1|)) (-15 -3710 ((-641 |#1|) |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -1371 ((-112) |#1|)) (-15 -1784 ((-112) |#1|)) (-15 -3396 (|#1| |#1| |#4|)) (-15 -3370 (|#1| |#1| |#4|)) (-15 -2281 (|#1| |#1|)) (-15 -2983 ((-641 |#1|) |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -1305 ((-768) |#1|)) (-15 -1543 (|#4| |#1|)) (-15 -2511 ((-536) |#1|)) (-15 -2511 ((-889 (-564)) |#1|)) (-15 -2511 ((-889 (-379)) |#1|)) (-15 -1831 (|#1| |#4|)) (-15 -2347 ((-3 |#4| "failed") |#1|)) (-15 -2237 (|#4| |#1|)) (-15 -3370 (|#2| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 |#3|) $) 110)) (-3040 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1537 (($ $) 88 (|has| |#1| (-556)))) (-1932 (((-112) $) 90 (|has| |#1| (-556)))) (-2291 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-4045 (($ $) 271)) (-2752 (((-112) $ $) 257)) (-4088 (((-3 $ "failed") $ $) 19)) (-2749 (($ $ $) 216 (|has| |#1| (-556)))) (-1828 (((-641 $) $ $) 211 (|has| |#1| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2427 (($ $) 98 (|has| |#1| (-452)))) (-3399 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-949 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) 228 (-4078 (-12 (-4338 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) 225 (-4078 (-12 (-4338 (|has| |#1| (-38 (-407 (-564))))) (-4338 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4338 (|has| |#1| (-545))) (-4338 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4338 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2237 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) (($ (-949 (-407 (-564)))) 230 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 227 (-4078 (-12 (-4338 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 224 (-4078 (-12 (-4338 (|has| |#1| (-38 (-407 (-564))))) (-4338 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4338 (|has| |#1| (-545))) (-4338 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4338 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-1357 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-556)))) (-3396 (($ $) 154) (($ $ |#3|) 266)) (-4050 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3827 (((-112) $ $) 256) (((-112) $ (-641 $)) 255)) (-3733 (((-3 $ "failed") $) 33)) (-1371 (((-112) $) 264)) (-1330 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 236)) (-1695 (($ $) 205 (|has| |#1| (-452)))) (-3031 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3383 (((-641 $) $) 109)) (-1420 (((-112) $) 96 (|has| |#1| (-906)))) (-2032 (($ $) 221 (|has| |#1| (-556)))) (-3507 (($ $) 222 (|has| |#1| (-556)))) (-2376 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3748 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2055 (($ $ |#1| |#2| $) 172)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2949 (((-112) $) 31)) (-4128 (((-768) $) 169)) (-2021 (((-112) $ $) 250) (((-112) $ (-641 $)) 249)) (-1707 (($ $ $ $ $) 207 (|has| |#1| (-556)))) (-1543 ((|#3| $) 275)) (-3198 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-3802 (((-641 $) $) 126)) (-2003 (((-112) $) 152)) (-3186 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-1387 (($ $ $) 235)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#3|) 120)) (-1784 (((-112) $) 265)) (-1826 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-1925 (($ $ $) 79 (|has| |#1| (-847)))) (-1305 (((-768) $) 274)) (-3375 (($ $ $) 78 (|has| |#1| (-847)))) (-2546 (($ (-1 |#2| |#2|) $) 171)) (-2449 (($ (-1 |#1| |#1|) $) 151)) (-2169 (((-3 |#3| "failed") $) 123)) (-4195 (($ $) 202 (|has| |#1| (-452)))) (-3208 (($ $) 203 (|has| |#1| (-452)))) (-4318 (((-641 $) $) 260)) (-3161 (($ $) 263)) (-2110 (($ $) 204 (|has| |#1| (-452)))) (-3710 (((-641 $) $) 261)) (-2753 (($ $) 262)) (-3356 (($ $) 149)) (-3370 ((|#1| $) 148) (($ $ |#3|) 267)) (-2740 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1704 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2491 (-768))) $ $) 234)) (-3915 (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $) 238) (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $ |#3|) 237)) (-4272 (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $) 240) (((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $ |#3|) 239)) (-2031 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2070 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2723 (((-1152) $) 9)) (-2624 (($ $ $) 210 (|has| |#1| (-556)))) (-2983 (((-641 $) $) 269)) (-2955 (((-3 (-641 $) "failed") $) 114)) (-2512 (((-3 (-641 $) "failed") $) 115)) (-4059 (((-3 (-2 (|:| |var| |#3|) (|:| -1558 (-768))) "failed") $) 113)) (-4281 (((-112) $ $) 252) (((-112) $ (-641 $)) 251)) (-2356 (($ $ $) 232)) (-2884 (($ $) 273)) (-3984 (((-112) $ $) 258)) (-3253 (((-112) $ $) 254) (((-112) $ (-641 $)) 253)) (-1482 (($ $ $) 233)) (-4202 (($ $) 272)) (-2780 (((-1114) $) 10)) (-4197 (((-2 (|:| -2777 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-556)))) (-2180 (((-2 (|:| -2777 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-556)))) (-3326 (((-112) $) 166)) (-3341 ((|#1| $) 167)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2777 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-3070 (((-418 $) $) 99 (|has| |#1| (-906)))) (-3848 (((-2 (|:| -2777 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-1403 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3916 (($ $ |#1|) 219 (|has| |#1| (-556))) (($ $ $) 217 (|has| |#1| (-556)))) (-3542 (($ $ |#1|) 220 (|has| |#1| (-556))) (($ $ $) 218 (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-3190 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-3534 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-1619 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-2248 (($ $) 270)) (-2281 (($ $) 268)) (-2511 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-949 (-407 (-564)))) 229 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 226 (-4078 (-12 (-4338 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 223 (|has| |#3| (-612 (-1170)))) (((-1152) $) 201 (-12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170))))) (((-949 |#1|) $) 200 (|has| |#3| (-612 (-1170))))) (-3008 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4348 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-949 |#1|) $) 199 (|has| |#3| (-612 (-1170)))) (($ (-407 (-564))) 72 (-4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) 168)) (-2742 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4018 (((-3 $ "failed") $) 73 (-4078 (-4348 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) 28 T CONST)) (-3154 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3939 (((-112) $ $) 89 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-2683 (((-3 (-112) "failed") $ $) 259)) (-1300 (($) 30 T CONST)) (-1892 (($ $ $ $ (-768)) 208 (|has| |#1| (-556)))) (-2891 (($ $ $ (-768)) 209 (|has| |#1| (-556)))) (-3435 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1762 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1823 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1060 |#1| |#2| |#3|) (-140) (-1046) (-790) (-847)) (T -1060)) -((-1543 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-2884 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4045 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2281 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3370 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3396 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2753 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3710 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-4318 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2683 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3984 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2752 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3827 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-3253 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3253 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-4281 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4281 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-2021 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2021 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-2376 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3748 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2376 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3748 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2031 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2070 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2031 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2070 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-4272 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -1678 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4272 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -1678 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-3915 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-3915 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-1330 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-1387 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1704 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2491 (-768)))) (-4 *1 (-1060 *3 *4 *5)))) (-1482 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2356 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2347 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2347 (*1 *1 *2) (|partial| -4078 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2237 (*1 *1 *2) (-4078 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2511 (*1 *1 *2) (-4078 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2347 (*1 *1 *2) (|partial| -4078 (-12 (-5 *2 (-949 *3)) (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4338 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4338 (-4 *3 (-545))) (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4338 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2237 (*1 *1 *2) (-4078 (-12 (-5 *2 (-949 *3)) (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4338 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4338 (-4 *3 (-545))) (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4338 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847)))) (-3507 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2032 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3542 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3916 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3542 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3916 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3848 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2777 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2180 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2777 *1) (|:| |coef1| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4197 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2777 *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-1357 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1828 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2624 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2891 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-1892 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-1707 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2777 (*1 *2 *2 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-1695 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-2110 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3208 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-4195 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452))))) -(-13 (-946 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1543 (|t#3| $)) (-15 -1305 ((-768) $)) (-15 -2884 ($ $)) (-15 -4202 ($ $)) (-15 -4045 ($ $)) (-15 -2248 ($ $)) (-15 -2983 ((-641 $) $)) (-15 -2281 ($ $)) (-15 -3370 ($ $ |t#3|)) (-15 -3396 ($ $ |t#3|)) (-15 -1784 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -3161 ($ $)) (-15 -2753 ($ $)) (-15 -3710 ((-641 $) $)) (-15 -4318 ((-641 $) $)) (-15 -2683 ((-3 (-112) "failed") $ $)) (-15 -3984 ((-112) $ $)) (-15 -2752 ((-112) $ $)) (-15 -3827 ((-112) $ $)) (-15 -3827 ((-112) $ (-641 $))) (-15 -3253 ((-112) $ $)) (-15 -3253 ((-112) $ (-641 $))) (-15 -4281 ((-112) $ $)) (-15 -4281 ((-112) $ (-641 $))) (-15 -2021 ((-112) $ $)) (-15 -2021 ((-112) $ (-641 $))) (-15 -2376 ($ $ $)) (-15 -3748 ($ $ $)) (-15 -2376 ($ $ $ |t#3|)) (-15 -3748 ($ $ $ |t#3|)) (-15 -2031 ($ $ $)) (-15 -2070 ($ $ $)) (-15 -2031 ($ $ $ |t#3|)) (-15 -2070 ($ $ $ |t#3|)) (-15 -4272 ((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $)) (-15 -4272 ((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -1678 $)) $ $ |t#3|)) (-15 -3915 ((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -3915 ((-2 (|:| -2860 $) (|:| |gap| (-768)) (|:| -4347 $) (|:| -1678 $)) $ $ |t#3|)) (-15 -1330 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -1387 ($ $ $)) (-15 -1704 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2491 (-768))) $ $)) (-15 -1482 ($ $ $)) (-15 -2356 ($ $ $)) (IF (|has| |t#3| (-612 (-1170))) (PROGN (-6 (-611 (-949 |t#1|))) (-6 (-612 (-949 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2347 ((-3 $ "failed") (-949 (-407 (-564))))) (-15 -2237 ($ (-949 (-407 (-564))))) (-15 -2511 ($ (-949 (-407 (-564))))) (-15 -2347 ((-3 $ "failed") (-949 (-564)))) (-15 -2237 ($ (-949 (-564)))) (-15 -2511 ($ (-949 (-564)))) (IF (|has| |t#1| (-989 (-564))) |%noBranch| (PROGN (-15 -2347 ((-3 $ "failed") (-949 |t#1|))) (-15 -2237 ($ (-949 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2347 ((-3 $ "failed") (-949 (-564)))) (-15 -2237 ($ (-949 (-564)))) (-15 -2511 ($ (-949 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2347 ((-3 $ "failed") (-949 |t#1|))) (-15 -2237 ($ (-949 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2347 ((-3 $ "failed") (-949 |t#1|))) (-15 -2237 ($ (-949 |t#1|)))))) (-15 -2511 ($ (-949 |t#1|))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-612 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3507 ($ $)) (-15 -2032 ($ $)) (-15 -3542 ($ $ |t#1|)) (-15 -3916 ($ $ |t#1|)) (-15 -3542 ($ $ $)) (-15 -3916 ($ $ $)) (-15 -2749 ($ $ $)) (-15 -3848 ((-2 (|:| -2777 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2180 ((-2 (|:| -2777 $) (|:| |coef1| $)) $ $)) (-15 -4197 ((-2 (|:| -2777 $) (|:| |coef2| $)) $ $)) (-15 -1357 ($ $ $)) (-15 -1828 ((-641 $) $ $)) (-15 -2624 ($ $ $)) (-15 -2891 ($ $ $ (-768))) (-15 -1892 ($ $ $ $ (-768))) (-15 -1707 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2777 (|t#1| |t#1| $)) (-15 -1695 ($ $)) (-15 -2110 ($ $)) (-15 -3208 ($ $)) (-15 -4195 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-611 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-172) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-612 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-612 (-1152)) -12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170)))) ((-290) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4078 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#2| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-3880 (((-641 (-1129)) $) 18)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-1129) $) 20)) (-1702 (((-112) $ $) NIL))) -(((-1061) (-13 (-1077) (-10 -8 (-15 -3880 ((-641 (-1129)) $)) (-15 -1328 ((-1129) $))))) (T -1061)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061))))) -(-13 (-1077) (-10 -8 (-15 -3880 ((-641 (-1129)) $)) (-15 -1328 ((-1129) $)))) -((-1615 (((-112) |#3| $) 15)) (-2929 (((-3 $ "failed") |#3| (-918)) 29)) (-3733 (((-3 |#3| "failed") |#3| $) 45)) (-1569 (((-112) |#3| $) 19)) (-2607 (((-112) |#3| $) 17))) -(((-1062 |#1| |#2| |#3|) (-10 -8 (-15 -2929 ((-3 |#1| "failed") |#3| (-918))) (-15 -3733 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1569 ((-112) |#3| |#1|)) (-15 -2607 ((-112) |#3| |#1|)) (-15 -1615 ((-112) |#3| |#1|))) (-1063 |#2| |#3|) (-13 (-845) (-363)) (-1235 |#2|)) (T -1062)) -NIL -(-10 -8 (-15 -2929 ((-3 |#1| "failed") |#3| (-918))) (-15 -3733 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1569 ((-112) |#3| |#1|)) (-15 -2607 ((-112) |#3| |#1|)) (-15 -1615 ((-112) |#3| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) |#2| $) 21)) (-1598 (((-564) |#2| $) 22)) (-2929 (((-3 $ "failed") |#2| (-918)) 15)) (-1751 ((|#1| |#2| $ |#1|) 13)) (-3733 (((-3 |#2| "failed") |#2| $) 18)) (-1569 (((-112) |#2| $) 19)) (-2607 (((-112) |#2| $) 20)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3019 ((|#2| $) 17)) (-1831 (((-859) $) 11)) (-2508 ((|#1| |#2| $ |#1|) 14)) (-1496 (((-641 $) |#2|) 16)) (-1702 (((-112) $ $) 6))) -(((-1063 |#1| |#2|) (-140) (-13 (-845) (-363)) (-1235 |t#1|)) (T -1063)) -((-1598 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-564)))) (-1615 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2607 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-1569 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-3733 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) (-4 *1 (-1063 *4 *3)))) (-2929 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363))) (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4)))) (-2508 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2)))) (-1751 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2))))) -(-13 (-1094) (-10 -8 (-15 -1598 ((-564) |t#2| $)) (-15 -1615 ((-112) |t#2| $)) (-15 -2607 ((-112) |t#2| $)) (-15 -1569 ((-112) |t#2| $)) (-15 -3733 ((-3 |t#2| "failed") |t#2| $)) (-15 -3019 (|t#2| $)) (-15 -1496 ((-641 $) |t#2|)) (-15 -2929 ((-3 $ "failed") |t#2| (-918))) (-15 -2508 (|t#1| |t#2| $ |t#1|)) (-15 -1751 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-4058 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-768)) 114)) (-2062 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768)) 63)) (-3012 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-768)) 100)) (-3876 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-2035 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768)) 65) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768) (-112)) 67)) (-1295 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 87)) (-2511 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) 92)) (-3937 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-112)) 62)) (-1397 (((-768) (-641 |#4|) (-641 |#5|)) 21))) -(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1397 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3876 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3937 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-112))) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4058 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-768))) (-15 -2511 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -3012 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1064)) -((-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1064 *4 *5 *6 *7 *8)))) (-4058 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2956 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2956 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) (-1295 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-1295 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2035 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2035 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2035 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) (-2062 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2062 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3937 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1397 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3876 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3937 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-112))) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4058 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-768))) (-15 -2511 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -3012 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-768)))) -((-3843 (((-112) |#5| $) 25)) (-2421 (((-112) |#5| $) 28)) (-4204 (((-112) |#5| $) 18) (((-112) $) 51)) (-3425 (((-641 $) |#5| $) NIL) (((-641 $) (-641 |#5|) $) 93) (((-641 $) (-641 |#5|) (-641 $)) 91) (((-641 $) |#5| (-641 $)) 94)) (-3951 (($ $ |#5|) NIL) (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 72) (((-641 $) (-641 |#5|) $) 74) (((-641 $) (-641 |#5|) (-641 $)) 76)) (-3635 (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 63) (((-641 $) (-641 |#5|) $) 68) (((-641 $) (-641 |#5|) (-641 $)) 70)) (-2637 (((-112) |#5| $) 31))) -(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3951 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3951 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3951 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3951 ((-641 |#1|) |#5| |#1|)) (-15 -3635 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3635 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3635 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3635 ((-641 |#1|) |#5| |#1|)) (-15 -3425 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3425 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3425 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3425 ((-641 |#1|) |#5| |#1|)) (-15 -2421 ((-112) |#5| |#1|)) (-15 -4204 ((-112) |#1|)) (-15 -2637 ((-112) |#5| |#1|)) (-15 -3843 ((-112) |#5| |#1|)) (-15 -4204 ((-112) |#5| |#1|)) (-15 -3951 (|#1| |#1| |#5|))) (-1066 |#2| |#3| |#4| |#5|) (-452) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1065)) -NIL -(-10 -8 (-15 -3951 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3951 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3951 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3951 ((-641 |#1|) |#5| |#1|)) (-15 -3635 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3635 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3635 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3635 ((-641 |#1|) |#5| |#1|)) (-15 -3425 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3425 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3425 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3425 ((-641 |#1|) |#5| |#1|)) (-15 -2421 ((-112) |#5| |#1|)) (-15 -4204 ((-112) |#1|)) (-15 -2637 ((-112) |#5| |#1|)) (-15 -3843 ((-112) |#5| |#1|)) (-15 -4204 ((-112) |#5| |#1|)) (-15 -3951 (|#1| |#1| |#5|))) -((-1817 (((-112) $ $) 7)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) 85)) (-2951 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-3209 (((-641 |#3|) $) 33)) (-3449 (((-112) $) 26)) (-3961 (((-112) $) 17 (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) 101) (((-112) $) 97)) (-4136 ((|#4| |#4| $) 92)) (-2427 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) 27)) (-4010 (((-112) $ (-768)) 44)) (-3752 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-1778 (($) 45 T CONST)) (-3602 (((-112) $) 22 (|has| |#1| (-556)))) (-2495 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1495 (((-112) $ $) 23 (|has| |#1| (-556)))) (-2536 (((-112) $) 25 (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2338 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 36)) (-2237 (($ (-641 |#4|)) 35)) (-3314 (((-3 $ "failed") $) 82)) (-1470 ((|#4| |#4| $) 89)) (-3337 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3492 ((|#4| |#4| $) 87)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) 105)) (-3843 (((-112) |#4| $) 136)) (-2421 (((-112) |#4| $) 133)) (-4204 (((-112) |#4| $) 137) (((-112) $) 134)) (-1433 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) 104) (((-112) $) 103)) (-1543 ((|#3| $) 34)) (-2324 (((-112) $ (-768)) 43)) (-2640 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 47)) (-3580 (((-641 |#3|) $) 32)) (-3879 (((-112) |#3| $) 31)) (-1713 (((-112) $ (-768)) 42)) (-2723 (((-1152) $) 9)) (-2100 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2624 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| |#4| $) 127)) (-2598 (((-3 |#4| "failed") $) 83)) (-1889 (((-641 $) |#4| $) 129)) (-4369 (((-3 (-112) (-641 $)) |#4| $) 132)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3425 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2817 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3123 (((-641 |#4|) $) 107)) (-4281 (((-112) |#4| $) 99) (((-112) $) 95)) (-2356 ((|#4| |#4| $) 90)) (-3984 (((-112) $ $) 110)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) 100) (((-112) $) 96)) (-1482 ((|#4| |#4| $) 91)) (-2780 (((-1114) $) 10)) (-3303 (((-3 |#4| "failed") $) 84)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3824 (((-3 $ "failed") $ |#4|) 78)) (-3951 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-4077 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) 38)) (-4284 (((-112) $) 41)) (-4012 (($) 40)) (-1619 (((-768) $) 106)) (-2791 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-1991 (($ $) 39)) (-2511 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 60)) (-4287 (($ $ |#3|) 28)) (-1887 (($ $ |#3|) 30)) (-3728 (($ $) 88)) (-3111 (($ $ |#3|) 29)) (-1831 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4321 (((-768) $) 76 (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3635 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1963 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) 81)) (-2637 (((-112) |#4| $) 135)) (-1484 (((-112) |#3| $) 80)) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 46 (|has| $ (-6 -4406))))) -(((-1066 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1066)) -((-4204 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3843 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2637 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-2421 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-4369 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3273 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3273 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1889 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2100 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2624 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2427 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3425 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3425 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3635 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3635 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3635 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3635 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-2817 (*1 *1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2817 (*1 *1 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)))) (-3951 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3951 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3951 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3951 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *5 *6 *7 *8))))) -(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -4204 ((-112) |t#4| $)) (-15 -3843 ((-112) |t#4| $)) (-15 -2637 ((-112) |t#4| $)) (-15 -4204 ((-112) $)) (-15 -2421 ((-112) |t#4| $)) (-15 -4369 ((-3 (-112) (-641 $)) |t#4| $)) (-15 -3273 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |t#4| $)) (-15 -3273 ((-112) |t#4| $)) (-15 -1889 ((-641 $) |t#4| $)) (-15 -2100 ((-3 |t#4| (-641 $)) |t#4| |t#4| $)) (-15 -2624 ((-641 (-2 (|:| |val| |t#4|) (|:| -2956 $))) |t#4| |t#4| $)) (-15 -2427 ((-641 (-2 (|:| |val| |t#4|) (|:| -2956 $))) |t#4| $)) (-15 -3425 ((-641 $) |t#4| $)) (-15 -3425 ((-641 $) (-641 |t#4|) $)) (-15 -3425 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -3425 ((-641 $) |t#4| (-641 $))) (-15 -3635 ((-641 $) |t#4| $)) (-15 -3635 ((-641 $) |t#4| (-641 $))) (-15 -3635 ((-641 $) (-641 |t#4|) $)) (-15 -3635 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -2817 ($ |t#4| $)) (-15 -2817 ($ (-641 |t#4|) $)) (-15 -3951 ((-641 $) |t#4| $)) (-15 -3951 ((-641 $) |t#4| (-641 $))) (-15 -3951 ((-641 $) (-641 |t#4|) $)) (-15 -3951 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -2951 ((-641 $) (-641 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) -((-1904 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|) 87)) (-1493 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|) 129)) (-3364 (((-641 |#5|) |#4| |#5|) 75)) (-1513 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4210 (((-1264)) 37)) (-3097 (((-1264)) 26)) (-2997 (((-1264) (-1152) (-1152) (-1152)) 33)) (-4113 (((-1264) (-1152) (-1152) (-1152)) 22)) (-1354 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#4| |#4| |#5|) 109)) (-3739 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#3| (-112)) 120) (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3480 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|) 115))) -(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4113 ((-1264) (-1152) (-1152) (-1152))) (-15 -3097 ((-1264))) (-15 -2997 ((-1264) (-1152) (-1152) (-1152))) (-15 -4210 ((-1264))) (-15 -1354 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -3739 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3739 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#3| (-112))) (-15 -3480 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -1493 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -1513 ((-112) |#4| |#5|)) (-15 -1513 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3364 ((-641 |#5|) |#4| |#5|)) (-15 -1904 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1067)) -((-1904 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3364 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1513 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1513 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1493 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3480 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2956 *9)))) (-5 *1 (-1067 *6 *7 *4 *8 *9)))) (-3739 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-1354 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4210 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2997 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3097 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4113 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(-10 -7 (-15 -4113 ((-1264) (-1152) (-1152) (-1152))) (-15 -3097 ((-1264))) (-15 -2997 ((-1264) (-1152) (-1152) (-1152))) (-15 -4210 ((-1264))) (-15 -1354 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -3739 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3739 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#3| (-112))) (-15 -3480 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -1493 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -1513 ((-112) |#4| |#5|)) (-15 -1513 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3364 ((-641 |#5|) |#4| |#5|)) (-15 -1904 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|))) -((-1817 (((-112) $ $) NIL)) (-4352 (((-1208) $) 13)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3877 (((-1129) $) 10)) (-1831 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1068) (-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4352 ((-1208) $))))) (T -1068)) -((-3877 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068))))) -(-13 (-1077) (-10 -8 (-15 -3877 ((-1129) $)) (-15 -4352 ((-1208) $)))) -((-1817 (((-112) $ $) NIL)) (-1316 (((-1170) $) 8)) (-2723 (((-1152) $) 17)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 14))) -(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -1316 ((-1170) $)))) (-1170)) (T -1069)) -((-1316 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2)))) -(-13 (-1094) (-10 -8 (-15 -1316 ((-1170) $)))) -((-1817 (((-112) $ $) NIL)) (-3724 (($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|))) 34)) (-2111 (($ |#3| |#3|) 23) (($ |#3| |#3| (-641 (-1170))) 21)) (-4383 ((|#3| $) 13)) (-2347 (((-3 (-294 |#3|) "failed") $) 60)) (-2237 (((-294 |#3|) $) NIL)) (-2039 (((-641 (-1170)) $) 16)) (-4164 (((-889 |#1|) $) 11)) (-4372 ((|#3| $) 12)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1350 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-918)) 41)) (-1831 (((-859) $) 89) (($ (-294 |#3|)) 22)) (-1702 (((-112) $ $) 38))) -(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -2111 ($ |#3| |#3|)) (-15 -2111 ($ |#3| |#3| (-641 (-1170)))) (-15 -3724 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -4164 ((-889 |#1|) $)) (-15 -4372 (|#3| $)) (-15 -4383 (|#3| $)) (-15 -1350 (|#3| $ |#3| (-918))) (-15 -2039 ((-641 (-1170)) $)))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1070)) -((-2111 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-2111 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-3724 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *6)))) (-4164 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2))) (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2))))) (-4372 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-4383 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-1350 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-2039 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) -(-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -2111 ($ |#3| |#3|)) (-15 -2111 ($ |#3| |#3| (-641 (-1170)))) (-15 -3724 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -4164 ((-889 |#1|) $)) (-15 -4372 (|#3| $)) (-15 -4383 (|#3| $)) (-15 -1350 (|#3| $ |#3| (-918))) (-15 -2039 ((-641 (-1170)) $)))) -((-1817 (((-112) $ $) NIL)) (-3690 (($ (-641 (-1070 |#1| |#2| |#3|))) 14)) (-3016 (((-641 (-1070 |#1| |#2| |#3|)) $) 21)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1350 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-918)) 27)) (-1831 (((-859) $) 17)) (-1702 (((-112) $ $) 20))) -(((-1071 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -3690 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -3016 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -1350 (|#3| $ |#3| (-918))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1071)) -((-3690 (*1 *1 *2) (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1071 *3 *4 *5)))) (-3016 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-1350 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1071 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))))) -(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -3690 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -3016 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -1350 (|#3| $ |#3| (-918))))) -((-2803 (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 87) (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 91) (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 89))) -(((-1072 |#1| |#2|) (-10 -7 (-15 -2803 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -2803 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2803 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-641 (-1170))) (T -1072)) -((-2803 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *4)) (|:| -2467 (-641 (-949 *4)))))) (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))))) (-2803 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170)))))) -(-10 -7 (-15 -2803 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -2803 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2803 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)))) -((-3070 (((-418 |#3|) |#3|) 18))) -(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -3070 ((-418 |#3|) |#3|))) (-1235 (-407 (-564))) (-13 (-363) (-147) (-721 (-407 (-564)) |#1|)) (-1235 |#2|)) (T -1073)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5))))) -(-10 -7 (-15 -3070 ((-418 |#3|) |#3|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 142)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-1537 (($ $) NIL (|has| |#1| (-363)))) (-1932 (((-112) $) NIL (|has| |#1| (-363)))) (-3390 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) 125)) (-2713 ((|#1| $) 130)) (-3967 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3267 (((-768)) 46 (|has| |#1| (-368)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3624 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) 49)) (-2870 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-4206 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 115) (((-685 |#1|) (-685 $)) 110)) (-1988 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3733 (((-3 $ "failed") $) NIL)) (-3531 (((-918)) 84)) (-2900 (($) 50 (|has| |#1| (-368)))) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1830 (($) NIL (|has| |#1| (-349)))) (-4282 (((-112) $) NIL (|has| |#1| (-349)))) (-3340 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-2155 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-2949 (((-112) $) NIL)) (-3797 ((|#1| $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3774 ((|#2| $) 91 (|has| |#1| (-363)))) (-1811 (((-918) $) 150 (|has| |#1| (-368)))) (-1977 ((|#2| $) 64)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-2884 (($) NIL (|has| |#1| (-349)) CONST)) (-1468 (($ (-918)) 141 (|has| |#1| (-368)))) (-2780 (((-1114) $) NIL)) (-1426 (($) 132)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1520 (((-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564))))) NIL (|has| |#1| (-349)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3190 ((|#1| (-1259 $)) NIL) ((|#1|) 119)) (-1820 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-3534 (($ $) NIL (-4078 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4078 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-4027 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3019 ((|#2|) 80)) (-3297 (($) NIL (|has| |#1| (-349)))) (-2467 (((-1259 |#1|) $ (-1259 $)) 96) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 77) (((-685 |#1|) (-1259 $)) 92)) (-2511 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-349)))) (-1831 (((-859) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4018 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1349 ((|#2| $) 89)) (-2219 (((-768)) 82 T CONST)) (-3331 (((-1259 $)) 88)) (-3939 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1293 (($) 32 T CONST)) (-1300 (($) 19 T CONST)) (-3435 (($ $) NIL (-4078 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4078 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1702 (((-112) $ $) 69)) (-1823 (($ $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) 73) (($ $ $) NIL)) (-1797 (($ $ $) 71)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) -(((-1074 |#1| |#2| |#3|) (-721 |#1| |#2|) (-172) (-1235 |#1|) |#2|) (T -1074)) -NIL -(-721 |#1| |#2|) -((-3070 (((-418 |#3|) |#3|) 19))) -(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -3070 ((-418 |#3|) |#3|))) (-1235 (-407 (-949 (-564)))) (-13 (-363) (-147) (-721 (-407 (-949 (-564))) |#1|)) (-1235 |#2|)) (T -1075)) -((-3070 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-949 (-564))))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-949 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5))))) -(-10 -7 (-15 -3070 ((-418 |#3|) |#3|))) -((-1817 (((-112) $ $) NIL)) (-1925 (($ $ $) 16)) (-3375 (($ $ $) 17)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3522 (($) 6)) (-2511 (((-1170) $) 20)) (-1831 (((-859) $) 13)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 15)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 9))) -(((-1076) (-13 (-847) (-612 (-1170)) (-10 -8 (-15 -3522 ($))))) (T -1076)) -((-3522 (*1 *1) (-5 *1 (-1076)))) -(-13 (-847) (-612 (-1170)) (-10 -8 (-15 -3522 ($)))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1702 (((-112) $ $) 6))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1106) . T) ((-1094) . T)) +((-3624 (($ $) 17)) (-2362 (($ $) 25)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 54)) (-2019 (($ $) 27)) (-3399 (($ $) 12)) (-1421 (($ $) 43)) (-3172 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) 36)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-3179 (((-767)) 9)) (-4381 (($ $) 44))) +(((-1053 |#1|) (-10 -8 (-15 -2362 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -1421 (|#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| (-564))) (-15 -3172 ((-225) |#1|)) (-15 -3172 ((-379) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| |#1|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-1054)) (T -1053)) +((-3179 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054))))) +(-10 -8 (-15 -2362 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -1421 (|#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -3466 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| (-564))) (-15 -3172 ((-225) |#1|)) (-15 -3172 ((-379) |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| |#1|)) (-15 -3179 ((-767))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1625 (((-564) $) 90)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-3624 (($ $) 88)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-2387 (($ $) 98)) (-3547 (((-112) $ $) 60)) (-3085 (((-564) $) 115)) (-4157 (($) 17 T CONST)) (-2362 (($ $) 87)) (-3032 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-1781 (((-564) $) 104) (((-407 (-564)) $) 101)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-4229 (((-112) $) 72)) (-2786 (((-112) $) 113)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 97)) (-2019 (($ $) 93)) (-2783 (((-112) $) 114)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1501 (($ $ $) 112)) (-2622 (($ $ $) 111)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-3399 (($ $) 89)) (-1421 (($ $) 91)) (-2375 (((-418 $) $) 75)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3172 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-3179 (((-767)) 28 T CONST)) (-4381 (($ $) 92)) (-4024 (((-112) $ $) 40)) (-3598 (($ $) 116)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2977 (((-112) $ $) 109)) (-2953 (((-112) $ $) 108)) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 110)) (-2942 (((-112) $ $) 107)) (-3034 (($ $ $) 66)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +(((-1054) (-140)) (T -1054)) +((-3598 (*1 *1 *1) (-4 *1 (-1054))) (-2019 (*1 *1 *1) (-4 *1 (-1054))) (-4381 (*1 *1 *1) (-4 *1 (-1054))) (-1421 (*1 *1 *1) (-4 *1 (-1054))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-564)))) (-3399 (*1 *1 *1) (-4 *1 (-1054))) (-3624 (*1 *1 *1) (-4 *1 (-1054))) (-2362 (*1 *1 *1) (-4 *1 (-1054)))) +(-13 (-363) (-844) (-1018) (-1034 (-564)) (-1034 (-407 (-564))) (-998) (-612 (-888 (-379))) (-882 (-379)) (-147) (-10 -8 (-15 -2019 ($ $)) (-15 -4381 ($ $)) (-15 -1421 ($ $)) (-15 -1625 ((-564) $)) (-15 -3399 ($ $)) (-15 -3624 ($ $)) (-15 -2362 ($ $)) (-15 -3598 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1034 (-407 (-564))) . T) ((-1034 (-564)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) |#2| $) 26)) (-1959 ((|#1| $) 10)) (-3085 (((-564) |#2| $) 114)) (-1627 (((-3 $ "failed") |#2| (-917)) 75)) (-4250 ((|#1| $) 31)) (-2034 ((|#1| |#2| $ |#1|) 40)) (-2346 (($ $) 28)) (-2689 (((-3 |#2| "failed") |#2| $) 110)) (-2786 (((-112) |#2| $) NIL)) (-2783 (((-112) |#2| $) NIL)) (-2463 (((-112) |#2| $) 27)) (-3532 ((|#1| $) 115)) (-4237 ((|#1| $) 30)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2400 ((|#2| $) 102)) (-2322 (((-858) $) 94)) (-3564 ((|#1| |#2| $ |#1|) 41)) (-1372 (((-641 $) |#2|) 77)) (-2921 (((-112) $ $) 97))) +(((-1055 |#1| |#2|) (-13 (-1062 |#1| |#2|) (-10 -8 (-15 -4237 (|#1| $)) (-15 -4250 (|#1| $)) (-15 -1959 (|#1| $)) (-15 -3532 (|#1| $)) (-15 -2346 ($ $)) (-15 -2463 ((-112) |#2| $)) (-15 -2034 (|#1| |#2| $ |#1|)))) (-13 (-844) (-363)) (-1235 |#1|)) (T -1055)) +((-2034 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-4237 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-4250 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-1959 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-3532 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-2346 (*1 *1 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-2463 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) (-4 *3 (-1235 *4))))) +(-13 (-1062 |#1| |#2|) (-10 -8 (-15 -4237 (|#1| $)) (-15 -4250 (|#1| $)) (-15 -1959 (|#1| $)) (-15 -3532 (|#1| $)) (-15 -2346 ($ $)) (-15 -2463 ((-112) |#2| $)) (-15 -2034 (|#1| |#2| $ |#1|)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2842 (($ $ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1472 (($ $ $ $) NIL)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-3085 (((-564) $) NIL)) (-2308 (($ $ $) NIL)) (-4157 (($) NIL T CONST)) (-1585 (($ (-1170)) 10) (($ (-564)) 7)) (-3032 (((-3 (-564) "failed") $) NIL)) (-1781 (((-564) $) NIL)) (-2574 (($ $ $) NIL)) (-2750 (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL)) (-2446 (((-112) $) NIL)) (-2569 (((-407 (-564)) $) NIL)) (-3860 (($) NIL) (($ $) NIL)) (-2552 (($ $ $) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-3253 (($ $ $) NIL)) (-2786 (((-112) $) NIL)) (-3808 (($ $ $) NIL)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-1828 (((-112) $) NIL)) (-3415 (((-112) $) NIL)) (-1620 (((-3 $ "failed") $) NIL)) (-2783 (((-112) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2937 (($ $ $ $) NIL)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1605 (($ $) NIL)) (-1750 (($ $) NIL)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-3855 (($ $ $) NIL)) (-3346 (($) NIL T CONST)) (-1830 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4312 (($ $) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1333 (((-112) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-1343 (($ $ (-767)) NIL) (($ $) NIL)) (-4122 (($ $) NIL)) (-3772 (($ $) NIL)) (-3172 (((-564) $) 16) (((-536) $) NIL) (((-888 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1170)) 9)) (-2322 (((-858) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-3179 (((-767)) NIL T CONST)) (-3279 (((-112) $ $) NIL)) (-2994 (($ $ $) NIL)) (-2610 (($) NIL)) (-4024 (((-112) $ $) NIL)) (-2885 (($ $ $ $) NIL)) (-3598 (($ $) NIL)) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3021 (($ $) 22) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-1056) (-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -1585 ($ (-1170))) (-15 -1585 ($ (-564)))))) (T -1056)) +((-1585 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1056)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1056))))) +(-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -1585 ($ (-1170))) (-15 -1585 ($ (-564))))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-2246 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3310 (($) 9)) (-3750 (((-52) $ (-1170) (-52)) NIL)) (-2642 (($ $) 32)) (-4153 (($ $) 30)) (-3377 (($ $) 29)) (-3682 (($ $) 31)) (-2846 (($ $) 35)) (-2199 (($ $) 36)) (-2650 (($ $) 28)) (-3782 (($ $) 33)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) 27 (|has| $ (-6 -4406)))) (-2227 (((-3 (-52) "failed") (-1170) $) 43)) (-4157 (($) NIL T CONST)) (-1898 (($) 7)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-3175 (($ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) 53 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-3 (-52) "failed") (-1170) $) NIL)) (-3628 (($ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406)))) (-2867 (((-3 (-1152) "failed") $ (-1152) (-564)) 74)) (-1466 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4407)))) (-1407 (((-52) $ (-1170)) NIL)) (-3534 (((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-1170) $) NIL (|has| (-1170) (-846)))) (-1834 (((-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) 38 (|has| $ (-6 -4406))) (((-641 (-52)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-1785 (((-1170) $) NIL (|has| (-1170) (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-2843 (((-641 (-1170)) $) NIL)) (-2237 (((-112) (-1170) $) NIL)) (-1340 (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL)) (-3861 (($ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) 46)) (-3487 (((-641 (-1170)) $) NIL)) (-2550 (((-112) (-1170) $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-1903 (((-379) $ (-1170)) 52)) (-3525 (((-641 (-1152)) $ (-1152)) 76)) (-1995 (((-52) $) NIL (|has| (-1170) (-846)))) (-3393 (((-3 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) "failed") (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL)) (-2981 (($ $ (-52)) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL (-12 (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-309 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094))))) (-4324 (((-641 (-52)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 (((-52) $ (-1170)) NIL) (((-52) $ (-1170) (-52)) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-3336 (($ $ (-1170)) 54)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-52) (-1094)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) 40)) (-3533 (($ $ $) 41)) (-2322 (((-858) $) NIL (-2789 (|has| (-52) (-611 (-858))) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-611 (-858)))))) (-1604 (($ $ (-1170) (-379)) 50)) (-2078 (($ $ (-1170) (-379)) 51)) (-1717 (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 (-1170)) (|:| -2511 (-52)))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-52) (-1094)) (|has| (-2 (|:| -3076 (-1170)) (|:| -2511 (-52))) (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1057) (-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -3533 ($ $ $)) (-15 -1898 ($)) (-15 -2650 ($ $)) (-15 -3377 ($ $)) (-15 -4153 ($ $)) (-15 -3682 ($ $)) (-15 -3782 ($ $)) (-15 -2642 ($ $)) (-15 -2846 ($ $)) (-15 -2199 ($ $)) (-15 -1604 ($ $ (-1170) (-379))) (-15 -2078 ($ $ (-1170) (-379))) (-15 -1903 ((-379) $ (-1170))) (-15 -3525 ((-641 (-1152)) $ (-1152))) (-15 -3336 ($ $ (-1170))) (-15 -3310 ($)) (-15 -2867 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4406)))) (T -1057)) +((-3533 (*1 *1 *1 *1) (-5 *1 (-1057))) (-1898 (*1 *1) (-5 *1 (-1057))) (-2650 (*1 *1 *1) (-5 *1 (-1057))) (-3377 (*1 *1 *1) (-5 *1 (-1057))) (-4153 (*1 *1 *1) (-5 *1 (-1057))) (-3682 (*1 *1 *1) (-5 *1 (-1057))) (-3782 (*1 *1 *1) (-5 *1 (-1057))) (-2642 (*1 *1 *1) (-5 *1 (-1057))) (-2846 (*1 *1 *1) (-5 *1 (-1057))) (-2199 (*1 *1 *1) (-5 *1 (-1057))) (-1604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-1903 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1057)))) (-3525 (*1 *2 *1 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1057)) (-5 *3 (-1152)))) (-3336 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))) (-3310 (*1 *1) (-5 *1 (-1057))) (-2867 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1057))))) +(-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -3533 ($ $ $)) (-15 -1898 ($)) (-15 -2650 ($ $)) (-15 -3377 ($ $)) (-15 -4153 ($ $)) (-15 -3682 ($ $)) (-15 -3782 ($ $)) (-15 -2642 ($ $)) (-15 -2846 ($ $)) (-15 -2199 ($ $)) (-15 -1604 ($ $ (-1170) (-379))) (-15 -2078 ($ $ (-1170) (-379))) (-15 -1903 ((-379) $ (-1170))) (-15 -3525 ((-641 (-1152)) $ (-1152))) (-15 -3336 ($ $ (-1170))) (-15 -3310 ($)) (-15 -2867 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4406))) +((-3284 (($ $) 46)) (-3577 (((-112) $ $) 80)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-564)))) 248) (((-3 $ "failed") (-948 (-564))) 247) (((-3 $ "failed") (-948 |#2|)) 250)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-948 (-407 (-564)))) 236) (($ (-948 (-564))) 232) (($ (-948 |#2|)) 252)) (-2710 (($ $) NIL) (($ $ |#4|) 44)) (-4203 (((-112) $ $) 126) (((-112) $ (-641 $)) 130)) (-3683 (((-112) $) 60)) (-1726 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 120)) (-1522 (($ $) 155)) (-1799 (($ $) 151)) (-4348 (($ $) 150)) (-4193 (($ $ $) 85) (($ $ $ |#4|) 90)) (-1563 (($ $ $) 88) (($ $ $ |#4|) 92)) (-1675 (((-112) $ $) 138) (((-112) $ (-641 $)) 139)) (-3691 ((|#4| $) 32)) (-3082 (($ $ $) 123)) (-4214 (((-112) $) 59)) (-2121 (((-767) $) 35)) (-3581 (($ $) 169)) (-3531 (($ $) 166)) (-2354 (((-641 $) $) 72)) (-4375 (($ $) 62)) (-1395 (($ $) 162)) (-2474 (((-641 $) $) 69)) (-3586 (($ $) 64)) (-2686 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1575 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2880 (-767))) $ $) 125)) (-3801 (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $) 121) (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $ |#4|) 122)) (-3156 (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $) 116) (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $ |#4|) 118)) (-1789 (($ $ $) 95) (($ $ $ |#4|) 103)) (-4083 (($ $ $) 96) (($ $ $ |#4|) 104)) (-2164 (((-641 $) $) 54)) (-3250 (((-112) $ $) 135) (((-112) $ (-641 $)) 136)) (-2093 (($ $ $) 111)) (-3346 (($ $) 37)) (-3288 (((-112) $ $) 78)) (-3932 (((-112) $ $) 131) (((-112) $ (-641 $)) 133)) (-4340 (($ $ $) 109)) (-3654 (($ $) 41)) (-3235 ((|#2| |#2| $) 159) (($ (-641 $)) NIL) (($ $ $) NIL)) (-3813 (($ $ |#2|) NIL) (($ $ $) 148)) (-3432 (($ $ |#2|) 143) (($ $ $) 146)) (-2191 (($ $) 49)) (-2554 (($ $) 55)) (-3172 (((-888 (-379)) $) NIL) (((-888 (-564)) $) NIL) (((-536) $) NIL) (($ (-948 (-407 (-564)))) 238) (($ (-948 (-564))) 234) (($ (-948 |#2|)) 249) (((-1152) $) 277) (((-948 |#2|) $) 179)) (-2322 (((-858) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-948 |#2|) $) 180) (($ (-407 (-564))) NIL) (($ $) NIL)) (-4132 (((-3 (-112) "failed") $ $) 77))) +(((-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2322 (|#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3235 (|#1| (-641 |#1|))) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 ((-948 |#2|) |#1|)) (-15 -3172 ((-948 |#2|) |#1|)) (-15 -3172 ((-1152) |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3531 (|#1| |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -3235 (|#2| |#2| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3432 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1| |#2|)) (-15 -3432 (|#1| |#1| |#2|)) (-15 -1799 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -3172 (|#1| (-948 |#2|))) (-15 -1781 (|#1| (-948 |#2|))) (-15 -3032 ((-3 |#1| "failed") (-948 |#2|))) (-15 -3172 (|#1| (-948 (-564)))) (-15 -1781 (|#1| (-948 (-564)))) (-15 -3032 ((-3 |#1| "failed") (-948 (-564)))) (-15 -3172 (|#1| (-948 (-407 (-564))))) (-15 -1781 (|#1| (-948 (-407 (-564))))) (-15 -3032 ((-3 |#1| "failed") (-948 (-407 (-564))))) (-15 -2093 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#1|)) (-15 -1575 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2880 (-767))) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -1726 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3801 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1| |#4|)) (-15 -3801 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3156 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2598 |#1|)) |#1| |#1| |#4|)) (-15 -3156 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -4083 (|#1| |#1| |#1| |#4|)) (-15 -1789 (|#1| |#1| |#1| |#4|)) (-15 -4083 (|#1| |#1| |#1|)) (-15 -1789 (|#1| |#1| |#1|)) (-15 -1563 (|#1| |#1| |#1| |#4|)) (-15 -4193 (|#1| |#1| |#1| |#4|)) (-15 -1563 (|#1| |#1| |#1|)) (-15 -4193 (|#1| |#1| |#1|)) (-15 -1675 ((-112) |#1| (-641 |#1|))) (-15 -1675 ((-112) |#1| |#1|)) (-15 -3250 ((-112) |#1| (-641 |#1|))) (-15 -3250 ((-112) |#1| |#1|)) (-15 -3932 ((-112) |#1| (-641 |#1|))) (-15 -3932 ((-112) |#1| |#1|)) (-15 -4203 ((-112) |#1| (-641 |#1|))) (-15 -4203 ((-112) |#1| |#1|)) (-15 -3577 ((-112) |#1| |#1|)) (-15 -3288 ((-112) |#1| |#1|)) (-15 -4132 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2354 ((-641 |#1|) |#1|)) (-15 -2474 ((-641 |#1|) |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 -3683 ((-112) |#1|)) (-15 -4214 ((-112) |#1|)) (-15 -2710 (|#1| |#1| |#4|)) (-15 -2686 (|#1| |#1| |#4|)) (-15 -2554 (|#1| |#1|)) (-15 -2164 ((-641 |#1|) |#1|)) (-15 -2191 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3654 (|#1| |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -2121 ((-767) |#1|)) (-15 -3691 (|#4| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -2322 (|#1| |#4|)) (-15 -3032 ((-3 |#4| "failed") |#1|)) (-15 -1781 (|#4| |#1|)) (-15 -2686 (|#2| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-1059 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -1058)) +NIL +(-10 -8 (-15 -2322 (|#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3235 (|#1| (-641 |#1|))) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 ((-948 |#2|) |#1|)) (-15 -3172 ((-948 |#2|) |#1|)) (-15 -3172 ((-1152) |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3531 (|#1| |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -3235 (|#2| |#2| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3432 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1| |#2|)) (-15 -3432 (|#1| |#1| |#2|)) (-15 -1799 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -3172 (|#1| (-948 |#2|))) (-15 -1781 (|#1| (-948 |#2|))) (-15 -3032 ((-3 |#1| "failed") (-948 |#2|))) (-15 -3172 (|#1| (-948 (-564)))) (-15 -1781 (|#1| (-948 (-564)))) (-15 -3032 ((-3 |#1| "failed") (-948 (-564)))) (-15 -3172 (|#1| (-948 (-407 (-564))))) (-15 -1781 (|#1| (-948 (-407 (-564))))) (-15 -3032 ((-3 |#1| "failed") (-948 (-407 (-564))))) (-15 -2093 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#1|)) (-15 -1575 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2880 (-767))) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -1726 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3801 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1| |#4|)) (-15 -3801 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3156 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2598 |#1|)) |#1| |#1| |#4|)) (-15 -3156 ((-2 (|:| -3139 |#1|) (|:| |gap| (-767)) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -4083 (|#1| |#1| |#1| |#4|)) (-15 -1789 (|#1| |#1| |#1| |#4|)) (-15 -4083 (|#1| |#1| |#1|)) (-15 -1789 (|#1| |#1| |#1|)) (-15 -1563 (|#1| |#1| |#1| |#4|)) (-15 -4193 (|#1| |#1| |#1| |#4|)) (-15 -1563 (|#1| |#1| |#1|)) (-15 -4193 (|#1| |#1| |#1|)) (-15 -1675 ((-112) |#1| (-641 |#1|))) (-15 -1675 ((-112) |#1| |#1|)) (-15 -3250 ((-112) |#1| (-641 |#1|))) (-15 -3250 ((-112) |#1| |#1|)) (-15 -3932 ((-112) |#1| (-641 |#1|))) (-15 -3932 ((-112) |#1| |#1|)) (-15 -4203 ((-112) |#1| (-641 |#1|))) (-15 -4203 ((-112) |#1| |#1|)) (-15 -3577 ((-112) |#1| |#1|)) (-15 -3288 ((-112) |#1| |#1|)) (-15 -4132 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2354 ((-641 |#1|) |#1|)) (-15 -2474 ((-641 |#1|) |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 -3683 ((-112) |#1|)) (-15 -4214 ((-112) |#1|)) (-15 -2710 (|#1| |#1| |#4|)) (-15 -2686 (|#1| |#1| |#4|)) (-15 -2554 (|#1| |#1|)) (-15 -2164 ((-641 |#1|) |#1|)) (-15 -2191 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3654 (|#1| |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -2121 ((-767) |#1|)) (-15 -3691 (|#4| |#1|)) (-15 -3172 ((-536) |#1|)) (-15 -3172 ((-888 (-564)) |#1|)) (-15 -3172 ((-888 (-379)) |#1|)) (-15 -2322 (|#1| |#4|)) (-15 -3032 ((-3 |#4| "failed") |#1|)) (-15 -1781 (|#4| |#1|)) (-15 -2686 (|#2| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 |#3|) $) 110)) (-2340 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-3622 (($ $) 88 (|has| |#1| (-556)))) (-3247 (((-112) $) 90 (|has| |#1| (-556)))) (-2669 (((-767) $) 112) (((-767) $ (-641 |#3|)) 111)) (-3284 (($ $) 271)) (-3577 (((-112) $ $) 257)) (-1862 (((-3 $ "failed") $ $) 19)) (-3545 (($ $ $) 216 (|has| |#1| (-556)))) (-3402 (((-641 $) $ $) 211 (|has| |#1| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-905)))) (-3453 (($ $) 98 (|has| |#1| (-452)))) (-2657 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-905)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-948 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (((-3 $ "failed") (-948 (-564))) 228 (-2789 (-12 (-2329 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (((-3 $ "failed") (-948 |#1|)) 225 (-2789 (-12 (-2329 (|has| |#1| (-38 (-407 (-564))))) (-2329 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-2329 (|has| |#1| (-545))) (-2329 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-2329 (|has| |#1| (-988 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-1781 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1034 (-564)))) ((|#3| $) 137) (($ (-948 (-407 (-564)))) 230 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-948 (-564))) 227 (-2789 (-12 (-2329 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-948 |#1|)) 224 (-2789 (-12 (-2329 (|has| |#1| (-38 (-407 (-564))))) (-2329 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-2329 (|has| |#1| (-545))) (-2329 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-2329 (|has| |#1| (-988 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2595 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-556)))) (-2710 (($ $) 154) (($ $ |#3|) 266)) (-2750 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-4203 (((-112) $ $) 256) (((-112) $ (-641 $)) 255)) (-2689 (((-3 $ "failed") $) 33)) (-3683 (((-112) $) 264)) (-1726 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 236)) (-1522 (($ $) 205 (|has| |#1| (-452)))) (-2520 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2697 (((-641 $) $) 109)) (-4229 (((-112) $) 96 (|has| |#1| (-905)))) (-1799 (($ $) 221 (|has| |#1| (-556)))) (-4348 (($ $) 222 (|has| |#1| (-556)))) (-4193 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1563 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2050 (($ $ |#1| |#2| $) 172)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 83 (-12 (|has| |#3| (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-1828 (((-112) $) 31)) (-4137 (((-767) $) 169)) (-1675 (((-112) $ $) 250) (((-112) $ (-641 $)) 249)) (-1611 (($ $ $ $ $) 207 (|has| |#1| (-556)))) (-3691 ((|#3| $) 275)) (-2519 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-2071 (((-641 $) $) 126)) (-1492 (((-112) $) 152)) (-2507 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-641 |#3|) (-641 (-767))) 118)) (-3082 (($ $ $) 235)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#3|) 120)) (-4214 (((-112) $) 265)) (-3386 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-641 (-767)) $ (-641 |#3|)) 121)) (-1501 (($ $ $) 79 (|has| |#1| (-846)))) (-2121 (((-767) $) 274)) (-2622 (($ $ $) 78 (|has| |#1| (-846)))) (-2168 (($ (-1 |#2| |#2|) $) 171)) (-3123 (($ (-1 |#1| |#1|) $) 151)) (-3878 (((-3 |#3| "failed") $) 123)) (-3581 (($ $) 202 (|has| |#1| (-452)))) (-3531 (($ $) 203 (|has| |#1| (-452)))) (-2354 (((-641 $) $) 260)) (-4375 (($ $) 263)) (-1395 (($ $) 204 (|has| |#1| (-452)))) (-2474 (((-641 $) $) 261)) (-3586 (($ $) 262)) (-2674 (($ $) 149)) (-2686 ((|#1| $) 148) (($ $ |#3|) 267)) (-3202 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1575 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2880 (-767))) $ $) 234)) (-3801 (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $) 238) (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $ |#3|) 237)) (-3156 (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $) 240) (((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $ |#3|) 239)) (-1789 (($ $ $) 244) (($ $ $ |#3|) 242)) (-4083 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1418 (((-1152) $) 9)) (-1677 (($ $ $) 210 (|has| |#1| (-556)))) (-2164 (((-641 $) $) 269)) (-1888 (((-3 (-641 $) "failed") $) 114)) (-3081 (((-3 (-641 $) "failed") $) 115)) (-1580 (((-3 (-2 (|:| |var| |#3|) (|:| -3866 (-767))) "failed") $) 113)) (-3250 (((-112) $ $) 252) (((-112) $ (-641 $)) 251)) (-2093 (($ $ $) 232)) (-3346 (($ $) 273)) (-3288 (((-112) $ $) 258)) (-3932 (((-112) $ $) 254) (((-112) $ (-641 $)) 253)) (-4340 (($ $ $) 233)) (-3654 (($ $) 272)) (-3840 (((-1114) $) 10)) (-3601 (((-2 (|:| -3235 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-556)))) (-2801 (((-2 (|:| -3235 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-556)))) (-2649 (((-112) $) 166)) (-2662 ((|#1| $) 167)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-3235 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-905)))) (-2375 (((-418 $) $) 99 (|has| |#1| (-905)))) (-1308 (((-2 (|:| -3235 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-2526 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3813 (($ $ |#1|) 219 (|has| |#1| (-556))) (($ $ $) 217 (|has| |#1| (-556)))) (-3432 (($ $ |#1|) 220 (|has| |#1| (-556))) (($ $ $) 218 (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-3392 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-1343 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-641 |#3|) (-641 (-767))) 39)) (-2073 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-641 (-767)) $ (-641 |#3|)) 129)) (-2191 (($ $) 270)) (-2554 (($ $) 268)) (-3172 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 81 (-12 (|has| |#3| (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-948 (-407 (-564)))) 229 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-948 (-564))) 226 (-2789 (-12 (-2329 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-948 |#1|)) 223 (|has| |#3| (-612 (-1170)))) (((-1152) $) 201 (-12 (|has| |#1| (-1034 (-564))) (|has| |#3| (-612 (-1170))))) (((-948 |#1|) $) 200 (|has| |#3| (-612 (-1170))))) (-2290 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 104 (-2342 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-948 |#1|) $) 199 (|has| |#3| (-612 (-1170)))) (($ (-407 (-564))) 72 (-2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) 168)) (-3467 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-641 |#3|) (-641 (-767))) 127)) (-2409 (((-3 $ "failed") $) 73 (-2789 (-2342 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) 28 T CONST)) (-4310 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-4024 (((-112) $ $) 89 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-4132 (((-3 (-112) "failed") $ $) 259)) (-2403 (($) 30 T CONST)) (-2850 (($ $ $ $ (-767)) 208 (|has| |#1| (-556)))) (-2470 (($ $ $ (-767)) 209 (|has| |#1| (-556)))) (-3917 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-641 |#3|) (-641 (-767))) 35)) (-2977 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3034 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1059 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -1059)) +((-3691 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-3346 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3654 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2191 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2164 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2554 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2686 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2710 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4375 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2474 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2354 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-4132 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3288 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3577 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4203 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-3932 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3932 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3250 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1675 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1675 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-4193 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1563 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4193 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1563 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1789 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4083 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1789 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-4083 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2598 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3156 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2598 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-3801 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3801 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-1726 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1575 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2880 (-767)))) (-4 *1 (-1059 *3 *4 *5)))) (-4340 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2093 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-3032 (*1 *1 *2) (|partial| -2789 (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-1781 (*1 *1 *2) (-2789 (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3172 (*1 *1 *2) (-2789 (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3032 (*1 *1 *2) (|partial| -2789 (-12 (-5 *2 (-948 *3)) (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-2329 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2329 (-4 *3 (-545))) (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2329 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-1781 (*1 *1 *2) (-2789 (-12 (-5 *2 (-948 *3)) (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-2329 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2329 (-4 *3 (-545))) (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2329 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *5 (-612 (-1170))) (-4 *4 (-789)) (-4 *5 (-846)))) (-4348 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-1799 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3432 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3432 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3545 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-1308 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3235 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2801 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3235 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3601 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3235 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2595 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3402 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-2470 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))) (-2850 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))) (-1611 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3235 (*1 *2 *2 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3531 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3581 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452))))) +(-13 (-945 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3691 (|t#3| $)) (-15 -2121 ((-767) $)) (-15 -3346 ($ $)) (-15 -3654 ($ $)) (-15 -3284 ($ $)) (-15 -2191 ($ $)) (-15 -2164 ((-641 $) $)) (-15 -2554 ($ $)) (-15 -2686 ($ $ |t#3|)) (-15 -2710 ($ $ |t#3|)) (-15 -4214 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -4375 ($ $)) (-15 -3586 ($ $)) (-15 -2474 ((-641 $) $)) (-15 -2354 ((-641 $) $)) (-15 -4132 ((-3 (-112) "failed") $ $)) (-15 -3288 ((-112) $ $)) (-15 -3577 ((-112) $ $)) (-15 -4203 ((-112) $ $)) (-15 -4203 ((-112) $ (-641 $))) (-15 -3932 ((-112) $ $)) (-15 -3932 ((-112) $ (-641 $))) (-15 -3250 ((-112) $ $)) (-15 -3250 ((-112) $ (-641 $))) (-15 -1675 ((-112) $ $)) (-15 -1675 ((-112) $ (-641 $))) (-15 -4193 ($ $ $)) (-15 -1563 ($ $ $)) (-15 -4193 ($ $ $ |t#3|)) (-15 -1563 ($ $ $ |t#3|)) (-15 -1789 ($ $ $)) (-15 -4083 ($ $ $)) (-15 -1789 ($ $ $ |t#3|)) (-15 -4083 ($ $ $ |t#3|)) (-15 -3156 ((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $)) (-15 -3156 ((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2598 $)) $ $ |t#3|)) (-15 -3801 ((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -3801 ((-2 (|:| -3139 $) (|:| |gap| (-767)) (|:| -2666 $) (|:| -2598 $)) $ $ |t#3|)) (-15 -1726 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -3082 ($ $ $)) (-15 -1575 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2880 (-767))) $ $)) (-15 -4340 ($ $ $)) (-15 -2093 ($ $ $)) (IF (|has| |t#3| (-612 (-1170))) (PROGN (-6 (-611 (-948 |t#1|))) (-6 (-612 (-948 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3032 ((-3 $ "failed") (-948 (-407 (-564))))) (-15 -1781 ($ (-948 (-407 (-564))))) (-15 -3172 ($ (-948 (-407 (-564))))) (-15 -3032 ((-3 $ "failed") (-948 (-564)))) (-15 -1781 ($ (-948 (-564)))) (-15 -3172 ($ (-948 (-564)))) (IF (|has| |t#1| (-988 (-564))) |%noBranch| (PROGN (-15 -3032 ((-3 $ "failed") (-948 |t#1|))) (-15 -1781 ($ (-948 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -3032 ((-3 $ "failed") (-948 (-564)))) (-15 -1781 ($ (-948 (-564)))) (-15 -3172 ($ (-948 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -3032 ((-3 $ "failed") (-948 |t#1|))) (-15 -1781 ($ (-948 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -3032 ((-3 $ "failed") (-948 |t#1|))) (-15 -1781 ($ (-948 |t#1|)))))) (-15 -3172 ($ (-948 |t#1|))) (IF (|has| |t#1| (-1034 (-564))) (-6 (-612 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -4348 ($ $)) (-15 -1799 ($ $)) (-15 -3432 ($ $ |t#1|)) (-15 -3813 ($ $ |t#1|)) (-15 -3432 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3545 ($ $ $)) (-15 -1308 ((-2 (|:| -3235 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2801 ((-2 (|:| -3235 $) (|:| |coef1| $)) $ $)) (-15 -3601 ((-2 (|:| -3235 $) (|:| |coef2| $)) $ $)) (-15 -2595 ($ $ $)) (-15 -3402 ((-641 $) $ $)) (-15 -1677 ($ $ $)) (-15 -2470 ($ $ $ (-767))) (-15 -2850 ($ $ $ $ (-767))) (-15 -1611 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3235 (|t#1| |t#1| $)) (-15 -1522 ($ $)) (-15 -1395 ($ $)) (-15 -3531 ($ $)) (-15 -3581 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-858)) . T) ((-611 (-948 |#1|)) |has| |#3| (-612 (-1170))) ((-172) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) ((-612 (-948 |#1|)) |has| |#3| (-612 (-1170))) ((-612 (-1152)) -12 (|has| |#1| (-1034 (-564))) (|has| |#3| (-612 (-1170)))) ((-290) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2789 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) ((-945 |#1| |#2| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-905))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3265 (((-641 (-1129)) $) 18)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-1129) $) 20)) (-2921 (((-112) $ $) NIL))) +(((-1060) (-13 (-1077) (-10 -8 (-15 -3265 ((-641 (-1129)) $)) (-15 -2433 ((-1129) $))))) (T -1060)) +((-3265 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1060)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1060))))) +(-13 (-1077) (-10 -8 (-15 -3265 ((-641 (-1129)) $)) (-15 -2433 ((-1129) $)))) +((-3264 (((-112) |#3| $) 15)) (-1627 (((-3 $ "failed") |#3| (-917)) 29)) (-2689 (((-3 |#3| "failed") |#3| $) 45)) (-2786 (((-112) |#3| $) 19)) (-2783 (((-112) |#3| $) 17))) +(((-1061 |#1| |#2| |#3|) (-10 -8 (-15 -1627 ((-3 |#1| "failed") |#3| (-917))) (-15 -2689 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2786 ((-112) |#3| |#1|)) (-15 -2783 ((-112) |#3| |#1|)) (-15 -3264 ((-112) |#3| |#1|))) (-1062 |#2| |#3|) (-13 (-844) (-363)) (-1235 |#2|)) (T -1061)) +NIL +(-10 -8 (-15 -1627 ((-3 |#1| "failed") |#3| (-917))) (-15 -2689 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2786 ((-112) |#3| |#1|)) (-15 -2783 ((-112) |#3| |#1|)) (-15 -3264 ((-112) |#3| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) |#2| $) 21)) (-3085 (((-564) |#2| $) 22)) (-1627 (((-3 $ "failed") |#2| (-917)) 15)) (-2034 ((|#1| |#2| $ |#1|) 13)) (-2689 (((-3 |#2| "failed") |#2| $) 18)) (-2786 (((-112) |#2| $) 19)) (-2783 (((-112) |#2| $) 20)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2400 ((|#2| $) 17)) (-2322 (((-858) $) 11)) (-3564 ((|#1| |#2| $ |#1|) 14)) (-1372 (((-641 $) |#2|) 16)) (-2921 (((-112) $ $) 6))) +(((-1062 |#1| |#2|) (-140) (-13 (-844) (-363)) (-1235 |t#1|)) (T -1062)) +((-3085 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-564)))) (-3264 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2783 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2786 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2689 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1235 *3)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1235 *3)))) (-1372 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) (-4 *1 (-1062 *4 *3)))) (-1627 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) (-4 *1 (-1062 *4 *2)) (-4 *2 (-1235 *4)))) (-3564 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1235 *2)))) (-2034 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1235 *2))))) +(-13 (-1094) (-10 -8 (-15 -3085 ((-564) |t#2| $)) (-15 -3264 ((-112) |t#2| $)) (-15 -2783 ((-112) |t#2| $)) (-15 -2786 ((-112) |t#2| $)) (-15 -2689 ((-3 |t#2| "failed") |t#2| $)) (-15 -2400 (|t#2| $)) (-15 -1372 ((-641 $) |t#2|)) (-15 -1627 ((-3 $ "failed") |t#2| (-917))) (-15 -3564 (|t#1| |t#2| $ |t#1|)) (-15 -2034 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2832 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-767)) 114)) (-4002 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767)) 63)) (-3502 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-767)) 100)) (-3438 (((-767) (-641 |#4|) (-641 |#5|)) 30)) (-1832 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767)) 65) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767) (-112)) 67)) (-1965 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 87)) (-3172 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) 92)) (-4013 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-112)) 62)) (-4018 (((-767) (-641 |#4|) (-641 |#5|)) 21))) +(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4018 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3438 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4013 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-112))) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2832 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-767))) (-15 -3172 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -3502 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1063)) +((-3502 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-2832 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2244 *11)))))) (-5 *6 (-767)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2244 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-1965 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-1965 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-1832 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1832 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1832 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) (-4002 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4002 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4018 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3438 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4013 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-112))) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2832 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-767))) (-15 -3172 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -3502 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-767)))) +((-4356 (((-112) |#5| $) 25)) (-3404 (((-112) |#5| $) 28)) (-3665 (((-112) |#5| $) 18) (((-112) $) 51)) (-1648 (((-641 $) |#5| $) NIL) (((-641 $) (-641 |#5|) $) 93) (((-641 $) (-641 |#5|) (-641 $)) 91) (((-641 $) |#5| (-641 $)) 94)) (-2941 (($ $ |#5|) NIL) (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 72) (((-641 $) (-641 |#5|) $) 74) (((-641 $) (-641 |#5|) (-641 $)) 76)) (-3126 (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 63) (((-641 $) (-641 |#5|) $) 68) (((-641 $) (-641 |#5|) (-641 $)) 70)) (-1801 (((-112) |#5| $) 31))) +(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2941 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -2941 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -2941 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -2941 ((-641 |#1|) |#5| |#1|)) (-15 -3126 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3126 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3126 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3126 ((-641 |#1|) |#5| |#1|)) (-15 -1648 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -1648 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -1648 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -1648 ((-641 |#1|) |#5| |#1|)) (-15 -3404 ((-112) |#5| |#1|)) (-15 -3665 ((-112) |#1|)) (-15 -1801 ((-112) |#5| |#1|)) (-15 -4356 ((-112) |#5| |#1|)) (-15 -3665 ((-112) |#5| |#1|)) (-15 -2941 (|#1| |#1| |#5|))) (-1065 |#2| |#3| |#4| |#5|) (-452) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1064)) +NIL +(-10 -8 (-15 -2941 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -2941 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -2941 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -2941 ((-641 |#1|) |#5| |#1|)) (-15 -3126 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3126 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3126 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3126 ((-641 |#1|) |#5| |#1|)) (-15 -1648 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -1648 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -1648 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -1648 ((-641 |#1|) |#5| |#1|)) (-15 -3404 ((-112) |#5| |#1|)) (-15 -3665 ((-112) |#1|)) (-15 -1801 ((-112) |#5| |#1|)) (-15 -4356 ((-112) |#5| |#1|)) (-15 -3665 ((-112) |#5| |#1|)) (-15 -2941 (|#1| |#1| |#5|))) +((-2310 (((-112) $ $) 7)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) 85)) (-1841 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-2534 (((-641 |#3|) $) 33)) (-1885 (((-112) $) 26)) (-3042 (((-112) $) 17 (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) 101) (((-112) $) 97)) (-4230 ((|#4| |#4| $) 92)) (-3453 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| $) 126)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) 27)) (-2318 (((-112) $ (-767)) 44)) (-2957 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-4157 (($) 45 T CONST)) (-2815 (((-112) $) 22 (|has| |#1| (-556)))) (-2924 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1362 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3300 (((-112) $) 25 (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1907 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 36)) (-1781 (($ (-641 |#4|)) 35)) (-2008 (((-3 $ "failed") $) 82)) (-4220 ((|#4| |#4| $) 89)) (-2027 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4194 ((|#4| |#4| $) 87)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) 105)) (-4356 (((-112) |#4| $) 136)) (-3404 (((-112) |#4| $) 133)) (-3665 (((-112) |#4| $) 137) (((-112) $) 134)) (-3534 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) 104) (((-112) $) 103)) (-3691 ((|#3| $) 34)) (-1751 (((-112) $ (-767)) 43)) (-1834 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 47)) (-3805 (((-641 |#3|) $) 32)) (-3460 (((-112) |#3| $) 31)) (-1681 (((-112) $ (-767)) 42)) (-1418 (((-1152) $) 9)) (-1307 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1677 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| |#4| $) 127)) (-3649 (((-3 |#4| "failed") $) 83)) (-2824 (((-641 $) |#4| $) 129)) (-2836 (((-3 (-112) (-641 $)) |#4| $) 132)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1648 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2987 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4022 (((-641 |#4|) $) 107)) (-3250 (((-112) |#4| $) 99) (((-112) $) 95)) (-2093 ((|#4| |#4| $) 90)) (-3288 (((-112) $ $) 110)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) 100) (((-112) $) 96)) (-4340 ((|#4| |#4| $) 91)) (-3840 (((-1114) $) 10)) (-1995 (((-3 |#4| "failed") $) 84)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4179 (((-3 $ "failed") $ |#4|) 78)) (-2941 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) 38)) (-3282 (((-112) $) 41)) (-2348 (($) 40)) (-2073 (((-767) $) 106)) (-3852 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-3772 (($ $) 39)) (-3172 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 60)) (-3311 (($ $ |#3|) 28)) (-2805 (($ $ |#3|) 30)) (-2631 (($ $) 88)) (-2029 (($ $ |#3|) 29)) (-2322 (((-858) $) 11) (((-641 |#4|) $) 37)) (-2390 (((-767) $) 76 (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3126 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2313 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) 81)) (-1801 (((-112) |#4| $) 135)) (-4363 (((-112) |#3| $) 80)) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 46 (|has| $ (-6 -4406))))) +(((-1065 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1065)) +((-3665 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4356 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1801 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3404 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2836 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2896 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2896 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2824 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1307 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1677 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3453 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1648 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1648 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3126 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3126 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3126 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3126 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-2987 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) (-2941 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2941 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-2941 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-2941 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *5 *6 *7 *8))))) +(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3665 ((-112) |t#4| $)) (-15 -4356 ((-112) |t#4| $)) (-15 -1801 ((-112) |t#4| $)) (-15 -3665 ((-112) $)) (-15 -3404 ((-112) |t#4| $)) (-15 -2836 ((-3 (-112) (-641 $)) |t#4| $)) (-15 -2896 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |t#4| $)) (-15 -2896 ((-112) |t#4| $)) (-15 -2824 ((-641 $) |t#4| $)) (-15 -1307 ((-3 |t#4| (-641 $)) |t#4| |t#4| $)) (-15 -1677 ((-641 (-2 (|:| |val| |t#4|) (|:| -2244 $))) |t#4| |t#4| $)) (-15 -3453 ((-641 (-2 (|:| |val| |t#4|) (|:| -2244 $))) |t#4| $)) (-15 -1648 ((-641 $) |t#4| $)) (-15 -1648 ((-641 $) (-641 |t#4|) $)) (-15 -1648 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -1648 ((-641 $) |t#4| (-641 $))) (-15 -3126 ((-641 $) |t#4| $)) (-15 -3126 ((-641 $) |t#4| (-641 $))) (-15 -3126 ((-641 $) (-641 |t#4|) $)) (-15 -3126 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -2987 ($ |t#4| $)) (-15 -2987 ($ (-641 |t#4|) $)) (-15 -2941 ((-641 $) |t#4| $)) (-15 -2941 ((-641 $) |t#4| (-641 $))) (-15 -2941 ((-641 $) (-641 |t#4|) $)) (-15 -2941 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -1841 ((-641 $) (-641 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-2967 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|) 87)) (-1344 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|) 129)) (-2357 (((-641 |#5|) |#4| |#5|) 75)) (-3397 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3737 (((-1264)) 37)) (-1880 (((-1264)) 26)) (-2193 (((-1264) (-1152) (-1152) (-1152)) 33)) (-2104 (((-1264) (-1152) (-1152) (-1152)) 22)) (-2192 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#4| |#4| |#5|) 109)) (-2745 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#3| (-112)) 120) (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4069 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|) 115))) +(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2104 ((-1264) (-1152) (-1152) (-1152))) (-15 -1880 ((-1264))) (-15 -2193 ((-1264) (-1152) (-1152) (-1152))) (-15 -3737 ((-1264))) (-15 -2192 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -2745 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2745 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#3| (-112))) (-15 -4069 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -1344 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -3397 ((-112) |#4| |#5|)) (-15 -3397 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -2357 ((-641 |#5|) |#4| |#5|)) (-15 -2967 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1066)) +((-2967 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2357 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3397 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3397 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1344 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4069 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2244 *9)))) (-5 *1 (-1066 *6 *7 *4 *8 *9)))) (-2745 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-2192 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3737 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2193 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-1880 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2104 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -2104 ((-1264) (-1152) (-1152) (-1152))) (-15 -1880 ((-1264))) (-15 -2193 ((-1264) (-1152) (-1152) (-1152))) (-15 -3737 ((-1264))) (-15 -2192 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -2745 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2745 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#3| (-112))) (-15 -4069 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -1344 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -3397 ((-112) |#4| |#5|)) (-15 -3397 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -2357 ((-641 |#5|) |#4| |#5|)) (-15 -2967 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|))) +((-2310 (((-112) $ $) NIL)) (-1767 (((-1208) $) 13)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4366 (((-1129) $) 10)) (-2322 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1067) (-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -1767 ((-1208) $))))) (T -1067)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1067)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1067))))) +(-13 (-1077) (-10 -8 (-15 -4366 ((-1129) $)) (-15 -1767 ((-1208) $)))) +((-3482 (((-112) $ $) 7))) +(((-1068) (-13 (-1209) (-10 -8 (-15 -3482 ((-112) $ $))))) (T -1068)) +((-3482 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1068))))) +(-13 (-1209) (-10 -8 (-15 -3482 ((-112) $ $)))) +((-2310 (((-112) $ $) NIL)) (-2420 (((-1170) $) 8)) (-1418 (((-1152) $) 17)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 14))) +(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -2420 ((-1170) $)))) (-1170)) (T -1069)) +((-2420 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2)))) +(-13 (-1094) (-10 -8 (-15 -2420 ((-1170) $)))) +((-2310 (((-112) $ $) NIL)) (-2792 (($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|))) 34)) (-1967 (($ |#3| |#3|) 23) (($ |#3| |#3| (-641 (-1170))) 21)) (-3725 ((|#3| $) 13)) (-3032 (((-3 (-294 |#3|) "failed") $) 60)) (-1781 (((-294 |#3|) $) NIL)) (-1879 (((-641 (-1170)) $) 16)) (-1541 (((-888 |#1|) $) 11)) (-3713 ((|#3| $) 12)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4353 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-917)) 41)) (-2322 (((-858) $) 89) (($ (-294 |#3|)) 22)) (-2921 (((-112) $ $) 38))) +(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -1967 ($ |#3| |#3|)) (-15 -1967 ($ |#3| |#3| (-641 (-1170)))) (-15 -2792 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -1541 ((-888 |#1|) $)) (-15 -3713 (|#3| $)) (-15 -3725 (|#3| $)) (-15 -4353 (|#3| $ |#3| (-917))) (-15 -1879 ((-641 (-1170)) $)))) (-1094) (-13 (-1045) (-882 |#1|) (-846) (-612 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-612 (-888 |#1|)))) (T -1070)) +((-1967 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))) (-1967 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) (-2792 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) (-4 *6 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) (-5 *1 (-1070 *4 *5 *6)))) (-1541 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 *2))) (-5 *2 (-888 *3)) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 *2))))) (-3713 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))))) (-3725 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))))) (-4353 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) (-1879 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))))) +(-13 (-1094) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -1967 ($ |#3| |#3|)) (-15 -1967 ($ |#3| |#3| (-641 (-1170)))) (-15 -2792 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -1541 ((-888 |#1|) $)) (-15 -3713 (|#3| $)) (-15 -3725 (|#3| $)) (-15 -4353 (|#3| $ |#3| (-917))) (-15 -1879 ((-641 (-1170)) $)))) +((-2310 (((-112) $ $) NIL)) (-2762 (($ (-641 (-1070 |#1| |#2| |#3|))) 14)) (-3298 (((-641 (-1070 |#1| |#2| |#3|)) $) 21)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-4353 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-917)) 27)) (-2322 (((-858) $) 17)) (-2921 (((-112) $ $) 20))) +(((-1071 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2762 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -3298 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4353 (|#3| $ |#3| (-917))))) (-1094) (-13 (-1045) (-882 |#1|) (-846) (-612 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-612 (-888 |#1|)))) (T -1071)) +((-2762 (*1 *1 *2) (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1071 *3 *4 *5)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))) (-4353 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) (-5 *1 (-1071 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4))))))) +(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2762 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -3298 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4353 (|#3| $ |#3| (-917))))) +((-2849 (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)) 87) (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|))) 91) (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112)) 89))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -2849 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -2849 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -2849 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-641 (-1170))) (T -1072)) +((-2849 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *4)) (|:| -3864 (-641 (-948 *4)))))) (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-948 *4))) (-14 *5 (-641 (-1170))))) (-2849 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170)))))) +(-10 -7 (-15 -2849 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -2849 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -2849 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)))) +((-2375 (((-418 |#3|) |#3|) 18))) +(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -2375 ((-418 |#3|) |#3|))) (-1235 (-407 (-564))) (-13 (-363) (-147) (-720 (-407 (-564)) |#1|)) (-1235 |#2|)) (T -1073)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -2375 ((-418 |#3|) |#3|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 142)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-3622 (($ $) NIL (|has| |#1| (-363)))) (-3247 (((-112) $) NIL (|has| |#1| (-363)))) (-2586 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) 125)) (-3770 ((|#1| $) 130)) (-3109 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-349)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1959 (((-767)) 46 (|has| |#1| (-368)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-3013 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) 49)) (-2243 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-3689 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 115) (((-685 |#1|) (-685 $)) 110)) (-3239 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-2689 (((-3 $ "failed") $) NIL)) (-3105 (((-917)) 84)) (-3860 (($) 50 (|has| |#1| (-368)))) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3422 (($) NIL (|has| |#1| (-349)))) (-3261 (((-112) $) NIL (|has| |#1| (-349)))) (-2180 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-3717 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-1828 (((-112) $) NIL)) (-2019 ((|#1| $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1790 ((|#2| $) 91 (|has| |#1| (-363)))) (-1368 (((-917) $) 150 (|has| |#1| (-368)))) (-3228 ((|#2| $) 64)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3346 (($) NIL (|has| |#1| (-349)) CONST)) (-1998 (($ (-917)) 141 (|has| |#1| (-368)))) (-3840 (((-1114) $) NIL)) (-4095 (($) 132)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3456 (((-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564))))) NIL (|has| |#1| (-349)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-3392 ((|#1| (-1259 $)) NIL) ((|#1|) 119)) (-3337 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-1343 (($ $) NIL (-2789 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-2789 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2516 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2400 ((|#2|) 80)) (-3107 (($) NIL (|has| |#1| (-349)))) (-3864 (((-1259 |#1|) $ (-1259 $)) 96) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 77) (((-685 |#1|) (-1259 $)) 92)) (-3172 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-349)))) (-2322 (((-858) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2409 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2117 ((|#2| $) 89)) (-3179 (((-767)) 82 T CONST)) (-3342 (((-1259 $)) 88)) (-4024 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2389 (($) 32 T CONST)) (-2403 (($) 19 T CONST)) (-3917 (($ $) NIL (-2789 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-2789 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2921 (((-112) $ $) 69)) (-3034 (($ $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) 73) (($ $ $) NIL)) (-3011 (($ $ $) 71)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) +(((-1074 |#1| |#2| |#3|) (-720 |#1| |#2|) (-172) (-1235 |#1|) |#2|) (T -1074)) +NIL +(-720 |#1| |#2|) +((-2375 (((-418 |#3|) |#3|) 19))) +(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -2375 ((-418 |#3|) |#3|))) (-1235 (-407 (-948 (-564)))) (-13 (-363) (-147) (-720 (-407 (-948 (-564))) |#1|)) (-1235 |#2|)) (T -1075)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-948 (-564))))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -2375 ((-418 |#3|) |#3|))) +((-2310 (((-112) $ $) NIL)) (-1501 (($ $ $) 16)) (-2622 (($ $ $) 17)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1380 (($) 6)) (-3172 (((-1170) $) 20)) (-2322 (((-858) $) 13)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 15)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 9))) +(((-1076) (-13 (-846) (-612 (-1170)) (-10 -8 (-15 -1380 ($))))) (T -1076)) +((-1380 (*1 *1) (-5 *1 (-1076)))) +(-13 (-846) (-612 (-1170)) (-10 -8 (-15 -1380 ($)))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-2921 (((-112) $ $) 6))) (((-1077) (-140)) (T -1077)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) -((-3695 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 38) ((|#1| |#1| (-1 (-112) |#1|)) 29)) (-2814 (((-1264)) 18)) (-1909 (((-641 |#1|)) 10))) -(((-1078 |#1|) (-10 -7 (-15 -2814 ((-1264))) (-15 -1909 ((-641 |#1|))) (-15 -3695 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3695 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1078)) -((-3695 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-3695 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-1909 (*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))) (-2814 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -2814 ((-1264))) (-15 -1909 ((-641 |#1|))) (-15 -3695 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3695 (|#1| |#1| (-1 (-564) |#1| |#1|)))) -((-2733 (($ (-109) $) 20)) (-3055 (((-687 (-109)) (-1170) $) 19)) (-4012 (($) 7)) (-2209 (($) 21)) (-2571 (($) 22)) (-3139 (((-641 (-175)) $) 10)) (-1831 (((-859) $) 25))) -(((-1079) (-13 (-611 (-859)) (-10 -8 (-15 -4012 ($)) (-15 -3139 ((-641 (-175)) $)) (-15 -3055 ((-687 (-109)) (-1170) $)) (-15 -2733 ($ (-109) $)) (-15 -2209 ($)) (-15 -2571 ($))))) (T -1079)) -((-4012 (*1 *1) (-5 *1 (-1079))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))) (-3055 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))) (-2733 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))) (-2209 (*1 *1) (-5 *1 (-1079))) (-2571 (*1 *1) (-5 *1 (-1079)))) -(-13 (-611 (-859)) (-10 -8 (-15 -4012 ($)) (-15 -3139 ((-641 (-175)) $)) (-15 -3055 ((-687 (-109)) (-1170) $)) (-15 -2733 ($ (-109) $)) (-15 -2209 ($)) (-15 -2571 ($)))) -((-1546 (((-1259 (-685 |#1|)) (-641 (-685 |#1|))) 47) (((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|))) 76) (((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|)))) 94)) (-2467 (((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))) 41))) -(((-1080 |#1|) (-10 -7 (-15 -1546 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -1546 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -1546 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2467 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) (-363)) (T -1080)) -((-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-949 *5))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-407 (-949 *5))))))) -(-10 -7 (-15 -1546 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -1546 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -1546 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2467 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2408 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-4129 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-3209 (((-641 (-1082 (-1170))) $) NIL)) (-3040 (((-1166 $) $ (-1082 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1082 (-1170)))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2946 (($ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1082 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1082 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-1357 (($ $ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-531 (-1082 (-1170))) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2155 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3198 (($ (-1166 |#1|) (-1082 (-1170))) NIL) (($ (-1166 $) (-1082 (-1170))) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1082 (-1170))) NIL)) (-1826 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-531 (-1082 (-1170))) (-531 (-1082 (-1170)))) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2243 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2169 (((-3 (-1082 (-1170)) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-4103 (((-1082 (-1170)) $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2194 (((-112) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-1082 (-1170))) (|:| -1558 (-768))) "failed") $) NIL)) (-1434 (($ $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1082 (-1170)) |#1|) NIL) (($ $ (-641 (-1082 (-1170))) (-641 |#1|)) NIL) (($ $ (-1082 (-1170)) $) NIL) (($ $ (-641 (-1082 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-3190 (($ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-3534 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2722 (((-641 (-1170)) $) NIL)) (-1619 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1082 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1081 |#1|) (-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1035 (-1119 |#1| (-1170)))) (-1046)) (T -1081)) -NIL -(-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1035 (-1119 |#1| (-1170)))) -((-1817 (((-112) $ $) NIL)) (-4129 (((-768) $) NIL)) (-3871 ((|#1| $) 10)) (-2347 (((-3 |#1| "failed") $) NIL)) (-2237 ((|#1| $) NIL)) (-2155 (((-768) $) 11)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-2243 (($ |#1| (-768)) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3534 (($ $) NIL) (($ $ (-768)) NIL)) (-1831 (((-859) $) NIL) (($ |#1|) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 16))) -(((-1082 |#1|) (-266 |#1|) (-847)) (T -1082)) +(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) +((-2316 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3079 (((-1264)) 22)) (-2413 (((-641 |#1|)) 13))) +(((-1078 |#1|) (-10 -7 (-15 -3079 ((-1264))) (-15 -2413 ((-641 |#1|))) (-15 -2316 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2316 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1078)) +((-2316 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-2316 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-2413 (*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))) (-3079 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -3079 ((-1264))) (-15 -2413 ((-641 |#1|))) (-15 -2316 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2316 (|#1| |#1| (-1 (-564) |#1| |#1|)))) +((-1504 (($ (-109) $) 20)) (-1508 (((-687 (-109)) (-1170) $) 19)) (-2348 (($) 7)) (-3087 (($) 21)) (-2417 (($) 22)) (-4176 (((-641 (-175)) $) 10)) (-2322 (((-858) $) 25))) +(((-1079) (-13 (-611 (-858)) (-10 -8 (-15 -2348 ($)) (-15 -4176 ((-641 (-175)) $)) (-15 -1508 ((-687 (-109)) (-1170) $)) (-15 -1504 ($ (-109) $)) (-15 -3087 ($)) (-15 -2417 ($))))) (T -1079)) +((-2348 (*1 *1) (-5 *1 (-1079))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))) (-1508 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))) (-1504 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))) (-3087 (*1 *1) (-5 *1 (-1079))) (-2417 (*1 *1) (-5 *1 (-1079)))) +(-13 (-611 (-858)) (-10 -8 (-15 -2348 ($)) (-15 -4176 ((-641 (-175)) $)) (-15 -1508 ((-687 (-109)) (-1170) $)) (-15 -1504 ($ (-109) $)) (-15 -3087 ($)) (-15 -2417 ($)))) +((-3727 (((-1259 (-685 |#1|)) (-641 (-685 |#1|))) 47) (((-1259 (-685 (-948 |#1|))) (-641 (-1170)) (-685 (-948 |#1|))) 76) (((-1259 (-685 (-407 (-948 |#1|)))) (-641 (-1170)) (-685 (-407 (-948 |#1|)))) 94)) (-3864 (((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))) 41))) +(((-1080 |#1|) (-10 -7 (-15 -3727 ((-1259 (-685 (-407 (-948 |#1|)))) (-641 (-1170)) (-685 (-407 (-948 |#1|))))) (-15 -3727 ((-1259 (-685 (-948 |#1|))) (-641 (-1170)) (-685 (-948 |#1|)))) (-15 -3727 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3864 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) (-363)) (T -1080)) +((-3864 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))) (-3727 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-948 *5)))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-948 *5))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-407 (-948 *5))))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-407 (-948 *5))))))) +(-10 -7 (-15 -3727 ((-1259 (-685 (-407 (-948 |#1|)))) (-641 (-1170)) (-685 (-407 (-948 |#1|))))) (-15 -3727 ((-1259 (-685 (-948 |#1|))) (-641 (-1170)) (-685 (-948 |#1|)))) (-15 -3727 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3864 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1399 (((-641 (-767)) $) NIL) (((-641 (-767)) $ (-1170)) NIL)) (-4145 (((-767) $) NIL) (((-767) $ (-1170)) NIL)) (-2534 (((-641 (-1082 (-1170))) $) NIL)) (-2340 (((-1166 $) $ (-1082 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1082 (-1170)))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1796 (($ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1082 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1082 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-2595 (($ $ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-531 (-1082 (-1170))) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1082 (-1170)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1082 (-1170)) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3717 (((-767) $ (-1170)) NIL) (((-767) $) NIL)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2519 (($ (-1166 |#1|) (-1082 (-1170))) NIL) (($ (-1166 $) (-1082 (-1170))) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1082 (-1170))) NIL)) (-3386 (((-531 (-1082 (-1170))) $) NIL) (((-767) $ (-1082 (-1170))) NIL) (((-641 (-767)) $ (-641 (-1082 (-1170)))) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-531 (-1082 (-1170))) (-531 (-1082 (-1170)))) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2144 (((-1 $ (-767)) (-1170)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3878 (((-3 (-1082 (-1170)) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3938 (((-1082 (-1170)) $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-2928 (((-112) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-1082 (-1170))) (|:| -3866 (-767))) "failed") $) NIL)) (-1917 (($ $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1082 (-1170)) |#1|) NIL) (($ $ (-641 (-1082 (-1170))) (-641 |#1|)) NIL) (($ $ (-1082 (-1170)) $) NIL) (($ $ (-641 (-1082 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-3392 (($ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-1343 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1404 (((-641 (-1170)) $) NIL)) (-2073 (((-531 (-1082 (-1170))) $) NIL) (((-767) $ (-1082 (-1170))) NIL) (((-641 (-767)) $ (-641 (-1082 (-1170)))) NIL) (((-767) $ (-1170)) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1082 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1081 |#1|) (-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1034 (-1119 |#1| (-1170)))) (-1045)) (T -1081)) +NIL +(-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1034 (-1119 |#1| (-1170)))) +((-2310 (((-112) $ $) NIL)) (-4145 (((-767) $) NIL)) (-3256 ((|#1| $) 10)) (-3032 (((-3 |#1| "failed") $) NIL)) (-1781 ((|#1| $) NIL)) (-3717 (((-767) $) 11)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-2144 (($ |#1| (-767)) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1343 (($ $) NIL) (($ $ (-767)) NIL)) (-2322 (((-858) $) NIL) (($ |#1|) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 16))) +(((-1082 |#1|) (-266 |#1|) (-846)) (T -1082)) NIL (-266 |#1|) -((-2449 (((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 27 (|has| |#1| (-845))) (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 14))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -2449 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2449 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1083)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6))))) -(-10 -7 (-15 -2449 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2449 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2073 (((-641 (-1129)) $) 10)) (-1702 (((-112) $ $) NIL))) -(((-1084) (-13 (-1077) (-10 -8 (-15 -2073 ((-641 (-1129)) $))))) (T -1084)) -((-2073 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084))))) -(-13 (-1077) (-10 -8 (-15 -2073 ((-641 (-1129)) $)))) -((-2449 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 19))) -(((-1085 |#1| |#2|) (-10 -7 (-15 -2449 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-1209) (-1209)) (T -1085)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6))))) -(-10 -7 (-15 -2449 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3871 (((-1170) $) 11)) (-3825 (((-1088 |#1|) $) 12)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2772 (($ (-1170) (-1088 |#1|)) 10)) (-1831 (((-859) $) 22 (|has| |#1| (-1094)))) (-1702 (((-112) $ $) 17 (|has| |#1| (-1094))))) -(((-1086 |#1|) (-13 (-1209) (-10 -8 (-15 -2772 ($ (-1170) (-1088 |#1|))) (-15 -3871 ((-1170) $)) (-15 -3825 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1086)) -((-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) (-5 *1 (-1086 *4)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))) -(-13 (-1209) (-10 -8 (-15 -2772 ($ (-1170) (-1088 |#1|))) (-15 -3871 ((-1170) $)) (-15 -3825 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) -((-3825 (($ |#1| |#1|) 8)) (-3264 ((|#1| $) 11)) (-1627 ((|#1| $) 13)) (-1639 (((-564) $) 9)) (-3103 ((|#1| $) 10)) (-1771 ((|#1| $) 12)) (-2511 (($ |#1|) 6)) (-2966 (($ |#1| |#1|) 15)) (-1465 (($ $ (-564)) 14))) +((-3123 (((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 27 (|has| |#1| (-844))) (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 14))) +(((-1083 |#1| |#2|) (-10 -7 (-15 -3123 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-844)) (-15 -3123 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1083)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-844)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6))))) +(-10 -7 (-15 -3123 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-844)) (-15 -3123 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4118 (((-641 (-1129)) $) 10)) (-2921 (((-112) $ $) NIL))) +(((-1084) (-13 (-1077) (-10 -8 (-15 -4118 ((-641 (-1129)) $))))) (T -1084)) +((-4118 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084))))) +(-13 (-1077) (-10 -8 (-15 -4118 ((-641 (-1129)) $)))) +((-3123 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 19))) +(((-1085 |#1| |#2|) (-10 -7 (-15 -3123 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-1209) (-1209)) (T -1085)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6))))) +(-10 -7 (-15 -3123 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3256 (((-1170) $) 11)) (-3596 (((-1088 |#1|) $) 12)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1866 (($ (-1170) (-1088 |#1|)) 10)) (-2322 (((-858) $) 22 (|has| |#1| (-1094)))) (-2921 (((-112) $ $) 17 (|has| |#1| (-1094))))) +(((-1086 |#1|) (-13 (-1209) (-10 -8 (-15 -1866 ($ (-1170) (-1088 |#1|))) (-15 -3256 ((-1170) $)) (-15 -3596 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1086)) +((-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) (-5 *1 (-1086 *4)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))) +(-13 (-1209) (-10 -8 (-15 -1866 ($ (-1170) (-1088 |#1|))) (-15 -3256 ((-1170) $)) (-15 -3596 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) +((-3596 (($ |#1| |#1|) 8)) (-2839 ((|#1| $) 11)) (-3902 ((|#1| $) 13)) (-3913 (((-564) $) 9)) (-1935 ((|#1| $) 10)) (-1539 ((|#1| $) 12)) (-3172 (($ |#1|) 6)) (-3454 (($ |#1| |#1|) 15)) (-2709 (($ $ (-564)) 14))) (((-1087 |#1|) (-140) (-1209)) (T -1087)) -((-2966 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-3825 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) -(-13 (-616 |t#1|) (-10 -8 (-15 -2966 ($ |t#1| |t#1|)) (-15 -1465 ($ $ (-564))) (-15 -1627 (|t#1| $)) (-15 -1771 (|t#1| $)) (-15 -3264 (|t#1| $)) (-15 -3103 (|t#1| $)) (-15 -1639 ((-564) $)) (-15 -3825 ($ |t#1| |t#1|)))) +((-3454 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2709 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-3596 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(-13 (-616 |t#1|) (-10 -8 (-15 -3454 ($ |t#1| |t#1|)) (-15 -2709 ($ $ (-564))) (-15 -3902 (|t#1| $)) (-15 -1539 (|t#1| $)) (-15 -2839 (|t#1| $)) (-15 -1935 (|t#1| $)) (-15 -3913 ((-564) $)) (-15 -3596 ($ |t#1| |t#1|)))) (((-616 |#1|) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3825 (($ |#1| |#1|) 16)) (-2449 (((-641 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-3264 ((|#1| $) 12)) (-1627 ((|#1| $) 11)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1639 (((-564) $) 15)) (-3103 ((|#1| $) 14)) (-1771 ((|#1| $) 13)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3723 (((-641 |#1|) $) 42 (|has| |#1| (-845))) (((-641 |#1|) (-641 $)) 41 (|has| |#1| (-845)))) (-2511 (($ |#1|) 29)) (-1831 (((-859) $) 28 (|has| |#1| (-1094)))) (-2966 (($ |#1| |#1|) 10)) (-1465 (($ $ (-564)) 17)) (-1702 (((-112) $ $) 22 (|has| |#1| (-1094))))) -(((-1088 |#1|) (-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) (-1209)) (T -1088)) -NIL -(-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) -((-3825 (($ |#1| |#1|) 8)) (-2449 ((|#2| (-1 |#1| |#1|) $) 16)) (-3264 ((|#1| $) 11)) (-1627 ((|#1| $) 13)) (-1639 (((-564) $) 9)) (-3103 ((|#1| $) 10)) (-1771 ((|#1| $) 12)) (-3723 ((|#2| (-641 $)) 18) ((|#2| $) 17)) (-2511 (($ |#1|) 6)) (-2966 (($ |#1| |#1|) 15)) (-1465 (($ $ (-564)) 14))) -(((-1089 |#1| |#2|) (-140) (-845) (-1143 |t#1|)) (T -1089)) -((-3723 (*1 *2 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3)))) (-2449 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4))))) -(-13 (-1087 |t#1|) (-10 -8 (-15 -3723 (|t#2| (-641 $))) (-15 -3723 (|t#2| $)) (-15 -2449 (|t#2| (-1 |t#1| |t#1|) $)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3596 (($ |#1| |#1|) 16)) (-3123 (((-641 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-844)))) (-2839 ((|#1| $) 12)) (-3902 ((|#1| $) 11)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3913 (((-564) $) 15)) (-1935 ((|#1| $) 14)) (-1539 ((|#1| $) 13)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2925 (((-641 |#1|) $) 42 (|has| |#1| (-844))) (((-641 |#1|) (-641 $)) 41 (|has| |#1| (-844)))) (-3172 (($ |#1|) 29)) (-2322 (((-858) $) 28 (|has| |#1| (-1094)))) (-3454 (($ |#1| |#1|) 10)) (-2709 (($ $ (-564)) 17)) (-2921 (((-112) $ $) 22 (|has| |#1| (-1094))))) +(((-1088 |#1|) (-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) (-1209)) (T -1088)) +NIL +(-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) +((-3596 (($ |#1| |#1|) 8)) (-3123 ((|#2| (-1 |#1| |#1|) $) 16)) (-2839 ((|#1| $) 11)) (-3902 ((|#1| $) 13)) (-3913 (((-564) $) 9)) (-1935 ((|#1| $) 10)) (-1539 ((|#1| $) 12)) (-2925 ((|#2| (-641 $)) 18) ((|#2| $) 17)) (-3172 (($ |#1|) 6)) (-3454 (($ |#1| |#1|) 15)) (-2709 (($ $ (-564)) 14))) +(((-1089 |#1| |#2|) (-140) (-844) (-1143 |t#1|)) (T -1089)) +((-2925 (*1 *2 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1143 *4)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1143 *3)))) (-3123 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1143 *4))))) +(-13 (-1087 |t#1|) (-10 -8 (-15 -2925 (|t#2| (-641 $))) (-15 -2925 (|t#2| $)) (-15 -3123 (|t#2| (-1 |t#1| |t#1|) $)))) (((-616 |#1|) . T) ((-1087 |#1|) . T)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2598 (((-1129) $) 12)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1328 (((-641 (-1129)) $) 10)) (-1702 (((-112) $ $) NIL))) -(((-1090) (-13 (-1077) (-10 -8 (-15 -1328 ((-641 (-1129)) $)) (-15 -2598 ((-1129) $))))) (T -1090)) -((-1328 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090))))) -(-13 (-1077) (-10 -8 (-15 -1328 ((-641 (-1129)) $)) (-15 -2598 ((-1129) $)))) -((-3650 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2396 (($ $ $) 10)) (-3405 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1091 |#1| |#2|) (-10 -8 (-15 -3650 (|#1| |#2| |#1|)) (-15 -3650 (|#1| |#1| |#2|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#2|)) (-15 -3405 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091)) -NIL -(-10 -8 (-15 -3650 (|#1| |#2| |#1|)) (-15 -3650 (|#1| |#1| |#2|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#2|)) (-15 -3405 (|#1| |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-3650 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2396 (($ $ $) 20)) (-2172 (((-112) $ $) 19)) (-4010 (((-112) $ (-768)) 35)) (-3810 (($) 25) (($ (-641 |#1|)) 24)) (-3752 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4406)))) (-1778 (($) 36 T CONST)) (-3337 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4406)))) (-1433 (((-641 |#1|) $) 43 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) 28)) (-2324 (((-112) $ (-768)) 34)) (-2640 (((-641 |#1|) $) 44 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 38)) (-1713 (((-112) $ (-768)) 33)) (-2723 (((-1152) $) 9)) (-3425 (($ $ $) 23)) (-2780 (((-1114) $) 10)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4077 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#1|) (-641 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 29)) (-4284 (((-112) $) 32)) (-4012 (($) 31)) (-3405 (($ $ $) 22) (($ $ |#1|) 21)) (-2791 (((-768) |#1| $) 45 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4406)))) (-1991 (($ $) 30)) (-2511 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 51)) (-1831 (((-859) $) 11)) (-3131 (($) 27) (($ (-641 |#1|)) 26)) (-1963 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 37 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3649 (((-1129) $) 12)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2433 (((-641 (-1129)) $) 10)) (-2921 (((-112) $ $) NIL))) +(((-1090) (-13 (-1077) (-10 -8 (-15 -2433 ((-641 (-1129)) $)) (-15 -3649 ((-1129) $))))) (T -1090)) +((-2433 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090))))) +(-13 (-1077) (-10 -8 (-15 -2433 ((-641 (-1129)) $)) (-15 -3649 ((-1129) $)))) +((-1565 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1294 (($ $ $) 10)) (-2727 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1091 |#1| |#2|) (-10 -8 (-15 -1565 (|#1| |#2| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| |#2|)) (-15 -2727 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091)) +NIL +(-10 -8 (-15 -1565 (|#1| |#2| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2727 (|#1| |#1| |#2|)) (-15 -2727 (|#1| |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-1565 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1294 (($ $ $) 20)) (-3910 (((-112) $ $) 19)) (-2318 (((-112) $ (-767)) 35)) (-1740 (($) 25) (($ (-641 |#1|)) 24)) (-2957 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4406)))) (-4157 (($) 36 T CONST)) (-2027 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4406)))) (-3534 (((-641 |#1|) $) 43 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) 28)) (-1751 (((-112) $ (-767)) 34)) (-1834 (((-641 |#1|) $) 44 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 38)) (-1681 (((-112) $ (-767)) 33)) (-1418 (((-1152) $) 9)) (-1648 (($ $ $) 23)) (-3840 (((-1114) $) 10)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1763 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#1|) (-641 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 29)) (-3282 (((-112) $) 32)) (-2348 (($) 31)) (-2727 (($ $ $) 22) (($ $ |#1|) 21)) (-3852 (((-767) |#1| $) 45 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4406)))) (-3772 (($ $) 30)) (-3172 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 51)) (-2322 (((-858) $) 11)) (-2451 (($) 27) (($ (-641 |#1|)) 26)) (-2313 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 37 (|has| $ (-6 -4406))))) (((-1092 |#1|) (-140) (-1094)) (T -1092)) -((-3668 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3131 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3810 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3810 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3405 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3650 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3650 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3650 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) -(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4396) (-15 -3668 ((-112) $ $)) (-15 -3131 ($)) (-15 -3131 ($ (-641 |t#1|))) (-15 -3810 ($)) (-15 -3810 ($ (-641 |t#1|))) (-15 -3425 ($ $ $)) (-15 -3405 ($ $ $)) (-15 -3405 ($ $ |t#1|)) (-15 -2396 ($ $ $)) (-15 -2172 ((-112) $ $)) (-15 -3650 ($ $ $)) (-15 -3650 ($ $ |t#1|)) (-15 -3650 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) . T) ((-1209) . T)) -((-2723 (((-1152) $) 10)) (-2780 (((-1114) $) 8))) -(((-1093 |#1|) (-10 -8 (-15 -2723 ((-1152) |#1|)) (-15 -2780 ((-1114) |#1|))) (-1094)) (T -1093)) -NIL -(-10 -8 (-15 -2723 ((-1152) |#1|)) (-15 -2780 ((-1114) |#1|))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) +((-3360 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2451 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-1740 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-1648 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2727 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2727 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3910 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1565 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1565 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1565 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4396) (-15 -3360 ((-112) $ $)) (-15 -2451 ($)) (-15 -2451 ($ (-641 |t#1|))) (-15 -1740 ($)) (-15 -1740 ($ (-641 |t#1|))) (-15 -1648 ($ $ $)) (-15 -2727 ($ $ $)) (-15 -2727 ($ $ |t#1|)) (-15 -1294 ($ $ $)) (-15 -3910 ((-112) $ $)) (-15 -1565 ($ $ $)) (-15 -1565 ($ $ |t#1|)) (-15 -1565 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) . T) ((-1209) . T)) +((-1418 (((-1152) $) 10)) (-3840 (((-1114) $) 8))) +(((-1093 |#1|) (-10 -8 (-15 -1418 ((-1152) |#1|)) (-15 -3840 ((-1114) |#1|))) (-1094)) (T -1093)) +NIL +(-10 -8 (-15 -1418 ((-1152) |#1|)) (-15 -3840 ((-1114) |#1|))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) (((-1094) (-140)) (T -1094)) -((-2780 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152))))) -(-13 (-102) (-611 (-859)) (-10 -8 (-15 -2780 ((-1114) $)) (-15 -2723 ((-1152) $)))) -(((-102) . T) ((-611 (-859)) . T)) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) 36)) (-1882 (($ (-641 (-918))) 72)) (-1729 (((-3 $ "failed") $ (-918) (-918)) 83)) (-2900 (($) 40)) (-2516 (((-112) (-918) $) 44)) (-1811 (((-918) $) 66)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) 39)) (-2548 (((-3 $ "failed") $ (-918)) 79)) (-2780 (((-1114) $) NIL)) (-1673 (((-1259 $)) 49)) (-1775 (((-641 (-918)) $) 27)) (-3597 (((-768) $ (-918) (-918)) 80)) (-1831 (((-859) $) 32)) (-1702 (((-112) $ $) 24))) -(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2548 ((-3 $ "failed") $ (-918))) (-15 -1729 ((-3 $ "failed") $ (-918) (-918))) (-15 -1775 ((-641 (-918)) $)) (-15 -1882 ($ (-641 (-918)))) (-15 -1673 ((-1259 $))) (-15 -2516 ((-112) (-918) $)) (-15 -3597 ((-768) $ (-918) (-918))))) (-918) (-918)) (T -1095)) -((-2548 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1729 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-1673 (*1 *2) (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2516 (*1 *2 *3 *1) (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3597 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-368) (-10 -8 (-15 -2548 ((-3 $ "failed") $ (-918))) (-15 -1729 ((-3 $ "failed") $ (-918) (-918))) (-15 -1775 ((-641 (-918)) $)) (-15 -1882 ($ (-641 (-918)))) (-15 -1673 ((-1259 $))) (-15 -2516 ((-112) (-918) $)) (-15 -3597 ((-768) $ (-918) (-918))))) -((-1817 (((-112) $ $) NIL)) (-3002 (($) NIL (|has| |#1| (-368)))) (-3650 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 80)) (-2396 (($ $ $) 78)) (-2172 (((-112) $ $) 79)) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| |#1| (-368)))) (-3810 (($ (-641 |#1|)) NIL) (($) 13)) (-4145 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3644 (($ |#1| $) 74 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4406)))) (-2900 (($) NIL (|has| |#1| (-368)))) (-1433 (((-641 |#1|) $) 19 (|has| $ (-6 -4406)))) (-3668 (((-112) $ $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-1925 ((|#1| $) 55 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3375 ((|#1| $) 53 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 34)) (-1811 (((-918) $) NIL (|has| |#1| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-3425 (($ $ $) 76)) (-2401 ((|#1| $) 25)) (-2783 (($ |#1| $) 69)) (-1468 (($ (-918)) NIL (|has| |#1| (-368)))) (-2780 (((-1114) $) NIL)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4153 ((|#1| $) 27)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 21)) (-4012 (($) 11)) (-3405 (($ $ |#1|) NIL) (($ $ $) 77)) (-4232 (($) NIL) (($ (-641 |#1|)) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 16)) (-2511 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 62)) (-3028 (($ $) NIL (|has| |#1| (-368)))) (-1831 (((-859) $) NIL)) (-3434 (((-768) $) NIL)) (-3131 (($ (-641 |#1|)) NIL) (($) 12)) (-2321 (($ (-641 |#1|)) NIL)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 52)) (-2828 (((-768) $) 10 (|has| $ (-6 -4406))))) +((-3840 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152))))) +(-13 (-102) (-611 (-858)) (-10 -8 (-15 -3840 ((-1114) $)) (-15 -1418 ((-1152) $)))) +(((-102) . T) ((-611 (-858)) . T)) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) 36)) (-2752 (($ (-641 (-917))) 72)) (-1825 (((-3 $ "failed") $ (-917) (-917)) 83)) (-3860 (($) 40)) (-3114 (((-112) (-917) $) 44)) (-1368 (((-917) $) 66)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) 39)) (-2188 (((-3 $ "failed") $ (-917)) 79)) (-3840 (((-1114) $) NIL)) (-2553 (((-1259 $)) 49)) (-4123 (((-641 (-917)) $) 27)) (-2551 (((-767) $ (-917) (-917)) 80)) (-2322 (((-858) $) 32)) (-2921 (((-112) $ $) 24))) +(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2188 ((-3 $ "failed") $ (-917))) (-15 -1825 ((-3 $ "failed") $ (-917) (-917))) (-15 -4123 ((-641 (-917)) $)) (-15 -2752 ($ (-641 (-917)))) (-15 -2553 ((-1259 $))) (-15 -3114 ((-112) (-917) $)) (-15 -2551 ((-767) $ (-917) (-917))))) (-917) (-917)) (T -1095)) +((-2188 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1825 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2553 (*1 *2) (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3114 (*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2551 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-368) (-10 -8 (-15 -2188 ((-3 $ "failed") $ (-917))) (-15 -1825 ((-3 $ "failed") $ (-917) (-917))) (-15 -4123 ((-641 (-917)) $)) (-15 -2752 ($ (-641 (-917)))) (-15 -2553 ((-1259 $))) (-15 -3114 ((-112) (-917) $)) (-15 -2551 ((-767) $ (-917) (-917))))) +((-2310 (((-112) $ $) NIL)) (-2245 (($) NIL (|has| |#1| (-368)))) (-1565 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 80)) (-1294 (($ $ $) 78)) (-3910 (((-112) $ $) 79)) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| |#1| (-368)))) (-1740 (($ (-641 |#1|)) NIL) (($) 13)) (-4328 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3175 (($ |#1| $) 74 (|has| $ (-6 -4406))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4406)))) (-3860 (($) NIL (|has| |#1| (-368)))) (-3534 (((-641 |#1|) $) 19 (|has| $ (-6 -4406)))) (-3360 (((-112) $ $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1501 ((|#1| $) 55 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2622 ((|#1| $) 53 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 34)) (-1368 (((-917) $) NIL (|has| |#1| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-1648 (($ $ $) 76)) (-1340 ((|#1| $) 25)) (-3861 (($ |#1| $) 69)) (-1998 (($ (-917)) NIL (|has| |#1| (-368)))) (-3840 (((-1114) $) NIL)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1313 ((|#1| $) 27)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 21)) (-2348 (($) 11)) (-2727 (($ $ |#1|) NIL) (($ $ $) 77)) (-3977 (($) NIL) (($ (-641 |#1|)) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 16)) (-3172 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 62)) (-2482 (($ $) NIL (|has| |#1| (-368)))) (-2322 (((-858) $) NIL)) (-1738 (((-767) $) NIL)) (-2451 (($ (-641 |#1|)) NIL) (($) 12)) (-1717 (($ (-641 |#1|)) NIL)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 52)) (-2059 (((-767) $) 10 (|has| $ (-6 -4406))))) (((-1096 |#1|) (-425 |#1|) (-1094)) (T -1096)) NIL (-425 |#1|) -((-1817 (((-112) $ $) 7)) (-2246 (((-112) $) 32)) (-3866 ((|#2| $) 27)) (-2061 (((-112) $) 33)) (-1307 ((|#1| $) 28)) (-2197 (((-112) $) 35)) (-2566 (((-112) $) 37)) (-2766 (((-112) $) 34)) (-2723 (((-1152) $) 9)) (-3604 (((-112) $) 31)) (-3888 ((|#3| $) 26)) (-2780 (((-1114) $) 10)) (-2647 (((-112) $) 30)) (-2293 ((|#4| $) 25)) (-3832 ((|#5| $) 24)) (-4252 (((-112) $ $) 38)) (-1350 (($ $ (-564)) 20) (($ $ (-641 (-564))) 19)) (-3143 (((-641 $) $) 29)) (-2511 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-641 $)) 39)) (-1831 (((-859) $) 11)) (-3200 (($ $) 22)) (-3188 (($ $) 23)) (-2205 (((-112) $) 36)) (-1702 (((-112) $ $) 6)) (-2828 (((-564) $) 21))) +((-2310 (((-112) $ $) 7)) (-2172 (((-112) $) 32)) (-4357 ((|#2| $) 27)) (-3990 (((-112) $) 33)) (-4177 ((|#1| $) 28)) (-2961 (((-112) $) 35)) (-2376 (((-112) $) 37)) (-3695 (((-112) $) 34)) (-1418 (((-1152) $) 9)) (-2835 (((-112) $) 31)) (-4377 ((|#3| $) 26)) (-3840 (((-1114) $) 10)) (-1915 (((-112) $) 30)) (-2793 ((|#4| $) 25)) (-3213 ((|#5| $) 24)) (-3482 (((-112) $ $) 38)) (-4353 (($ $ (-564)) 20) (($ $ (-641 (-564))) 19)) (-2461 (((-641 $) $) 29)) (-3172 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-641 $)) 39)) (-2322 (((-858) $) 11)) (-1893 (($ $) 22)) (-1882 (($ $) 23)) (-3041 (((-112) $) 36)) (-2921 (((-112) $ $) 6)) (-2059 (((-564) $) 21))) (((-1097 |#1| |#2| |#3| |#4| |#5|) (-140) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1097)) -((-4252 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3143 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-3200 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094))))) -(-13 (-1094) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-641 $)) (-10 -8 (-15 -4252 ((-112) $ $)) (-15 -2566 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -2197 ((-112) $)) (-15 -2766 ((-112) $)) (-15 -2061 ((-112) $)) (-15 -2246 ((-112) $)) (-15 -3604 ((-112) $)) (-15 -2647 ((-112) $)) (-15 -3143 ((-641 $) $)) (-15 -1307 (|t#1| $)) (-15 -3866 (|t#2| $)) (-15 -3888 (|t#3| $)) (-15 -2293 (|t#4| $)) (-15 -3832 (|t#5| $)) (-15 -3188 ($ $)) (-15 -3200 ($ $)) (-15 -2828 ((-564) $)) (-15 -1350 ($ $ (-564))) (-15 -1350 ($ $ (-641 (-564)))))) -(((-102) . T) ((-611 (-859)) . T) ((-616 (-641 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-2246 (((-112) $) NIL)) (-3866 (((-1170) $) NIL)) (-2061 (((-112) $) NIL)) (-1307 (((-1152) $) NIL)) (-2197 (((-112) $) NIL)) (-2566 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-3604 (((-112) $) NIL)) (-3888 (((-564) $) NIL)) (-2780 (((-1114) $) NIL)) (-2647 (((-112) $) NIL)) (-2293 (((-225) $) NIL)) (-3832 (((-859) $) NIL)) (-4252 (((-112) $ $) NIL)) (-1350 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-3143 (((-641 $) $) NIL)) (-2511 (($ (-1152)) NIL) (($ (-1170)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-859)) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL)) (-3200 (($ $) NIL)) (-3188 (($ $) NIL)) (-2205 (((-112) $) NIL)) (-1702 (((-112) $ $) NIL)) (-2828 (((-564) $) NIL))) -(((-1098) (-1097 (-1152) (-1170) (-564) (-225) (-859))) (T -1098)) -NIL -(-1097 (-1152) (-1170) (-564) (-225) (-859)) -((-1817 (((-112) $ $) NIL)) (-2246 (((-112) $) 44)) (-3866 ((|#2| $) 47)) (-2061 (((-112) $) 20)) (-1307 ((|#1| $) 21)) (-2197 (((-112) $) 41)) (-2566 (((-112) $) 14)) (-2766 (((-112) $) 43)) (-2723 (((-1152) $) NIL)) (-3604 (((-112) $) 45)) (-3888 ((|#3| $) 49)) (-2780 (((-1114) $) NIL)) (-2647 (((-112) $) 46)) (-2293 ((|#4| $) 48)) (-3832 ((|#5| $) 50)) (-4252 (((-112) $ $) 40)) (-1350 (($ $ (-564)) 61) (($ $ (-641 (-564))) 63)) (-3143 (((-641 $) $) 26)) (-2511 (($ |#1|) 52) (($ |#2|) 53) (($ |#3|) 54) (($ |#4|) 55) (($ |#5|) 56) (($ (-641 $)) 51)) (-1831 (((-859) $) 27)) (-3200 (($ $) 25)) (-3188 (($ $) 57)) (-2205 (((-112) $) 23)) (-1702 (((-112) $ $) 39)) (-2828 (((-564) $) 59))) +((-3482 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3041 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2461 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-1882 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-1893 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094))))) +(-13 (-1094) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-641 $)) (-10 -8 (-15 -3482 ((-112) $ $)) (-15 -2376 ((-112) $)) (-15 -3041 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -3695 ((-112) $)) (-15 -3990 ((-112) $)) (-15 -2172 ((-112) $)) (-15 -2835 ((-112) $)) (-15 -1915 ((-112) $)) (-15 -2461 ((-641 $) $)) (-15 -4177 (|t#1| $)) (-15 -4357 (|t#2| $)) (-15 -4377 (|t#3| $)) (-15 -2793 (|t#4| $)) (-15 -3213 (|t#5| $)) (-15 -1882 ($ $)) (-15 -1893 ($ $)) (-15 -2059 ((-564) $)) (-15 -4353 ($ $ (-564))) (-15 -4353 ($ $ (-641 (-564)))))) +(((-102) . T) ((-611 (-858)) . T) ((-616 (-641 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-2172 (((-112) $) NIL)) (-4357 (((-1170) $) NIL)) (-3990 (((-112) $) NIL)) (-4177 (((-1152) $) NIL)) (-2961 (((-112) $) NIL)) (-2376 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-2835 (((-112) $) NIL)) (-4377 (((-564) $) NIL)) (-3840 (((-1114) $) NIL)) (-1915 (((-112) $) NIL)) (-2793 (((-225) $) NIL)) (-3213 (((-858) $) NIL)) (-3482 (((-112) $ $) NIL)) (-4353 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-2461 (((-641 $) $) NIL)) (-3172 (($ (-1152)) NIL) (($ (-1170)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-858)) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL)) (-1893 (($ $) NIL)) (-1882 (($ $) NIL)) (-3041 (((-112) $) NIL)) (-2921 (((-112) $ $) NIL)) (-2059 (((-564) $) NIL))) +(((-1098) (-1097 (-1152) (-1170) (-564) (-225) (-858))) (T -1098)) +NIL +(-1097 (-1152) (-1170) (-564) (-225) (-858)) +((-2310 (((-112) $ $) NIL)) (-2172 (((-112) $) 44)) (-4357 ((|#2| $) 47)) (-3990 (((-112) $) 20)) (-4177 ((|#1| $) 21)) (-2961 (((-112) $) 41)) (-2376 (((-112) $) 14)) (-3695 (((-112) $) 43)) (-1418 (((-1152) $) NIL)) (-2835 (((-112) $) 45)) (-4377 ((|#3| $) 49)) (-3840 (((-1114) $) NIL)) (-1915 (((-112) $) 46)) (-2793 ((|#4| $) 48)) (-3213 ((|#5| $) 50)) (-3482 (((-112) $ $) 40)) (-4353 (($ $ (-564)) 61) (($ $ (-641 (-564))) 63)) (-2461 (((-641 $) $) 26)) (-3172 (($ |#1|) 52) (($ |#2|) 53) (($ |#3|) 54) (($ |#4|) 55) (($ |#5|) 56) (($ (-641 $)) 51)) (-2322 (((-858) $) 27)) (-1893 (($ $) 25)) (-1882 (($ $) 57)) (-3041 (((-112) $) 23)) (-2921 (((-112) $ $) 39)) (-2059 (((-564) $) 59))) (((-1099 |#1| |#2| |#3| |#4| |#5|) (-1097 |#1| |#2| |#3| |#4| |#5|) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1099)) NIL (-1097 |#1| |#2| |#3| |#4| |#5|) -((-3069 (((-1264) $) 23)) (-3392 (($ (-1170) (-434) |#2|) 11)) (-1831 (((-859) $) 16))) -(((-1100 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3392 ($ (-1170) (-434) |#2|)))) (-847) (-430 |#1|)) (T -1100)) -((-3392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847)) (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5))))) -(-13 (-395) (-10 -8 (-15 -3392 ($ (-1170) (-434) |#2|)))) -((-3133 (((-112) |#5| |#5|) 43)) (-3193 (((-112) |#5| |#5|) 57)) (-2687 (((-112) |#5| (-641 |#5|)) 80) (((-112) |#5| |#5|) 66)) (-2883 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-2330 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) 68)) (-3958 (((-1264)) 33)) (-3770 (((-1264) (-1152) (-1152) (-1152)) 29)) (-4306 (((-641 |#5|) (-641 |#5|)) 99)) (-2244 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) 91)) (-1670 (((-641 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 121)) (-2580 (((-112) |#5| |#5|) 52)) (-4175 (((-3 (-112) "failed") |#5| |#5|) 76)) (-4225 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-3585 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3984 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2297 (((-3 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-2808 (((-641 |#5|) (-641 |#5|)) 48))) -(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-1264) (-1152) (-1152) (-1152))) (-15 -3958 ((-1264))) (-15 -3133 ((-112) |#5| |#5|)) (-15 -2808 ((-641 |#5|) (-641 |#5|))) (-15 -2580 ((-112) |#5| |#5|)) (-15 -3193 ((-112) |#5| |#5|)) (-15 -2883 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4225 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3585 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3984 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2687 ((-112) |#5| |#5|)) (-15 -2687 ((-112) |#5| (-641 |#5|))) (-15 -4306 ((-641 |#5|) (-641 |#5|))) (-15 -2330 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -2244 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-15 -1670 ((-641 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2297 ((-3 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1101)) -((-2297 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -4252 (-641 *9)) (|:| -2956 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-1670 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -4252 (-641 *9)) (|:| -2956 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2956 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2330 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))) (-2687 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4175 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3984 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3585 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2883 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2580 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2808 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3958 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3770 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(-10 -7 (-15 -3770 ((-1264) (-1152) (-1152) (-1152))) (-15 -3958 ((-1264))) (-15 -3133 ((-112) |#5| |#5|)) (-15 -2808 ((-641 |#5|) (-641 |#5|))) (-15 -2580 ((-112) |#5| |#5|)) (-15 -3193 ((-112) |#5| |#5|)) (-15 -2883 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4225 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3585 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3984 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2687 ((-112) |#5| |#5|)) (-15 -2687 ((-112) |#5| (-641 |#5|))) (-15 -4306 ((-641 |#5|) (-641 |#5|))) (-15 -2330 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -2244 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-15 -1670 ((-641 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2297 ((-3 (-2 (|:| -4252 (-641 |#4|)) (|:| -2956 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3104 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|) 110)) (-1734 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#4| |#4| |#5|) 82)) (-2658 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|) 104)) (-3501 (((-641 |#5|) |#4| |#5|) 126)) (-3817 (((-641 |#5|) |#4| |#5|) 133)) (-2256 (((-641 |#5|) |#4| |#5|) 134)) (-3328 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|) 111)) (-2901 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|) 132)) (-2470 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1518 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#3| (-112)) 94) (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2675 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|) 89)) (-4210 (((-1264)) 37)) (-3097 (((-1264)) 26)) (-2997 (((-1264) (-1152) (-1152) (-1152)) 33)) (-4113 (((-1264) (-1152) (-1152) (-1152)) 22))) -(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4113 ((-1264) (-1152) (-1152) (-1152))) (-15 -3097 ((-1264))) (-15 -2997 ((-1264) (-1152) (-1152) (-1152))) (-15 -4210 ((-1264))) (-15 -1734 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -1518 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1518 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#3| (-112))) (-15 -2675 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -2658 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -2470 ((-112) |#4| |#5|)) (-15 -3328 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3501 ((-641 |#5|) |#4| |#5|)) (-15 -2901 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3817 ((-641 |#5|) |#4| |#5|)) (-15 -2470 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -2256 ((-641 |#5|) |#4| |#5|)) (-15 -3104 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1102)) -((-3104 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2256 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2470 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3501 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3328 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2470 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2658 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2675 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2956 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-1518 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-1734 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4210 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2997 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3097 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4113 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(-10 -7 (-15 -4113 ((-1264) (-1152) (-1152) (-1152))) (-15 -3097 ((-1264))) (-15 -2997 ((-1264) (-1152) (-1152) (-1152))) (-15 -4210 ((-1264))) (-15 -1734 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -1518 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1518 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) |#3| (-112))) (-15 -2675 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -2658 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#4| |#5|)) (-15 -2470 ((-112) |#4| |#5|)) (-15 -3328 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3501 ((-641 |#5|) |#4| |#5|)) (-15 -2901 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -3817 ((-641 |#5|) |#4| |#5|)) (-15 -2470 ((-641 (-2 (|:| |val| (-112)) (|:| -2956 |#5|))) |#4| |#5|)) (-15 -2256 ((-641 |#5|) |#4| |#5|)) (-15 -3104 ((-641 (-2 (|:| |val| |#4|) (|:| -2956 |#5|))) |#4| |#5|))) -((-1817 (((-112) $ $) 7)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) 85)) (-2951 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-3209 (((-641 |#3|) $) 33)) (-3449 (((-112) $) 26)) (-3961 (((-112) $) 17 (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) 101) (((-112) $) 97)) (-4136 ((|#4| |#4| $) 92)) (-2427 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) 27)) (-4010 (((-112) $ (-768)) 44)) (-3752 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-1778 (($) 45 T CONST)) (-3602 (((-112) $) 22 (|has| |#1| (-556)))) (-2495 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1495 (((-112) $ $) 23 (|has| |#1| (-556)))) (-2536 (((-112) $) 25 (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2338 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 36)) (-2237 (($ (-641 |#4|)) 35)) (-3314 (((-3 $ "failed") $) 82)) (-1470 ((|#4| |#4| $) 89)) (-3337 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3492 ((|#4| |#4| $) 87)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) 105)) (-3843 (((-112) |#4| $) 136)) (-2421 (((-112) |#4| $) 133)) (-4204 (((-112) |#4| $) 137) (((-112) $) 134)) (-1433 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) 104) (((-112) $) 103)) (-1543 ((|#3| $) 34)) (-2324 (((-112) $ (-768)) 43)) (-2640 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 47)) (-3580 (((-641 |#3|) $) 32)) (-3879 (((-112) |#3| $) 31)) (-1713 (((-112) $ (-768)) 42)) (-2723 (((-1152) $) 9)) (-2100 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2624 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| |#4| $) 127)) (-2598 (((-3 |#4| "failed") $) 83)) (-1889 (((-641 $) |#4| $) 129)) (-4369 (((-3 (-112) (-641 $)) |#4| $) 132)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3425 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2817 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3123 (((-641 |#4|) $) 107)) (-4281 (((-112) |#4| $) 99) (((-112) $) 95)) (-2356 ((|#4| |#4| $) 90)) (-3984 (((-112) $ $) 110)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) 100) (((-112) $) 96)) (-1482 ((|#4| |#4| $) 91)) (-2780 (((-1114) $) 10)) (-3303 (((-3 |#4| "failed") $) 84)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3824 (((-3 $ "failed") $ |#4|) 78)) (-3951 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-4077 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) 38)) (-4284 (((-112) $) 41)) (-4012 (($) 40)) (-1619 (((-768) $) 106)) (-2791 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-1991 (($ $) 39)) (-2511 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 60)) (-4287 (($ $ |#3|) 28)) (-1887 (($ $ |#3|) 30)) (-3728 (($ $) 88)) (-3111 (($ $ |#3|) 29)) (-1831 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4321 (((-768) $) 76 (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3635 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1963 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) 81)) (-2637 (((-112) |#4| $) 135)) (-1484 (((-112) |#3| $) 80)) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 46 (|has| $ (-6 -4406))))) -(((-1103 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1103)) -NIL -(-13 (-1066 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) -((-2006 (((-641 (-564)) (-564) (-564) (-564)) 37)) (-1871 (((-641 (-564)) (-564) (-564) (-564)) 27)) (-1392 (((-641 (-564)) (-564) (-564) (-564)) 32)) (-3583 (((-564) (-564) (-564)) 22)) (-3134 (((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564)) 72) (((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564)) 67)) (-1735 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112)) 49)) (-1863 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 71)) (-2746 (((-685 (-564)) (-641 (-564)) (-641 (-564))) 55)) (-3801 (((-641 (-685 (-564))) (-641 (-564))) 60)) (-4193 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 75)) (-2734 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564))) 85))) -(((-1104) (-10 -7 (-15 -2734 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -4193 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3801 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2746 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -1863 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -1735 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -3134 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -3134 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3583 ((-564) (-564) (-564))) (-15 -1392 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1871 ((-641 (-564)) (-564) (-564) (-564))) (-15 -2006 ((-641 (-564)) (-564) (-564) (-564))))) (T -1104)) -((-2006 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-1871 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-1392 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3583 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) (-5 *1 (-1104)))) (-3134 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) (-1735 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))) (-1863 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))) (-2746 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1104)))) (-4193 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))) (-2734 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) -(-10 -7 (-15 -2734 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -4193 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3801 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2746 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -1863 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -1735 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -3134 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -3134 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3583 ((-564) (-564) (-564))) (-15 -1392 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1871 ((-641 (-564)) (-564) (-564) (-564))) (-15 -2006 ((-641 (-564)) (-564) (-564) (-564)))) -((** (($ $ (-918)) 10))) -(((-1105 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918)))) (-1106)) (T -1105)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-918)))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 14))) +((-4308 (((-1264) $) 23)) (-1824 (($ (-1170) (-434) |#2|) 11)) (-2322 (((-858) $) 16))) +(((-1100 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -1824 ($ (-1170) (-434) |#2|)))) (-846) (-430 |#1|)) (T -1100)) +((-1824 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-846)) (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5))))) +(-13 (-395) (-10 -8 (-15 -1824 ($ (-1170) (-434) |#2|)))) +((-4119 (((-112) |#5| |#5|) 43)) (-3418 (((-112) |#5| |#5|) 57)) (-4166 (((-112) |#5| (-641 |#5|)) 80) (((-112) |#5| |#5|) 66)) (-2394 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-1815 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) 68)) (-3010 (((-1264)) 33)) (-1746 (((-1264) (-1152) (-1152) (-1152)) 29)) (-2238 (((-641 |#5|) (-641 |#5|)) 99)) (-2156 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) 91)) (-2512 (((-641 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 121)) (-2509 (((-112) |#5| |#5|) 52)) (-1507 (((-3 (-112) "failed") |#5| |#5|) 76)) (-3907 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-3853 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3288 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2728 (((-3 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-2898 (((-641 |#5|) (-641 |#5|)) 48))) +(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1746 ((-1264) (-1152) (-1152) (-1152))) (-15 -3010 ((-1264))) (-15 -4119 ((-112) |#5| |#5|)) (-15 -2898 ((-641 |#5|) (-641 |#5|))) (-15 -2509 ((-112) |#5| |#5|)) (-15 -3418 ((-112) |#5| |#5|)) (-15 -2394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3907 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3853 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3288 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1507 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4166 ((-112) |#5| |#5|)) (-15 -4166 ((-112) |#5| (-641 |#5|))) (-15 -2238 ((-641 |#5|) (-641 |#5|))) (-15 -1815 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -2156 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-15 -2512 ((-641 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2728 ((-3 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1101)) +((-2728 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -3482 (-641 *9)) (|:| -2244 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-2512 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -3482 (-641 *9)) (|:| -2244 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2244 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-1815 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))) (-4166 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-1507 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3288 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3853 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3907 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2394 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2509 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-4119 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3010 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-1746 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -1746 ((-1264) (-1152) (-1152) (-1152))) (-15 -3010 ((-1264))) (-15 -4119 ((-112) |#5| |#5|)) (-15 -2898 ((-641 |#5|) (-641 |#5|))) (-15 -2509 ((-112) |#5| |#5|)) (-15 -3418 ((-112) |#5| |#5|)) (-15 -2394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3907 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3853 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3288 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1507 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4166 ((-112) |#5| |#5|)) (-15 -4166 ((-112) |#5| (-641 |#5|))) (-15 -2238 ((-641 |#5|) (-641 |#5|))) (-15 -1815 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -2156 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-15 -2512 ((-641 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2728 ((-3 (-2 (|:| -3482 (-641 |#4|)) (|:| -2244 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1945 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|) 110)) (-1884 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#4| |#4| |#5|) 82)) (-2020 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|) 104)) (-4284 (((-641 |#5|) |#4| |#5|) 126)) (-4097 (((-641 |#5|) |#4| |#5|) 133)) (-2263 (((-641 |#5|) |#4| |#5|) 134)) (-3334 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|) 111)) (-2578 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|) 132)) (-3882 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3434 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#3| (-112)) 94) (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4056 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|) 89)) (-3737 (((-1264)) 37)) (-1880 (((-1264)) 26)) (-2193 (((-1264) (-1152) (-1152) (-1152)) 33)) (-2104 (((-1264) (-1152) (-1152) (-1152)) 22))) +(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2104 ((-1264) (-1152) (-1152) (-1152))) (-15 -1880 ((-1264))) (-15 -2193 ((-1264) (-1152) (-1152) (-1152))) (-15 -3737 ((-1264))) (-15 -1884 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -3434 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3434 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#3| (-112))) (-15 -4056 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -2020 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -3882 ((-112) |#4| |#5|)) (-15 -3334 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -4284 ((-641 |#5|) |#4| |#5|)) (-15 -2578 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -4097 ((-641 |#5|) |#4| |#5|)) (-15 -3882 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -2263 ((-641 |#5|) |#4| |#5|)) (-15 -1945 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1102)) +((-1945 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2263 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3882 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2578 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4284 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3334 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3882 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2020 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4056 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2244 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-3434 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1884 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3737 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2193 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-1880 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2104 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -2104 ((-1264) (-1152) (-1152) (-1152))) (-15 -1880 ((-1264))) (-15 -2193 ((-1264) (-1152) (-1152) (-1152))) (-15 -3737 ((-1264))) (-15 -1884 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -3434 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3434 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) |#3| (-112))) (-15 -4056 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -2020 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#4| |#5|)) (-15 -3882 ((-112) |#4| |#5|)) (-15 -3334 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -4284 ((-641 |#5|) |#4| |#5|)) (-15 -2578 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -4097 ((-641 |#5|) |#4| |#5|)) (-15 -3882 ((-641 (-2 (|:| |val| (-112)) (|:| -2244 |#5|))) |#4| |#5|)) (-15 -2263 ((-641 |#5|) |#4| |#5|)) (-15 -1945 ((-641 (-2 (|:| |val| |#4|) (|:| -2244 |#5|))) |#4| |#5|))) +((-2310 (((-112) $ $) 7)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) 85)) (-1841 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-2534 (((-641 |#3|) $) 33)) (-1885 (((-112) $) 26)) (-3042 (((-112) $) 17 (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) 101) (((-112) $) 97)) (-4230 ((|#4| |#4| $) 92)) (-3453 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| $) 126)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) 27)) (-2318 (((-112) $ (-767)) 44)) (-2957 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-4157 (($) 45 T CONST)) (-2815 (((-112) $) 22 (|has| |#1| (-556)))) (-2924 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1362 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3300 (((-112) $) 25 (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1907 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 36)) (-1781 (($ (-641 |#4|)) 35)) (-2008 (((-3 $ "failed") $) 82)) (-4220 ((|#4| |#4| $) 89)) (-2027 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4194 ((|#4| |#4| $) 87)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) 105)) (-4356 (((-112) |#4| $) 136)) (-3404 (((-112) |#4| $) 133)) (-3665 (((-112) |#4| $) 137) (((-112) $) 134)) (-3534 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) 104) (((-112) $) 103)) (-3691 ((|#3| $) 34)) (-1751 (((-112) $ (-767)) 43)) (-1834 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 47)) (-3805 (((-641 |#3|) $) 32)) (-3460 (((-112) |#3| $) 31)) (-1681 (((-112) $ (-767)) 42)) (-1418 (((-1152) $) 9)) (-1307 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1677 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| |#4| $) 127)) (-3649 (((-3 |#4| "failed") $) 83)) (-2824 (((-641 $) |#4| $) 129)) (-2836 (((-3 (-112) (-641 $)) |#4| $) 132)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1648 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2987 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4022 (((-641 |#4|) $) 107)) (-3250 (((-112) |#4| $) 99) (((-112) $) 95)) (-2093 ((|#4| |#4| $) 90)) (-3288 (((-112) $ $) 110)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) 100) (((-112) $) 96)) (-4340 ((|#4| |#4| $) 91)) (-3840 (((-1114) $) 10)) (-1995 (((-3 |#4| "failed") $) 84)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4179 (((-3 $ "failed") $ |#4|) 78)) (-2941 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) 38)) (-3282 (((-112) $) 41)) (-2348 (($) 40)) (-2073 (((-767) $) 106)) (-3852 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-3772 (($ $) 39)) (-3172 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 60)) (-3311 (($ $ |#3|) 28)) (-2805 (($ $ |#3|) 30)) (-2631 (($ $) 88)) (-2029 (($ $ |#3|) 29)) (-2322 (((-858) $) 11) (((-641 |#4|) $) 37)) (-2390 (((-767) $) 76 (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3126 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2313 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) 81)) (-1801 (((-112) |#4| $) 135)) (-4363 (((-112) |#3| $) 80)) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 46 (|has| $ (-6 -4406))))) +(((-1103 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1103)) +NIL +(-13 (-1065 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-1519 (((-641 (-564)) (-564) (-564) (-564)) 37)) (-3838 (((-641 (-564)) (-564) (-564) (-564)) 27)) (-2982 (((-641 (-564)) (-564) (-564) (-564)) 32)) (-3828 (((-564) (-564) (-564)) 22)) (-4129 (((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564)) 72) (((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564)) 67)) (-1894 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112)) 49)) (-3748 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 71)) (-3509 (((-685 (-564)) (-641 (-564)) (-641 (-564))) 55)) (-2062 (((-641 (-685 (-564))) (-641 (-564))) 60)) (-3558 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 75)) (-1512 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564))) 85))) +(((-1104) (-10 -7 (-15 -1512 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3558 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2062 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -3509 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3748 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -1894 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -4129 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -4129 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3828 ((-564) (-564) (-564))) (-15 -2982 ((-641 (-564)) (-564) (-564) (-564))) (-15 -3838 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1519 ((-641 (-564)) (-564) (-564) (-564))))) (T -1104)) +((-1519 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3838 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-2982 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))) (-4129 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) (-5 *1 (-1104)))) (-4129 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) (-1894 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))) (-3748 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))) (-3509 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1104)))) (-3558 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))) (-1512 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) +(-10 -7 (-15 -1512 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3558 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2062 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -3509 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3748 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -1894 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -4129 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -4129 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3828 ((-564) (-564) (-564))) (-15 -2982 ((-641 (-564)) (-564) (-564) (-564))) (-15 -3838 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1519 ((-641 (-564)) (-564) (-564) (-564)))) +((** (($ $ (-917)) 10))) +(((-1105 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917)))) (-1106)) (T -1105)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-917)))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 14))) (((-1106) (-140)) (T -1106)) -((* (*1 *1 *1 *1) (-4 *1 (-1106))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-918))))) -(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-918))))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1615 (((-112) $) NIL (|has| |#3| (-131)))) (-1575 (($ (-918)) NIL (|has| |#3| (-1046)))) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1986 (($ $ $) NIL (|has| |#3| (-790)))) (-4088 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-4010 (((-112) $ (-768)) NIL)) (-3267 (((-768)) NIL (|has| |#3| (-368)))) (-1598 (((-564) $) NIL (|has| |#3| (-845)))) (-1970 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094)))) (-2237 (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-4050 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046)))) (-3733 (((-3 $ "failed") $) NIL (|has| |#3| (-723)))) (-2900 (($) NIL (|has| |#3| (-368)))) (-2261 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#3| $ (-564)) 12)) (-1569 (((-112) $) NIL (|has| |#3| (-845)))) (-1433 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL (|has| |#3| (-723)))) (-2607 (((-112) $) NIL (|has| |#3| (-845)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2640 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2250 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#3| |#3|) $) NIL)) (-1811 (((-918) $) NIL (|has| |#3| (-368)))) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#3| (-1094)))) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-1468 (($ (-918)) NIL (|has| |#3| (-368)))) (-2780 (((-1114) $) NIL (|has| |#3| (-1094)))) (-3303 ((|#3| $) NIL (|has| (-564) (-847)))) (-4253 (($ $ |#3|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-1794 (((-641 |#3|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-3032 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-3112 (($ (-1259 |#3|)) NIL)) (-3548 (((-134)) NIL (|has| |#3| (-363)))) (-3534 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-2791 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-1991 (($ $) NIL)) (-1831 (((-1259 |#3|) $) NIL) (($ (-564)) NIL (-4078 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-859) $) NIL (|has| |#3| (-611 (-859))))) (-2219 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-1963 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-1849 (($ $) NIL (|has| |#3| (-845)))) (-1293 (($) NIL (|has| |#3| (-131)) CONST)) (-1300 (($) NIL (|has| |#3| (-723)) CONST)) (-3435 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-1762 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1737 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1702 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1749 (((-112) $ $) NIL (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1723 (((-112) $ $) 24 (-4078 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1823 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1808 (($ $ $) NIL (|has| |#3| (-1046))) (($ $) NIL (|has| |#3| (-1046)))) (-1797 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-768)) NIL (|has| |#3| (-723))) (($ $ (-918)) NIL (|has| |#3| (-723)))) (* (($ (-564) $) NIL (|has| |#3| (-1046))) (($ $ $) NIL (|has| |#3| (-723))) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ (-768) $) NIL (|has| |#3| (-131))) (($ (-918) $) NIL (|has| |#3| (-25)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1107 |#1| |#2| |#3|) (-238 |#1| |#3|) (-768) (-768) (-790)) (T -1107)) +((* (*1 *1 *1 *1) (-4 *1 (-1106))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-917))))) +(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-917))))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-3264 (((-112) $) NIL (|has| |#3| (-131)))) (-2845 (($ (-917)) NIL (|has| |#3| (-1045)))) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2568 (($ $ $) NIL (|has| |#3| (-789)))) (-1862 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2318 (((-112) $ (-767)) NIL)) (-1959 (((-767)) NIL (|has| |#3| (-368)))) (-3085 (((-564) $) NIL (|has| |#3| (-844)))) (-3750 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094)))) (-1781 (((-564) $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-2750 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1045))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1045)))) (-2689 (((-3 $ "failed") $) NIL (|has| |#3| (-722)))) (-3860 (($) NIL (|has| |#3| (-368)))) (-1466 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#3| $ (-564)) 12)) (-2786 (((-112) $) NIL (|has| |#3| (-844)))) (-3534 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL (|has| |#3| (-722)))) (-2783 (((-112) $) NIL (|has| |#3| (-844)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1834 (((-641 |#3|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1456 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#3| |#3|) $) NIL)) (-1368 (((-917) $) NIL (|has| |#3| (-368)))) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#3| (-1094)))) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-1998 (($ (-917)) NIL (|has| |#3| (-368)))) (-3840 (((-1114) $) NIL (|has| |#3| (-1094)))) (-1995 ((|#3| $) NIL (|has| (-564) (-846)))) (-2981 (($ $ |#3|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-4324 (((-641 |#3|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-2535 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2427 (($ (-1259 |#3|)) NIL)) (-3480 (((-134)) NIL (|has| |#3| (-363)))) (-1343 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-3852 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#3| (-1094))))) (-3772 (($ $) NIL)) (-2322 (((-1259 |#3|) $) NIL) (($ (-564)) NIL (-2789 (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-858) $) NIL (|has| |#3| (-611 (-858))))) (-3179 (((-767)) NIL (|has| |#3| (-1045)) CONST)) (-2313 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4406)))) (-3598 (($ $) NIL (|has| |#3| (-844)))) (-2389 (($) NIL (|has| |#3| (-131)) CONST)) (-2403 (($) NIL (|has| |#3| (-722)) CONST)) (-3917 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-2977 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2953 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2921 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-2964 (((-112) $ $) NIL (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2942 (((-112) $ $) 24 (-2789 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3034 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3021 (($ $ $) NIL (|has| |#3| (-1045))) (($ $) NIL (|has| |#3| (-1045)))) (-3011 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-767)) NIL (|has| |#3| (-722))) (($ $ (-917)) NIL (|has| |#3| (-722)))) (* (($ (-564) $) NIL (|has| |#3| (-1045))) (($ $ $) NIL (|has| |#3| (-722))) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ (-767) $) NIL (|has| |#3| (-131))) (($ (-917) $) NIL (|has| |#3| (-25)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1107 |#1| |#2| |#3|) (-238 |#1| |#3|) (-767) (-767) (-789)) (T -1107)) NIL (-238 |#1| |#3|) -((-1929 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 52)) (-2531 (((-564) (-1232 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-4041 (((-564) (-1232 |#2| |#1|)) 81)) (-1623 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 62)) (-2320 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 98 (|has| |#1| (-452)))) (-1636 (((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 66)) (-3081 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 80))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -1929 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1623 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1636 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3081 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4041 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2320 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2531 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) (-817) (-1170)) (T -1108)) -((-2531 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2320 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-3081 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-1636 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))) (-1623 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))) (-1929 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) -(-10 -7 (-15 -1929 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1623 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1636 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3081 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4041 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2320 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2531 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-3096 (($ (-506) (-1112)) 13)) (-3080 (((-1112) $) 19)) (-1316 (((-506) $) 16)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 26) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1109) (-13 (-1077) (-10 -8 (-15 -3096 ($ (-506) (-1112))) (-15 -1316 ((-506) $)) (-15 -3080 ((-1112) $))))) (T -1109)) -((-3096 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109))))) -(-13 (-1077) (-10 -8 (-15 -3096 ($ (-506) (-1112))) (-15 -1316 ((-506) $)) (-15 -3080 ((-1112) $)))) -((-1598 (((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)) 19) (((-3 (-564) "failed") |#2| (-1170) (-840 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -1598 ((-3 (-564) "failed") |#2|)) (-15 -1598 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -1598 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|))) (T -1110)) -((-1598 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))))) (-1598 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) (-1598 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) -(-10 -7 (-15 -1598 ((-3 (-564) "failed") |#2|)) (-15 -1598 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -1598 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) -((-1598 (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)) 38) (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-949 |#1|))) 14))) -(((-1111 |#1|) (-10 -7 (-15 -1598 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -1598 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -1598 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)))) (-452)) (T -1111)) -((-1598 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-1598 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-1598 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *4))))) -(-10 -7 (-15 -1598 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -1598 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -1598 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)))) -((-1817 (((-112) $ $) NIL)) (-4352 (((-1175) $) 12)) (-4308 (((-641 (-1175)) $) 14)) (-3080 (($ (-641 (-1175)) (-1175)) 10)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 29)) (-1702 (((-112) $ $) 17))) -(((-1112) (-13 (-1094) (-10 -8 (-15 -3080 ($ (-641 (-1175)) (-1175))) (-15 -4352 ((-1175) $)) (-15 -4308 ((-641 (-1175)) $))))) (T -1112)) -((-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112))))) -(-13 (-1094) (-10 -8 (-15 -3080 ($ (-641 (-1175)) (-1175))) (-15 -4352 ((-1175) $)) (-15 -4308 ((-641 (-1175)) $)))) -((-2507 (((-316 (-564)) (-48)) 12))) -(((-1113) (-10 -7 (-15 -2507 ((-316 (-564)) (-48))))) (T -1113)) -((-2507 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113))))) -(-10 -7 (-15 -2507 ((-316 (-564)) (-48)))) -((-1817 (((-112) $ $) NIL)) (-1644 (($ $) 44)) (-1615 (((-112) $) 65)) (-4366 (($ $ $) 51)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 93)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-2487 (($ $ $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1689 (($ $ $ $) 76)) (-2427 (($ $) NIL)) (-3399 (((-418 $) $) NIL)) (-3554 (((-112) $ $) NIL)) (-3267 (((-768)) 78)) (-1598 (((-564) $) NIL)) (-1815 (($ $ $) 73)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL)) (-2237 (((-564) $) NIL)) (-1449 (($ $ $) 59)) (-4050 (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87) (((-685 (-564)) (-685 $)) 32)) (-3733 (((-3 $ "failed") $) NIL)) (-2078 (((-3 (-407 (-564)) "failed") $) NIL)) (-2272 (((-112) $) NIL)) (-3036 (((-407 (-564)) $) NIL)) (-2900 (($) 90) (($ $) 91)) (-1424 (($ $ $) 58)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL)) (-1420 (((-112) $) NIL)) (-1447 (($ $ $ $) NIL)) (-2227 (($ $ $) 88)) (-1569 (((-112) $) NIL)) (-2163 (($ $ $) NIL)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2949 (((-112) $) 67)) (-4301 (((-112) $) 64)) (-4338 (($ $) 45)) (-2619 (((-3 $ "failed") $) NIL)) (-2607 (((-112) $) 77)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1584 (($ $ $ $) 74)) (-1925 (($ $ $) 69) (($) 42 T CONST)) (-3375 (($ $ $) 68) (($) 41 T CONST)) (-1781 (($ $) NIL)) (-1811 (((-918) $) 83)) (-1502 (($ $) 72)) (-2740 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2723 (((-1152) $) NIL)) (-3244 (($ $ $) NIL)) (-2884 (($) NIL T CONST)) (-1468 (($ (-918)) 82)) (-3900 (($ $) 52)) (-2780 (((-1114) $) 71)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2777 (($ $ $) 62) (($ (-641 $)) NIL)) (-3839 (($ $) NIL)) (-3070 (((-418 $) $) NIL)) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL)) (-1403 (((-3 $ "failed") $ $) NIL)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-3920 (((-768) $) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 61)) (-3534 (($ $ (-768)) NIL) (($ $) NIL)) (-3656 (($ $) 53)) (-1991 (($ $) NIL)) (-2511 (((-564) $) 17) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-1831 (((-859) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-2219 (((-768)) NIL T CONST)) (-1935 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (-3655 (($) 40)) (-3939 (((-112) $ $) NIL)) (-2807 (($ $ $ $) 75)) (-1849 (($ $) 63)) (-3705 (($ $ $) 47)) (-1293 (($) 7 T CONST)) (-1498 (($ $ $) 50)) (-1300 (($) 39 T CONST)) (-3213 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-1510 (($ $) 48)) (-3435 (($ $ (-768)) NIL) (($ $) NIL)) (-1486 (($ $ $) 49)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 43)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 10)) (-3694 (($ $ $) 46)) (-1808 (($ $) 16) (($ $ $) 55)) (-1797 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) 57)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 38) (($ $ $) 37))) -(((-1114) (-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -4338 ($ $)) (-15 -4366 ($ $ $)) (-15 -1510 ($ $)) (-15 -1486 ($ $ $)) (-15 -1498 ($ $ $))))) (T -1114)) -((-4338 (*1 *1 *1) (-5 *1 (-1114))) (-4366 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1510 (*1 *1 *1) (-5 *1 (-1114))) (-1486 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1498 (*1 *1 *1 *1) (-5 *1 (-1114)))) -(-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -4338 ($ $)) (-15 -4366 ($ $ $)) (-15 -1510 ($ $)) (-15 -1486 ($ $ $)) (-15 -1498 ($ $ $)))) +((-3214 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 52)) (-3249 (((-564) (-1232 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-2659 (((-564) (-1232 |#2| |#1|)) 81)) (-2100 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 62)) (-1706 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 98 (|has| |#1| (-452)))) (-2206 (((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 66)) (-1722 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 80))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -3214 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2100 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2206 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1722 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2659 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1706 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3249 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) (-816) (-1170)) (T -1108)) +((-3249 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-1706 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-1722 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))) (-2100 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) +(-10 -7 (-15 -3214 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2100 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2206 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1722 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2659 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1706 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3249 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-1868 (($ (-506) (-1112)) 13)) (-3685 (((-1112) $) 19)) (-2420 (((-506) $) 16)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 26) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1109) (-13 (-1077) (-10 -8 (-15 -1868 ($ (-506) (-1112))) (-15 -2420 ((-506) $)) (-15 -3685 ((-1112) $))))) (T -1109)) +((-1868 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109))))) +(-13 (-1077) (-10 -8 (-15 -1868 ($ (-506) (-1112))) (-15 -2420 ((-506) $)) (-15 -3685 ((-1112) $)))) +((-3085 (((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)) 19) (((-3 (-564) "failed") |#2| (-1170) (-839 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -3085 ((-3 (-564) "failed") |#2|)) (-15 -3085 ((-3 (-564) "failed") |#2| (-1170) (-839 |#2|))) (-15 -3085 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|))) (T -1110)) +((-3085 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-13 (-556) (-846) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))))) (-3085 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-846) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) (-3085 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) +(-10 -7 (-15 -3085 ((-3 (-564) "failed") |#2|)) (-15 -3085 ((-3 (-564) "failed") |#2| (-1170) (-839 |#2|))) (-15 -3085 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) +((-3085 (((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)) (-1152)) 38) (((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-839 (-407 (-948 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-948 |#1|))) 14))) +(((-1111 |#1|) (-10 -7 (-15 -3085 ((-3 (-564) "failed") (-407 (-948 |#1|)))) (-15 -3085 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-839 (-407 (-948 |#1|))))) (-15 -3085 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)) (-1152)))) (-452)) (T -1111)) +((-3085 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3085 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *4))))) +(-10 -7 (-15 -3085 ((-3 (-564) "failed") (-407 (-948 |#1|)))) (-15 -3085 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-839 (-407 (-948 |#1|))))) (-15 -3085 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)) (-1152)))) +((-2310 (((-112) $ $) NIL)) (-1767 (((-1175) $) 12)) (-1712 (((-641 (-1175)) $) 14)) (-3685 (($ (-641 (-1175)) (-1175)) 10)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 29)) (-2921 (((-112) $ $) 17))) +(((-1112) (-13 (-1094) (-10 -8 (-15 -3685 ($ (-641 (-1175)) (-1175))) (-15 -1767 ((-1175) $)) (-15 -1712 ((-641 (-1175)) $))))) (T -1112)) +((-3685 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112))))) +(-13 (-1094) (-10 -8 (-15 -3685 ($ (-641 (-1175)) (-1175))) (-15 -1767 ((-1175) $)) (-15 -1712 ((-641 (-1175)) $)))) +((-3046 (((-316 (-564)) (-48)) 12))) +(((-1113) (-10 -7 (-15 -3046 ((-316 (-564)) (-48))))) (T -1113)) +((-3046 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113))))) +(-10 -7 (-15 -3046 ((-316 (-564)) (-48)))) +((-2310 (((-112) $ $) NIL)) (-4173 (($ $) 44)) (-3264 (((-112) $) 65)) (-2364 (($ $ $) 51)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 93)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-2842 (($ $ $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1472 (($ $ $ $) 76)) (-3453 (($ $) NIL)) (-2657 (((-418 $) $) NIL)) (-3547 (((-112) $ $) NIL)) (-1959 (((-767)) 78)) (-3085 (((-564) $) NIL)) (-2308 (($ $ $) 73)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL)) (-1781 (((-564) $) NIL)) (-2574 (($ $ $) 59)) (-2750 (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87) (((-685 (-564)) (-685 $)) 32)) (-2689 (((-3 $ "failed") $) NIL)) (-4175 (((-3 (-407 (-564)) "failed") $) NIL)) (-2446 (((-112) $) NIL)) (-2569 (((-407 (-564)) $) NIL)) (-3860 (($) 90) (($ $) 91)) (-2552 (($ $ $) 58)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL)) (-4229 (((-112) $) NIL)) (-4009 (($ $ $ $) NIL)) (-3253 (($ $ $) 88)) (-2786 (((-112) $) NIL)) (-3808 (($ $ $) NIL)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-1828 (((-112) $) 67)) (-3415 (((-112) $) 64)) (-2329 (($ $) 45)) (-1620 (((-3 $ "failed") $) NIL)) (-2783 (((-112) $) 77)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2937 (($ $ $ $) 74)) (-1501 (($ $ $) 69) (($) 42 T CONST)) (-2622 (($ $ $) 68) (($) 41 T CONST)) (-1605 (($ $) NIL)) (-1368 (((-917) $) 83)) (-1750 (($ $) 72)) (-3202 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1418 (((-1152) $) NIL)) (-3855 (($ $ $) NIL)) (-3346 (($) NIL T CONST)) (-1998 (($ (-917)) 82)) (-1830 (($ $) 52)) (-3840 (((-1114) $) 71)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-3235 (($ $ $) 62) (($ (-641 $)) NIL)) (-4312 (($ $) NIL)) (-2375 (((-418 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL)) (-2526 (((-3 $ "failed") $ $) NIL)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1333 (((-112) $) NIL)) (-3844 (((-767) $) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 61)) (-1343 (($ $ (-767)) NIL) (($ $) NIL)) (-4122 (($ $) 53)) (-3772 (($ $) NIL)) (-3172 (((-564) $) 17) (((-536) $) NIL) (((-888 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-2322 (((-858) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-3179 (((-767)) NIL T CONST)) (-3279 (((-112) $ $) NIL)) (-2994 (($ $ $) NIL)) (-2610 (($) 40)) (-4024 (((-112) $ $) NIL)) (-2885 (($ $ $ $) 75)) (-3598 (($ $) 63)) (-3497 (($ $ $) 47)) (-2389 (($) 7 T CONST)) (-4023 (($ $ $) 50)) (-2403 (($) 39 T CONST)) (-3552 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-818) $) 28) (((-1264) (-818) $ (-112)) 29)) (-4034 (($ $) 48)) (-3917 (($ $ (-767)) NIL) (($ $) NIL)) (-4011 (($ $ $) 49)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 43)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 10)) (-3485 (($ $ $) 46)) (-3021 (($ $) 16) (($ $ $) 55)) (-3011 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-767)) 57)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 38) (($ $ $) 37))) +(((-1114) (-13 (-545) (-840) (-657) (-824) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -2329 ($ $)) (-15 -2364 ($ $ $)) (-15 -4034 ($ $)) (-15 -4011 ($ $ $)) (-15 -4023 ($ $ $))))) (T -1114)) +((-2329 (*1 *1 *1) (-5 *1 (-1114))) (-2364 (*1 *1 *1 *1) (-5 *1 (-1114))) (-4034 (*1 *1 *1) (-5 *1 (-1114))) (-4011 (*1 *1 *1 *1) (-5 *1 (-1114))) (-4023 (*1 *1 *1 *1) (-5 *1 (-1114)))) +(-13 (-545) (-840) (-657) (-824) (-10 -8 (-6 -4393) (-6 -4398) (-6 -4394) (-15 -2329 ($ $)) (-15 -2364 ($ $ $)) (-15 -4034 ($ $)) (-15 -4011 ($ $ $)) (-15 -4023 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3155 ((|#1| $) 44)) (-4010 (((-112) $ (-768)) 8)) (-1778 (($) 7 T CONST)) (-4120 ((|#1| |#1| $) 46)) (-3923 ((|#1| $) 45)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2401 ((|#1| $) 39)) (-2783 (($ |#1| $) 40)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4153 ((|#1| $) 41)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-2950 (((-768) $) 43)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) 42)) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1846 ((|#1| $) 44)) (-2318 (((-112) $ (-767)) 8)) (-4157 (($) 7 T CONST)) (-2165 ((|#1| |#1| $) 46)) (-3880 ((|#1| $) 45)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1340 ((|#1| $) 39)) (-3861 (($ |#1| $) 40)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1313 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-1413 (((-767) $) 43)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) 42)) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1115 |#1|) (-140) (-1209)) (T -1115)) -((-4120 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4406) (-15 -4120 (|t#1| |t#1| $)) (-15 -3923 (|t#1| $)) (-15 -3155 (|t#1| $)) (-15 -2950 ((-768) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-2713 ((|#3| $) 87)) (-2347 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2237 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-4050 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 84) (((-685 |#3|) (-685 $)) 76)) (-3534 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-1385 ((|#3| $) 89)) (-2534 ((|#4| $) 43)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-918)) NIL) (($ $ (-768)) 24) (($ $ (-564)) 95))) -(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -1385 (|#3| |#1|)) (-15 -2713 (|#3| |#1|)) (-15 -2534 (|#4| |#1|)) (-15 -4050 ((-685 |#3|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -1831 (|#1| |#3|)) (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -2237 (|#3| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1831 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1831 ((-859) |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-768) (-1046) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1116)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -1385 (|#3| |#1|)) (-15 -2713 (|#3| |#1|)) (-15 -2534 (|#4| |#1|)) (-15 -4050 ((-685 |#3|) (-685 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4050 ((-685 (-564)) (-685 |#1|))) (-15 -1831 (|#1| |#3|)) (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -2237 (|#3| |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3534 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1831 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2713 ((|#2| $) 71)) (-1512 (((-112) $) 111)) (-4088 (((-3 $ "failed") $ $) 19)) (-2385 (((-112) $) 109)) (-4010 (((-112) $ (-768)) 101)) (-2899 (($ |#2|) 74)) (-1778 (($) 17 T CONST)) (-3543 (($ $) 128 (|has| |#2| (-307)))) (-3751 ((|#3| $ (-564)) 123)) (-2347 (((-3 (-564) "failed") $) 86 (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 83 (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) 80)) (-2237 (((-564) $) 85 (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) 82 (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) 81)) (-4050 (((-685 (-564)) (-685 $)) 78 (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 77 (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 76) (((-685 |#2|) (-685 $)) 75)) (-3733 (((-3 $ "failed") $) 33)) (-3531 (((-768) $) 129 (|has| |#2| (-556)))) (-2190 ((|#2| $ (-564) (-564)) 121)) (-1433 (((-641 |#2|) $) 94 (|has| $ (-6 -4406)))) (-2949 (((-112) $) 31)) (-3408 (((-768) $) 130 (|has| |#2| (-556)))) (-3540 (((-641 |#4|) $) 131 (|has| |#2| (-556)))) (-1745 (((-768) $) 117)) (-1757 (((-768) $) 118)) (-2324 (((-112) $ (-768)) 102)) (-3508 ((|#2| $) 66 (|has| |#2| (-6 (-4408 "*"))))) (-2904 (((-564) $) 113)) (-2015 (((-564) $) 115)) (-2640 (((-641 |#2|) $) 93 (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-2381 (((-564) $) 114)) (-2821 (((-564) $) 116)) (-4309 (($ (-641 (-641 |#2|))) 108)) (-2250 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-4217 (((-641 (-641 |#2|)) $) 119)) (-1713 (((-112) $ (-768)) 103)) (-2723 (((-1152) $) 9)) (-1861 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-2780 (((-1114) $) 10)) (-1403 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-556)))) (-4077 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) 107)) (-4284 (((-112) $) 104)) (-4012 (($) 105)) (-1350 ((|#2| $ (-564) (-564) |#2|) 122) ((|#2| $ (-564) (-564)) 120)) (-3534 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-1385 ((|#2| $) 70)) (-2088 (($ (-641 |#2|)) 73)) (-1302 (((-112) $) 110)) (-2534 ((|#3| $) 72)) (-2876 ((|#2| $) 67 (|has| |#2| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4406))) (((-768) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 106)) (-3065 ((|#4| $ (-564)) 124)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 84 (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) 79)) (-2219 (((-768)) 28 T CONST)) (-1963 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4406)))) (-4320 (((-112) $) 112)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 64 (|has| |#2| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2828 (((-768) $) 100 (|has| $ (-6 -4406))))) -(((-1117 |#1| |#2| |#3| |#4|) (-140) (-768) (-1046) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1117)) -((-2899 (*1 *1 *2) (-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-2088 (*1 *1 *2) (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046)))) (-1861 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1049 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-714 |t#2|)) |%noBranch|) (-15 -2899 ($ |t#2|)) (-15 -2088 ($ (-641 |t#2|))) (-15 -2534 (|t#3| $)) (-15 -2713 (|t#2| $)) (-15 -1385 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4408 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2876 (|t#2| $)) (-15 -3508 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -1861 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4408 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-714 |#2|) -4078 (|has| |#2| (-172)) (|has| |#2| (-6 (-4408 "*")))) ((-723) . T) ((-897 (-1170)) |has| |#2| (-897 (-1170))) ((-1049 |#1| |#1| |#2| |#3| |#4|) . T) ((-1035 #0#) |has| |#2| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#2| (-1035 (-564))) ((-1035 |#2|) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T)) -((-3513 ((|#4| |#4|) 82)) (-2306 ((|#4| |#4|) 77)) (-3637 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|))) |#4| |#3|) 92)) (-2176 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-1972 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79))) -(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2306 (|#4| |#4|)) (-15 -1972 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3513 (|#4| |#4|)) (-15 -2176 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3637 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1118)) -((-3637 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2176 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1972 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) -(-10 -7 (-15 -2306 (|#4| |#4|)) (-15 -1972 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3513 (|#4| |#4|)) (-15 -2176 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3637 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3331 (-641 |#3|))) |#4| |#3|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 18)) (-3209 (((-641 |#2|) $) 176)) (-3040 (((-1166 $) $ |#2|) 62) (((-1166 |#1|) $) 51)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 116 (|has| |#1| (-556)))) (-1537 (($ $) 118 (|has| |#1| (-556)))) (-1932 (((-112) $) 120 (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 |#2|)) 215)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) 170) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL)) (-2237 ((|#1| $) 168) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL)) (-1357 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3396 (($ $) 219)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) 90)) (-3031 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-531 |#2|) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2949 (((-112) $) 20)) (-4128 (((-768) $) 30)) (-3198 (($ (-1166 |#1|) |#2|) 56) (($ (-1166 $) |#2|) 73)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) 41)) (-3186 (($ |#1| (-531 |#2|)) 80) (($ $ |#2| (-768)) 60) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ |#2|) NIL)) (-1826 (((-531 |#2|) $) 207) (((-768) $ |#2|) 208) (((-641 (-768)) $ (-641 |#2|)) 209)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) 128)) (-2169 (((-3 |#2| "failed") $) 179)) (-3356 (($ $) 218)) (-3370 ((|#1| $) 45)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| |#2|) (|:| -1558 (-768))) "failed") $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) 42)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 148 (|has| |#1| (-452)))) (-2777 (($ (-641 $)) 153 (|has| |#1| (-452))) (($ $ $) 138 (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1403 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) 182) (($ $ (-641 |#2|) (-641 |#1|)) 197) (($ $ |#2| $) 181) (($ $ (-641 |#2|) (-641 $)) 196)) (-3190 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3534 (($ $ |#2|) 217) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1619 (((-531 |#2|) $) 203) (((-768) $ |#2|) 198) (((-641 (-768)) $ (-641 |#2|)) 201)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3008 ((|#1| $) 134 (|has| |#1| (-452))) (($ $ |#2|) 137 (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1831 (((-859) $) 159) (($ (-564)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3227 (((-641 |#1|) $) 162)) (-2742 ((|#1| $ (-531 |#2|)) 82) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) 87 T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) 123 (|has| |#1| (-556)))) (-1293 (($) 12 T CONST)) (-1300 (($) 14 T CONST)) (-3435 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) 106)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) 132 (|has| |#1| (-363)))) (-1808 (($ $) 93) (($ $ $) 104)) (-1797 (($ $ $) 57)) (** (($ $ (-918)) 110) (($ $ (-768)) 109)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 96) (($ $ $) 74) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1119 |#1| |#2|) (-946 |#1| (-531 |#2|) |#2|) (-1046) (-847)) (T -1119)) -NIL -(-946 |#1| (-531 |#2|) |#2|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 |#2|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3357 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3330 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3384 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2469 (((-949 |#1|) $ (-768)) NIL) (((-949 |#1|) $ (-768) (-768)) NIL)) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-768) $ |#2|) NIL) (((-768) $ |#2| (-768)) NIL)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2003 (((-112) $) NIL)) (-3186 (($ $ (-641 |#2|) (-641 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 62) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2358 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-3907 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-1348 (($ (-1 $) |#2| |#1|) 173 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $ (-768)) 16)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4326 (($ $) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (($ $ |#2| $) 105) (($ $ (-641 |#2|) (-641 $)) 98) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-3534 (($ $ |#2|) 108) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1619 (((-531 |#2|) $) NIL)) (-3280 (((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|))) 86)) (-3395 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 18)) (-1831 (((-859) $) 198) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 69) (($ |#3|) 67)) (-2742 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL) ((|#3| $ (-768)) 43)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-3427 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2315 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 52 T CONST)) (-1300 (($) 61 T CONST)) (-3435 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) 200 (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 65)) (** (($ $ (-918)) NIL) (($ $ (-768)) 76) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 111 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ (-407 (-564))) 116 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 114 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1120 |#1| |#2| |#3|) (-13 (-737 |#1| |#2|) (-10 -8 (-15 -2742 (|#3| $ (-768))) (-15 -1831 ($ |#2|)) (-15 -1831 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3280 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $ |#2| |#1|)) (-15 -1348 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1046) (-847) (-946 |#1| (-531 |#2|) |#2|)) (T -1120)) -((-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5)) (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-1831 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-1831 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847)) (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046)) (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))) (-3907 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-1348 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5)) (-4 *5 (-946 *4 (-531 *3) *3))))) -(-13 (-737 |#1| |#2|) (-10 -8 (-15 -2742 (|#3| $ (-768))) (-15 -1831 ($ |#2|)) (-15 -1831 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3280 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $ |#2| |#1|)) (-15 -1348 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-1817 (((-112) $ $) 7)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) 85)) (-2951 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-3209 (((-641 |#3|) $) 33)) (-3449 (((-112) $) 26)) (-3961 (((-112) $) 17 (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) 101) (((-112) $) 97)) (-4136 ((|#4| |#4| $) 92)) (-2427 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) 27)) (-4010 (((-112) $ (-768)) 44)) (-3752 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-1778 (($) 45 T CONST)) (-3602 (((-112) $) 22 (|has| |#1| (-556)))) (-2495 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1495 (((-112) $ $) 23 (|has| |#1| (-556)))) (-2536 (((-112) $) 25 (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2338 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 36)) (-2237 (($ (-641 |#4|)) 35)) (-3314 (((-3 $ "failed") $) 82)) (-1470 ((|#4| |#4| $) 89)) (-3337 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3492 ((|#4| |#4| $) 87)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) 105)) (-3843 (((-112) |#4| $) 136)) (-2421 (((-112) |#4| $) 133)) (-4204 (((-112) |#4| $) 137) (((-112) $) 134)) (-1433 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) 104) (((-112) $) 103)) (-1543 ((|#3| $) 34)) (-2324 (((-112) $ (-768)) 43)) (-2640 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 47)) (-3580 (((-641 |#3|) $) 32)) (-3879 (((-112) |#3| $) 31)) (-1713 (((-112) $ (-768)) 42)) (-2723 (((-1152) $) 9)) (-2100 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2624 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| |#4| $) 127)) (-2598 (((-3 |#4| "failed") $) 83)) (-1889 (((-641 $) |#4| $) 129)) (-4369 (((-3 (-112) (-641 $)) |#4| $) 132)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3425 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2817 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3123 (((-641 |#4|) $) 107)) (-4281 (((-112) |#4| $) 99) (((-112) $) 95)) (-2356 ((|#4| |#4| $) 90)) (-3984 (((-112) $ $) 110)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) 100) (((-112) $) 96)) (-1482 ((|#4| |#4| $) 91)) (-2780 (((-1114) $) 10)) (-3303 (((-3 |#4| "failed") $) 84)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3824 (((-3 $ "failed") $ |#4|) 78)) (-3951 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-4077 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) 38)) (-4284 (((-112) $) 41)) (-4012 (($) 40)) (-1619 (((-768) $) 106)) (-2791 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-1991 (($ $) 39)) (-2511 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 60)) (-4287 (($ $ |#3|) 28)) (-1887 (($ $ |#3|) 30)) (-3728 (($ $) 88)) (-3111 (($ $ |#3|) 29)) (-1831 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4321 (((-768) $) 76 (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3635 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1963 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) 81)) (-2637 (((-112) |#4| $) 135)) (-1484 (((-112) |#3| $) 80)) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 46 (|has| $ (-6 -4406))))) -(((-1121 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1121)) -NIL -(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-781 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-781 |#1| |#2| |#3| |#4|) . T) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) -((-2017 (((-641 |#2|) |#1|) 15)) (-4011 (((-641 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-641 |#2|) |#1|) 63)) (-1893 (((-641 |#2|) |#2| |#2| |#2|) 45) (((-641 |#2|) |#1|) 61)) (-4257 ((|#2| |#1|) 56)) (-3732 (((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2445 (((-641 |#2|) |#2| |#2|) 42) (((-641 |#2|) |#1|) 60)) (-1782 (((-641 |#2|) |#2| |#2| |#2| |#2|) 46) (((-641 |#2|) |#1|) 62)) (-3271 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3627 ((|#2| |#2| |#2| |#2|) 53)) (-3964 ((|#2| |#2| |#2|) 52)) (-1717 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1122 |#1| |#2|) (-10 -7 (-15 -2017 ((-641 |#2|) |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -3732 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2445 ((-641 |#2|) |#1|)) (-15 -1893 ((-641 |#2|) |#1|)) (-15 -1782 ((-641 |#2|) |#1|)) (-15 -4011 ((-641 |#2|) |#1|)) (-15 -2445 ((-641 |#2|) |#2| |#2|)) (-15 -1893 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -1782 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4011 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3964 (|#2| |#2| |#2|)) (-15 -3627 (|#2| |#2| |#2| |#2|)) (-15 -1717 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3271 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1235 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1122)) -((-3271 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-1717 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3627 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3964 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-4011 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-1782 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-1893 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2445 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-1893 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-641 *5)) (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))) (-4257 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -2017 ((-641 |#2|) |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -3732 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2445 ((-641 |#2|) |#1|)) (-15 -1893 ((-641 |#2|) |#1|)) (-15 -1782 ((-641 |#2|) |#1|)) (-15 -4011 ((-641 |#2|) |#1|)) (-15 -2445 ((-641 |#2|) |#2| |#2|)) (-15 -1893 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -1782 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4011 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3964 (|#2| |#2| |#2|)) (-15 -3627 (|#2| |#2| |#2| |#2|)) (-15 -1717 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3271 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-4051 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|))))) 128) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 127) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|)))) 125) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 123) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|)))) 101) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170)) 102) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|))) 96) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 82)) (-1951 (((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 121) (((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 54)) (-2273 (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)) 132) (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 131))) -(((-1123 |#1|) (-10 -7 (-15 -4051 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -4051 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -4051 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -4051 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1951 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1951 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2273 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2273 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)))) (-13 (-307) (-847) (-147))) (T -1123)) -((-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) (-5 *1 (-1123 *5)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5))) (-5 *1 (-1123 *5)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5))))) -(-10 -7 (-15 -4051 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -4051 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -4051 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -4051 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -4051 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1951 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1951 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2273 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2273 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)))) -((-4063 (((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)) 38)) (-2154 (((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|)))) 49))) -(((-1124 |#1|) (-10 -7 (-15 -2154 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -4063 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) (-13 (-556) (-847))) (T -1124)) -((-4063 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5)))) (-2154 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847))) (-5 *1 (-1124 *3))))) -(-10 -7 (-15 -2154 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -4063 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) -((-2017 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))) 257) (((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170)) 29) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170)) 35) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-641 (-294 (-316 |#1|))) (-316 |#1|)) 30))) -(((-1125 |#1|) (-10 -7 (-15 -2017 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -2017 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -2017 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -2017 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -2017 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (T -1125)) -((-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) (-5 *3 (-641 (-294 (-316 *5)))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-316 *5)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-294 (-316 *5))))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-294 (-316 *4))))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-316 *4))))) -(-10 -7 (-15 -2017 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -2017 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -2017 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -2017 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -2017 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) -((-2846 ((|#2| |#2|) 30 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-4334 ((|#2| |#2|) 29 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1126 |#1| |#2|) (-10 -7 (-15 -4334 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2846 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -4334 (|#2| |#2|)) (-15 -2846 (|#2| |#2|))) |%noBranch|)) (-1209) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4406) (-6 -4407)))) (T -1126)) -((-2846 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407)))))) (-4334 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407)))))) (-2846 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407)))))) (-4334 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407))))))) -(-10 -7 (-15 -4334 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2846 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -4334 (|#2| |#2|)) (-15 -2846 (|#2| |#2|))) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-3502 (((-1158 3 |#1|) $) 142)) (-3976 (((-112) $) 100)) (-2849 (($ $ (-641 (-940 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 103) (($ (-641 (-940 |#1|))) 102) (((-641 (-940 |#1|)) $) 101)) (-4100 (((-112) $) 71)) (-1850 (($ $ (-940 |#1|)) 75) (($ $ (-641 |#1|)) 80) (($ $ (-768)) 82) (($ (-940 |#1|)) 76) (((-940 |#1|) $) 74)) (-3640 (((-2 (|:| -2779 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 140)) (-1561 (((-768) $) 53)) (-4002 (((-768) $) 52)) (-2066 (($ $ (-768) (-940 |#1|)) 67)) (-2005 (((-112) $) 113)) (-2493 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 120) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 122) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 117) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 129) (($ (-641 (-641 (-940 |#1|)))) 118) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 119) (((-641 (-641 (-940 |#1|))) $) 116)) (-3956 (($ (-641 $)) 56) (($ $ $) 57)) (-1747 (((-641 (-171)) $) 135)) (-2123 (((-641 (-940 |#1|)) $) 132)) (-3975 (((-641 (-641 (-171))) $) 134)) (-3885 (((-641 (-641 (-641 (-940 |#1|)))) $) NIL)) (-2393 (((-641 (-641 (-641 (-768)))) $) 133)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3237 (((-768) $ (-641 (-940 |#1|))) 65)) (-3631 (((-112) $) 83)) (-1352 (($ $ (-641 (-940 |#1|))) 85) (($ $ (-641 (-641 |#1|))) 91) (($ (-641 (-940 |#1|))) 86) (((-641 (-940 |#1|)) $) 84)) (-1869 (($) 48) (($ (-1158 3 |#1|)) 49)) (-1991 (($ $) 63)) (-2632 (((-641 $) $) 62)) (-1900 (($ (-641 $)) 59)) (-3706 (((-641 $) $) 61)) (-1831 (((-859) $) 147)) (-1631 (((-112) $) 93)) (-2288 (($ $ (-641 (-940 |#1|))) 95) (($ $ (-641 (-641 |#1|))) 98) (($ (-641 (-940 |#1|))) 96) (((-641 (-940 |#1|)) $) 94)) (-2461 (($ $) 141)) (-1702 (((-112) $ $) NIL))) -(((-1127 |#1|) (-1128 |#1|) (-1046)) (T -1127)) +((-2165 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-767))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4406) (-15 -2165 (|t#1| |t#1| $)) (-15 -3880 (|t#1| $)) (-15 -1846 (|t#1| $)) (-15 -1413 ((-767) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3770 ((|#3| $) 87)) (-3032 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-1781 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-2750 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 84) (((-685 |#3|) (-685 $)) 76)) (-1343 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-4167 ((|#3| $) 89)) (-3281 ((|#4| $) 43)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-917)) NIL) (($ $ (-767)) 24) (($ $ (-564)) 95))) +(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -4167 (|#3| |#1|)) (-15 -3770 (|#3| |#1|)) (-15 -3281 (|#4| |#1|)) (-15 -2750 ((-685 |#3|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -2322 (|#1| |#3|)) (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1781 (|#3| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2322 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2322 ((-858) |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-767) (-1045) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1116)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -4167 (|#3| |#1|)) (-15 -3770 (|#3| |#1|)) (-15 -3281 (|#4| |#1|)) (-15 -2750 ((-685 |#3|) (-685 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2750 ((-685 (-564)) (-685 |#1|))) (-15 -2322 (|#1| |#3|)) (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1781 (|#3| |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -1343 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2322 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-3770 ((|#2| $) 71)) (-3390 (((-112) $) 111)) (-1862 (((-3 $ "failed") $ $) 19)) (-4283 (((-112) $) 109)) (-2318 (((-112) $ (-767)) 101)) (-2567 (($ |#2|) 74)) (-4157 (($) 17 T CONST)) (-3442 (($ $) 128 (|has| |#2| (-307)))) (-1597 ((|#3| $ (-564)) 123)) (-3032 (((-3 (-564) "failed") $) 86 (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 83 (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) 80)) (-1781 (((-564) $) 85 (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) 82 (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) 81)) (-2750 (((-685 (-564)) (-685 $)) 78 (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 77 (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 76) (((-685 |#2|) (-685 $)) 75)) (-2689 (((-3 $ "failed") $) 33)) (-3105 (((-767) $) 129 (|has| |#2| (-556)))) (-1407 ((|#2| $ (-564) (-564)) 121)) (-3534 (((-641 |#2|) $) 94 (|has| $ (-6 -4406)))) (-1828 (((-112) $) 31)) (-2748 (((-767) $) 130 (|has| |#2| (-556)))) (-3414 (((-641 |#4|) $) 131 (|has| |#2| (-556)))) (-3835 (((-767) $) 117)) (-3848 (((-767) $) 118)) (-1751 (((-112) $ (-767)) 102)) (-4360 ((|#2| $) 66 (|has| |#2| (-6 (-4408 "*"))))) (-2615 (((-564) $) 113)) (-1607 (((-564) $) 115)) (-1834 (((-641 |#2|) $) 93 (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-4253 (((-564) $) 114)) (-3020 (((-564) $) 116)) (-4187 (($ (-641 (-641 |#2|))) 108)) (-1456 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3818 (((-641 (-641 |#2|)) $) 119)) (-1681 (((-112) $ (-767)) 103)) (-1418 (((-1152) $) 9)) (-3721 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-3840 (((-1114) $) 10)) (-2526 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-556)))) (-1763 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) 107)) (-3282 (((-112) $) 104)) (-2348 (($) 105)) (-4353 ((|#2| $ (-564) (-564) |#2|) 122) ((|#2| $ (-564) (-564)) 120)) (-1343 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-767)) 51) (($ $ (-641 (-1170)) (-641 (-767))) 44 (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) 43 (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) 41 (|has| |#2| (-896 (-1170)))) (($ $ (-767)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-4167 ((|#2| $) 70)) (-4289 (($ (-641 |#2|)) 73)) (-2037 (((-112) $) 110)) (-3281 ((|#3| $) 72)) (-2311 ((|#2| $) 67 (|has| |#2| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4406))) (((-767) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 106)) (-1582 ((|#4| $ (-564)) 124)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 84 (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) 79)) (-3179 (((-767)) 28 T CONST)) (-2313 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4406)))) (-2378 (((-112) $) 112)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-767)) 49) (($ $ (-641 (-1170)) (-641 (-767))) 48 (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) 47 (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) 45 (|has| |#2| (-896 (-1170)))) (($ $ (-767)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 64 (|has| |#2| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2059 (((-767) $) 100 (|has| $ (-6 -4406))))) +(((-1117 |#1| |#2| |#3| |#4|) (-140) (-767) (-1045) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1117)) +((-2567 (*1 *1 *2) (-12 (-4 *2 (-1045)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-4289 (*1 *1 *2) (-12 (-5 *2 (-641 *4)) (-4 *4 (-1045)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045)))) (-3721 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1048 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-713 |t#2|)) |%noBranch|) (-15 -2567 ($ |t#2|)) (-15 -4289 ($ (-641 |t#2|))) (-15 -3281 (|t#3| $)) (-15 -3770 (|t#2| $)) (-15 -4167 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4408 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2311 (|t#2| $)) (-15 -4360 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -3721 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4408 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-713 |#2|) -2789 (|has| |#2| (-172)) (|has| |#2| (-6 (-4408 "*")))) ((-722) . T) ((-896 (-1170)) |has| |#2| (-896 (-1170))) ((-1048 |#1| |#1| |#2| |#3| |#4|) . T) ((-1034 #0#) |has| |#2| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#2| (-1034 (-564))) ((-1034 |#2|) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T)) +((-1303 ((|#4| |#4|) 82)) (-1558 ((|#4| |#4|) 77)) (-3146 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|))) |#4| |#3|) 92)) (-3952 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-2414 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79))) +(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1558 (|#4| |#4|)) (-15 -2414 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1303 (|#4| |#4|)) (-15 -3952 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3146 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1118)) +((-3146 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-3952 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1303 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(-10 -7 (-15 -1558 (|#4| |#4|)) (-15 -2414 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1303 (|#4| |#4|)) (-15 -3952 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3146 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3342 (-641 |#3|))) |#4| |#3|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 18)) (-2534 (((-641 |#2|) $) 176)) (-2340 (((-1166 $) $ |#2|) 62) (((-1166 |#1|) $) 51)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 116 (|has| |#1| (-556)))) (-3622 (($ $) 118 (|has| |#1| (-556)))) (-3247 (((-112) $) 120 (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 |#2|)) 215)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) 170) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 |#2| "failed") $) NIL)) (-1781 ((|#1| $) 168) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) ((|#2| $) NIL)) (-2595 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-2710 (($ $) 219)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) 90)) (-2520 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-531 |#2|) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-1828 (((-112) $) 20)) (-4137 (((-767) $) 30)) (-2519 (($ (-1166 |#1|) |#2|) 56) (($ (-1166 $) |#2|) 73)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) 41)) (-2507 (($ |#1| (-531 |#2|)) 80) (($ $ |#2| (-767)) 60) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ |#2|) NIL)) (-3386 (((-531 |#2|) $) 207) (((-767) $ |#2|) 208) (((-641 (-767)) $ (-641 |#2|)) 209)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) 128)) (-3878 (((-3 |#2| "failed") $) 179)) (-2674 (($ $) 218)) (-2686 ((|#1| $) 45)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| |#2|) (|:| -3866 (-767))) "failed") $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) 42)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 148 (|has| |#1| (-452)))) (-3235 (($ (-641 $)) 153 (|has| |#1| (-452))) (($ $ $) 138 (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2526 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) 182) (($ $ (-641 |#2|) (-641 |#1|)) 197) (($ $ |#2| $) 181) (($ $ (-641 |#2|) (-641 $)) 196)) (-3392 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1343 (($ $ |#2|) 217) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2073 (((-531 |#2|) $) 203) (((-767) $ |#2|) 198) (((-641 (-767)) $ (-641 |#2|)) 201)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2290 ((|#1| $) 134 (|has| |#1| (-452))) (($ $ |#2|) 137 (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2322 (((-858) $) 159) (($ (-564)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3680 (((-641 |#1|) $) 162)) (-3467 ((|#1| $ (-531 |#2|)) 82) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) 87 T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) 123 (|has| |#1| (-556)))) (-2389 (($) 12 T CONST)) (-2403 (($) 14 T CONST)) (-3917 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) 106)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) 132 (|has| |#1| (-363)))) (-3021 (($ $) 93) (($ $ $) 104)) (-3011 (($ $ $) 57)) (** (($ $ (-917)) 110) (($ $ (-767)) 109)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 96) (($ $ $) 74) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1119 |#1| |#2|) (-945 |#1| (-531 |#2|) |#2|) (-1045) (-846)) (T -1119)) +NIL +(-945 |#1| (-531 |#2|) |#2|) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 |#2|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3802 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3779 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-1433 (((-948 |#1|) $ (-767)) NIL) (((-948 |#1|) $ (-767) (-767)) NIL)) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-767) $ |#2|) NIL) (((-767) $ |#2| (-767)) NIL)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1492 (((-112) $) NIL)) (-2507 (($ $ (-641 |#2|) (-641 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 62) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3719 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2107 (($ (-1 $) |#2| |#1|) 173 (|has| |#1| (-38 (-407 (-564)))))) (-2941 (($ $ (-767)) 16)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3571 (($ $) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (($ $ |#2| $) 105) (($ $ (-641 |#2|) (-641 $)) 98) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-1343 (($ $ |#2|) 108) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2073 (((-531 |#2|) $) NIL)) (-2950 (((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|))) 86)) (-3836 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 18)) (-2322 (((-858) $) 198) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 69) (($ |#3|) 67)) (-3467 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL) ((|#3| $ (-767)) 43)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2672 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-1511 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 52 T CONST)) (-2403 (($) 61 T CONST)) (-3917 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) 200 (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 65)) (** (($ $ (-917)) NIL) (($ $ (-767)) 76) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 111 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ (-407 (-564))) 116 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 114 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1120 |#1| |#2| |#3|) (-13 (-736 |#1| |#2|) (-10 -8 (-15 -3467 (|#3| $ (-767))) (-15 -2322 ($ |#2|)) (-15 -2322 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2950 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $ |#2| |#1|)) (-15 -2107 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1045) (-846) (-945 |#1| (-531 |#2|) |#2|)) (T -1120)) +((-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-2322 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-2322 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-846)) (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))) (-3719 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-2107 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1120 *4 *3 *5)) (-4 *5 (-945 *4 (-531 *3) *3))))) +(-13 (-736 |#1| |#2|) (-10 -8 (-15 -3467 (|#3| $ (-767))) (-15 -2322 ($ |#2|)) (-15 -2322 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2950 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $ |#2| |#1|)) (-15 -2107 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2310 (((-112) $ $) 7)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) 85)) (-1841 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-2534 (((-641 |#3|) $) 33)) (-1885 (((-112) $) 26)) (-3042 (((-112) $) 17 (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) 101) (((-112) $) 97)) (-4230 ((|#4| |#4| $) 92)) (-3453 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| $) 126)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) 27)) (-2318 (((-112) $ (-767)) 44)) (-2957 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-4157 (($) 45 T CONST)) (-2815 (((-112) $) 22 (|has| |#1| (-556)))) (-2924 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1362 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3300 (((-112) $) 25 (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1907 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 36)) (-1781 (($ (-641 |#4|)) 35)) (-2008 (((-3 $ "failed") $) 82)) (-4220 ((|#4| |#4| $) 89)) (-2027 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4194 ((|#4| |#4| $) 87)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) 105)) (-4356 (((-112) |#4| $) 136)) (-3404 (((-112) |#4| $) 133)) (-3665 (((-112) |#4| $) 137) (((-112) $) 134)) (-3534 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) 104) (((-112) $) 103)) (-3691 ((|#3| $) 34)) (-1751 (((-112) $ (-767)) 43)) (-1834 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 47)) (-3805 (((-641 |#3|) $) 32)) (-3460 (((-112) |#3| $) 31)) (-1681 (((-112) $ (-767)) 42)) (-1418 (((-1152) $) 9)) (-1307 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1677 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| |#4| $) 127)) (-3649 (((-3 |#4| "failed") $) 83)) (-2824 (((-641 $) |#4| $) 129)) (-2836 (((-3 (-112) (-641 $)) |#4| $) 132)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1648 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2987 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4022 (((-641 |#4|) $) 107)) (-3250 (((-112) |#4| $) 99) (((-112) $) 95)) (-2093 ((|#4| |#4| $) 90)) (-3288 (((-112) $ $) 110)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) 100) (((-112) $) 96)) (-4340 ((|#4| |#4| $) 91)) (-3840 (((-1114) $) 10)) (-1995 (((-3 |#4| "failed") $) 84)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4179 (((-3 $ "failed") $ |#4|) 78)) (-2941 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) 38)) (-3282 (((-112) $) 41)) (-2348 (($) 40)) (-2073 (((-767) $) 106)) (-3852 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-3772 (($ $) 39)) (-3172 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 60)) (-3311 (($ $ |#3|) 28)) (-2805 (($ $ |#3|) 30)) (-2631 (($ $) 88)) (-2029 (($ $ |#3|) 29)) (-2322 (((-858) $) 11) (((-641 |#4|) $) 37)) (-2390 (((-767) $) 76 (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3126 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2313 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) 81)) (-1801 (((-112) |#4| $) 135)) (-4363 (((-112) |#3| $) 80)) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 46 (|has| $ (-6 -4406))))) +(((-1121 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1121)) +NIL +(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-780 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-780 |#1| |#2| |#3| |#4|) . T) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-1630 (((-641 |#2|) |#1|) 15)) (-2336 (((-641 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-641 |#2|) |#1|) 63)) (-2859 (((-641 |#2|) |#2| |#2| |#2|) 45) (((-641 |#2|) |#1|) 61)) (-3027 ((|#2| |#1|) 56)) (-2677 (((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-1410 (((-641 |#2|) |#2| |#2|) 42) (((-641 |#2|) |#1|) 60)) (-4192 (((-641 |#2|) |#2| |#2| |#2| |#2|) 46) (((-641 |#2|) |#1|) 62)) (-2873 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3045 ((|#2| |#2| |#2| |#2|) 53)) (-3075 ((|#2| |#2| |#2|) 52)) (-1727 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1122 |#1| |#2|) (-10 -7 (-15 -1630 ((-641 |#2|) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2677 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1410 ((-641 |#2|) |#1|)) (-15 -2859 ((-641 |#2|) |#1|)) (-15 -4192 ((-641 |#2|) |#1|)) (-15 -2336 ((-641 |#2|) |#1|)) (-15 -1410 ((-641 |#2|) |#2| |#2|)) (-15 -2859 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -4192 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2336 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3075 (|#2| |#2| |#2|)) (-15 -3045 (|#2| |#2| |#2| |#2|)) (-15 -1727 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2873 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1235 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1122)) +((-2873 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-1727 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3045 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3075 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2336 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-4192 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2859 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-1410 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2336 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-2859 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-641 *5)) (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))) (-3027 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -1630 ((-641 |#2|) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2677 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1410 ((-641 |#2|) |#1|)) (-15 -2859 ((-641 |#2|) |#1|)) (-15 -4192 ((-641 |#2|) |#1|)) (-15 -2336 ((-641 |#2|) |#1|)) (-15 -1410 ((-641 |#2|) |#2| |#2|)) (-15 -2859 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -4192 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2336 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3075 (|#2| |#2| |#2|)) (-15 -3045 (|#2| |#2| |#2| |#2|)) (-15 -1727 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2873 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2761 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|))))) 128) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170))) 127) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|)))) 125) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 123) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|)))) 101) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1170)) 102) (((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|))) 96) (((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1170)) 82)) (-2194 (((-641 (-641 (-316 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 121) (((-641 (-316 |#1|)) (-407 (-948 |#1|)) (-1170)) 54)) (-2457 (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1170)) 132) (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170)) 131))) +(((-1123 |#1|) (-10 -7 (-15 -2761 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -2761 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2761 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -2761 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -2194 ((-641 (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -2194 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2457 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -2457 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1170)))) (-13 (-307) (-846) (-147))) (T -1123)) +((-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2194 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) (-5 *1 (-1123 *5)))) (-2194 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-316 *5))) (-5 *1 (-1123 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-948 *5))))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5))))) +(-10 -7 (-15 -2761 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -2761 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2761 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -2761 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -2761 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -2194 ((-641 (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -2194 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2457 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -2457 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1170)))) +((-1628 (((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)) 38)) (-3704 (((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|)))) 49))) +(((-1124 |#1|) (-10 -7 (-15 -3704 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -1628 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) (-13 (-556) (-846))) (T -1124)) +((-1628 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-13 (-556) (-846))) (-5 *1 (-1124 *5)))) (-3704 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-846))) (-5 *1 (-1124 *3))))) +(-10 -7 (-15 -3704 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -1628 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) +((-1630 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))) 257) (((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170)) 29) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170)) 35) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-641 (-294 (-316 |#1|))) (-316 |#1|)) 30))) +(((-1125 |#1|) (-10 -7 (-15 -1630 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1630 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1630 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -1630 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -1630 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (T -1125)) +((-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) (-5 *3 (-641 (-294 (-316 *5)))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-316 *5)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-294 (-316 *5))))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-294 (-316 *4))))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-316 *4))))) +(-10 -7 (-15 -1630 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1630 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1630 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -1630 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -1630 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) +((-3267 ((|#2| |#2|) 30 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2524 ((|#2| |#2|) 29 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1126 |#1| |#2|) (-10 -7 (-15 -2524 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3267 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -2524 (|#2| |#2|)) (-15 -3267 (|#2| |#2|))) |%noBranch|)) (-1209) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4406) (-6 -4407)))) (T -1126)) +((-3267 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407)))))) (-2524 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407)))))) (-3267 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407)))))) (-2524 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407))))))) +(-10 -7 (-15 -2524 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3267 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -2524 (|#2| |#2|)) (-15 -3267 (|#2| |#2|))) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-4295 (((-1158 3 |#1|) $) 142)) (-3201 (((-112) $) 100)) (-3296 (($ $ (-641 (-939 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 103) (($ (-641 (-939 |#1|))) 102) (((-641 (-939 |#1|)) $) 101)) (-1977 (((-112) $) 71)) (-1437 (($ $ (-939 |#1|)) 75) (($ $ (-641 |#1|)) 80) (($ $ (-767)) 82) (($ (-939 |#1|)) 76) (((-939 |#1|) $) 74)) (-2597 (((-2 (|:| -3823 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 140)) (-2702 (((-767) $) 53)) (-2232 (((-767) $) 52)) (-4045 (($ $ (-767) (-939 |#1|)) 67)) (-1509 (((-112) $) 113)) (-2902 (($ $ (-641 (-641 (-939 |#1|))) (-641 (-171)) (-171)) 120) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 122) (($ $ (-641 (-641 (-939 |#1|))) (-112) (-112)) 117) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 129) (($ (-641 (-641 (-939 |#1|)))) 118) (($ (-641 (-641 (-939 |#1|))) (-112) (-112)) 119) (((-641 (-641 (-939 |#1|))) $) 116)) (-2988 (($ (-641 $)) 56) (($ $ $) 57)) (-2000 (((-641 (-171)) $) 135)) (-4330 (((-641 (-939 |#1|)) $) 132)) (-3191 (((-641 (-641 (-171))) $) 134)) (-3510 (((-641 (-641 (-641 (-939 |#1|)))) $) NIL)) (-4369 (((-641 (-641 (-641 (-767)))) $) 133)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3776 (((-767) $ (-641 (-939 |#1|))) 65)) (-3083 (((-112) $) 83)) (-3365 (($ $ (-641 (-939 |#1|))) 85) (($ $ (-641 (-641 |#1|))) 91) (($ (-641 (-939 |#1|))) 86) (((-641 (-939 |#1|)) $) 84)) (-3815 (($) 48) (($ (-1158 3 |#1|)) 49)) (-3772 (($ $) 63)) (-1757 (((-641 $) $) 62)) (-2923 (($ (-641 $)) 59)) (-2442 (((-641 $) $) 61)) (-2322 (((-858) $) 147)) (-2161 (((-112) $) 93)) (-2635 (($ $ (-641 (-939 |#1|))) 95) (($ $ (-641 (-641 |#1|))) 98) (($ (-641 (-939 |#1|))) 96) (((-641 (-939 |#1|)) $) 94)) (-3794 (($ $) 141)) (-2921 (((-112) $ $) NIL))) +(((-1127 |#1|) (-1128 |#1|) (-1045)) (T -1127)) NIL (-1128 |#1|) -((-1817 (((-112) $ $) 7)) (-3502 (((-1158 3 |#1|) $) 13)) (-3976 (((-112) $) 29)) (-2849 (($ $ (-641 (-940 |#1|))) 33) (($ $ (-641 (-641 |#1|))) 32) (($ (-641 (-940 |#1|))) 31) (((-641 (-940 |#1|)) $) 30)) (-4100 (((-112) $) 44)) (-1850 (($ $ (-940 |#1|)) 49) (($ $ (-641 |#1|)) 48) (($ $ (-768)) 47) (($ (-940 |#1|)) 46) (((-940 |#1|) $) 45)) (-3640 (((-2 (|:| -2779 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 15)) (-1561 (((-768) $) 58)) (-4002 (((-768) $) 59)) (-2066 (($ $ (-768) (-940 |#1|)) 50)) (-2005 (((-112) $) 21)) (-2493 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 28) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 27) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 26) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 25) (($ (-641 (-641 (-940 |#1|)))) 24) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 23) (((-641 (-641 (-940 |#1|))) $) 22)) (-3956 (($ (-641 $)) 57) (($ $ $) 56)) (-1747 (((-641 (-171)) $) 16)) (-2123 (((-641 (-940 |#1|)) $) 20)) (-3975 (((-641 (-641 (-171))) $) 17)) (-3885 (((-641 (-641 (-641 (-940 |#1|)))) $) 18)) (-2393 (((-641 (-641 (-641 (-768)))) $) 19)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3237 (((-768) $ (-641 (-940 |#1|))) 51)) (-3631 (((-112) $) 39)) (-1352 (($ $ (-641 (-940 |#1|))) 43) (($ $ (-641 (-641 |#1|))) 42) (($ (-641 (-940 |#1|))) 41) (((-641 (-940 |#1|)) $) 40)) (-1869 (($) 61) (($ (-1158 3 |#1|)) 60)) (-1991 (($ $) 52)) (-2632 (((-641 $) $) 53)) (-1900 (($ (-641 $)) 55)) (-3706 (((-641 $) $) 54)) (-1831 (((-859) $) 11)) (-1631 (((-112) $) 34)) (-2288 (($ $ (-641 (-940 |#1|))) 38) (($ $ (-641 (-641 |#1|))) 37) (($ (-641 (-940 |#1|))) 36) (((-641 (-940 |#1|)) $) 35)) (-2461 (($ $) 14)) (-1702 (((-112) $ $) 6))) -(((-1128 |#1|) (-140) (-1046)) (T -1128)) -((-1831 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859)))) (-1869 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1561 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3956 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-1900 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3706 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-2632 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-1991 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-3237 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1850 (*1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-1352 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1352 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2493 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-2493 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-2493 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2493 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2493 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2493 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046)) (-4 *1 (-1128 *4)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-940 *3)))))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-768))))))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-940 *3))))))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171)))))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171))))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -2779 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768)))))) (-2461 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3))))) -(-13 (-1094) (-10 -8 (-15 -1869 ($)) (-15 -1869 ($ (-1158 3 |t#1|))) (-15 -4002 ((-768) $)) (-15 -1561 ((-768) $)) (-15 -3956 ($ (-641 $))) (-15 -3956 ($ $ $)) (-15 -1900 ($ (-641 $))) (-15 -3706 ((-641 $) $)) (-15 -2632 ((-641 $) $)) (-15 -1991 ($ $)) (-15 -3237 ((-768) $ (-641 (-940 |t#1|)))) (-15 -2066 ($ $ (-768) (-940 |t#1|))) (-15 -1850 ($ $ (-940 |t#1|))) (-15 -1850 ($ $ (-641 |t#1|))) (-15 -1850 ($ $ (-768))) (-15 -1850 ($ (-940 |t#1|))) (-15 -1850 ((-940 |t#1|) $)) (-15 -4100 ((-112) $)) (-15 -1352 ($ $ (-641 (-940 |t#1|)))) (-15 -1352 ($ $ (-641 (-641 |t#1|)))) (-15 -1352 ($ (-641 (-940 |t#1|)))) (-15 -1352 ((-641 (-940 |t#1|)) $)) (-15 -3631 ((-112) $)) (-15 -2288 ($ $ (-641 (-940 |t#1|)))) (-15 -2288 ($ $ (-641 (-641 |t#1|)))) (-15 -2288 ($ (-641 (-940 |t#1|)))) (-15 -2288 ((-641 (-940 |t#1|)) $)) (-15 -1631 ((-112) $)) (-15 -2849 ($ $ (-641 (-940 |t#1|)))) (-15 -2849 ($ $ (-641 (-641 |t#1|)))) (-15 -2849 ($ (-641 (-940 |t#1|)))) (-15 -2849 ((-641 (-940 |t#1|)) $)) (-15 -3976 ((-112) $)) (-15 -2493 ($ $ (-641 (-641 (-940 |t#1|))) (-641 (-171)) (-171))) (-15 -2493 ($ $ (-641 (-641 (-641 |t#1|))) (-641 (-171)) (-171))) (-15 -2493 ($ $ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -2493 ($ $ (-641 (-641 (-641 |t#1|))) (-112) (-112))) (-15 -2493 ($ (-641 (-641 (-940 |t#1|))))) (-15 -2493 ($ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -2493 ((-641 (-641 (-940 |t#1|))) $)) (-15 -2005 ((-112) $)) (-15 -2123 ((-641 (-940 |t#1|)) $)) (-15 -2393 ((-641 (-641 (-641 (-768)))) $)) (-15 -3885 ((-641 (-641 (-641 (-940 |t#1|)))) $)) (-15 -3975 ((-641 (-641 (-171))) $)) (-15 -1747 ((-641 (-171)) $)) (-15 -3640 ((-2 (|:| -2779 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $)) (-15 -2461 ($ $)) (-15 -3502 ((-1158 3 |t#1|) $)) (-15 -1831 ((-859) $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 174) (($ (-1175)) NIL) (((-1175) $) 7)) (-4378 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-672))) 27) (((-112) $ (|[\|\|]| (-1269))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1109))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-677))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1061))) 59) (((-112) $ (|[\|\|]| (-1270))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-667))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1033))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-967))) 91) (((-112) $ (|[\|\|]| (-1068))) 95) (((-112) $ (|[\|\|]| (-1084))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1160))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1152))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-3309 (((-524) $) 20) (((-218) $) 24) (((-672) $) 28) (((-1269) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1109) $) 44) (((-96) $) 48) (((-677) $) 52) (((-517) $) 56) (((-1061) $) 60) (((-1270) $) 64) (((-525) $) 68) (((-154) $) 72) (((-667) $) 76) (((-311) $) 80) (((-1033) $) 84) (((-180) $) 88) (((-967) $) 92) (((-1068) $) 96) (((-1084) $) 100) (((-1090) $) 104) (((-624) $) 108) (((-1160) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1152) $) 136) (((-564) $) 140)) (-1702 (((-112) $ $) NIL))) +((-2310 (((-112) $ $) 7)) (-4295 (((-1158 3 |#1|) $) 13)) (-3201 (((-112) $) 29)) (-3296 (($ $ (-641 (-939 |#1|))) 33) (($ $ (-641 (-641 |#1|))) 32) (($ (-641 (-939 |#1|))) 31) (((-641 (-939 |#1|)) $) 30)) (-1977 (((-112) $) 44)) (-1437 (($ $ (-939 |#1|)) 49) (($ $ (-641 |#1|)) 48) (($ $ (-767)) 47) (($ (-939 |#1|)) 46) (((-939 |#1|) $) 45)) (-2597 (((-2 (|:| -3823 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 15)) (-2702 (((-767) $) 58)) (-2232 (((-767) $) 59)) (-4045 (($ $ (-767) (-939 |#1|)) 50)) (-1509 (((-112) $) 21)) (-2902 (($ $ (-641 (-641 (-939 |#1|))) (-641 (-171)) (-171)) 28) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 27) (($ $ (-641 (-641 (-939 |#1|))) (-112) (-112)) 26) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 25) (($ (-641 (-641 (-939 |#1|)))) 24) (($ (-641 (-641 (-939 |#1|))) (-112) (-112)) 23) (((-641 (-641 (-939 |#1|))) $) 22)) (-2988 (($ (-641 $)) 57) (($ $ $) 56)) (-2000 (((-641 (-171)) $) 16)) (-4330 (((-641 (-939 |#1|)) $) 20)) (-3191 (((-641 (-641 (-171))) $) 17)) (-3510 (((-641 (-641 (-641 (-939 |#1|)))) $) 18)) (-4369 (((-641 (-641 (-641 (-767)))) $) 19)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-3776 (((-767) $ (-641 (-939 |#1|))) 51)) (-3083 (((-112) $) 39)) (-3365 (($ $ (-641 (-939 |#1|))) 43) (($ $ (-641 (-641 |#1|))) 42) (($ (-641 (-939 |#1|))) 41) (((-641 (-939 |#1|)) $) 40)) (-3815 (($) 61) (($ (-1158 3 |#1|)) 60)) (-3772 (($ $) 52)) (-1757 (((-641 $) $) 53)) (-2923 (($ (-641 $)) 55)) (-2442 (((-641 $) $) 54)) (-2322 (((-858) $) 11)) (-2161 (((-112) $) 34)) (-2635 (($ $ (-641 (-939 |#1|))) 38) (($ $ (-641 (-641 |#1|))) 37) (($ (-641 (-939 |#1|))) 36) (((-641 (-939 |#1|)) $) 35)) (-3794 (($ $) 14)) (-2921 (((-112) $ $) 6))) +(((-1128 |#1|) (-140) (-1045)) (T -1128)) +((-2322 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) (-3815 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2988 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2442 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-1757 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-3772 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-939 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-4045 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-1437 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2635 (*1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2635 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-2161 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-3296 (*1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2902 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-939 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045)))) (-2902 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045)))) (-2902 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) (-2902 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2902 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) (-4 *1 (-1128 *4)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-939 *3)))))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-641 (-767))))))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-641 (-939 *3))))))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-171)))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-171))))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3823 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767)))))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-1158 3 *3))))) +(-13 (-1094) (-10 -8 (-15 -3815 ($)) (-15 -3815 ($ (-1158 3 |t#1|))) (-15 -2232 ((-767) $)) (-15 -2702 ((-767) $)) (-15 -2988 ($ (-641 $))) (-15 -2988 ($ $ $)) (-15 -2923 ($ (-641 $))) (-15 -2442 ((-641 $) $)) (-15 -1757 ((-641 $) $)) (-15 -3772 ($ $)) (-15 -3776 ((-767) $ (-641 (-939 |t#1|)))) (-15 -4045 ($ $ (-767) (-939 |t#1|))) (-15 -1437 ($ $ (-939 |t#1|))) (-15 -1437 ($ $ (-641 |t#1|))) (-15 -1437 ($ $ (-767))) (-15 -1437 ($ (-939 |t#1|))) (-15 -1437 ((-939 |t#1|) $)) (-15 -1977 ((-112) $)) (-15 -3365 ($ $ (-641 (-939 |t#1|)))) (-15 -3365 ($ $ (-641 (-641 |t#1|)))) (-15 -3365 ($ (-641 (-939 |t#1|)))) (-15 -3365 ((-641 (-939 |t#1|)) $)) (-15 -3083 ((-112) $)) (-15 -2635 ($ $ (-641 (-939 |t#1|)))) (-15 -2635 ($ $ (-641 (-641 |t#1|)))) (-15 -2635 ($ (-641 (-939 |t#1|)))) (-15 -2635 ((-641 (-939 |t#1|)) $)) (-15 -2161 ((-112) $)) (-15 -3296 ($ $ (-641 (-939 |t#1|)))) (-15 -3296 ($ $ (-641 (-641 |t#1|)))) (-15 -3296 ($ (-641 (-939 |t#1|)))) (-15 -3296 ((-641 (-939 |t#1|)) $)) (-15 -3201 ((-112) $)) (-15 -2902 ($ $ (-641 (-641 (-939 |t#1|))) (-641 (-171)) (-171))) (-15 -2902 ($ $ (-641 (-641 (-641 |t#1|))) (-641 (-171)) (-171))) (-15 -2902 ($ $ (-641 (-641 (-939 |t#1|))) (-112) (-112))) (-15 -2902 ($ $ (-641 (-641 (-641 |t#1|))) (-112) (-112))) (-15 -2902 ($ (-641 (-641 (-939 |t#1|))))) (-15 -2902 ($ (-641 (-641 (-939 |t#1|))) (-112) (-112))) (-15 -2902 ((-641 (-641 (-939 |t#1|))) $)) (-15 -1509 ((-112) $)) (-15 -4330 ((-641 (-939 |t#1|)) $)) (-15 -4369 ((-641 (-641 (-641 (-767)))) $)) (-15 -3510 ((-641 (-641 (-641 (-939 |t#1|)))) $)) (-15 -3191 ((-641 (-641 (-171))) $)) (-15 -2000 ((-641 (-171)) $)) (-15 -2597 ((-2 (|:| -3823 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $)) (-15 -3794 ($ $)) (-15 -4295 ((-1158 3 |t#1|) $)) (-15 -2322 ((-858) $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 174) (($ (-1175)) NIL) (((-1175) $) 7)) (-2377 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-672))) 27) (((-112) $ (|[\|\|]| (-1269))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1109))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-677))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1060))) 59) (((-112) $ (|[\|\|]| (-1270))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-667))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1032))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-966))) 91) (((-112) $ (|[\|\|]| (-1067))) 95) (((-112) $ (|[\|\|]| (-1084))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1160))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1152))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-3806 (((-524) $) 20) (((-218) $) 24) (((-672) $) 28) (((-1269) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1109) $) 44) (((-96) $) 48) (((-677) $) 52) (((-517) $) 56) (((-1060) $) 60) (((-1270) $) 64) (((-525) $) 68) (((-154) $) 72) (((-667) $) 76) (((-311) $) 80) (((-1032) $) 84) (((-180) $) 88) (((-966) $) 92) (((-1067) $) 96) (((-1084) $) 100) (((-1090) $) 104) (((-624) $) 108) (((-1160) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1152) $) 136) (((-564) $) 140)) (-2921 (((-112) $ $) NIL))) (((-1129) (-1131)) (T -1129)) NIL (-1131) -((-2614 (((-641 (-1175)) (-1152)) 9))) -(((-1130) (-10 -7 (-15 -2614 ((-641 (-1175)) (-1152))))) (T -1130)) -((-2614 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130))))) -(-10 -7 (-15 -2614 ((-641 (-1175)) (-1152)))) -((-1817 (((-112) $ $) 7)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-4378 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-672))) 76) (((-112) $ (|[\|\|]| (-1269))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1109))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-677))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1061))) 60) (((-112) $ (|[\|\|]| (-1270))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-667))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1033))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-967))) 44) (((-112) $ (|[\|\|]| (-1068))) 42) (((-112) $ (|[\|\|]| (-1084))) 40) (((-112) $ (|[\|\|]| (-1090))) 38) (((-112) $ (|[\|\|]| (-624))) 36) (((-112) $ (|[\|\|]| (-1160))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-591))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1152))) 22) (((-112) $ (|[\|\|]| (-564))) 20)) (-3309 (((-524) $) 79) (((-218) $) 77) (((-672) $) 75) (((-1269) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1109) $) 67) (((-96) $) 65) (((-677) $) 63) (((-517) $) 61) (((-1061) $) 59) (((-1270) $) 57) (((-525) $) 55) (((-154) $) 53) (((-667) $) 51) (((-311) $) 49) (((-1033) $) 47) (((-180) $) 45) (((-967) $) 43) (((-1068) $) 41) (((-1084) $) 39) (((-1090) $) 37) (((-624) $) 35) (((-1160) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-591) $) 25) (((-506) $) 23) (((-1152) $) 21) (((-564) $) 19)) (-1702 (((-112) $ $) 6))) +((-1875 (((-641 (-1175)) (-1152)) 9))) +(((-1130) (-10 -7 (-15 -1875 ((-641 (-1175)) (-1152))))) (T -1130)) +((-1875 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130))))) +(-10 -7 (-15 -1875 ((-641 (-1175)) (-1152)))) +((-2310 (((-112) $ $) 7)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-2377 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-672))) 76) (((-112) $ (|[\|\|]| (-1269))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1109))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-677))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1060))) 60) (((-112) $ (|[\|\|]| (-1270))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-667))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1032))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-966))) 44) (((-112) $ (|[\|\|]| (-1067))) 42) (((-112) $ (|[\|\|]| (-1084))) 40) (((-112) $ (|[\|\|]| (-1090))) 38) (((-112) $ (|[\|\|]| (-624))) 36) (((-112) $ (|[\|\|]| (-1160))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-591))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1152))) 22) (((-112) $ (|[\|\|]| (-564))) 20)) (-3806 (((-524) $) 79) (((-218) $) 77) (((-672) $) 75) (((-1269) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1109) $) 67) (((-96) $) 65) (((-677) $) 63) (((-517) $) 61) (((-1060) $) 59) (((-1270) $) 57) (((-525) $) 55) (((-154) $) 53) (((-667) $) 51) (((-311) $) 49) (((-1032) $) 47) (((-180) $) 45) (((-966) $) 43) (((-1067) $) 41) (((-1084) $) 39) (((-1090) $) 37) (((-624) $) 35) (((-1160) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-591) $) 25) (((-506) $) 23) (((-1152) $) 21) (((-564) $) 19)) (-2921 (((-112) $ $) 6))) (((-1131) (-140)) (T -1131)) -((-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-967))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564))))) -(-13 (-1077) (-1254) (-10 -8 (-15 -4378 ((-112) $ (|[\|\|]| (-524)))) (-15 -3309 ((-524) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-218)))) (-15 -3309 ((-218) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-672)))) (-15 -3309 ((-672) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1269)))) (-15 -3309 ((-1269) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-138)))) (-15 -3309 ((-138) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-133)))) (-15 -3309 ((-133) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3309 ((-1109) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-96)))) (-15 -3309 ((-96) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-677)))) (-15 -3309 ((-677) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-517)))) (-15 -3309 ((-517) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1061)))) (-15 -3309 ((-1061) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1270)))) (-15 -3309 ((-1270) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-525)))) (-15 -3309 ((-525) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-154)))) (-15 -3309 ((-154) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-667)))) (-15 -3309 ((-667) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-311)))) (-15 -3309 ((-311) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1033)))) (-15 -3309 ((-1033) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-180)))) (-15 -3309 ((-180) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-967)))) (-15 -3309 ((-967) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1068)))) (-15 -3309 ((-1068) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3309 ((-1084) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3309 ((-1090) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-624)))) (-15 -3309 ((-624) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3309 ((-1160) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-156)))) (-15 -3309 ((-156) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-137)))) (-15 -3309 ((-137) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-478)))) (-15 -3309 ((-478) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-591)))) (-15 -3309 ((-591) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-506)))) (-15 -3309 ((-506) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-1152)))) (-15 -3309 ((-1152) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-564)))) (-15 -3309 ((-564) $)))) -(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T) ((-1077) . T) ((-1254) . T)) -((-1829 (((-1264) (-641 (-859))) 23) (((-1264) (-859)) 22)) (-1668 (((-1264) (-641 (-859))) 21) (((-1264) (-859)) 20)) (-3069 (((-1264) (-641 (-859))) 19) (((-1264) (-859)) 11) (((-1264) (-1152) (-859)) 17))) -(((-1132) (-10 -7 (-15 -3069 ((-1264) (-1152) (-859))) (-15 -3069 ((-1264) (-859))) (-15 -1668 ((-1264) (-859))) (-15 -1829 ((-1264) (-859))) (-15 -3069 ((-1264) (-641 (-859)))) (-15 -1668 ((-1264) (-641 (-859)))) (-15 -1829 ((-1264) (-641 (-859)))))) (T -1132)) -((-1829 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))) -(-10 -7 (-15 -3069 ((-1264) (-1152) (-859))) (-15 -3069 ((-1264) (-859))) (-15 -1668 ((-1264) (-859))) (-15 -1829 ((-1264) (-859))) (-15 -3069 ((-1264) (-641 (-859)))) (-15 -1668 ((-1264) (-641 (-859)))) (-15 -1829 ((-1264) (-641 (-859))))) -((-1827 (($ $ $) 10)) (-1888 (($ $) 9)) (-3573 (($ $ $) 13)) (-1551 (($ $ $) 15)) (-4296 (($ $ $) 12)) (-2773 (($ $ $) 14)) (-4288 (($ $) 17)) (-4354 (($ $) 16)) (-1849 (($ $) 6)) (-2591 (($ $ $) 11) (($ $) 7)) (-2496 (($ $ $) 8))) +((-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1060)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1032)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-966)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1067)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) (-2377 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564))))) +(-13 (-1077) (-1254) (-10 -8 (-15 -2377 ((-112) $ (|[\|\|]| (-524)))) (-15 -3806 ((-524) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-218)))) (-15 -3806 ((-218) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-672)))) (-15 -3806 ((-672) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1269)))) (-15 -3806 ((-1269) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-138)))) (-15 -3806 ((-138) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-133)))) (-15 -3806 ((-133) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3806 ((-1109) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-96)))) (-15 -3806 ((-96) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-677)))) (-15 -3806 ((-677) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-517)))) (-15 -3806 ((-517) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1060)))) (-15 -3806 ((-1060) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1270)))) (-15 -3806 ((-1270) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-525)))) (-15 -3806 ((-525) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-154)))) (-15 -3806 ((-154) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-667)))) (-15 -3806 ((-667) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-311)))) (-15 -3806 ((-311) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1032)))) (-15 -3806 ((-1032) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-180)))) (-15 -3806 ((-180) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-966)))) (-15 -3806 ((-966) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1067)))) (-15 -3806 ((-1067) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3806 ((-1084) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3806 ((-1090) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-624)))) (-15 -3806 ((-624) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3806 ((-1160) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-156)))) (-15 -3806 ((-156) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-137)))) (-15 -3806 ((-137) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-478)))) (-15 -3806 ((-478) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-591)))) (-15 -3806 ((-591) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-506)))) (-15 -3806 ((-506) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-1152)))) (-15 -3806 ((-1152) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-564)))) (-15 -3806 ((-564) $)))) +(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T) ((-1077) . T) ((-1254) . T)) +((-3412 (((-1264) (-641 (-858))) 23) (((-1264) (-858)) 22)) (-2500 (((-1264) (-641 (-858))) 21) (((-1264) (-858)) 20)) (-4308 (((-1264) (-641 (-858))) 19) (((-1264) (-858)) 11) (((-1264) (-1152) (-858)) 17))) +(((-1132) (-10 -7 (-15 -4308 ((-1264) (-1152) (-858))) (-15 -4308 ((-1264) (-858))) (-15 -2500 ((-1264) (-858))) (-15 -3412 ((-1264) (-858))) (-15 -4308 ((-1264) (-641 (-858)))) (-15 -2500 ((-1264) (-641 (-858)))) (-15 -3412 ((-1264) (-641 (-858)))))) (T -1132)) +((-3412 (*1 *2 *3) (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-4308 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(-10 -7 (-15 -4308 ((-1264) (-1152) (-858))) (-15 -4308 ((-1264) (-858))) (-15 -2500 ((-1264) (-858))) (-15 -3412 ((-1264) (-858))) (-15 -4308 ((-1264) (-641 (-858)))) (-15 -2500 ((-1264) (-641 (-858)))) (-15 -3412 ((-1264) (-641 (-858))))) +((-3395 (($ $ $) 10)) (-2813 (($ $) 9)) (-3736 (($ $ $) 13)) (-3786 (($ $ $) 15)) (-3369 (($ $ $) 12)) (-3766 (($ $ $) 14)) (-3322 (($ $) 17)) (-2724 (($ $) 16)) (-3598 (($ $) 6)) (-2630 (($ $ $) 11) (($ $) 7)) (-2934 (($ $ $) 8))) (((-1133) (-140)) (T -1133)) -((-4288 (*1 *1 *1) (-4 *1 (-1133))) (-4354 (*1 *1 *1) (-4 *1 (-1133))) (-1551 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2773 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3573 (*1 *1 *1 *1) (-4 *1 (-1133))) (-4296 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2591 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1827 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1888 (*1 *1 *1) (-4 *1 (-1133))) (-2496 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2591 (*1 *1 *1) (-4 *1 (-1133))) (-1849 (*1 *1 *1) (-4 *1 (-1133)))) -(-13 (-10 -8 (-15 -1849 ($ $)) (-15 -2591 ($ $)) (-15 -2496 ($ $ $)) (-15 -1888 ($ $)) (-15 -1827 ($ $ $)) (-15 -2591 ($ $ $)) (-15 -4296 ($ $ $)) (-15 -3573 ($ $ $)) (-15 -2773 ($ $ $)) (-15 -1551 ($ $ $)) (-15 -4354 ($ $)) (-15 -4288 ($ $)))) -((-1817 (((-112) $ $) 44)) (-1522 ((|#1| $) 17)) (-3935 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1358 (((-112) $) 19)) (-1408 (($ $ |#1|) 30)) (-1726 (($ $ (-112)) 32)) (-3500 (($ $) 33)) (-1753 (($ $ |#2|) 31)) (-2723 (((-1152) $) NIL)) (-3788 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-2780 (((-1114) $) NIL)) (-4284 (((-112) $) 16)) (-4012 (($) 13)) (-1991 (($ $) 29)) (-1842 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2956 |#2|))) 23) (((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2956 |#2|)))) 26) (((-641 $) |#1| (-641 |#2|)) 28)) (-4270 ((|#2| $) 18)) (-1831 (((-859) $) 53)) (-1702 (((-112) $ $) 42))) -(((-1134 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -4012 ($)) (-15 -4284 ((-112) $)) (-15 -1522 (|#1| $)) (-15 -4270 (|#2| $)) (-15 -1358 ((-112) $)) (-15 -1842 ($ |#1| |#2| (-112))) (-15 -1842 ($ |#1| |#2|)) (-15 -1842 ($ (-2 (|:| |val| |#1|) (|:| -2956 |#2|)))) (-15 -1842 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2956 |#2|))))) (-15 -1842 ((-641 $) |#1| (-641 |#2|))) (-15 -1991 ($ $)) (-15 -1408 ($ $ |#1|)) (-15 -1753 ($ $ |#2|)) (-15 -1726 ($ $ (-112))) (-15 -3500 ($ $)) (-15 -3788 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3935 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134)) -((-4012 (*1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1522 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-4270 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1842 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1842 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2956 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -2956 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1408 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1753 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-1726 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3500 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3788 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-3935 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))))) -(-13 (-1094) (-10 -8 (-15 -4012 ($)) (-15 -4284 ((-112) $)) (-15 -1522 (|#1| $)) (-15 -4270 (|#2| $)) (-15 -1358 ((-112) $)) (-15 -1842 ($ |#1| |#2| (-112))) (-15 -1842 ($ |#1| |#2|)) (-15 -1842 ($ (-2 (|:| |val| |#1|) (|:| -2956 |#2|)))) (-15 -1842 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2956 |#2|))))) (-15 -1842 ((-641 $) |#1| (-641 |#2|))) (-15 -1991 ($ $)) (-15 -1408 ($ $ |#1|)) (-15 -1753 ($ $ |#2|)) (-15 -1726 ($ $ (-112))) (-15 -3500 ($ $)) (-15 -3788 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3935 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-1817 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1522 (((-1134 |#1| |#2|) $) 27)) (-3799 (($ $) 90)) (-3686 (((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 99)) (-2558 (($ $ $ (-641 (-1134 |#1| |#2|))) 107) (($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 108)) (-4010 (((-112) $ (-768)) NIL)) (-2373 (((-1134 |#1| |#2|) $ (-1134 |#1| |#2|)) 45 (|has| $ (-6 -4407)))) (-1970 (((-1134 |#1| |#2|) $ "value" (-1134 |#1| |#2|)) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 43 (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-1641 (((-641 (-2 (|:| |val| |#1|) (|:| -2956 |#2|))) $) 94)) (-3644 (($ (-1134 |#1| |#2|) $) 41)) (-2576 (($ (-1134 |#1| |#2|) $) 33)) (-1433 (((-641 (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 53)) (-3510 (((-112) (-1134 |#1| |#2|) $) 96)) (-4376 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 (-1134 |#1| |#2|)) $) 57 (|has| $ (-6 -4406)))) (-2516 (((-112) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-1134 |#1| |#2|) (-1094))))) (-2250 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 49 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 48)) (-1713 (((-112) $ (-768)) NIL)) (-4119 (((-641 (-1134 |#1| |#2|)) $) 55)) (-2033 (((-112) $) 44)) (-2723 (((-1152) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2780 (((-1114) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3116 (((-3 $ "failed") $) 88)) (-4077 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-1134 |#1| |#2|)))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-294 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-1134 |#1| |#2|) (-1134 |#1| |#2|)) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-641 (-1134 |#1| |#2|)) (-641 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094))))) (-3565 (((-112) $ $) 52)) (-4284 (((-112) $) 24)) (-4012 (($) 26)) (-1350 (((-1134 |#1| |#2|) $ "value") NIL)) (-4190 (((-564) $ $) NIL)) (-1899 (((-112) $) 46)) (-2791 (((-768) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406))) (((-768) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-1134 |#1| |#2|) (-1094))))) (-1991 (($ $) 51)) (-1842 (($ (-1134 |#1| |#2|)) 10) (($ |#1| |#2| (-641 $)) 13) (($ |#1| |#2| (-641 (-1134 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-641 |#2|)) 18)) (-3329 (((-641 |#2|) $) 95)) (-1831 (((-859) $) 86 (|has| (-1134 |#1| |#2|) (-611 (-859))))) (-2926 (((-641 $) $) 31)) (-2054 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1963 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 69 (|has| (-1134 |#1| |#2|) (-1094)))) (-2828 (((-768) $) 63 (|has| $ (-6 -4406))))) -(((-1135 |#1| |#2|) (-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4407) (-6 -4406) (-15 -3116 ((-3 $ "failed") $)) (-15 -3799 ($ $)) (-15 -1842 ($ (-1134 |#1| |#2|))) (-15 -1842 ($ |#1| |#2| (-641 $))) (-15 -1842 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -1842 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -3329 ((-641 |#2|) $)) (-15 -1641 ((-641 (-2 (|:| |val| |#1|) (|:| -2956 |#2|))) $)) (-15 -3510 ((-112) (-1134 |#1| |#2|) $)) (-15 -3686 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2576 ($ (-1134 |#1| |#2|) $)) (-15 -3644 ($ (-1134 |#1| |#2|) $)) (-15 -2558 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2558 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1135)) -((-3116 (*1 *1 *1) (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-1842 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1842 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) (-1842 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3510 (*1 *2 *3 *1) (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))) (-3686 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))) (-2576 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-3644 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2558 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2558 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1135 *4 *5))))) -(-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4407) (-6 -4406) (-15 -3116 ((-3 $ "failed") $)) (-15 -3799 ($ $)) (-15 -1842 ($ (-1134 |#1| |#2|))) (-15 -1842 ($ |#1| |#2| (-641 $))) (-15 -1842 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -1842 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -3329 ((-641 |#2|) $)) (-15 -1641 ((-641 (-2 (|:| |val| |#1|) (|:| -2956 |#2|))) $)) (-15 -3510 ((-112) (-1134 |#1| |#2|) $)) (-15 -3686 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2576 ($ (-1134 |#1| |#2|) $)) (-15 -3644 ($ (-1134 |#1| |#2|) $)) (-15 -2558 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2558 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2775 (($ $) NIL)) (-2713 ((|#2| $) NIL)) (-1512 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1696 (($ (-685 |#2|)) 56)) (-2385 (((-112) $) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-2899 (($ |#2|) 14)) (-1778 (($) NIL T CONST)) (-3543 (($ $) 69 (|has| |#2| (-307)))) (-3751 (((-240 |#1| |#2|) $ (-564)) 42)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) 83)) (-3531 (((-768) $) 71 (|has| |#2| (-556)))) (-2190 ((|#2| $ (-564) (-564)) NIL)) (-1433 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2949 (((-112) $) NIL)) (-3408 (((-768) $) 73 (|has| |#2| (-556)))) (-3540 (((-641 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-1745 (((-768) $) NIL)) (-3654 (($ |#2|) 25)) (-1757 (((-768) $) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3508 ((|#2| $) 67 (|has| |#2| (-6 (-4408 "*"))))) (-2904 (((-564) $) NIL)) (-2015 (((-564) $) NIL)) (-2640 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-2381 (((-564) $) NIL)) (-2821 (((-564) $) NIL)) (-4309 (($ (-641 (-641 |#2|))) 37)) (-2250 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4217 (((-641 (-641 |#2|)) $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-1861 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-2780 (((-1114) $) NIL)) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-4077 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-3534 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1385 ((|#2| $) NIL)) (-2088 (($ (-641 |#2|)) 50)) (-1302 (((-112) $) NIL)) (-2534 (((-240 |#1| |#2|) $) NIL)) (-2876 ((|#2| $) 65 (|has| |#2| (-6 (-4408 "*"))))) (-2791 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1991 (($ $) NIL)) (-2511 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-3065 (((-240 |#1| |#2|) $ (-564)) 44)) (-1831 (((-859) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) 52)) (-2219 (((-768)) 23 T CONST)) (-1963 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-4320 (((-112) $) NIL)) (-1293 (($) 16 T CONST)) (-1300 (($) 21 T CONST)) (-3435 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1136 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -3654 ($ |#2|)) (-15 -2775 ($ $)) (-15 -1696 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4408 "*"))) (-6 -4395) |%noBranch|) (IF (|has| |#2| (-6 (-4408 "*"))) (IF (|has| |#2| (-6 -4403)) (-6 -4403) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-768) (-1046)) (T -1136)) -((-3654 (*1 *1 *2) (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046)))) (-2775 (*1 *1 *1) (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046)))) (-1696 (*1 *1 *2) (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4)) (-14 *3 (-768))))) -(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -3654 ($ |#2|)) (-15 -2775 ($ $)) (-15 -1696 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4408 "*"))) (-6 -4395) |%noBranch|) (IF (|has| |#2| (-6 (-4408 "*"))) (IF (|has| |#2| (-6 -4403)) (-6 -4403) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) -((-3129 (($ $) 19)) (-1655 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1647 (((-112) $ $) 24)) (-1573 (($ $) 17)) (-1350 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) 31)) (-1831 (($ (-144)) 29) (((-859) $) NIL))) -(((-1137 |#1|) (-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -1350 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1| (-141))) (-15 -1655 (|#1| |#1| (-144))) (-15 -1831 (|#1| (-144))) (-15 -1647 ((-112) |#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -1573 (|#1| |#1|)) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -1350 ((-144) |#1| (-564))) (-15 -1350 ((-144) |#1| (-564) (-144)))) (-1138)) (T -1137)) -NIL -(-10 -8 (-15 -1831 ((-859) |#1|)) (-15 -1350 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1| (-141))) (-15 -1655 (|#1| |#1| (-144))) (-15 -1831 (|#1| (-144))) (-15 -1647 ((-112) |#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -1573 (|#1| |#1|)) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -1350 ((-144) |#1| (-564))) (-15 -1350 ((-144) |#1| (-564) (-144)))) -((-1817 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-3579 (($ $) 120)) (-3129 (($ $) 121)) (-1655 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-1620 (((-112) $ $) 118)) (-1596 (((-112) $ $ (-564)) 117)) (-3838 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-2386 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-2573 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-4010 (((-112) $ (-768)) 8)) (-1970 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4082 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-4325 (($ $) 90 (|has| $ (-6 -4407)))) (-3919 (($ $) 100)) (-1880 (($ $ (-1226 (-564)) $) 114)) (-3337 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4406)))) (-1988 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4406)))) (-2261 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4407)))) (-2190 (((-144) $ (-564)) 51)) (-1647 (((-112) $ $) 119)) (-3360 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-1433 (((-641 (-144)) $) 30 (|has| $ (-6 -4406)))) (-3654 (($ (-768) (-144)) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 87 (|has| (-144) (-847)))) (-3956 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-2640 (((-641 (-144)) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 86 (|has| (-144) (-847)))) (-3373 (((-112) $ $ (-144)) 115)) (-3343 (((-768) $ $ (-144)) 116)) (-2250 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-1309 (($ $) 122)) (-1573 (($ $) 123)) (-1713 (((-112) $ (-768)) 10)) (-4093 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-2723 (((-1152) $) 22 (|has| (-144) (-1094)))) (-3652 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| (-144) (-1094)))) (-3303 (((-144) $) 42 (|has| (-564) (-847)))) (-3995 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-4253 (($ $ (-144)) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1794 (((-641 (-144)) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-2791 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4406))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-1842 (($ (-641 (-144))) 70)) (-3043 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (($ (-144)) 111) (((-859) $) 18 (|has| (-144) (-611 (-859))))) (-1963 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1737 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1702 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-1749 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1723 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3322 (*1 *1 *1) (-4 *1 (-1133))) (-2724 (*1 *1 *1) (-4 *1 (-1133))) (-3786 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3766 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3736 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3369 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2630 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3395 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2813 (*1 *1 *1) (-4 *1 (-1133))) (-2934 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2630 (*1 *1 *1) (-4 *1 (-1133))) (-3598 (*1 *1 *1) (-4 *1 (-1133)))) +(-13 (-10 -8 (-15 -3598 ($ $)) (-15 -2630 ($ $)) (-15 -2934 ($ $ $)) (-15 -2813 ($ $)) (-15 -3395 ($ $ $)) (-15 -2630 ($ $ $)) (-15 -3369 ($ $ $)) (-15 -3736 ($ $ $)) (-15 -3766 ($ $ $)) (-15 -3786 ($ $ $)) (-15 -2724 ($ $)) (-15 -3322 ($ $)))) +((-2310 (((-112) $ $) 44)) (-2053 ((|#1| $) 17)) (-3992 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2984 (((-112) $) 19)) (-4114 (($ $ |#1|) 30)) (-1803 (($ $ (-112)) 32)) (-4273 (($ $) 33)) (-3946 (($ $ |#2|) 31)) (-1418 (((-1152) $) NIL)) (-1916 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3840 (((-1114) $) NIL)) (-3282 (((-112) $) 16)) (-2348 (($) 13)) (-3772 (($ $) 29)) (-2335 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2244 |#2|))) 23) (((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2244 |#2|)))) 26) (((-641 $) |#1| (-641 |#2|)) 28)) (-1612 ((|#2| $) 18)) (-2322 (((-858) $) 53)) (-2921 (((-112) $ $) 42))) +(((-1134 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2348 ($)) (-15 -3282 ((-112) $)) (-15 -2053 (|#1| $)) (-15 -1612 (|#2| $)) (-15 -2984 ((-112) $)) (-15 -2335 ($ |#1| |#2| (-112))) (-15 -2335 ($ |#1| |#2|)) (-15 -2335 ($ (-2 (|:| |val| |#1|) (|:| -2244 |#2|)))) (-15 -2335 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2244 |#2|))))) (-15 -2335 ((-641 $) |#1| (-641 |#2|))) (-15 -3772 ($ $)) (-15 -4114 ($ $ |#1|)) (-15 -3946 ($ $ |#2|)) (-15 -1803 ($ $ (-112))) (-15 -4273 ($ $)) (-15 -1916 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3992 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134)) +((-2348 (*1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2053 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-1612 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2335 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2244 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -2244 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-3772 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-4114 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3946 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-4273 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1916 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-3992 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))))) +(-13 (-1094) (-10 -8 (-15 -2348 ($)) (-15 -3282 ((-112) $)) (-15 -2053 (|#1| $)) (-15 -1612 (|#2| $)) (-15 -2984 ((-112) $)) (-15 -2335 ($ |#1| |#2| (-112))) (-15 -2335 ($ |#1| |#2|)) (-15 -2335 ($ (-2 (|:| |val| |#1|) (|:| -2244 |#2|)))) (-15 -2335 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2244 |#2|))))) (-15 -2335 ((-641 $) |#1| (-641 |#2|))) (-15 -3772 ($ $)) (-15 -4114 ($ $ |#1|)) (-15 -3946 ($ $ |#2|)) (-15 -1803 ($ $ (-112))) (-15 -4273 ($ $)) (-15 -1916 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3992 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2310 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2053 (((-1134 |#1| |#2|) $) 27)) (-2041 (($ $) 90)) (-2271 (((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 99)) (-2281 (($ $ $ (-641 (-1134 |#1| |#2|))) 107) (($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 108)) (-2318 (((-112) $ (-767)) NIL)) (-4159 (((-1134 |#1| |#2|) $ (-1134 |#1| |#2|)) 45 (|has| $ (-6 -4407)))) (-3750 (((-1134 |#1| |#2|) $ "value" (-1134 |#1| |#2|)) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 43 (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3994 (((-641 (-2 (|:| |val| |#1|) (|:| -2244 |#2|))) $) 94)) (-3175 (($ (-1134 |#1| |#2|) $) 41)) (-3628 (($ (-1134 |#1| |#2|) $) 33)) (-3534 (((-641 (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 53)) (-4370 (((-112) (-1134 |#1| |#2|) $) 96)) (-1634 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 (-1134 |#1| |#2|)) $) 57 (|has| $ (-6 -4406)))) (-3114 (((-112) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-1134 |#1| |#2|) (-1094))))) (-1456 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 49 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 48)) (-1681 (((-112) $ (-767)) NIL)) (-1502 (((-641 (-1134 |#1| |#2|)) $) 55)) (-1808 (((-112) $) 44)) (-1418 (((-1152) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3840 (((-1114) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2069 (((-3 $ "failed") $) 88)) (-1763 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-1134 |#1| |#2|)))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-294 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-1134 |#1| |#2|) (-1134 |#1| |#2|)) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-641 (-1134 |#1| |#2|)) (-641 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094))))) (-3652 (((-112) $ $) 52)) (-3282 (((-112) $) 24)) (-2348 (($) 26)) (-4353 (((-1134 |#1| |#2|) $ "value") NIL)) (-3526 (((-564) $ $) NIL)) (-2911 (((-112) $) 46)) (-3852 (((-767) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406))) (((-767) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-1134 |#1| |#2|) (-1094))))) (-3772 (($ $) 51)) (-2335 (($ (-1134 |#1| |#2|)) 10) (($ |#1| |#2| (-641 $)) 13) (($ |#1| |#2| (-641 (-1134 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-641 |#2|)) 18)) (-3973 (((-641 |#2|) $) 95)) (-2322 (((-858) $) 86 (|has| (-1134 |#1| |#2|) (-611 (-858))))) (-1591 (((-641 $) $) 31)) (-2040 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2313 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 69 (|has| (-1134 |#1| |#2|) (-1094)))) (-2059 (((-767) $) 63 (|has| $ (-6 -4406))))) +(((-1135 |#1| |#2|) (-13 (-1006 (-1134 |#1| |#2|)) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2069 ((-3 $ "failed") $)) (-15 -2041 ($ $)) (-15 -2335 ($ (-1134 |#1| |#2|))) (-15 -2335 ($ |#1| |#2| (-641 $))) (-15 -2335 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -2335 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -3973 ((-641 |#2|) $)) (-15 -3994 ((-641 (-2 (|:| |val| |#1|) (|:| -2244 |#2|))) $)) (-15 -4370 ((-112) (-1134 |#1| |#2|) $)) (-15 -2271 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3628 ($ (-1134 |#1| |#2|) $)) (-15 -3175 ($ (-1134 |#1| |#2|) $)) (-15 -2281 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2281 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1135)) +((-2069 (*1 *1 *1) (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2041 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) (-2335 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-4370 (*1 *2 *3 *1) (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))) (-2271 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))) (-3628 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-3175 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2281 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2281 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1135 *4 *5))))) +(-13 (-1006 (-1134 |#1| |#2|)) (-10 -8 (-6 -4407) (-6 -4406) (-15 -2069 ((-3 $ "failed") $)) (-15 -2041 ($ $)) (-15 -2335 ($ (-1134 |#1| |#2|))) (-15 -2335 ($ |#1| |#2| (-641 $))) (-15 -2335 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -2335 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -3973 ((-641 |#2|) $)) (-15 -3994 ((-641 (-2 (|:| |val| |#1|) (|:| -2244 |#2|))) $)) (-15 -4370 ((-112) (-1134 |#1| |#2|) $)) (-15 -2271 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3628 ($ (-1134 |#1| |#2|) $)) (-15 -3175 ($ (-1134 |#1| |#2|) $)) (-15 -2281 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2281 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-3789 (($ $) NIL)) (-3770 ((|#2| $) NIL)) (-3390 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1530 (($ (-685 |#2|)) 56)) (-4283 (((-112) $) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2567 (($ |#2|) 14)) (-4157 (($) NIL T CONST)) (-3442 (($ $) 69 (|has| |#2| (-307)))) (-1597 (((-240 |#1| |#2|) $ (-564)) 42)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) 83)) (-3105 (((-767) $) 71 (|has| |#2| (-556)))) (-1407 ((|#2| $ (-564) (-564)) NIL)) (-3534 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1828 (((-112) $) NIL)) (-2748 (((-767) $) 73 (|has| |#2| (-556)))) (-3414 (((-641 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-3835 (((-767) $) NIL)) (-4121 (($ |#2|) 25)) (-3848 (((-767) $) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-4360 ((|#2| $) 67 (|has| |#2| (-6 (-4408 "*"))))) (-2615 (((-564) $) NIL)) (-1607 (((-564) $) NIL)) (-1834 (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4253 (((-564) $) NIL)) (-3020 (((-564) $) NIL)) (-4187 (($ (-641 (-641 |#2|))) 37)) (-1456 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3818 (((-641 (-641 |#2|)) $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-3721 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-3840 (((-1114) $) NIL)) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-1343 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4167 ((|#2| $) NIL)) (-4289 (($ (-641 |#2|)) 50)) (-2037 (((-112) $) NIL)) (-3281 (((-240 |#1| |#2|) $) NIL)) (-2311 ((|#2| $) 65 (|has| |#2| (-6 (-4408 "*"))))) (-3852 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3772 (($ $) NIL)) (-3172 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-1582 (((-240 |#1| |#2|) $ (-564)) 44)) (-2322 (((-858) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) 52)) (-3179 (((-767)) 23 T CONST)) (-2313 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2378 (((-112) $) NIL)) (-2389 (($) 16 T CONST)) (-2403 (($) 21 T CONST)) (-3917 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1136 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -4121 ($ |#2|)) (-15 -3789 ($ $)) (-15 -1530 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4408 "*"))) (-6 -4395) |%noBranch|) (IF (|has| |#2| (-6 (-4408 "*"))) (IF (|has| |#2| (-6 -4403)) (-6 -4403) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-767) (-1045)) (T -1136)) +((-4121 (*1 *1 *2) (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))) (-1530 (*1 *1 *2) (-12 (-5 *2 (-685 *4)) (-4 *4 (-1045)) (-5 *1 (-1136 *3 *4)) (-14 *3 (-767))))) +(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -4121 ($ |#2|)) (-15 -3789 ($ $)) (-15 -1530 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4408 "*"))) (-6 -4395) |%noBranch|) (IF (|has| |#2| (-6 (-4408 "*"))) (IF (|has| |#2| (-6 -4403)) (-6 -4403) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) +((-4084 (($ $) 19)) (-2355 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3925 (((-112) $ $) 24)) (-2828 (($ $) 17)) (-4353 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) 31)) (-2322 (($ (-144)) 29) (((-858) $) NIL))) +(((-1137 |#1|) (-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| (-141))) (-15 -2355 (|#1| |#1| (-144))) (-15 -2322 (|#1| (-144))) (-15 -3925 ((-112) |#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -2828 (|#1| |#1|)) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -4353 ((-144) |#1| (-564))) (-15 -4353 ((-144) |#1| (-564) (-144)))) (-1138)) (T -1137)) +NIL +(-10 -8 (-15 -2322 ((-858) |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| (-141))) (-15 -2355 (|#1| |#1| (-144))) (-15 -2322 (|#1| (-144))) (-15 -3925 ((-112) |#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -2828 (|#1| |#1|)) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -4353 ((-144) |#1| (-564))) (-15 -4353 ((-144) |#1| (-564) (-144)))) +((-2310 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-3795 (($ $) 120)) (-4084 (($ $) 121)) (-2355 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-3904 (((-112) $ $) 118)) (-3883 (((-112) $ $ (-564)) 117)) (-4302 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-4294 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-2441 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-2318 (((-112) $ (-767)) 8)) (-3750 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-1470 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2443 (($ $) 90 (|has| $ (-6 -4407)))) (-2493 (($ $) 100)) (-2742 (($ $ (-1226 (-564)) $) 114)) (-2027 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4406)))) (-3239 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4406)))) (-1466 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4407)))) (-1407 (((-144) $ (-564)) 51)) (-3925 (((-112) $ $) 119)) (-3847 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-3534 (((-641 (-144)) $) 30 (|has| $ (-6 -4406)))) (-4121 (($ (-767) (-144)) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 87 (|has| (-144) (-846)))) (-2988 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-1834 (((-641 (-144)) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 86 (|has| (-144) (-846)))) (-3858 (((-112) $ $ (-144)) 115)) (-3983 (((-767) $ $ (-144)) 116)) (-1456 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2134 (($ $) 122)) (-2828 (($ $) 123)) (-1681 (((-112) $ (-767)) 10)) (-1476 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-1418 (((-1152) $) 22 (|has| (-144) (-1094)))) (-4116 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| (-144) (-1094)))) (-1995 (((-144) $) 42 (|has| (-564) (-846)))) (-3393 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2981 (($ $ (-144)) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-4324 (((-641 (-144)) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3852 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4406))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-2335 (($ (-641 (-144))) 70)) (-3533 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (($ (-144)) 111) (((-858) $) 18 (|has| (-144) (-611 (-858))))) (-2313 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2953 (((-112) $ $) 83 (|has| (-144) (-846)))) (-2921 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-2964 (((-112) $ $) 85 (|has| (-144) (-846)))) (-2942 (((-112) $ $) 82 (|has| (-144) (-846)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1138) (-140)) (T -1138)) -((-1573 (*1 *1 *1) (-4 *1 (-1138))) (-1309 (*1 *1 *1) (-4 *1 (-1138))) (-3129 (*1 *1 *1) (-4 *1 (-1138))) (-3579 (*1 *1 *1) (-4 *1 (-1138))) (-1647 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1620 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1596 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))) (-3343 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768)))) (-3373 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))) (-1880 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))) (-3360 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))) (-3360 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-1655 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-1655 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4093 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-4093 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-1350 (*1 *1 *1 *1) (-4 *1 (-1138)))) -(-13 (-19 (-144)) (-10 -8 (-15 -1573 ($ $)) (-15 -1309 ($ $)) (-15 -3129 ($ $)) (-15 -3579 ($ $)) (-15 -1647 ((-112) $ $)) (-15 -1620 ((-112) $ $)) (-15 -1596 ((-112) $ $ (-564))) (-15 -3343 ((-768) $ $ (-144))) (-15 -3373 ((-112) $ $ (-144))) (-15 -1880 ($ $ (-1226 (-564)) $)) (-15 -3360 ((-564) $ $ (-564))) (-15 -3360 ((-564) (-141) $ (-564))) (-15 -1831 ($ (-144))) (-15 -3838 ((-641 $) $ (-144))) (-15 -3838 ((-641 $) $ (-141))) (-15 -1655 ($ $ (-144))) (-15 -1655 ($ $ (-141))) (-15 -4093 ($ $ (-144))) (-15 -4093 ($ $ (-141))) (-15 -4082 ($ $ (-144))) (-15 -4082 ($ $ (-141))) (-15 -1350 ($ $ $)))) -(((-34) . T) ((-102) -4078 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-611 (-859)) -4078 (|has| (-144) (-1094)) (|has| (-144) (-847)) (|has| (-144) (-611 (-859)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-847) |has| (-144) (-847)) ((-1094) -4078 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-1209) . T)) -((-4058 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-768)) 112)) (-2062 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768)) 61)) (-3012 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-768)) 98)) (-3876 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-2035 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768)) 63) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768) (-112)) 65)) (-1295 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 85)) (-2511 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) 90)) (-3937 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|) 60)) (-1397 (((-768) (-641 |#4|) (-641 |#5|)) 21))) -(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1397 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3876 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3937 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4058 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-768))) (-15 -2511 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -3012 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139)) -((-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-4058 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2956 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2956 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))) (-1295 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-1295 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2035 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2035 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-2035 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-2062 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2062 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3937 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1397 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3876 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3937 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2062 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5| (-768))) (-15 -2035 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) |#4| |#5|)) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1295 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4058 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))))) (-768))) (-15 -2511 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|)))) (-15 -3012 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2956 |#5|))) (-768)))) -((-1817 (((-112) $ $) NIL)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2951 (((-641 $) (-641 |#4|)) 121) (((-641 $) (-641 |#4|) (-112)) 122) (((-641 $) (-641 |#4|) (-112) (-112)) 120) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 123)) (-3209 (((-641 |#3|) $) NIL)) (-3449 (((-112) $) NIL)) (-3961 (((-112) $) NIL (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-2427 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| $) 94)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3752 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 72)) (-1778 (($) NIL T CONST)) (-3602 (((-112) $) 29 (|has| |#1| (-556)))) (-2495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2536 (((-112) $) NIL (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2338 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2237 (($ (-641 |#4|)) NIL)) (-3314 (((-3 $ "failed") $) 45)) (-1470 ((|#4| |#4| $) 75)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2576 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) NIL)) (-3843 (((-112) |#4| $) NIL)) (-2421 (((-112) |#4| $) NIL)) (-4204 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2954 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 136)) (-1433 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1543 ((|#3| $) 38)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#4|) $) 19 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2250 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 23)) (-3580 (((-641 |#3|) $) NIL)) (-3879 (((-112) |#3| $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2100 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2624 (((-641 (-2 (|:| |val| |#4|) (|:| -2956 $))) |#4| |#4| $) 114)) (-2598 (((-3 |#4| "failed") $) 42)) (-1889 (((-641 $) |#4| $) 99)) (-4369 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-3273 (((-641 (-2 (|:| |val| (-112)) (|:| -2956 $))) |#4| $) 109) (((-112) |#4| $) 62)) (-3425 (((-641 $) |#4| $) 118) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 119) (((-641 $) |#4| (-641 $)) NIL)) (-2603 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 131)) (-2817 (($ |#4| $) 85) (($ (-641 |#4|) $) 86) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 84)) (-3123 (((-641 |#4|) $) NIL)) (-4281 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2356 ((|#4| |#4| $) NIL)) (-3984 (((-112) $ $) NIL)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1482 ((|#4| |#4| $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-3 |#4| "failed") $) 40)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3824 (((-3 $ "failed") $ |#4|) 57)) (-3951 (($ $ |#4|) NIL) (((-641 $) |#4| $) 101) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 96)) (-4077 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 17)) (-4012 (($) 14)) (-1619 (((-768) $) NIL)) (-2791 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) 13)) (-2511 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 22)) (-4287 (($ $ |#3|) 52)) (-1887 (($ $ |#3|) 53)) (-3728 (($ $) NIL)) (-3111 (($ $ |#3|) NIL)) (-1831 (((-859) $) 35) (((-641 |#4|) $) 46)) (-4321 (((-768) $) NIL (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3635 (((-641 $) |#4| $) 63) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-1963 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) NIL)) (-2637 (((-112) |#4| $) NIL)) (-1484 (((-112) |#3| $) 71)) (-1702 (((-112) $ $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1140 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2817 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2603 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2954 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1140)) -((-2817 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2951 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2603 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2954 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) -(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2817 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2951 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2603 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2954 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3155 ((|#1| $) 37)) (-1960 (($ (-641 |#1|)) 45)) (-4010 (((-112) $ (-768)) NIL)) (-1778 (($) NIL T CONST)) (-4120 ((|#1| |#1| $) 40)) (-3923 ((|#1| $) 35)) (-1433 (((-641 |#1|) $) 18 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 22)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2401 ((|#1| $) 38)) (-2783 (($ |#1| $) 41)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4153 ((|#1| $) 36)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 32)) (-4012 (($) 43)) (-2950 (((-768) $) 30)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 27)) (-1831 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-2321 (($ (-641 |#1|)) NIL)) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-2828 (((-768) $) 31 (|has| $ (-6 -4406))))) -(((-1141 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -1960 ($ (-641 |#1|))))) (-1209)) (T -1141)) -((-1960 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3))))) -(-13 (-1115 |#1|) (-10 -8 (-15 -1960 ($ (-641 |#1|))))) -((-1970 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 54) ((|#2| $ (-564) |#2|) 51)) (-1346 (((-112) $) 11)) (-2250 (($ (-1 |#2| |#2|) $) 49)) (-3303 ((|#2| $) NIL) (($ $ (-768)) 19)) (-4253 (($ $ |#2|) 50)) (-4337 (((-112) $) 10)) (-1350 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1226 (-564))) 37) ((|#2| $ (-564)) 28) ((|#2| $ (-564) |#2|) NIL)) (-2460 (($ $ $) 57) (($ $ |#2|) NIL)) (-3043 (($ $ $) 39) (($ |#2| $) NIL) (($ (-641 $)) 46) (($ $ |#2|) NIL))) -(((-1142 |#1| |#2|) (-10 -8 (-15 -1346 ((-112) |#1|)) (-15 -4337 ((-112) |#1|)) (-15 -1970 (|#2| |#1| (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564))) (-15 -4253 (|#1| |#1| |#2|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -3043 (|#1| (-641 |#1|))) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -1970 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -1970 (|#2| |#1| "last" |#2|)) (-15 -1970 (|#1| |#1| "rest" |#1|)) (-15 -1970 (|#2| |#1| "first" |#2|)) (-15 -2460 (|#1| |#1| |#2|)) (-15 -2460 (|#1| |#1| |#1|)) (-15 -1350 (|#2| |#1| "last")) (-15 -1350 (|#1| |#1| "rest")) (-15 -3303 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "first")) (-15 -3303 (|#2| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -1350 (|#2| |#1| "value")) (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|))) (-1143 |#2|) (-1209)) (T -1142)) -NIL -(-10 -8 (-15 -1346 ((-112) |#1|)) (-15 -4337 ((-112) |#1|)) (-15 -1970 (|#2| |#1| (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564) |#2|)) (-15 -1350 (|#2| |#1| (-564))) (-15 -4253 (|#1| |#1| |#2|)) (-15 -3043 (|#1| |#1| |#2|)) (-15 -3043 (|#1| (-641 |#1|))) (-15 -1350 (|#1| |#1| (-1226 (-564)))) (-15 -1970 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -1970 (|#2| |#1| "last" |#2|)) (-15 -1970 (|#1| |#1| "rest" |#1|)) (-15 -1970 (|#2| |#1| "first" |#2|)) (-15 -2460 (|#1| |#1| |#2|)) (-15 -2460 (|#1| |#1| |#1|)) (-15 -1350 (|#2| |#1| "last")) (-15 -1350 (|#1| |#1| "rest")) (-15 -3303 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "first")) (-15 -3303 (|#2| |#1|)) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -1350 (|#2| |#1| "value")) (-15 -2250 (|#1| (-1 |#2| |#2|) |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-3149 ((|#1| $) 65)) (-4045 (($ $) 67)) (-1956 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3653 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4406)))) (-3137 ((|#1| $) 66)) (-1778 (($) 7 T CONST)) (-3314 (($ $) 73) (($ $ (-768)) 71)) (-3337 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4406))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2261 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 87)) (-1346 (((-112) $) 83)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3654 (($ (-768) |#1|) 108)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 95 (|has| (-564) (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 94 (|has| (-564) (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2598 ((|#1| $) 70) (($ $ (-768)) 68)) (-3652 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3883 (((-641 (-564)) $) 92)) (-4336 (((-112) (-564) $) 91)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 76) (($ $ (-768)) 74)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4253 (($ $ |#1|) 96 (|has| $ (-6 -4407)))) (-4337 (((-112) $) 84)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 90)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-4190 (((-564) $ $) 44)) (-2126 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1899 (((-112) $) 46)) (-2034 (($ $) 62)) (-3292 (($ $) 59 (|has| $ (-6 -4407)))) (-1724 (((-768) $) 63)) (-3910 (($ $) 64)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2511 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 107)) (-2460 (($ $ $) 61 (|has| $ (-6 -4407))) (($ $ |#1|) 60 (|has| $ (-6 -4407)))) (-3043 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2828 (*1 *1 *1) (-4 *1 (-1138))) (-2134 (*1 *1 *1) (-4 *1 (-1138))) (-4084 (*1 *1 *1) (-4 *1 (-1138))) (-3795 (*1 *1 *1) (-4 *1 (-1138))) (-3925 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-3904 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-3883 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))) (-3983 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-767)))) (-3858 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2742 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))) (-3847 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))) (-3847 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-2355 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2355 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-1476 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-1476 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-1470 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-1470 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4353 (*1 *1 *1 *1) (-4 *1 (-1138)))) +(-13 (-19 (-144)) (-10 -8 (-15 -2828 ($ $)) (-15 -2134 ($ $)) (-15 -4084 ($ $)) (-15 -3795 ($ $)) (-15 -3925 ((-112) $ $)) (-15 -3904 ((-112) $ $)) (-15 -3883 ((-112) $ $ (-564))) (-15 -3983 ((-767) $ $ (-144))) (-15 -3858 ((-112) $ $ (-144))) (-15 -2742 ($ $ (-1226 (-564)) $)) (-15 -3847 ((-564) $ $ (-564))) (-15 -3847 ((-564) (-141) $ (-564))) (-15 -2322 ($ (-144))) (-15 -4302 ((-641 $) $ (-144))) (-15 -4302 ((-641 $) $ (-141))) (-15 -2355 ($ $ (-144))) (-15 -2355 ($ $ (-141))) (-15 -1476 ($ $ (-144))) (-15 -1476 ($ $ (-141))) (-15 -1470 ($ $ (-144))) (-15 -1470 ($ $ (-141))) (-15 -4353 ($ $ $)))) +(((-34) . T) ((-102) -2789 (|has| (-144) (-1094)) (|has| (-144) (-846))) ((-611 (-858)) -2789 (|has| (-144) (-1094)) (|has| (-144) (-846)) (|has| (-144) (-611 (-858)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-846) |has| (-144) (-846)) ((-1094) -2789 (|has| (-144) (-1094)) (|has| (-144) (-846))) ((-1209) . T)) +((-2832 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-767)) 112)) (-4002 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767)) 61)) (-3502 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-767)) 98)) (-3438 (((-767) (-641 |#4|) (-641 |#5|)) 30)) (-1832 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767)) 63) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767) (-112)) 65)) (-1965 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 85)) (-3172 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) 90)) (-4013 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|) 60)) (-4018 (((-767) (-641 |#4|) (-641 |#5|)) 21))) +(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4018 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3438 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4013 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2832 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-767))) (-15 -3172 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -3502 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139)) +((-3502 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-2832 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2244 *11)))))) (-5 *6 (-767)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2244 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))) (-1965 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-1965 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-1832 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-1832 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-1832 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-4002 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-4002 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4018 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3438 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4013 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -4002 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5| (-767))) (-15 -1832 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) |#4| |#5|)) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1965 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2832 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))))) (-767))) (-15 -3172 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|)))) (-15 -3502 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2244 |#5|))) (-767)))) +((-2310 (((-112) $ $) NIL)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1841 (((-641 $) (-641 |#4|)) 121) (((-641 $) (-641 |#4|) (-112)) 122) (((-641 $) (-641 |#4|) (-112) (-112)) 120) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 123)) (-2534 (((-641 |#3|) $) NIL)) (-1885 (((-112) $) NIL)) (-3042 (((-112) $) NIL (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4230 ((|#4| |#4| $) NIL)) (-3453 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| $) 94)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2957 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 72)) (-4157 (($) NIL T CONST)) (-2815 (((-112) $) 29 (|has| |#1| (-556)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1362 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-112) $) NIL (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1907 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) NIL)) (-1781 (($ (-641 |#4|)) NIL)) (-2008 (((-3 $ "failed") $) 45)) (-4220 ((|#4| |#4| $) 75)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4194 ((|#4| |#4| $) NIL)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) NIL)) (-4356 (((-112) |#4| $) NIL)) (-3404 (((-112) |#4| $) NIL)) (-3665 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1876 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 136)) (-3534 (((-641 |#4|) $) 18 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3691 ((|#3| $) 38)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#4|) $) 19 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-1456 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 23)) (-3805 (((-641 |#3|) $) NIL)) (-3460 (((-112) |#3| $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-1307 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-1677 (((-641 (-2 (|:| |val| |#4|) (|:| -2244 $))) |#4| |#4| $) 114)) (-3649 (((-3 |#4| "failed") $) 42)) (-2824 (((-641 $) |#4| $) 99)) (-2836 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-2896 (((-641 (-2 (|:| |val| (-112)) (|:| -2244 $))) |#4| $) 109) (((-112) |#4| $) 62)) (-1648 (((-641 $) |#4| $) 118) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 119) (((-641 $) |#4| (-641 $)) NIL)) (-2754 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 131)) (-2987 (($ |#4| $) 85) (($ (-641 |#4|) $) 86) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 84)) (-4022 (((-641 |#4|) $) NIL)) (-3250 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2093 ((|#4| |#4| $) NIL)) (-3288 (((-112) $ $) NIL)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4340 ((|#4| |#4| $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-3 |#4| "failed") $) 40)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4179 (((-3 $ "failed") $ |#4|) 57)) (-2941 (($ $ |#4|) NIL) (((-641 $) |#4| $) 101) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 96)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 17)) (-2348 (($) 14)) (-2073 (((-767) $) NIL)) (-3852 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) 13)) (-3172 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-2805 (($ $ |#3|) 53)) (-2631 (($ $) NIL)) (-2029 (($ $ |#3|) NIL)) (-2322 (((-858) $) 35) (((-641 |#4|) $) 46)) (-2390 (((-767) $) NIL (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3126 (((-641 $) |#4| $) 63) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-2313 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) NIL)) (-1801 (((-112) |#4| $) NIL)) (-4363 (((-112) |#3| $) 71)) (-2921 (((-112) $ $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1140 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2987 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2754 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1876 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1140)) +((-2987 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-1841 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-1841 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2754 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-1876 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2987 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1841 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2754 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1876 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1846 ((|#1| $) 37)) (-2220 (($ (-641 |#1|)) 45)) (-2318 (((-112) $ (-767)) NIL)) (-4157 (($) NIL T CONST)) (-2165 ((|#1| |#1| $) 40)) (-3880 ((|#1| $) 35)) (-3534 (((-641 |#1|) $) 18 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 22)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1340 ((|#1| $) 38)) (-3861 (($ |#1| $) 41)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1313 ((|#1| $) 36)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 32)) (-2348 (($) 43)) (-1413 (((-767) $) 30)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 27)) (-2322 (((-858) $) 14 (|has| |#1| (-611 (-858))))) (-1717 (($ (-641 |#1|)) NIL)) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-2059 (((-767) $) 31 (|has| $ (-6 -4406))))) +(((-1141 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -2220 ($ (-641 |#1|))))) (-1209)) (T -1141)) +((-2220 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3))))) +(-13 (-1115 |#1|) (-10 -8 (-15 -2220 ($ (-641 |#1|))))) +((-3750 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 54) ((|#2| $ (-564) |#2|) 51)) (-3524 (((-112) $) 11)) (-1456 (($ (-1 |#2| |#2|) $) 49)) (-1995 ((|#2| $) NIL) (($ $ (-767)) 19)) (-2981 (($ $ |#2|) 50)) (-2562 (((-112) $) 10)) (-4353 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1226 (-564))) 37) ((|#2| $ (-564)) 28) ((|#2| $ (-564) |#2|) NIL)) (-3783 (($ $ $) 57) (($ $ |#2|) NIL)) (-3533 (($ $ $) 39) (($ |#2| $) NIL) (($ (-641 $)) 46) (($ $ |#2|) NIL))) +(((-1142 |#1| |#2|) (-10 -8 (-15 -3524 ((-112) |#1|)) (-15 -2562 ((-112) |#1|)) (-15 -3750 (|#2| |#1| (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564))) (-15 -2981 (|#1| |#1| |#2|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -3533 (|#1| (-641 |#1|))) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -3750 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3750 (|#2| |#1| "last" |#2|)) (-15 -3750 (|#1| |#1| "rest" |#1|)) (-15 -3750 (|#2| |#1| "first" |#2|)) (-15 -3783 (|#1| |#1| |#2|)) (-15 -3783 (|#1| |#1| |#1|)) (-15 -4353 (|#2| |#1| "last")) (-15 -4353 (|#1| |#1| "rest")) (-15 -1995 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "first")) (-15 -1995 (|#2| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -4353 (|#2| |#1| "value")) (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|))) (-1143 |#2|) (-1209)) (T -1142)) +NIL +(-10 -8 (-15 -3524 ((-112) |#1|)) (-15 -2562 ((-112) |#1|)) (-15 -3750 (|#2| |#1| (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564) |#2|)) (-15 -4353 (|#2| |#1| (-564))) (-15 -2981 (|#1| |#1| |#2|)) (-15 -3533 (|#1| |#1| |#2|)) (-15 -3533 (|#1| (-641 |#1|))) (-15 -4353 (|#1| |#1| (-1226 (-564)))) (-15 -3750 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3750 (|#2| |#1| "last" |#2|)) (-15 -3750 (|#1| |#1| "rest" |#1|)) (-15 -3750 (|#2| |#1| "first" |#2|)) (-15 -3783 (|#1| |#1| |#2|)) (-15 -3783 (|#1| |#1| |#1|)) (-15 -4353 (|#2| |#1| "last")) (-15 -4353 (|#1| |#1| "rest")) (-15 -1995 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "first")) (-15 -1995 (|#2| |#1|)) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#1|)) (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -4353 (|#2| |#1| "value")) (-15 -1456 (|#1| (-1 |#2| |#2|) |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-3678 ((|#1| $) 65)) (-3284 (($ $) 67)) (-2246 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3238 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4406)))) (-3667 ((|#1| $) 66)) (-4157 (($) 7 T CONST)) (-2008 (($ $) 73) (($ $ (-767)) 71)) (-2027 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4406))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1466 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 87)) (-3524 (((-112) $) 83)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4121 (($ (-767) |#1|) 108)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 95 (|has| (-564) (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 94 (|has| (-564) (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3649 ((|#1| $) 70) (($ $ (-767)) 68)) (-4116 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3487 (((-641 (-564)) $) 92)) (-2550 (((-112) (-564) $) 91)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 76) (($ $ (-767)) 74)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2981 (($ $ |#1|) 96 (|has| $ (-6 -4407)))) (-2562 (((-112) $) 84)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 90)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-3526 (((-564) $ $) 44)) (-1996 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-2911 (((-112) $) 46)) (-1819 (($ $) 62)) (-3051 (($ $) 59 (|has| $ (-6 -4407)))) (-1793 (((-767) $) 63)) (-3743 (($ $) 64)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3172 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 107)) (-3783 (($ $ $) 61 (|has| $ (-6 -4407))) (($ $ |#1|) 60 (|has| $ (-6 -4407)))) (-3533 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1143 |#1|) (-140) (-1209)) (T -1143)) -((-4337 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) -(-13 (-1247 |t#1|) (-647 |t#1|) (-10 -8 (-15 -4337 ((-112) $)) (-15 -1346 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T) ((-1247 |#1|) . T)) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#2| $ |#1| |#2|) NIL)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2945 (((-641 |#1|) $) NIL)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3883 (((-641 |#1|) $) NIL)) (-4336 (((-112) |#1| $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-2562 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(-13 (-1247 |t#1|) (-647 |t#1|) (-10 -8 (-15 -2562 ((-112) $)) (-15 -3524 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T) ((-1247 |#1|) . T)) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#2| $ |#1| |#2|) NIL)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2843 (((-641 |#1|) $) NIL)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3487 (((-641 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-1144 |#1| |#2| |#3|) (-1185 |#1| |#2|) (-1094) (-1094) |#2|) (T -1144)) NIL (-1185 |#1| |#2|) -((-1817 (((-112) $ $) 7)) (-2619 (((-3 $ "failed") $) 13)) (-2723 (((-1152) $) 9)) (-2884 (($) 14 T CONST)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11)) (-1702 (((-112) $ $) 6))) +((-2310 (((-112) $ $) 7)) (-1620 (((-3 $ "failed") $) 13)) (-1418 (((-1152) $) 9)) (-3346 (($) 14 T CONST)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11)) (-2921 (((-112) $ $) 6))) (((-1145) (-140)) (T -1145)) -((-2884 (*1 *1) (-4 *1 (-1145))) (-2619 (*1 *1 *1) (|partial| -4 *1 (-1145)))) -(-13 (-1094) (-10 -8 (-15 -2884 ($) -1809) (-15 -2619 ((-3 $ "failed") $)))) -(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) -((-4156 (((-1150 |#1|) (-1150 |#1|)) 17)) (-1742 (((-1150 |#1|) (-1150 |#1|)) 13)) (-2360 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 20)) (-1363 (((-1150 |#1|) (-1150 |#1|)) 15))) -(((-1146 |#1|) (-10 -7 (-15 -1742 ((-1150 |#1|) (-1150 |#1|))) (-15 -1363 ((-1150 |#1|) (-1150 |#1|))) (-15 -4156 ((-1150 |#1|) (-1150 |#1|))) (-15 -2360 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1146)) -((-2360 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1146 *4)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-1742 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3))))) -(-10 -7 (-15 -1742 ((-1150 |#1|) (-1150 |#1|))) (-15 -1363 ((-1150 |#1|) (-1150 |#1|))) (-15 -4156 ((-1150 |#1|) (-1150 |#1|))) (-15 -2360 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) -((-3043 (((-1150 |#1|) (-1150 (-1150 |#1|))) 15))) -(((-1147 |#1|) (-10 -7 (-15 -3043 ((-1150 |#1|) (-1150 (-1150 |#1|))))) (-1209)) (T -1147)) -((-3043 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209))))) -(-10 -7 (-15 -3043 ((-1150 |#1|) (-1150 (-1150 |#1|))))) -((-1694 (((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 25)) (-1988 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 26)) (-2449 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 16))) -(((-1148 |#1| |#2|) (-10 -7 (-15 -2449 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -1694 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1988 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) (-1209) (-1209)) (T -1148)) -((-1988 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6))))) -(-10 -7 (-15 -2449 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -1694 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1988 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) -((-2449 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)) 21))) -(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -2449 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -1149)) -((-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8))))) -(-10 -7 (-15 -2449 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) NIL)) (-3149 ((|#1| $) NIL)) (-4045 (($ $) 66)) (-1956 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-3459 (($ $ (-564)) 126 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-3024 (((-859) $) 55 (|has| |#1| (-1094)))) (-4154 (((-112)) 54 (|has| |#1| (-1094)))) (-2373 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3653 (($ $ $) 114 (|has| $ (-6 -4407))) (($ $ (-564) $) 139)) (-3881 ((|#1| $ |#1|) 123 (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) 118 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 120 (|has| $ (-6 -4407))) (($ $ "rest" $) 122 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 125 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 111 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 75 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 78)) (-3137 ((|#1| $) NIL)) (-1778 (($) NIL T CONST)) (-2030 (($ $) 14)) (-3314 (($ $) 41) (($ $ (-768)) 109)) (-3452 (((-112) (-641 |#1|) $) 132 (|has| |#1| (-1094)))) (-3216 (($ (-641 |#1|)) 128)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 77)) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-1346 (((-112) $) NIL)) (-1433 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1478 (((-1264) (-564) $) 138 (|has| |#1| (-1094)))) (-3334 (((-768) $) 135)) (-3128 (((-641 $) $) NIL)) (-4376 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 93 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 83) (($ (-1 |#1| |#1| |#1|) $ $) 87)) (-1713 (((-112) $ (-768)) NIL)) (-4119 (((-641 |#1|) $) NIL)) (-2033 (((-112) $) NIL)) (-2784 (($ $) 112)) (-3894 (((-112) $) 13)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2598 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-3652 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) 94)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3688 (($ (-1 |#1|)) 141) (($ (-1 |#1| |#1|) |#1|) 142)) (-3411 ((|#1| $) 10)) (-3303 ((|#1| $) 40) (($ $ (-768)) 64)) (-2310 (((-2 (|:| |cycle?| (-112)) (|:| -3057 (-768)) (|:| |period| (-768))) (-768) $) 35)) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3735 (($ (-1 (-112) |#1|) $) 143)) (-3744 (($ (-1 (-112) |#1|) $) 144)) (-4253 (($ $ |#1|) 88 (|has| $ (-6 -4407)))) (-3951 (($ $ (-564)) 44)) (-4337 (((-112) $) 92)) (-2265 (((-112) $) 12)) (-4201 (((-112) $) 134)) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 30)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) 20)) (-4012 (($) 59)) (-1350 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 73) ((|#1| $ (-564) |#1|) NIL)) (-4190 (((-564) $ $) 63)) (-2126 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3236 (($ (-1 $)) 62)) (-1899 (((-112) $) 89)) (-2034 (($ $) 90)) (-3292 (($ $) 115 (|has| $ (-6 -4407)))) (-1724 (((-768) $) NIL)) (-3910 (($ $) NIL)) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 58)) (-2511 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 72)) (-4251 (($ |#1| $) 113)) (-2460 (($ $ $) 116 (|has| $ (-6 -4407))) (($ $ |#1|) 117 (|has| $ (-6 -4407)))) (-3043 (($ $ $) 99) (($ |#1| $) 60) (($ (-641 $)) 104) (($ $ |#1|) 98)) (-4037 (($ $) 65)) (-1831 (($ (-641 |#1|)) 127) (((-859) $) 56 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) NIL)) (-2054 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 130 (|has| |#1| (-1094)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1150 |#1|) (-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4407) (-15 -3216 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -3452 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -2310 ((-2 (|:| |cycle?| (-112)) (|:| -3057 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -3236 ($ (-1 $))) (-15 -4251 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1478 ((-1264) (-564) $)) (-15 -3024 ((-859) $)) (-15 -4154 ((-112)))) |%noBranch|) (-15 -3653 ($ $ (-564) $)) (-15 -3688 ($ (-1 |#1|))) (-15 -3688 ($ (-1 |#1| |#1|) |#1|)) (-15 -3735 ($ (-1 (-112) |#1|) $)) (-15 -3744 ($ (-1 (-112) |#1|) $)))) (-1209)) (T -1150)) -((-3216 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3452 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) (-5 *1 (-1150 *4)))) (-2310 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3057 (-768)) (|:| |period| (-768)))) (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768)))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-4251 (*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))) (-1478 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-4154 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-3653 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3688 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3744 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) -(-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4407) (-15 -3216 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -3452 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -2310 ((-2 (|:| |cycle?| (-112)) (|:| -3057 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -3236 ($ (-1 $))) (-15 -4251 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1478 ((-1264) (-564) $)) (-15 -3024 ((-859) $)) (-15 -4154 ((-112)))) |%noBranch|) (-15 -3653 ($ $ (-564) $)) (-15 -3688 ($ (-1 |#1|))) (-15 -3688 ($ (-1 |#1| |#1|) |#1|)) (-15 -3735 ($ (-1 (-112) |#1|) $)) (-15 -3744 ($ (-1 (-112) |#1|) $)))) -((-1817 (((-112) $ $) 19)) (-3579 (($ $) 120)) (-3129 (($ $) 121)) (-1655 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-1620 (((-112) $ $) 118)) (-1596 (((-112) $ $ (-564)) 117)) (-1307 (($ (-564)) 127)) (-3838 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-2386 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-2573 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-4010 (((-112) $ (-768)) 8)) (-1970 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4082 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-4325 (($ $) 90 (|has| $ (-6 -4407)))) (-3919 (($ $) 100)) (-1880 (($ $ (-1226 (-564)) $) 114)) (-3337 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4406)))) (-1988 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4406)))) (-2261 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4407)))) (-2190 (((-144) $ (-564)) 51)) (-1647 (((-112) $ $) 119)) (-3360 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-1433 (((-641 (-144)) $) 30 (|has| $ (-6 -4406)))) (-3654 (($ (-768) (-144)) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 87 (|has| (-144) (-847)))) (-3956 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-2640 (((-641 (-144)) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 86 (|has| (-144) (-847)))) (-3373 (((-112) $ $ (-144)) 115)) (-3343 (((-768) $ $ (-144)) 116)) (-2250 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-1309 (($ $) 122)) (-1573 (($ $) 123)) (-1713 (((-112) $ (-768)) 10)) (-4093 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-2723 (((-1152) $) 22)) (-3652 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21)) (-3303 (((-144) $) 42 (|has| (-564) (-847)))) (-3995 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-4253 (($ $ (-144)) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1794 (((-641 (-144)) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-2791 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4406))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-1842 (($ (-641 (-144))) 70)) (-3043 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (($ (-144)) 111) (((-859) $) 18)) (-1963 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4406)))) (-3213 (((-1152) $) 131) (((-1152) $ (-112)) 130) (((-1264) (-819) $) 129) (((-1264) (-819) $ (-112)) 128)) (-1762 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1737 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1702 (((-112) $ $) 20)) (-1749 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1723 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3346 (*1 *1) (-4 *1 (-1145))) (-1620 (*1 *1 *1) (|partial| -4 *1 (-1145)))) +(-13 (-1094) (-10 -8 (-15 -3346 ($) -2255) (-15 -1620 ((-3 $ "failed") $)))) +(((-102) . T) ((-611 (-858)) . T) ((-1094) . T)) +((-1342 (((-1150 |#1|) (-1150 |#1|)) 17)) (-1949 (((-1150 |#1|) (-1150 |#1|)) 13)) (-4017 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 20)) (-2419 (((-1150 |#1|) (-1150 |#1|)) 15))) +(((-1146 |#1|) (-10 -7 (-15 -1949 ((-1150 |#1|) (-1150 |#1|))) (-15 -2419 ((-1150 |#1|) (-1150 |#1|))) (-15 -1342 ((-1150 |#1|) (-1150 |#1|))) (-15 -4017 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1146)) +((-4017 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1146 *4)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3))))) +(-10 -7 (-15 -1949 ((-1150 |#1|) (-1150 |#1|))) (-15 -2419 ((-1150 |#1|) (-1150 |#1|))) (-15 -1342 ((-1150 |#1|) (-1150 |#1|))) (-15 -4017 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) +((-3533 (((-1150 |#1|) (-1150 (-1150 |#1|))) 15))) +(((-1147 |#1|) (-10 -7 (-15 -3533 ((-1150 |#1|) (-1150 (-1150 |#1|))))) (-1209)) (T -1147)) +((-3533 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209))))) +(-10 -7 (-15 -3533 ((-1150 |#1|) (-1150 (-1150 |#1|))))) +((-1514 (((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 25)) (-3239 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 26)) (-3123 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 16))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -3123 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -1514 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -3239 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) (-1209) (-1209)) (T -1148)) +((-3239 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) (-1514 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6))))) +(-10 -7 (-15 -3123 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -1514 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -3239 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) +((-3123 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)) 21))) +(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -1149)) +((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8))))) +(-10 -7 (-15 -3123 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) NIL)) (-3678 ((|#1| $) NIL)) (-3284 (($ $) 66)) (-2246 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4407)))) (-1964 (($ $ (-564)) 126 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-2462 (((-858) $) 55 (|has| |#1| (-1094)))) (-1322 (((-112)) 54 (|has| |#1| (-1094)))) (-4159 ((|#1| $ |#1|) NIL (|has| $ (-6 -4407)))) (-3238 (($ $ $) 114 (|has| $ (-6 -4407))) (($ $ (-564) $) 139)) (-3468 ((|#1| $ |#1|) 123 (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) 118 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 120 (|has| $ (-6 -4407))) (($ $ "rest" $) 122 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 125 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 111 (|has| $ (-6 -4407))) ((|#1| $ (-564) |#1|) 75 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 78)) (-3667 ((|#1| $) NIL)) (-4157 (($) NIL T CONST)) (-1778 (($ $) 14)) (-2008 (($ $) 41) (($ $ (-767)) 109)) (-1908 (((-112) (-641 |#1|) $) 132 (|has| |#1| (-1094)))) (-3584 (($ (-641 |#1|)) 128)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 77)) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3524 (((-112) $) NIL)) (-3534 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1363 (((-1264) (-564) $) 138 (|has| |#1| (-1094)))) (-2132 (((-767) $) 135)) (-4074 (((-641 $) $) NIL)) (-1634 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 93 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 83) (($ (-1 |#1| |#1| |#1|) $ $) 87)) (-1681 (((-112) $ (-767)) NIL)) (-1502 (((-641 |#1|) $) NIL)) (-1808 (((-112) $) NIL)) (-3869 (($ $) 112)) (-3585 (((-112) $) 13)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3649 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4116 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) 94)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2892 (($ (-1 |#1|)) 141) (($ (-1 |#1| |#1|) |#1|) 142)) (-1524 ((|#1| $) 10)) (-1995 ((|#1| $) 40) (($ $ (-767)) 64)) (-1602 (((-2 (|:| |cycle?| (-112)) (|:| -3498 (-767)) (|:| |period| (-767))) (-767) $) 35)) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2935 (($ (-1 (-112) |#1|) $) 143)) (-2946 (($ (-1 (-112) |#1|) $) 144)) (-2981 (($ $ |#1|) 88 (|has| $ (-6 -4407)))) (-2941 (($ $ (-564)) 44)) (-2562 (((-112) $) 92)) (-2356 (((-112) $) 12)) (-3643 (((-112) $) 134)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 30)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) 20)) (-2348 (($) 59)) (-4353 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 73) ((|#1| $ (-564) |#1|) NIL)) (-3526 (((-564) $ $) 63)) (-1996 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3764 (($ (-1 $)) 62)) (-2911 (((-112) $) 89)) (-1819 (($ $) 90)) (-3051 (($ $) 115 (|has| $ (-6 -4407)))) (-1793 (((-767) $) NIL)) (-3743 (($ $) NIL)) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 58)) (-3172 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 72)) (-1644 (($ |#1| $) 113)) (-3783 (($ $ $) 116 (|has| $ (-6 -4407))) (($ $ |#1|) 117 (|has| $ (-6 -4407)))) (-3533 (($ $ $) 99) (($ |#1| $) 60) (($ (-641 $)) 104) (($ $ |#1|) 98)) (-2614 (($ $) 65)) (-2322 (($ (-641 |#1|)) 127) (((-858) $) 56 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) NIL)) (-2040 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 130 (|has| |#1| (-1094)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1150 |#1|) (-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4407) (-15 -3584 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -1908 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -1602 ((-2 (|:| |cycle?| (-112)) (|:| -3498 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3764 ($ (-1 $))) (-15 -1644 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1363 ((-1264) (-564) $)) (-15 -2462 ((-858) $)) (-15 -1322 ((-112)))) |%noBranch|) (-15 -3238 ($ $ (-564) $)) (-15 -2892 ($ (-1 |#1|))) (-15 -2892 ($ (-1 |#1| |#1|) |#1|)) (-15 -2935 ($ (-1 (-112) |#1|) $)) (-15 -2946 ($ (-1 (-112) |#1|) $)))) (-1209)) (T -1150)) +((-3584 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-1908 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) (-5 *1 (-1150 *4)))) (-1602 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3498 (-767)) (|:| |period| (-767)))) (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-767)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-1644 (*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))) (-1363 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-1322 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-3238 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2935 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4407) (-15 -3584 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -1908 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -1602 ((-2 (|:| |cycle?| (-112)) (|:| -3498 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3764 ($ (-1 $))) (-15 -1644 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1363 ((-1264) (-564) $)) (-15 -2462 ((-858) $)) (-15 -1322 ((-112)))) |%noBranch|) (-15 -3238 ($ $ (-564) $)) (-15 -2892 ($ (-1 |#1|))) (-15 -2892 ($ (-1 |#1| |#1|) |#1|)) (-15 -2935 ($ (-1 (-112) |#1|) $)) (-15 -2946 ($ (-1 (-112) |#1|) $)))) +((-2310 (((-112) $ $) 19)) (-3795 (($ $) 120)) (-4084 (($ $) 121)) (-2355 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-3904 (((-112) $ $) 118)) (-3883 (((-112) $ $ (-564)) 117)) (-4177 (($ (-564)) 127)) (-4302 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-4294 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-2441 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-2318 (((-112) $ (-767)) 8)) (-3750 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-1470 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2443 (($ $) 90 (|has| $ (-6 -4407)))) (-2493 (($ $) 100)) (-2742 (($ $ (-1226 (-564)) $) 114)) (-2027 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4406)))) (-3239 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4406)))) (-1466 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4407)))) (-1407 (((-144) $ (-564)) 51)) (-3925 (((-112) $ $) 119)) (-3847 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-3534 (((-641 (-144)) $) 30 (|has| $ (-6 -4406)))) (-4121 (($ (-767) (-144)) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 87 (|has| (-144) (-846)))) (-2988 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-1834 (((-641 (-144)) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 86 (|has| (-144) (-846)))) (-3858 (((-112) $ $ (-144)) 115)) (-3983 (((-767) $ $ (-144)) 116)) (-1456 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2134 (($ $) 122)) (-2828 (($ $) 123)) (-1681 (((-112) $ (-767)) 10)) (-1476 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-1418 (((-1152) $) 22)) (-4116 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21)) (-1995 (((-144) $) 42 (|has| (-564) (-846)))) (-3393 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2981 (($ $ (-144)) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-4324 (((-641 (-144)) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3852 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4406))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-2335 (($ (-641 (-144))) 70)) (-3533 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (($ (-144)) 111) (((-858) $) 18)) (-2313 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4406)))) (-3552 (((-1152) $) 131) (((-1152) $ (-112)) 130) (((-1264) (-818) $) 129) (((-1264) (-818) $ (-112)) 128)) (-2977 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2953 (((-112) $ $) 83 (|has| (-144) (-846)))) (-2921 (((-112) $ $) 20)) (-2964 (((-112) $ $) 85 (|has| (-144) (-846)))) (-2942 (((-112) $ $) 82 (|has| (-144) (-846)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1151) (-140)) (T -1151)) -((-1307 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151))))) -(-13 (-1138) (-1094) (-825) (-10 -8 (-15 -1307 ($ (-564))))) -(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-825) . T) ((-847) |has| (-144) (-847)) ((-1094) . T) ((-1138) . T) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-3579 (($ $) NIL)) (-3129 (($ $) NIL)) (-1655 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-1620 (((-112) $ $) NIL)) (-1596 (((-112) $ $ (-564)) NIL)) (-1307 (($ (-564)) 8)) (-3838 (((-641 $) $ (-144)) NIL) (((-641 $) $ (-141)) NIL)) (-2386 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-2573 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-847))))) (-2861 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4082 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-1880 (($ $ (-1226 (-564)) $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-2576 (($ (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2261 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4407)))) (-2190 (((-144) $ (-564)) NIL)) (-1647 (((-112) $ $) NIL)) (-3360 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1094))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-1433 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-3654 (($ (-768) (-144)) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| (-144) (-847)))) (-3956 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-2640 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| (-144) (-847)))) (-3373 (((-112) $ $ (-144)) NIL)) (-3343 (((-768) $ $ (-144)) NIL)) (-2250 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1309 (($ $) NIL)) (-1573 (($ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-4093 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2723 (((-1152) $) NIL)) (-3652 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-144) $) NIL (|has| (-564) (-847)))) (-3995 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4253 (($ $ (-144)) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1794 (((-641 (-144)) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) NIL)) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2791 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-1842 (($ (-641 (-144))) NIL)) (-3043 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (($ (-144)) NIL) (((-859) $) NIL)) (-1963 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3213 (((-1152) $) 19) (((-1152) $ (-112)) 21) (((-1264) (-819) $) 22) (((-1264) (-819) $ (-112)) 23)) (-1762 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1737 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-144) (-847)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-4177 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151))))) +(-13 (-1138) (-1094) (-824) (-10 -8 (-15 -4177 ($ (-564))))) +(((-34) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-824) . T) ((-846) |has| (-144) (-846)) ((-1094) . T) ((-1138) . T) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-3795 (($ $) NIL)) (-4084 (($ $) NIL)) (-2355 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-3904 (((-112) $ $) NIL)) (-3883 (((-112) $ $ (-564)) NIL)) (-4177 (($ (-564)) 8)) (-4302 (((-641 $) $ (-144)) NIL) (((-641 $) $ (-141)) NIL)) (-4294 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-2441 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-846))))) (-3811 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4407))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-1470 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2742 (($ $ (-1226 (-564)) $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3628 (($ (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4406))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4406)))) (-1466 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4407)))) (-1407 (((-144) $ (-564)) NIL)) (-3925 (((-112) $ $) NIL)) (-3847 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1094))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-3534 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-4121 (($ (-767) (-144)) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| (-144) (-846)))) (-2988 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-1834 (((-641 (-144)) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| (-144) (-846)))) (-3858 (((-112) $ $ (-144)) NIL)) (-3983 (((-767) $ $ (-144)) NIL)) (-1456 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2134 (($ $) NIL)) (-2828 (($ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1476 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1418 (((-1152) $) NIL)) (-4116 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-144) $) NIL (|has| (-564) (-846)))) (-3393 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2981 (($ $ (-144)) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-4324 (((-641 (-144)) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) NIL)) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3852 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-144) (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2335 (($ (-641 (-144))) NIL)) (-3533 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (($ (-144)) NIL) (((-858) $) NIL)) (-2313 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4406)))) (-3552 (((-1152) $) 19) (((-1152) $ (-112)) 21) (((-1264) (-818) $) 22) (((-1264) (-818) $ (-112)) 23)) (-2977 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2953 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2942 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-1152) (-1151)) (T -1152)) NIL (-1151) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL)) (-1956 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-1152) |#1|) NIL)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#1| "failed") (-1152) $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#1| "failed") (-1152) $) NIL)) (-2576 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-1152)) NIL)) (-1433 (((-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2640 (((-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2945 (((-641 (-1152)) $) NIL)) (-2554 (((-112) (-1152) $) NIL)) (-2401 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL)) (-3883 (((-641 (-1152)) $) NIL)) (-4336 (((-112) (-1152) $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3303 ((|#1| $) NIL (|has| (-1152) (-847)))) (-3995 (((-3 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) "failed") (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL (-12 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-309 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-1152)) NIL) ((|#1| $ (-1152) |#1|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-611 (-859))) (|has| |#1| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 (-1152)) (|:| -1389 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL)) (-2246 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-1152) |#1|) NIL)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#1| "failed") (-1152) $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#1| "failed") (-1152) $) NIL)) (-3628 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-1152)) NIL)) (-3534 (((-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1834 (((-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2843 (((-641 (-1152)) $) NIL)) (-2237 (((-112) (-1152) $) NIL)) (-1340 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL)) (-3487 (((-641 (-1152)) $) NIL)) (-2550 (((-112) (-1152) $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-1995 ((|#1| $) NIL (|has| (-1152) (-846)))) (-3393 (((-3 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) "failed") (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-309 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-1152)) NIL) ((|#1| $ (-1152) |#1|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-611 (-858))) (|has| |#1| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 (-1152)) (|:| -2511 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-1153 |#1|) (-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4406))) (-1094)) (T -1153)) NIL (-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4406))) -((-1786 (((-1150 |#1|) (-1150 |#1|)) 84)) (-3733 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 42)) (-1690 (((-1150 |#1|) (-407 (-564)) (-1150 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (((-1150 |#1|) |#1| (-1150 |#1|)) 141 (|has| |#1| (-363)))) (-2809 (((-1150 |#1|) (-1150 |#1|)) 99)) (-2567 (((-1150 (-564)) (-564)) 63)) (-1785 (((-1150 |#1|) (-1150 (-1150 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-2978 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 104)) (-1383 (((-1150 |#1|) |#1| (-564)) 53)) (-3795 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 66)) (-2711 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 138 (|has| |#1| (-363)))) (-1776 (((-1150 |#1|) |#1| (-1 (-1150 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-2489 (((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|))) 139 (|has| |#1| (-363)))) (-2352 (((-1150 |#1|) (-1150 |#1|)) 98)) (-2223 (((-1150 |#1|) (-1150 |#1|)) 82)) (-1890 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 105)) (-3907 (((-1150 |#1|) |#1| (-1150 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-2029 (((-1150 (-564)) (-564)) 62)) (-2133 (((-1150 |#1|) |#1|) 65)) (-4339 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 101)) (-3049 (((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|)) 72)) (-1403 (((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|)) 40)) (-2657 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2633 (((-1150 |#1|) (-1150 |#1|) |#1|) 77)) (-3481 (((-1150 |#1|) (-1150 |#1|)) 68)) (-2049 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 78)) (-1831 (((-1150 |#1|) |#1|) 73)) (-3150 (((-1150 |#1|) (-1150 (-1150 |#1|))) 89)) (-1823 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)) (-1808 (((-1150 |#1|) (-1150 |#1|)) 21) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 23)) (-1797 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 17)) (* (((-1150 |#1|) (-1150 |#1|) |#1|) 29) (((-1150 |#1|) |#1| (-1150 |#1|)) 26) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 27))) -(((-1154 |#1|) (-10 -7 (-15 -1797 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1808 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1808 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1403 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1823 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3733 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1383 ((-1150 |#1|) |#1| (-564))) (-15 -2029 ((-1150 (-564)) (-564))) (-15 -2567 ((-1150 (-564)) (-564))) (-15 -2133 ((-1150 |#1|) |#1|)) (-15 -3795 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3481 ((-1150 |#1|) (-1150 |#1|))) (-15 -3049 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -1831 ((-1150 |#1|) |#1|)) (-15 -2633 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2049 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2223 ((-1150 |#1|) (-1150 |#1|))) (-15 -1786 ((-1150 |#1|) (-1150 |#1|))) (-15 -3150 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -2352 ((-1150 |#1|) (-1150 |#1|))) (-15 -2809 ((-1150 |#1|) (-1150 |#1|))) (-15 -2657 ((-1150 |#1|) (-1150 |#1|))) (-15 -4339 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -2978 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -1890 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -1776 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -1785 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1690 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2711 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2489 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -2491 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) (-1046)) (T -1154)) -((-2491 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))) (-2711 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1690 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-3907 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1890 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-2978 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-4339 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2809 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1046)))) (-1786 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2223 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2049 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2633 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-3049 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2133 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-2029 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-3733 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1823 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1403 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1808 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1797 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) -(-10 -7 (-15 -1797 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1808 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1808 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1403 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1823 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3733 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1383 ((-1150 |#1|) |#1| (-564))) (-15 -2029 ((-1150 (-564)) (-564))) (-15 -2567 ((-1150 (-564)) (-564))) (-15 -2133 ((-1150 |#1|) |#1|)) (-15 -3795 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3481 ((-1150 |#1|) (-1150 |#1|))) (-15 -3049 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -1831 ((-1150 |#1|) |#1|)) (-15 -2633 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2049 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2223 ((-1150 |#1|) (-1150 |#1|))) (-15 -1786 ((-1150 |#1|) (-1150 |#1|))) (-15 -3150 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -2352 ((-1150 |#1|) (-1150 |#1|))) (-15 -2809 ((-1150 |#1|) (-1150 |#1|))) (-15 -2657 ((-1150 |#1|) (-1150 |#1|))) (-15 -4339 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -2978 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -1890 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -1776 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -1785 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1690 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2711 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2489 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -2491 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) -((-3357 (((-1150 |#1|) (-1150 |#1|)) 60)) (-3210 (((-1150 |#1|) (-1150 |#1|)) 42)) (-3330 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3187 (((-1150 |#1|) (-1150 |#1|)) 38)) (-3384 (((-1150 |#1|) (-1150 |#1|)) 63)) (-3233 (((-1150 |#1|) (-1150 |#1|)) 45)) (-2358 (((-1150 |#1|) (-1150 |#1|)) 34)) (-4326 (((-1150 |#1|) (-1150 |#1|)) 29)) (-3395 (((-1150 |#1|) (-1150 |#1|)) 64)) (-3245 (((-1150 |#1|) (-1150 |#1|)) 46)) (-3371 (((-1150 |#1|) (-1150 |#1|)) 61)) (-3221 (((-1150 |#1|) (-1150 |#1|)) 43)) (-3344 (((-1150 |#1|) (-1150 |#1|)) 58)) (-3199 (((-1150 |#1|) (-1150 |#1|)) 40)) (-3427 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3276 (((-1150 |#1|) (-1150 |#1|)) 50)) (-3406 (((-1150 |#1|) (-1150 |#1|)) 66)) (-3254 (((-1150 |#1|) (-1150 |#1|)) 48)) (-3450 (((-1150 |#1|) (-1150 |#1|)) 71)) (-3302 (((-1150 |#1|) (-1150 |#1|)) 53)) (-2315 (((-1150 |#1|) (-1150 |#1|)) 72)) (-3316 (((-1150 |#1|) (-1150 |#1|)) 54)) (-3439 (((-1150 |#1|) (-1150 |#1|)) 70)) (-3287 (((-1150 |#1|) (-1150 |#1|)) 52)) (-3416 (((-1150 |#1|) (-1150 |#1|)) 69)) (-3265 (((-1150 |#1|) (-1150 |#1|)) 51)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 36))) -(((-1155 |#1|) (-10 -7 (-15 -4326 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3187 ((-1150 |#1|) (-1150 |#1|))) (-15 -3199 ((-1150 |#1|) (-1150 |#1|))) (-15 -3210 ((-1150 |#1|) (-1150 |#1|))) (-15 -3221 ((-1150 |#1|) (-1150 |#1|))) (-15 -3233 ((-1150 |#1|) (-1150 |#1|))) (-15 -3245 ((-1150 |#1|) (-1150 |#1|))) (-15 -3254 ((-1150 |#1|) (-1150 |#1|))) (-15 -3265 ((-1150 |#1|) (-1150 |#1|))) (-15 -3276 ((-1150 |#1|) (-1150 |#1|))) (-15 -3287 ((-1150 |#1|) (-1150 |#1|))) (-15 -3302 ((-1150 |#1|) (-1150 |#1|))) (-15 -3316 ((-1150 |#1|) (-1150 |#1|))) (-15 -3330 ((-1150 |#1|) (-1150 |#1|))) (-15 -3344 ((-1150 |#1|) (-1150 |#1|))) (-15 -3357 ((-1150 |#1|) (-1150 |#1|))) (-15 -3371 ((-1150 |#1|) (-1150 |#1|))) (-15 -3384 ((-1150 |#1|) (-1150 |#1|))) (-15 -3395 ((-1150 |#1|) (-1150 |#1|))) (-15 -3406 ((-1150 |#1|) (-1150 |#1|))) (-15 -3416 ((-1150 |#1|) (-1150 |#1|))) (-15 -3427 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 -3450 ((-1150 |#1|) (-1150 |#1|))) (-15 -2315 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1155)) -((-2315 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3406 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3233 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3))))) -(-10 -7 (-15 -4326 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3187 ((-1150 |#1|) (-1150 |#1|))) (-15 -3199 ((-1150 |#1|) (-1150 |#1|))) (-15 -3210 ((-1150 |#1|) (-1150 |#1|))) (-15 -3221 ((-1150 |#1|) (-1150 |#1|))) (-15 -3233 ((-1150 |#1|) (-1150 |#1|))) (-15 -3245 ((-1150 |#1|) (-1150 |#1|))) (-15 -3254 ((-1150 |#1|) (-1150 |#1|))) (-15 -3265 ((-1150 |#1|) (-1150 |#1|))) (-15 -3276 ((-1150 |#1|) (-1150 |#1|))) (-15 -3287 ((-1150 |#1|) (-1150 |#1|))) (-15 -3302 ((-1150 |#1|) (-1150 |#1|))) (-15 -3316 ((-1150 |#1|) (-1150 |#1|))) (-15 -3330 ((-1150 |#1|) (-1150 |#1|))) (-15 -3344 ((-1150 |#1|) (-1150 |#1|))) (-15 -3357 ((-1150 |#1|) (-1150 |#1|))) (-15 -3371 ((-1150 |#1|) (-1150 |#1|))) (-15 -3384 ((-1150 |#1|) (-1150 |#1|))) (-15 -3395 ((-1150 |#1|) (-1150 |#1|))) (-15 -3406 ((-1150 |#1|) (-1150 |#1|))) (-15 -3416 ((-1150 |#1|) (-1150 |#1|))) (-15 -3427 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 -3450 ((-1150 |#1|) (-1150 |#1|))) (-15 -2315 ((-1150 |#1|) (-1150 |#1|)))) -((-3357 (((-1150 |#1|) (-1150 |#1|)) 108)) (-3210 (((-1150 |#1|) (-1150 |#1|)) 65)) (-3611 (((-2 (|:| -3330 (-1150 |#1|)) (|:| -3344 (-1150 |#1|))) (-1150 |#1|)) 104)) (-3330 (((-1150 |#1|) (-1150 |#1|)) 105)) (-3709 (((-2 (|:| -3187 (-1150 |#1|)) (|:| -3199 (-1150 |#1|))) (-1150 |#1|)) 54)) (-3187 (((-1150 |#1|) (-1150 |#1|)) 55)) (-3384 (((-1150 |#1|) (-1150 |#1|)) 110)) (-3233 (((-1150 |#1|) (-1150 |#1|)) 72)) (-2358 (((-1150 |#1|) (-1150 |#1|)) 40)) (-4326 (((-1150 |#1|) (-1150 |#1|)) 37)) (-3395 (((-1150 |#1|) (-1150 |#1|)) 111)) (-3245 (((-1150 |#1|) (-1150 |#1|)) 73)) (-3371 (((-1150 |#1|) (-1150 |#1|)) 109)) (-3221 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3344 (((-1150 |#1|) (-1150 |#1|)) 106)) (-3199 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3427 (((-1150 |#1|) (-1150 |#1|)) 119)) (-3276 (((-1150 |#1|) (-1150 |#1|)) 94)) (-3406 (((-1150 |#1|) (-1150 |#1|)) 113)) (-3254 (((-1150 |#1|) (-1150 |#1|)) 90)) (-3450 (((-1150 |#1|) (-1150 |#1|)) 123)) (-3302 (((-1150 |#1|) (-1150 |#1|)) 98)) (-2315 (((-1150 |#1|) (-1150 |#1|)) 125)) (-3316 (((-1150 |#1|) (-1150 |#1|)) 100)) (-3439 (((-1150 |#1|) (-1150 |#1|)) 121)) (-3287 (((-1150 |#1|) (-1150 |#1|)) 96)) (-3416 (((-1150 |#1|) (-1150 |#1|)) 115)) (-3265 (((-1150 |#1|) (-1150 |#1|)) 92)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41))) -(((-1156 |#1|) (-10 -7 (-15 -4326 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3709 ((-2 (|:| -3187 (-1150 |#1|)) (|:| -3199 (-1150 |#1|))) (-1150 |#1|))) (-15 -3187 ((-1150 |#1|) (-1150 |#1|))) (-15 -3199 ((-1150 |#1|) (-1150 |#1|))) (-15 -3210 ((-1150 |#1|) (-1150 |#1|))) (-15 -3221 ((-1150 |#1|) (-1150 |#1|))) (-15 -3233 ((-1150 |#1|) (-1150 |#1|))) (-15 -3245 ((-1150 |#1|) (-1150 |#1|))) (-15 -3254 ((-1150 |#1|) (-1150 |#1|))) (-15 -3265 ((-1150 |#1|) (-1150 |#1|))) (-15 -3276 ((-1150 |#1|) (-1150 |#1|))) (-15 -3287 ((-1150 |#1|) (-1150 |#1|))) (-15 -3302 ((-1150 |#1|) (-1150 |#1|))) (-15 -3316 ((-1150 |#1|) (-1150 |#1|))) (-15 -3611 ((-2 (|:| -3330 (-1150 |#1|)) (|:| -3344 (-1150 |#1|))) (-1150 |#1|))) (-15 -3330 ((-1150 |#1|) (-1150 |#1|))) (-15 -3344 ((-1150 |#1|) (-1150 |#1|))) (-15 -3357 ((-1150 |#1|) (-1150 |#1|))) (-15 -3371 ((-1150 |#1|) (-1150 |#1|))) (-15 -3384 ((-1150 |#1|) (-1150 |#1|))) (-15 -3395 ((-1150 |#1|) (-1150 |#1|))) (-15 -3406 ((-1150 |#1|) (-1150 |#1|))) (-15 -3416 ((-1150 |#1|) (-1150 |#1|))) (-15 -3427 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 -3450 ((-1150 |#1|) (-1150 |#1|))) (-15 -2315 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1156)) -((-2315 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3406 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3611 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3330 (-1150 *4)) (|:| -3344 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3233 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3187 (-1150 *4)) (|:| -3199 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(-10 -7 (-15 -4326 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3709 ((-2 (|:| -3187 (-1150 |#1|)) (|:| -3199 (-1150 |#1|))) (-1150 |#1|))) (-15 -3187 ((-1150 |#1|) (-1150 |#1|))) (-15 -3199 ((-1150 |#1|) (-1150 |#1|))) (-15 -3210 ((-1150 |#1|) (-1150 |#1|))) (-15 -3221 ((-1150 |#1|) (-1150 |#1|))) (-15 -3233 ((-1150 |#1|) (-1150 |#1|))) (-15 -3245 ((-1150 |#1|) (-1150 |#1|))) (-15 -3254 ((-1150 |#1|) (-1150 |#1|))) (-15 -3265 ((-1150 |#1|) (-1150 |#1|))) (-15 -3276 ((-1150 |#1|) (-1150 |#1|))) (-15 -3287 ((-1150 |#1|) (-1150 |#1|))) (-15 -3302 ((-1150 |#1|) (-1150 |#1|))) (-15 -3316 ((-1150 |#1|) (-1150 |#1|))) (-15 -3611 ((-2 (|:| -3330 (-1150 |#1|)) (|:| -3344 (-1150 |#1|))) (-1150 |#1|))) (-15 -3330 ((-1150 |#1|) (-1150 |#1|))) (-15 -3344 ((-1150 |#1|) (-1150 |#1|))) (-15 -3357 ((-1150 |#1|) (-1150 |#1|))) (-15 -3371 ((-1150 |#1|) (-1150 |#1|))) (-15 -3384 ((-1150 |#1|) (-1150 |#1|))) (-15 -3395 ((-1150 |#1|) (-1150 |#1|))) (-15 -3406 ((-1150 |#1|) (-1150 |#1|))) (-15 -3416 ((-1150 |#1|) (-1150 |#1|))) (-15 -3427 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 -3450 ((-1150 |#1|) (-1150 |#1|))) (-15 -2315 ((-1150 |#1|) (-1150 |#1|)))) -((-3389 (((-955 |#2|) |#2| |#2|) 50)) (-3031 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307))))) -(((-1157 |#1| |#2|) (-10 -7 (-15 -3389 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -3031 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1235 |#1|)) (T -1157)) -((-3031 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1235 *3)))) (-3389 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -3389 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -3031 (|#2| |#2| |#1|)) |%noBranch|)) -((-1817 (((-112) $ $) NIL)) (-2168 (($ $ (-641 (-768))) 80)) (-3502 (($) 32)) (-3484 (($ $) 50)) (-2011 (((-641 $) $) 59)) (-1547 (((-112) $) 19)) (-1464 (((-641 (-940 |#2|)) $) 87)) (-2798 (($ $) 81)) (-2670 (((-768) $) 46)) (-3654 (($) 31)) (-2622 (($ $ (-641 (-768)) (-940 |#2|)) 73) (($ $ (-641 (-768)) (-768)) 74) (($ $ (-768) (-940 |#2|)) 76)) (-3956 (($ $ $) 56) (($ (-641 $)) 58)) (-4289 (((-768) $) 88)) (-2033 (((-112) $) 15)) (-2723 (((-1152) $) NIL)) (-1336 (((-112) $) 21)) (-2780 (((-1114) $) NIL)) (-2551 (((-171) $) 86)) (-3304 (((-940 |#2|) $) 82)) (-1416 (((-768) $) 83)) (-1703 (((-112) $) 85)) (-4297 (($ $ (-641 (-768)) (-171)) 79)) (-1883 (($ $) 51)) (-1831 (((-859) $) 99)) (-4102 (($ $ (-641 (-768)) (-112)) 78)) (-2926 (((-641 $) $) 11)) (-2847 (($ $ (-768)) 45)) (-3387 (($ $) 42)) (-3214 (($ $ $ (-940 |#2|) (-768)) 69)) (-3606 (($ $ (-940 |#2|)) 68)) (-2965 (($ $ (-641 (-768)) (-940 |#2|)) 65) (($ $ (-641 (-768)) (-768)) 71) (((-768) $ (-940 |#2|)) 72)) (-1702 (((-112) $ $) 93))) -(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2033 ((-112) $)) (-15 -1547 ((-112) $)) (-15 -1336 ((-112) $)) (-15 -3654 ($)) (-15 -3502 ($)) (-15 -3387 ($ $)) (-15 -2847 ($ $ (-768))) (-15 -2926 ((-641 $) $)) (-15 -2670 ((-768) $)) (-15 -3484 ($ $)) (-15 -1883 ($ $)) (-15 -3956 ($ $ $)) (-15 -3956 ($ (-641 $))) (-15 -2011 ((-641 $) $)) (-15 -2965 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -3606 ($ $ (-940 |#2|))) (-15 -3214 ($ $ $ (-940 |#2|) (-768))) (-15 -2622 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2965 ($ $ (-641 (-768)) (-768))) (-15 -2622 ($ $ (-641 (-768)) (-768))) (-15 -2965 ((-768) $ (-940 |#2|))) (-15 -2622 ($ $ (-768) (-940 |#2|))) (-15 -4102 ($ $ (-641 (-768)) (-112))) (-15 -4297 ($ $ (-641 (-768)) (-171))) (-15 -2168 ($ $ (-641 (-768)))) (-15 -3304 ((-940 |#2|) $)) (-15 -1416 ((-768) $)) (-15 -1703 ((-112) $)) (-15 -2551 ((-171) $)) (-15 -4289 ((-768) $)) (-15 -2798 ($ $)) (-15 -1464 ((-641 (-940 |#2|)) $)))) (-918) (-1046)) (T -1158)) -((-2033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3654 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3502 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3387 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2847 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3484 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3956 (*1 *1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2965 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-3606 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)))) (-3214 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2965 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-4102 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-4297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2798 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046))))) -(-13 (-1094) (-10 -8 (-15 -2033 ((-112) $)) (-15 -1547 ((-112) $)) (-15 -1336 ((-112) $)) (-15 -3654 ($)) (-15 -3502 ($)) (-15 -3387 ($ $)) (-15 -2847 ($ $ (-768))) (-15 -2926 ((-641 $) $)) (-15 -2670 ((-768) $)) (-15 -3484 ($ $)) (-15 -1883 ($ $)) (-15 -3956 ($ $ $)) (-15 -3956 ($ (-641 $))) (-15 -2011 ((-641 $) $)) (-15 -2965 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -3606 ($ $ (-940 |#2|))) (-15 -3214 ($ $ $ (-940 |#2|) (-768))) (-15 -2622 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2965 ($ $ (-641 (-768)) (-768))) (-15 -2622 ($ $ (-641 (-768)) (-768))) (-15 -2965 ((-768) $ (-940 |#2|))) (-15 -2622 ($ $ (-768) (-940 |#2|))) (-15 -4102 ($ $ (-641 (-768)) (-112))) (-15 -4297 ($ $ (-641 (-768)) (-171))) (-15 -2168 ($ $ (-641 (-768)))) (-15 -3304 ((-940 |#2|) $)) (-15 -1416 ((-768) $)) (-15 -1703 ((-112) $)) (-15 -2551 ((-171) $)) (-15 -4289 ((-768) $)) (-15 -2798 ($ $)) (-15 -1464 ((-641 (-940 |#2|)) $)))) -((-1817 (((-112) $ $) NIL)) (-4383 ((|#2| $) 11)) (-4372 ((|#1| $) 10)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1842 (($ |#1| |#2|) 9)) (-1831 (((-859) $) 16)) (-1702 (((-112) $ $) NIL))) -(((-1159 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1842 ($ |#1| |#2|)) (-15 -4372 (|#1| $)) (-15 -4383 (|#2| $)))) (-1094) (-1094)) (T -1159)) -((-1842 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4372 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094))))) -(-13 (-1094) (-10 -8 (-15 -1842 ($ |#1| |#2|)) (-15 -4372 (|#1| $)) (-15 -4383 (|#2| $)))) -((-1817 (((-112) $ $) NIL)) (-1649 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1160) (-13 (-1077) (-10 -8 (-15 -1649 ((-1129) $))))) (T -1160)) -((-1649 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160))))) -(-13 (-1077) (-10 -8 (-15 -1649 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 11)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1537 (($ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1932 (((-112) $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3220 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-4163 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-1454 (((-1168 |#1| |#2| |#3|) $) 42)) (-3219 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 32)) (-3266 (((-1168 |#1| |#2| |#3|) $) 33)) (-3357 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-1598 (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1881 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3384 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2237 (((-1168 |#1| |#2| |#3|) $) 140) (((-1170) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-3588 (($ $) 37) (($ (-564) $) 38)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-1168 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1168 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3733 (((-3 $ "failed") $) 54)) (-3158 (((-407 (-949 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-2900 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-1569 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3030 (((-112) $) 28)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-2155 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL (|has| |#1| (-363)))) (-3678 (((-1168 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2619 (((-3 $ "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2607 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2325 (($ $ (-918)) NIL)) (-1477 (($ (-1 |#1| (-564)) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-564)) 19) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-1925 (($ $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-3375 (($ $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2358 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3277 (($ (-564) (-1168 |#1| |#2| |#3|)) 36)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-3907 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-2884 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3191 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-1818 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-564)) 158)) (-1403 (((-3 $ "failed") $ $) 55 (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1168 |#1| |#2| |#3|)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1106))) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 57) (($ $ (-768)) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-2644 (($ $) NIL (|has| |#1| (-363)))) (-3693 (((-1168 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-1619 (((-564) $) 43)) (-3395 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-2511 (((-536) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1255 |#2|)) 25) (($ (-1170)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2742 ((|#1| $ (-564)) 77)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 12)) (-4150 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3427 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3406 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-1849 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1293 (($) 21 T CONST)) (-1300 (($) 16 T CONST)) (-3435 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1762 (((-112) $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1737 (((-112) $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1723 (((-112) $ $) NIL (-4078 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1168 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1161 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1161)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-3837 ((|#2| |#2| (-1086 |#2|)) 26) ((|#2| |#2| (-1170)) 28))) -(((-1162 |#1| |#2|) (-10 -7 (-15 -3837 (|#2| |#2| (-1170))) (-15 -3837 (|#2| |#2| (-1086 |#2|)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1194))) (T -1162)) -((-3837 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) (-3837 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))))) -(-10 -7 (-15 -3837 (|#2| |#2| (-1170))) (-15 -3837 (|#2| |#2| (-1086 |#2|)))) -((-3837 (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))) 31) (((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|))) 44) (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 33) (((-407 (-949 |#1|)) (-949 |#1|) (-1170)) 36))) -(((-1163 |#1|) (-10 -7 (-15 -3837 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -3837 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -3837 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -3837 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))))) (-13 (-556) (-847) (-1035 (-564)))) (T -1163)) -((-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-407 (-949 *5))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5))))) -(-10 -7 (-15 -3837 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -3837 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -3837 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -3837 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))))) -((-2449 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 13))) -(((-1164 |#1| |#2|) (-10 -7 (-15 -2449 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) (-1046) (-1046)) (T -1164)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6))))) -(-10 -7 (-15 -2449 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) -((-3399 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 51)) (-3070 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 52))) -(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -3399 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) (-790) (-847) (-452) (-946 |#3| |#1| |#2|)) (T -1165)) -((-3399 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))) -(-10 -7 (-15 -3070 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -3399 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) -((-1817 (((-112) $ $) 169)) (-1615 (((-112) $) 42)) (-3151 (((-1259 |#1|) $ (-768)) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-1730 (($ (-1166 |#1|)) NIL)) (-3040 (((-1166 $) $ (-1076)) 81) (((-1166 |#1|) $) 70)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) 162 (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) 156 (|has| |#1| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-906)))) (-2427 (($ $) NIL (|has| |#1| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 114 (|has| |#1| (-906)))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3048 (($ $ (-768)) 60)) (-1803 (($ $ (-768)) 62)) (-2011 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2237 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-1357 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 158 (|has| |#1| (-172)))) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) 79)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3566 (($ $ $) 129)) (-3590 (($ $ $) NIL (|has| |#1| (-556)))) (-1330 (((-2 (|:| -2860 |#1|) (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3031 (($ $) 163 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-768) $) 68)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-4286 (((-859) $ (-859)) 146)) (-2155 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2949 (((-112) $) 47)) (-4128 (((-768) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3198 (($ (-1166 |#1|) (-1076)) 72) (($ (-1166 $) (-1076)) 88)) (-2325 (($ $ (-768)) 50)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) 86) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1076)) NIL) (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 151)) (-1826 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2546 (($ (-1 (-768) (-768)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3478 (((-1166 |#1|) $) NIL)) (-2169 (((-3 (-1076) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) 75)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2723 (((-1152) $) NIL)) (-2436 (((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768)) 59)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-1076)) (|:| -1558 (-768))) "failed") $) NIL)) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2884 (($) NIL (|has| |#1| (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) 49)) (-3341 ((|#1| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 165 (|has| |#1| (-452)))) (-3798 (($ $ (-768) |#1| $) 121)) (-1469 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 99 (|has| |#1| (-906)))) (-3070 (((-418 $) $) 107 (|has| |#1| (-906)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ |#1|) 161 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 122 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ |#1|) 148) (($ $ $) 149) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3318 (((-3 $ "failed") $ (-768)) 53)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 170 (|has| |#1| (-363)))) (-3190 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) 154 (|has| |#1| (-172)))) (-3534 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1619 (((-768) $) 77) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) 160 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-1831 (((-859) $) 147) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1076)) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) 40 (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) 17 T CONST)) (-1300 (($) 19 T CONST)) (-3435 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) 119)) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1823 (($ $ |#1|) 171 (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 89)) (** (($ $ (-918)) 14) (($ $ (-768)) 12)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 127) (($ $ |#1|) NIL))) -(((-1166 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -4286 ((-859) $ (-859))) (-15 -3798 ($ $ (-768) |#1| $)))) (-1046)) (T -1166)) -((-4286 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))) (-3798 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046))))) -(-13 (-1235 |#1|) (-10 -8 (-15 -4286 ((-859) $ (-859))) (-15 -3798 ($ $ (-768) |#1| $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 11)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 36)) (-2237 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1168 |#1| |#2| |#3|) $) NIL)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-4302 (((-407 (-564)) $) 59)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3288 (($ (-407 (-564)) (-1161 |#1| |#2| |#3|)) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-407 (-564))) 20) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3207 (((-1161 |#1| |#2| |#3|) $) 41)) (-2975 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-3277 (((-1161 |#1| |#2| |#3|) $) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-3907 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) NIL)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-1619 (((-407 (-564)) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1161 |#1| |#2| |#3|)) 30) (($ (-1168 |#1| |#2| |#3|)) 31) (($ (-1255 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 12)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 22 T CONST)) (-1300 (($) 16 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 24)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1167 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1167)) -((-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 130)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 120)) (-2074 (((-1232 |#2| |#1|) $ (-768)) 68)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-768)) 84) (($ $ (-768) (-768)) 81)) (-4163 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 106)) (-3357 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3330 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 119) (($ (-1150 |#1|)) 114)) (-3384 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) 25)) (-2186 (($ $) 28)) (-2469 (((-949 |#1|) $ (-768)) 80) (((-949 |#1|) $ (-768) (-768)) 82)) (-3030 (((-112) $) 125)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-768) $) 127) (((-768) $ (-768)) 129)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) NIL)) (-1477 (($ (-1 |#1| (-564)) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) 13) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2358 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-3907 (($ $) 134 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-3951 (($ $ (-768)) 15)) (-1403 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-4326 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-1350 ((|#1| $ (-768)) 123) (($ $ $) 133 (|has| (-768) (-1106)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 31)) (-1619 (((-768) $) NIL)) (-3395 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) 207) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 131 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 54) (($ (-1255 |#2|)) 36)) (-3227 (((-1150 |#1|) $) 102)) (-2742 ((|#1| $ (-768)) 122)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 57)) (-3427 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-768)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 17 T CONST)) (-1300 (($) 20 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) 199)) (-1797 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 204 (|has| |#1| (-363))) (($ $ $) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 142 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 137) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1168 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -1831 ($ (-1232 |#2| |#1|))) (-15 -2074 ((-1232 |#2| |#1|) $ (-768))) (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1168)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-2074 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1250 |#1|) (-10 -8 (-15 -1831 ($ (-1232 |#2| |#1|))) (-15 -2074 ((-1232 |#2| |#1|) $ (-768))) (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-1831 (((-859) $) 33) (($ (-1170)) 35)) (-4078 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-4067 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2424 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2409 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2395 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2383 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-3382 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45))) -(((-1169) (-13 (-611 (-859)) (-10 -8 (-15 -1831 ($ (-1170))) (-15 -2424 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2395 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2409 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2383 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4078 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3382 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4067 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4067 ($ $))))) (T -1169)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-2424 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2395 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2409 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2383 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4078 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3382 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4067 (*1 *1 *1) (-5 *1 (-1169)))) -(-13 (-611 (-859)) (-10 -8 (-15 -1831 ($ (-1170))) (-15 -2424 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2395 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2409 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2383 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4078 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3382 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4067 ($ (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4067 ($ $)))) -((-1817 (((-112) $ $) NIL)) (-3902 (($ $ (-641 (-859))) 64)) (-2782 (($ $ (-641 (-859))) 62)) (-1307 (((-1152) $) 103)) (-1514 (((-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859)))) $) 109)) (-4068 (((-112) $) 23)) (-3524 (($ $ (-641 (-641 (-859)))) 61) (($ $ (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859))))) 101)) (-1778 (($) 163 T CONST)) (-1581 (((-1264)) 136)) (-2131 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 71) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 78)) (-3654 (($) 122) (($ $) 131)) (-1316 (($ $) 102)) (-1925 (($ $ $) NIL)) (-3375 (($ $ $) NIL)) (-3176 (((-641 $) $) 138)) (-2723 (((-1152) $) 114)) (-2780 (((-1114) $) NIL)) (-1350 (($ $ (-641 (-859))) 63)) (-2511 (((-536) $) 48) (((-1170) $) 49) (((-889 (-564)) $) 82) (((-889 (-379)) $) 80)) (-1831 (((-859) $) 55) (($ (-1152)) 50)) (-4278 (($ $ (-641 (-859))) 65)) (-3213 (((-1152) $) 34) (((-1152) $ (-112)) 35) (((-1264) (-819) $) 36) (((-1264) (-819) $ (-112)) 37)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) 51)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 52))) -(((-1170) (-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -3654 ($)) (-15 -3654 ($ $)) (-15 -1581 ((-1264))) (-15 -1316 ($ $)) (-15 -4068 ((-112) $)) (-15 -1514 ((-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -3524 ($ $ (-641 (-641 (-859))))) (-15 -3524 ($ $ (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -2782 ($ $ (-641 (-859)))) (-15 -3902 ($ $ (-641 (-859)))) (-15 -4278 ($ $ (-641 (-859)))) (-15 -1350 ($ $ (-641 (-859)))) (-15 -1307 ((-1152) $)) (-15 -3176 ((-641 $) $)) (-15 -1778 ($) -1809)))) (T -1170)) -((-3654 (*1 *1) (-5 *1 (-1170))) (-3654 (*1 *1 *1) (-5 *1 (-1170))) (-1581 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))) (-1316 (*1 *1 *1) (-5 *1 (-1170))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-2782 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-4278 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))) (-1778 (*1 *1) (-5 *1 (-1170)))) -(-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -3654 ($)) (-15 -3654 ($ $)) (-15 -1581 ((-1264))) (-15 -1316 ($ $)) (-15 -4068 ((-112) $)) (-15 -1514 ((-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -3524 ($ $ (-641 (-641 (-859))))) (-15 -3524 ($ $ (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -2782 ($ $ (-641 (-859)))) (-15 -3902 ($ $ (-641 (-859)))) (-15 -4278 ($ $ (-641 (-859)))) (-15 -1350 ($ $ (-641 (-859)))) (-15 -1307 ((-1152) $)) (-15 -3176 ((-641 $) $)) (-15 -1778 ($) -1809))) -((-1873 (((-1259 |#1|) |#1| (-918)) 18) (((-1259 |#1|) (-641 |#1|)) 25))) -(((-1171 |#1|) (-10 -7 (-15 -1873 ((-1259 |#1|) (-641 |#1|))) (-15 -1873 ((-1259 |#1|) |#1| (-918)))) (-1046)) (T -1171)) -((-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1046)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)) (-5 *1 (-1171 *4))))) -(-10 -7 (-15 -1873 ((-1259 |#1|) (-641 |#1|))) (-15 -1873 ((-1259 |#1|) |#1| (-918)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2237 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL (|has| |#1| (-452)))) (-2055 (($ $ |#1| (-968) $) NIL)) (-2949 (((-112) $) 17)) (-4128 (((-768) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-968)) NIL)) (-1826 (((-968) $) NIL)) (-2546 (($ (-1 (-968) (-968)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#1| $) NIL)) (-3798 (($ $ (-968) |#1| $) NIL (-12 (|has| (-968) (-131)) (|has| |#1| (-556))))) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1619 (((-968) $) NIL)) (-3008 ((|#1| $) NIL (|has| |#1| (-452)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4078 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ (-968)) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1293 (($) 11 T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 21)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1172 |#1|) (-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -3798 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) (-1046)) (T -1172)) -((-3798 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) -(-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -3798 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) -((-1369 (((-1174) (-1170) $) 25)) (-2217 (($) 29)) (-1939 (((-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-1170) $) 22)) (-3711 (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void")) $) 41) (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) 42) (((-1264) (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) 43)) (-4076 (((-1264) (-1170)) 58)) (-1607 (((-1264) (-1170) $) 55) (((-1264) (-1170)) 56) (((-1264)) 57)) (-3553 (((-1264) (-1170)) 37)) (-2959 (((-1170)) 36)) (-4012 (($) 34)) (-3760 (((-437) (-1170) (-437) (-1170) $) 45) (((-437) (-641 (-1170)) (-437) (-1170) $) 49) (((-437) (-1170) (-437)) 46) (((-437) (-1170) (-437) (-1170)) 50)) (-1313 (((-1170)) 35)) (-1831 (((-859) $) 28)) (-1585 (((-1264)) 30) (((-1264) (-1170)) 33)) (-2636 (((-641 (-1170)) (-1170) $) 24)) (-3759 (((-1264) (-1170) (-641 (-1170)) $) 38) (((-1264) (-1170) (-641 (-1170))) 39) (((-1264) (-641 (-1170))) 40))) -(((-1173) (-13 (-611 (-859)) (-10 -8 (-15 -2217 ($)) (-15 -1585 ((-1264))) (-15 -1585 ((-1264) (-1170))) (-15 -3760 ((-437) (-1170) (-437) (-1170) $)) (-15 -3760 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -3760 ((-437) (-1170) (-437))) (-15 -3760 ((-437) (-1170) (-437) (-1170))) (-15 -3553 ((-1264) (-1170))) (-15 -1313 ((-1170))) (-15 -2959 ((-1170))) (-15 -3759 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3759 ((-1264) (-1170) (-641 (-1170)))) (-15 -3759 ((-1264) (-641 (-1170)))) (-15 -3711 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void")) $)) (-15 -3711 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void")))) (-15 -3711 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3495 "void")))) (-15 -1607 ((-1264) (-1170) $)) (-15 -1607 ((-1264) (-1170))) (-15 -1607 ((-1264))) (-15 -4076 ((-1264) (-1170))) (-15 -4012 ($)) (-15 -1939 ((-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-1170) $)) (-15 -2636 ((-641 (-1170)) (-1170) $)) (-15 -1369 ((-1174) (-1170) $))))) (T -1173)) -((-2217 (*1 *1) (-5 *1 (-1173))) (-1585 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3760 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3760 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) (-5 *1 (-1173)))) (-3760 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3760 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1313 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-2959 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3759 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3711 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1607 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1607 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4012 (*1 *1) (-5 *1 (-1173))) (-1939 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *1 (-1173)))) (-2636 (*1 *2 *3 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))) (-1369 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173))))) -(-13 (-611 (-859)) (-10 -8 (-15 -2217 ($)) (-15 -1585 ((-1264))) (-15 -1585 ((-1264) (-1170))) (-15 -3760 ((-437) (-1170) (-437) (-1170) $)) (-15 -3760 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -3760 ((-437) (-1170) (-437))) (-15 -3760 ((-437) (-1170) (-437) (-1170))) (-15 -3553 ((-1264) (-1170))) (-15 -1313 ((-1170))) (-15 -2959 ((-1170))) (-15 -3759 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3759 ((-1264) (-1170) (-641 (-1170)))) (-15 -3759 ((-1264) (-641 (-1170)))) (-15 -3711 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void")) $)) (-15 -3711 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3495 "void")))) (-15 -3711 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3495 "void")))) (-15 -1607 ((-1264) (-1170) $)) (-15 -1607 ((-1264) (-1170))) (-15 -1607 ((-1264))) (-15 -4076 ((-1264) (-1170))) (-15 -4012 ($)) (-15 -1939 ((-3 (|:| |fst| (-434)) (|:| -3495 "void")) (-1170) $)) (-15 -2636 ((-641 (-1170)) (-1170) $)) (-15 -1369 ((-1174) (-1170) $)))) -((-1688 (((-641 (-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $) 66)) (-1444 (((-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $) 47)) (-2985 (($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-437))))) 17)) (-4076 (((-1264) $) 74)) (-2322 (((-641 (-1170)) $) 22)) (-3087 (((-1098) $) 60)) (-2259 (((-437) (-1170) $) 27)) (-2964 (((-641 (-1170)) $) 30)) (-4012 (($) 19)) (-3760 (((-437) (-641 (-1170)) (-437) $) 25) (((-437) (-1170) (-437) $) 24)) (-1831 (((-859) $) 9) (((-1182 (-1170) (-437)) $) 13))) -(((-1174) (-13 (-611 (-859)) (-10 -8 (-15 -1831 ((-1182 (-1170) (-437)) $)) (-15 -4012 ($)) (-15 -3760 ((-437) (-641 (-1170)) (-437) $)) (-15 -3760 ((-437) (-1170) (-437) $)) (-15 -2259 ((-437) (-1170) $)) (-15 -2322 ((-641 (-1170)) $)) (-15 -1444 ((-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -2964 ((-641 (-1170)) $)) (-15 -1688 ((-641 (-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -3087 ((-1098) $)) (-15 -4076 ((-1264) $)) (-15 -2985 ($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-437))))))))) (T -1174)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) (-4012 (*1 *1) (-5 *1 (-1174))) (-3760 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))) (-3760 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) (-2259 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-1444 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) (-5 *1 (-1174)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))) (-5 *1 (-1174)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-437))))) (-5 *1 (-1174))))) -(-13 (-611 (-859)) (-10 -8 (-15 -1831 ((-1182 (-1170) (-437)) $)) (-15 -4012 ($)) (-15 -3760 ((-437) (-641 (-1170)) (-437) $)) (-15 -3760 ((-437) (-1170) (-437) $)) (-15 -2259 ((-437) (-1170) $)) (-15 -2322 ((-641 (-1170)) $)) (-15 -1444 ((-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -2964 ((-641 (-1170)) $)) (-15 -1688 ((-641 (-641 (-3 (|:| -1316 (-1170)) (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -3087 ((-1098) $)) (-15 -4076 ((-1264) $)) (-15 -2985 ($ (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-437)))))))) -((-1817 (((-112) $ $) NIL)) (-2347 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1152) "failed") $) 47)) (-2237 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1152) $) 48)) (-1342 (((-112) $) 53)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2812 (((-3 (-564) (-225) (-506) (-1152) $) $) 55)) (-1952 (((-641 $) $) 57)) (-2511 (((-1098) $) 24) (($ (-1098)) 25)) (-3256 (((-112) $) 56)) (-1831 (((-859) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1152)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1152) $) 49)) (-4378 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1152))) 16)) (-3699 (($ (-506) (-641 $)) 51) (($ $ (-641 $)) 52)) (-3309 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1152) $) 45)) (-1702 (((-112) $ $) 7))) -(((-1175) (-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-506)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2511 ((-1098) $)) (-15 -2511 ($ (-1098))) (-15 -1831 ((-564) $)) (-15 -3309 ((-564) $)) (-15 -1831 ((-225) $)) (-15 -3309 ((-225) $)) (-15 -1831 ((-506) $)) (-15 -3309 ((-506) $)) (-15 -1831 ((-1152) $)) (-15 -3309 ((-1152) $)) (-15 -3699 ($ (-506) (-641 $))) (-15 -3699 ($ $ (-641 $))) (-15 -1342 ((-112) $)) (-15 -2812 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -1952 ((-641 $) $)) (-15 -3256 ((-112) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-564)))) (-15 -4378 ((-112) $ (|[\|\|]| (-225)))) (-15 -4378 ((-112) $ (|[\|\|]| (-506)))) (-15 -4378 ((-112) $ (|[\|\|]| (-1152))))))) (T -1175)) -((-2511 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) (-5 *1 (-1175)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175))))) -(-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-506)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2511 ((-1098) $)) (-15 -2511 ($ (-1098))) (-15 -1831 ((-564) $)) (-15 -3309 ((-564) $)) (-15 -1831 ((-225) $)) (-15 -3309 ((-225) $)) (-15 -1831 ((-506) $)) (-15 -3309 ((-506) $)) (-15 -1831 ((-1152) $)) (-15 -3309 ((-1152) $)) (-15 -3699 ($ (-506) (-641 $))) (-15 -3699 ($ $ (-641 $))) (-15 -1342 ((-112) $)) (-15 -2812 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -1952 ((-641 $) $)) (-15 -3256 ((-112) $)) (-15 -4378 ((-112) $ (|[\|\|]| (-564)))) (-15 -4378 ((-112) $ (|[\|\|]| (-225)))) (-15 -4378 ((-112) $ (|[\|\|]| (-506)))) (-15 -4378 ((-112) $ (|[\|\|]| (-1152)))))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) 24)) (-1778 (($) 14 T CONST)) (-2900 (($) 29)) (-1925 (($ $ $) NIL) (($) 21 T CONST)) (-3375 (($ $ $) NIL) (($) 22 T CONST)) (-1811 (((-918) $) 26)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) 25)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-1176 |#1|) (-13 (-841) (-10 -8 (-15 -1778 ($) -1809))) (-918)) (T -1176)) -((-1778 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918))))) -(-13 (-841) (-10 -8 (-15 -1778 ($) -1809))) +((-4239 (((-1150 |#1|) (-1150 |#1|)) 84)) (-2689 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 42)) (-1479 (((-1150 |#1|) (-407 (-564)) (-1150 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2880 (((-1150 |#1|) |#1| (-1150 |#1|)) 141 (|has| |#1| (-363)))) (-2907 (((-1150 |#1|) (-1150 |#1|)) 99)) (-2388 (((-1150 (-564)) (-564)) 63)) (-4226 (((-1150 |#1|) (-1150 (-1150 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-2113 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 104)) (-1955 (((-1150 |#1|) |#1| (-564)) 53)) (-1994 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 66)) (-1309 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 138 (|has| |#1| (-363)))) (-4134 (((-1150 |#1|) |#1| (-1 (-1150 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-2861 (((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|))) 139 (|has| |#1| (-363)))) (-2055 (((-1150 |#1|) (-1150 |#1|)) 98)) (-3220 (((-1150 |#1|) (-1150 |#1|)) 82)) (-2833 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 105)) (-3719 (((-1150 |#1|) |#1| (-1150 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-1766 (((-1150 (-564)) (-564)) 62)) (-3378 (((-1150 |#1|) |#1|) 65)) (-2572 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 101)) (-2698 (((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|)) 72)) (-2526 (((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|)) 40)) (-2009 (((-1150 |#1|) (-1150 |#1|)) 100)) (-3100 (((-1150 |#1|) (-1150 |#1|) |#1|) 77)) (-4079 (((-1150 |#1|) (-1150 |#1|)) 68)) (-1980 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 78)) (-2322 (((-1150 |#1|) |#1|) 73)) (-4268 (((-1150 |#1|) (-1150 (-1150 |#1|))) 89)) (-3034 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)) (-3021 (((-1150 |#1|) (-1150 |#1|)) 21) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 23)) (-3011 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 17)) (* (((-1150 |#1|) (-1150 |#1|) |#1|) 29) (((-1150 |#1|) |#1| (-1150 |#1|)) 26) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 27))) +(((-1154 |#1|) (-10 -7 (-15 -3011 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3021 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3021 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2526 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -3034 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2689 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1955 ((-1150 |#1|) |#1| (-564))) (-15 -1766 ((-1150 (-564)) (-564))) (-15 -2388 ((-1150 (-564)) (-564))) (-15 -3378 ((-1150 |#1|) |#1|)) (-15 -1994 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -4079 ((-1150 |#1|) (-1150 |#1|))) (-15 -2698 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -2322 ((-1150 |#1|) |#1|)) (-15 -3100 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1980 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3220 ((-1150 |#1|) (-1150 |#1|))) (-15 -4239 ((-1150 |#1|) (-1150 |#1|))) (-15 -4268 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -2055 ((-1150 |#1|) (-1150 |#1|))) (-15 -2907 ((-1150 |#1|) (-1150 |#1|))) (-15 -2009 ((-1150 |#1|) (-1150 |#1|))) (-15 -2572 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -2113 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -2833 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -4134 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -4226 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1479 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1309 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2861 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -2880 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) (-1045)) (T -1154)) +((-2880 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2861 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))) (-1309 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-1479 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2833 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-2113 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-2572 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2907 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1045)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3220 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-1980 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3100 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-1994 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3378 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045)) (-5 *3 (-564)))) (-1766 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045)) (-5 *3 (-564)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) (-2689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3034 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2526 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3021 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3011 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))) +(-10 -7 (-15 -3011 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3021 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3021 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2526 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -3034 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2689 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1955 ((-1150 |#1|) |#1| (-564))) (-15 -1766 ((-1150 (-564)) (-564))) (-15 -2388 ((-1150 (-564)) (-564))) (-15 -3378 ((-1150 |#1|) |#1|)) (-15 -1994 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -4079 ((-1150 |#1|) (-1150 |#1|))) (-15 -2698 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -2322 ((-1150 |#1|) |#1|)) (-15 -3100 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1980 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3220 ((-1150 |#1|) (-1150 |#1|))) (-15 -4239 ((-1150 |#1|) (-1150 |#1|))) (-15 -4268 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -2055 ((-1150 |#1|) (-1150 |#1|))) (-15 -2907 ((-1150 |#1|) (-1150 |#1|))) (-15 -2009 ((-1150 |#1|) (-1150 |#1|))) (-15 -2572 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -2113 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -2833 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -4134 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -4226 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1479 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1309 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2861 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -2880 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) +((-3802 (((-1150 |#1|) (-1150 |#1|)) 60)) (-3661 (((-1150 |#1|) (-1150 |#1|)) 42)) (-3779 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3639 (((-1150 |#1|) (-1150 |#1|)) 38)) (-3825 (((-1150 |#1|) (-1150 |#1|)) 63)) (-3684 (((-1150 |#1|) (-1150 |#1|)) 45)) (-3439 (((-1150 |#1|) (-1150 |#1|)) 34)) (-3571 (((-1150 |#1|) (-1150 |#1|)) 29)) (-3836 (((-1150 |#1|) (-1150 |#1|)) 64)) (-3697 (((-1150 |#1|) (-1150 |#1|)) 46)) (-3814 (((-1150 |#1|) (-1150 |#1|)) 61)) (-3672 (((-1150 |#1|) (-1150 |#1|)) 43)) (-3792 (((-1150 |#1|) (-1150 |#1|)) 58)) (-3650 (((-1150 |#1|) (-1150 |#1|)) 40)) (-2672 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3732 (((-1150 |#1|) (-1150 |#1|)) 50)) (-3849 (((-1150 |#1|) (-1150 |#1|)) 66)) (-3708 (((-1150 |#1|) (-1150 |#1|)) 48)) (-2695 (((-1150 |#1|) (-1150 |#1|)) 71)) (-3757 (((-1150 |#1|) (-1150 |#1|)) 53)) (-1511 (((-1150 |#1|) (-1150 |#1|)) 72)) (-3768 (((-1150 |#1|) (-1150 |#1|)) 54)) (-2684 (((-1150 |#1|) (-1150 |#1|)) 70)) (-3746 (((-1150 |#1|) (-1150 |#1|)) 52)) (-2660 (((-1150 |#1|) (-1150 |#1|)) 69)) (-3720 (((-1150 |#1|) (-1150 |#1|)) 51)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 36))) +(((-1155 |#1|) (-10 -7 (-15 -3571 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3639 ((-1150 |#1|) (-1150 |#1|))) (-15 -3650 ((-1150 |#1|) (-1150 |#1|))) (-15 -3661 ((-1150 |#1|) (-1150 |#1|))) (-15 -3672 ((-1150 |#1|) (-1150 |#1|))) (-15 -3684 ((-1150 |#1|) (-1150 |#1|))) (-15 -3697 ((-1150 |#1|) (-1150 |#1|))) (-15 -3708 ((-1150 |#1|) (-1150 |#1|))) (-15 -3720 ((-1150 |#1|) (-1150 |#1|))) (-15 -3732 ((-1150 |#1|) (-1150 |#1|))) (-15 -3746 ((-1150 |#1|) (-1150 |#1|))) (-15 -3757 ((-1150 |#1|) (-1150 |#1|))) (-15 -3768 ((-1150 |#1|) (-1150 |#1|))) (-15 -3779 ((-1150 |#1|) (-1150 |#1|))) (-15 -3792 ((-1150 |#1|) (-1150 |#1|))) (-15 -3802 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3836 ((-1150 |#1|) (-1150 |#1|))) (-15 -3849 ((-1150 |#1|) (-1150 |#1|))) (-15 -2660 ((-1150 |#1|) (-1150 |#1|))) (-15 -2672 ((-1150 |#1|) (-1150 |#1|))) (-15 -2684 ((-1150 |#1|) (-1150 |#1|))) (-15 -2695 ((-1150 |#1|) (-1150 |#1|))) (-15 -1511 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1155)) +((-1511 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2684 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3792 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3720 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3661 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3))))) +(-10 -7 (-15 -3571 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3639 ((-1150 |#1|) (-1150 |#1|))) (-15 -3650 ((-1150 |#1|) (-1150 |#1|))) (-15 -3661 ((-1150 |#1|) (-1150 |#1|))) (-15 -3672 ((-1150 |#1|) (-1150 |#1|))) (-15 -3684 ((-1150 |#1|) (-1150 |#1|))) (-15 -3697 ((-1150 |#1|) (-1150 |#1|))) (-15 -3708 ((-1150 |#1|) (-1150 |#1|))) (-15 -3720 ((-1150 |#1|) (-1150 |#1|))) (-15 -3732 ((-1150 |#1|) (-1150 |#1|))) (-15 -3746 ((-1150 |#1|) (-1150 |#1|))) (-15 -3757 ((-1150 |#1|) (-1150 |#1|))) (-15 -3768 ((-1150 |#1|) (-1150 |#1|))) (-15 -3779 ((-1150 |#1|) (-1150 |#1|))) (-15 -3792 ((-1150 |#1|) (-1150 |#1|))) (-15 -3802 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3836 ((-1150 |#1|) (-1150 |#1|))) (-15 -3849 ((-1150 |#1|) (-1150 |#1|))) (-15 -2660 ((-1150 |#1|) (-1150 |#1|))) (-15 -2672 ((-1150 |#1|) (-1150 |#1|))) (-15 -2684 ((-1150 |#1|) (-1150 |#1|))) (-15 -2695 ((-1150 |#1|) (-1150 |#1|))) (-15 -1511 ((-1150 |#1|) (-1150 |#1|)))) +((-3802 (((-1150 |#1|) (-1150 |#1|)) 108)) (-3661 (((-1150 |#1|) (-1150 |#1|)) 65)) (-2891 (((-2 (|:| -3779 (-1150 |#1|)) (|:| -3792 (-1150 |#1|))) (-1150 |#1|)) 104)) (-3779 (((-1150 |#1|) (-1150 |#1|)) 105)) (-2464 (((-2 (|:| -3639 (-1150 |#1|)) (|:| -3650 (-1150 |#1|))) (-1150 |#1|)) 54)) (-3639 (((-1150 |#1|) (-1150 |#1|)) 55)) (-3825 (((-1150 |#1|) (-1150 |#1|)) 110)) (-3684 (((-1150 |#1|) (-1150 |#1|)) 72)) (-3439 (((-1150 |#1|) (-1150 |#1|)) 40)) (-3571 (((-1150 |#1|) (-1150 |#1|)) 37)) (-3836 (((-1150 |#1|) (-1150 |#1|)) 111)) (-3697 (((-1150 |#1|) (-1150 |#1|)) 73)) (-3814 (((-1150 |#1|) (-1150 |#1|)) 109)) (-3672 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3792 (((-1150 |#1|) (-1150 |#1|)) 106)) (-3650 (((-1150 |#1|) (-1150 |#1|)) 56)) (-2672 (((-1150 |#1|) (-1150 |#1|)) 119)) (-3732 (((-1150 |#1|) (-1150 |#1|)) 94)) (-3849 (((-1150 |#1|) (-1150 |#1|)) 113)) (-3708 (((-1150 |#1|) (-1150 |#1|)) 90)) (-2695 (((-1150 |#1|) (-1150 |#1|)) 123)) (-3757 (((-1150 |#1|) (-1150 |#1|)) 98)) (-1511 (((-1150 |#1|) (-1150 |#1|)) 125)) (-3768 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2684 (((-1150 |#1|) (-1150 |#1|)) 121)) (-3746 (((-1150 |#1|) (-1150 |#1|)) 96)) (-2660 (((-1150 |#1|) (-1150 |#1|)) 115)) (-3720 (((-1150 |#1|) (-1150 |#1|)) 92)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41))) +(((-1156 |#1|) (-10 -7 (-15 -3571 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2464 ((-2 (|:| -3639 (-1150 |#1|)) (|:| -3650 (-1150 |#1|))) (-1150 |#1|))) (-15 -3639 ((-1150 |#1|) (-1150 |#1|))) (-15 -3650 ((-1150 |#1|) (-1150 |#1|))) (-15 -3661 ((-1150 |#1|) (-1150 |#1|))) (-15 -3672 ((-1150 |#1|) (-1150 |#1|))) (-15 -3684 ((-1150 |#1|) (-1150 |#1|))) (-15 -3697 ((-1150 |#1|) (-1150 |#1|))) (-15 -3708 ((-1150 |#1|) (-1150 |#1|))) (-15 -3720 ((-1150 |#1|) (-1150 |#1|))) (-15 -3732 ((-1150 |#1|) (-1150 |#1|))) (-15 -3746 ((-1150 |#1|) (-1150 |#1|))) (-15 -3757 ((-1150 |#1|) (-1150 |#1|))) (-15 -3768 ((-1150 |#1|) (-1150 |#1|))) (-15 -2891 ((-2 (|:| -3779 (-1150 |#1|)) (|:| -3792 (-1150 |#1|))) (-1150 |#1|))) (-15 -3779 ((-1150 |#1|) (-1150 |#1|))) (-15 -3792 ((-1150 |#1|) (-1150 |#1|))) (-15 -3802 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3836 ((-1150 |#1|) (-1150 |#1|))) (-15 -3849 ((-1150 |#1|) (-1150 |#1|))) (-15 -2660 ((-1150 |#1|) (-1150 |#1|))) (-15 -2672 ((-1150 |#1|) (-1150 |#1|))) (-15 -2684 ((-1150 |#1|) (-1150 |#1|))) (-15 -2695 ((-1150 |#1|) (-1150 |#1|))) (-15 -1511 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1156)) +((-1511 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2684 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3792 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3779 (-1150 *4)) (|:| -3792 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3720 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3661 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3639 (-1150 *4)) (|:| -3650 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) +(-10 -7 (-15 -3571 ((-1150 |#1|) (-1150 |#1|))) (-15 -3439 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2464 ((-2 (|:| -3639 (-1150 |#1|)) (|:| -3650 (-1150 |#1|))) (-1150 |#1|))) (-15 -3639 ((-1150 |#1|) (-1150 |#1|))) (-15 -3650 ((-1150 |#1|) (-1150 |#1|))) (-15 -3661 ((-1150 |#1|) (-1150 |#1|))) (-15 -3672 ((-1150 |#1|) (-1150 |#1|))) (-15 -3684 ((-1150 |#1|) (-1150 |#1|))) (-15 -3697 ((-1150 |#1|) (-1150 |#1|))) (-15 -3708 ((-1150 |#1|) (-1150 |#1|))) (-15 -3720 ((-1150 |#1|) (-1150 |#1|))) (-15 -3732 ((-1150 |#1|) (-1150 |#1|))) (-15 -3746 ((-1150 |#1|) (-1150 |#1|))) (-15 -3757 ((-1150 |#1|) (-1150 |#1|))) (-15 -3768 ((-1150 |#1|) (-1150 |#1|))) (-15 -2891 ((-2 (|:| -3779 (-1150 |#1|)) (|:| -3792 (-1150 |#1|))) (-1150 |#1|))) (-15 -3779 ((-1150 |#1|) (-1150 |#1|))) (-15 -3792 ((-1150 |#1|) (-1150 |#1|))) (-15 -3802 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3836 ((-1150 |#1|) (-1150 |#1|))) (-15 -3849 ((-1150 |#1|) (-1150 |#1|))) (-15 -2660 ((-1150 |#1|) (-1150 |#1|))) (-15 -2672 ((-1150 |#1|) (-1150 |#1|))) (-15 -2684 ((-1150 |#1|) (-1150 |#1|))) (-15 -2695 ((-1150 |#1|) (-1150 |#1|))) (-15 -1511 ((-1150 |#1|) (-1150 |#1|)))) +((-2576 (((-954 |#2|) |#2| |#2|) 50)) (-2520 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307))))) +(((-1157 |#1| |#2|) (-10 -7 (-15 -2576 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2520 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1235 |#1|)) (T -1157)) +((-2520 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1235 *3)))) (-2576 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-954 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -2576 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2520 (|#2| |#2| |#1|)) |%noBranch|)) +((-2310 (((-112) $ $) NIL)) (-3867 (($ $ (-641 (-767))) 80)) (-4295 (($) 32)) (-4100 (($ $) 50)) (-1561 (((-641 $) $) 59)) (-3739 (((-112) $) 19)) (-4174 (((-641 (-939 |#2|)) $) 87)) (-3993 (($ $) 81)) (-2119 (((-767) $) 46)) (-4121 (($) 31)) (-1655 (($ $ (-641 (-767)) (-939 |#2|)) 73) (($ $ (-641 (-767)) (-767)) 74) (($ $ (-767) (-939 |#2|)) 76)) (-2988 (($ $ $) 56) (($ (-641 $)) 58)) (-4150 (((-767) $) 88)) (-1808 (((-112) $) 15)) (-1418 (((-1152) $) NIL)) (-1792 (((-112) $) 21)) (-3840 (((-1114) $) NIL)) (-2214 (((-171) $) 86)) (-3141 (((-939 |#2|) $) 82)) (-4184 (((-767) $) 83)) (-1566 (((-112) $) 85)) (-3379 (($ $ (-641 (-767)) (-171)) 79)) (-2763 (($ $) 51)) (-2322 (((-858) $) 99)) (-2004 (($ $ (-641 (-767)) (-112)) 78)) (-1591 (((-641 $) $) 11)) (-3277 (($ $ (-767)) 45)) (-2555 (($ $) 42)) (-3562 (($ $ $ (-939 |#2|) (-767)) 69)) (-2852 (($ $ (-939 |#2|)) 68)) (-1989 (($ $ (-641 (-767)) (-939 |#2|)) 65) (($ $ (-641 (-767)) (-767)) 71) (((-767) $ (-939 |#2|)) 72)) (-2921 (((-112) $ $) 93))) +(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1808 ((-112) $)) (-15 -3739 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -4121 ($)) (-15 -4295 ($)) (-15 -2555 ($ $)) (-15 -3277 ($ $ (-767))) (-15 -1591 ((-641 $) $)) (-15 -2119 ((-767) $)) (-15 -4100 ($ $)) (-15 -2763 ($ $)) (-15 -2988 ($ $ $)) (-15 -2988 ($ (-641 $))) (-15 -1561 ((-641 $) $)) (-15 -1989 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -2852 ($ $ (-939 |#2|))) (-15 -3562 ($ $ $ (-939 |#2|) (-767))) (-15 -1655 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -1989 ($ $ (-641 (-767)) (-767))) (-15 -1655 ($ $ (-641 (-767)) (-767))) (-15 -1989 ((-767) $ (-939 |#2|))) (-15 -1655 ($ $ (-767) (-939 |#2|))) (-15 -2004 ($ $ (-641 (-767)) (-112))) (-15 -3379 ($ $ (-641 (-767)) (-171))) (-15 -3867 ($ $ (-641 (-767)))) (-15 -3141 ((-939 |#2|) $)) (-15 -4184 ((-767) $)) (-15 -1566 ((-112) $)) (-15 -2214 ((-171) $)) (-15 -4150 ((-767) $)) (-15 -3993 ($ $)) (-15 -4174 ((-641 (-939 |#2|)) $)))) (-917) (-1045)) (T -1158)) +((-1808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1792 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4121 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4295 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2555 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3277 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4100 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2763 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2988 (*1 *1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1989 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)))) (-3562 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-1655 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-1989 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-1655 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-1655 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-2004 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-3379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-939 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3993 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-641 (-939 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045))))) +(-13 (-1094) (-10 -8 (-15 -1808 ((-112) $)) (-15 -3739 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -4121 ($)) (-15 -4295 ($)) (-15 -2555 ($ $)) (-15 -3277 ($ $ (-767))) (-15 -1591 ((-641 $) $)) (-15 -2119 ((-767) $)) (-15 -4100 ($ $)) (-15 -2763 ($ $)) (-15 -2988 ($ $ $)) (-15 -2988 ($ (-641 $))) (-15 -1561 ((-641 $) $)) (-15 -1989 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -2852 ($ $ (-939 |#2|))) (-15 -3562 ($ $ $ (-939 |#2|) (-767))) (-15 -1655 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -1989 ($ $ (-641 (-767)) (-767))) (-15 -1655 ($ $ (-641 (-767)) (-767))) (-15 -1989 ((-767) $ (-939 |#2|))) (-15 -1655 ($ $ (-767) (-939 |#2|))) (-15 -2004 ($ $ (-641 (-767)) (-112))) (-15 -3379 ($ $ (-641 (-767)) (-171))) (-15 -3867 ($ $ (-641 (-767)))) (-15 -3141 ((-939 |#2|) $)) (-15 -4184 ((-767) $)) (-15 -1566 ((-112) $)) (-15 -2214 ((-171) $)) (-15 -4150 ((-767) $)) (-15 -3993 ($ $)) (-15 -4174 ((-641 (-939 |#2|)) $)))) +((-2310 (((-112) $ $) NIL)) (-3725 ((|#2| $) 11)) (-3713 ((|#1| $) 10)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2335 (($ |#1| |#2|) 9)) (-2322 (((-858) $) 16)) (-2921 (((-112) $ $) NIL))) +(((-1159 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2335 ($ |#1| |#2|)) (-15 -3713 (|#1| $)) (-15 -3725 (|#2| $)))) (-1094) (-1094)) (T -1159)) +((-2335 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3713 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))) (-3725 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -2335 ($ |#1| |#2|)) (-15 -3713 (|#1| $)) (-15 -3725 (|#2| $)))) +((-2310 (((-112) $ $) NIL)) (-2913 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1160) (-13 (-1077) (-10 -8 (-15 -2913 ((-1129) $))))) (T -1160)) +((-2913 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160))))) +(-13 (-1077) (-10 -8 (-15 -2913 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 11)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3622 (($ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3247 (((-112) $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3624 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-1412 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-4072 (((-1168 |#1| |#2| |#3|) $) 42)) (-3614 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 32)) (-2593 (((-1168 |#1| |#2| |#3|) $) 33)) (-3802 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1467 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3825 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-1781 (((-1168 |#1| |#2| |#3|) $) 140) (((-1170) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-3884 (($ $) 37) (($ (-564) $) 38)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-1168 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1168 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-2689 (((-3 $ "failed") $) 54)) (-4342 (((-407 (-948 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-3860 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2786 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2506 (((-112) $) 28)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-882 (-564))) (|has| |#1| (-363))))) (-3717 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL (|has| |#1| (-363)))) (-4189 (((-1168 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1620 (((-3 $ "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2783 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1762 (($ $ (-917)) NIL)) (-4298 (($ (-1 |#1| (-564)) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-564)) 19) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-1501 (($ $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2622 (($ $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3439 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2606 (($ (-564) (-1168 |#1| |#2| |#3|)) 36)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3719 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3346 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3399 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-1421 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-564)) 158)) (-2526 (((-3 $ "failed") $ $) 55 (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1168 |#1| |#2| |#3|)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1106))) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 57) (($ $ (-767)) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-1881 (($ $) NIL (|has| |#1| (-363)))) (-4201 (((-1168 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-2073 (((-564) $) 43)) (-3836 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3172 (((-536) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1255 |#2|)) 25) (($ (-1170)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-3467 ((|#1| $ (-564)) 77)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 12)) (-4381 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2672 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3849 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-3598 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2389 (($) 21 T CONST)) (-2403 (($) 16 T CONST)) (-3917 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-2977 (((-112) $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2953 (((-112) $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2942 (((-112) $ $) NIL (-2789 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-767)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1168 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1161 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1161)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-4281 ((|#2| |#2| (-1086 |#2|)) 26) ((|#2| |#2| (-1170)) 28))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -4281 (|#2| |#2| (-1170))) (-15 -4281 (|#2| |#2| (-1086 |#2|)))) (-13 (-556) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1194))) (T -1162)) +((-4281 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) (-4281 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))))) +(-10 -7 (-15 -4281 (|#2| |#2| (-1170))) (-15 -4281 (|#2| |#2| (-1086 |#2|)))) +((-4281 (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1086 (-407 (-948 |#1|)))) 31) (((-407 (-948 |#1|)) (-948 |#1|) (-1086 (-948 |#1|))) 44) (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1170)) 33) (((-407 (-948 |#1|)) (-948 |#1|) (-1170)) 36))) +(((-1163 |#1|) (-10 -7 (-15 -4281 ((-407 (-948 |#1|)) (-948 |#1|) (-1170))) (-15 -4281 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -4281 ((-407 (-948 |#1|)) (-948 |#1|) (-1086 (-948 |#1|)))) (-15 -4281 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1086 (-407 (-948 |#1|)))))) (-13 (-556) (-846) (-1034 (-564)))) (T -1163)) +((-4281 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-948 *5))) (-5 *3 (-948 *5)) (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-407 (-948 *5))))) (-4281 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-948 *5))))) +(-10 -7 (-15 -4281 ((-407 (-948 |#1|)) (-948 |#1|) (-1170))) (-15 -4281 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -4281 ((-407 (-948 |#1|)) (-948 |#1|) (-1086 (-948 |#1|)))) (-15 -4281 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1086 (-407 (-948 |#1|)))))) +((-3123 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 13))) +(((-1164 |#1| |#2|) (-10 -7 (-15 -3123 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) (-1045) (-1045)) (T -1164)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6))))) +(-10 -7 (-15 -3123 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) +((-2657 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 51)) (-2375 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 52))) +(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -2657 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) (-789) (-846) (-452) (-945 |#3| |#1| |#2|)) (T -1165)) +((-2657 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))) +(-10 -7 (-15 -2375 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -2657 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) +((-2310 (((-112) $ $) 169)) (-3264 (((-112) $) 42)) (-4278 (((-1259 |#1|) $ (-767)) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-1837 (($ (-1166 |#1|)) NIL)) (-2340 (((-1166 $) $ (-1076)) 81) (((-1166 |#1|) $) 70)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) 162 (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) 156 (|has| |#1| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-905)))) (-3453 (($ $) NIL (|has| |#1| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 114 (|has| |#1| (-905)))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2687 (($ $ (-767)) 60)) (-1310 (($ $ (-767)) 62)) (-1561 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-1781 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1076) $) NIL)) (-2595 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 158 (|has| |#1| (-172)))) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) 79)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3664 (($ $ $) 129)) (-3906 (($ $ $) NIL (|has| |#1| (-556)))) (-1726 (((-2 (|:| -3139 |#1|) (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2520 (($ $) 163 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-767) $) 68)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3301 (((-858) $ (-858)) 146)) (-3717 (((-767) $ $) NIL (|has| |#1| (-556)))) (-1828 (((-112) $) 47)) (-4137 (((-767) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2519 (($ (-1166 |#1|) (-1076)) 72) (($ (-1166 $) (-1076)) 88)) (-1762 (($ $ (-767)) 50)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) 86) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1076)) NIL) (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 151)) (-3386 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-2168 (($ (-1 (-767) (-767)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-4049 (((-1166 |#1|) $) NIL)) (-3878 (((-3 (-1076) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) 75)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1418 (((-1152) $) NIL)) (-3548 (((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767)) 59)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-1076)) (|:| -3866 (-767))) "failed") $) NIL)) (-3719 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3346 (($) NIL (|has| |#1| (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) 49)) (-2662 ((|#1| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 165 (|has| |#1| (-452)))) (-2031 (($ $ (-767) |#1| $) 121)) (-4209 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 99 (|has| |#1| (-905)))) (-2375 (((-418 $) $) 107 (|has| |#1| (-905)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ |#1|) 161 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 122 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ |#1|) 148) (($ $ $) 149) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3243 (((-3 $ "failed") $ (-767)) 53)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 170 (|has| |#1| (-363)))) (-3392 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) 154 (|has| |#1| (-172)))) (-1343 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2073 (((-767) $) 77) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) 160 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2923 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2322 (((-858) $) 147) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1076)) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) 40 (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) 17 T CONST)) (-2403 (($) 19 T CONST)) (-3917 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) 119)) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3034 (($ $ |#1|) 171 (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 89)) (** (($ $ (-917)) 14) (($ $ (-767)) 12)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 127) (($ $ |#1|) NIL))) +(((-1166 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -3301 ((-858) $ (-858))) (-15 -2031 ($ $ (-767) |#1| $)))) (-1045)) (T -1166)) +((-3301 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-1166 *3)) (-4 *3 (-1045)))) (-2031 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1166 *3)) (-4 *3 (-1045))))) +(-13 (-1235 |#1|) (-10 -8 (-15 -3301 ((-858) $ (-858))) (-15 -2031 ($ $ (-767) |#1| $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 11)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 36)) (-1781 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1168 |#1| |#2| |#3|) $) NIL)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3425 (((-407 (-564)) $) 59)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-2618 (($ (-407 (-564)) (-1161 |#1| |#2| |#3|)) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-407 (-564))) 20) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3517 (((-1161 |#1| |#2| |#3|) $) 41)) (-2088 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-2606 (((-1161 |#1| |#2| |#3|) $) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3719 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) NIL)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-2073 (((-407 (-564)) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1161 |#1| |#2| |#3|)) 30) (($ (-1168 |#1| |#2| |#3|)) 31) (($ (-1255 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 12)) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 22 T CONST)) (-2403 (($) 16 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 24)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1167 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1034 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1167)) +((-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1034 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 130)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 120)) (-4130 (((-1232 |#2| |#1|) $ (-767)) 68)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-767)) 84) (($ $ (-767) (-767)) 81)) (-1412 (((-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 106)) (-3802 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3779 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 119) (($ (-1150 |#1|)) 114)) (-3825 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) 25)) (-2856 (($ $) 28)) (-1433 (((-948 |#1|) $ (-767)) 80) (((-948 |#1|) $ (-767) (-767)) 82)) (-2506 (((-112) $) 125)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-767) $) 127) (((-767) $ (-767)) 129)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) NIL)) (-4298 (($ (-1 |#1| (-564)) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) 13) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3719 (($ $) 134 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2941 (($ $ (-767)) 15)) (-2526 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-3571 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4353 ((|#1| $ (-767)) 123) (($ $ $) 133 (|has| (-767) (-1106)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1255 |#2|)) 31)) (-2073 (((-767) $) NIL)) (-3836 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) 207) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 131 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 54) (($ (-1255 |#2|)) 36)) (-3680 (((-1150 |#1|) $) 102)) (-3467 ((|#1| $ (-767)) 122)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 57)) (-2672 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-767)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 17 T CONST)) (-2403 (($) 20 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) 199)) (-3011 (($ $ $) 35)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 204 (|has| |#1| (-363))) (($ $ $) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 142 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 137) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1168 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -2322 ($ (-1232 |#2| |#1|))) (-15 -4130 ((-1232 |#2| |#1|) $ (-767))) (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1168)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1250 |#1|) (-10 -8 (-15 -2322 ($ (-1232 |#2| |#1|))) (-15 -4130 ((-1232 |#2| |#1|) $ (-767))) (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2322 (((-858) $) 33) (($ (-1170)) 35)) (-2789 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-2778 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2899 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2888 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2877 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2868 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-2056 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45))) +(((-1169) (-13 (-611 (-858)) (-10 -8 (-15 -2322 ($ (-1170))) (-15 -2899 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2877 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2888 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2868 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2789 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2056 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2778 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2778 ($ $))))) (T -1169)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-2899 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2877 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2888 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2868 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2789 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2056 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2778 (*1 *1 *1) (-5 *1 (-1169)))) +(-13 (-611 (-858)) (-10 -8 (-15 -2322 ($ (-1170))) (-15 -2899 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2877 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2888 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2868 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2789 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2056 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2778 ($ (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2778 ($ $)))) +((-2310 (((-112) $ $) NIL)) (-3659 (($ $ (-641 (-858))) 64)) (-3846 (($ $ (-641 (-858))) 62)) (-4177 (((-1152) $) 103)) (-1761 (((-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858)))) $) 109)) (-1672 (((-112) $) 23)) (-1962 (($ $ (-641 (-641 (-858)))) 61) (($ $ (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858))))) 101)) (-4157 (($) 163 T CONST)) (-2904 (((-1264)) 136)) (-3466 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 71) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78)) (-4121 (($) 122) (($ $) 131)) (-2420 (($ $) 102)) (-1501 (($ $ $) NIL)) (-2622 (($ $ $) NIL)) (-1870 (((-641 $) $) 138)) (-1418 (((-1152) $) 114)) (-3840 (((-1114) $) NIL)) (-4353 (($ $ (-641 (-858))) 63)) (-3172 (((-536) $) 48) (((-1170) $) 49) (((-888 (-564)) $) 82) (((-888 (-379)) $) 80)) (-2322 (((-858) $) 55) (($ (-1152)) 50)) (-3217 (($ $ (-641 (-858))) 65)) (-3552 (((-1152) $) 34) (((-1152) $ (-112)) 35) (((-1264) (-818) $) 36) (((-1264) (-818) $ (-112)) 37)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) 51)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 52))) +(((-1170) (-13 (-846) (-612 (-536)) (-824) (-612 (-1170)) (-614 (-1152)) (-612 (-888 (-564))) (-612 (-888 (-379))) (-882 (-564)) (-882 (-379)) (-10 -8 (-15 -4121 ($)) (-15 -4121 ($ $)) (-15 -2904 ((-1264))) (-15 -2420 ($ $)) (-15 -1672 ((-112) $)) (-15 -1761 ((-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858)))) $)) (-15 -1962 ($ $ (-641 (-641 (-858))))) (-15 -1962 ($ $ (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858)))))) (-15 -3846 ($ $ (-641 (-858)))) (-15 -3659 ($ $ (-641 (-858)))) (-15 -3217 ($ $ (-641 (-858)))) (-15 -4353 ($ $ (-641 (-858)))) (-15 -4177 ((-1152) $)) (-15 -1870 ((-641 $) $)) (-15 -4157 ($) -2255)))) (T -1170)) +((-4121 (*1 *1) (-5 *1 (-1170))) (-4121 (*1 *1 *1) (-5 *1 (-1170))) (-2904 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))) (-2420 (*1 *1 *1) (-5 *1 (-1170))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858))))) (-5 *1 (-1170)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-1170)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858))))) (-5 *1 (-1170)))) (-3846 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-3659 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-3217 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))) (-4157 (*1 *1) (-5 *1 (-1170)))) +(-13 (-846) (-612 (-536)) (-824) (-612 (-1170)) (-614 (-1152)) (-612 (-888 (-564))) (-612 (-888 (-379))) (-882 (-564)) (-882 (-379)) (-10 -8 (-15 -4121 ($)) (-15 -4121 ($ $)) (-15 -2904 ((-1264))) (-15 -2420 ($ $)) (-15 -1672 ((-112) $)) (-15 -1761 ((-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858)))) $)) (-15 -1962 ($ $ (-641 (-641 (-858))))) (-15 -1962 ($ $ (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) (|:| |args| (-641 (-858)))))) (-15 -3846 ($ $ (-641 (-858)))) (-15 -3659 ($ $ (-641 (-858)))) (-15 -3217 ($ $ (-641 (-858)))) (-15 -4353 ($ $ (-641 (-858)))) (-15 -4177 ((-1152) $)) (-15 -1870 ((-641 $) $)) (-15 -4157 ($) -2255))) +((-3862 (((-1259 |#1|) |#1| (-917)) 18) (((-1259 |#1|) (-641 |#1|)) 25))) +(((-1171 |#1|) (-10 -7 (-15 -3862 ((-1259 |#1|) (-641 |#1|))) (-15 -3862 ((-1259 |#1|) |#1| (-917)))) (-1045)) (T -1171)) +((-3862 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1045)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1045)) (-5 *2 (-1259 *4)) (-5 *1 (-1171 *4))))) +(-10 -7 (-15 -3862 ((-1259 |#1|) (-641 |#1|))) (-15 -3862 ((-1259 |#1|) |#1| (-917)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1781 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2520 (($ $) NIL (|has| |#1| (-452)))) (-2050 (($ $ |#1| (-967) $) NIL)) (-1828 (((-112) $) 17)) (-4137 (((-767) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-967)) NIL)) (-3386 (((-967) $) NIL)) (-2168 (($ (-1 (-967) (-967)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#1| $) NIL)) (-2031 (($ $ (-967) |#1| $) NIL (-12 (|has| (-967) (-131)) (|has| |#1| (-556))))) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2073 (((-967) $) NIL)) (-2290 ((|#1| $) NIL (|has| |#1| (-452)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2789 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ (-967)) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2389 (($) 11 T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1172 |#1|) (-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-967) (-131)) (-15 -2031 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) (-1045)) (T -1172)) +((-2031 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))) +(-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-967) (-131)) (-15 -2031 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) +((-3617 (((-1174) (-1170) $) 25)) (-3159 (($) 29)) (-3319 (((-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-1170) $) 22)) (-2485 (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void")) $) 41) (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) 42) (((-1264) (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) 43)) (-1753 (((-1264) (-1170)) 58)) (-3178 (((-1264) (-1170) $) 55) (((-1264) (-1170)) 56) (((-1264)) 57)) (-3539 (((-1264) (-1170)) 37)) (-1922 (((-1170)) 36)) (-2348 (($) 34)) (-3521 (((-437) (-1170) (-437) (-1170) $) 45) (((-437) (-641 (-1170)) (-437) (-1170) $) 49) (((-437) (-1170) (-437)) 46) (((-437) (-1170) (-437) (-1170)) 50)) (-1573 (((-1170)) 35)) (-2322 (((-858) $) 28)) (-2948 (((-1264)) 30) (((-1264) (-1170)) 33)) (-1791 (((-641 (-1170)) (-1170) $) 24)) (-1666 (((-1264) (-1170) (-641 (-1170)) $) 38) (((-1264) (-1170) (-641 (-1170))) 39) (((-1264) (-641 (-1170))) 40))) +(((-1173) (-13 (-611 (-858)) (-10 -8 (-15 -3159 ($)) (-15 -2948 ((-1264))) (-15 -2948 ((-1264) (-1170))) (-15 -3521 ((-437) (-1170) (-437) (-1170) $)) (-15 -3521 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -3521 ((-437) (-1170) (-437))) (-15 -3521 ((-437) (-1170) (-437) (-1170))) (-15 -3539 ((-1264) (-1170))) (-15 -1573 ((-1170))) (-15 -1922 ((-1170))) (-15 -1666 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -1666 ((-1264) (-1170) (-641 (-1170)))) (-15 -1666 ((-1264) (-641 (-1170)))) (-15 -2485 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void")) $)) (-15 -2485 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void")))) (-15 -2485 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3734 "void")))) (-15 -3178 ((-1264) (-1170) $)) (-15 -3178 ((-1264) (-1170))) (-15 -3178 ((-1264))) (-15 -1753 ((-1264) (-1170))) (-15 -2348 ($)) (-15 -3319 ((-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-1170) $)) (-15 -1791 ((-641 (-1170)) (-1170) $)) (-15 -3617 ((-1174) (-1170) $))))) (T -1173)) +((-3159 (*1 *1) (-5 *1 (-1173))) (-2948 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3521 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3521 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) (-5 *1 (-1173)))) (-3521 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3521 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1573 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-1922 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-1666 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1666 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2485 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3178 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3178 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2348 (*1 *1) (-5 *1 (-1173))) (-3319 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *1 (-1173)))) (-1791 (*1 *2 *3 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))) (-3617 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173))))) +(-13 (-611 (-858)) (-10 -8 (-15 -3159 ($)) (-15 -2948 ((-1264))) (-15 -2948 ((-1264) (-1170))) (-15 -3521 ((-437) (-1170) (-437) (-1170) $)) (-15 -3521 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -3521 ((-437) (-1170) (-437))) (-15 -3521 ((-437) (-1170) (-437) (-1170))) (-15 -3539 ((-1264) (-1170))) (-15 -1573 ((-1170))) (-15 -1922 ((-1170))) (-15 -1666 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -1666 ((-1264) (-1170) (-641 (-1170)))) (-15 -1666 ((-1264) (-641 (-1170)))) (-15 -2485 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void")) $)) (-15 -2485 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3734 "void")))) (-15 -2485 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3734 "void")))) (-15 -3178 ((-1264) (-1170) $)) (-15 -3178 ((-1264) (-1170))) (-15 -3178 ((-1264))) (-15 -1753 ((-1264) (-1170))) (-15 -2348 ($)) (-15 -3319 ((-3 (|:| |fst| (-434)) (|:| -3734 "void")) (-1170) $)) (-15 -1791 ((-641 (-1170)) (-1170) $)) (-15 -3617 ((-1174) (-1170) $)))) +((-1460 (((-641 (-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) $) 66)) (-3978 (((-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))) (-434) $) 47)) (-3885 (($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-437))))) 17)) (-1753 (((-1264) $) 74)) (-1729 (((-641 (-1170)) $) 22)) (-1779 (((-1098) $) 60)) (-2296 (((-437) (-1170) $) 27)) (-1978 (((-641 (-1170)) $) 30)) (-2348 (($) 19)) (-3521 (((-437) (-641 (-1170)) (-437) $) 25) (((-437) (-1170) (-437) $) 24)) (-2322 (((-858) $) 9) (((-1182 (-1170) (-437)) $) 13))) +(((-1174) (-13 (-611 (-858)) (-10 -8 (-15 -2322 ((-1182 (-1170) (-437)) $)) (-15 -2348 ($)) (-15 -3521 ((-437) (-641 (-1170)) (-437) $)) (-15 -3521 ((-437) (-1170) (-437) $)) (-15 -2296 ((-437) (-1170) $)) (-15 -1729 ((-641 (-1170)) $)) (-15 -3978 ((-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))) (-434) $)) (-15 -1978 ((-641 (-1170)) $)) (-15 -1460 ((-641 (-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) $)) (-15 -1779 ((-1098) $)) (-15 -1753 ((-1264) $)) (-15 -3885 ($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-437))))))))) (T -1174)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) (-2348 (*1 *1) (-5 *1 (-1174))) (-3521 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))) (-3521 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) (-2296 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-3978 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) (-5 *1 (-1174)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))))) (-5 *1 (-1174)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-437))))) (-5 *1 (-1174))))) +(-13 (-611 (-858)) (-10 -8 (-15 -2322 ((-1182 (-1170) (-437)) $)) (-15 -2348 ($)) (-15 -3521 ((-437) (-641 (-1170)) (-437) $)) (-15 -3521 ((-437) (-1170) (-437) $)) (-15 -2296 ((-437) (-1170) $)) (-15 -1729 ((-641 (-1170)) $)) (-15 -3978 ((-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))) (-434) $)) (-15 -1978 ((-641 (-1170)) $)) (-15 -1460 ((-641 (-641 (-3 (|:| -2420 (-1170)) (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) $)) (-15 -1779 ((-1098) $)) (-15 -1753 ((-1264) $)) (-15 -3885 ($ (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-437)))))))) +((-2310 (((-112) $ $) NIL)) (-3032 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1152) "failed") $) 47)) (-1781 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1152) $) 48)) (-1858 (((-112) $) 53)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2940 (((-3 (-564) (-225) (-506) (-1152) $) $) 55)) (-2203 (((-641 $) $) 57)) (-3172 (((-1098) $) 24) (($ (-1098)) 25)) (-3953 (((-112) $) 56)) (-2322 (((-858) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1152)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1152) $) 49)) (-2377 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1152))) 16)) (-2363 (($ (-506) (-641 $)) 51) (($ $ (-641 $)) 52)) (-3806 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1152) $) 45)) (-2921 (((-112) $ $) 7))) +(((-1175) (-13 (-1254) (-1094) (-1034 (-564)) (-1034 (-225)) (-1034 (-506)) (-1034 (-1152)) (-611 (-536)) (-10 -8 (-15 -3172 ((-1098) $)) (-15 -3172 ($ (-1098))) (-15 -2322 ((-564) $)) (-15 -3806 ((-564) $)) (-15 -2322 ((-225) $)) (-15 -3806 ((-225) $)) (-15 -2322 ((-506) $)) (-15 -3806 ((-506) $)) (-15 -2322 ((-1152) $)) (-15 -3806 ((-1152) $)) (-15 -2363 ($ (-506) (-641 $))) (-15 -2363 ($ $ (-641 $))) (-15 -1858 ((-112) $)) (-15 -2940 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -2203 ((-641 $) $)) (-15 -3953 ((-112) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-564)))) (-15 -2377 ((-112) $ (|[\|\|]| (-225)))) (-15 -2377 ((-112) $ (|[\|\|]| (-506)))) (-15 -2377 ((-112) $ (|[\|\|]| (-1152))))))) (T -1175)) +((-3172 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-2363 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))) (-2363 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) (-5 *1 (-1175)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175))))) +(-13 (-1254) (-1094) (-1034 (-564)) (-1034 (-225)) (-1034 (-506)) (-1034 (-1152)) (-611 (-536)) (-10 -8 (-15 -3172 ((-1098) $)) (-15 -3172 ($ (-1098))) (-15 -2322 ((-564) $)) (-15 -3806 ((-564) $)) (-15 -2322 ((-225) $)) (-15 -3806 ((-225) $)) (-15 -2322 ((-506) $)) (-15 -3806 ((-506) $)) (-15 -2322 ((-1152) $)) (-15 -3806 ((-1152) $)) (-15 -2363 ($ (-506) (-641 $))) (-15 -2363 ($ $ (-641 $))) (-15 -1858 ((-112) $)) (-15 -2940 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -2203 ((-641 $) $)) (-15 -3953 ((-112) $)) (-15 -2377 ((-112) $ (|[\|\|]| (-564)))) (-15 -2377 ((-112) $ (|[\|\|]| (-225)))) (-15 -2377 ((-112) $ (|[\|\|]| (-506)))) (-15 -2377 ((-112) $ (|[\|\|]| (-1152)))))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) 24)) (-4157 (($) 14 T CONST)) (-3860 (($) 29)) (-1501 (($ $ $) NIL) (($) 21 T CONST)) (-2622 (($ $ $) NIL) (($) 22 T CONST)) (-1368 (((-917) $) 26)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) 25)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-1176 |#1|) (-13 (-840) (-10 -8 (-15 -4157 ($) -2255))) (-917)) (T -1176)) +((-4157 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))) +(-13 (-840) (-10 -8 (-15 -4157 ($) -2255))) ((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) 21 T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) 14 T CONST)) (-3375 (($ $ $) NIL) (($) 20 T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-4186 (($ $ $) 23)) (-4177 (($ $ $) 22)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-1177 |#1|) (-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) (-918)) (T -1177)) -((-4177 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-4186 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-1778 (*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))) -(-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) 21 T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) 14 T CONST)) (-2622 (($ $ $) NIL) (($) 20 T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2153 (($ $ $) 23)) (-2141 (($ $ $) 22)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-1177 |#1|) (-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) (-917)) (T -1177)) +((-2141 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) (-2153 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) (-4157 (*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917))))) +(-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) ((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-3851 (((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 70)) (-2017 (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|)))) 84) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|))) 80) (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 85) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 79) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|))))) 112) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|)))) 111) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 113) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 110))) -(((-1178 |#1|) (-10 -7 (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -3851 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))))) (-556)) (T -1178)) -((-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4)))))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-294 (-407 (-949 *5)))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-407 (-949 *5))))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4))))))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)) (-5 *3 (-641 (-294 (-407 (-949 *5))))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5))))) -(-10 -7 (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -2017 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -2017 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -3851 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))))) -((-4121 (((-1152)) 7)) (-2270 (((-1152)) 11 T CONST)) (-2497 (((-1264) (-1152)) 13)) (-1443 (((-1152)) 8 T CONST)) (-2703 (((-130)) 10 T CONST))) -(((-1179) (-13 (-1209) (-10 -7 (-15 -4121 ((-1152))) (-15 -1443 ((-1152)) -1809) (-15 -2703 ((-130)) -1809) (-15 -2270 ((-1152)) -1809) (-15 -2497 ((-1264) (-1152)))))) (T -1179)) -((-4121 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-1443 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2703 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))) (-2270 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179))))) -(-13 (-1209) (-10 -7 (-15 -4121 ((-1152))) (-15 -1443 ((-1152)) -1809) (-15 -2703 ((-130)) -1809) (-15 -2270 ((-1152)) -1809) (-15 -2497 ((-1264) (-1152))))) -((-1635 (((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 55)) (-3159 (((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|))) 38)) (-4035 (((-1181 (-641 |#1|)) (-641 |#1|)) 49)) (-3310 (((-641 (-641 |#1|)) (-641 |#1|)) 45)) (-3509 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))) 52)) (-3972 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|)))) 51)) (-1894 (((-641 (-641 |#1|)) (-641 (-641 |#1|))) 43)) (-1861 (((-641 |#1|) (-641 |#1|)) 46)) (-3864 (((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 32)) (-3931 (((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 29)) (-4184 (((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|))) 24)) (-2862 (((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 57)) (-1549 (((-641 (-641 |#1|)) (-1181 (-641 |#1|))) 59))) -(((-1180 |#1|) (-10 -7 (-15 -4184 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -3931 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3864 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1635 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -2862 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -1549 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -3159 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -4035 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -1894 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -3310 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -1861 ((-641 |#1|) (-641 |#1|))) (-15 -3972 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3509 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) (-847)) (T -1180)) -((-3509 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))) (-3972 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) (|:| |f4| (-641 *5)))) (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-847)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-3864 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-3931 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) (-5 *1 (-1180 *6)) (-5 *5 (-641 *4))))) -(-10 -7 (-15 -4184 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -3931 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3864 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1635 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -2862 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -1549 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -3159 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -4035 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -1894 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -3310 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -1861 ((-641 |#1|) (-641 |#1|))) (-15 -3972 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3509 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) -((-4043 (($ (-641 (-641 |#1|))) 10)) (-4217 (((-641 (-641 |#1|)) $) 11)) (-1831 (((-859) $) 38))) -(((-1181 |#1|) (-10 -8 (-15 -4043 ($ (-641 (-641 |#1|)))) (-15 -4217 ((-641 (-641 |#1|)) $)) (-15 -1831 ((-859) $))) (-1094)) (T -1181)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3))))) -(-10 -8 (-15 -4043 ($ (-641 (-641 |#1|)))) (-15 -4217 ((-641 (-641 |#1|)) $)) (-15 -1831 ((-859) $))) -((-1817 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3639 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1956 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#2| $ |#1| |#2|) NIL)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) NIL)) (-1778 (($) NIL T CONST)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) NIL)) (-3100 ((|#1| $) NIL (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-3440 ((|#1| $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2945 (((-641 |#1|) $) NIL)) (-2554 (((-112) |#1| $) NIL)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-3883 (((-641 |#1|) $) NIL)) (-4336 (((-112) |#1| $) NIL)) (-2780 (((-1114) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3303 ((|#2| $) NIL (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL)) (-4253 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4232 (($) NIL) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1831 (((-859) $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) NIL)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) NIL (-4078 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) +((-1337 (((-641 (-641 (-948 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 70)) (-1630 (((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|)))) 84) (((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|))) 80) (((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170)) 85) (((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170)) 79) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|))))) 112) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|)))) 111) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170))) 113) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 110))) +(((-1178 |#1|) (-10 -7 (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -1337 ((-641 (-641 (-948 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))))) (-556)) (T -1178)) +((-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-948 *5)))) (-5 *1 (-1178 *5)))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-948 *4)))))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-407 (-948 *4))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-294 (-407 (-948 *5)))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-407 (-948 *5))))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-948 *4))))))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-1178 *4)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-1178 *5)) (-5 *3 (-641 (-294 (-407 (-948 *5))))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-1178 *5))))) +(-10 -7 (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))))) (-15 -1630 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -1630 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -1337 ((-641 (-641 (-948 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))))) +((-2174 (((-1152)) 7)) (-2422 (((-1152)) 11 T CONST)) (-4222 (((-1264) (-1152)) 13)) (-3970 (((-1152)) 8 T CONST)) (-4323 (((-130)) 10 T CONST))) +(((-1179) (-13 (-1209) (-10 -7 (-15 -2174 ((-1152))) (-15 -3970 ((-1152)) -2255) (-15 -4323 ((-130)) -2255) (-15 -2422 ((-1152)) -2255) (-15 -4222 ((-1264) (-1152)))))) (T -1179)) +((-2174 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-3970 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-4323 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))) (-2422 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179))))) +(-13 (-1209) (-10 -7 (-15 -2174 ((-1152))) (-15 -3970 ((-1152)) -2255) (-15 -4323 ((-130)) -2255) (-15 -2422 ((-1152)) -2255) (-15 -4222 ((-1264) (-1152))))) +((-2197 (((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 55)) (-4355 (((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|))) 38)) (-2589 (((-1181 (-641 |#1|)) (-641 |#1|)) 49)) (-3189 (((-641 (-641 |#1|)) (-641 |#1|)) 45)) (-3115 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))) 52)) (-3161 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|)))) 51)) (-2869 (((-641 (-641 |#1|)) (-641 (-641 |#1|))) 43)) (-3721 (((-641 |#1|) (-641 |#1|)) 46)) (-1458 (((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 32)) (-3955 (((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 29)) (-3472 (((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|))) 24)) (-3394 (((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 57)) (-3762 (((-641 (-641 |#1|)) (-1181 (-641 |#1|))) 59))) +(((-1180 |#1|) (-10 -7 (-15 -3472 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -3955 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1458 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -2197 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3394 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3762 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -4355 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -2589 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -2869 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -3189 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -3721 ((-641 |#1|) (-641 |#1|))) (-15 -3161 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3115 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) (-846)) (T -1180)) +((-3115 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))) (-3161 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-846)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) (|:| |f4| (-641 *5)))) (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-1180 *3)))) (-3189 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-846)) (-5 *1 (-1180 *3)))) (-2589 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-4355 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 (-641 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-846)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-846)))) (-2197 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-4 *4 (-846)) (-5 *1 (-1180 *4)))) (-1458 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-846)) (-5 *1 (-1180 *4)))) (-3955 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-641 *5)) (-4 *5 (-846)) (-5 *1 (-1180 *5)))) (-3472 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-641 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) (-5 *1 (-1180 *6)) (-5 *5 (-641 *4))))) +(-10 -7 (-15 -3472 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -3955 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1458 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -2197 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3394 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3762 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -4355 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -2589 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -2869 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -3189 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -3721 ((-641 |#1|) (-641 |#1|))) (-15 -3161 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3115 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) +((-2683 (($ (-641 (-641 |#1|))) 10)) (-3818 (((-641 (-641 |#1|)) $) 11)) (-2322 (((-858) $) 38))) +(((-1181 |#1|) (-10 -8 (-15 -2683 ($ (-641 (-641 |#1|)))) (-15 -3818 ((-641 (-641 |#1|)) $)) (-15 -2322 ((-858) $))) (-1094)) (T -1181)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3))))) +(-10 -8 (-15 -2683 ($ (-641 (-641 |#1|)))) (-15 -3818 ((-641 (-641 |#1|)) $)) (-15 -2322 ((-858) $))) +((-2310 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4108 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2246 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#2| $ |#1| |#2|) NIL)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) NIL)) (-4157 (($) NIL T CONST)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) NIL)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) NIL)) (-1913 ((|#1| $) NIL (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-641 |#2|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1785 ((|#1| $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2843 (((-641 |#1|) $) NIL)) (-2237 (((-112) |#1| $) NIL)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3487 (((-641 |#1|) $) NIL)) (-2550 (((-112) |#1| $) NIL)) (-3840 (((-1114) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1995 ((|#2| $) NIL (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2981 (($ $ |#2|) NIL (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3977 (($) NIL) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4406)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2322 (((-858) $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) NIL)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) NIL (-2789 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) (((-1182 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) (-1094) (-1094)) (T -1182)) NIL (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4406))) -((-1836 ((|#1| (-641 |#1|)) 49)) (-1748 ((|#1| |#1| (-564)) 24)) (-2659 (((-1166 |#1|) |#1| (-918)) 20))) -(((-1183 |#1|) (-10 -7 (-15 -1836 (|#1| (-641 |#1|))) (-15 -2659 ((-1166 |#1|) |#1| (-918))) (-15 -1748 (|#1| |#1| (-564)))) (-363)) (T -1183)) -((-1748 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-363)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) -(-10 -7 (-15 -1836 (|#1| (-641 |#1|))) (-15 -2659 ((-1166 |#1|) |#1| (-918))) (-15 -1748 (|#1| |#1| (-564)))) -((-3639 (($) 10) (($ (-641 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)))) 14)) (-3644 (($ (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1433 (((-641 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) 39) (((-641 |#3|) $) 41)) (-2250 (($ (-1 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2449 (($ (-1 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2401 (((-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) $) 60)) (-2783 (($ (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) $) 16)) (-3883 (((-641 |#2|) $) 19)) (-4336 (((-112) |#2| $) 65)) (-3995 (((-3 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) "failed") (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) 64)) (-4153 (((-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) $) 69)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 72)) (-1794 (((-641 |#3|) $) 43)) (-1350 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) NIL) (((-768) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) $) NIL) (((-768) |#3| $) NIL) (((-768) (-1 (-112) |#3|) $) 78)) (-1831 (((-859) $) 27)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-1702 (((-112) $ $) 51))) -(((-1184 |#1| |#2| |#3|) (-10 -8 (-15 -1702 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -2449 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3639 (|#1| (-641 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))))) (-15 -3639 (|#1|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2250 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2791 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -1433 ((-641 |#3|) |#1|)) (-15 -2791 ((-768) |#3| |#1|)) (-15 -1350 (|#3| |#1| |#2| |#3|)) (-15 -1350 (|#3| |#1| |#2|)) (-15 -1794 ((-641 |#3|) |#1|)) (-15 -4336 ((-112) |#2| |#1|)) (-15 -3883 ((-641 |#2|) |#1|)) (-15 -3644 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3644 (|#1| (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -3644 (|#1| (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -3995 ((-3 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) "failed") (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2401 ((-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -2783 (|#1| (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -4153 ((-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -2791 ((-768) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -1433 ((-641 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2791 ((-768) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -4077 ((-112) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -1963 ((-112) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2250 (|#1| (-1 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2449 (|#1| (-1 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|))) (-1185 |#2| |#3|) (-1094) (-1094)) (T -1184)) -NIL -(-10 -8 (-15 -1702 ((-112) |#1| |#1|)) (-15 -1831 ((-859) |#1|)) (-15 -2449 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3639 (|#1| (-641 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))))) (-15 -3639 (|#1|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2250 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1963 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2791 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -1433 ((-641 |#3|) |#1|)) (-15 -2791 ((-768) |#3| |#1|)) (-15 -1350 (|#3| |#1| |#2| |#3|)) (-15 -1350 (|#3| |#1| |#2|)) (-15 -1794 ((-641 |#3|) |#1|)) (-15 -4336 ((-112) |#2| |#1|)) (-15 -3883 ((-641 |#2|) |#1|)) (-15 -3644 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3644 (|#1| (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -3644 (|#1| (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -3995 ((-3 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) "failed") (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2401 ((-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -2783 (|#1| (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -4153 ((-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -2791 ((-768) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) |#1|)) (-15 -1433 ((-641 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2791 ((-768) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -4077 ((-112) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -1963 ((-112) (-1 (-112) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2250 (|#1| (-1 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|)) (-15 -2449 (|#1| (-1 (-2 (|:| -2568 |#2|) (|:| -1389 |#3|)) (-2 (|:| -2568 |#2|) (|:| -1389 |#3|))) |#1|))) -((-1817 (((-112) $ $) 19 (-4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3639 (($) 72) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 71)) (-1956 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#2| $ |#1| |#2|) 73)) (-4145 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 45 (|has| $ (-6 -4406)))) (-3752 (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 55 (|has| $ (-6 -4406)))) (-1725 (((-3 |#2| "failed") |#1| $) 61)) (-1778 (($) 7 T CONST)) (-3337 (($ $) 58 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-3644 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 46 (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 62)) (-2576 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 54 (|has| $ (-6 -4406)))) (-1988 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 56 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 53 (|has| $ (-6 -4406))) (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 52 (|has| $ (-6 -4406)))) (-2261 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4407)))) (-2190 ((|#2| $ |#1|) 88)) (-1433 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 30 (|has| $ (-6 -4406))) (((-641 |#2|) $) 79 (|has| $ (-6 -4406)))) (-2324 (((-112) $ (-768)) 9)) (-3100 ((|#1| $) 96 (|has| |#1| (-847)))) (-2640 (((-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 29 (|has| $ (-6 -4406))) (((-641 |#2|) $) 80 (|has| $ (-6 -4406)))) (-2516 (((-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-3440 ((|#1| $) 95 (|has| |#1| (-847)))) (-2250 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 34 (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4407)))) (-2449 (($ (-1 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1713 (((-112) $ (-768)) 10)) (-2723 (((-1152) $) 22 (-4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-2945 (((-641 |#1|) $) 63)) (-2554 (((-112) |#1| $) 64)) (-2401 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 39)) (-2783 (($ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 40)) (-3883 (((-641 |#1|) $) 93)) (-4336 (((-112) |#1| $) 92)) (-2780 (((-1114) $) 21 (-4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-3303 ((|#2| $) 97 (|has| |#1| (-847)))) (-3995 (((-3 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) "failed") (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 51)) (-4253 (($ $ |#2|) 98 (|has| $ (-6 -4407)))) (-4153 (((-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 41)) (-4077 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 32 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))))) 26 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 25 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) 24 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 23 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-1794 (((-641 |#2|) $) 91)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4232 (($) 49) (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 48)) (-2791 (((-768) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 31 (|has| $ (-6 -4406))) (((-768) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4406)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 59 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))))) (-1842 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 50)) (-1831 (((-859) $) 18 (-4078 (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859)))))) (-2321 (($ (-641 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) 42)) (-1963 (((-112) (-1 (-112) (-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) $) 33 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (-4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-3469 ((|#1| (-641 |#1|)) 49)) (-2011 ((|#1| |#1| (-564)) 24)) (-2030 (((-1166 |#1|) |#1| (-917)) 20))) +(((-1183 |#1|) (-10 -7 (-15 -3469 (|#1| (-641 |#1|))) (-15 -2030 ((-1166 |#1|) |#1| (-917))) (-15 -2011 (|#1| |#1| (-564)))) (-363)) (T -1183)) +((-2011 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-363)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) +(-10 -7 (-15 -3469 (|#1| (-641 |#1|))) (-15 -2030 ((-1166 |#1|) |#1| (-917))) (-15 -2011 (|#1| |#1| (-564)))) +((-4108 (($) 10) (($ (-641 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)))) 14)) (-3175 (($ (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3534 (((-641 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) 39) (((-641 |#3|) $) 41)) (-1456 (($ (-1 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3123 (($ (-1 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1340 (((-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) $) 60)) (-3861 (($ (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) $) 16)) (-3487 (((-641 |#2|) $) 19)) (-2550 (((-112) |#2| $) 65)) (-3393 (((-3 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) "failed") (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) 64)) (-1313 (((-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) $) 69)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 72)) (-4324 (((-641 |#3|) $) 43)) (-4353 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) NIL) (((-767) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) $) NIL) (((-767) |#3| $) NIL) (((-767) (-1 (-112) |#3|) $) 78)) (-2322 (((-858) $) 27)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2921 (((-112) $ $) 51))) +(((-1184 |#1| |#2| |#3|) (-10 -8 (-15 -2921 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -3123 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4108 (|#1| (-641 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))))) (-15 -4108 (|#1|)) (-15 -3123 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1456 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3852 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -3534 ((-641 |#3|) |#1|)) (-15 -3852 ((-767) |#3| |#1|)) (-15 -4353 (|#3| |#1| |#2| |#3|)) (-15 -4353 (|#3| |#1| |#2|)) (-15 -4324 ((-641 |#3|) |#1|)) (-15 -2550 ((-112) |#2| |#1|)) (-15 -3487 ((-641 |#2|) |#1|)) (-15 -3175 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3175 (|#1| (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3175 (|#1| (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3393 ((-3 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) "failed") (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1340 ((-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3861 (|#1| (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -1313 ((-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3852 ((-767) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3534 ((-641 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3852 ((-767) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1763 ((-112) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2313 ((-112) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1456 (|#1| (-1 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3123 (|#1| (-1 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|))) (-1185 |#2| |#3|) (-1094) (-1094)) (T -1184)) +NIL +(-10 -8 (-15 -2921 ((-112) |#1| |#1|)) (-15 -2322 ((-858) |#1|)) (-15 -3123 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4108 (|#1| (-641 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))))) (-15 -4108 (|#1|)) (-15 -3123 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1456 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2313 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3852 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -3534 ((-641 |#3|) |#1|)) (-15 -3852 ((-767) |#3| |#1|)) (-15 -4353 (|#3| |#1| |#2| |#3|)) (-15 -4353 (|#3| |#1| |#2|)) (-15 -4324 ((-641 |#3|) |#1|)) (-15 -2550 ((-112) |#2| |#1|)) (-15 -3487 ((-641 |#2|) |#1|)) (-15 -3175 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3175 (|#1| (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3175 (|#1| (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3393 ((-3 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) "failed") (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1340 ((-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3861 (|#1| (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -1313 ((-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3852 ((-767) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3534 ((-641 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3852 ((-767) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1763 ((-112) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2313 ((-112) (-1 (-112) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1456 (|#1| (-1 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3123 (|#1| (-1 (-2 (|:| -3076 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3076 |#2|) (|:| -2511 |#3|))) |#1|))) +((-2310 (((-112) $ $) 19 (-2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-4108 (($) 72) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 71)) (-2246 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#2| $ |#1| |#2|) 73)) (-4328 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 45 (|has| $ (-6 -4406)))) (-2957 (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 55 (|has| $ (-6 -4406)))) (-2227 (((-3 |#2| "failed") |#1| $) 61)) (-4157 (($) 7 T CONST)) (-2027 (($ $) 58 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406))))) (-3175 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 47 (|has| $ (-6 -4406))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 46 (|has| $ (-6 -4406))) (((-3 |#2| "failed") |#1| $) 62)) (-3628 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 54 (|has| $ (-6 -4406)))) (-3239 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 56 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 53 (|has| $ (-6 -4406))) (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 52 (|has| $ (-6 -4406)))) (-1466 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4407)))) (-1407 ((|#2| $ |#1|) 88)) (-3534 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 30 (|has| $ (-6 -4406))) (((-641 |#2|) $) 79 (|has| $ (-6 -4406)))) (-1751 (((-112) $ (-767)) 9)) (-1913 ((|#1| $) 96 (|has| |#1| (-846)))) (-1834 (((-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 29 (|has| $ (-6 -4406))) (((-641 |#2|) $) 80 (|has| $ (-6 -4406)))) (-3114 (((-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406))))) (-1785 ((|#1| $) 95 (|has| |#1| (-846)))) (-1456 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 34 (|has| $ (-6 -4407))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4407)))) (-3123 (($ (-1 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1681 (((-112) $ (-767)) 10)) (-1418 (((-1152) $) 22 (-2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-2843 (((-641 |#1|) $) 63)) (-2237 (((-112) |#1| $) 64)) (-1340 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 39)) (-3861 (($ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 40)) (-3487 (((-641 |#1|) $) 93)) (-2550 (((-112) |#1| $) 92)) (-3840 (((-1114) $) 21 (-2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-1995 ((|#2| $) 97 (|has| |#1| (-846)))) (-3393 (((-3 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 51)) (-2981 (($ $ |#2|) 98 (|has| $ (-6 -4407)))) (-1313 (((-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 41)) (-1763 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 32 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))))) 26 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 25 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) 24 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 23 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4406)) (|has| |#2| (-1094))))) (-4324 (((-641 |#2|) $) 91)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3977 (($) 49) (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 48)) (-3852 (((-767) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 31 (|has| $ (-6 -4406))) (((-767) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| $ (-6 -4406)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4406)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 59 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))))) (-2335 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 50)) (-2322 (((-858) $) 18 (-2789 (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858)))))) (-1717 (($ (-641 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) 42)) (-2313 (((-112) (-1 (-112) (-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) $) 33 (|has| $ (-6 -4406))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (-2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1185 |#1| |#2|) (-140) (-1094) (-1094)) (T -1185)) -((-1970 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3639 (*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2568 *3) (|:| -1389 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) (-2449 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))) -(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -1970 (|t#2| $ |t#1| |t#2|)) (-15 -3639 ($)) (-15 -3639 ($ (-641 (-2 (|:| -2568 |t#1|) (|:| -1389 |t#2|))))) (-15 -2449 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2568 |#1|) (|:| -1389 |#2|))) . T) ((-102) -4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-611 (-859)) -4078 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-309 (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)))) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-1094) -4078 (|has| |#2| (-1094)) (|has| (-2 (|:| -2568 |#1|) (|:| -1389 |#2|)) (-1094))) ((-1209) . T)) -((-4249 (((-112)) 29)) (-3720 (((-1264) (-1152)) 31)) (-4090 (((-112)) 41)) (-3747 (((-1264)) 39)) (-3986 (((-1264) (-1152) (-1152)) 30)) (-2178 (((-112)) 42)) (-2783 (((-1264) |#1| |#2|) 53)) (-2304 (((-1264)) 27)) (-1885 (((-3 |#2| "failed") |#1|) 51)) (-3262 (((-1264)) 40))) -(((-1186 |#1| |#2|) (-10 -7 (-15 -2304 ((-1264))) (-15 -3986 ((-1264) (-1152) (-1152))) (-15 -3720 ((-1264) (-1152))) (-15 -3747 ((-1264))) (-15 -3262 ((-1264))) (-15 -4249 ((-112))) (-15 -4090 ((-112))) (-15 -2178 ((-112))) (-15 -1885 ((-3 |#2| "failed") |#1|)) (-15 -2783 ((-1264) |#1| |#2|))) (-1094) (-1094)) (T -1186)) -((-2783 (*1 *2 *3 *4) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1885 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))) (-2178 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4090 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4249 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3262 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3747 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-3986 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-2304 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))) -(-10 -7 (-15 -2304 ((-1264))) (-15 -3986 ((-1264) (-1152) (-1152))) (-15 -3720 ((-1264) (-1152))) (-15 -3747 ((-1264))) (-15 -3262 ((-1264))) (-15 -4249 ((-112))) (-15 -4090 ((-112))) (-15 -2178 ((-112))) (-15 -1885 ((-3 |#2| "failed") |#1|)) (-15 -2783 ((-1264) |#1| |#2|))) -((-3472 (((-1152) (-1152)) 22)) (-3497 (((-52) (-1152)) 25))) -(((-1187) (-10 -7 (-15 -3497 ((-52) (-1152))) (-15 -3472 ((-1152) (-1152))))) (T -1187)) -((-3472 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187))))) -(-10 -7 (-15 -3497 ((-52) (-1152))) (-15 -3472 ((-1152) (-1152)))) -((-1831 (((-1189) |#1|) 11))) -(((-1188 |#1|) (-10 -7 (-15 -1831 ((-1189) |#1|))) (-1094)) (T -1188)) -((-1831 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))) -(-10 -7 (-15 -1831 ((-1189) |#1|))) -((-1817 (((-112) $ $) NIL)) (-3558 (((-641 (-1152)) $) 39)) (-1508 (((-641 (-1152)) $ (-641 (-1152))) 42)) (-4158 (((-641 (-1152)) $ (-641 (-1152))) 41)) (-2499 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-1995 (((-641 (-1152)) $) 38)) (-3654 (($) 26)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-2668 (((-641 (-1152)) $) 40)) (-3712 (((-1264) $ (-564)) 35) (((-1264) $) 36)) (-2511 (($ (-859) (-564)) 32) (($ (-859) (-564) (-859)) NIL)) (-1831 (((-859) $) 53) (($ (-859)) 31)) (-1702 (((-112) $ $) NIL))) -(((-1189) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2511 ($ (-859) (-564))) (-15 -2511 ($ (-859) (-564) (-859))) (-15 -3712 ((-1264) $ (-564))) (-15 -3712 ((-1264) $)) (-15 -2668 ((-641 (-1152)) $)) (-15 -3558 ((-641 (-1152)) $)) (-15 -3654 ($)) (-15 -1995 ((-641 (-1152)) $)) (-15 -2499 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1508 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4158 ((-641 (-1152)) $ (-641 (-1152))))))) (T -1189)) -((-2511 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-2511 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3654 (*1 *1) (-5 *1 (-1189))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2499 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-1508 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-4158 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) -(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2511 ($ (-859) (-564))) (-15 -2511 ($ (-859) (-564) (-859))) (-15 -3712 ((-1264) $ (-564))) (-15 -3712 ((-1264) $)) (-15 -2668 ((-641 (-1152)) $)) (-15 -3558 ((-641 (-1152)) $)) (-15 -3654 ($)) (-15 -1995 ((-641 (-1152)) $)) (-15 -2499 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1508 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4158 ((-641 (-1152)) $ (-641 (-1152)))))) -((-1817 (((-112) $ $) NIL)) (-3263 (((-1152) $ (-1152)) 17) (((-1152) $) 16)) (-3239 (((-1152) $ (-1152)) 15)) (-1940 (($ $ (-1152)) NIL)) (-3106 (((-3 (-1152) "failed") $) 11)) (-2843 (((-1152) $) 8)) (-1460 (((-3 (-1152) "failed") $) 12)) (-3218 (((-1152) $) 9)) (-1669 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-1316 (((-388) $) NIL)) (-2723 (((-1152) $) NIL)) (-3455 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1365 (((-112) $) 21)) (-1831 (((-859) $) NIL)) (-1846 (($ $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1190) (-13 (-364 (-388) (-1152)) (-10 -8 (-15 -3263 ((-1152) $ (-1152))) (-15 -3263 ((-1152) $)) (-15 -2843 ((-1152) $)) (-15 -3106 ((-3 (-1152) "failed") $)) (-15 -1460 ((-3 (-1152) "failed") $)) (-15 -1365 ((-112) $))))) (T -1190)) -((-3263 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3106 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-1460 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) -(-13 (-364 (-388) (-1152)) (-10 -8 (-15 -3263 ((-1152) $ (-1152))) (-15 -3263 ((-1152) $)) (-15 -2843 ((-1152) $)) (-15 -3106 ((-3 (-1152) "failed") $)) (-15 -1460 ((-3 (-1152) "failed") $)) (-15 -1365 ((-112) $)))) -((-1598 (((-3 (-564) "failed") |#1|) 19)) (-2728 (((-3 (-564) "failed") |#1|) 14)) (-2940 (((-564) (-1152)) 33))) -(((-1191 |#1|) (-10 -7 (-15 -1598 ((-3 (-564) "failed") |#1|)) (-15 -2728 ((-3 (-564) "failed") |#1|)) (-15 -2940 ((-564) (-1152)))) (-1046)) (T -1191)) -((-2940 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) (-4 *4 (-1046)))) (-2728 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))) (-1598 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046))))) -(-10 -7 (-15 -1598 ((-3 (-564) "failed") |#1|)) (-15 -2728 ((-3 (-564) "failed") |#1|)) (-15 -2940 ((-564) (-1152)))) -((-3533 (((-1127 (-225))) 9))) -(((-1192) (-10 -7 (-15 -3533 ((-1127 (-225)))))) (T -1192)) -((-3533 (*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192))))) -(-10 -7 (-15 -3533 ((-1127 (-225))))) -((-3714 (($) 12)) (-3427 (($ $) 36)) (-3406 (($ $) 34)) (-3254 (($ $) 26)) (-3450 (($ $) 18)) (-2315 (($ $) 16)) (-3439 (($ $) 20)) (-3287 (($ $) 31)) (-3416 (($ $) 35)) (-3265 (($ $) 30))) -(((-1193 |#1|) (-10 -8 (-15 -3714 (|#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3287 (|#1| |#1|)) (-15 -3265 (|#1| |#1|))) (-1194)) (T -1193)) -NIL -(-10 -8 (-15 -3714 (|#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3287 (|#1| |#1|)) (-15 -3265 (|#1| |#1|))) -((-3357 (($ $) 26)) (-3210 (($ $) 11)) (-3330 (($ $) 27)) (-3187 (($ $) 10)) (-3384 (($ $) 28)) (-3233 (($ $) 9)) (-3714 (($) 16)) (-2358 (($ $) 19)) (-4326 (($ $) 18)) (-3395 (($ $) 29)) (-3245 (($ $) 8)) (-3371 (($ $) 30)) (-3221 (($ $) 7)) (-3344 (($ $) 31)) (-3199 (($ $) 6)) (-3427 (($ $) 20)) (-3276 (($ $) 32)) (-3406 (($ $) 21)) (-3254 (($ $) 33)) (-3450 (($ $) 22)) (-3302 (($ $) 34)) (-2315 (($ $) 23)) (-3316 (($ $) 35)) (-3439 (($ $) 24)) (-3287 (($ $) 36)) (-3416 (($ $) 25)) (-3265 (($ $) 37)) (** (($ $ $) 17))) +((-3750 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-4108 (*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3076 *3) (|:| -2511 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) (-3123 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))) +(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -3750 (|t#2| $ |t#1| |t#2|)) (-15 -4108 ($)) (-15 -4108 ($ (-641 (-2 (|:| -3076 |t#1|) (|:| -2511 |t#2|))))) (-15 -3123 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3076 |#1|) (|:| -2511 |#2|))) . T) ((-102) -2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-611 (-858)) -2789 (|has| |#2| (-1094)) (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-611 (-858)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-309 (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-1094) -2789 (|has| |#2| (-1094)) (|has| (-2 (|:| -3076 |#1|) (|:| -2511 |#2|)) (-1094))) ((-1209) . T)) +((-2958 (((-112)) 29)) (-2571 (((-1264) (-1152)) 31)) (-1877 (((-112)) 41)) (-1554 (((-1264)) 39)) (-3306 (((-1264) (-1152) (-1152)) 30)) (-2777 (((-112)) 42)) (-3861 (((-1264) |#1| |#2|) 53)) (-1540 (((-1264)) 27)) (-2781 (((-3 |#2| "failed") |#1|) 51)) (-2820 (((-1264)) 40))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -1540 ((-1264))) (-15 -3306 ((-1264) (-1152) (-1152))) (-15 -2571 ((-1264) (-1152))) (-15 -1554 ((-1264))) (-15 -2820 ((-1264))) (-15 -2958 ((-112))) (-15 -1877 ((-112))) (-15 -2777 ((-112))) (-15 -2781 ((-3 |#2| "failed") |#1|)) (-15 -3861 ((-1264) |#1| |#2|))) (-1094) (-1094)) (T -1186)) +((-3861 (*1 *2 *3 *4) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2781 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))) (-2777 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1877 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2820 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1554 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-3306 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-1540 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))) +(-10 -7 (-15 -1540 ((-1264))) (-15 -3306 ((-1264) (-1152) (-1152))) (-15 -2571 ((-1264) (-1152))) (-15 -1554 ((-1264))) (-15 -2820 ((-1264))) (-15 -2958 ((-112))) (-15 -1877 ((-112))) (-15 -2777 ((-112))) (-15 -2781 ((-3 |#2| "failed") |#1|)) (-15 -3861 ((-1264) |#1| |#2|))) +((-2102 (((-1152) (-1152)) 22)) (-4241 (((-52) (-1152)) 25))) +(((-1187) (-10 -7 (-15 -4241 ((-52) (-1152))) (-15 -2102 ((-1152) (-1152))))) (T -1187)) +((-2102 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187))))) +(-10 -7 (-15 -4241 ((-52) (-1152))) (-15 -2102 ((-1152) (-1152)))) +((-2322 (((-1189) |#1|) 11))) +(((-1188 |#1|) (-10 -7 (-15 -2322 ((-1189) |#1|))) (-1094)) (T -1188)) +((-2322 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))) +(-10 -7 (-15 -2322 ((-1189) |#1|))) +((-2310 (((-112) $ $) NIL)) (-1999 (((-641 (-1152)) $) 39)) (-3362 (((-641 (-1152)) $ (-641 (-1152))) 42)) (-1361 (((-641 (-1152)) $ (-641 (-1152))) 41)) (-2956 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-2651 (((-641 (-1152)) $) 38)) (-4121 (($) 26)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2099 (((-641 (-1152)) $) 40)) (-1624 (((-1264) $ (-564)) 35) (((-1264) $) 36)) (-3172 (($ (-858) (-564)) 32) (($ (-858) (-564) (-858)) NIL)) (-2322 (((-858) $) 53) (($ (-858)) 31)) (-2921 (((-112) $ $) NIL))) +(((-1189) (-13 (-1094) (-614 (-858)) (-10 -8 (-15 -3172 ($ (-858) (-564))) (-15 -3172 ($ (-858) (-564) (-858))) (-15 -1624 ((-1264) $ (-564))) (-15 -1624 ((-1264) $)) (-15 -2099 ((-641 (-1152)) $)) (-15 -1999 ((-641 (-1152)) $)) (-15 -4121 ($)) (-15 -2651 ((-641 (-1152)) $)) (-15 -2956 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3362 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1361 ((-641 (-1152)) $ (-641 (-1152))))))) (T -1189)) +((-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-3172 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-4121 (*1 *1) (-5 *1 (-1189))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2956 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3362 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-1361 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(-13 (-1094) (-614 (-858)) (-10 -8 (-15 -3172 ($ (-858) (-564))) (-15 -3172 ($ (-858) (-564) (-858))) (-15 -1624 ((-1264) $ (-564))) (-15 -1624 ((-1264) $)) (-15 -2099 ((-641 (-1152)) $)) (-15 -1999 ((-641 (-1152)) $)) (-15 -4121 ($)) (-15 -2651 ((-641 (-1152)) $)) (-15 -2956 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3362 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1361 ((-641 (-1152)) $ (-641 (-1152)))))) +((-2310 (((-112) $ $) NIL)) (-2830 (((-1152) $ (-1152)) 17) (((-1152) $) 16)) (-3799 (((-1152) $ (-1152)) 15)) (-2096 (($ $ (-1152)) NIL)) (-1969 (((-3 (-1152) "failed") $) 11)) (-3234 (((-1152) $) 8)) (-4140 (((-3 (-1152) "failed") $) 12)) (-3603 (((-1152) $) 9)) (-4197 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-2420 (((-388) $) NIL)) (-1418 (((-1152) $) NIL)) (-1920 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3411 (((-112) $) 21)) (-2322 (((-858) $) NIL)) (-3566 (($ $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1190) (-13 (-364 (-388) (-1152)) (-10 -8 (-15 -2830 ((-1152) $ (-1152))) (-15 -2830 ((-1152) $)) (-15 -3234 ((-1152) $)) (-15 -1969 ((-3 (-1152) "failed") $)) (-15 -4140 ((-3 (-1152) "failed") $)) (-15 -3411 ((-112) $))))) (T -1190)) +((-2830 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-1969 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-4140 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) +(-13 (-364 (-388) (-1152)) (-10 -8 (-15 -2830 ((-1152) $ (-1152))) (-15 -2830 ((-1152) $)) (-15 -3234 ((-1152) $)) (-15 -1969 ((-3 (-1152) "failed") $)) (-15 -4140 ((-3 (-1152) "failed") $)) (-15 -3411 ((-112) $)))) +((-3085 (((-3 (-564) "failed") |#1|) 19)) (-1459 (((-3 (-564) "failed") |#1|) 14)) (-1742 (((-564) (-1152)) 33))) +(((-1191 |#1|) (-10 -7 (-15 -3085 ((-3 (-564) "failed") |#1|)) (-15 -1459 ((-3 (-564) "failed") |#1|)) (-15 -1742 ((-564) (-1152)))) (-1045)) (T -1191)) +((-1742 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) (-4 *4 (-1045)))) (-1459 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045)))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045))))) +(-10 -7 (-15 -3085 ((-3 (-564) "failed") |#1|)) (-15 -1459 ((-3 (-564) "failed") |#1|)) (-15 -1742 ((-564) (-1152)))) +((-1474 (((-1127 (-225))) 9))) +(((-1192) (-10 -7 (-15 -1474 ((-1127 (-225)))))) (T -1192)) +((-1474 (*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192))))) +(-10 -7 (-15 -1474 ((-1127 (-225))))) +((-4223 (($) 12)) (-2672 (($ $) 36)) (-3849 (($ $) 34)) (-3708 (($ $) 26)) (-2695 (($ $) 18)) (-1511 (($ $) 16)) (-2684 (($ $) 20)) (-3746 (($ $) 31)) (-2660 (($ $) 35)) (-3720 (($ $) 30))) +(((-1193 |#1|) (-10 -8 (-15 -4223 (|#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3720 (|#1| |#1|))) (-1194)) (T -1193)) +NIL +(-10 -8 (-15 -4223 (|#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3720 (|#1| |#1|))) +((-3802 (($ $) 26)) (-3661 (($ $) 11)) (-3779 (($ $) 27)) (-3639 (($ $) 10)) (-3825 (($ $) 28)) (-3684 (($ $) 9)) (-4223 (($) 16)) (-3439 (($ $) 19)) (-3571 (($ $) 18)) (-3836 (($ $) 29)) (-3697 (($ $) 8)) (-3814 (($ $) 30)) (-3672 (($ $) 7)) (-3792 (($ $) 31)) (-3650 (($ $) 6)) (-2672 (($ $) 20)) (-3732 (($ $) 32)) (-3849 (($ $) 21)) (-3708 (($ $) 33)) (-2695 (($ $) 22)) (-3757 (($ $) 34)) (-1511 (($ $) 23)) (-3768 (($ $) 35)) (-2684 (($ $) 24)) (-3746 (($ $) 36)) (-2660 (($ $) 25)) (-3720 (($ $) 37)) (** (($ $ $) 17))) (((-1194) (-140)) (T -1194)) -((-3714 (*1 *1) (-4 *1 (-1194)))) -(-13 (-1197) (-95) (-493) (-35) (-284) (-10 -8 (-15 -3714 ($)))) +((-4223 (*1 *1) (-4 *1 (-1194)))) +(-13 (-1197) (-95) (-493) (-35) (-284) (-10 -8 (-15 -4223 ($)))) (((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1197) . T)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1522 ((|#1| $) 19)) (-2629 (($ |#1| (-641 $)) 28) (($ (-641 |#1|)) 35) (($ |#1|) 30)) (-4010 (((-112) $ (-768)) 70)) (-2373 ((|#1| $ |#1|) 14 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 13 (|has| $ (-6 -4407)))) (-1778 (($) NIL T CONST)) (-1433 (((-641 |#1|) $) 74 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 62)) (-4376 (((-112) $ $) 48 (|has| |#1| (-1094)))) (-2324 (((-112) $ (-768)) 60)) (-2640 (((-641 |#1|) $) 75 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2250 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 27)) (-1713 (((-112) $ (-768)) 59)) (-4119 (((-641 |#1|) $) 53)) (-2033 (((-112) $) 51)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 104)) (-4284 (((-112) $) 9)) (-4012 (($) 10)) (-1350 ((|#1| $ "value") NIL)) (-4190 (((-564) $ $) 47)) (-3737 (((-641 $) $) 87)) (-3460 (((-112) $ $) 107)) (-2572 (((-641 $) $) 102)) (-2532 (($ $) 103)) (-1899 (((-112) $) 82)) (-2791 (((-768) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4406))) (((-768) |#1| $) 17 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1991 (($ $) 86)) (-1831 (((-859) $) 89 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 12)) (-2054 (((-112) $ $) 39 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 71 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 37 (|has| |#1| (-1094)))) (-2828 (((-768) $) 57 (|has| $ (-6 -4406))))) -(((-1195 |#1|) (-13 (-1007 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -2629 ($ |#1| (-641 $))) (-15 -2629 ($ (-641 |#1|))) (-15 -2629 ($ |#1|)) (-15 -1899 ((-112) $)) (-15 -2532 ($ $)) (-15 -2572 ((-641 $) $)) (-15 -3460 ((-112) $ $)) (-15 -3737 ((-641 $) $)))) (-1094)) (T -1195)) -((-1899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2629 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) (-2629 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2532 (*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-3460 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) -(-13 (-1007 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -2629 ($ |#1| (-641 $))) (-15 -2629 ($ (-641 |#1|))) (-15 -2629 ($ |#1|)) (-15 -1899 ((-112) $)) (-15 -2532 ($ $)) (-15 -2572 ((-641 $) $)) (-15 -3460 ((-112) $ $)) (-15 -3737 ((-641 $) $)))) -((-3210 (($ $) 15)) (-3233 (($ $) 12)) (-3245 (($ $) 10)) (-3221 (($ $) 17))) -(((-1196 |#1|) (-10 -8 (-15 -3221 (|#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3210 (|#1| |#1|))) (-1197)) (T -1196)) -NIL -(-10 -8 (-15 -3221 (|#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3210 (|#1| |#1|))) -((-3210 (($ $) 11)) (-3187 (($ $) 10)) (-3233 (($ $) 9)) (-3245 (($ $) 8)) (-3221 (($ $) 7)) (-3199 (($ $) 6))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2053 ((|#1| $) 19)) (-2151 (($ |#1| (-641 $)) 28) (($ (-641 |#1|)) 35) (($ |#1|) 30)) (-2318 (((-112) $ (-767)) 70)) (-4159 ((|#1| $ |#1|) 14 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 13 (|has| $ (-6 -4407)))) (-4157 (($) NIL T CONST)) (-3534 (((-641 |#1|) $) 74 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 62)) (-1634 (((-112) $ $) 48 (|has| |#1| (-1094)))) (-1751 (((-112) $ (-767)) 60)) (-1834 (((-641 |#1|) $) 75 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1456 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 27)) (-1681 (((-112) $ (-767)) 59)) (-1502 (((-641 |#1|) $) 53)) (-1808 (((-112) $) 51)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1763 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 104)) (-3282 (((-112) $) 9)) (-2348 (($) 10)) (-4353 ((|#1| $ "value") NIL)) (-3526 (((-564) $ $) 47)) (-2723 (((-641 $) $) 87)) (-1975 (((-112) $ $) 107)) (-2431 (((-641 $) $) 102)) (-3260 (($ $) 103)) (-2911 (((-112) $) 82)) (-3852 (((-767) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4406))) (((-767) |#1| $) 17 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3772 (($ $) 86)) (-2322 (((-858) $) 89 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 12)) (-2040 (((-112) $ $) 39 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 71 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 37 (|has| |#1| (-1094)))) (-2059 (((-767) $) 57 (|has| $ (-6 -4406))))) +(((-1195 |#1|) (-13 (-1006 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -2151 ($ |#1| (-641 $))) (-15 -2151 ($ (-641 |#1|))) (-15 -2151 ($ |#1|)) (-15 -2911 ((-112) $)) (-15 -3260 ($ $)) (-15 -2431 ((-641 $) $)) (-15 -1975 ((-112) $ $)) (-15 -2723 ((-641 $) $)))) (-1094)) (T -1195)) +((-2911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2151 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2151 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) (-2151 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-1975 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(-13 (-1006 |#1|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -2151 ($ |#1| (-641 $))) (-15 -2151 ($ (-641 |#1|))) (-15 -2151 ($ |#1|)) (-15 -2911 ((-112) $)) (-15 -3260 ($ $)) (-15 -2431 ((-641 $) $)) (-15 -1975 ((-112) $ $)) (-15 -2723 ((-641 $) $)))) +((-3661 (($ $) 15)) (-3684 (($ $) 12)) (-3697 (($ $) 10)) (-3672 (($ $) 17))) +(((-1196 |#1|) (-10 -8 (-15 -3672 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3661 (|#1| |#1|))) (-1197)) (T -1196)) +NIL +(-10 -8 (-15 -3672 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3661 (|#1| |#1|))) +((-3661 (($ $) 11)) (-3639 (($ $) 10)) (-3684 (($ $) 9)) (-3697 (($ $) 8)) (-3672 (($ $) 7)) (-3650 (($ $) 6))) (((-1197) (-140)) (T -1197)) -((-3210 (*1 *1 *1) (-4 *1 (-1197))) (-3187 (*1 *1 *1) (-4 *1 (-1197))) (-3233 (*1 *1 *1) (-4 *1 (-1197))) (-3245 (*1 *1 *1) (-4 *1 (-1197))) (-3221 (*1 *1 *1) (-4 *1 (-1197))) (-3199 (*1 *1 *1) (-4 *1 (-1197)))) -(-13 (-10 -8 (-15 -3199 ($ $)) (-15 -3221 ($ $)) (-15 -3245 ($ $)) (-15 -3233 ($ $)) (-15 -3187 ($ $)) (-15 -3210 ($ $)))) -((-3731 ((|#2| |#2|) 99)) (-2020 (((-112) |#2|) 29)) (-3092 ((|#2| |#2|) 33)) (-3102 ((|#2| |#2|) 35)) (-1684 ((|#2| |#2| (-1170)) 93) ((|#2| |#2|) 94)) (-3322 (((-169 |#2|) |#2|) 31)) (-2041 ((|#2| |#2| (-1170)) 95) ((|#2| |#2|) 96))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -1684 (|#2| |#2|)) (-15 -1684 (|#2| |#2| (-1170))) (-15 -2041 (|#2| |#2|)) (-15 -2041 (|#2| |#2| (-1170))) (-15 -3731 (|#2| |#2|)) (-15 -3092 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -2020 ((-112) |#2|)) (-15 -3322 ((-169 |#2|) |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -1198)) -((-3322 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3092 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2041 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1684 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) -(-10 -7 (-15 -1684 (|#2| |#2|)) (-15 -1684 (|#2| |#2| (-1170))) (-15 -2041 (|#2| |#2|)) (-15 -2041 (|#2| |#2| (-1170))) (-15 -3731 (|#2| |#2|)) (-15 -3092 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -2020 ((-112) |#2|)) (-15 -3322 ((-169 |#2|) |#2|))) -((-2072 ((|#4| |#4| |#1|) 32)) (-1701 ((|#4| |#4| |#1|) 33))) -(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2072 (|#4| |#4| |#1|)) (-15 -1701 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1199)) -((-1701 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2072 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) -(-10 -7 (-15 -2072 (|#4| |#4| |#1|)) (-15 -1701 (|#4| |#4| |#1|))) -((-2051 ((|#2| |#2|) 148)) (-1618 ((|#2| |#2|) 145)) (-1532 ((|#2| |#2|) 136)) (-4135 ((|#2| |#2|) 133)) (-1744 ((|#2| |#2|) 141)) (-2642 ((|#2| |#2|) 129)) (-2822 ((|#2| |#2|) 44)) (-3666 ((|#2| |#2|) 105)) (-2507 ((|#2| |#2|) 88)) (-3386 ((|#2| |#2|) 143)) (-4017 ((|#2| |#2|) 131)) (-1931 ((|#2| |#2|) 153)) (-2188 ((|#2| |#2|) 151)) (-1544 ((|#2| |#2|) 152)) (-3365 ((|#2| |#2|) 150)) (-3850 ((|#2| |#2|) 163)) (-2666 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-889 |#1|))) (|has| |#2| (-883 |#1|)) (|has| |#1| (-612 (-889 |#1|))) (|has| |#1| (-883 |#1|))))) (-2312 ((|#2| |#2|) 89)) (-3317 ((|#2| |#2|) 154)) (-3723 ((|#2| |#2|) 155)) (-3135 ((|#2| |#2|) 142)) (-2459 ((|#2| |#2|) 130)) (-1879 ((|#2| |#2|) 149)) (-2458 ((|#2| |#2|) 147)) (-3538 ((|#2| |#2|) 137)) (-3189 ((|#2| |#2|) 135)) (-4353 ((|#2| |#2|) 139)) (-1406 ((|#2| |#2|) 127))) -(((-1200 |#1| |#2|) (-10 -7 (-15 -3723 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -2822 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -3317 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -4353 (|#2| |#2|)) (-15 -3538 (|#2| |#2|)) (-15 -1879 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -2051 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1931 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -2666 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-847) (-452)) (-13 (-430 |#1|) (-1194))) (T -1200)) -((-2666 (*1 *2 *2) (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3)) (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1931 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3189 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2051 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1879 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3538 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4353 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2822 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3723 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194)))))) -(-10 -7 (-15 -3723 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -2822 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -3317 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -4353 (|#2| |#2|)) (-15 -3538 (|#2| |#2|)) (-15 -1879 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -2051 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1931 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -2666 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1712 (((-112) |#5| $) 67) (((-112) $) 109)) (-4136 ((|#5| |#5| $) 82)) (-3752 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 126)) (-2559 (((-641 |#5|) (-641 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 80)) (-2347 (((-3 $ "failed") (-641 |#5|)) 134)) (-3314 (((-3 $ "failed") $) 119)) (-1470 ((|#5| |#5| $) 101)) (-3827 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 35)) (-3492 ((|#5| |#5| $) 105)) (-1988 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 76)) (-4236 (((-2 (|:| -3689 (-641 |#5|)) (|:| -1669 (-641 |#5|))) $) 62)) (-2021 (((-112) |#5| $) 65) (((-112) $) 110)) (-1543 ((|#4| $) 115)) (-2598 (((-3 |#5| "failed") $) 117)) (-3123 (((-641 |#5|) $) 54)) (-4281 (((-112) |#5| $) 74) (((-112) $) 114)) (-2356 ((|#5| |#5| $) 88)) (-3984 (((-112) $ $) 28)) (-3253 (((-112) |#5| $) 70) (((-112) $) 112)) (-1482 ((|#5| |#5| $) 85)) (-3303 (((-3 |#5| "failed") $) 116)) (-3951 (($ $ |#5|) 135)) (-1619 (((-768) $) 59)) (-1842 (($ (-641 |#5|)) 132)) (-4287 (($ $ |#4|) 130)) (-1887 (($ $ |#4|) 128)) (-3728 (($ $) 127)) (-1831 (((-859) $) NIL) (((-641 |#5|) $) 120)) (-4321 (((-768) $) 139)) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|)) 48) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 50)) (-2885 (((-112) $ (-1 (-112) |#5| (-641 |#5|))) 107)) (-2014 (((-641 |#4|) $) 122)) (-1484 (((-112) |#4| $) 125)) (-1702 (((-112) $ $) 20))) -(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4321 ((-768) |#1|)) (-15 -3951 (|#1| |#1| |#5|)) (-15 -3752 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1484 ((-112) |#4| |#1|)) (-15 -2014 ((-641 |#4|) |#1|)) (-15 -3314 ((-3 |#1| "failed") |#1|)) (-15 -2598 ((-3 |#5| "failed") |#1|)) (-15 -3303 ((-3 |#5| "failed") |#1|)) (-15 -3492 (|#5| |#5| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -1470 (|#5| |#5| |#1|)) (-15 -2356 (|#5| |#5| |#1|)) (-15 -1482 (|#5| |#5| |#1|)) (-15 -4136 (|#5| |#5| |#1|)) (-15 -2559 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1988 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4281 ((-112) |#1|)) (-15 -3253 ((-112) |#1|)) (-15 -1712 ((-112) |#1|)) (-15 -2885 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -4281 ((-112) |#5| |#1|)) (-15 -3253 ((-112) |#5| |#1|)) (-15 -1712 ((-112) |#5| |#1|)) (-15 -3827 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2021 ((-112) |#1|)) (-15 -2021 ((-112) |#5| |#1|)) (-15 -4236 ((-2 (|:| -3689 (-641 |#5|)) (|:| -1669 (-641 |#5|))) |#1|)) (-15 -1619 ((-768) |#1|)) (-15 -3123 ((-641 |#5|) |#1|)) (-15 -1395 ((-3 (-2 (|:| |bas| |#1|) (|:| -3155 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1395 ((-3 (-2 (|:| |bas| |#1|) (|:| -3155 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3984 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1| |#4|)) (-15 -1887 (|#1| |#1| |#4|)) (-15 -1543 (|#4| |#1|)) (-15 -2347 ((-3 |#1| "failed") (-641 |#5|))) (-15 -1831 ((-641 |#5|) |#1|)) (-15 -1842 (|#1| (-641 |#5|))) (-15 -1988 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1988 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3752 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1988 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1201)) -NIL -(-10 -8 (-15 -4321 ((-768) |#1|)) (-15 -3951 (|#1| |#1| |#5|)) (-15 -3752 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1484 ((-112) |#4| |#1|)) (-15 -2014 ((-641 |#4|) |#1|)) (-15 -3314 ((-3 |#1| "failed") |#1|)) (-15 -2598 ((-3 |#5| "failed") |#1|)) (-15 -3303 ((-3 |#5| "failed") |#1|)) (-15 -3492 (|#5| |#5| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -1470 (|#5| |#5| |#1|)) (-15 -2356 (|#5| |#5| |#1|)) (-15 -1482 (|#5| |#5| |#1|)) (-15 -4136 (|#5| |#5| |#1|)) (-15 -2559 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1988 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4281 ((-112) |#1|)) (-15 -3253 ((-112) |#1|)) (-15 -1712 ((-112) |#1|)) (-15 -2885 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -4281 ((-112) |#5| |#1|)) (-15 -3253 ((-112) |#5| |#1|)) (-15 -1712 ((-112) |#5| |#1|)) (-15 -3827 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2021 ((-112) |#1|)) (-15 -2021 ((-112) |#5| |#1|)) (-15 -4236 ((-2 (|:| -3689 (-641 |#5|)) (|:| -1669 (-641 |#5|))) |#1|)) (-15 -1619 ((-768) |#1|)) (-15 -3123 ((-641 |#5|) |#1|)) (-15 -1395 ((-3 (-2 (|:| |bas| |#1|) (|:| -3155 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1395 ((-3 (-2 (|:| |bas| |#1|) (|:| -3155 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3984 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1| |#4|)) (-15 -1887 (|#1| |#1| |#4|)) (-15 -1543 (|#4| |#1|)) (-15 -2347 ((-3 |#1| "failed") (-641 |#5|))) (-15 -1831 ((-641 |#5|) |#1|)) (-15 -1842 (|#1| (-641 |#5|))) (-15 -1988 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1988 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3752 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1988 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1831 ((-859) |#1|)) (-15 -1702 ((-112) |#1| |#1|))) -((-1817 (((-112) $ $) 7)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) 85)) (-2951 (((-641 $) (-641 |#4|)) 86)) (-3209 (((-641 |#3|) $) 33)) (-3449 (((-112) $) 26)) (-3961 (((-112) $) 17 (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) 101) (((-112) $) 97)) (-4136 ((|#4| |#4| $) 92)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) 27)) (-4010 (((-112) $ (-768)) 44)) (-3752 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-1778 (($) 45 T CONST)) (-3602 (((-112) $) 22 (|has| |#1| (-556)))) (-2495 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1495 (((-112) $ $) 23 (|has| |#1| (-556)))) (-2536 (((-112) $) 25 (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2338 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) 36)) (-2237 (($ (-641 |#4|)) 35)) (-3314 (((-3 $ "failed") $) 82)) (-1470 ((|#4| |#4| $) 89)) (-3337 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3492 ((|#4| |#4| $) 87)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) 105)) (-1433 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) 104) (((-112) $) 103)) (-1543 ((|#3| $) 34)) (-2324 (((-112) $ (-768)) 43)) (-2640 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) 47)) (-3580 (((-641 |#3|) $) 32)) (-3879 (((-112) |#3| $) 31)) (-1713 (((-112) $ (-768)) 42)) (-2723 (((-1152) $) 9)) (-2598 (((-3 |#4| "failed") $) 83)) (-3123 (((-641 |#4|) $) 107)) (-4281 (((-112) |#4| $) 99) (((-112) $) 95)) (-2356 ((|#4| |#4| $) 90)) (-3984 (((-112) $ $) 110)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) 100) (((-112) $) 96)) (-1482 ((|#4| |#4| $) 91)) (-2780 (((-1114) $) 10)) (-3303 (((-3 |#4| "failed") $) 84)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3824 (((-3 $ "failed") $ |#4|) 78)) (-3951 (($ $ |#4|) 77)) (-4077 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) 38)) (-4284 (((-112) $) 41)) (-4012 (($) 40)) (-1619 (((-768) $) 106)) (-2791 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-1991 (($ $) 39)) (-2511 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) 60)) (-4287 (($ $ |#3|) 28)) (-1887 (($ $ |#3|) 30)) (-3728 (($ $) 88)) (-3111 (($ $ |#3|) 29)) (-1831 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4321 (((-768) $) 76 (|has| |#3| (-368)))) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-1963 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) 81)) (-1484 (((-112) |#3| $) 80)) (-1702 (((-112) $ $) 6)) (-2828 (((-768) $) 46 (|has| $ (-6 -4406))))) -(((-1202 |#1| |#2| |#3| |#4|) (-140) (-556) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1202)) -((-3984 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1395 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3155 (-641 *8)))) (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-1395 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3155 (-641 *9)))) (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-768)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-2 (|:| -3689 (-641 *6)) (|:| -1669 (-641 *6)))))) (-2021 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3827 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)))) (-1712 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3253 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-4281 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2885 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1988 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7)))) (-2559 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)))) (-4136 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1482 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2356 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1470 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-3492 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-3250 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| -3689 *1) (|:| -1669 (-641 *7))))) (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-3303 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2598 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3314 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-1484 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-3752 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3)))) (-3824 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-4321 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-768))))) -(-13 (-973 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -3984 ((-112) $ $)) (-15 -1395 ((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1395 ((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3123 ((-641 |t#4|) $)) (-15 -1619 ((-768) $)) (-15 -4236 ((-2 (|:| -3689 (-641 |t#4|)) (|:| -1669 (-641 |t#4|))) $)) (-15 -2021 ((-112) |t#4| $)) (-15 -2021 ((-112) $)) (-15 -3827 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1712 ((-112) |t#4| $)) (-15 -3253 ((-112) |t#4| $)) (-15 -4281 ((-112) |t#4| $)) (-15 -2885 ((-112) $ (-1 (-112) |t#4| (-641 |t#4|)))) (-15 -1712 ((-112) $)) (-15 -3253 ((-112) $)) (-15 -4281 ((-112) $)) (-15 -1988 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2559 ((-641 |t#4|) (-641 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4136 (|t#4| |t#4| $)) (-15 -1482 (|t#4| |t#4| $)) (-15 -2356 (|t#4| |t#4| $)) (-15 -1470 (|t#4| |t#4| $)) (-15 -3728 ($ $)) (-15 -3492 (|t#4| |t#4| $)) (-15 -2951 ((-641 $) (-641 |t#4|))) (-15 -3250 ((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |t#4|)))) (-641 |t#4|))) (-15 -3303 ((-3 |t#4| "failed") $)) (-15 -2598 ((-3 |t#4| "failed") $)) (-15 -3314 ((-3 $ "failed") $)) (-15 -2014 ((-641 |t#3|) $)) (-15 -1484 ((-112) |t#3| $)) (-15 -3752 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3824 ((-3 $ "failed") $ |t#4|)) (-15 -3951 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -4321 ((-768) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1209) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1170)) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2469 (((-949 |#1|) $ (-768)) 19) (((-949 |#1|) $ (-768) (-768)) NIL)) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-768) $ (-1170)) NIL) (((-768) $ (-1170) (-768)) NIL)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2003 (((-112) $) NIL)) (-3186 (($ $ (-641 (-1170)) (-641 (-531 (-1170)))) NIL) (($ $ (-1170) (-531 (-1170))) NIL) (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-3907 (($ $ (-1170)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-1348 (($ (-1 $) (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $ (-768)) NIL)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2633 (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-3534 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1619 (((-531 (-1170)) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1170)) NIL) (($ (-949 |#1|)) NIL)) (-2742 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (((-949 |#1|) $ (-768)) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) NIL T CONST)) (-1300 (($) NIL T CONST)) (-3435 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1203 |#1|) (-13 (-737 |#1| (-1170)) (-10 -8 (-15 -2742 ((-949 |#1|) $ (-768))) (-15 -1831 ($ (-1170))) (-15 -1831 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $ (-1170) |#1|)) (-15 -1348 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) (-1046)) (T -1203)) -((-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1046)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3)))) (-3907 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-1348 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046))))) -(-13 (-737 |#1| (-1170)) (-10 -8 (-15 -2742 ((-949 |#1|) $ (-768))) (-15 -1831 ($ (-1170))) (-15 -1831 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $ (-1170) |#1|)) (-15 -1348 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) -((-2332 (($ |#1| (-641 (-641 (-940 (-225)))) (-112)) 18)) (-3085 (((-112) $ (-112)) 17)) (-2411 (((-112) $) 16)) (-3969 (((-641 (-641 (-940 (-225)))) $) 13)) (-2290 ((|#1| $) 8)) (-4382 (((-112) $) 15))) -(((-1204 |#1|) (-10 -8 (-15 -2290 (|#1| $)) (-15 -3969 ((-641 (-641 (-940 (-225)))) $)) (-15 -4382 ((-112) $)) (-15 -2411 ((-112) $)) (-15 -3085 ((-112) $ (-112))) (-15 -2332 ($ |#1| (-641 (-641 (-940 (-225)))) (-112)))) (-971)) (T -1204)) -((-2332 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112)) (-5 *1 (-1204 *2)) (-4 *2 (-971)))) (-3085 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-2290 (*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971))))) -(-10 -8 (-15 -2290 (|#1| $)) (-15 -3969 ((-641 (-641 (-940 (-225)))) $)) (-15 -4382 ((-112) $)) (-15 -2411 ((-112) $)) (-15 -3085 ((-112) $ (-112))) (-15 -2332 ($ |#1| (-641 (-641 (-940 (-225)))) (-112)))) -((-1575 (((-940 (-225)) (-940 (-225))) 31)) (-1850 (((-940 (-225)) (-225) (-225) (-225) (-225)) 10)) (-4122 (((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225)))) 59)) (-3032 (((-225) (-940 (-225)) (-940 (-225))) 27)) (-4231 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 28)) (-2630 (((-641 (-641 (-225))) (-564)) 48)) (-1808 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 26)) (-1797 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 24)) (* (((-940 (-225)) (-225) (-940 (-225))) 22))) -(((-1205) (-10 -7 (-15 -1850 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1797 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1808 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -3032 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -4231 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1575 ((-940 (-225)) (-940 (-225)))) (-15 -2630 ((-641 (-641 (-225))) (-564))) (-15 -4122 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225))))))) (T -1205)) -((-4122 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-3032 (*1 *2 *3 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) (-1808 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-1797 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) (-1850 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225))))) -(-10 -7 (-15 -1850 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1797 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1808 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -3032 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -4231 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1575 ((-940 (-225)) (-940 (-225)))) (-15 -2630 ((-641 (-641 (-225))) (-564))) (-15 -4122 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225)))))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3752 ((|#1| $ (-768)) 18)) (-1502 (((-768) $) 13)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1831 (((-955 |#1|) $) 12) (($ (-955 |#1|)) 11) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-1702 (((-112) $ $) 22 (|has| |#1| (-1094))))) -(((-1206 |#1|) (-13 (-490 (-955 |#1|)) (-10 -8 (-15 -3752 (|#1| $ (-768))) (-15 -1502 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1206)) -((-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209))))) -(-13 (-490 (-955 |#1|)) (-10 -8 (-15 -3752 (|#1| $ (-768))) (-15 -1502 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) -((-3185 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)) 96)) (-1571 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 88)) (-2101 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 70))) -(((-1207 |#1|) (-10 -7 (-15 -1571 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2101 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -3185 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) (-349)) (T -1207)) -((-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))) (-2101 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))) (-1571 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) -(-10 -7 (-15 -1571 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2101 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -3185 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 9) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) +((-3661 (*1 *1 *1) (-4 *1 (-1197))) (-3639 (*1 *1 *1) (-4 *1 (-1197))) (-3684 (*1 *1 *1) (-4 *1 (-1197))) (-3697 (*1 *1 *1) (-4 *1 (-1197))) (-3672 (*1 *1 *1) (-4 *1 (-1197))) (-3650 (*1 *1 *1) (-4 *1 (-1197)))) +(-13 (-10 -8 (-15 -3650 ($ $)) (-15 -3672 ($ $)) (-15 -3697 ($ $)) (-15 -3684 ($ $)) (-15 -3639 ($ $)) (-15 -3661 ($ $)))) +((-2665 ((|#2| |#2|) 99)) (-1664 (((-112) |#2|) 29)) (-2401 ((|#2| |#2|) 33)) (-2415 ((|#2| |#2|) 35)) (-2655 ((|#2| |#2| (-1170)) 93) ((|#2| |#2|) 94)) (-3286 (((-169 |#2|) |#2|) 31)) (-1901 ((|#2| |#2| (-1170)) 95) ((|#2| |#2|) 96))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -2655 (|#2| |#2|)) (-15 -2655 (|#2| |#2| (-1170))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1170))) (-15 -2665 (|#2| |#2|)) (-15 -2401 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -1664 ((-112) |#2|)) (-15 -3286 ((-169 |#2|) |#2|))) (-13 (-452) (-846) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -1198)) +((-3286 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2655 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(-10 -7 (-15 -2655 (|#2| |#2|)) (-15 -2655 (|#2| |#2| (-1170))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1170))) (-15 -2665 (|#2| |#2|)) (-15 -2401 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -1664 ((-112) |#2|)) (-15 -3286 ((-169 |#2|) |#2|))) +((-4106 ((|#4| |#4| |#1|) 32)) (-1556 ((|#4| |#4| |#1|) 33))) +(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4106 (|#4| |#4| |#1|)) (-15 -1556 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1199)) +((-1556 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-4106 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(-10 -7 (-15 -4106 (|#4| |#4| |#1|)) (-15 -1556 (|#4| |#4| |#1|))) +((-2006 ((|#2| |#2|) 148)) (-2064 ((|#2| |#2|) 145)) (-3573 ((|#2| |#2|) 136)) (-4218 ((|#2| |#2|) 133)) (-1974 ((|#2| |#2|) 141)) (-1857 ((|#2| |#2|) 129)) (-3033 ((|#2| |#2|) 44)) (-3339 ((|#2| |#2|) 105)) (-3046 ((|#2| |#2|) 88)) (-2542 ((|#2| |#2|) 143)) (-2395 ((|#2| |#2|) 131)) (-3236 ((|#2| |#2|) 153)) (-2874 ((|#2| |#2|) 151)) (-3703 ((|#2| |#2|) 152)) (-2368 ((|#2| |#2|) 150)) (-1327 ((|#2| |#2|) 163)) (-2081 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-888 |#1|))) (|has| |#2| (-882 |#1|)) (|has| |#1| (-612 (-888 |#1|))) (|has| |#1| (-882 |#1|))))) (-1626 ((|#2| |#2|) 89)) (-3232 ((|#2| |#2|) 154)) (-2925 ((|#2| |#2|) 155)) (-4141 ((|#2| |#2|) 142)) (-3771 ((|#2| |#2|) 130)) (-3926 ((|#2| |#2|) 149)) (-3759 ((|#2| |#2|) 147)) (-1497 ((|#2| |#2|) 137)) (-3382 ((|#2| |#2|) 135)) (-2713 ((|#2| |#2|) 139)) (-4091 ((|#2| |#2|) 127))) +(((-1200 |#1| |#2|) (-10 -7 (-15 -2925 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -1327 (|#2| |#2|)) (-15 -3339 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -3232 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -2713 (|#2| |#2|)) (-15 -1497 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -1974 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -3703 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-612 (-888 |#1|))) (IF (|has| |#2| (-612 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -2081 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-846) (-452)) (-13 (-430 |#1|) (-1194))) (T -1200)) +((-2081 (*1 *2 *2) (-12 (-4 *3 (-612 (-888 *3))) (-4 *3 (-882 *3)) (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-888 *3))) (-4 *2 (-882 *3)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3236 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3703 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2064 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1974 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1857 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1497 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2713 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1327 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194)))))) +(-10 -7 (-15 -2925 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -1327 (|#2| |#2|)) (-15 -3339 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -3232 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -2713 (|#2| |#2|)) (-15 -1497 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -1974 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -3703 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-612 (-888 |#1|))) (IF (|has| |#2| (-612 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -2081 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1669 (((-112) |#5| $) 67) (((-112) $) 109)) (-4230 ((|#5| |#5| $) 82)) (-2957 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 126)) (-2292 (((-641 |#5|) (-641 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 80)) (-3032 (((-3 $ "failed") (-641 |#5|)) 134)) (-2008 (((-3 $ "failed") $) 119)) (-4220 ((|#5| |#5| $) 101)) (-4203 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 35)) (-4194 ((|#5| |#5| $) 105)) (-3239 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 76)) (-4019 (((-2 (|:| -1600 (-641 |#5|)) (|:| -4197 (-641 |#5|))) $) 62)) (-1675 (((-112) |#5| $) 65) (((-112) $) 110)) (-3691 ((|#4| $) 115)) (-3649 (((-3 |#5| "failed") $) 117)) (-4022 (((-641 |#5|) $) 54)) (-3250 (((-112) |#5| $) 74) (((-112) $) 114)) (-2093 ((|#5| |#5| $) 88)) (-3288 (((-112) $ $) 28)) (-3932 (((-112) |#5| $) 70) (((-112) $) 112)) (-4340 ((|#5| |#5| $) 85)) (-1995 (((-3 |#5| "failed") $) 116)) (-2941 (($ $ |#5|) 135)) (-2073 (((-767) $) 59)) (-2335 (($ (-641 |#5|)) 132)) (-3311 (($ $ |#4|) 130)) (-2805 (($ $ |#4|) 128)) (-2631 (($ $) 127)) (-2322 (((-858) $) NIL) (((-641 |#5|) $) 120)) (-2390 (((-767) $) 139)) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|)) 48) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 50)) (-2410 (((-112) $ (-1 (-112) |#5| (-641 |#5|))) 107)) (-1595 (((-641 |#4|) $) 122)) (-4363 (((-112) |#4| $) 125)) (-2921 (((-112) $ $) 20))) +(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2390 ((-767) |#1|)) (-15 -2941 (|#1| |#1| |#5|)) (-15 -2957 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4363 ((-112) |#4| |#1|)) (-15 -1595 ((-641 |#4|) |#1|)) (-15 -2008 ((-3 |#1| "failed") |#1|)) (-15 -3649 ((-3 |#5| "failed") |#1|)) (-15 -1995 ((-3 |#5| "failed") |#1|)) (-15 -4194 (|#5| |#5| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -4220 (|#5| |#5| |#1|)) (-15 -2093 (|#5| |#5| |#1|)) (-15 -4340 (|#5| |#5| |#1|)) (-15 -4230 (|#5| |#5| |#1|)) (-15 -2292 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3239 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3250 ((-112) |#1|)) (-15 -3932 ((-112) |#1|)) (-15 -1669 ((-112) |#1|)) (-15 -2410 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -3250 ((-112) |#5| |#1|)) (-15 -3932 ((-112) |#5| |#1|)) (-15 -1669 ((-112) |#5| |#1|)) (-15 -4203 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1675 ((-112) |#1|)) (-15 -1675 ((-112) |#5| |#1|)) (-15 -4019 ((-2 (|:| -1600 (-641 |#5|)) (|:| -4197 (-641 |#5|))) |#1|)) (-15 -2073 ((-767) |#1|)) (-15 -4022 ((-641 |#5|) |#1|)) (-15 -3998 ((-3 (-2 (|:| |bas| |#1|) (|:| -1846 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3998 ((-3 (-2 (|:| |bas| |#1|) (|:| -1846 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3288 ((-112) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -2805 (|#1| |#1| |#4|)) (-15 -3691 (|#4| |#1|)) (-15 -3032 ((-3 |#1| "failed") (-641 |#5|))) (-15 -2322 ((-641 |#5|) |#1|)) (-15 -2335 (|#1| (-641 |#5|))) (-15 -3239 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3239 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2957 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3239 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1201)) +NIL +(-10 -8 (-15 -2390 ((-767) |#1|)) (-15 -2941 (|#1| |#1| |#5|)) (-15 -2957 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4363 ((-112) |#4| |#1|)) (-15 -1595 ((-641 |#4|) |#1|)) (-15 -2008 ((-3 |#1| "failed") |#1|)) (-15 -3649 ((-3 |#5| "failed") |#1|)) (-15 -1995 ((-3 |#5| "failed") |#1|)) (-15 -4194 (|#5| |#5| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -4220 (|#5| |#5| |#1|)) (-15 -2093 (|#5| |#5| |#1|)) (-15 -4340 (|#5| |#5| |#1|)) (-15 -4230 (|#5| |#5| |#1|)) (-15 -2292 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3239 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3250 ((-112) |#1|)) (-15 -3932 ((-112) |#1|)) (-15 -1669 ((-112) |#1|)) (-15 -2410 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -3250 ((-112) |#5| |#1|)) (-15 -3932 ((-112) |#5| |#1|)) (-15 -1669 ((-112) |#5| |#1|)) (-15 -4203 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1675 ((-112) |#1|)) (-15 -1675 ((-112) |#5| |#1|)) (-15 -4019 ((-2 (|:| -1600 (-641 |#5|)) (|:| -4197 (-641 |#5|))) |#1|)) (-15 -2073 ((-767) |#1|)) (-15 -4022 ((-641 |#5|) |#1|)) (-15 -3998 ((-3 (-2 (|:| |bas| |#1|) (|:| -1846 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3998 ((-3 (-2 (|:| |bas| |#1|) (|:| -1846 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3288 ((-112) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -2805 (|#1| |#1| |#4|)) (-15 -3691 (|#4| |#1|)) (-15 -3032 ((-3 |#1| "failed") (-641 |#5|))) (-15 -2322 ((-641 |#5|) |#1|)) (-15 -2335 (|#1| (-641 |#5|))) (-15 -3239 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3239 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2957 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3239 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2322 ((-858) |#1|)) (-15 -2921 ((-112) |#1| |#1|))) +((-2310 (((-112) $ $) 7)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) 85)) (-1841 (((-641 $) (-641 |#4|)) 86)) (-2534 (((-641 |#3|) $) 33)) (-1885 (((-112) $) 26)) (-3042 (((-112) $) 17 (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) 101) (((-112) $) 97)) (-4230 ((|#4| |#4| $) 92)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) 27)) (-2318 (((-112) $ (-767)) 44)) (-2957 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) 79)) (-4157 (($) 45 T CONST)) (-2815 (((-112) $) 22 (|has| |#1| (-556)))) (-2924 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1362 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3300 (((-112) $) 25 (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1907 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) 36)) (-1781 (($ (-641 |#4|)) 35)) (-2008 (((-3 $ "failed") $) 82)) (-4220 ((|#4| |#4| $) 89)) (-2027 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4194 ((|#4| |#4| $) 87)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) 105)) (-3534 (((-641 |#4|) $) 52 (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) 104) (((-112) $) 103)) (-3691 ((|#3| $) 34)) (-1751 (((-112) $ (-767)) 43)) (-1834 (((-641 |#4|) $) 53 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) 47)) (-3805 (((-641 |#3|) $) 32)) (-3460 (((-112) |#3| $) 31)) (-1681 (((-112) $ (-767)) 42)) (-1418 (((-1152) $) 9)) (-3649 (((-3 |#4| "failed") $) 83)) (-4022 (((-641 |#4|) $) 107)) (-3250 (((-112) |#4| $) 99) (((-112) $) 95)) (-2093 ((|#4| |#4| $) 90)) (-3288 (((-112) $ $) 110)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) 100) (((-112) $) 96)) (-4340 ((|#4| |#4| $) 91)) (-3840 (((-1114) $) 10)) (-1995 (((-3 |#4| "failed") $) 84)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4179 (((-3 $ "failed") $ |#4|) 78)) (-2941 (($ $ |#4|) 77)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) 38)) (-3282 (((-112) $) 41)) (-2348 (($) 40)) (-2073 (((-767) $) 106)) (-3852 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4406)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4406)))) (-3772 (($ $) 39)) (-3172 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) 60)) (-3311 (($ $ |#3|) 28)) (-2805 (($ $ |#3|) 30)) (-2631 (($ $) 88)) (-2029 (($ $ |#3|) 29)) (-2322 (((-858) $) 11) (((-641 |#4|) $) 37)) (-2390 (((-767) $) 76 (|has| |#3| (-368)))) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-2313 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) 81)) (-4363 (((-112) |#3| $) 80)) (-2921 (((-112) $ $) 6)) (-2059 (((-767) $) 46 (|has| $ (-6 -4406))))) +(((-1202 |#1| |#2| |#3| |#4|) (-140) (-556) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1202)) +((-3288 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3998 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1846 (-641 *8)))) (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-3998 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1846 (-641 *9)))) (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *6)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-2 (|:| -1600 (-641 *6)) (|:| -4197 (-641 *6)))))) (-1675 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4203 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))) (-1669 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3932 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3250 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3239 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) (-2292 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))) (-4230 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4340 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2093 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4220 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2631 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-4194 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| -1600 *1) (|:| -4197 (-641 *7))))) (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-1995 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3649 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2008 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) (-4363 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-2957 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) (-4179 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2941 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767))))) +(-13 (-972 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4406) (-6 -4407) (-15 -3288 ((-112) $ $)) (-15 -3998 ((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3998 ((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4022 ((-641 |t#4|) $)) (-15 -2073 ((-767) $)) (-15 -4019 ((-2 (|:| -1600 (-641 |t#4|)) (|:| -4197 (-641 |t#4|))) $)) (-15 -1675 ((-112) |t#4| $)) (-15 -1675 ((-112) $)) (-15 -4203 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1669 ((-112) |t#4| $)) (-15 -3932 ((-112) |t#4| $)) (-15 -3250 ((-112) |t#4| $)) (-15 -2410 ((-112) $ (-1 (-112) |t#4| (-641 |t#4|)))) (-15 -1669 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -3250 ((-112) $)) (-15 -3239 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2292 ((-641 |t#4|) (-641 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4230 (|t#4| |t#4| $)) (-15 -4340 (|t#4| |t#4| $)) (-15 -2093 (|t#4| |t#4| $)) (-15 -4220 (|t#4| |t#4| $)) (-15 -2631 ($ $)) (-15 -4194 (|t#4| |t#4| $)) (-15 -1841 ((-641 $) (-641 |t#4|))) (-15 -3898 ((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |t#4|)))) (-641 |t#4|))) (-15 -1995 ((-3 |t#4| "failed") $)) (-15 -3649 ((-3 |t#4| "failed") $)) (-15 -2008 ((-3 $ "failed") $)) (-15 -1595 ((-641 |t#3|) $)) (-15 -4363 ((-112) |t#3| $)) (-15 -2957 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4179 ((-3 $ "failed") $ |t#4|)) (-15 -2941 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -2390 ((-767) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1209) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1170)) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-1433 (((-948 |#1|) $ (-767)) 19) (((-948 |#1|) $ (-767) (-767)) NIL)) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-767) $ (-1170)) NIL) (((-767) $ (-1170) (-767)) NIL)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1492 (((-112) $) NIL)) (-2507 (($ $ (-641 (-1170)) (-641 (-531 (-1170)))) NIL) (($ $ (-1170) (-531 (-1170))) NIL) (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3719 (($ $ (-1170)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2107 (($ (-1 $) (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2941 (($ $ (-767)) NIL)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3100 (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-1343 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2073 (((-531 (-1170)) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1170)) NIL) (($ (-948 |#1|)) NIL)) (-3467 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (((-948 |#1|) $ (-767)) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) NIL T CONST)) (-2403 (($) NIL T CONST)) (-3917 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1203 |#1|) (-13 (-736 |#1| (-1170)) (-10 -8 (-15 -3467 ((-948 |#1|) $ (-767))) (-15 -2322 ($ (-1170))) (-15 -2322 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $ (-1170) |#1|)) (-15 -2107 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) (-1045)) (T -1203)) +((-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1045)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1045)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1203 *3)))) (-3719 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)))) (-2107 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045))))) +(-13 (-736 |#1| (-1170)) (-10 -8 (-15 -3467 ((-948 |#1|) $ (-767))) (-15 -2322 ($ (-1170))) (-15 -2322 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $ (-1170) |#1|)) (-15 -2107 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) +((-1839 (($ |#1| (-641 (-641 (-939 (-225)))) (-112)) 18)) (-1755 (((-112) $ (-112)) 17)) (-1423 (((-112) $) 16)) (-3132 (((-641 (-641 (-939 (-225)))) $) 13)) (-2656 ((|#1| $) 8)) (-1690 (((-112) $) 15))) +(((-1204 |#1|) (-10 -8 (-15 -2656 (|#1| $)) (-15 -3132 ((-641 (-641 (-939 (-225)))) $)) (-15 -1690 ((-112) $)) (-15 -1423 ((-112) $)) (-15 -1755 ((-112) $ (-112))) (-15 -1839 ($ |#1| (-641 (-641 (-939 (-225)))) (-112)))) (-970)) (T -1204)) +((-1839 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1204 *2)) (-4 *2 (-970)))) (-1755 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-2656 (*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-970))))) +(-10 -8 (-15 -2656 (|#1| $)) (-15 -3132 ((-641 (-641 (-939 (-225)))) $)) (-15 -1690 ((-112) $)) (-15 -1423 ((-112) $)) (-15 -1755 ((-112) $ (-112))) (-15 -1839 ($ |#1| (-641 (-641 (-939 (-225)))) (-112)))) +((-2845 (((-939 (-225)) (-939 (-225))) 31)) (-1437 (((-939 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2184 (((-641 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-641 (-641 (-225)))) 59)) (-2535 (((-225) (-939 (-225)) (-939 (-225))) 27)) (-3969 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 28)) (-1735 (((-641 (-641 (-225))) (-564)) 48)) (-3021 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 26)) (-3011 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 24)) (* (((-939 (-225)) (-225) (-939 (-225))) 22))) +(((-1205) (-10 -7 (-15 -1437 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -3011 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3021 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -2535 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -3969 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -2845 ((-939 (-225)) (-939 (-225)))) (-15 -1735 ((-641 (-641 (-225))) (-564))) (-15 -2184 ((-641 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-641 (-641 (-225))))))) (T -1205)) +((-2184 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 (-939 *4))) (-5 *1 (-1205)) (-5 *3 (-939 *4)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (-3969 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (-2535 (*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) (-3021 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (-3011 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) (-1437 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)) (-5 *3 (-225))))) +(-10 -7 (-15 -1437 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -3011 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3021 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -2535 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -3969 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -2845 ((-939 (-225)) (-939 (-225)))) (-15 -1735 ((-641 (-641 (-225))) (-564))) (-15 -2184 ((-641 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-641 (-641 (-225)))))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2957 ((|#1| $ (-767)) 18)) (-1750 (((-767) $) 13)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2322 (((-954 |#1|) $) 12) (($ (-954 |#1|)) 11) (((-858) $) 29 (|has| |#1| (-611 (-858))))) (-2921 (((-112) $ $) 22 (|has| |#1| (-1094))))) +(((-1206 |#1|) (-13 (-490 (-954 |#1|)) (-10 -8 (-15 -2957 (|#1| $ (-767))) (-15 -1750 ((-767) $)) (IF (|has| |#1| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1206)) +((-2957 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1206 *3)) (-4 *3 (-1209))))) +(-13 (-490 (-954 |#1|)) (-10 -8 (-15 -2957 (|#1| $ (-767))) (-15 -1750 ((-767) $)) (IF (|has| |#1| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) +((-3372 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)) 96)) (-2807 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 88)) (-1315 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 70))) +(((-1207 |#1|) (-10 -7 (-15 -2807 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -1315 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -3372 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) (-349)) (T -1207)) +((-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))) (-1315 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) +(-10 -7 (-15 -2807 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -1315 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -3372 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 9) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) (((-1208) (-1077)) (T -1208)) NIL (-1077) NIL (((-1209) (-140)) (T -1209)) NIL -(-13 (-10 -7 (-6 -2471))) -((-3803 (((-112)) 17)) (-4165 (((-1264) (-641 |#1|) (-641 |#1|)) 21) (((-1264) (-641 |#1|)) 22)) (-2324 (((-112) |#1| |#1|) 37 (|has| |#1| (-847)))) (-1713 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2336 ((|#1| (-641 |#1|)) 38 (|has| |#1| (-847))) ((|#1| (-641 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1671 (((-2 (|:| -3264 (-641 |#1|)) (|:| -3103 (-641 |#1|)))) 19))) -(((-1210 |#1|) (-10 -7 (-15 -4165 ((-1264) (-641 |#1|))) (-15 -4165 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -1671 ((-2 (|:| -3264 (-641 |#1|)) (|:| -3103 (-641 |#1|))))) (-15 -1713 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1713 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2336 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3803 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -2336 (|#1| (-641 |#1|))) (-15 -2324 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1210)) -((-2324 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-1210 *2)))) (-3803 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-1094)))) (-1713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3)))) (-1713 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1671 (*1 *2) (-12 (-5 *2 (-2 (|:| -3264 (-641 *3)) (|:| -3103 (-641 *3)))) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-4165 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4))))) -(-10 -7 (-15 -4165 ((-1264) (-641 |#1|))) (-15 -4165 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -1671 ((-2 (|:| -3264 (-641 |#1|)) (|:| -3103 (-641 |#1|))))) (-15 -1713 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1713 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2336 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3803 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -2336 (|#1| (-641 |#1|))) (-15 -2324 ((-112) |#1| |#1|))) |%noBranch|)) -((-1559 (((-1264) (-641 (-1170)) (-641 (-1170))) 14) (((-1264) (-641 (-1170))) 12)) (-3178 (((-1264)) 16)) (-2877 (((-2 (|:| -3103 (-641 (-1170))) (|:| -3264 (-641 (-1170))))) 20))) -(((-1211) (-10 -7 (-15 -1559 ((-1264) (-641 (-1170)))) (-15 -1559 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2877 ((-2 (|:| -3103 (-641 (-1170))) (|:| -3264 (-641 (-1170)))))) (-15 -3178 ((-1264))))) (T -1211)) -((-3178 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))) (-2877 (*1 *2) (-12 (-5 *2 (-2 (|:| -3103 (-641 (-1170))) (|:| -3264 (-641 (-1170))))) (-5 *1 (-1211)))) (-1559 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))) -(-10 -7 (-15 -1559 ((-1264) (-641 (-1170)))) (-15 -1559 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2877 ((-2 (|:| -3103 (-641 (-1170))) (|:| -3264 (-641 (-1170)))))) (-15 -3178 ((-1264)))) -((-2427 (($ $) 17)) (-1420 (((-112) $) 28))) -(((-1212 |#1|) (-10 -8 (-15 -2427 (|#1| |#1|)) (-15 -1420 ((-112) |#1|))) (-1213)) (T -1212)) -NIL -(-10 -8 (-15 -2427 (|#1| |#1|)) (-15 -1420 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 52)) (-3399 (((-418 $) $) 53)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-1420 (((-112) $) 54)) (-2949 (((-112) $) 31)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3070 (((-418 $) $) 51)) (-1403 (((-3 $ "failed") $ $) 43)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(-13 (-10 -7 (-6 -3530))) +((-2082 (((-112)) 17)) (-1424 (((-1264) (-641 |#1|) (-641 |#1|)) 21) (((-1264) (-641 |#1|)) 22)) (-1751 (((-112) |#1| |#1|) 37 (|has| |#1| (-846)))) (-1681 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1886 ((|#1| (-641 |#1|)) 38 (|has| |#1| (-846))) ((|#1| (-641 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2527 (((-2 (|:| -2839 (-641 |#1|)) (|:| -1935 (-641 |#1|)))) 19))) +(((-1210 |#1|) (-10 -7 (-15 -1424 ((-1264) (-641 |#1|))) (-15 -1424 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -2527 ((-2 (|:| -2839 (-641 |#1|)) (|:| -1935 (-641 |#1|))))) (-15 -1681 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1681 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1886 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2082 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -1886 (|#1| (-641 |#1|))) (-15 -1751 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1210)) +((-1751 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-846)) (-5 *1 (-1210 *2)))) (-2082 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-1094)))) (-1681 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3)))) (-1681 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-2527 (*1 *2) (-12 (-5 *2 (-2 (|:| -2839 (-641 *3)) (|:| -1935 (-641 *3)))) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1424 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4))))) +(-10 -7 (-15 -1424 ((-1264) (-641 |#1|))) (-15 -1424 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -2527 ((-2 (|:| -2839 (-641 |#1|)) (|:| -1935 (-641 |#1|))))) (-15 -1681 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1681 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1886 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2082 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -1886 (|#1| (-641 |#1|))) (-15 -1751 ((-112) |#1| |#1|))) |%noBranch|)) +((-3876 (((-1264) (-641 (-1170)) (-641 (-1170))) 14) (((-1264) (-641 (-1170))) 12)) (-1405 (((-1264)) 16)) (-2323 (((-2 (|:| -1935 (-641 (-1170))) (|:| -2839 (-641 (-1170))))) 20))) +(((-1211) (-10 -7 (-15 -3876 ((-1264) (-641 (-1170)))) (-15 -3876 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2323 ((-2 (|:| -1935 (-641 (-1170))) (|:| -2839 (-641 (-1170)))))) (-15 -1405 ((-1264))))) (T -1211)) +((-1405 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))) (-2323 (*1 *2) (-12 (-5 *2 (-2 (|:| -1935 (-641 (-1170))) (|:| -2839 (-641 (-1170))))) (-5 *1 (-1211)))) (-3876 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))) +(-10 -7 (-15 -3876 ((-1264) (-641 (-1170)))) (-15 -3876 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2323 ((-2 (|:| -1935 (-641 (-1170))) (|:| -2839 (-641 (-1170)))))) (-15 -1405 ((-1264)))) +((-3453 (($ $) 17)) (-4229 (((-112) $) 28))) +(((-1212 |#1|) (-10 -8 (-15 -3453 (|#1| |#1|)) (-15 -4229 ((-112) |#1|))) (-1213)) (T -1212)) +NIL +(-10 -8 (-15 -3453 (|#1| |#1|)) (-15 -4229 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 52)) (-2657 (((-418 $) $) 53)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-4229 (((-112) $) 54)) (-1828 (((-112) $) 31)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2375 (((-418 $) $) 51)) (-2526 (((-3 $ "failed") $ $) 43)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44)) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-1213) (-140)) (T -1213)) -((-1420 (*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) (-2427 (*1 *1 *1) (-4 *1 (-1213))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))) -(-13 (-452) (-10 -8 (-15 -1420 ((-112) $)) (-15 -3399 ((-418 $) $)) (-15 -2427 ($ $)) (-15 -3070 ((-418 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-4186 (($ $ $) NIL)) (-4177 (($ $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-1214) (-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809)))) (T -1214)) -((-4177 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4186 (*1 *1 *1 *1) (-5 *1 (-1214))) (-1778 (*1 *1) (-5 *1 (-1214)))) -(-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) +((-4229 (*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) (-3453 (*1 *1 *1) (-4 *1 (-1213))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))) +(-13 (-452) (-10 -8 (-15 -4229 ((-112) $)) (-15 -2657 ((-418 $) $)) (-15 -3453 ($ $)) (-15 -2375 ((-418 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2153 (($ $ $) NIL)) (-2141 (($ $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-1214) (-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255)))) (T -1214)) +((-2141 (*1 *1 *1 *1) (-5 *1 (-1214))) (-2153 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4157 (*1 *1) (-5 *1 (-1214)))) +(-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) ((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-4186 (($ $ $) NIL)) (-4177 (($ $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-1215) (-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809)))) (T -1215)) -((-4177 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4186 (*1 *1 *1 *1) (-5 *1 (-1215))) (-1778 (*1 *1) (-5 *1 (-1215)))) -(-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2153 (($ $ $) NIL)) (-2141 (($ $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-1215) (-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255)))) (T -1215)) +((-2141 (*1 *1 *1 *1) (-5 *1 (-1215))) (-2153 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4157 (*1 *1) (-5 *1 (-1215)))) +(-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) ((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-4186 (($ $ $) NIL)) (-4177 (($ $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-1216) (-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809)))) (T -1216)) -((-4177 (*1 *1 *1 *1) (-5 *1 (-1216))) (-4186 (*1 *1 *1 *1) (-5 *1 (-1216))) (-1778 (*1 *1) (-5 *1 (-1216)))) -(-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2153 (($ $ $) NIL)) (-2141 (($ $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-1216) (-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255)))) (T -1216)) +((-2141 (*1 *1 *1 *1) (-5 *1 (-1216))) (-2153 (*1 *1 *1 *1) (-5 *1 (-1216))) (-4157 (*1 *1) (-5 *1 (-1216)))) +(-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) ((|NonNegativeInteger|) (COND ((< 64 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1817 (((-112) $ $) NIL)) (-3267 (((-768)) NIL)) (-1778 (($) NIL T CONST)) (-2900 (($) NIL)) (-1925 (($ $ $) NIL) (($) NIL T CONST)) (-3375 (($ $ $) NIL) (($) NIL T CONST)) (-1811 (((-918) $) NIL)) (-2723 (((-1152) $) NIL)) (-1468 (($ (-918)) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) NIL)) (-4186 (($ $ $) NIL)) (-4177 (($ $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) -(((-1217) (-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809)))) (T -1217)) -((-4177 (*1 *1 *1 *1) (-5 *1 (-1217))) (-4186 (*1 *1 *1 *1) (-5 *1 (-1217))) (-1778 (*1 *1) (-5 *1 (-1217)))) -(-13 (-841) (-10 -8 (-15 -4177 ($ $ $)) (-15 -4186 ($ $ $)) (-15 -1778 ($) -1809))) +((-2310 (((-112) $ $) NIL)) (-1959 (((-767)) NIL)) (-4157 (($) NIL T CONST)) (-3860 (($) NIL)) (-1501 (($ $ $) NIL) (($) NIL T CONST)) (-2622 (($ $ $) NIL) (($) NIL T CONST)) (-1368 (((-917) $) NIL)) (-1418 (((-1152) $) NIL)) (-1998 (($ (-917)) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) NIL)) (-2153 (($ $ $) NIL)) (-2141 (($ $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2953 (((-112) $ $) NIL)) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL))) +(((-1217) (-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255)))) (T -1217)) +((-2141 (*1 *1 *1 *1) (-5 *1 (-1217))) (-2153 (*1 *1 *1 *1) (-5 *1 (-1217))) (-4157 (*1 *1) (-5 *1 (-1217)))) +(-13 (-840) (-10 -8 (-15 -2141 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4157 ($) -2255))) ((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2449 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 23))) -(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2449 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1218)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170))))) -(-10 -7 (-15 -2449 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 (-1076)) $) 77)) (-3871 (((-1170) $) 106)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-3220 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-4163 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-3357 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 165 (|has| |#1| (-363)))) (-3399 (((-418 $) $) 166 (|has| |#1| (-363)))) (-3083 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3330 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-3384 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) 17 T CONST)) (-1449 (($ $ $) 160 (|has| |#1| (-363)))) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-3158 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-1424 (($ $ $) 159 (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1420 (((-112) $) 167 (|has| |#1| (-363)))) (-3030 (((-112) $) 76)) (-3714 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-564) $) 103) (((-564) $ (-564)) 102)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) 104)) (-1477 (($ (-1 |#1| (-564)) $) 175)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2003 (((-112) $) 65)) (-3186 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-2358 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2740 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2723 (((-1152) $) 9)) (-3315 (($ $) 168 (|has| |#1| (-363)))) (-3907 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4078 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2777 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3070 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 161 (|has| |#1| (-363)))) (-3951 (($ $ (-564)) 98)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4326 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-3920 (((-768) $) 157 (|has| |#1| (-363)))) (-1350 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 158 (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1619 (((-564) $) 67)) (-3395 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2742 ((|#1| $ (-564)) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-2513 ((|#1| $) 105)) (-3427 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3406 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-1219 |#1|) (-140) (-1046)) (T -1219)) -((-1881 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1219 *3)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046)))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-3158 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-3907 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3907 (*1 *1 *1 *2) (-4078 (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -3209 ((-641 *2) *3))) (|has| *3 (-15 -3907 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) -(-13 (-1237 |t#1| (-564)) (-10 -8 (-15 -1881 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -1477 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -3158 ((-407 (-949 |t#1|)) $ (-564))) (-15 -3158 ((-407 (-949 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $)) (IF (|has| |t#1| (-15 -3907 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -3209 ((-641 (-1170)) |t#1|))) (-15 -3907 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3907 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T)) -((-1615 (((-112) $) 12)) (-2347 (((-3 |#3| "failed") $) 17) (((-3 (-1170) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-2237 ((|#3| $) 14) (((-1170) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL))) -(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-1170) "failed") |#1|)) (-15 -2237 ((-1170) |#1|)) (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -2237 (|#3| |#1|)) (-15 -1615 ((-112) |#1|))) (-1221 |#2| |#3|) (-1046) (-1250 |#2|)) (T -1220)) -NIL -(-10 -8 (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2347 ((-3 (-1170) "failed") |#1|)) (-15 -2237 ((-1170) |#1|)) (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -2237 (|#3| |#1|)) (-15 -1615 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3423 ((|#2| $) 231 (-4348 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3209 (((-641 (-1076)) $) 77)) (-3871 (((-1170) $) 106)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-3220 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-4163 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-1454 ((|#2| $) 267)) (-3219 (((-3 |#2| "failed") $) 263)) (-3266 ((|#2| $) 264)) (-3357 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) 19)) (-2345 (((-418 (-1166 $)) (-1166 $)) 240 (-4348 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2427 (($ $) 165 (|has| |#1| (-363)))) (-3399 (((-418 $) $) 166 (|has| |#1| (-363)))) (-3083 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 237 (-4348 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3554 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3330 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1598 (((-564) $) 249 (-4348 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1881 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-3384 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#2| "failed") $) 270) (((-3 (-564) "failed") $) 260 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 258 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) 242 (-4348 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2237 ((|#2| $) 271) (((-564) $) 259 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 257 (-4348 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) 241 (-4348 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-3588 (($ $) 266) (($ (-564) $) 265)) (-1449 (($ $ $) 160 (|has| |#1| (-363)))) (-3396 (($ $) 63)) (-4050 (((-685 |#2|) (-685 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 219 (-4348 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) 218 (-4348 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3733 (((-3 $ "failed") $) 33)) (-3158 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-2900 (($) 233 (-4348 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1424 (($ $ $) 159 (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1420 (((-112) $) 167 (|has| |#1| (-363)))) (-1569 (((-112) $) 247 (-4348 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3030 (((-112) $) 76)) (-3714 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 225 (-4348 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 224 (-4348 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-2155 (((-564) $) 103) (((-564) $ (-564)) 102)) (-2949 (((-112) $) 31)) (-4157 (($ $) 229 (|has| |#1| (-363)))) (-3678 ((|#2| $) 227 (|has| |#1| (-363)))) (-2915 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2619 (((-3 $ "failed") $) 261 (-4348 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2607 (((-112) $) 248 (-4348 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2325 (($ $ (-918)) 104)) (-1477 (($ (-1 |#1| (-564)) $) 175)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2003 (((-112) $) 65)) (-3186 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-1925 (($ $ $) 251 (-4348 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-3375 (($ $ $) 252 (-4348 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2449 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-2358 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2740 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3277 (($ (-564) |#2|) 268)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 168 (|has| |#1| (-363)))) (-3907 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4078 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-2884 (($) 262 (-4348 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2777 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3191 (($ $) 232 (-4348 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-1818 ((|#2| $) 235 (-4348 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1469 (((-418 (-1166 $)) (-1166 $)) 238 (-4348 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2165 (((-418 (-1166 $)) (-1166 $)) 239 (-4348 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3070 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 161 (|has| |#1| (-363)))) (-3951 (($ $ (-564)) 98)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4326 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) 212 (-4348 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) 211 (-4348 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) 210 (-4348 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-4348 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-4348 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) 207 (-4348 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3920 (((-768) $) 157 (|has| |#1| (-363)))) (-1350 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106))) (($ $ |#2|) 206 (-4348 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 158 (|has| |#1| (-363)))) (-3534 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 216 (|has| |#1| (-363))) (($ $ (-768)) 87 (-4078 (-4348 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 85 (-4078 (-4348 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 92 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 91 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 90 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 89 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2644 (($ $) 230 (|has| |#1| (-363)))) (-3693 ((|#2| $) 228 (|has| |#1| (-363)))) (-1619 (((-564) $) 67)) (-3395 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2511 (((-225) $) 246 (-4348 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) 245 (-4348 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) 244 (-4348 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) 223 (-4348 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) 222 (-4348 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 236 (-4348 (-4348 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#1| (-363))))) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1170)) 243 (-4348 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2742 ((|#1| $ (-564)) 62)) (-4018 (((-3 $ "failed") $) 51 (-4078 (-4348 (-4078 (|has| |#2| (-145)) (-4348 (|has| $ (-145)) (|has| |#2| (-906)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2219 (((-768)) 28 T CONST)) (-2513 ((|#1| $) 105)) (-4150 ((|#2| $) 234 (-4348 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3427 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3406 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1849 (($ $) 250 (-4348 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 214 (|has| |#1| (-363))) (($ $ (-768)) 88 (-4078 (-4348 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 86 (-4078 (-4348 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 96 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 95 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 94 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 93 (-4078 (-4348 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-1762 (((-112) $ $) 254 (-4348 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1737 (((-112) $ $) 255 (-4348 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 253 (-4348 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1723 (((-112) $ $) 256 (-4348 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-1221 |#1| |#2|) (-140) (-1046) (-1250 |t#1|)) (T -1221)) -((-1619 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)) (-5 *2 (-564)))) (-3277 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1250 *4)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-3588 (*1 *1 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2)))) (-3588 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-3219 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3))))) -(-13 (-1219 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -3277 ($ (-564) |t#2|)) (-15 -1619 ((-564) $)) (-15 -1454 (|t#2| $)) (-15 -3588 ($ $)) (-15 -3588 ($ (-564) $)) (-15 -3266 (|t#2| $)) (-15 -3219 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-989 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -4078 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -4078 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -4078 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-714 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 |#2|) |has| |#1| (-363)) ((-714 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-789) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-792) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-817) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-845) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-847) -4078 (-12 (|has| |#1| (-363)) (|has| |#2| (-847))) (-12 (|has| |#1| (-363)) (|has| |#2| (-817)))) ((-897 (-1170)) -4078 (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) ((-883 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564)))) ((-881 |#2|) |has| |#1| (-363)) ((-906) -12 (|has| |#1| (-363)) (|has| |#2| (-906))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-989 |#2|) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1019) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-1035 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-1035 |#2|) . T) ((-1052 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 |#2|) |has| |#1| (-363)) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) -12 (|has| |#1| (-363)) (|has| |#2| (-1145))) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1209) |has| |#1| (-363)) ((-1213) |has| |#1| (-363)) ((-1219 |#1|) . T) ((-1237 |#1| #0#) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 79)) (-3423 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 98)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-4163 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-1454 ((|#2| $) 11)) (-3219 (((-3 |#2| "failed") $) 35)) (-3266 ((|#2| $) 36)) (-3357 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-1598 (((-564) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1881 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-3384 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2237 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-3588 (($ $) 65) (($ (-564) $) 28)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-4050 (((-685 |#2|) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3733 (((-3 $ "failed") $) 86)) (-3158 (((-407 (-949 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-2900 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-1569 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3030 (((-112) $) 72)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-2155 (((-564) $) 103) (((-564) $ (-564)) 105)) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL (|has| |#1| (-363)))) (-3678 ((|#2| $) 163 (|has| |#1| (-363)))) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2619 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2607 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2325 (($ $ (-918)) 146)) (-1477 (($ (-1 |#1| (-564)) $) 142)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-564)) 20) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-1925 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-3375 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2449 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-2358 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3277 (($ (-564) |#2|) 10)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 157 (|has| |#1| (-363)))) (-3907 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 231 (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-2884 (($) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3191 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-1818 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-564)) 136)) (-1403 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1106))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4078 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-4078 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) 151 (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-2644 (($ $) NIL (|has| |#1| (-363)))) (-3693 ((|#2| $) 164 (|has| |#1| (-363)))) (-1619 (((-564) $) 12)) (-3395 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2511 (((-225) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4037 (($ $) 134)) (-1831 (((-859) $) 264) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1170)) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2742 ((|#1| $ (-564)) 83)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2219 (((-768)) 153 T CONST)) (-2513 ((|#1| $) 100)) (-4150 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3427 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-1849 (($ $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1293 (($) 13 T CONST)) (-1300 (($) 18 T CONST)) (-3435 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4078 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4078 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1762 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1737 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1702 (((-112) $ $) 71)) (-1749 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1723 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-1808 (($ $) 225) (($ $ $) 76)) (-1797 (($ $ $) 74)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1222 |#1| |#2|) (-1221 |#1| |#2|) (-1046) (-1250 |#1|)) (T -1222)) +((-3123 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 23))) +(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3123 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1045) (-1045) (-1170) (-1170) |#1| |#2|) (T -1218)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170))))) +(-10 -7 (-15 -3123 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 (-1076)) $) 77)) (-3256 (((-1170) $) 106)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-3624 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-1412 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-3802 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 165 (|has| |#1| (-363)))) (-2657 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2387 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3779 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-3825 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) 17 T CONST)) (-2574 (($ $ $) 160 (|has| |#1| (-363)))) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-4342 (((-407 (-948 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-2552 (($ $ $) 159 (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4229 (((-112) $) 167 (|has| |#1| (-363)))) (-2506 (((-112) $) 76)) (-4223 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-564) $) 103) (((-564) $ (-564)) 102)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) 104)) (-4298 (($ (-1 |#1| (-564)) $) 175)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-1492 (((-112) $) 65)) (-2507 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-3439 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-3202 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1418 (((-1152) $) 9)) (-2639 (($ $) 168 (|has| |#1| (-363)))) (-3719 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-2789 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-3235 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2375 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 161 (|has| |#1| (-363)))) (-2941 (($ $ (-564)) 98)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-3571 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-3844 (((-767) $) 157 (|has| |#1| (-363)))) (-4353 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 158 (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-767)) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2073 (((-564) $) 67)) (-3836 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3467 ((|#1| $ (-564)) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-2965 ((|#1| $) 105)) (-2672 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3849 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-767)) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1219 |#1|) (-140) (-1045)) (T -1219)) +((-1467 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1219 *3)))) (-4298 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1045)))) (-4342 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) (-5 *2 (-407 (-948 *4))))) (-4342 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) (-5 *2 (-407 (-948 *4))))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) (-3719 (*1 *1 *1 *2) (-2789 (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2534 ((-641 *2) *3))) (|has| *3 (-15 -3719 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) +(-13 (-1237 |t#1| (-564)) (-10 -8 (-15 -1467 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -4298 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -4342 ((-407 (-948 |t#1|)) $ (-564))) (-15 -4342 ((-407 (-948 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $)) (IF (|has| |t#1| (-15 -3719 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -2534 ((-641 (-1170)) |t#1|))) (-15 -3719 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-564))) (-15 -3719 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T)) +((-3264 (((-112) $) 12)) (-3032 (((-3 |#3| "failed") $) 17) (((-3 (-1170) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-1781 ((|#3| $) 14) (((-1170) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL))) +(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-1170) "failed") |#1|)) (-15 -1781 ((-1170) |#1|)) (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1781 (|#3| |#1|)) (-15 -3264 ((-112) |#1|))) (-1221 |#2| |#3|) (-1045) (-1250 |#2|)) (T -1220)) +NIL +(-10 -8 (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -3032 ((-3 (-1170) "failed") |#1|)) (-15 -1781 ((-1170) |#1|)) (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1781 (|#3| |#1|)) (-15 -3264 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1625 ((|#2| $) 231 (-2342 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2534 (((-641 (-1076)) $) 77)) (-3256 (((-1170) $) 106)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-3624 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-1412 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-4072 ((|#2| $) 267)) (-3614 (((-3 |#2| "failed") $) 263)) (-2593 ((|#2| $) 264)) (-3802 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) 19)) (-1986 (((-418 (-1166 $)) (-1166 $)) 240 (-2342 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3453 (($ $) 165 (|has| |#1| (-363)))) (-2657 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2387 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 237 (-2342 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3547 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3779 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-564) $) 249 (-2342 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1467 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-3825 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#2| "failed") $) 270) (((-3 (-564) "failed") $) 260 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 258 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) 242 (-2342 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-1781 ((|#2| $) 271) (((-564) $) 259 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 257 (-2342 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-1170) $) 241 (-2342 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-3884 (($ $) 266) (($ (-564) $) 265)) (-2574 (($ $ $) 160 (|has| |#1| (-363)))) (-2710 (($ $) 63)) (-2750 (((-685 |#2|) (-685 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 219 (-2342 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) 218 (-2342 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-2689 (((-3 $ "failed") $) 33)) (-4342 (((-407 (-948 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-3860 (($) 233 (-2342 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2552 (($ $ $) 159 (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4229 (((-112) $) 167 (|has| |#1| (-363)))) (-2786 (((-112) $) 247 (-2342 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2506 (((-112) $) 76)) (-4223 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 225 (-2342 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 224 (-2342 (|has| |#2| (-882 (-564))) (|has| |#1| (-363))))) (-3717 (((-564) $) 103) (((-564) $ (-564)) 102)) (-1828 (((-112) $) 31)) (-1352 (($ $) 229 (|has| |#1| (-363)))) (-4189 ((|#2| $) 227 (|has| |#1| (-363)))) (-2739 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-1620 (((-3 $ "failed") $) 261 (-2342 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2783 (((-112) $) 248 (-2342 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1762 (($ $ (-917)) 104)) (-4298 (($ (-1 |#1| (-564)) $) 175)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-1492 (((-112) $) 65)) (-2507 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-1501 (($ $ $) 251 (-2342 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2622 (($ $ $) 252 (-2342 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3123 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-3439 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-3202 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2606 (($ (-564) |#2|) 268)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 168 (|has| |#1| (-363)))) (-3719 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-2789 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3346 (($) 262 (-2342 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-3235 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3399 (($ $) 232 (-2342 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-1421 ((|#2| $) 235 (-2342 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-4209 (((-418 (-1166 $)) (-1166 $)) 238 (-2342 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3832 (((-418 (-1166 $)) (-1166 $)) 239 (-2342 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2375 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 161 (|has| |#1| (-363)))) (-2941 (($ $ (-564)) 98)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-3571 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) 212 (-2342 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) 211 (-2342 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) 210 (-2342 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-2342 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-2342 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) 207 (-2342 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3844 (((-767) $) 157 (|has| |#1| (-363)))) (-4353 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106))) (($ $ |#2|) 206 (-2342 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 158 (|has| |#1| (-363)))) (-1343 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 216 (|has| |#1| (-363))) (($ $ (-767)) 87 (-2789 (-2342 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 85 (-2789 (-2342 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) 92 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-767)) 91 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 90 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 89 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-1881 (($ $) 230 (|has| |#1| (-363)))) (-4201 ((|#2| $) 228 (|has| |#1| (-363)))) (-2073 (((-564) $) 67)) (-3836 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3172 (((-225) $) 246 (-2342 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) 245 (-2342 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) 244 (-2342 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) 223 (-2342 (|has| |#2| (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) 222 (-2342 (|has| |#2| (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 236 (-2342 (-2342 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#1| (-363))))) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1170)) 243 (-2342 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3467 ((|#1| $ (-564)) 62)) (-2409 (((-3 $ "failed") $) 51 (-2789 (-2342 (-2789 (|has| |#2| (-145)) (-2342 (|has| $ (-145)) (|has| |#2| (-905)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3179 (((-767)) 28 T CONST)) (-2965 ((|#1| $) 105)) (-4381 ((|#2| $) 234 (-2342 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2672 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3849 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-3598 (($ $) 250 (-2342 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 214 (|has| |#1| (-363))) (($ $ (-767)) 88 (-2789 (-2342 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 86 (-2789 (-2342 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) 96 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-767)) 95 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 94 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 93 (-2789 (-2342 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2977 (((-112) $ $) 254 (-2342 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2953 (((-112) $ $) 255 (-2342 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 253 (-2342 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2942 (((-112) $ $) 256 (-2342 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1221 |#1| |#2|) (-140) (-1045) (-1250 |t#1|)) (T -1221)) +((-2073 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3)) (-5 *2 (-564)))) (-2606 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1045)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1250 *4)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))) (-3884 (*1 *1 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1250 *2)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))) (-3614 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3))))) +(-13 (-1219 |t#1|) (-1034 |t#2|) (-614 |t#2|) (-10 -8 (-15 -2606 ($ (-564) |t#2|)) (-15 -2073 ((-564) $)) (-15 -4072 (|t#2| $)) (-15 -3884 ($ $)) (-15 -3884 ($ (-564) $)) (-15 -2593 (|t#2| $)) (-15 -3614 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-988 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2789 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2789 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -2789 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-713 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 |#2|) |has| |#1| (-363)) ((-713 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-787) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-816) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-844) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-846) -2789 (-12 (|has| |#1| (-363)) (|has| |#2| (-846))) (-12 (|has| |#1| (-363)) (|has| |#2| (-816)))) ((-896 (-1170)) -2789 (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1170)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) ((-882 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-564)))) ((-880 |#2|) |has| |#1| (-363)) ((-905) -12 (|has| |#1| (-363)) (|has| |#2| (-905))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-988 |#2|) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1018) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-1034 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))) ((-1034 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))) ((-1034 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) ((-1034 |#2|) . T) ((-1051 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-363)) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) -12 (|has| |#1| (-363)) (|has| |#2| (-1145))) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1209) |has| |#1| (-363)) ((-1213) |has| |#1| (-363)) ((-1219 |#1|) . T) ((-1237 |#1| #0#) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 79)) (-1625 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 98)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-1412 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-4072 ((|#2| $) 11)) (-3614 (((-3 |#2| "failed") $) 35)) (-2593 ((|#2| $) 36)) (-3802 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-564) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1467 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-3825 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) NIL (-12 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-1781 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-1170) $) NIL (-12 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-3884 (($ $) 65) (($ (-564) $) 28)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2750 (((-685 |#2|) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-2689 (((-3 $ "failed") $) 86)) (-4342 (((-407 (-948 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-3860 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2786 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2506 (((-112) $) 72)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#2| (-882 (-564))) (|has| |#1| (-363))))) (-3717 (((-564) $) 103) (((-564) $ (-564)) 105)) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL (|has| |#1| (-363)))) (-4189 ((|#2| $) 163 (|has| |#1| (-363)))) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1620 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2783 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1762 (($ $ (-917)) 146)) (-4298 (($ (-1 |#1| (-564)) $) 142)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-564)) 20) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-1501 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2622 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3123 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-3439 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2606 (($ (-564) |#2|) 10)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 157 (|has| |#1| (-363)))) (-3719 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 231 (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194)))))) (-3346 (($) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3399 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-1421 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-564)) 136)) (-2526 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1106))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2789 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-2789 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) 151 (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-1881 (($ $) NIL (|has| |#1| (-363)))) (-4201 ((|#2| $) 164 (|has| |#1| (-363)))) (-2073 (((-564) $) 12)) (-3836 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-3172 (((-225) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| |#2| (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) NIL (-12 (|has| |#2| (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2614 (($ $) 134)) (-2322 (((-858) $) 264) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1170)) NIL (-12 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3467 ((|#1| $ (-564)) 83)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3179 (((-767)) 153 T CONST)) (-2965 ((|#1| $) 100)) (-4381 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2672 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3598 (($ $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2389 (($) 13 T CONST)) (-2403 (($) 18 T CONST)) (-3917 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2789 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2789 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-2977 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2953 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2921 (((-112) $ $) 71)) (-2964 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2942 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-3021 (($ $) 225) (($ $ $) 76)) (-3011 (($ $ $) 74)) (** (($ $ (-917)) NIL) (($ $ (-767)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1222 |#1| |#2|) (-1221 |#1| |#2|) (-1045) (-1250 |#1|)) (T -1222)) NIL (-1221 |#1| |#2|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3423 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 10)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1537 (($ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1932 (((-112) $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3220 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-4163 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-1454 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3219 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-3266 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1598 (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1881 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2237 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1170) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-3588 (($ $) NIL) (($ (-564) $) NIL)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-1251 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 (-1251 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1251 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3733 (((-3 $ "failed") $) NIL)) (-3158 (((-407 (-949 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-2900 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-1569 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-2155 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-2949 (((-112) $) NIL)) (-4157 (($ $) NIL (|has| |#1| (-363)))) (-3678 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2619 (((-3 $ "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2607 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2325 (($ $ (-918)) NIL)) (-1477 (($ (-1 |#1| (-564)) $) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-564)) 18) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-1925 (($ $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-3375 (($ $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3277 (($ (-564) (-1251 |#1| |#2| |#3|)) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-3907 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-2884 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3191 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-1818 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-564)) NIL)) (-1403 (((-3 $ "failed") $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1251 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1251 |#1| |#2| |#3|)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1106))) (($ $ (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 26) (($ $ (-768)) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-2644 (($ $) NIL (|has| |#1| (-363)))) (-3693 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1619 (((-564) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2511 (((-536) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1251 |#1| |#2| |#3|)) NIL) (($ (-1255 |#2|)) 24) (($ (-1170)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2742 ((|#1| $ (-564)) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 11)) (-4150 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1849 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1293 (($) 20 T CONST)) (-1300 (($) 15 T CONST)) (-3435 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1762 (((-112) $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1737 (((-112) $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1723 (((-112) $ $) NIL (-4078 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1223)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-2185 (((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112)) 13)) (-2999 (((-418 |#1|) |#1|) 26)) (-3070 (((-418 |#1|) |#1|) 24))) -(((-1224 |#1|) (-10 -7 (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2999 ((-418 |#1|) |#1|)) (-15 -2185 ((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112)))) (-1235 (-564))) (T -1224)) -((-2185 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-2999 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) -(-10 -7 (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2999 ((-418 |#1|) |#1|)) (-15 -2185 ((-2 (|:| |contp| (-564)) (|:| -3840 (-641 (-2 (|:| |irr| |#1|) (|:| -1874 (-564)))))) |#1| (-112)))) -((-2449 (((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 23 (|has| |#1| (-845))) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 17))) -(((-1225 |#1| |#2|) (-10 -7 (-15 -2449 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2449 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1225)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6))))) -(-10 -7 (-15 -2449 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2449 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3825 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2449 (((-1150 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-3264 ((|#1| $) 15)) (-1627 ((|#1| $) 12)) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1639 (((-564) $) 19)) (-3103 ((|#1| $) 18)) (-1771 ((|#1| $) 13)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2377 (((-112) $) 17)) (-3723 (((-1150 |#1|) $) 41 (|has| |#1| (-845))) (((-1150 |#1|) (-641 $)) 40 (|has| |#1| (-845)))) (-2511 (($ |#1|) 26)) (-1831 (($ (-1088 |#1|)) 25) (((-859) $) 37 (|has| |#1| (-1094)))) (-2966 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-1465 (($ $ (-564)) 14)) (-1702 (((-112) $ $) 30 (|has| |#1| (-1094))))) -(((-1226 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -2966 ($ |#1|)) (-15 -3825 ($ |#1|)) (-15 -1831 ($ (-1088 |#1|))) (-15 -2377 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) (-1209)) (T -1226)) -((-2966 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-3825 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209))))) -(-13 (-1087 |#1|) (-10 -8 (-15 -2966 ($ |#1|)) (-15 -3825 ($ |#1|)) (-15 -1831 ($ (-1088 |#1|))) (-15 -2377 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) -((-2449 (((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)) 15))) -(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) (-1170) (-1046) (-1170) (-1046)) (T -1227)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-4 *8 (-1046)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170))))) -(-10 -7 (-15 -2449 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) -((-2203 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2980 ((|#1| |#3|) 13)) (-1648 ((|#3| |#3|) 19))) -(((-1228 |#1| |#2| |#3|) (-10 -7 (-15 -2980 (|#1| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -2203 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-1235 |#2|)) (T -1228)) -((-2203 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2)) (-4 *2 (-1235 *4)))) (-2980 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -2980 (|#1| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -2203 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2150 (((-3 |#2| "failed") |#2| (-768) |#1|) 37)) (-1709 (((-3 |#2| "failed") |#2| (-768)) 38)) (-3917 (((-3 (-2 (|:| -3766 |#2|) (|:| -3777 |#2|)) "failed") |#2|) 51)) (-3369 (((-641 |#2|) |#2|) 53)) (-3599 (((-3 |#2| "failed") |#2| |#2|) 47))) -(((-1229 |#1| |#2|) (-10 -7 (-15 -1709 ((-3 |#2| "failed") |#2| (-768))) (-15 -2150 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -3599 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3917 ((-3 (-2 (|:| -3766 |#2|) (|:| -3777 |#2|)) "failed") |#2|)) (-15 -3369 ((-641 |#2|) |#2|))) (-13 (-556) (-147)) (-1235 |#1|)) (T -1229)) -((-3369 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-3917 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -3766 *3) (|:| -3777 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-3599 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3)))) (-2150 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))) (-1709 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) -(-10 -7 (-15 -1709 ((-3 |#2| "failed") |#2| (-768))) (-15 -2150 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -3599 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3917 ((-3 (-2 (|:| -3766 |#2|) (|:| -3777 |#2|)) "failed") |#2|)) (-15 -3369 ((-641 |#2|) |#2|))) -((-3890 (((-3 (-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) "failed") |#2| |#2|) 29))) -(((-1230 |#1| |#2|) (-10 -7 (-15 -3890 ((-3 (-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) "failed") |#2| |#2|))) (-556) (-1235 |#1|)) (T -1230)) -((-3890 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-1230 *4 *3)) (-4 *3 (-1235 *4))))) -(-10 -7 (-15 -3890 ((-3 (-2 (|:| -4347 |#2|) (|:| -1678 |#2|)) "failed") |#2| |#2|))) -((-3556 ((|#2| |#2| |#2|) 22)) (-3576 ((|#2| |#2| |#2|) 36)) (-3368 ((|#2| |#2| |#2| (-768) (-768)) 44))) -(((-1231 |#1| |#2|) (-10 -7 (-15 -3556 (|#2| |#2| |#2|)) (-15 -3576 (|#2| |#2| |#2|)) (-15 -3368 (|#2| |#2| |#2| (-768) (-768)))) (-1046) (-1235 |#1|)) (T -1231)) -((-3368 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2)) (-4 *2 (-1235 *4)))) (-3576 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))) (-3556 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) -(-10 -7 (-15 -3556 (|#2| |#2| |#2|)) (-15 -3576 (|#2| |#2| |#2|)) (-15 -3368 (|#2| |#2| |#2| (-768) (-768)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3151 (((-1259 |#2|) $ (-768)) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-1730 (($ (-1166 |#2|)) NIL)) (-3040 (((-1166 $) $ (-1076)) NIL) (((-1166 |#2|) $) NIL)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1537 (($ $) NIL (|has| |#2| (-556)))) (-1932 (((-112) $) NIL (|has| |#2| (-556)))) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) NIL (|has| |#2| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2427 (($ $) NIL (|has| |#2| (-452)))) (-3399 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3554 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3048 (($ $ (-768)) NIL)) (-1803 (($ $ (-768)) NIL)) (-2011 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2237 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-1076) $) NIL)) (-1357 (($ $ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-1449 (($ $ $) NIL (|has| |#2| (-363)))) (-3396 (($ $) NIL)) (-4050 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-1424 (($ $ $) NIL (|has| |#2| (-363)))) (-3566 (($ $ $) NIL)) (-3590 (($ $ $) NIL (|has| |#2| (-556)))) (-1330 (((-2 (|:| -2860 |#2|) (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-3031 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-3383 (((-641 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-906)))) (-2055 (($ $ |#2| (-768) $) NIL)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2155 (((-768) $ $) NIL (|has| |#2| (-556)))) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-2619 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-3198 (($ (-1166 |#2|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2325 (($ $ (-768)) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3186 (($ |#2| (-768)) 18) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1076)) NIL) (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL)) (-1826 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-1925 (($ $ $) NIL (|has| |#2| (-847)))) (-3375 (($ $ $) NIL (|has| |#2| (-847)))) (-2546 (($ (-1 (-768) (-768)) $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-3478 (((-1166 |#2|) $) NIL)) (-2169 (((-3 (-1076) "failed") $) NIL)) (-3356 (($ $) NIL)) (-3370 ((|#2| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2723 (((-1152) $) NIL)) (-2436 (((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768)) NIL)) (-2955 (((-3 (-641 $) "failed") $) NIL)) (-2512 (((-3 (-641 $) "failed") $) NIL)) (-4059 (((-3 (-2 (|:| |var| (-1076)) (|:| -1558 (-768))) "failed") $) NIL)) (-3907 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-2884 (($) NIL (|has| |#2| (-1145)) CONST)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 ((|#2| $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2777 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3798 (($ $ (-768) |#2| $) NIL)) (-1469 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3070 (((-418 $) $) NIL (|has| |#2| (-906)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#2| (-363)))) (-1403 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2633 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) NIL) (($ $ (-641 (-1076)) (-641 |#2|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3920 (((-768) $) NIL (|has| |#2| (-363)))) (-1350 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-3318 (((-3 $ "failed") $ (-768)) NIL)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#2| (-363)))) (-3190 (($ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3534 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1619 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2511 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3008 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-1831 (((-859) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) NIL) (($ (-1255 |#1|)) 20) (($ (-407 (-564))) NIL (-4078 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4018 (((-3 $ "failed") $) NIL (-4078 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-556)))) (-1293 (($) NIL T CONST)) (-1300 (($) 14 T CONST)) (-3435 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1762 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1702 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1823 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1232 |#1| |#2|) (-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -3798 ($ $ (-768) |#2| $)))) (-1170) (-1046)) (T -1232)) -((-3798 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) (-4 *3 (-1046))))) -(-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -3798 ($ $ (-768) |#2| $)))) -((-2449 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|))) (-1046) (-1235 |#1|) (-1046) (-1235 |#3|)) (T -1233)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5))))) -(-10 -7 (-15 -2449 (|#4| (-1 |#3| |#1|) |#2|))) -((-3151 (((-1259 |#2|) $ (-768)) 129)) (-3209 (((-641 (-1076)) $) 16)) (-1730 (($ (-1166 |#2|)) 80)) (-2291 (((-768) $) NIL) (((-768) $ (-641 (-1076))) 21)) (-2345 (((-418 (-1166 $)) (-1166 $)) 205)) (-2427 (($ $) 195)) (-3399 (((-418 $) $) 193)) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 95)) (-3048 (($ $ (-768)) 84)) (-1803 (($ $ (-768)) 86)) (-2011 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 146)) (-2347 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL)) (-2237 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1076) $) NIL)) (-3590 (($ $ $) 172)) (-1330 (((-2 (|:| -2860 |#2|) (|:| -4347 $) (|:| -1678 $)) $ $) 174)) (-2155 (((-768) $ $) 190)) (-2619 (((-3 $ "failed") $) 139)) (-3186 (($ |#2| (-768)) NIL) (($ $ (-1076) (-768)) 59) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-1826 (((-768) $) NIL) (((-768) $ (-1076)) 54) (((-641 (-768)) $ (-641 (-1076))) 55)) (-3478 (((-1166 |#2|) $) 72)) (-2169 (((-3 (-1076) "failed") $) 52)) (-2436 (((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768)) 83)) (-3907 (($ $) 218)) (-2884 (($) 134)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 202)) (-1469 (((-418 (-1166 $)) (-1166 $)) 101)) (-2165 (((-418 (-1166 $)) (-1166 $)) 99)) (-3070 (((-418 $) $) 120)) (-2633 (($ $ (-641 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) 39) (($ $ (-641 (-1076)) (-641 |#2|)) 36) (($ $ (-1076) $) 32) (($ $ (-641 (-1076)) (-641 $)) 30)) (-3920 (((-768) $) 208)) (-1350 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 166) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 212)) (-3534 (($ $ (-1076)) 159) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) 157) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 156) (($ $ (-1 |#2| |#2|) $) 151)) (-1619 (((-768) $) NIL) (((-768) $ (-1076)) 17) (((-641 (-768)) $ (-641 (-1076))) 23)) (-3008 ((|#2| $) NIL) (($ $ (-1076)) 141)) (-1900 (((-3 $ "failed") $ $) 182) (((-3 (-407 $) "failed") (-407 $) $) 178)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) 64) (($ (-407 (-564))) NIL) (($ $) NIL))) -(((-1234 |#1| |#2|) (-10 -8 (-15 -1831 (|#1| |#1|)) (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -1350 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3920 ((-768) |#1|)) (-15 -1922 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -1350 (|#2| (-407 |#1|) |#2|)) (-15 -2011 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1330 ((-2 (|:| -2860 |#2|) (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -1900 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2155 ((-768) |#1| |#1|)) (-15 -1350 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1803 (|#1| |#1| (-768))) (-15 -3048 (|#1| |#1| (-768))) (-15 -2436 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| (-768))) (-15 -1730 (|#1| (-1166 |#2|))) (-15 -3478 ((-1166 |#2|) |#1|)) (-15 -3151 ((-1259 |#2|) |#1| (-768))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -1350 (|#1| |#1| |#1|)) (-15 -1350 (|#2| |#1| |#2|)) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2345 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2165 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1469 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3008 (|#1| |#1| (-1076))) (-15 -3209 ((-641 (-1076)) |#1|)) (-15 -2291 ((-768) |#1| (-641 (-1076)))) (-15 -2291 ((-768) |#1|)) (-15 -3186 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -3186 (|#1| |#1| (-1076) (-768))) (-15 -1826 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -1826 ((-768) |#1| (-1076))) (-15 -2169 ((-3 (-1076) "failed") |#1|)) (-15 -1619 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -1619 ((-768) |#1| (-1076))) (-15 -1831 (|#1| (-1076))) (-15 -2347 ((-3 (-1076) "failed") |#1|)) (-15 -2237 ((-1076) |#1|)) (-15 -2633 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2633 (|#1| |#1| (-1076) |#1|)) (-15 -2633 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2633 (|#1| |#1| (-1076) |#2|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1619 ((-768) |#1|)) (-15 -3186 (|#1| |#2| (-768))) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -1826 ((-768) |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -3534 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1076) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1076)))) (-15 -3534 (|#1| |#1| (-1076))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) (-1235 |#2|) (-1046)) (T -1234)) -NIL -(-10 -8 (-15 -1831 (|#1| |#1|)) (-15 -1574 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3399 ((-418 |#1|) |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -2884 (|#1|)) (-15 -2619 ((-3 |#1| "failed") |#1|)) (-15 -1350 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3920 ((-768) |#1|)) (-15 -1922 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -1350 (|#2| (-407 |#1|) |#2|)) (-15 -2011 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1330 ((-2 (|:| -2860 |#2|) (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -1900 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2155 ((-768) |#1| |#1|)) (-15 -1350 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1803 (|#1| |#1| (-768))) (-15 -3048 (|#1| |#1| (-768))) (-15 -2436 ((-2 (|:| -4347 |#1|) (|:| -1678 |#1|)) |#1| (-768))) (-15 -1730 (|#1| (-1166 |#2|))) (-15 -3478 ((-1166 |#2|) |#1|)) (-15 -3151 ((-1259 |#2|) |#1| (-768))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3534 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1170) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1170)))) (-15 -3534 (|#1| |#1| (-1170))) (-15 -3534 (|#1| |#1|)) (-15 -3534 (|#1| |#1| (-768))) (-15 -1350 (|#1| |#1| |#1|)) (-15 -1350 (|#2| |#1| |#2|)) (-15 -3070 ((-418 |#1|) |#1|)) (-15 -2345 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2165 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1469 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2601 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3008 (|#1| |#1| (-1076))) (-15 -3209 ((-641 (-1076)) |#1|)) (-15 -2291 ((-768) |#1| (-641 (-1076)))) (-15 -2291 ((-768) |#1|)) (-15 -3186 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -3186 (|#1| |#1| (-1076) (-768))) (-15 -1826 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -1826 ((-768) |#1| (-1076))) (-15 -2169 ((-3 (-1076) "failed") |#1|)) (-15 -1619 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -1619 ((-768) |#1| (-1076))) (-15 -1831 (|#1| (-1076))) (-15 -2347 ((-3 (-1076) "failed") |#1|)) (-15 -2237 ((-1076) |#1|)) (-15 -2633 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2633 (|#1| |#1| (-1076) |#1|)) (-15 -2633 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2633 (|#1| |#1| (-1076) |#2|)) (-15 -2633 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2633 (|#1| |#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| (-294 |#1|))) (-15 -2633 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1619 ((-768) |#1|)) (-15 -3186 (|#1| |#2| (-768))) (-15 -2347 ((-3 (-564) "failed") |#1|)) (-15 -2237 ((-564) |#1|)) (-15 -2347 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2237 ((-407 (-564)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -2347 ((-3 |#2| "failed") |#1|)) (-15 -1831 (|#1| |#2|)) (-15 -1826 ((-768) |#1|)) (-15 -3008 (|#2| |#1|)) (-15 -3534 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -3534 (|#1| |#1| (-1076) (-768))) (-15 -3534 (|#1| |#1| (-641 (-1076)))) (-15 -3534 (|#1| |#1| (-1076))) (-15 -1831 (|#1| (-564))) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3151 (((-1259 |#1|) $ (-768)) 238)) (-3209 (((-641 (-1076)) $) 110)) (-1730 (($ (-1166 |#1|)) 236)) (-3040 (((-1166 $) $ (-1076)) 125) (((-1166 |#1|) $) 124)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1537 (($ $) 88 (|has| |#1| (-556)))) (-1932 (((-112) $) 90 (|has| |#1| (-556)))) (-2291 (((-768) $) 112) (((-768) $ (-641 (-1076))) 111)) (-4088 (((-3 $ "failed") $ $) 19)) (-2749 (($ $ $) 223 (|has| |#1| (-556)))) (-2345 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2427 (($ $) 98 (|has| |#1| (-452)))) (-3399 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2601 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3554 (((-112) $ $) 208 (|has| |#1| (-363)))) (-3048 (($ $ (-768)) 231)) (-1803 (($ $ (-768)) 230)) (-2011 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) 136)) (-2237 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) (((-1076) $) 137)) (-1357 (($ $ $ (-1076)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-1449 (($ $ $) 212 (|has| |#1| (-363)))) (-3396 (($ $) 154)) (-4050 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2394 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 211 (|has| |#1| (-363)))) (-3566 (($ $ $) 229)) (-3590 (($ $ $) 220 (|has| |#1| (-556)))) (-1330 (((-2 (|:| -2860 |#1|) (|:| -4347 $) (|:| -1678 $)) $ $) 219 (|has| |#1| (-556)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 206 (|has| |#1| (-363)))) (-3031 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1076)) 105 (|has| |#1| (-452)))) (-3383 (((-641 $) $) 109)) (-1420 (((-112) $) 96 (|has| |#1| (-906)))) (-2055 (($ $ |#1| (-768) $) 172)) (-2131 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2155 (((-768) $ $) 224 (|has| |#1| (-556)))) (-2949 (((-112) $) 31)) (-4128 (((-768) $) 169)) (-2619 (((-3 $ "failed") $) 204 (|has| |#1| (-1145)))) (-3198 (($ (-1166 |#1|) (-1076)) 117) (($ (-1166 $) (-1076)) 116)) (-2325 (($ $ (-768)) 235)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 215 (|has| |#1| (-363)))) (-3802 (((-641 $) $) 126)) (-2003 (((-112) $) 152)) (-3186 (($ |#1| (-768)) 153) (($ $ (-1076) (-768)) 119) (($ $ (-641 (-1076)) (-641 (-768))) 118)) (-2282 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $ (-1076)) 120) (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 233)) (-1826 (((-768) $) 170) (((-768) $ (-1076)) 122) (((-641 (-768)) $ (-641 (-1076))) 121)) (-1925 (($ $ $) 79 (|has| |#1| (-847)))) (-3375 (($ $ $) 78 (|has| |#1| (-847)))) (-2546 (($ (-1 (-768) (-768)) $) 171)) (-2449 (($ (-1 |#1| |#1|) $) 151)) (-3478 (((-1166 |#1|) $) 237)) (-2169 (((-3 (-1076) "failed") $) 123)) (-3356 (($ $) 149)) (-3370 ((|#1| $) 148)) (-2740 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2723 (((-1152) $) 9)) (-2436 (((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768)) 232)) (-2955 (((-3 (-641 $) "failed") $) 114)) (-2512 (((-3 (-641 $) "failed") $) 115)) (-4059 (((-3 (-2 (|:| |var| (-1076)) (|:| -1558 (-768))) "failed") $) 113)) (-3907 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-2884 (($) 203 (|has| |#1| (-1145)) CONST)) (-2780 (((-1114) $) 10)) (-3326 (((-112) $) 166)) (-3341 ((|#1| $) 167)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2777 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1469 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-2165 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-3070 (((-418 $) $) 99 (|has| |#1| (-906)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 213 (|has| |#1| (-363)))) (-1403 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 207 (|has| |#1| (-363)))) (-2633 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ (-1076) |#1|) 141) (($ $ (-641 (-1076)) (-641 |#1|)) 140) (($ $ (-1076) $) 139) (($ $ (-641 (-1076)) (-641 $)) 138)) (-3920 (((-768) $) 209 (|has| |#1| (-363)))) (-1350 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-556)))) (-3318 (((-3 $ "failed") $ (-768)) 234)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 210 (|has| |#1| (-363)))) (-3190 (($ $ (-1076)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-3534 (($ $ (-1076)) 42) (($ $ (-641 (-1076))) 41) (($ $ (-1076) (-768)) 40) (($ $ (-641 (-1076)) (-641 (-768))) 39) (($ $ (-768)) 253) (($ $) 251) (($ $ (-1170)) 250 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 249 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 248 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 247 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1619 (((-768) $) 150) (((-768) $ (-1076)) 130) (((-641 (-768)) $ (-641 (-1076))) 129)) (-2511 (((-889 (-379)) $) 82 (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3008 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1076)) 106 (|has| |#1| (-452)))) (-4160 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4348 (|has| $ (-145)) (|has| |#1| (-906))))) (-1900 (((-3 $ "failed") $ $) 222 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-556)))) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ (-1076)) 135) (($ (-407 (-564))) 72 (-4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3227 (((-641 |#1|) $) 168)) (-2742 ((|#1| $ (-768)) 155) (($ $ (-1076) (-768)) 128) (($ $ (-641 (-1076)) (-641 (-768))) 127)) (-4018 (((-3 $ "failed") $) 73 (-4078 (-4348 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2219 (((-768)) 28 T CONST)) (-3154 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3939 (((-112) $ $) 89 (|has| |#1| (-556)))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-1076)) 38) (($ $ (-641 (-1076))) 37) (($ $ (-1076) (-768)) 36) (($ $ (-641 (-1076)) (-641 (-768))) 35) (($ $ (-768)) 254) (($ $) 252) (($ $ (-1170)) 246 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 245 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 244 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 243 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1762 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1823 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1235 |#1|) (-140) (-1046)) (T -1235)) -((-3151 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3)))) (-2325 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-3318 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-2282 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1235 *3)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1235 *4)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-3566 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)))) (-3534 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-1357 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-1350 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-2155 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)) (-5 *2 (-768)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-1900 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-1900 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-3590 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-1330 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -2860 *3) (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1235 *3)))) (-2011 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1235 *3)))) (-1350 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3907 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564))))))) -(-13 (-946 |t#1| (-768) (-1076)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -3151 ((-1259 |t#1|) $ (-768))) (-15 -3478 ((-1166 |t#1|) $)) (-15 -1730 ($ (-1166 |t#1|))) (-15 -2325 ($ $ (-768))) (-15 -3318 ((-3 $ "failed") $ (-768))) (-15 -2282 ((-2 (|:| -4347 $) (|:| -1678 $)) $ $)) (-15 -2436 ((-2 (|:| -4347 $) (|:| -1678 $)) $ (-768))) (-15 -3048 ($ $ (-768))) (-15 -1803 ($ $ (-768))) (-15 -3566 ($ $ $)) (-15 -3534 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3190 (|t#1| $)) (-15 -1357 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -1350 ((-407 $) (-407 $) (-407 $))) (-15 -2155 ((-768) $ $)) (-15 -2749 ($ $ $)) (-15 -1900 ((-3 $ "failed") $ $)) (-15 -1900 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -3590 ($ $ $)) (-15 -1330 ((-2 (|:| -2860 |t#1|) (|:| -4347 $) (|:| -1678 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -2011 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4402) (-15 -1350 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -3907 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4078 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1076)) . T) ((-614 |#1|) . T) ((-614 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4078 (|has| |#1| (-906)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 #2#) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) -12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379)))) ((-883 (-564)) -12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))) ((-946 |#1| #0# #2#) . T) ((-906) |has| |#1| (-906)) ((-917) |has| |#1| (-363)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 |#1|) . T) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1213) |has| |#1| (-906))) -((-3209 (((-641 (-1076)) $) 34)) (-3396 (($ $) 31)) (-3186 (($ |#2| |#3|) NIL) (($ $ (-1076) |#3|) 28) (($ $ (-641 (-1076)) (-641 |#3|)) 27)) (-3356 (($ $) 14)) (-3370 ((|#2| $) 12)) (-1619 ((|#3| $) 10))) -(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -3209 ((-641 (-1076)) |#1|)) (-15 -3186 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -3186 (|#1| |#1| (-1076) |#3|)) (-15 -3396 (|#1| |#1|)) (-15 -3186 (|#1| |#2| |#3|)) (-15 -1619 (|#3| |#1|)) (-15 -3356 (|#1| |#1|)) (-15 -3370 (|#2| |#1|))) (-1237 |#2| |#3|) (-1046) (-789)) (T -1236)) -NIL -(-10 -8 (-15 -3209 ((-641 (-1076)) |#1|)) (-15 -3186 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -3186 (|#1| |#1| (-1076) |#3|)) (-15 -3396 (|#1| |#1|)) (-15 -3186 (|#1| |#2| |#3|)) (-15 -1619 (|#3| |#1|)) (-15 -3356 (|#1| |#1|)) (-15 -3370 (|#2| |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 (-1076)) $) 77)) (-3871 (((-1170) $) 106)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-3220 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-4163 (((-1150 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-3030 (((-112) $) 76)) (-2155 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2949 (((-112) $) 31)) (-2325 (($ $ (-918)) 104)) (-2003 (((-112) $) 65)) (-3186 (($ |#1| |#2|) 64) (($ $ (-1076) |#2|) 79) (($ $ (-641 (-1076)) (-641 |#2|)) 78)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3951 (($ $ |#2|) 98)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2633 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1350 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1106)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1619 ((|#2| $) 67)) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-2742 ((|#1| $ |#2|) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-2513 ((|#1| $) 105)) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2508 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-1237 |#1| |#2|) (-140) (-1046) (-789)) (T -1237)) -((-4163 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1350 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1170)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-2325 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2155 (*1 *2 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-3220 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2508 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1831 (*2 (-1170)))) (-4 *2 (-1046)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3))))) -(-13 (-970 |t#1| |t#2| (-1076)) (-10 -8 (-15 -4163 ((-1150 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1350 (|t#1| $ |t#2|)) (-15 -3871 ((-1170) $)) (-15 -2513 (|t#1| $)) (-15 -2325 ($ $ (-918))) (-15 -2155 (|t#2| $)) (-15 -2155 (|t#2| $ |t#2|)) (-15 -3220 ($ $ |t#2|)) (-15 -3220 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1831 (|t#1| (-1170)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2508 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3951 ($ $ |t#2|)) (IF (|has| |t#2| (-1106)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2633 ((-1150 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1106)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| |#2| (-1076)) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-2427 ((|#2| |#2|) 12)) (-3399 (((-418 |#2|) |#2|) 14)) (-4294 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30))) -(((-1238 |#1| |#2|) (-10 -7 (-15 -3399 ((-418 |#2|) |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -4294 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1235 |#1|) (-556) (-10 -8 (-15 -2777 ($ $ $))))) (T -1238)) -((-4294 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2777 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2777 ($ $ $))))))) (-3399 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2777 ($ $ $)))))))) -(-10 -7 (-15 -3399 ((-418 |#2|) |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -4294 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) -((-2449 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 24))) -(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2449 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1239)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170))))) -(-10 -7 (-15 -2449 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 (-1076)) $) 77)) (-3871 (((-1170) $) 106)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-3357 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 165 (|has| |#1| (-363)))) (-3399 (((-418 $) $) 166 (|has| |#1| (-363)))) (-3083 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3330 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-3384 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) 17 T CONST)) (-1449 (($ $ $) 160 (|has| |#1| (-363)))) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 159 (|has| |#1| (-363)))) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1420 (((-112) $) 167 (|has| |#1| (-363)))) (-3030 (((-112) $) 76)) (-3714 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2003 (((-112) $) 65)) (-3186 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-2358 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2740 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2723 (((-1152) $) 9)) (-3315 (($ $) 168 (|has| |#1| (-363)))) (-3907 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4078 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2777 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3070 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 161 (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) 98)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4326 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) 157 (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 158 (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1619 (((-407 (-564)) $) 67)) (-3395 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-2513 ((|#1| $) 105)) (-3427 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3406 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-1240 |#1|) (-140) (-1046)) (T -1240)) -((-1881 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1046)) (-4 *1 (-1240 *4)))) (-2325 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046)))) (-3907 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3907 (*1 *1 *1 *2) (-4078 (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -3209 ((-641 *2) *3))) (|has| *3 (-15 -3907 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) -(-13 (-1237 |t#1| (-407 (-564))) (-10 -8 (-15 -1881 ($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -2325 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $)) (IF (|has| |t#1| (-15 -3907 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -3209 ((-641 (-1170)) |t#1|))) (-15 -3907 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3907 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T)) -((-1615 (((-112) $) 12)) (-2347 (((-3 |#3| "failed") $) 17)) (-2237 ((|#3| $) 14))) -(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -2237 (|#3| |#1|)) (-15 -1615 ((-112) |#1|))) (-1242 |#2| |#3|) (-1046) (-1219 |#2|)) (T -1241)) -NIL -(-10 -8 (-15 -2347 ((-3 |#3| "failed") |#1|)) (-15 -2237 (|#3| |#1|)) (-15 -1615 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 (-1076)) $) 77)) (-3871 (((-1170) $) 106)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-3357 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 165 (|has| |#1| (-363)))) (-3399 (((-418 $) $) 166 (|has| |#1| (-363)))) (-3083 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3330 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-3384 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#2| "failed") $) 185)) (-2237 ((|#2| $) 186)) (-1449 (($ $ $) 160 (|has| |#1| (-363)))) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-4302 (((-407 (-564)) $) 182)) (-1424 (($ $ $) 159 (|has| |#1| (-363)))) (-3288 (($ (-407 (-564)) |#2|) 183)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1420 (((-112) $) 167 (|has| |#1| (-363)))) (-3030 (((-112) $) 76)) (-3714 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2003 (((-112) $) 65)) (-3186 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-2358 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2740 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3207 ((|#2| $) 181)) (-2975 (((-3 |#2| "failed") $) 179)) (-3277 ((|#2| $) 180)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 168 (|has| |#1| (-363)))) (-3907 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4078 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2777 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3070 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 161 (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) 98)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4326 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) 157 (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 158 (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1619 (((-407 (-564)) $) 67)) (-3395 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-2513 ((|#1| $) 105)) (-3427 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3406 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-1242 |#1| |#2|) (-140) (-1046) (-1219 |t#1|)) (T -1242)) -((-1619 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-3288 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1219 *4)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-2975 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3))))) -(-13 (-1240 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -3288 ($ (-407 (-564)) |t#2|)) (-15 -4302 ((-407 (-564)) $)) (-15 -3207 (|t#2| $)) (-15 -1619 ((-407 (-564)) $)) (-15 -3277 (|t#2| $)) (-15 -2975 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1035 |#2|) . T) ((-1052 #1#) -4078 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T) ((-1240 |#1|) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 104)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-3357 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-3384 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL)) (-2237 ((|#2| $) NIL)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) 85)) (-4302 (((-407 (-564)) $) 13)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3288 (($ (-407 (-564)) |#2|) 11)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-3030 (((-112) $) 74)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) 130) (($ $ (-407 (-564))) 128)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-407 (-564))) 33) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) 125)) (-2358 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3207 ((|#2| $) 12)) (-2975 (((-3 |#2| "failed") $) 44)) (-3277 ((|#2| $) 45)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) 101 (|has| |#1| (-363)))) (-3907 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 151 (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) 122)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1619 (((-407 (-564)) $) 16)) (-3395 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 120)) (-1831 (((-859) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) 107)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) 127 T CONST)) (-2513 ((|#1| $) 106)) (-3427 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 21 T CONST)) (-1300 (($) 17 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1702 (((-112) $ $) 72)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-1808 (($ $) 142) (($ $ $) 78)) (-1797 (($ $ $) 76)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1046) (-1219 |#1|)) (T -1243)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1625 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 10)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3622 (($ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3247 (((-112) $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3624 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-1412 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-4072 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3614 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-2593 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1467 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-1781 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1170) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-3884 (($ $) NIL) (($ (-564) $) NIL)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-1251 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 (-1251 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1251 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-2689 (((-3 $ "failed") $) NIL)) (-4342 (((-407 (-948 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-3860 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2786 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-882 (-564))) (|has| |#1| (-363))))) (-3717 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-1828 (((-112) $) NIL)) (-1352 (($ $) NIL (|has| |#1| (-363)))) (-4189 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1620 (((-3 $ "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2783 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1762 (($ $ (-917)) NIL)) (-4298 (($ (-1 |#1| (-564)) $) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-564)) 18) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-1501 (($ $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2622 (($ $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2606 (($ (-564) (-1251 |#1| |#2| |#3|)) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3719 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-3346 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3399 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-1421 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-564)) NIL)) (-2526 (((-3 $ "failed") $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1251 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1251 |#1| |#2| |#3|)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1106))) (($ $ (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 26) (($ $ (-767)) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-1881 (($ $) NIL (|has| |#1| (-363)))) (-4201 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2073 (((-564) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3172 (((-536) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1251 |#1| |#2| |#3|)) NIL) (($ (-1255 |#2|)) 24) (($ (-1170)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-3467 ((|#1| $ (-564)) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 11)) (-4381 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3598 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2389 (($) 20 T CONST)) (-2403 (($) 15 T CONST)) (-3917 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-2977 (((-112) $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2953 (((-112) $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2942 (((-112) $ $) NIL (-2789 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 22)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1223)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2847 (((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112)) 13)) (-2212 (((-418 |#1|) |#1|) 26)) (-2375 (((-418 |#1|) |#1|) 24))) +(((-1224 |#1|) (-10 -7 (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2212 ((-418 |#1|) |#1|)) (-15 -2847 ((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112)))) (-1235 (-564))) (T -1224)) +((-2847 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-2212 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(-10 -7 (-15 -2375 ((-418 |#1|) |#1|)) (-15 -2212 ((-418 |#1|) |#1|)) (-15 -2847 ((-2 (|:| |contp| (-564)) (|:| -4322 (-641 (-2 (|:| |irr| |#1|) (|:| -3871 (-564)))))) |#1| (-112)))) +((-3123 (((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 23 (|has| |#1| (-844))) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 17))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -3123 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-844)) (-15 -3123 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1225)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-844)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6))))) +(-10 -7 (-15 -3123 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-844)) (-15 -3123 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3596 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3123 (((-1150 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-844)))) (-2839 ((|#1| $) 15)) (-3902 ((|#1| $) 12)) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3913 (((-564) $) 19)) (-1935 ((|#1| $) 18)) (-1539 ((|#1| $) 13)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4206 (((-112) $) 17)) (-2925 (((-1150 |#1|) $) 41 (|has| |#1| (-844))) (((-1150 |#1|) (-641 $)) 40 (|has| |#1| (-844)))) (-3172 (($ |#1|) 26)) (-2322 (($ (-1088 |#1|)) 25) (((-858) $) 37 (|has| |#1| (-1094)))) (-3454 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2709 (($ $ (-564)) 14)) (-2921 (((-112) $ $) 30 (|has| |#1| (-1094))))) +(((-1226 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -3454 ($ |#1|)) (-15 -3596 ($ |#1|)) (-15 -2322 ($ (-1088 |#1|))) (-15 -4206 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) (-1209)) (T -1226)) +((-3454 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-3596 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209))))) +(-13 (-1087 |#1|) (-10 -8 (-15 -3454 ($ |#1|)) (-15 -3596 ($ |#1|)) (-15 -2322 ($ (-1088 |#1|))) (-15 -4206 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) +((-3123 (((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)) 15))) +(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) (-1170) (-1045) (-1170) (-1045)) (T -1227)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170))))) +(-10 -7 (-15 -3123 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) +((-3018 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2135 ((|#1| |#3|) 13)) (-2284 ((|#3| |#3|) 19))) +(((-1228 |#1| |#2| |#3|) (-10 -7 (-15 -2135 (|#1| |#3|)) (-15 -2284 (|#3| |#3|)) (-15 -3018 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-988 |#1|) (-1235 |#2|)) (T -1228)) +((-3018 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2284 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-1228 *3 *4 *2)) (-4 *2 (-1235 *4)))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -2135 (|#1| |#3|)) (-15 -2284 (|#3| |#3|)) (-15 -3018 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3657 (((-3 |#2| "failed") |#2| (-767) |#1|) 37)) (-1635 (((-3 |#2| "failed") |#2| (-767)) 38)) (-3822 (((-3 (-2 (|:| -4237 |#2|) (|:| -4250 |#2|)) "failed") |#2|) 51)) (-2423 (((-641 |#2|) |#2|) 53)) (-3976 (((-3 |#2| "failed") |#2| |#2|) 47))) +(((-1229 |#1| |#2|) (-10 -7 (-15 -1635 ((-3 |#2| "failed") |#2| (-767))) (-15 -3657 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -3976 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3822 ((-3 (-2 (|:| -4237 |#2|) (|:| -4250 |#2|)) "failed") |#2|)) (-15 -2423 ((-641 |#2|) |#2|))) (-13 (-556) (-147)) (-1235 |#1|)) (T -1229)) +((-2423 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-3822 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -4237 *3) (|:| -4250 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-3976 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3)))) (-3657 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))) (-1635 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) +(-10 -7 (-15 -1635 ((-3 |#2| "failed") |#2| (-767))) (-15 -3657 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -3976 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3822 ((-3 (-2 (|:| -4237 |#2|) (|:| -4250 |#2|)) "failed") |#2|)) (-15 -2423 ((-641 |#2|) |#2|))) +((-3544 (((-3 (-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) "failed") |#2| |#2|) 29))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -3544 ((-3 (-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) "failed") |#2| |#2|))) (-556) (-1235 |#1|)) (T -1230)) +((-3544 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-1230 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -3544 ((-3 (-2 (|:| -2666 |#2|) (|:| -2598 |#2|)) "failed") |#2| |#2|))) +((-3568 ((|#2| |#2| |#2|) 22)) (-3760 ((|#2| |#2| |#2|) 36)) (-2408 ((|#2| |#2| |#2| (-767) (-767)) 44))) +(((-1231 |#1| |#2|) (-10 -7 (-15 -3568 (|#2| |#2| |#2|)) (-15 -3760 (|#2| |#2| |#2|)) (-15 -2408 (|#2| |#2| |#2| (-767) (-767)))) (-1045) (-1235 |#1|)) (T -1231)) +((-2408 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1231 *4 *2)) (-4 *2 (-1235 *4)))) (-3760 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))) (-3568 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -3568 (|#2| |#2| |#2|)) (-15 -3760 (|#2| |#2| |#2|)) (-15 -2408 (|#2| |#2| |#2| (-767) (-767)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-4278 (((-1259 |#2|) $ (-767)) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-1837 (($ (-1166 |#2|)) NIL)) (-2340 (((-1166 $) $ (-1076)) NIL) (((-1166 |#2|) $) NIL)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3622 (($ $) NIL (|has| |#2| (-556)))) (-3247 (((-112) $) NIL (|has| |#2| (-556)))) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) NIL (|has| |#2| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3453 (($ $) NIL (|has| |#2| (-452)))) (-2657 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3547 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2687 (($ $ (-767)) NIL)) (-1310 (($ $ (-767)) NIL)) (-1561 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-1781 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-1076) $) NIL)) (-2595 (($ $ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2574 (($ $ $) NIL (|has| |#2| (-363)))) (-2710 (($ $) NIL)) (-2750 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2552 (($ $ $) NIL (|has| |#2| (-363)))) (-3664 (($ $ $) NIL)) (-3906 (($ $ $) NIL (|has| |#2| (-556)))) (-1726 (((-2 (|:| -3139 |#2|) (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-2520 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-2697 (((-641 $) $) NIL)) (-4229 (((-112) $) NIL (|has| |#2| (-905)))) (-2050 (($ $ |#2| (-767) $) NIL)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-3717 (((-767) $ $) NIL (|has| |#2| (-556)))) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-1620 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-2519 (($ (-1166 |#2|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-1762 (($ $ (-767)) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-2507 (($ |#2| (-767)) 18) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1076)) NIL) (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL)) (-3386 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1501 (($ $ $) NIL (|has| |#2| (-846)))) (-2622 (($ $ $) NIL (|has| |#2| (-846)))) (-2168 (($ (-1 (-767) (-767)) $) NIL)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-4049 (((-1166 |#2|) $) NIL)) (-3878 (((-3 (-1076) "failed") $) NIL)) (-2674 (($ $) NIL)) (-2686 ((|#2| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1418 (((-1152) $) NIL)) (-3548 (((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767)) NIL)) (-1888 (((-3 (-641 $) "failed") $) NIL)) (-3081 (((-3 (-641 $) "failed") $) NIL)) (-1580 (((-3 (-2 (|:| |var| (-1076)) (|:| -3866 (-767))) "failed") $) NIL)) (-3719 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-3346 (($) NIL (|has| |#2| (-1145)) CONST)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 ((|#2| $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-3235 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2031 (($ $ (-767) |#2| $) NIL)) (-4209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2375 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#2| (-363)))) (-2526 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3100 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) NIL) (($ $ (-641 (-1076)) (-641 |#2|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3844 (((-767) $) NIL (|has| |#2| (-363)))) (-4353 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-3243 (((-3 $ "failed") $ (-767)) NIL)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#2| (-363)))) (-3392 (($ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1343 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2073 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-3172 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2290 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2923 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-2322 (((-858) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) NIL) (($ (-1255 |#1|)) 20) (($ (-407 (-564))) NIL (-2789 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2409 (((-3 $ "failed") $) NIL (-2789 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-4024 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2389 (($) NIL T CONST)) (-2403 (($) 14 T CONST)) (-3917 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2921 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1232 |#1| |#2|) (-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2031 ($ $ (-767) |#2| $)))) (-1170) (-1045)) (T -1232)) +((-2031 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) (-4 *3 (-1045))))) +(-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2031 ($ $ (-767) |#2| $)))) +((-3123 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-1235 |#1|) (-1045) (-1235 |#3|)) (T -1233)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5))))) +(-10 -7 (-15 -3123 (|#4| (-1 |#3| |#1|) |#2|))) +((-4278 (((-1259 |#2|) $ (-767)) 129)) (-2534 (((-641 (-1076)) $) 16)) (-1837 (($ (-1166 |#2|)) 80)) (-2669 (((-767) $) NIL) (((-767) $ (-641 (-1076))) 21)) (-1986 (((-418 (-1166 $)) (-1166 $)) 205)) (-3453 (($ $) 195)) (-2657 (((-418 $) $) 193)) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 95)) (-2687 (($ $ (-767)) 84)) (-1310 (($ $ (-767)) 86)) (-1561 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 146)) (-3032 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL)) (-1781 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1076) $) NIL)) (-3906 (($ $ $) 172)) (-1726 (((-2 (|:| -3139 |#2|) (|:| -2666 $) (|:| -2598 $)) $ $) 174)) (-3717 (((-767) $ $) 190)) (-1620 (((-3 $ "failed") $) 139)) (-2507 (($ |#2| (-767)) NIL) (($ $ (-1076) (-767)) 59) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-3386 (((-767) $) NIL) (((-767) $ (-1076)) 54) (((-641 (-767)) $ (-641 (-1076))) 55)) (-4049 (((-1166 |#2|) $) 72)) (-3878 (((-3 (-1076) "failed") $) 52)) (-3548 (((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767)) 83)) (-3719 (($ $) 218)) (-3346 (($) 134)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 202)) (-4209 (((-418 (-1166 $)) (-1166 $)) 101)) (-3832 (((-418 (-1166 $)) (-1166 $)) 99)) (-2375 (((-418 $) $) 120)) (-3100 (($ $ (-641 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) 39) (($ $ (-641 (-1076)) (-641 |#2|)) 36) (($ $ (-1076) $) 32) (($ $ (-641 (-1076)) (-641 $)) 30)) (-3844 (((-767) $) 208)) (-4353 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 166) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 212)) (-1343 (($ $ (-1076)) 159) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) 157) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 156) (($ $ (-1 |#2| |#2|) $) 151)) (-2073 (((-767) $) NIL) (((-767) $ (-1076)) 17) (((-641 (-767)) $ (-641 (-1076))) 23)) (-2290 ((|#2| $) NIL) (($ $ (-1076)) 141)) (-2923 (((-3 $ "failed") $ $) 182) (((-3 (-407 $) "failed") (-407 $) $) 178)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) 64) (($ (-407 (-564))) NIL) (($ $) NIL))) +(((-1234 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| |#1|)) (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -4353 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3844 ((-767) |#1|)) (-15 -3153 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -4353 (|#2| (-407 |#1|) |#2|)) (-15 -1561 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1726 ((-2 (|:| -3139 |#2|) (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3906 (|#1| |#1| |#1|)) (-15 -2923 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3717 ((-767) |#1| |#1|)) (-15 -4353 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1310 (|#1| |#1| (-767))) (-15 -2687 (|#1| |#1| (-767))) (-15 -3548 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| (-767))) (-15 -1837 (|#1| (-1166 |#2|))) (-15 -4049 ((-1166 |#2|) |#1|)) (-15 -4278 ((-1259 |#2|) |#1| (-767))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#2| |#1| |#2|)) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -1986 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3832 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2290 (|#1| |#1| (-1076))) (-15 -2534 ((-641 (-1076)) |#1|)) (-15 -2669 ((-767) |#1| (-641 (-1076)))) (-15 -2669 ((-767) |#1|)) (-15 -2507 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -2507 (|#1| |#1| (-1076) (-767))) (-15 -3386 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -3386 ((-767) |#1| (-1076))) (-15 -3878 ((-3 (-1076) "failed") |#1|)) (-15 -2073 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -2073 ((-767) |#1| (-1076))) (-15 -2322 (|#1| (-1076))) (-15 -3032 ((-3 (-1076) "failed") |#1|)) (-15 -1781 ((-1076) |#1|)) (-15 -3100 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -3100 (|#1| |#1| (-1076) |#1|)) (-15 -3100 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -3100 (|#1| |#1| (-1076) |#2|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2073 ((-767) |#1|)) (-15 -2507 (|#1| |#2| (-767))) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3386 ((-767) |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -1343 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1076) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1076)))) (-15 -1343 (|#1| |#1| (-1076))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) (-1235 |#2|) (-1045)) (T -1234)) +NIL +(-10 -8 (-15 -2322 (|#1| |#1|)) (-15 -2837 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2657 ((-418 |#1|) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -3346 (|#1|)) (-15 -1620 ((-3 |#1| "failed") |#1|)) (-15 -4353 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3844 ((-767) |#1|)) (-15 -3153 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -4353 (|#2| (-407 |#1|) |#2|)) (-15 -1561 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1726 ((-2 (|:| -3139 |#2|) (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| |#1|)) (-15 -3906 (|#1| |#1| |#1|)) (-15 -2923 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3717 ((-767) |#1| |#1|)) (-15 -4353 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1310 (|#1| |#1| (-767))) (-15 -2687 (|#1| |#1| (-767))) (-15 -3548 ((-2 (|:| -2666 |#1|) (|:| -2598 |#1|)) |#1| (-767))) (-15 -1837 (|#1| (-1166 |#2|))) (-15 -4049 ((-1166 |#2|) |#1|)) (-15 -4278 ((-1259 |#2|) |#1| (-767))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1343 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1170) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1170)))) (-15 -1343 (|#1| |#1| (-1170))) (-15 -1343 (|#1| |#1|)) (-15 -1343 (|#1| |#1| (-767))) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#2| |#1| |#2|)) (-15 -2375 ((-418 |#1|) |#1|)) (-15 -1986 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3832 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2732 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2290 (|#1| |#1| (-1076))) (-15 -2534 ((-641 (-1076)) |#1|)) (-15 -2669 ((-767) |#1| (-641 (-1076)))) (-15 -2669 ((-767) |#1|)) (-15 -2507 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -2507 (|#1| |#1| (-1076) (-767))) (-15 -3386 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -3386 ((-767) |#1| (-1076))) (-15 -3878 ((-3 (-1076) "failed") |#1|)) (-15 -2073 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -2073 ((-767) |#1| (-1076))) (-15 -2322 (|#1| (-1076))) (-15 -3032 ((-3 (-1076) "failed") |#1|)) (-15 -1781 ((-1076) |#1|)) (-15 -3100 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -3100 (|#1| |#1| (-1076) |#1|)) (-15 -3100 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -3100 (|#1| |#1| (-1076) |#2|)) (-15 -3100 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3100 (|#1| |#1| |#1| |#1|)) (-15 -3100 (|#1| |#1| (-294 |#1|))) (-15 -3100 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2073 ((-767) |#1|)) (-15 -2507 (|#1| |#2| (-767))) (-15 -3032 ((-3 (-564) "failed") |#1|)) (-15 -1781 ((-564) |#1|)) (-15 -3032 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1781 ((-407 (-564)) |#1|)) (-15 -1781 (|#2| |#1|)) (-15 -3032 ((-3 |#2| "failed") |#1|)) (-15 -2322 (|#1| |#2|)) (-15 -3386 ((-767) |#1|)) (-15 -2290 (|#2| |#1|)) (-15 -1343 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -1343 (|#1| |#1| (-1076) (-767))) (-15 -1343 (|#1| |#1| (-641 (-1076)))) (-15 -1343 (|#1| |#1| (-1076))) (-15 -2322 (|#1| (-564))) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-4278 (((-1259 |#1|) $ (-767)) 238)) (-2534 (((-641 (-1076)) $) 110)) (-1837 (($ (-1166 |#1|)) 236)) (-2340 (((-1166 $) $ (-1076)) 125) (((-1166 |#1|) $) 124)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-3622 (($ $) 88 (|has| |#1| (-556)))) (-3247 (((-112) $) 90 (|has| |#1| (-556)))) (-2669 (((-767) $) 112) (((-767) $ (-641 (-1076))) 111)) (-1862 (((-3 $ "failed") $ $) 19)) (-3545 (($ $ $) 223 (|has| |#1| (-556)))) (-1986 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-905)))) (-3453 (($ $) 98 (|has| |#1| (-452)))) (-2657 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2732 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-905)))) (-3547 (((-112) $ $) 208 (|has| |#1| (-363)))) (-2687 (($ $ (-767)) 231)) (-1310 (($ $ (-767)) 230)) (-1561 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) 136)) (-1781 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1034 (-564)))) (((-1076) $) 137)) (-2595 (($ $ $ (-1076)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-2574 (($ $ $) 212 (|has| |#1| (-363)))) (-2710 (($ $) 154)) (-2750 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -4379 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 211 (|has| |#1| (-363)))) (-3664 (($ $ $) 229)) (-3906 (($ $ $) 220 (|has| |#1| (-556)))) (-1726 (((-2 (|:| -3139 |#1|) (|:| -2666 $) (|:| -2598 $)) $ $) 219 (|has| |#1| (-556)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 206 (|has| |#1| (-363)))) (-2520 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1076)) 105 (|has| |#1| (-452)))) (-2697 (((-641 $) $) 109)) (-4229 (((-112) $) 96 (|has| |#1| (-905)))) (-2050 (($ $ |#1| (-767) $) 172)) (-3466 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 83 (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3717 (((-767) $ $) 224 (|has| |#1| (-556)))) (-1828 (((-112) $) 31)) (-4137 (((-767) $) 169)) (-1620 (((-3 $ "failed") $) 204 (|has| |#1| (-1145)))) (-2519 (($ (-1166 |#1|) (-1076)) 117) (($ (-1166 $) (-1076)) 116)) (-1762 (($ $ (-767)) 235)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 215 (|has| |#1| (-363)))) (-2071 (((-641 $) $) 126)) (-1492 (((-112) $) 152)) (-2507 (($ |#1| (-767)) 153) (($ $ (-1076) (-767)) 119) (($ $ (-641 (-1076)) (-641 (-767))) 118)) (-2565 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $ (-1076)) 120) (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 233)) (-3386 (((-767) $) 170) (((-767) $ (-1076)) 122) (((-641 (-767)) $ (-641 (-1076))) 121)) (-1501 (($ $ $) 79 (|has| |#1| (-846)))) (-2622 (($ $ $) 78 (|has| |#1| (-846)))) (-2168 (($ (-1 (-767) (-767)) $) 171)) (-3123 (($ (-1 |#1| |#1|) $) 151)) (-4049 (((-1166 |#1|) $) 237)) (-3878 (((-3 (-1076) "failed") $) 123)) (-2674 (($ $) 149)) (-2686 ((|#1| $) 148)) (-3202 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1418 (((-1152) $) 9)) (-3548 (((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767)) 232)) (-1888 (((-3 (-641 $) "failed") $) 114)) (-3081 (((-3 (-641 $) "failed") $) 115)) (-1580 (((-3 (-2 (|:| |var| (-1076)) (|:| -3866 (-767))) "failed") $) 113)) (-3719 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3346 (($) 203 (|has| |#1| (-1145)) CONST)) (-3840 (((-1114) $) 10)) (-2649 (((-112) $) 166)) (-2662 ((|#1| $) 167)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-3235 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-4209 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-905)))) (-3832 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-905)))) (-2375 (((-418 $) $) 99 (|has| |#1| (-905)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 213 (|has| |#1| (-363)))) (-2526 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 207 (|has| |#1| (-363)))) (-3100 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ (-1076) |#1|) 141) (($ $ (-641 (-1076)) (-641 |#1|)) 140) (($ $ (-1076) $) 139) (($ $ (-641 (-1076)) (-641 $)) 138)) (-3844 (((-767) $) 209 (|has| |#1| (-363)))) (-4353 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-556)))) (-3243 (((-3 $ "failed") $ (-767)) 234)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 210 (|has| |#1| (-363)))) (-3392 (($ $ (-1076)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-1343 (($ $ (-1076)) 42) (($ $ (-641 (-1076))) 41) (($ $ (-1076) (-767)) 40) (($ $ (-641 (-1076)) (-641 (-767))) 39) (($ $ (-767)) 253) (($ $) 251) (($ $ (-1170)) 250 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 249 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 248 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 247 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2073 (((-767) $) 150) (((-767) $ (-1076)) 130) (((-641 (-767)) $ (-641 (-1076))) 129)) (-3172 (((-888 (-379)) $) 82 (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 81 (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 80 (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2290 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1076)) 106 (|has| |#1| (-452)))) (-1381 (((-3 (-1259 $) "failed") (-685 $)) 104 (-2342 (|has| $ (-145)) (|has| |#1| (-905))))) (-2923 (((-3 $ "failed") $ $) 222 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-556)))) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ (-1076)) 135) (($ (-407 (-564))) 72 (-2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3680 (((-641 |#1|) $) 168)) (-3467 ((|#1| $ (-767)) 155) (($ $ (-1076) (-767)) 128) (($ $ (-641 (-1076)) (-641 (-767))) 127)) (-2409 (((-3 $ "failed") $) 73 (-2789 (-2342 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3179 (((-767)) 28 T CONST)) (-4310 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-4024 (((-112) $ $) 89 (|has| |#1| (-556)))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-1076)) 38) (($ $ (-641 (-1076))) 37) (($ $ (-1076) (-767)) 36) (($ $ (-641 (-1076)) (-641 (-767))) 35) (($ $ (-767)) 254) (($ $) 252) (($ $ (-1170)) 246 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 245 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 244 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 243 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2977 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 6)) (-2964 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3034 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1235 |#1|) (-140) (-1045)) (T -1235)) +((-4278 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1235 *4)) (-4 *4 (-1045)) (-5 *2 (-1259 *4)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-5 *2 (-1166 *3)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1045)) (-4 *1 (-1235 *3)))) (-1762 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-3243 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-2565 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1235 *3)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1235 *4)))) (-2687 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-3664 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)))) (-1343 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-2595 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-4353 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)))) (-3717 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)) (-5 *2 (-767)))) (-3545 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-2923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-2923 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)))) (-3906 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-1726 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3139 *3) (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1235 *3)))) (-1561 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1235 *3)))) (-4353 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564))))))) +(-13 (-945 |t#1| (-767) (-1076)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4278 ((-1259 |t#1|) $ (-767))) (-15 -4049 ((-1166 |t#1|) $)) (-15 -1837 ($ (-1166 |t#1|))) (-15 -1762 ($ $ (-767))) (-15 -3243 ((-3 $ "failed") $ (-767))) (-15 -2565 ((-2 (|:| -2666 $) (|:| -2598 $)) $ $)) (-15 -3548 ((-2 (|:| -2666 $) (|:| -2598 $)) $ (-767))) (-15 -2687 ($ $ (-767))) (-15 -1310 ($ $ (-767))) (-15 -3664 ($ $ $)) (-15 -1343 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3392 (|t#1| $)) (-15 -2595 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4353 ((-407 $) (-407 $) (-407 $))) (-15 -3717 ((-767) $ $)) (-15 -3545 ($ $ $)) (-15 -2923 ((-3 $ "failed") $ $)) (-15 -2923 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -3906 ($ $ $)) (-15 -1726 ((-2 (|:| -3139 |t#1|) (|:| -2666 $) (|:| -2598 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -1561 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4402) (-15 -4353 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -3719 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2789 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1076)) . T) ((-614 |#1|) . T) ((-614 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2789 (|has| |#1| (-905)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 #2#) . T) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-882 (-379)) -12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379)))) ((-882 (-564)) -12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))) ((-945 |#1| #0# #2#) . T) ((-905) |has| |#1| (-905)) ((-916) |has| |#1| (-363)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #2#) . T) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1213) |has| |#1| (-905))) +((-2534 (((-641 (-1076)) $) 34)) (-2710 (($ $) 31)) (-2507 (($ |#2| |#3|) NIL) (($ $ (-1076) |#3|) 28) (($ $ (-641 (-1076)) (-641 |#3|)) 27)) (-2674 (($ $) 14)) (-2686 ((|#2| $) 12)) (-2073 ((|#3| $) 10))) +(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -2534 ((-641 (-1076)) |#1|)) (-15 -2507 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -2507 (|#1| |#1| (-1076) |#3|)) (-15 -2710 (|#1| |#1|)) (-15 -2507 (|#1| |#2| |#3|)) (-15 -2073 (|#3| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -2686 (|#2| |#1|))) (-1237 |#2| |#3|) (-1045) (-788)) (T -1236)) +NIL +(-10 -8 (-15 -2534 ((-641 (-1076)) |#1|)) (-15 -2507 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -2507 (|#1| |#1| (-1076) |#3|)) (-15 -2710 (|#1| |#1|)) (-15 -2507 (|#1| |#2| |#3|)) (-15 -2073 (|#3| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -2686 (|#2| |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 (-1076)) $) 77)) (-3256 (((-1170) $) 106)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-3624 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-1412 (((-1150 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2506 (((-112) $) 76)) (-3717 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-1828 (((-112) $) 31)) (-1762 (($ $ (-917)) 104)) (-1492 (((-112) $) 65)) (-2507 (($ |#1| |#2|) 64) (($ $ (-1076) |#2|) 79) (($ $ (-641 (-1076)) (-641 |#2|)) 78)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2941 (($ $ |#2|) 98)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3100 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4353 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1106)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-767)) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2073 ((|#2| $) 67)) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3467 ((|#1| $ |#2|) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-2965 ((|#1| $) 105)) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3564 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-767)) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1237 |#1| |#2|) (-140) (-1045) (-788)) (T -1237)) +((-1412 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4353 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1170)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1762 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3717 (*1 *2 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3624 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3624 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2322 (*2 (-1170)))) (-4 *2 (-1045)))) (-2941 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3100 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3))))) +(-13 (-969 |t#1| |t#2| (-1076)) (-10 -8 (-15 -1412 ((-1150 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4353 (|t#1| $ |t#2|)) (-15 -3256 ((-1170) $)) (-15 -2965 (|t#1| $)) (-15 -1762 ($ $ (-917))) (-15 -3717 (|t#2| $)) (-15 -3717 (|t#2| $ |t#2|)) (-15 -3624 ($ $ |t#2|)) (-15 -3624 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2322 (|t#1| (-1170)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3564 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2941 ($ $ |t#2|)) (IF (|has| |t#2| (-1106)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3100 ((-1150 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1106)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| |#2| (-1076)) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-3453 ((|#2| |#2|) 12)) (-2657 (((-418 |#2|) |#2|) 14)) (-3351 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30))) +(((-1238 |#1| |#2|) (-10 -7 (-15 -2657 ((-418 |#2|) |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3351 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1235 |#1|) (-556) (-10 -8 (-15 -3235 ($ $ $))))) (T -1238)) +((-3351 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -3235 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -3235 ($ $ $))))))) (-2657 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -3235 ($ $ $)))))))) +(-10 -7 (-15 -2657 ((-418 |#2|) |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3351 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) +((-3123 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 24))) +(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3123 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1045) (-1045) (-1170) (-1170) |#1| |#2|) (T -1239)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170))))) +(-10 -7 (-15 -3123 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 (-1076)) $) 77)) (-3256 (((-1170) $) 106)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-3802 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 165 (|has| |#1| (-363)))) (-2657 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2387 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3779 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-3825 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) 17 T CONST)) (-2574 (($ $ $) 160 (|has| |#1| (-363)))) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 159 (|has| |#1| (-363)))) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4229 (((-112) $) 167 (|has| |#1| (-363)))) (-2506 (((-112) $) 76)) (-4223 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) 104) (($ $ (-407 (-564))) 173)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-1492 (((-112) $) 65)) (-2507 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-3439 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-3202 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1418 (((-1152) $) 9)) (-2639 (($ $) 168 (|has| |#1| (-363)))) (-3719 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-2789 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-3235 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2375 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 161 (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) 98)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-3571 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) 157 (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 158 (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2073 (((-407 (-564)) $) 67)) (-3836 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-2965 ((|#1| $) 105)) (-2672 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3849 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1240 |#1|) (-140) (-1045)) (T -1240)) +((-1467 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1045)) (-4 *1 (-1240 *4)))) (-1762 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1045)))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) (-3719 (*1 *1 *1 *2) (-2789 (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2534 ((-641 *2) *3))) (|has| *3 (-15 -3719 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) +(-13 (-1237 |t#1| (-407 (-564))) (-10 -8 (-15 -1467 ($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -1762 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $)) (IF (|has| |t#1| (-15 -3719 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -2534 ((-641 (-1170)) |t#1|))) (-15 -3719 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-564))) (-15 -3719 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T)) +((-3264 (((-112) $) 12)) (-3032 (((-3 |#3| "failed") $) 17)) (-1781 ((|#3| $) 14))) +(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1781 (|#3| |#1|)) (-15 -3264 ((-112) |#1|))) (-1242 |#2| |#3|) (-1045) (-1219 |#2|)) (T -1241)) +NIL +(-10 -8 (-15 -3032 ((-3 |#3| "failed") |#1|)) (-15 -1781 (|#3| |#1|)) (-15 -3264 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 (-1076)) $) 77)) (-3256 (((-1170) $) 106)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-3802 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 165 (|has| |#1| (-363)))) (-2657 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2387 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3779 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-3825 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#2| "failed") $) 185)) (-1781 ((|#2| $) 186)) (-2574 (($ $ $) 160 (|has| |#1| (-363)))) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-3425 (((-407 (-564)) $) 182)) (-2552 (($ $ $) 159 (|has| |#1| (-363)))) (-2618 (($ (-407 (-564)) |#2|) 183)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4229 (((-112) $) 167 (|has| |#1| (-363)))) (-2506 (((-112) $) 76)) (-4223 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) 104) (($ $ (-407 (-564))) 173)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-1492 (((-112) $) 65)) (-2507 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-3439 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-3202 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3517 ((|#2| $) 181)) (-2088 (((-3 |#2| "failed") $) 179)) (-2606 ((|#2| $) 180)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 168 (|has| |#1| (-363)))) (-3719 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-2789 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-3235 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2375 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 161 (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) 98)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-3571 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) 157 (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 158 (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2073 (((-407 (-564)) $) 67)) (-3836 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-2965 ((|#1| $) 105)) (-2672 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3849 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1242 |#1| |#2|) (-140) (-1045) (-1219 |t#1|)) (T -1242)) +((-2073 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-2618 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1045)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1219 *4)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))) (-2088 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3))))) +(-13 (-1240 |t#1|) (-1034 |t#2|) (-614 |t#2|) (-10 -8 (-15 -2618 ($ (-407 (-564)) |t#2|)) (-15 -3425 ((-407 (-564)) $)) (-15 -3517 (|t#2| $)) (-15 -2073 ((-407 (-564)) $)) (-15 -2606 (|t#2| $)) (-15 -2088 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1034 |#2|) . T) ((-1051 #1#) -2789 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T) ((-1240 |#1|) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 104)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-3802 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-3825 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL)) (-1781 ((|#2| $) NIL)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) 85)) (-3425 (((-407 (-564)) $) 13)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-2618 (($ (-407 (-564)) |#2|) 11)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2506 (((-112) $) 74)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) 130) (($ $ (-407 (-564))) 128)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-407 (-564))) 33) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) 125)) (-3439 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3517 ((|#2| $) 12)) (-2088 (((-3 |#2| "failed") $) 44)) (-2606 ((|#2| $) 45)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) 101 (|has| |#1| (-363)))) (-3719 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 151 (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194)))))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) 122)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2073 (((-407 (-564)) $) 16)) (-3836 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 120)) (-2322 (((-858) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) 107)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) 127 T CONST)) (-2965 ((|#1| $) 106)) (-2672 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 21 T CONST)) (-2403 (($) 17 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2921 (((-112) $ $) 72)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-3021 (($ $) 142) (($ $ $) 78)) (-3011 (($ $ $) 76)) (** (($ $ (-917)) NIL) (($ $ (-767)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1045) (-1219 |#1|)) (T -1243)) NIL (-1242 |#1| |#2|) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 11)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) NIL (|has| |#1| (-556)))) (-3220 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4163 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-2427 (($ $) NIL (|has| |#1| (-363)))) (-3399 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3554 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 22)) (-2237 (((-1223 |#1| |#2| |#3|) $) NIL) (((-1251 |#1| |#2| |#3|) $) NIL)) (-1449 (($ $ $) NIL (|has| |#1| (-363)))) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-4302 (((-407 (-564)) $) 69)) (-1424 (($ $ $) NIL (|has| |#1| (-363)))) (-3288 (($ (-407 (-564)) (-1223 |#1| |#2| |#3|)) NIL)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1420 (((-112) $) NIL (|has| |#1| (-363)))) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2949 (((-112) $) NIL)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-407 (-564))) 30) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2740 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3207 (((-1223 |#1| |#2| |#3|) $) 72)) (-2975 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) NIL)) (-3277 (((-1223 |#1| |#2| |#3|) $) NIL)) (-2723 (((-1152) $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-363)))) (-3907 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2777 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3070 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3380 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) NIL (|has| |#1| (-363)))) (-3951 (($ $ (-407 (-564))) NIL)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2106 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3920 (((-768) $) NIL (|has| |#1| (-363)))) (-1350 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) NIL (|has| |#1| (-363)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-1619 (((-407 (-564)) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) NIL)) (-1831 (((-859) $) 108) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1223 |#1| |#2| |#3|)) 16) (($ (-1251 |#1| |#2| |#3|)) 17) (($ (-1255 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2742 ((|#1| $ (-407 (-564))) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 12)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 32 T CONST)) (-1300 (($) 26 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 34)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1244)) -((-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3534 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 37)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-1537 (($ $) NIL)) (-1932 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 (-564) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 22)) (-2237 (((-564) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-3396 (($ $) 41)) (-3733 (((-3 $ "failed") $) 27)) (-3031 (($ $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-2055 (($ $ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) 11)) (-2003 (((-112) $) NIL)) (-3186 (($ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-1826 (((-319 |#2| |#3| |#4|) $) NIL)) (-2546 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2449 (($ (-1 (-1244 |#2| |#3| |#4|) (-1244 |#2| |#3| |#4|)) $) NIL)) (-3062 (((-3 (-840 |#2|) "failed") $) 90)) (-3356 (($ $) NIL)) (-3370 (((-1244 |#2| |#3| |#4|) $) 20)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3326 (((-112) $) NIL)) (-3341 (((-1244 |#2| |#3| |#4|) $) NIL)) (-1403 (((-3 $ "failed") $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-1910 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $) 72)) (-1619 (((-319 |#2| |#3| |#4|) $) 17)) (-3008 (((-1244 |#2| |#3| |#4|) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ (-1244 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-4078 (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))))) (-3227 (((-641 (-1244 |#2| |#3| |#4|)) $) NIL)) (-2742 (((-1244 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-4018 (((-3 $ "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-145)))) (-2219 (((-768)) NIL T CONST)) (-3154 (($ $ $ (-768)) NIL (|has| (-1244 |#2| |#3| |#4|) (-172)))) (-3939 (((-112) $ $) NIL)) (-1293 (($) 78 T CONST)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1244 |#2| |#3| |#4|)) NIL) (($ (-1244 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))))) -(((-1245 |#1| |#2| |#3| |#4|) (-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -3062 ((-3 (-840 |#2|) "failed") $)) (-15 -1910 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -1245)) -((-3062 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))) (-1910 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1152)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4)))) -(-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -3062 ((-3 (-840 |#2|) "failed") $)) (-15 -1910 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) -((-1522 ((|#2| $) 33)) (-3149 ((|#2| $) 18)) (-4045 (($ $) 51)) (-3459 (($ $ (-564)) 83)) (-4010 (((-112) $ (-768)) 45)) (-2373 ((|#2| $ |#2|) 81)) (-3881 ((|#2| $ |#2|) 77)) (-1970 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 70) (($ $ "rest" $) 74) ((|#2| $ "last" |#2|) 72)) (-1801 (($ $ (-641 $)) 80)) (-3137 ((|#2| $) 17)) (-3314 (($ $) NIL) (($ $ (-768)) 58)) (-3128 (((-641 $) $) 30)) (-4376 (((-112) $ $) 68)) (-2324 (((-112) $ (-768)) 44)) (-1713 (((-112) $ (-768)) 42)) (-2033 (((-112) $) 32)) (-2598 ((|#2| $) 24) (($ $ (-768)) 63)) (-1350 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1899 (((-112) $) 22)) (-2034 (($ $) 54)) (-3292 (($ $) 84)) (-1724 (((-768) $) 57)) (-3910 (($ $) 56)) (-3043 (($ $ $) 76) (($ |#2| $) NIL)) (-2926 (((-641 $) $) 31)) (-1702 (((-112) $ $) 66)) (-2828 (((-768) $) 50))) -(((-1246 |#1| |#2|) (-10 -8 (-15 -3459 (|#1| |#1| (-564))) (-15 -1970 (|#2| |#1| "last" |#2|)) (-15 -3881 (|#2| |#1| |#2|)) (-15 -1970 (|#1| |#1| "rest" |#1|)) (-15 -1970 (|#2| |#1| "first" |#2|)) (-15 -3292 (|#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1724 ((-768) |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3149 (|#2| |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -2598 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "last")) (-15 -2598 (|#2| |#1|)) (-15 -3314 (|#1| |#1| (-768))) (-15 -1350 (|#1| |#1| "rest")) (-15 -3314 (|#1| |#1|)) (-15 -1350 (|#2| |#1| "first")) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -2373 (|#2| |#1| |#2|)) (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -1801 (|#1| |#1| (-641 |#1|))) (-15 -4376 ((-112) |#1| |#1|)) (-15 -1899 ((-112) |#1|)) (-15 -1350 (|#2| |#1| "value")) (-15 -1522 (|#2| |#1|)) (-15 -2033 ((-112) |#1|)) (-15 -3128 ((-641 |#1|) |#1|)) (-15 -2926 ((-641 |#1|) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768)))) (-1247 |#2|) (-1209)) (T -1246)) -NIL -(-10 -8 (-15 -3459 (|#1| |#1| (-564))) (-15 -1970 (|#2| |#1| "last" |#2|)) (-15 -3881 (|#2| |#1| |#2|)) (-15 -1970 (|#1| |#1| "rest" |#1|)) (-15 -1970 (|#2| |#1| "first" |#2|)) (-15 -3292 (|#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1724 ((-768) |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3149 (|#2| |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -2598 (|#1| |#1| (-768))) (-15 -1350 (|#2| |#1| "last")) (-15 -2598 (|#2| |#1|)) (-15 -3314 (|#1| |#1| (-768))) (-15 -1350 (|#1| |#1| "rest")) (-15 -3314 (|#1| |#1|)) (-15 -1350 (|#2| |#1| "first")) (-15 -3043 (|#1| |#2| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -2373 (|#2| |#1| |#2|)) (-15 -1970 (|#2| |#1| "value" |#2|)) (-15 -1801 (|#1| |#1| (-641 |#1|))) (-15 -4376 ((-112) |#1| |#1|)) (-15 -1899 ((-112) |#1|)) (-15 -1350 (|#2| |#1| "value")) (-15 -1522 (|#2| |#1|)) (-15 -2033 ((-112) |#1|)) (-15 -3128 ((-641 |#1|) |#1|)) (-15 -2926 ((-641 |#1|) |#1|)) (-15 -1702 ((-112) |#1| |#1|)) (-15 -2828 ((-768) |#1|)) (-15 -4010 ((-112) |#1| (-768))) (-15 -2324 ((-112) |#1| (-768))) (-15 -1713 ((-112) |#1| (-768)))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1522 ((|#1| $) 48)) (-3149 ((|#1| $) 65)) (-4045 (($ $) 67)) (-3459 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-4010 (((-112) $ (-768)) 8)) (-2373 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3653 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3881 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2923 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-1970 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407)))) (-1801 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-3137 ((|#1| $) 66)) (-1778 (($) 7 T CONST)) (-3314 (($ $) 73) (($ $ (-768)) 71)) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3128 (((-641 $) $) 50)) (-4376 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2324 (((-112) $ (-768)) 9)) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1713 (((-112) $ (-768)) 10)) (-4119 (((-641 |#1|) $) 45)) (-2033 (((-112) $) 49)) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2598 ((|#1| $) 70) (($ $ (-768)) 68)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 76) (($ $ (-768)) 74)) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4190 (((-564) $ $) 44)) (-1899 (((-112) $) 46)) (-2034 (($ $) 62)) (-3292 (($ $) 59 (|has| $ (-6 -4407)))) (-1724 (((-768) $) 63)) (-3910 (($ $) 64)) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1991 (($ $) 13)) (-2460 (($ $ $) 61 (|has| $ (-6 -4407))) (($ $ |#1|) 60 (|has| $ (-6 -4407)))) (-3043 (($ $ $) 78) (($ |#1| $) 77)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2926 (((-641 $) $) 51)) (-2054 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 11)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) NIL (|has| |#1| (-556)))) (-3624 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1412 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-363)))) (-2657 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3547 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 22)) (-1781 (((-1223 |#1| |#2| |#3|) $) NIL) (((-1251 |#1| |#2| |#3|) $) NIL)) (-2574 (($ $ $) NIL (|has| |#1| (-363)))) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-3425 (((-407 (-564)) $) 69)) (-2552 (($ $ $) NIL (|has| |#1| (-363)))) (-2618 (($ (-407 (-564)) (-1223 |#1| |#2| |#3|)) NIL)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4229 (((-112) $) NIL (|has| |#1| (-363)))) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-1828 (((-112) $) NIL)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-407 (-564))) 30) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-3202 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3517 (((-1223 |#1| |#2| |#3|) $) 72)) (-2088 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) NIL)) (-2606 (((-1223 |#1| |#2| |#3|) $) NIL)) (-1418 (((-1152) $) NIL)) (-2639 (($ $) NIL (|has| |#1| (-363)))) (-3719 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-3235 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2375 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) NIL (|has| |#1| (-363)))) (-2941 (($ $ (-407 (-564))) NIL)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1355 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3844 (((-767) $) NIL (|has| |#1| (-363)))) (-4353 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-2073 (((-407 (-564)) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) NIL)) (-2322 (((-858) $) 108) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1223 |#1| |#2| |#3|)) 16) (($ (-1251 |#1| |#2| |#3|)) 17) (($ (-1255 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3467 ((|#1| $ (-407 (-564))) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 12)) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 32 T CONST)) (-2403 (($) 26 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1034 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1244)) +((-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1034 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -1343 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 37)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL)) (-3622 (($ $) NIL)) (-3247 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 (-564) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-407 (-564))))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 22)) (-1781 (((-564) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-407 (-564))))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-2710 (($ $) 41)) (-2689 (((-3 $ "failed") $) 27)) (-2520 (($ $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-2050 (($ $ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) 11)) (-1492 (((-112) $) NIL)) (-2507 (($ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-3386 (((-319 |#2| |#3| |#4|) $) NIL)) (-2168 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-3123 (($ (-1 (-1244 |#2| |#3| |#4|) (-1244 |#2| |#3| |#4|)) $) NIL)) (-1552 (((-3 (-839 |#2|) "failed") $) 90)) (-2674 (($ $) NIL)) (-2686 (((-1244 |#2| |#3| |#4|) $) 20)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2649 (((-112) $) NIL)) (-2662 (((-1244 |#2| |#3| |#4|) $) NIL)) (-2526 (((-3 $ "failed") $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-3024 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $) 72)) (-2073 (((-319 |#2| |#3| |#4|) $) 17)) (-2290 (((-1244 |#2| |#3| |#4|) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ (-1244 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-2789 (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1244 |#2| |#3| |#4|) (-1034 (-407 (-564))))))) (-3680 (((-641 (-1244 |#2| |#3| |#4|)) $) NIL)) (-3467 (((-1244 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-2409 (((-3 $ "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-145)))) (-3179 (((-767)) NIL T CONST)) (-4310 (($ $ $ (-767)) NIL (|has| (-1244 |#2| |#3| |#4|) (-172)))) (-4024 (((-112) $ $) NIL)) (-2389 (($) 78 T CONST)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1244 |#2| |#3| |#4|)) NIL) (($ (-1244 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))))) +(((-1245 |#1| |#2| |#3| |#4|) (-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -1552 ((-3 (-839 |#2|) "failed") $)) (-15 -3024 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -1245)) +((-1552 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1152)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4)))) +(-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -1552 ((-3 (-839 |#2|) "failed") $)) (-15 -3024 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) +((-2053 ((|#2| $) 33)) (-3678 ((|#2| $) 18)) (-3284 (($ $) 51)) (-1964 (($ $ (-564)) 83)) (-2318 (((-112) $ (-767)) 45)) (-4159 ((|#2| $ |#2|) 81)) (-3468 ((|#2| $ |#2|) 77)) (-3750 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 70) (($ $ "rest" $) 74) ((|#2| $ "last" |#2|) 72)) (-1292 (($ $ (-641 $)) 80)) (-3667 ((|#2| $) 17)) (-2008 (($ $) NIL) (($ $ (-767)) 58)) (-4074 (((-641 $) $) 30)) (-1634 (((-112) $ $) 68)) (-1751 (((-112) $ (-767)) 44)) (-1681 (((-112) $ (-767)) 42)) (-1808 (((-112) $) 32)) (-3649 ((|#2| $) 24) (($ $ (-767)) 63)) (-4353 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2911 (((-112) $) 22)) (-1819 (($ $) 54)) (-3051 (($ $) 84)) (-1793 (((-767) $) 57)) (-3743 (($ $) 56)) (-3533 (($ $ $) 76) (($ |#2| $) NIL)) (-1591 (((-641 $) $) 31)) (-2921 (((-112) $ $) 66)) (-2059 (((-767) $) 50))) +(((-1246 |#1| |#2|) (-10 -8 (-15 -1964 (|#1| |#1| (-564))) (-15 -3750 (|#2| |#1| "last" |#2|)) (-15 -3468 (|#2| |#1| |#2|)) (-15 -3750 (|#1| |#1| "rest" |#1|)) (-15 -3750 (|#2| |#1| "first" |#2|)) (-15 -3051 (|#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -1793 ((-767) |#1|)) (-15 -3743 (|#1| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -3667 (|#2| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3649 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "last")) (-15 -3649 (|#2| |#1|)) (-15 -2008 (|#1| |#1| (-767))) (-15 -4353 (|#1| |#1| "rest")) (-15 -2008 (|#1| |#1|)) (-15 -4353 (|#2| |#1| "first")) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| |#2|)) (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -1292 (|#1| |#1| (-641 |#1|))) (-15 -1634 ((-112) |#1| |#1|)) (-15 -2911 ((-112) |#1|)) (-15 -4353 (|#2| |#1| "value")) (-15 -2053 (|#2| |#1|)) (-15 -1808 ((-112) |#1|)) (-15 -4074 ((-641 |#1|) |#1|)) (-15 -1591 ((-641 |#1|) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767)))) (-1247 |#2|) (-1209)) (T -1246)) +NIL +(-10 -8 (-15 -1964 (|#1| |#1| (-564))) (-15 -3750 (|#2| |#1| "last" |#2|)) (-15 -3468 (|#2| |#1| |#2|)) (-15 -3750 (|#1| |#1| "rest" |#1|)) (-15 -3750 (|#2| |#1| "first" |#2|)) (-15 -3051 (|#1| |#1|)) (-15 -1819 (|#1| |#1|)) (-15 -1793 ((-767) |#1|)) (-15 -3743 (|#1| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -3667 (|#2| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3649 (|#1| |#1| (-767))) (-15 -4353 (|#2| |#1| "last")) (-15 -3649 (|#2| |#1|)) (-15 -2008 (|#1| |#1| (-767))) (-15 -4353 (|#1| |#1| "rest")) (-15 -2008 (|#1| |#1|)) (-15 -4353 (|#2| |#1| "first")) (-15 -3533 (|#1| |#2| |#1|)) (-15 -3533 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| |#2|)) (-15 -3750 (|#2| |#1| "value" |#2|)) (-15 -1292 (|#1| |#1| (-641 |#1|))) (-15 -1634 ((-112) |#1| |#1|)) (-15 -2911 ((-112) |#1|)) (-15 -4353 (|#2| |#1| "value")) (-15 -2053 (|#2| |#1|)) (-15 -1808 ((-112) |#1|)) (-15 -4074 ((-641 |#1|) |#1|)) (-15 -1591 ((-641 |#1|) |#1|)) (-15 -2921 ((-112) |#1| |#1|)) (-15 -2059 ((-767) |#1|)) (-15 -2318 ((-112) |#1| (-767))) (-15 -1751 ((-112) |#1| (-767))) (-15 -1681 ((-112) |#1| (-767)))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2053 ((|#1| $) 48)) (-3678 ((|#1| $) 65)) (-3284 (($ $) 67)) (-1964 (($ $ (-564)) 52 (|has| $ (-6 -4407)))) (-2318 (((-112) $ (-767)) 8)) (-4159 ((|#1| $ |#1|) 39 (|has| $ (-6 -4407)))) (-3238 (($ $ $) 56 (|has| $ (-6 -4407)))) (-3468 ((|#1| $ |#1|) 54 (|has| $ (-6 -4407)))) (-2822 ((|#1| $ |#1|) 58 (|has| $ (-6 -4407)))) (-3750 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4407))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4407))) (($ $ "rest" $) 55 (|has| $ (-6 -4407))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4407)))) (-1292 (($ $ (-641 $)) 41 (|has| $ (-6 -4407)))) (-3667 ((|#1| $) 66)) (-4157 (($) 7 T CONST)) (-2008 (($ $) 73) (($ $ (-767)) 71)) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-4074 (((-641 $) $) 50)) (-1634 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1751 (((-112) $ (-767)) 9)) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35)) (-1681 (((-112) $ (-767)) 10)) (-1502 (((-641 |#1|) $) 45)) (-1808 (((-112) $) 49)) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3649 ((|#1| $) 70) (($ $ (-767)) 68)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 76) (($ $ (-767)) 74)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3526 (((-564) $ $) 44)) (-2911 (((-112) $) 46)) (-1819 (($ $) 62)) (-3051 (($ $) 59 (|has| $ (-6 -4407)))) (-1793 (((-767) $) 63)) (-3743 (($ $) 64)) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3772 (($ $) 13)) (-3783 (($ $ $) 61 (|has| $ (-6 -4407))) (($ $ |#1|) 60 (|has| $ (-6 -4407)))) (-3533 (($ $ $) 78) (($ |#1| $) 77)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1591 (((-641 $) $) 51)) (-2040 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1247 |#1|) (-140) (-1209)) (T -1247)) -((-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3043 (*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3314 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1350 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3314 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-4045 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3910 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-2034 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2460 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2460 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3292 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2923 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1970 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3653 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1970 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3881 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1970 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3459 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))) -(-13 (-1007 |t#1|) (-10 -8 (-15 -3043 ($ $ $)) (-15 -3043 ($ |t#1| $)) (-15 -3303 (|t#1| $)) (-15 -1350 (|t#1| $ "first")) (-15 -3303 ($ $ (-768))) (-15 -3314 ($ $)) (-15 -1350 ($ $ "rest")) (-15 -3314 ($ $ (-768))) (-15 -2598 (|t#1| $)) (-15 -1350 (|t#1| $ "last")) (-15 -2598 ($ $ (-768))) (-15 -4045 ($ $)) (-15 -3137 (|t#1| $)) (-15 -3149 (|t#1| $)) (-15 -3910 ($ $)) (-15 -1724 ((-768) $)) (-15 -2034 ($ $)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -2460 ($ $ $)) (-15 -2460 ($ $ |t#1|)) (-15 -3292 ($ $)) (-15 -2923 (|t#1| $ |t#1|)) (-15 -1970 (|t#1| $ "first" |t#1|)) (-15 -3653 ($ $ $)) (-15 -1970 ($ $ "rest" $)) (-15 -3881 (|t#1| $ |t#1|)) (-15 -1970 (|t#1| $ "last" |t#1|)) (-15 -3459 ($ $ (-564)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) -((-2449 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2449 (|#4| (-1 |#2| |#1|) |#3|))) (-1046) (-1046) (-1250 |#1|) (-1250 |#2|)) (T -1248)) -((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5))))) -(-10 -7 (-15 -2449 (|#4| (-1 |#2| |#1|) |#3|))) -((-1615 (((-112) $) 17)) (-3357 (($ $) 105)) (-3210 (($ $) 81)) (-3330 (($ $) 101)) (-3187 (($ $) 77)) (-3384 (($ $) 109)) (-3233 (($ $) 85)) (-2358 (($ $) 75)) (-4326 (($ $) 73)) (-3395 (($ $) 111)) (-3245 (($ $) 87)) (-3371 (($ $) 107)) (-3221 (($ $) 83)) (-3344 (($ $) 103)) (-3199 (($ $) 79)) (-1831 (((-859) $) 61) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3427 (($ $) 117)) (-3276 (($ $) 93)) (-3406 (($ $) 113)) (-3254 (($ $) 89)) (-3450 (($ $) 121)) (-3302 (($ $) 97)) (-2315 (($ $) 123)) (-3316 (($ $) 99)) (-3439 (($ $) 119)) (-3287 (($ $) 95)) (-3416 (($ $) 115)) (-3265 (($ $) 91)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-407 (-564))) 71))) -(((-1249 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3210 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 -3287 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3302 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -3371 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -4326 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1615 ((-112) |#1|)) (-15 -1831 ((-859) |#1|))) (-1250 |#2|) (-1046)) (T -1249)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3210 (|#1| |#1|)) (-15 -3187 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 -3287 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3302 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -3371 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -4326 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#2|)) (-15 -1831 (|#1| |#1|)) (-15 -1831 (|#1| (-407 (-564)))) (-15 -1831 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1615 ((-112) |#1|)) (-15 -1831 ((-859) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3209 (((-641 (-1076)) $) 77)) (-3871 (((-1170) $) 106)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1537 (($ $) 55 (|has| |#1| (-556)))) (-1932 (((-112) $) 57 (|has| |#1| (-556)))) (-3220 (($ $ (-768)) 101) (($ $ (-768) (-768)) 100)) (-4163 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 108)) (-3357 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) 19)) (-3083 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3330 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 158) (($ (-1150 |#1|)) 156)) (-3384 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) 17 T CONST)) (-3396 (($ $) 63)) (-3733 (((-3 $ "failed") $) 33)) (-2186 (($ $) 155)) (-2469 (((-949 |#1|) $ (-768)) 153) (((-949 |#1|) $ (-768) (-768)) 152)) (-3030 (((-112) $) 76)) (-3714 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-768) $) 103) (((-768) $ (-768)) 102)) (-2949 (((-112) $) 31)) (-2915 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2325 (($ $ (-918)) 104)) (-1477 (($ (-1 |#1| (-564)) $) 154)) (-2003 (((-112) $) 65)) (-3186 (($ |#1| (-768)) 64) (($ $ (-1076) (-768)) 79) (($ $ (-641 (-1076)) (-641 (-768))) 78)) (-2449 (($ (-1 |#1| |#1|) $) 66)) (-2358 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) 68)) (-3370 ((|#1| $) 69)) (-2723 (((-1152) $) 9)) (-3907 (($ $) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 149 (-4078 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-2780 (((-1114) $) 10)) (-3951 (($ $ (-768)) 98)) (-1403 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4326 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2633 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-1350 ((|#1| $ (-768)) 107) (($ $ $) 84 (|has| (-768) (-1106)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1619 (((-768) $) 67)) (-3395 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 75)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3227 (((-1150 |#1|) $) 157)) (-2742 ((|#1| $ (-768)) 62)) (-4018 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-2219 (((-768)) 28 T CONST)) (-2513 ((|#1| $) 105)) (-3427 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3406 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-768)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) -(((-1250 |#1|) (-140) (-1046)) (T -1250)) -((-1881 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3)))) (-1881 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-2186 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046)))) (-2469 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (-2469 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3907 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3907 (*1 *1 *1 *2) (-4078 (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -3209 ((-641 *2) *3))) (|has| *3 (-15 -3907 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) -(-13 (-1237 |t#1| (-768)) (-10 -8 (-15 -1881 ($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |t#1|))))) (-15 -3227 ((-1150 |t#1|) $)) (-15 -1881 ($ (-1150 |t#1|))) (-15 -2186 ($ $)) (-15 -1477 ($ (-1 |t#1| (-564)) $)) (-15 -2469 ((-949 |t#1|) $ (-768))) (-15 -2469 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3907 ($ $)) (IF (|has| |t#1| (-15 -3907 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -3209 ((-641 (-1170)) |t#1|))) (-15 -3907 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3907 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-768) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-768) (-1106)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4078 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1237 |#1| #0#) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-3209 (((-641 (-1076)) $) NIL)) (-3871 (((-1170) $) 92)) (-2074 (((-1232 |#2| |#1|) $ (-768)) 74)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1537 (($ $) NIL (|has| |#1| (-556)))) (-1932 (((-112) $) 143 (|has| |#1| (-556)))) (-3220 (($ $ (-768)) 129) (($ $ (-768) (-768)) 131)) (-4163 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 43)) (-3357 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3210 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4088 (((-3 $ "failed") $ $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3330 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3187 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1881 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 53) (($ (-1150 |#1|)) NIL)) (-3384 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3233 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1778 (($) NIL T CONST)) (-1786 (($ $) 135)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-2186 (($ $) 141)) (-2469 (((-949 |#1|) $ (-768)) 64) (((-949 |#1|) $ (-768) (-768)) 66)) (-3030 (((-112) $) NIL)) (-3714 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2155 (((-768) $) NIL) (((-768) $ (-768)) NIL)) (-2949 (((-112) $) NIL)) (-2809 (($ $) 119)) (-2915 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2978 (($ (-564) (-564) $) 137)) (-2325 (($ $ (-918)) 140)) (-1477 (($ (-1 |#1| (-564)) $) 113)) (-2003 (((-112) $) NIL)) (-3186 (($ |#1| (-768)) 16) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) 100)) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3356 (($ $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2352 (($ $) 117)) (-2223 (($ $) 115)) (-1890 (($ (-564) (-564) $) 139)) (-3907 (($ $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 157 (-4078 (-12 (|has| |#1| (-15 -3907 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3209 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 152 (|has| |#1| (-38 (-407 (-564)))))) (-2780 (((-1114) $) NIL)) (-4339 (($ $ (-564) (-564)) 123)) (-3951 (($ $ (-768)) 125)) (-1403 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4326 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2657 (($ $) 121)) (-2633 (((-1150 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-1350 ((|#1| $ (-768)) 97) (($ $ $) 133 (|has| (-768) (-1106)))) (-3534 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 110 (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 105)) (-1619 (((-768) $) NIL)) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3245 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3371 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3344 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3199 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4037 (($ $) 127)) (-1831 (((-859) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 149 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 83) (($ (-1255 |#2|)) 22)) (-3227 (((-1150 |#1|) $) NIL)) (-2742 ((|#1| $ (-768)) 96)) (-4018 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2219 (((-768)) NIL T CONST)) (-2513 ((|#1| $) 93)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3276 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3939 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3254 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3450 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3302 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 ((|#1| $ (-768)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -1831 (|#1| (-1170))))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3316 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3287 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3416 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1293 (($) 18 T CONST)) (-1300 (($) 13 T CONST)) (-3435 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1702 (((-112) $ $) NIL)) (-1823 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) 109)) (-1797 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1251 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -1831 ($ (-1232 |#2| |#1|))) (-15 -2074 ((-1232 |#2| |#1|) $ (-768))) (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (-15 -2223 ($ $)) (-15 -2352 ($ $)) (-15 -2809 ($ $)) (-15 -2657 ($ $)) (-15 -4339 ($ $ (-564) (-564))) (-15 -1786 ($ $)) (-15 -2978 ($ (-564) (-564) $)) (-15 -1890 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1251)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) (-2074 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2809 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2657 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-4339 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2978 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-1890 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(-13 (-1250 |#1|) (-10 -8 (-15 -1831 ($ (-1232 |#2| |#1|))) (-15 -2074 ((-1232 |#2| |#1|) $ (-768))) (-15 -1831 ($ (-1255 |#2|))) (-15 -3534 ($ $ (-1255 |#2|))) (-15 -2223 ($ $)) (-15 -2352 ($ $)) (-15 -2809 ($ $)) (-15 -2657 ($ $)) (-15 -4339 ($ $ (-564) (-564))) (-15 -1786 ($ $)) (-15 -2978 ($ (-564) (-564) $)) (-15 -1890 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3907 ($ $ (-1255 |#2|))) |%noBranch|))) -((-4223 (((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|))) 24)) (-3195 (((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1945 (((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|)) 13)) (-4039 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3600 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1530 ((|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|)) 60)) (-2228 (((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))) 66)) (-2251 ((|#2| |#2| |#2|) 43))) -(((-1252 |#1| |#2|) (-10 -7 (-15 -1945 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3195 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4223 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2251 (|#2| |#2| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4039 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1530 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -2228 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) (-38 (-407 (-564))) (-1250 |#1|)) (T -1252)) -((-2228 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) (-5 *1 (-1252 *5 *6)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) (-5 *1 (-1252 *5 *2)))) (-4039 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-2251 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1250 *3)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5))))) -(-10 -7 (-15 -1945 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3195 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4223 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2251 (|#2| |#2| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4039 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1530 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -2228 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) -((-3308 ((|#2| |#4| (-768)) 34)) (-1913 ((|#4| |#2|) 29)) (-2541 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-3994 (((-1 |#4| (-641 |#4|)) |#3|) 46))) -(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1913 (|#4| |#2|)) (-15 -3308 (|#2| |#4| (-768))) (-15 -3994 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2541 (|#4| (-407 |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-652 |#2|) (-1250 |#1|)) (T -1253)) -((-2541 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) (-4 *6 (-652 *5)))) (-3994 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3))))) -(-10 -7 (-15 -1913 (|#4| |#2|)) (-15 -3308 (|#2| |#4| (-768))) (-15 -3994 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2541 (|#4| (-407 |#2|))) |%noBranch|)) +((-3533 (*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3533 (*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1995 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2008 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3743 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3783 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3783 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3051 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2822 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3750 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3238 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3750 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3468 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3750 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1964 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -3533 ($ $ $)) (-15 -3533 ($ |t#1| $)) (-15 -1995 (|t#1| $)) (-15 -4353 (|t#1| $ "first")) (-15 -1995 ($ $ (-767))) (-15 -2008 ($ $)) (-15 -4353 ($ $ "rest")) (-15 -2008 ($ $ (-767))) (-15 -3649 (|t#1| $)) (-15 -4353 (|t#1| $ "last")) (-15 -3649 ($ $ (-767))) (-15 -3284 ($ $)) (-15 -3667 (|t#1| $)) (-15 -3678 (|t#1| $)) (-15 -3743 ($ $)) (-15 -1793 ((-767) $)) (-15 -1819 ($ $)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3783 ($ $ $)) (-15 -3783 ($ $ |t#1|)) (-15 -3051 ($ $)) (-15 -2822 (|t#1| $ |t#1|)) (-15 -3750 (|t#1| $ "first" |t#1|)) (-15 -3238 ($ $ $)) (-15 -3750 ($ $ "rest" $)) (-15 -3468 (|t#1| $ |t#1|)) (-15 -3750 (|t#1| $ "last" |t#1|)) (-15 -1964 ($ $ (-564)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3123 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#4| (-1 |#2| |#1|) |#3|))) (-1045) (-1045) (-1250 |#1|) (-1250 |#2|)) (T -1248)) +((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5))))) +(-10 -7 (-15 -3123 (|#4| (-1 |#2| |#1|) |#3|))) +((-3264 (((-112) $) 17)) (-3802 (($ $) 105)) (-3661 (($ $) 81)) (-3779 (($ $) 101)) (-3639 (($ $) 77)) (-3825 (($ $) 109)) (-3684 (($ $) 85)) (-3439 (($ $) 75)) (-3571 (($ $) 73)) (-3836 (($ $) 111)) (-3697 (($ $) 87)) (-3814 (($ $) 107)) (-3672 (($ $) 83)) (-3792 (($ $) 103)) (-3650 (($ $) 79)) (-2322 (((-858) $) 61) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2672 (($ $) 117)) (-3732 (($ $) 93)) (-3849 (($ $) 113)) (-3708 (($ $) 89)) (-2695 (($ $) 121)) (-3757 (($ $) 97)) (-1511 (($ $) 123)) (-3768 (($ $) 99)) (-2684 (($ $) 119)) (-3746 (($ $) 95)) (-2660 (($ $) 115)) (-3720 (($ $) 91)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-407 (-564))) 71))) +(((-1249 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3661 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -3720 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -3732 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -3264 ((-112) |#1|)) (-15 -2322 ((-858) |#1|))) (-1250 |#2|) (-1045)) (T -1249)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3661 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -3720 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -3732 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2322 (|#1| |#2|)) (-15 -2322 (|#1| |#1|)) (-15 -2322 (|#1| (-407 (-564)))) (-15 -2322 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -3264 ((-112) |#1|)) (-15 -2322 ((-858) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2534 (((-641 (-1076)) $) 77)) (-3256 (((-1170) $) 106)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-3622 (($ $) 55 (|has| |#1| (-556)))) (-3247 (((-112) $) 57 (|has| |#1| (-556)))) (-3624 (($ $ (-767)) 101) (($ $ (-767) (-767)) 100)) (-1412 (((-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 108)) (-3802 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) 19)) (-2387 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3779 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 158) (($ (-1150 |#1|)) 156)) (-3825 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) 17 T CONST)) (-2710 (($ $) 63)) (-2689 (((-3 $ "failed") $) 33)) (-2856 (($ $) 155)) (-1433 (((-948 |#1|) $ (-767)) 153) (((-948 |#1|) $ (-767) (-767)) 152)) (-2506 (((-112) $) 76)) (-4223 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-767) $) 103) (((-767) $ (-767)) 102)) (-1828 (((-112) $) 31)) (-2739 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-1762 (($ $ (-917)) 104)) (-4298 (($ (-1 |#1| (-564)) $) 154)) (-1492 (((-112) $) 65)) (-2507 (($ |#1| (-767)) 64) (($ $ (-1076) (-767)) 79) (($ $ (-641 (-1076)) (-641 (-767))) 78)) (-3123 (($ (-1 |#1| |#1|) $) 66)) (-3439 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) 68)) (-2686 ((|#1| $) 69)) (-1418 (((-1152) $) 9)) (-3719 (($ $) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 149 (-2789 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3840 (((-1114) $) 10)) (-2941 (($ $ (-767)) 98)) (-2526 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3571 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3100 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4353 ((|#1| $ (-767)) 107) (($ $ $) 84 (|has| (-767) (-1106)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170) (-767)) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2073 (((-767) $) 67)) (-3836 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 75)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3680 (((-1150 |#1|) $) 157)) (-3467 ((|#1| $ (-767)) 62)) (-2409 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3179 (((-767)) 28 T CONST)) (-2965 ((|#1| $) 105)) (-2672 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3849 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-767)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170) (-767)) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1250 |#1|) (-140) (-1045)) (T -1250)) +((-1467 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1250 *3)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-5 *2 (-1150 *3)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-4 *1 (-1250 *3)))) (-2856 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)))) (-4298 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1045)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (-1433 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) (-3719 (*1 *1 *1 *2) (-2789 (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2534 ((-641 *2) *3))) (|has| *3 (-15 -3719 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) +(-13 (-1237 |t#1| (-767)) (-10 -8 (-15 -1467 ($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |t#1|))))) (-15 -3680 ((-1150 |t#1|) $)) (-15 -1467 ($ (-1150 |t#1|))) (-15 -2856 ($ $)) (-15 -4298 ($ (-1 |t#1| (-564)) $)) (-15 -1433 ((-948 |t#1|) $ (-767))) (-15 -1433 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3719 ($ $)) (IF (|has| |t#1| (-15 -3719 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -2534 ((-641 (-1170)) |t#1|))) (-15 -3719 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-564))) (-15 -3719 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1194))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-767) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-767) (-1106)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2789 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1237 |#1| #0#) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2534 (((-641 (-1076)) $) NIL)) (-3256 (((-1170) $) 92)) (-4130 (((-1232 |#2| |#1|) $ (-767)) 74)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3622 (($ $) NIL (|has| |#1| (-556)))) (-3247 (((-112) $) 143 (|has| |#1| (-556)))) (-3624 (($ $ (-767)) 129) (($ $ (-767) (-767)) 131)) (-1412 (((-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 43)) (-3802 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3661 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1862 (((-3 $ "failed") $ $) NIL)) (-2387 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3779 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3639 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1467 (($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 53) (($ (-1150 |#1|)) NIL)) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4157 (($) NIL T CONST)) (-4239 (($ $) 135)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-2856 (($ $) 141)) (-1433 (((-948 |#1|) $ (-767)) 64) (((-948 |#1|) $ (-767) (-767)) 66)) (-2506 (((-112) $) NIL)) (-4223 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3717 (((-767) $) NIL) (((-767) $ (-767)) NIL)) (-1828 (((-112) $) NIL)) (-2907 (($ $) 119)) (-2739 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2113 (($ (-564) (-564) $) 137)) (-1762 (($ $ (-917)) 140)) (-4298 (($ (-1 |#1| (-564)) $) 113)) (-1492 (((-112) $) NIL)) (-2507 (($ |#1| (-767)) 16) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-3123 (($ (-1 |#1| |#1|) $) 100)) (-3439 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2674 (($ $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-2055 (($ $) 117)) (-3220 (($ $) 115)) (-2833 (($ (-564) (-564) $) 139)) (-3719 (($ $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 157 (-2789 (-12 (|has| |#1| (-15 -3719 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -2534 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (((-1114) $) NIL)) (-2572 (($ $ (-564) (-564)) 123)) (-2941 (($ $ (-767)) 125)) (-2526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2009 (($ $) 121)) (-3100 (((-1150 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4353 ((|#1| $ (-767)) 97) (($ $ $) 133 (|has| (-767) (-1106)))) (-1343 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) 110 (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1255 |#2|)) 105)) (-2073 (((-767) $) NIL)) (-3836 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3697 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3792 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3650 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2614 (($ $) 127)) (-2322 (((-858) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 149 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 83) (($ (-1255 |#2|)) 22)) (-3680 (((-1150 |#1|) $) NIL)) (-3467 ((|#1| $ (-767)) 96)) (-2409 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3179 (((-767)) NIL T CONST)) (-2965 ((|#1| $) 93)) (-2672 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3732 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4024 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3849 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3708 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2695 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3564 ((|#1| $ (-767)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2322 (|#1| (-1170))))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2684 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3746 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2660 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3720 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2389 (($) 18 T CONST)) (-2403 (($) 13 T CONST)) (-3917 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2921 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) 109)) (-3011 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1251 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -2322 ($ (-1232 |#2| |#1|))) (-15 -4130 ((-1232 |#2| |#1|) $ (-767))) (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (-15 -3220 ($ $)) (-15 -2055 ($ $)) (-15 -2907 ($ $)) (-15 -2009 ($ $)) (-15 -2572 ($ $ (-564) (-564))) (-15 -4239 ($ $)) (-15 -2113 ($ (-564) (-564) $)) (-15 -2833 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1251)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3220 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-2055 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-2907 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-2009 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-2572 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-2113 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3))) (-2833 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1250 |#1|) (-10 -8 (-15 -2322 ($ (-1232 |#2| |#1|))) (-15 -4130 ((-1232 |#2| |#1|) $ (-767))) (-15 -2322 ($ (-1255 |#2|))) (-15 -1343 ($ $ (-1255 |#2|))) (-15 -3220 ($ $)) (-15 -2055 ($ $)) (-15 -2907 ($ $)) (-15 -2009 ($ $)) (-15 -2572 ($ $ (-564) (-564))) (-15 -4239 ($ $)) (-15 -2113 ($ (-564) (-564) $)) (-15 -2833 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3719 ($ $ (-1255 |#2|))) |%noBranch|))) +((-3886 (((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|))) 24)) (-3436 (((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2149 (((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|)) 13)) (-2637 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3986 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3550 ((|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|)) 60)) (-3266 (((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))) 66)) (-2208 ((|#2| |#2| |#2|) 43))) +(((-1252 |#1| |#2|) (-10 -7 (-15 -2149 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3436 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3886 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2208 (|#2| |#2| |#2|)) (-15 -3986 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2637 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3550 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -3266 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) (-38 (-407 (-564))) (-1250 |#1|)) (T -1252)) +((-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) (-5 *1 (-1252 *5 *6)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) (-5 *1 (-1252 *5 *2)))) (-2637 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-2208 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1250 *3)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5))))) +(-10 -7 (-15 -2149 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3436 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3886 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2208 (|#2| |#2| |#2|)) (-15 -3986 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2637 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3550 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -3266 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) +((-3180 ((|#2| |#4| (-767)) 34)) (-3054 ((|#4| |#2|) 29)) (-3350 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-3385 (((-1 |#4| (-641 |#4|)) |#3|) 46))) +(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3054 (|#4| |#2|)) (-15 -3180 (|#2| |#4| (-767))) (-15 -3385 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -3350 (|#4| (-407 |#2|))) |%noBranch|)) (-1045) (-1235 |#1|) (-652 |#2|) (-1250 |#1|)) (T -1253)) +((-3350 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) (-4 *4 (-1045)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) (-4 *6 (-652 *5)))) (-3385 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))) (-3054 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3))))) +(-10 -7 (-15 -3054 (|#4| |#2|)) (-15 -3180 (|#2| |#4| (-767))) (-15 -3385 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -3350 (|#4| (-407 |#2|))) |%noBranch|)) NIL (((-1254) (-140)) (T -1254)) NIL -(-13 (-10 -7 (-6 -2471))) -((-1817 (((-112) $ $) NIL)) (-3871 (((-1170)) 12)) (-2723 (((-1152) $) 18)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 11) (((-1170) $) 8)) (-1702 (((-112) $ $) 15))) -(((-1255 |#1|) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1831 ((-1170) $)) (-15 -3871 ((-1170))))) (-1170)) (T -1255)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) (-3871 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))) -(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1831 ((-1170) $)) (-15 -3871 ((-1170))))) -((-1463 (($ (-768)) 19)) (-3167 (((-685 |#2|) $ $) 41)) (-2117 ((|#2| $) 51)) (-1502 ((|#2| $) 50)) (-3032 ((|#2| $ $) 36)) (-4231 (($ $ $) 47)) (-1808 (($ $) 23) (($ $ $) 29)) (-1797 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1256 |#1| |#2|) (-10 -8 (-15 -2117 (|#2| |#1|)) (-15 -1502 (|#2| |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3167 ((-685 |#2|) |#1| |#1|)) (-15 -3032 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1463 (|#1| (-768))) (-15 -1797 (|#1| |#1| |#1|))) (-1257 |#2|) (-1209)) (T -1256)) +(-13 (-10 -7 (-6 -3530))) +((-2310 (((-112) $ $) NIL)) (-3256 (((-1170)) 12)) (-1418 (((-1152) $) 18)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 11) (((-1170) $) 8)) (-2921 (((-112) $ $) 15))) +(((-1255 |#1|) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -2322 ((-1170) $)) (-15 -3256 ((-1170))))) (-1170)) (T -1255)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) (-3256 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))) +(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -2322 ((-1170) $)) (-15 -3256 ((-1170))))) +((-3991 (($ (-767)) 19)) (-3611 (((-685 |#2|) $ $) 41)) (-1457 ((|#2| $) 51)) (-1750 ((|#2| $) 50)) (-2535 ((|#2| $ $) 36)) (-3969 (($ $ $) 47)) (-3021 (($ $) 23) (($ $ $) 29)) (-3011 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1256 |#1| |#2|) (-10 -8 (-15 -1457 (|#2| |#1|)) (-15 -1750 (|#2| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3611 ((-685 |#2|) |#1| |#1|)) (-15 -2535 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3991 (|#1| (-767))) (-15 -3011 (|#1| |#1| |#1|))) (-1257 |#2|) (-1209)) (T -1256)) NIL -(-10 -8 (-15 -2117 (|#2| |#1|)) (-15 -1502 (|#2| |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3167 ((-685 |#2|) |#1| |#1|)) (-15 -3032 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1808 (|#1| |#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -1463 (|#1| (-768))) (-15 -1797 (|#1| |#1| |#1|))) -((-1817 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1463 (($ (-768)) 112 (|has| |#1| (-23)))) (-1956 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4407))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) 8)) (-1970 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-1778 (($) 7 T CONST)) (-4325 (($ $) 90 (|has| $ (-6 -4407)))) (-3919 (($ $) 100)) (-3337 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-2576 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) 51)) (-3360 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3167 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-3654 (($ (-768) |#1|) 69)) (-2324 (((-112) $ (-768)) 9)) (-3100 (((-564) $) 43 (|has| (-564) (-847)))) (-1925 (($ $ $) 87 (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3440 (((-564) $) 44 (|has| (-564) (-847)))) (-3375 (($ $ $) 86 (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2117 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-1713 (((-112) $ (-768)) 10)) (-1502 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-2723 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3883 (((-641 (-564)) $) 46)) (-4336 (((-112) (-564) $) 47)) (-2780 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3303 ((|#1| $) 42 (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4253 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) 14)) (-3561 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) 48)) (-4284 (((-112) $) 11)) (-4012 (($) 12)) (-1350 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-3032 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-2126 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-4231 (($ $ $) 104 (|has| |#1| (-1046)))) (-2791 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3623 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-1991 (($ $) 13)) (-2511 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 70)) (-3043 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1831 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1702 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1808 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1797 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2828 (((-768) $) 6 (|has| $ (-6 -4406))))) +(-10 -8 (-15 -1457 (|#2| |#1|)) (-15 -1750 (|#2| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3611 ((-685 |#2|) |#1| |#1|)) (-15 -2535 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3991 (|#1| (-767))) (-15 -3011 (|#1| |#1| |#1|))) +((-2310 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3991 (($ (-767)) 112 (|has| |#1| (-23)))) (-2246 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4407))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4407))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) 8)) (-3750 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4406)))) (-4157 (($) 7 T CONST)) (-2443 (($ $) 90 (|has| $ (-6 -4407)))) (-2493 (($ $) 100)) (-2027 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3628 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) 51)) (-3847 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) 30 (|has| $ (-6 -4406)))) (-3611 (((-685 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-4121 (($ (-767) |#1|) 69)) (-1751 (((-112) $ (-767)) 9)) (-1913 (((-564) $) 43 (|has| (-564) (-846)))) (-1501 (($ $ $) 87 (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) 29 (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-1785 (((-564) $) 44 (|has| (-564) (-846)))) (-2622 (($ $ $) 86 (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1457 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-1681 (((-112) $ (-767)) 10)) (-1750 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-1418 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3487 (((-641 (-564)) $) 46)) (-2550 (((-112) (-564) $) 47)) (-3840 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1995 ((|#1| $) 42 (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2981 (($ $ |#1|) 41 (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) 14)) (-3608 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) 48)) (-3282 (((-112) $) 11)) (-2348 (($) 12)) (-4353 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2535 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-1996 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3969 (($ $ $) 104 (|has| |#1| (-1045)))) (-3852 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4406))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4406))))) (-3000 (($ $ $ (-564)) 91 (|has| $ (-6 -4407)))) (-3772 (($ $) 13)) (-3172 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 70)) (-3533 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-2322 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2953 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2921 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2964 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2942 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3021 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3011 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-2059 (((-767) $) 6 (|has| $ (-6 -4406))))) (((-1257 |#1|) (-140) (-1209)) (T -1257)) -((-1797 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (-1808 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (-3032 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046)) (-5 *2 (-685 *3)))) (-4231 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1797 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1463 ($ (-768))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1808 ($ $)) (-15 -1808 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-723)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-15 -3032 (|t#1| $ $)) (-15 -3167 ((-685 |t#1|) $ $)) (-15 -4231 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-999)) (IF (|has| |t#1| (-1046)) (PROGN (-15 -1502 (|t#1| $)) (-15 -2117 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4078 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T)) -((-1694 (((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 13)) (-1988 ((|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 15)) (-2449 (((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)) 30) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 18))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -1694 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2449 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2449 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) (-1209) (-1209)) (T -1258)) -((-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-1988 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5))))) -(-10 -7 (-15 -1694 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1988 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2449 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2449 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) -((-1817 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1463 (($ (-768)) NIL (|has| |#1| (-23)))) (-3454 (($ (-641 |#1|)) 11)) (-1956 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-2386 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-847))))) (-2861 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-4010 (((-112) $ (-768)) NIL)) (-1970 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-3752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1778 (($) NIL T CONST)) (-4325 (($ $) NIL (|has| $ (-6 -4407)))) (-3919 (($ $) NIL)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-2576 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1988 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-2261 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-2190 ((|#1| $ (-564)) NIL)) (-3360 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1433 (((-641 |#1|) $) 15 (|has| $ (-6 -4406)))) (-3167 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3654 (($ (-768) |#1|) NIL)) (-2324 (((-112) $ (-768)) NIL)) (-3100 (((-564) $) NIL (|has| (-564) (-847)))) (-1925 (($ $ $) NIL (|has| |#1| (-847)))) (-3956 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2640 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3440 (((-564) $) NIL (|has| (-564) (-847)))) (-3375 (($ $ $) NIL (|has| |#1| (-847)))) (-2250 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2117 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1713 (((-112) $ (-768)) NIL)) (-1502 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2723 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3652 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3883 (((-641 (-564)) $) NIL)) (-4336 (((-112) (-564) $) NIL)) (-2780 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3303 ((|#1| $) NIL (|has| (-564) (-847)))) (-3995 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4253 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-4077 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3565 (((-112) $ $) NIL)) (-3561 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1794 (((-641 |#1|) $) NIL)) (-4284 (((-112) $) NIL)) (-4012 (($) NIL)) (-1350 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3032 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2126 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4231 (($ $ $) NIL (|has| |#1| (-1046)))) (-2791 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3623 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-1842 (($ (-641 |#1|)) 10)) (-3043 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1831 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1963 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1808 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1797 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1259 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -3454 ($ (-641 |#1|))))) (-1209)) (T -1259)) -((-3454 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3))))) -(-13 (-1257 |#1|) (-10 -8 (-15 -3454 ($ (-641 |#1|))))) -((-1817 (((-112) $ $) NIL)) (-3614 (((-1152) $ (-1152)) 109) (((-1152) $ (-1152) (-1152)) 107) (((-1152) $ (-1152) (-641 (-1152))) 106)) (-1958 (($) 69)) (-1364 (((-1264) $ (-468) (-918)) 54)) (-2521 (((-1264) $ (-918) (-1152)) 91) (((-1264) $ (-918) (-871)) 92)) (-1676 (((-1264) $ (-918) (-379) (-379)) 57)) (-2696 (((-1264) $ (-1152)) 86)) (-2691 (((-1264) $ (-918) (-1152)) 96)) (-3982 (((-1264) $ (-918) (-379) (-379)) 58)) (-1414 (((-1264) $ (-918) (-918)) 55)) (-3594 (((-1264) $) 87)) (-1491 (((-1264) $ (-918) (-1152)) 95)) (-4255 (((-1264) $ (-468) (-918)) 40)) (-2779 (((-1264) $ (-918) (-1152)) 94)) (-4373 (((-641 (-263)) $) 29) (($ $ (-641 (-263))) 30)) (-1439 (((-1264) $ (-768) (-768)) 52)) (-2574 (($ $) 71) (($ (-468) (-641 (-263))) 72)) (-2723 (((-1152) $) NIL)) (-2568 (((-564) $) 47)) (-2780 (((-1114) $) NIL)) (-4323 (((-1259 (-3 (-468) "undefined")) $) 46)) (-3482 (((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2779 (-564)) (|:| -4114 (-564)) (|:| |spline| (-564)) (|:| -2431 (-564)) (|:| |axesColor| (-871)) (|:| -2521 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $) 45)) (-3844 (((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564)) 85)) (-4079 (((-641 (-940 (-225))) $) NIL)) (-2375 (((-468) $ (-918)) 42)) (-3378 (((-1264) $ (-768) (-768) (-918) (-918)) 50)) (-4192 (((-1264) $ (-1152)) 97)) (-4114 (((-1264) $ (-918) (-1152)) 93)) (-1831 (((-859) $) 104)) (-3689 (((-1264) $) 98)) (-2431 (((-1264) $ (-918) (-1152)) 89) (((-1264) $ (-918) (-871)) 90)) (-1702 (((-112) $ $) NIL))) -(((-1260) (-13 (-1094) (-10 -8 (-15 -4079 ((-641 (-940 (-225))) $)) (-15 -1958 ($)) (-15 -2574 ($ $)) (-15 -4373 ((-641 (-263)) $)) (-15 -4373 ($ $ (-641 (-263)))) (-15 -2574 ($ (-468) (-641 (-263)))) (-15 -3844 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -3482 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2779 (-564)) (|:| -4114 (-564)) (|:| |spline| (-564)) (|:| -2431 (-564)) (|:| |axesColor| (-871)) (|:| -2521 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -4323 ((-1259 (-3 (-468) "undefined")) $)) (-15 -2696 ((-1264) $ (-1152))) (-15 -4255 ((-1264) $ (-468) (-918))) (-15 -2375 ((-468) $ (-918))) (-15 -2431 ((-1264) $ (-918) (-1152))) (-15 -2431 ((-1264) $ (-918) (-871))) (-15 -2521 ((-1264) $ (-918) (-1152))) (-15 -2521 ((-1264) $ (-918) (-871))) (-15 -2779 ((-1264) $ (-918) (-1152))) (-15 -1491 ((-1264) $ (-918) (-1152))) (-15 -4114 ((-1264) $ (-918) (-1152))) (-15 -4192 ((-1264) $ (-1152))) (-15 -3689 ((-1264) $)) (-15 -3378 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3982 ((-1264) $ (-918) (-379) (-379))) (-15 -1676 ((-1264) $ (-918) (-379) (-379))) (-15 -2691 ((-1264) $ (-918) (-1152))) (-15 -1439 ((-1264) $ (-768) (-768))) (-15 -1364 ((-1264) $ (-468) (-918))) (-15 -1414 ((-1264) $ (-918) (-918))) (-15 -3614 ((-1152) $ (-1152))) (-15 -3614 ((-1152) $ (-1152) (-1152))) (-15 -3614 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3594 ((-1264) $)) (-15 -2568 ((-564) $)) (-15 -1831 ((-859) $))))) (T -1260)) -((-1831 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260)))) (-1958 (*1 *1) (-5 *1 (-1260))) (-2574 (*1 *1 *1) (-5 *1 (-1260))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-4373 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-2574 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) (-3844 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2779 (-564)) (|:| -4114 (-564)) (|:| |spline| (-564)) (|:| -2431 (-564)) (|:| |axesColor| (-871)) (|:| -2521 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564))))) (-5 *1 (-1260)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))) (-2696 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4255 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2375 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260)))) (-2431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2521 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2521 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2779 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1491 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4114 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4192 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3378 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3982 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1676 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2691 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1439 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1364 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1414 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-3614 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-3614 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260))))) -(-13 (-1094) (-10 -8 (-15 -4079 ((-641 (-940 (-225))) $)) (-15 -1958 ($)) (-15 -2574 ($ $)) (-15 -4373 ((-641 (-263)) $)) (-15 -4373 ($ $ (-641 (-263)))) (-15 -2574 ($ (-468) (-641 (-263)))) (-15 -3844 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -3482 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2779 (-564)) (|:| -4114 (-564)) (|:| |spline| (-564)) (|:| -2431 (-564)) (|:| |axesColor| (-871)) (|:| -2521 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -4323 ((-1259 (-3 (-468) "undefined")) $)) (-15 -2696 ((-1264) $ (-1152))) (-15 -4255 ((-1264) $ (-468) (-918))) (-15 -2375 ((-468) $ (-918))) (-15 -2431 ((-1264) $ (-918) (-1152))) (-15 -2431 ((-1264) $ (-918) (-871))) (-15 -2521 ((-1264) $ (-918) (-1152))) (-15 -2521 ((-1264) $ (-918) (-871))) (-15 -2779 ((-1264) $ (-918) (-1152))) (-15 -1491 ((-1264) $ (-918) (-1152))) (-15 -4114 ((-1264) $ (-918) (-1152))) (-15 -4192 ((-1264) $ (-1152))) (-15 -3689 ((-1264) $)) (-15 -3378 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3982 ((-1264) $ (-918) (-379) (-379))) (-15 -1676 ((-1264) $ (-918) (-379) (-379))) (-15 -2691 ((-1264) $ (-918) (-1152))) (-15 -1439 ((-1264) $ (-768) (-768))) (-15 -1364 ((-1264) $ (-468) (-918))) (-15 -1414 ((-1264) $ (-918) (-918))) (-15 -3614 ((-1152) $ (-1152))) (-15 -3614 ((-1152) $ (-1152) (-1152))) (-15 -3614 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3594 ((-1264) $)) (-15 -2568 ((-564) $)) (-15 -1831 ((-859) $)))) -((-1817 (((-112) $ $) NIL)) (-1315 (((-1264) $ (-379)) 172) (((-1264) $ (-379) (-379) (-379)) 173)) (-3614 (((-1152) $ (-1152)) 180) (((-1152) $ (-1152) (-1152)) 178) (((-1152) $ (-1152) (-641 (-1152))) 177)) (-2257 (($) 67)) (-1768 (((-1264) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1264) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1264) $ (-379) (-379)) 148) (((-1264) $ (-379) (-379) (-379)) 155)) (-1616 (((-379)) 125) (((-379) (-379)) 126)) (-3794 (((-379)) 120) (((-379) (-379)) 122)) (-3114 (((-379)) 123) (((-379) (-379)) 124)) (-3163 (((-379)) 129) (((-379) (-379)) 130)) (-3486 (((-379)) 127) (((-379) (-379)) 128)) (-1676 (((-1264) $ (-379) (-379)) 174)) (-2696 (((-1264) $ (-1152)) 156)) (-3502 (((-1127 (-225)) $) 68) (($ $ (-1127 (-225))) 69)) (-3504 (((-1264) $ (-1152)) 188)) (-1312 (((-1264) $ (-1152)) 189)) (-2823 (((-1264) $ (-379) (-379)) 154) (((-1264) $ (-564) (-564)) 171)) (-1414 (((-1264) $ (-918) (-918)) 163)) (-3594 (((-1264) $) 140)) (-1467 (((-1264) $ (-1152)) 187)) (-2912 (((-1264) $ (-1152)) 137)) (-4373 (((-641 (-263)) $) 70) (($ $ (-641 (-263))) 71)) (-1439 (((-1264) $ (-768) (-768)) 162)) (-2066 (((-1264) $ (-768) (-940 (-225))) 194)) (-3166 (($ $) 73) (($ (-1127 (-225)) (-1152)) 74) (($ (-1127 (-225)) (-641 (-263))) 75)) (-1500 (((-1264) $ (-379) (-379) (-379)) 134)) (-2723 (((-1152) $) NIL)) (-2568 (((-564) $) 131)) (-2933 (((-1264) $ (-379)) 175)) (-4295 (((-1264) $ (-379)) 192)) (-2780 (((-1114) $) NIL)) (-2419 (((-1264) $ (-379)) 191)) (-3247 (((-1264) $ (-1152)) 139)) (-3378 (((-1264) $ (-768) (-768) (-918) (-918)) 161)) (-2440 (((-1264) $ (-1152)) 136)) (-4192 (((-1264) $ (-1152)) 138)) (-3642 (((-1264) $ (-157) (-157)) 160)) (-1831 (((-859) $) 169)) (-3689 (((-1264) $) 141)) (-1754 (((-1264) $ (-1152)) 190)) (-2431 (((-1264) $ (-1152)) 135)) (-1702 (((-112) $ $) NIL))) -(((-1261) (-13 (-1094) (-10 -8 (-15 -3794 ((-379))) (-15 -3794 ((-379) (-379))) (-15 -3114 ((-379))) (-15 -3114 ((-379) (-379))) (-15 -1616 ((-379))) (-15 -1616 ((-379) (-379))) (-15 -3486 ((-379))) (-15 -3486 ((-379) (-379))) (-15 -3163 ((-379))) (-15 -3163 ((-379) (-379))) (-15 -2257 ($)) (-15 -3166 ($ $)) (-15 -3166 ($ (-1127 (-225)) (-1152))) (-15 -3166 ($ (-1127 (-225)) (-641 (-263)))) (-15 -3502 ((-1127 (-225)) $)) (-15 -3502 ($ $ (-1127 (-225)))) (-15 -2066 ((-1264) $ (-768) (-940 (-225)))) (-15 -4373 ((-641 (-263)) $)) (-15 -4373 ($ $ (-641 (-263)))) (-15 -1439 ((-1264) $ (-768) (-768))) (-15 -1414 ((-1264) $ (-918) (-918))) (-15 -2696 ((-1264) $ (-1152))) (-15 -3378 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -1768 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1768 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1768 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1768 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1768 ((-1264) $ (-379) (-379))) (-15 -1768 ((-1264) $ (-379) (-379) (-379))) (-15 -4192 ((-1264) $ (-1152))) (-15 -2431 ((-1264) $ (-1152))) (-15 -2440 ((-1264) $ (-1152))) (-15 -2912 ((-1264) $ (-1152))) (-15 -3247 ((-1264) $ (-1152))) (-15 -2823 ((-1264) $ (-379) (-379))) (-15 -2823 ((-1264) $ (-564) (-564))) (-15 -1315 ((-1264) $ (-379))) (-15 -1315 ((-1264) $ (-379) (-379) (-379))) (-15 -1676 ((-1264) $ (-379) (-379))) (-15 -1467 ((-1264) $ (-1152))) (-15 -2419 ((-1264) $ (-379))) (-15 -4295 ((-1264) $ (-379))) (-15 -3504 ((-1264) $ (-1152))) (-15 -1312 ((-1264) $ (-1152))) (-15 -1754 ((-1264) $ (-1152))) (-15 -1500 ((-1264) $ (-379) (-379) (-379))) (-15 -2933 ((-1264) $ (-379))) (-15 -3594 ((-1264) $)) (-15 -3642 ((-1264) $ (-157) (-157))) (-15 -3614 ((-1152) $ (-1152))) (-15 -3614 ((-1152) $ (-1152) (-1152))) (-15 -3614 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3689 ((-1264) $)) (-15 -2568 ((-564) $))))) (T -1261)) -((-3794 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3114 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1616 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3486 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3163 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2257 (*1 *1) (-5 *1 (-1261))) (-3166 (*1 *1 *1) (-5 *1 (-1261))) (-3166 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) (-3166 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-3502 (*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-2066 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-4373 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-1439 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1414 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2696 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3378 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1768 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1261)))) (-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1768 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1768 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1768 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4192 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2431 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2440 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2912 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3247 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1315 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1315 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1676 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1467 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2419 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1312 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1500 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2933 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-3614 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-3614 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261))))) -(-13 (-1094) (-10 -8 (-15 -3794 ((-379))) (-15 -3794 ((-379) (-379))) (-15 -3114 ((-379))) (-15 -3114 ((-379) (-379))) (-15 -1616 ((-379))) (-15 -1616 ((-379) (-379))) (-15 -3486 ((-379))) (-15 -3486 ((-379) (-379))) (-15 -3163 ((-379))) (-15 -3163 ((-379) (-379))) (-15 -2257 ($)) (-15 -3166 ($ $)) (-15 -3166 ($ (-1127 (-225)) (-1152))) (-15 -3166 ($ (-1127 (-225)) (-641 (-263)))) (-15 -3502 ((-1127 (-225)) $)) (-15 -3502 ($ $ (-1127 (-225)))) (-15 -2066 ((-1264) $ (-768) (-940 (-225)))) (-15 -4373 ((-641 (-263)) $)) (-15 -4373 ($ $ (-641 (-263)))) (-15 -1439 ((-1264) $ (-768) (-768))) (-15 -1414 ((-1264) $ (-918) (-918))) (-15 -2696 ((-1264) $ (-1152))) (-15 -3378 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -1768 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1768 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1768 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1768 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1768 ((-1264) $ (-379) (-379))) (-15 -1768 ((-1264) $ (-379) (-379) (-379))) (-15 -4192 ((-1264) $ (-1152))) (-15 -2431 ((-1264) $ (-1152))) (-15 -2440 ((-1264) $ (-1152))) (-15 -2912 ((-1264) $ (-1152))) (-15 -3247 ((-1264) $ (-1152))) (-15 -2823 ((-1264) $ (-379) (-379))) (-15 -2823 ((-1264) $ (-564) (-564))) (-15 -1315 ((-1264) $ (-379))) (-15 -1315 ((-1264) $ (-379) (-379) (-379))) (-15 -1676 ((-1264) $ (-379) (-379))) (-15 -1467 ((-1264) $ (-1152))) (-15 -2419 ((-1264) $ (-379))) (-15 -4295 ((-1264) $ (-379))) (-15 -3504 ((-1264) $ (-1152))) (-15 -1312 ((-1264) $ (-1152))) (-15 -1754 ((-1264) $ (-1152))) (-15 -1500 ((-1264) $ (-379) (-379) (-379))) (-15 -2933 ((-1264) $ (-379))) (-15 -3594 ((-1264) $)) (-15 -3642 ((-1264) $ (-157) (-157))) (-15 -3614 ((-1152) $ (-1152))) (-15 -3614 ((-1152) $ (-1152) (-1152))) (-15 -3614 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3689 ((-1264) $)) (-15 -2568 ((-564) $)))) -((-2893 (((-641 (-1152)) (-641 (-1152))) 104) (((-641 (-1152))) 96)) (-4115 (((-641 (-1152))) 94)) (-1637 (((-641 (-918)) (-641 (-918))) 69) (((-641 (-918))) 64)) (-1577 (((-641 (-768)) (-641 (-768))) 61) (((-641 (-768))) 55)) (-2314 (((-1264)) 71)) (-2057 (((-918) (-918)) 87) (((-918)) 86)) (-2857 (((-918) (-918)) 85) (((-918)) 84)) (-2692 (((-871) (-871)) 81) (((-871)) 80)) (-3090 (((-225)) 91) (((-225) (-379)) 93)) (-2662 (((-918)) 88) (((-918) (-918)) 89)) (-3464 (((-918) (-918)) 83) (((-918)) 82)) (-3898 (((-871) (-871)) 75) (((-871)) 73)) (-2664 (((-871) (-871)) 77) (((-871)) 76)) (-3442 (((-871) (-871)) 79) (((-871)) 78))) -(((-1262) (-10 -7 (-15 -3898 ((-871))) (-15 -3898 ((-871) (-871))) (-15 -2664 ((-871))) (-15 -2664 ((-871) (-871))) (-15 -3442 ((-871))) (-15 -3442 ((-871) (-871))) (-15 -2692 ((-871))) (-15 -2692 ((-871) (-871))) (-15 -3464 ((-918))) (-15 -3464 ((-918) (-918))) (-15 -1577 ((-641 (-768)))) (-15 -1577 ((-641 (-768)) (-641 (-768)))) (-15 -1637 ((-641 (-918)))) (-15 -1637 ((-641 (-918)) (-641 (-918)))) (-15 -2314 ((-1264))) (-15 -2893 ((-641 (-1152)))) (-15 -2893 ((-641 (-1152)) (-641 (-1152)))) (-15 -4115 ((-641 (-1152)))) (-15 -2857 ((-918))) (-15 -2057 ((-918))) (-15 -2857 ((-918) (-918))) (-15 -2057 ((-918) (-918))) (-15 -2662 ((-918) (-918))) (-15 -2662 ((-918))) (-15 -3090 ((-225) (-379))) (-15 -3090 ((-225))))) (T -1262)) -((-3090 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) (-2662 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2057 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2857 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2057 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2857 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-4115 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2893 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2314 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-1637 (*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-1577 (*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3464 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2692 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3442 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3442 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2664 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2664 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3898 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) -(-10 -7 (-15 -3898 ((-871))) (-15 -3898 ((-871) (-871))) (-15 -2664 ((-871))) (-15 -2664 ((-871) (-871))) (-15 -3442 ((-871))) (-15 -3442 ((-871) (-871))) (-15 -2692 ((-871))) (-15 -2692 ((-871) (-871))) (-15 -3464 ((-918))) (-15 -3464 ((-918) (-918))) (-15 -1577 ((-641 (-768)))) (-15 -1577 ((-641 (-768)) (-641 (-768)))) (-15 -1637 ((-641 (-918)))) (-15 -1637 ((-641 (-918)) (-641 (-918)))) (-15 -2314 ((-1264))) (-15 -2893 ((-641 (-1152)))) (-15 -2893 ((-641 (-1152)) (-641 (-1152)))) (-15 -4115 ((-641 (-1152)))) (-15 -2857 ((-918))) (-15 -2057 ((-918))) (-15 -2857 ((-918) (-918))) (-15 -2057 ((-918) (-918))) (-15 -2662 ((-918) (-918))) (-15 -2662 ((-918))) (-15 -3090 ((-225) (-379))) (-15 -3090 ((-225)))) -((-2514 (((-468) (-641 (-641 (-940 (-225)))) (-641 (-263))) 22) (((-468) (-641 (-641 (-940 (-225))))) 21) (((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 20)) (-3947 (((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263))) 33) (((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 32)) (-1831 (((-1260) (-468)) 48))) -(((-1263) (-10 -7 (-15 -2514 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -2514 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -2514 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -3947 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -3947 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1831 ((-1260) (-468))))) (T -1263)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-3947 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2514 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263))))) -(-10 -7 (-15 -2514 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -2514 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -2514 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -3947 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -3947 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1831 ((-1260) (-468)))) -((-3495 (($) 7)) (-1831 (((-859) $) 10))) -(((-1264) (-13 (-611 (-859)) (-10 -8 (-15 -3495 ($))))) (T -1264)) -((-3495 (*1 *1) (-5 *1 (-1264)))) -(-13 (-611 (-859)) (-10 -8 (-15 -3495 ($)))) -((-1823 (($ $ |#2|) 10))) -(((-1265 |#1| |#2|) (-10 -8 (-15 -1823 (|#1| |#1| |#2|))) (-1266 |#2|) (-363)) (T -1265)) -NIL -(-10 -8 (-15 -1823 (|#1| |#1| |#2|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3548 (((-134)) 28)) (-1831 (((-859) $) 11)) (-1293 (($) 18 T CONST)) (-1702 (((-112) $ $) 6)) (-1823 (($ $ |#1|) 29)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-3011 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))) (-3991 (*1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) (-3611 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1045)) (-5 *2 (-685 *3)))) (-3969 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998)) (-4 *2 (-1045))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3011 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3991 ($ (-767))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3021 ($ $)) (-15 -3021 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-722)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-15 -2535 (|t#1| $ $)) (-15 -3611 ((-685 |t#1|) $ $)) (-15 -3969 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-998)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -1750 (|t#1| $)) (-15 -1457 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2789 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T)) +((-1514 (((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 13)) (-3239 ((|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 15)) (-3123 (((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)) 30) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 18))) +(((-1258 |#1| |#2|) (-10 -7 (-15 -1514 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -3123 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -3123 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) (-1209) (-1209)) (T -1258)) +((-3123 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-3239 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))) (-1514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5))))) +(-10 -7 (-15 -1514 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -3239 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -3123 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -3123 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) +((-2310 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3991 (($ (-767)) NIL (|has| |#1| (-23)))) (-1332 (($ (-641 |#1|)) 11)) (-2246 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4407)))) (-4294 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2441 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4407))) (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-846))))) (-3811 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2318 (((-112) $ (-767)) NIL)) (-3750 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4407)))) (-2957 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-4157 (($) NIL T CONST)) (-2443 (($ $) NIL (|has| $ (-6 -4407)))) (-2493 (($ $) NIL)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3239 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4406))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4406)))) (-1466 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4407)))) (-1407 ((|#1| $ (-564)) NIL)) (-3847 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3534 (((-641 |#1|) $) 15 (|has| $ (-6 -4406)))) (-3611 (((-685 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4121 (($ (-767) |#1|) NIL)) (-1751 (((-112) $ (-767)) NIL)) (-1913 (((-564) $) NIL (|has| (-564) (-846)))) (-1501 (($ $ $) NIL (|has| |#1| (-846)))) (-2988 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1834 (((-641 |#1|) $) NIL (|has| $ (-6 -4406)))) (-3114 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-1785 (((-564) $) NIL (|has| (-564) (-846)))) (-2622 (($ $ $) NIL (|has| |#1| (-846)))) (-1456 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1457 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1681 (((-112) $ (-767)) NIL)) (-1750 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1418 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4116 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3487 (((-641 (-564)) $) NIL)) (-2550 (((-112) (-564) $) NIL)) (-3840 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1995 ((|#1| $) NIL (|has| (-564) (-846)))) (-3393 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2981 (($ $ |#1|) NIL (|has| $ (-6 -4407)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3608 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-4324 (((-641 |#1|) $) NIL)) (-3282 (((-112) $) NIL)) (-2348 (($) NIL)) (-4353 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2535 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-1996 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3969 (($ $ $) NIL (|has| |#1| (-1045)))) (-3852 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#1| (-1094))))) (-3000 (($ $ $ (-564)) NIL (|has| $ (-6 -4407)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-2335 (($ (-641 |#1|)) 10)) (-3533 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2322 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-2313 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4406)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2953 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2921 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3021 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3011 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1259 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -1332 ($ (-641 |#1|))))) (-1209)) (T -1259)) +((-1332 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3))))) +(-13 (-1257 |#1|) (-10 -8 (-15 -1332 ($ (-641 |#1|))))) +((-2310 (((-112) $ $) NIL)) (-4038 (((-1152) $ (-1152)) 109) (((-1152) $ (-1152) (-1152)) 107) (((-1152) $ (-1152) (-641 (-1152))) 106)) (-2269 (($) 69)) (-3790 (((-1264) $ (-468) (-917)) 54)) (-3026 (((-1264) $ (-917) (-1152)) 91) (((-1264) $ (-917) (-870)) 92)) (-2143 (((-1264) $ (-917) (-379) (-379)) 57)) (-3195 (((-1264) $ (-1152)) 86)) (-3747 (((-1264) $ (-917) (-1152)) 96)) (-3268 (((-1264) $ (-917) (-379) (-379)) 58)) (-4172 (((-1264) $ (-917) (-917)) 55)) (-4015 (((-1264) $) 87)) (-1323 (((-1264) $ (-917) (-1152)) 95)) (-3005 (((-1264) $ (-468) (-917)) 40)) (-3823 (((-1264) $ (-917) (-1152)) 94)) (-4142 (((-641 (-263)) $) 29) (($ $ (-641 (-263))) 30)) (-3940 (((-1264) $ (-767) (-767)) 52)) (-2453 (($ $) 71) (($ (-468) (-641 (-263))) 72)) (-1418 (((-1152) $) NIL)) (-3076 (((-564) $) 47)) (-3840 (((-1114) $) NIL)) (-2418 (((-1259 (-3 (-468) "undefined")) $) 46)) (-4089 (((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3823 (-564)) (|:| -2114 (-564)) (|:| |spline| (-564)) (|:| -3491 (-564)) (|:| |axesColor| (-870)) (|:| -3026 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564)))) $) 45)) (-4367 (((-1264) $ (-917) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-870) (-564) (-870) (-564)) 85)) (-1776 (((-641 (-939 (-225))) $) NIL)) (-4182 (((-468) $ (-917)) 42)) (-2478 (((-1264) $ (-767) (-767) (-917) (-917)) 50)) (-3549 (((-1264) $ (-1152)) 97)) (-2114 (((-1264) $ (-917) (-1152)) 93)) (-2322 (((-858) $) 104)) (-1600 (((-1264) $) 98)) (-3491 (((-1264) $ (-917) (-1152)) 89) (((-1264) $ (-917) (-870)) 90)) (-2921 (((-112) $ $) NIL))) +(((-1260) (-13 (-1094) (-10 -8 (-15 -1776 ((-641 (-939 (-225))) $)) (-15 -2269 ($)) (-15 -2453 ($ $)) (-15 -4142 ((-641 (-263)) $)) (-15 -4142 ($ $ (-641 (-263)))) (-15 -2453 ($ (-468) (-641 (-263)))) (-15 -4367 ((-1264) $ (-917) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-870) (-564) (-870) (-564))) (-15 -4089 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3823 (-564)) (|:| -2114 (-564)) (|:| |spline| (-564)) (|:| -3491 (-564)) (|:| |axesColor| (-870)) (|:| -3026 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564)))) $)) (-15 -2418 ((-1259 (-3 (-468) "undefined")) $)) (-15 -3195 ((-1264) $ (-1152))) (-15 -3005 ((-1264) $ (-468) (-917))) (-15 -4182 ((-468) $ (-917))) (-15 -3491 ((-1264) $ (-917) (-1152))) (-15 -3491 ((-1264) $ (-917) (-870))) (-15 -3026 ((-1264) $ (-917) (-1152))) (-15 -3026 ((-1264) $ (-917) (-870))) (-15 -3823 ((-1264) $ (-917) (-1152))) (-15 -1323 ((-1264) $ (-917) (-1152))) (-15 -2114 ((-1264) $ (-917) (-1152))) (-15 -3549 ((-1264) $ (-1152))) (-15 -1600 ((-1264) $)) (-15 -2478 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -3268 ((-1264) $ (-917) (-379) (-379))) (-15 -2143 ((-1264) $ (-917) (-379) (-379))) (-15 -3747 ((-1264) $ (-917) (-1152))) (-15 -3940 ((-1264) $ (-767) (-767))) (-15 -3790 ((-1264) $ (-468) (-917))) (-15 -4172 ((-1264) $ (-917) (-917))) (-15 -4038 ((-1152) $ (-1152))) (-15 -4038 ((-1152) $ (-1152) (-1152))) (-15 -4038 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -4015 ((-1264) $)) (-15 -3076 ((-564) $)) (-15 -2322 ((-858) $))))) (T -1260)) +((-2322 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1260)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-641 (-939 (-225)))) (-5 *1 (-1260)))) (-2269 (*1 *1) (-5 *1 (-1260))) (-2453 (*1 *1 *1) (-5 *1 (-1260))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-2453 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) (-4367 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3823 (-564)) (|:| -2114 (-564)) (|:| |spline| (-564)) (|:| -3491 (-564)) (|:| |axesColor| (-870)) (|:| -3026 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564))))) (-5 *1 (-1260)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3005 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4182 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1260)))) (-3491 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3491 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3026 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3026 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3823 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1323 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2114 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2478 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3268 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2143 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3747 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3940 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3790 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4172 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4038 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-4038 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-4038 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260))))) +(-13 (-1094) (-10 -8 (-15 -1776 ((-641 (-939 (-225))) $)) (-15 -2269 ($)) (-15 -2453 ($ $)) (-15 -4142 ((-641 (-263)) $)) (-15 -4142 ($ $ (-641 (-263)))) (-15 -2453 ($ (-468) (-641 (-263)))) (-15 -4367 ((-1264) $ (-917) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-870) (-564) (-870) (-564))) (-15 -4089 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3823 (-564)) (|:| -2114 (-564)) (|:| |spline| (-564)) (|:| -3491 (-564)) (|:| |axesColor| (-870)) (|:| -3026 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564)))) $)) (-15 -2418 ((-1259 (-3 (-468) "undefined")) $)) (-15 -3195 ((-1264) $ (-1152))) (-15 -3005 ((-1264) $ (-468) (-917))) (-15 -4182 ((-468) $ (-917))) (-15 -3491 ((-1264) $ (-917) (-1152))) (-15 -3491 ((-1264) $ (-917) (-870))) (-15 -3026 ((-1264) $ (-917) (-1152))) (-15 -3026 ((-1264) $ (-917) (-870))) (-15 -3823 ((-1264) $ (-917) (-1152))) (-15 -1323 ((-1264) $ (-917) (-1152))) (-15 -2114 ((-1264) $ (-917) (-1152))) (-15 -3549 ((-1264) $ (-1152))) (-15 -1600 ((-1264) $)) (-15 -2478 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -3268 ((-1264) $ (-917) (-379) (-379))) (-15 -2143 ((-1264) $ (-917) (-379) (-379))) (-15 -3747 ((-1264) $ (-917) (-1152))) (-15 -3940 ((-1264) $ (-767) (-767))) (-15 -3790 ((-1264) $ (-468) (-917))) (-15 -4172 ((-1264) $ (-917) (-917))) (-15 -4038 ((-1152) $ (-1152))) (-15 -4038 ((-1152) $ (-1152) (-1152))) (-15 -4038 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -4015 ((-1264) $)) (-15 -3076 ((-564) $)) (-15 -2322 ((-858) $)))) +((-2310 (((-112) $ $) NIL)) (-1598 (((-1264) $ (-379)) 172) (((-1264) $ (-379) (-379) (-379)) 173)) (-4038 (((-1152) $ (-1152)) 180) (((-1152) $ (-1152) (-1152)) 178) (((-1152) $ (-1152) (-641 (-1152))) 177)) (-2275 (($) 67)) (-4077 (((-1264) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1264) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1264) $ (-379) (-379)) 148) (((-1264) $ (-379) (-379) (-379)) 155)) (-3273 (((-379)) 125) (((-379) (-379)) 126)) (-1982 (((-379)) 120) (((-379) (-379)) 122)) (-2051 (((-379)) 123) (((-379) (-379)) 124)) (-1298 (((-379)) 129) (((-379) (-379)) 130)) (-4125 (((-379)) 127) (((-379) (-379)) 128)) (-2143 (((-1264) $ (-379) (-379)) 174)) (-3195 (((-1264) $ (-1152)) 156)) (-4295 (((-1127 (-225)) $) 68) (($ $ (-1127 (-225))) 69)) (-4316 (((-1264) $ (-1152)) 188)) (-1564 (((-1264) $ (-1152)) 189)) (-3043 (((-1264) $ (-379) (-379)) 154) (((-1264) $ (-564) (-564)) 171)) (-4172 (((-1264) $ (-917) (-917)) 163)) (-4015 (((-1264) $) 140)) (-4199 (((-1264) $ (-1152)) 187)) (-2706 (((-1264) $ (-1152)) 137)) (-4142 (((-641 (-263)) $) 70) (($ $ (-641 (-263))) 71)) (-3940 (((-1264) $ (-767) (-767)) 162)) (-4045 (((-1264) $ (-767) (-939 (-225))) 194)) (-1316 (($ $) 73) (($ (-1127 (-225)) (-1152)) 74) (($ (-1127 (-225)) (-641 (-263))) 75)) (-3302 (((-1264) $ (-379) (-379) (-379)) 134)) (-1418 (((-1152) $) NIL)) (-3076 (((-564) $) 131)) (-1673 (((-1264) $ (-379)) 175)) (-3361 (((-1264) $ (-379)) 192)) (-3840 (((-1114) $) NIL)) (-1489 (((-1264) $ (-379)) 191)) (-3868 (((-1264) $ (-1152)) 139)) (-2478 (((-1264) $ (-767) (-767) (-917) (-917)) 161)) (-3589 (((-1264) $ (-1152)) 136)) (-3549 (((-1264) $ (-1152)) 138)) (-3155 (((-1264) $ (-157) (-157)) 160)) (-2322 (((-858) $) 169)) (-1600 (((-1264) $) 141)) (-3956 (((-1264) $ (-1152)) 190)) (-3491 (((-1264) $ (-1152)) 135)) (-2921 (((-112) $ $) NIL))) +(((-1261) (-13 (-1094) (-10 -8 (-15 -1982 ((-379))) (-15 -1982 ((-379) (-379))) (-15 -2051 ((-379))) (-15 -2051 ((-379) (-379))) (-15 -3273 ((-379))) (-15 -3273 ((-379) (-379))) (-15 -4125 ((-379))) (-15 -4125 ((-379) (-379))) (-15 -1298 ((-379))) (-15 -1298 ((-379) (-379))) (-15 -2275 ($)) (-15 -1316 ($ $)) (-15 -1316 ($ (-1127 (-225)) (-1152))) (-15 -1316 ($ (-1127 (-225)) (-641 (-263)))) (-15 -4295 ((-1127 (-225)) $)) (-15 -4295 ($ $ (-1127 (-225)))) (-15 -4045 ((-1264) $ (-767) (-939 (-225)))) (-15 -4142 ((-641 (-263)) $)) (-15 -4142 ($ $ (-641 (-263)))) (-15 -3940 ((-1264) $ (-767) (-767))) (-15 -4172 ((-1264) $ (-917) (-917))) (-15 -3195 ((-1264) $ (-1152))) (-15 -2478 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -4077 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -4077 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4077 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4077 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -4077 ((-1264) $ (-379) (-379))) (-15 -4077 ((-1264) $ (-379) (-379) (-379))) (-15 -3549 ((-1264) $ (-1152))) (-15 -3491 ((-1264) $ (-1152))) (-15 -3589 ((-1264) $ (-1152))) (-15 -2706 ((-1264) $ (-1152))) (-15 -3868 ((-1264) $ (-1152))) (-15 -3043 ((-1264) $ (-379) (-379))) (-15 -3043 ((-1264) $ (-564) (-564))) (-15 -1598 ((-1264) $ (-379))) (-15 -1598 ((-1264) $ (-379) (-379) (-379))) (-15 -2143 ((-1264) $ (-379) (-379))) (-15 -4199 ((-1264) $ (-1152))) (-15 -1489 ((-1264) $ (-379))) (-15 -3361 ((-1264) $ (-379))) (-15 -4316 ((-1264) $ (-1152))) (-15 -1564 ((-1264) $ (-1152))) (-15 -3956 ((-1264) $ (-1152))) (-15 -3302 ((-1264) $ (-379) (-379) (-379))) (-15 -1673 ((-1264) $ (-379))) (-15 -4015 ((-1264) $)) (-15 -3155 ((-1264) $ (-157) (-157))) (-15 -4038 ((-1152) $ (-1152))) (-15 -4038 ((-1152) $ (-1152) (-1152))) (-15 -4038 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1600 ((-1264) $)) (-15 -3076 ((-564) $))))) (T -1261)) +((-1982 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2051 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2051 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3273 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4125 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1298 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1298 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2275 (*1 *1) (-5 *1 (-1261))) (-1316 (*1 *1 *1) (-5 *1 (-1261))) (-1316 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) (-1316 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-4045 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-3940 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4172 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2478 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4077 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1261)))) (-4077 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4077 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4077 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4077 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3491 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3589 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3043 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3043 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1598 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1598 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1564 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3956 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3302 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1673 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3155 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4038 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-4038 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-4038 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261))))) +(-13 (-1094) (-10 -8 (-15 -1982 ((-379))) (-15 -1982 ((-379) (-379))) (-15 -2051 ((-379))) (-15 -2051 ((-379) (-379))) (-15 -3273 ((-379))) (-15 -3273 ((-379) (-379))) (-15 -4125 ((-379))) (-15 -4125 ((-379) (-379))) (-15 -1298 ((-379))) (-15 -1298 ((-379) (-379))) (-15 -2275 ($)) (-15 -1316 ($ $)) (-15 -1316 ($ (-1127 (-225)) (-1152))) (-15 -1316 ($ (-1127 (-225)) (-641 (-263)))) (-15 -4295 ((-1127 (-225)) $)) (-15 -4295 ($ $ (-1127 (-225)))) (-15 -4045 ((-1264) $ (-767) (-939 (-225)))) (-15 -4142 ((-641 (-263)) $)) (-15 -4142 ($ $ (-641 (-263)))) (-15 -3940 ((-1264) $ (-767) (-767))) (-15 -4172 ((-1264) $ (-917) (-917))) (-15 -3195 ((-1264) $ (-1152))) (-15 -2478 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -4077 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -4077 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4077 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4077 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -4077 ((-1264) $ (-379) (-379))) (-15 -4077 ((-1264) $ (-379) (-379) (-379))) (-15 -3549 ((-1264) $ (-1152))) (-15 -3491 ((-1264) $ (-1152))) (-15 -3589 ((-1264) $ (-1152))) (-15 -2706 ((-1264) $ (-1152))) (-15 -3868 ((-1264) $ (-1152))) (-15 -3043 ((-1264) $ (-379) (-379))) (-15 -3043 ((-1264) $ (-564) (-564))) (-15 -1598 ((-1264) $ (-379))) (-15 -1598 ((-1264) $ (-379) (-379) (-379))) (-15 -2143 ((-1264) $ (-379) (-379))) (-15 -4199 ((-1264) $ (-1152))) (-15 -1489 ((-1264) $ (-379))) (-15 -3361 ((-1264) $ (-379))) (-15 -4316 ((-1264) $ (-1152))) (-15 -1564 ((-1264) $ (-1152))) (-15 -3956 ((-1264) $ (-1152))) (-15 -3302 ((-1264) $ (-379) (-379) (-379))) (-15 -1673 ((-1264) $ (-379))) (-15 -4015 ((-1264) $)) (-15 -3155 ((-1264) $ (-157) (-157))) (-15 -4038 ((-1152) $ (-1152))) (-15 -4038 ((-1152) $ (-1152) (-1152))) (-15 -4038 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1600 ((-1264) $)) (-15 -3076 ((-564) $)))) +((-2491 (((-641 (-1152)) (-641 (-1152))) 104) (((-641 (-1152))) 96)) (-2123 (((-641 (-1152))) 94)) (-2218 (((-641 (-917)) (-641 (-917))) 69) (((-641 (-917))) 64)) (-2863 (((-641 (-767)) (-641 (-767))) 61) (((-641 (-767))) 55)) (-1649 (((-1264)) 71)) (-2070 (((-917) (-917)) 87) (((-917)) 86)) (-3364 (((-917) (-917)) 85) (((-917)) 84)) (-4213 (((-870) (-870)) 81) (((-870)) 80)) (-1809 (((-225)) 91) (((-225) (-379)) 93)) (-2042 (((-917)) 88) (((-917) (-917)) 89)) (-2024 (((-917) (-917)) 83) (((-917)) 82)) (-3626 (((-870) (-870)) 75) (((-870)) 73)) (-2063 (((-870) (-870)) 77) (((-870)) 76)) (-1805 (((-870) (-870)) 79) (((-870)) 78))) +(((-1262) (-10 -7 (-15 -3626 ((-870))) (-15 -3626 ((-870) (-870))) (-15 -2063 ((-870))) (-15 -2063 ((-870) (-870))) (-15 -1805 ((-870))) (-15 -1805 ((-870) (-870))) (-15 -4213 ((-870))) (-15 -4213 ((-870) (-870))) (-15 -2024 ((-917))) (-15 -2024 ((-917) (-917))) (-15 -2863 ((-641 (-767)))) (-15 -2863 ((-641 (-767)) (-641 (-767)))) (-15 -2218 ((-641 (-917)))) (-15 -2218 ((-641 (-917)) (-641 (-917)))) (-15 -1649 ((-1264))) (-15 -2491 ((-641 (-1152)))) (-15 -2491 ((-641 (-1152)) (-641 (-1152)))) (-15 -2123 ((-641 (-1152)))) (-15 -3364 ((-917))) (-15 -2070 ((-917))) (-15 -3364 ((-917) (-917))) (-15 -2070 ((-917) (-917))) (-15 -2042 ((-917) (-917))) (-15 -2042 ((-917))) (-15 -1809 ((-225) (-379))) (-15 -1809 ((-225))))) (T -1262)) +((-1809 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) (-2042 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2070 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-3364 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2123 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2491 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-1649 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262)))) (-2218 (*1 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262)))) (-2863 (*1 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2024 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-4213 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-1805 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-2063 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-3626 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))) +(-10 -7 (-15 -3626 ((-870))) (-15 -3626 ((-870) (-870))) (-15 -2063 ((-870))) (-15 -2063 ((-870) (-870))) (-15 -1805 ((-870))) (-15 -1805 ((-870) (-870))) (-15 -4213 ((-870))) (-15 -4213 ((-870) (-870))) (-15 -2024 ((-917))) (-15 -2024 ((-917) (-917))) (-15 -2863 ((-641 (-767)))) (-15 -2863 ((-641 (-767)) (-641 (-767)))) (-15 -2218 ((-641 (-917)))) (-15 -2218 ((-641 (-917)) (-641 (-917)))) (-15 -1649 ((-1264))) (-15 -2491 ((-641 (-1152)))) (-15 -2491 ((-641 (-1152)) (-641 (-1152)))) (-15 -2123 ((-641 (-1152)))) (-15 -3364 ((-917))) (-15 -2070 ((-917))) (-15 -3364 ((-917) (-917))) (-15 -2070 ((-917) (-917))) (-15 -2042 ((-917) (-917))) (-15 -2042 ((-917))) (-15 -1809 ((-225) (-379))) (-15 -1809 ((-225)))) +((-3092 (((-468) (-641 (-641 (-939 (-225)))) (-641 (-263))) 22) (((-468) (-641 (-641 (-939 (-225))))) 21) (((-468) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263))) 20)) (-2908 (((-1260) (-641 (-641 (-939 (-225)))) (-641 (-263))) 33) (((-1260) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263))) 32)) (-2322 (((-1260) (-468)) 48))) +(((-1263) (-10 -7 (-15 -3092 ((-468) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -3092 ((-468) (-641 (-641 (-939 (-225)))))) (-15 -3092 ((-468) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -2908 ((-1260) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -2908 ((-1260) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -2322 ((-1260) (-468))))) (T -1263)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-2908 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-3092 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263))))) +(-10 -7 (-15 -3092 ((-468) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -3092 ((-468) (-641 (-641 (-939 (-225)))))) (-15 -3092 ((-468) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -2908 ((-1260) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -2908 ((-1260) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -2322 ((-1260) (-468)))) +((-3734 (($) 7)) (-2322 (((-858) $) 10))) +(((-1264) (-13 (-611 (-858)) (-10 -8 (-15 -3734 ($))))) (T -1264)) +((-3734 (*1 *1) (-5 *1 (-1264)))) +(-13 (-611 (-858)) (-10 -8 (-15 -3734 ($)))) +((-3034 (($ $ |#2|) 10))) +(((-1265 |#1| |#2|) (-10 -8 (-15 -3034 (|#1| |#1| |#2|))) (-1266 |#2|) (-363)) (T -1265)) +NIL +(-10 -8 (-15 -3034 (|#1| |#1| |#2|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-3480 (((-134)) 28)) (-2322 (((-858) $) 11)) (-2389 (($) 18 T CONST)) (-2921 (((-112) $ $) 6)) (-3034 (($ $ |#1|) 29)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-1266 |#1|) (-140) (-363)) (T -1266)) -((-1823 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) (-3548 (*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) -(-13 (-714 |t#1|) (-10 -8 (-15 -1823 ($ $ |t#1|)) (-15 -3548 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T)) -((-2468 (((-641 (-1203 |#1|)) (-1170) (-1203 |#1|)) 83)) (-3789 (((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|))) 63)) (-1445 (((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))) 74)) (-2299 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 65)) (-1471 (((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170)) 32)) (-1852 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 64))) -(((-1267 |#1|) (-10 -7 (-15 -2299 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -1852 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -3789 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -1471 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2468 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -1445 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))))) (-363)) (T -1267)) -((-1445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) (-5 *5 (-1150 *4)))) (-2468 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5)))) (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5))))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363))))) -(-10 -7 (-15 -2299 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -1852 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -3789 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -1471 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2468 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -1445 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))))) -((-1509 (((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 85)) (-2359 (((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 84))) -(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2359 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -1509 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) (-349) (-1235 |#1|) (-1235 |#2|) (-409 |#2| |#3|)) (T -1268)) -((-1509 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-2359 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3331 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) -(-10 -7 (-15 -2359 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -1509 ((-2 (|:| -3331 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) -((-1817 (((-112) $ $) NIL)) (-4194 (((-1129) $) 11)) (-2627 (((-1129) $) 9)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1269) (-13 (-1077) (-10 -8 (-15 -2627 ((-1129) $)) (-15 -4194 ((-1129) $))))) (T -1269)) -((-2627 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) -(-13 (-1077) (-10 -8 (-15 -2627 ((-1129) $)) (-15 -4194 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-4270 (((-1129) $) 9)) (-1831 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1702 (((-112) $ $) NIL))) -(((-1270) (-13 (-1077) (-10 -8 (-15 -4270 ((-1129) $))))) (T -1270)) -((-4270 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270))))) -(-13 (-1077) (-10 -8 (-15 -4270 ((-1129) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 56)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) NIL)) (-2949 (((-112) $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1831 (((-859) $) 79) (($ (-564)) NIL) (($ |#4|) 63) ((|#4| $) 68) (($ |#1|) NIL (|has| |#1| (-172)))) (-2219 (((-768)) NIL T CONST)) (-1489 (((-1264) (-768)) 16)) (-1293 (($) 37 T CONST)) (-1300 (($) 82 T CONST)) (-1702 (((-112) $ $) 85)) (-1823 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1808 (($ $) 87) (($ $ $) NIL)) (-1797 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 89) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1271 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1823 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1489 ((-1264) (-768))))) (-1046) (-847) (-790) (-946 |#1| |#3| |#2|) (-641 |#2|) (-641 (-768)) (-768)) (T -1271)) -((-1823 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-790)) (-14 *6 (-641 *3)) (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) (-14 *7 (-641 (-768))) (-14 *8 (-768)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-14 *8 (-641 *5)) (-5 *2 (-1264)) (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) (-14 *9 (-641 *3)) (-14 *10 *3)))) -(-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1823 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1489 ((-1264) (-768))))) -((-1817 (((-112) $ $) NIL)) (-3250 (((-641 (-2 (|:| -3689 $) (|:| -1669 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2951 (((-641 $) (-641 |#4|)) 95)) (-3209 (((-641 |#3|) $) NIL)) (-3449 (((-112) $) NIL)) (-3961 (((-112) $) NIL (|has| |#1| (-556)))) (-1712 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4136 ((|#4| |#4| $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -1818 $) (|:| |upper| $)) $ |#3|) NIL)) (-4010 (((-112) $ (-768)) NIL)) (-3752 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1778 (($) NIL T CONST)) (-3602 (((-112) $) NIL (|has| |#1| (-556)))) (-2495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1495 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2536 (((-112) $) NIL (|has| |#1| (-556)))) (-2559 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 30)) (-2338 (((-641 |#4|) (-641 |#4|) $) 27 (|has| |#1| (-556)))) (-3814 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2347 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2237 (($ (-641 |#4|)) NIL)) (-3314 (((-3 $ "failed") $) 77)) (-1470 ((|#4| |#4| $) 82)) (-3337 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2576 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1678 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3827 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-1988 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -3689 (-641 |#4|)) (|:| -1669 (-641 |#4|))) $) NIL)) (-1433 (((-641 |#4|) $) NIL (|has| $ (-6 -4406)))) (-2021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1543 ((|#3| $) 83)) (-2324 (((-112) $ (-768)) NIL)) (-2640 (((-641 |#4|) $) 31 (|has| $ (-6 -4406)))) (-2516 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2920 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 34) (((-3 $ "failed") (-641 |#4|)) 37)) (-2250 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4407)))) (-2449 (($ (-1 |#4| |#4|) $) NIL)) (-3580 (((-641 |#3|) $) NIL)) (-3879 (((-112) |#3| $) NIL)) (-1713 (((-112) $ (-768)) NIL)) (-2723 (((-1152) $) NIL)) (-2598 (((-3 |#4| "failed") $) NIL)) (-3123 (((-641 |#4|) $) 53)) (-4281 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2356 ((|#4| |#4| $) 81)) (-3984 (((-112) $ $) 92)) (-2706 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1482 ((|#4| |#4| $) NIL)) (-2780 (((-1114) $) NIL)) (-3303 (((-3 |#4| "failed") $) 76)) (-3995 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3824 (((-3 $ "failed") $ |#4|) NIL)) (-3951 (($ $ |#4|) NIL)) (-4077 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2633 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3565 (((-112) $ $) NIL)) (-4284 (((-112) $) 74)) (-4012 (($) 45)) (-1619 (((-768) $) NIL)) (-2791 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1991 (($ $) NIL)) (-2511 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1842 (($ (-641 |#4|)) NIL)) (-4287 (($ $ |#3|) NIL)) (-1887 (($ $ |#3|) NIL)) (-3728 (($ $) NIL)) (-3111 (($ $ |#3|) NIL)) (-1831 (((-859) $) NIL) (((-641 |#4|) $) 62)) (-4321 (((-768) $) NIL (|has| |#3| (-368)))) (-1474 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43) (((-3 $ "failed") (-641 |#4|)) 44)) (-3044 (((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72) (((-641 $) (-641 |#4|)) 73)) (-1395 (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 26) (((-3 (-2 (|:| |bas| $) (|:| -3155 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2885 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-1963 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2014 (((-641 |#3|) $) NIL)) (-1484 (((-112) |#3| $) NIL)) (-1702 (((-112) $ $) NIL)) (-2828 (((-768) $) NIL (|has| $ (-6 -4406))))) -(((-1272 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2920 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2920 ((-3 $ "failed") (-641 |#4|))) (-15 -1474 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1474 ((-3 $ "failed") (-641 |#4|))) (-15 -3044 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3044 ((-641 $) (-641 |#4|))))) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1272)) -((-2920 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-2920 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-1474 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-1474 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-3044 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) (-5 *1 (-1272 *6 *7 *8 *9)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) (-5 *1 (-1272 *4 *5 *6 *7))))) -(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2920 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2920 ((-3 $ "failed") (-641 |#4|))) (-15 -1474 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1474 ((-3 $ "failed") (-641 |#4|))) (-15 -3044 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3044 ((-641 $) (-641 |#4|))))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-4088 (((-3 $ "failed") $ $) 19)) (-1778 (($) 17 T CONST)) (-3733 (((-3 $ "failed") $) 33)) (-2949 (((-112) $) 31)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) -(((-1273 |#1|) (-140) (-1046)) (T -1273)) -NIL -(-13 (-1046) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) -((-1817 (((-112) $ $) 66)) (-1615 (((-112) $) NIL)) (-2412 (((-641 |#1|) $) 52)) (-3520 (($ $ (-768)) 46)) (-4088 (((-3 $ "failed") $ $) NIL)) (-4060 (($ $ (-768)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-1778 (($) NIL T CONST)) (-2113 (($ $ $) 69) (($ $ (-816 |#1|)) 55) (($ $ |#1|) 59)) (-2347 (((-3 (-816 |#1|) "failed") $) NIL)) (-2237 (((-816 |#1|) $) NIL)) (-3396 (($ $) 39)) (-3733 (((-3 $ "failed") $) NIL)) (-3124 (((-112) $) NIL)) (-1987 (($ $) NIL)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-1383 (($ (-816 |#1|) |#2|) 38)) (-3156 (($ $) 40)) (-1557 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 12)) (-1525 (((-816 |#1|) $) NIL)) (-4029 (((-816 |#1|) $) 41)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2674 (($ $ $) 68) (($ $ (-816 |#1|)) 57) (($ $ |#1|) 61)) (-1338 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3356 (((-816 |#1|) $) 35)) (-3370 ((|#2| $) 37)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-1619 (((-768) $) 43)) (-3859 (((-112) $) 47)) (-1809 ((|#2| $) NIL)) (-1831 (((-859) $) NIL) (($ (-816 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-816 |#1|)) NIL)) (-2860 ((|#2| $ $) 75) ((|#2| $ (-816 |#1|)) NIL)) (-2219 (((-768)) NIL T CONST)) (-1293 (($) 13 T CONST)) (-1300 (($) 19 T CONST)) (-1430 (((-641 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1702 (((-112) $ $) 44)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 28)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 67) (($ |#2| (-816 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1274 |#1| |#2|) (-13 (-382 |#2| (-816 |#1|)) (-1280 |#1| |#2|)) (-847) (-1046)) (T -1274)) -NIL -(-13 (-382 |#2| (-816 |#1|)) (-1280 |#1| |#2|)) -((-2358 ((|#3| |#3| (-768)) 30)) (-4326 ((|#3| |#3| (-768)) 36)) (-2129 ((|#3| |#3| |#3| (-768)) 37))) -(((-1275 |#1| |#2| |#3|) (-10 -7 (-15 -4326 (|#3| |#3| (-768))) (-15 -2358 (|#3| |#3| (-768))) (-15 -2129 (|#3| |#3| |#3| (-768)))) (-13 (-1046) (-714 (-407 (-564)))) (-847) (-1280 |#2| |#1|)) (T -1275)) -((-2129 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-2358 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-4326 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))) -(-10 -7 (-15 -4326 (|#3| |#3| (-768))) (-15 -2358 (|#3| |#3| (-768))) (-15 -2129 (|#3| |#3| |#3| (-768)))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2412 (((-641 |#1|) $) 41)) (-4088 (((-3 $ "failed") $ $) 19)) (-4060 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-1778 (($) 17 T CONST)) (-2113 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2347 (((-3 (-816 |#1|) "failed") $) 65)) (-2237 (((-816 |#1|) $) 66)) (-3733 (((-3 $ "failed") $) 33)) (-3124 (((-112) $) 46)) (-1987 (($ $) 45)) (-2949 (((-112) $) 31)) (-2003 (((-112) $) 51)) (-1383 (($ (-816 |#1|) |#2|) 52)) (-3156 (($ $) 50)) (-1557 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-1525 (((-816 |#1|) $) 62)) (-2449 (($ (-1 |#2| |#2|) $) 42)) (-2674 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-3859 (((-112) $) 48)) (-1809 ((|#2| $) 47)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-2860 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1276 |#1| |#2|) (-140) (-847) (-1046)) (T -1276)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))) (-2860 (*1 *2 *1 *3) (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-2860 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-2674 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2674 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2674 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2113 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2113 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1383 (*1 *1 *2 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1046)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1831 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-1987 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-4060 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)) (-4 *3 (-172)))) (-4060 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-4 *4 (-172)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-641 *3))))) -(-13 (-1046) (-1273 |t#2|) (-1035 (-816 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1525 ((-816 |t#1|) $)) (-15 -1557 ((-2 (|:| |k| (-816 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2860 (|t#2| $ (-816 |t#1|))) (-15 -2860 (|t#2| $ $)) (-15 -2674 ($ $ |t#1|)) (-15 -2674 ($ $ (-816 |t#1|))) (-15 -2674 ($ $ $)) (-15 -2113 ($ $ |t#1|)) (-15 -2113 ($ $ (-816 |t#1|))) (-15 -2113 ($ $ $)) (-15 -1383 ($ (-816 |t#1|) |t#2|)) (-15 -2003 ((-112) $)) (-15 -3156 ($ $)) (-15 -1831 ($ |t#1|)) (-15 -3859 ((-112) $)) (-15 -1809 (|t#2| $)) (-15 -3124 ((-112) $)) (-15 -1987 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -4060 ($ $ $)) (-15 -4060 ($ $ (-768)))) |%noBranch|) (-15 -2449 ($ (-1 |t#2| |t#2|) $)) (-15 -2412 ((-641 |t#1|) $)) (IF (|has| |t#2| (-6 -4399)) (-6 -4399) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-816 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-714 |#2|) |has| |#2| (-172)) ((-723) . T) ((-1035 #0#) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T)) -((-4048 (((-112) $) 14)) (-1484 (((-112) $) 13)) (-3962 (($ $) 18) (($ $ (-768)) 20))) -(((-1277 |#1| |#2|) (-10 -8 (-15 -3962 (|#1| |#1| (-768))) (-15 -3962 (|#1| |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -1484 ((-112) |#1|))) (-1278 |#2|) (-363)) (T -1277)) -NIL -(-10 -8 (-15 -3962 (|#1| |#1| (-768))) (-15 -3962 (|#1| |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -1484 ((-112) |#1|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-3784 (((-2 (|:| -1674 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-1537 (($ $) 41)) (-1932 (((-112) $) 39)) (-4048 (((-112) $) 95)) (-4142 (((-768)) 91)) (-4088 (((-3 $ "failed") $ $) 19)) (-2427 (($ $) 74)) (-3399 (((-418 $) $) 73)) (-3554 (((-112) $ $) 60)) (-1778 (($) 17 T CONST)) (-2347 (((-3 |#1| "failed") $) 102)) (-2237 ((|#1| $) 103)) (-1449 (($ $ $) 56)) (-3733 (((-3 $ "failed") $) 33)) (-1424 (($ $ $) 57)) (-3300 (((-2 (|:| -2860 (-641 $)) (|:| -1426 $)) (-641 $)) 52)) (-3340 (($ $ (-768)) 88 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1420 (((-112) $) 72)) (-2155 (((-830 (-918)) $) 85 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2949 (((-112) $) 31)) (-2993 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2740 (($ $ $) 47) (($ (-641 $)) 46)) (-2723 (((-1152) $) 9)) (-3315 (($ $) 71)) (-1927 (((-112) $) 94)) (-2780 (((-1114) $) 10)) (-1574 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2777 (($ $ $) 49) (($ (-641 $)) 48)) (-3070 (((-418 $) $) 75)) (-4085 (((-830 (-918))) 92)) (-3380 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1426 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1403 (((-3 $ "failed") $ $) 43)) (-2106 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3920 (((-768) $) 59)) (-1922 (((-2 (|:| -4347 $) (|:| -1678 $)) $ $) 58)) (-1820 (((-3 (-768) "failed") $ $) 86 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3548 (((-134)) 100)) (-1619 (((-830 (-918)) $) 93)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-4018 (((-3 $ "failed") $) 84 (-4078 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2219 (((-768)) 28 T CONST)) (-3939 (((-112) $ $) 40)) (-1484 (((-112) $) 96)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-3962 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-1702 (((-112) $ $) 6)) (-1823 (($ $ $) 66) (($ $ |#1|) 99)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +((-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) (-3480 (*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) +(-13 (-713 |t#1|) (-10 -8 (-15 -3034 ($ $ |t#1|)) (-15 -3480 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T)) +((-3873 (((-641 (-1203 |#1|)) (-1170) (-1203 |#1|)) 83)) (-1927 (((-1150 (-1150 (-948 |#1|))) (-1170) (-1150 (-948 |#1|))) 63)) (-3989 (((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-767) (-1203 |#1|) (-1150 (-1203 |#1|))) 74)) (-2749 (((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767)) 65)) (-4233 (((-1 (-1166 (-948 |#1|)) (-948 |#1|)) (-1170)) 32)) (-3618 (((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767)) 64))) +(((-1267 |#1|) (-10 -7 (-15 -2749 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -3618 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -1927 ((-1150 (-1150 (-948 |#1|))) (-1170) (-1150 (-948 |#1|)))) (-15 -4233 ((-1 (-1166 (-948 |#1|)) (-948 |#1|)) (-1170))) (-15 -3873 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -3989 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-767) (-1203 |#1|) (-1150 (-1203 |#1|))))) (-363)) (T -1267)) +((-3989 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) (-5 *5 (-1150 *4)))) (-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-948 *4)) (-948 *4))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-948 *5)))) (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-948 *5))))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(-10 -7 (-15 -2749 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -3618 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -1927 ((-1150 (-1150 (-948 |#1|))) (-1170) (-1150 (-948 |#1|)))) (-15 -4233 ((-1 (-1166 (-948 |#1|)) (-948 |#1|)) (-1170))) (-15 -3873 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -3989 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-767) (-1203 |#1|) (-1150 (-1203 |#1|))))) +((-3370 (((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 85)) (-2112 (((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 84))) +(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2112 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3370 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) (-349) (-1235 |#1|) (-1235 |#2|) (-409 |#2| |#3|)) (T -1268)) +((-3370 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-2112 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3342 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) +(-10 -7 (-15 -2112 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3370 ((-2 (|:| -3342 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) +((-2310 (((-112) $ $) NIL)) (-3569 (((-1129) $) 11)) (-1713 (((-1129) $) 9)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1269) (-13 (-1077) (-10 -8 (-15 -1713 ((-1129) $)) (-15 -3569 ((-1129) $))))) (T -1269)) +((-1713 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) +(-13 (-1077) (-10 -8 (-15 -1713 ((-1129) $)) (-15 -3569 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1612 (((-1129) $) 9)) (-2322 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2921 (((-112) $ $) NIL))) +(((-1270) (-13 (-1077) (-10 -8 (-15 -1612 ((-1129) $))))) (T -1270)) +((-1612 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270))))) +(-13 (-1077) (-10 -8 (-15 -1612 ((-1129) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 56)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) NIL)) (-1828 (((-112) $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2322 (((-858) $) 79) (($ (-564)) NIL) (($ |#4|) 63) ((|#4| $) 68) (($ |#1|) NIL (|has| |#1| (-172)))) (-3179 (((-767)) NIL T CONST)) (-1305 (((-1264) (-767)) 16)) (-2389 (($) 37 T CONST)) (-2403 (($) 82 T CONST)) (-2921 (((-112) $ $) 85)) (-3034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3021 (($ $) 87) (($ $ $) NIL)) (-3011 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 89) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1271 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1305 ((-1264) (-767))))) (-1045) (-846) (-789) (-945 |#1| |#3| |#2|) (-641 |#2|) (-641 (-767)) (-767)) (T -1271)) +((-3034 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789)) (-14 *6 (-641 *3)) (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) (-14 *7 (-641 (-767))) (-14 *8 (-767)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-14 *8 (-641 *5)) (-5 *2 (-1264)) (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) (-14 *9 (-641 *3)) (-14 *10 *3)))) +(-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1305 ((-1264) (-767))))) +((-2310 (((-112) $ $) NIL)) (-3898 (((-641 (-2 (|:| -1600 $) (|:| -4197 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1841 (((-641 $) (-641 |#4|)) 95)) (-2534 (((-641 |#3|) $) NIL)) (-1885 (((-112) $) NIL)) (-3042 (((-112) $) NIL (|has| |#1| (-556)))) (-1669 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4230 ((|#4| |#4| $) NIL)) (-3811 (((-2 (|:| |under| $) (|:| -1421 $) (|:| |upper| $)) $ |#3|) NIL)) (-2318 (((-112) $ (-767)) NIL)) (-2957 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4157 (($) NIL T CONST)) (-2815 (((-112) $) NIL (|has| |#1| (-556)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1362 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3300 (((-112) $) NIL (|has| |#1| (-556)))) (-2292 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 30)) (-1907 (((-641 |#4|) (-641 |#4|) $) 27 (|has| |#1| (-556)))) (-4066 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-3032 (((-3 $ "failed") (-641 |#4|)) NIL)) (-1781 (($ (-641 |#4|)) NIL)) (-2008 (((-3 $ "failed") $) 77)) (-4220 ((|#4| |#4| $) 82)) (-2027 (($ $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-3628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-2598 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4203 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4194 ((|#4| |#4| $) NIL)) (-3239 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4406))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4406))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4019 (((-2 (|:| -1600 (-641 |#4|)) (|:| -4197 (-641 |#4|))) $) NIL)) (-3534 (((-641 |#4|) $) NIL (|has| $ (-6 -4406)))) (-1675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3691 ((|#3| $) 83)) (-1751 (((-112) $ (-767)) NIL)) (-1834 (((-641 |#4|) $) 31 (|has| $ (-6 -4406)))) (-3114 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094))))) (-2791 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 34) (((-3 $ "failed") (-641 |#4|)) 37)) (-1456 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4407)))) (-3123 (($ (-1 |#4| |#4|) $) NIL)) (-3805 (((-641 |#3|) $) NIL)) (-3460 (((-112) |#3| $) NIL)) (-1681 (((-112) $ (-767)) NIL)) (-1418 (((-1152) $) NIL)) (-3649 (((-3 |#4| "failed") $) NIL)) (-4022 (((-641 |#4|) $) 53)) (-3250 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2093 ((|#4| |#4| $) 81)) (-3288 (((-112) $ $) 92)) (-4352 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3932 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4340 ((|#4| |#4| $) NIL)) (-3840 (((-1114) $) NIL)) (-1995 (((-3 |#4| "failed") $) 76)) (-3393 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4179 (((-3 $ "failed") $ |#4|) NIL)) (-2941 (($ $ |#4|) NIL)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3100 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3652 (((-112) $ $) NIL)) (-3282 (((-112) $) 74)) (-2348 (($) 45)) (-2073 (((-767) $) NIL)) (-3852 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4406)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-3772 (($ $) NIL)) (-3172 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2335 (($ (-641 |#4|)) NIL)) (-3311 (($ $ |#3|) NIL)) (-2805 (($ $ |#3|) NIL)) (-2631 (($ $) NIL)) (-2029 (($ $ |#3|) NIL)) (-2322 (((-858) $) NIL) (((-641 |#4|) $) 62)) (-2390 (((-767) $) NIL (|has| |#3| (-368)))) (-4266 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43) (((-3 $ "failed") (-641 |#4|)) 44)) (-2640 (((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72) (((-641 $) (-641 |#4|)) 73)) (-3998 (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 26) (((-3 (-2 (|:| |bas| $) (|:| -1846 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2410 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-2313 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4406)))) (-1595 (((-641 |#3|) $) NIL)) (-4363 (((-112) |#3| $) NIL)) (-2921 (((-112) $ $) NIL)) (-2059 (((-767) $) NIL (|has| $ (-6 -4406))))) +(((-1272 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2791 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2791 ((-3 $ "failed") (-641 |#4|))) (-15 -4266 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4266 ((-3 $ "failed") (-641 |#4|))) (-15 -2640 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2640 ((-641 $) (-641 |#4|))))) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1272)) +((-2791 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-2791 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-4266 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-4266 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-2640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) (-5 *1 (-1272 *6 *7 *8 *9)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) (-5 *1 (-1272 *4 *5 *6 *7))))) +(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2791 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2791 ((-3 $ "failed") (-641 |#4|))) (-15 -4266 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4266 ((-3 $ "failed") (-641 |#4|))) (-15 -2640 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2640 ((-641 $) (-641 |#4|))))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1862 (((-3 $ "failed") $ $) 19)) (-4157 (($) 17 T CONST)) (-2689 (((-3 $ "failed") $) 33)) (-1828 (((-112) $) 31)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#1|) 39)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) +(((-1273 |#1|) (-140) (-1045)) (T -1273)) +NIL +(-13 (-1045) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T)) +((-2310 (((-112) $ $) 66)) (-3264 (((-112) $) NIL)) (-2966 (((-641 |#1|) $) 52)) (-1360 (($ $ (-767)) 46)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1592 (($ $ (-767)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-4157 (($) NIL T CONST)) (-1417 (($ $ $) 69) (($ $ (-815 |#1|)) 55) (($ $ |#1|) 59)) (-3032 (((-3 (-815 |#1|) "failed") $) NIL)) (-1781 (((-815 |#1|) $) NIL)) (-2710 (($ $) 39)) (-2689 (((-3 $ "failed") $) NIL)) (-4033 (((-112) $) NIL)) (-2581 (($ $) NIL)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-1955 (($ (-815 |#1|) |#2|) 38)) (-4321 (($ $) 40)) (-3857 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 12)) (-3496 (((-815 |#1|) $) NIL)) (-2544 (((-815 |#1|) $) 41)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-2152 (($ $ $) 68) (($ $ (-815 |#1|)) 57) (($ $ |#1|) 61)) (-1812 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2674 (((-815 |#1|) $) 35)) (-2686 ((|#2| $) 37)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2073 (((-767) $) 43)) (-1419 (((-112) $) 47)) (-2255 ((|#2| $) NIL)) (-2322 (((-858) $) NIL) (($ (-815 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-815 |#1|)) NIL)) (-3139 ((|#2| $ $) 75) ((|#2| $ (-815 |#1|)) NIL)) (-3179 (((-767)) NIL T CONST)) (-2389 (($) 13 T CONST)) (-2403 (($) 19 T CONST)) (-4318 (((-641 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2921 (((-112) $ $) 44)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 28)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 67) (($ |#2| (-815 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1274 |#1| |#2|) (-13 (-382 |#2| (-815 |#1|)) (-1280 |#1| |#2|)) (-846) (-1045)) (T -1274)) +NIL +(-13 (-382 |#2| (-815 |#1|)) (-1280 |#1| |#2|)) +((-3439 ((|#3| |#3| (-767)) 30)) (-3571 ((|#3| |#3| (-767)) 36)) (-3446 ((|#3| |#3| |#3| (-767)) 37))) +(((-1275 |#1| |#2| |#3|) (-10 -7 (-15 -3571 (|#3| |#3| (-767))) (-15 -3439 (|#3| |#3| (-767))) (-15 -3446 (|#3| |#3| |#3| (-767)))) (-13 (-1045) (-713 (-407 (-564)))) (-846) (-1280 |#2| |#1|)) (T -1275)) +((-3446 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-3439 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-3571 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))) +(-10 -7 (-15 -3571 (|#3| |#3| (-767))) (-15 -3439 (|#3| |#3| (-767))) (-15 -3446 (|#3| |#3| |#3| (-767)))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2966 (((-641 |#1|) $) 41)) (-1862 (((-3 $ "failed") $ $) 19)) (-1592 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-4157 (($) 17 T CONST)) (-1417 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-3032 (((-3 (-815 |#1|) "failed") $) 65)) (-1781 (((-815 |#1|) $) 66)) (-2689 (((-3 $ "failed") $) 33)) (-4033 (((-112) $) 46)) (-2581 (($ $) 45)) (-1828 (((-112) $) 31)) (-1492 (((-112) $) 51)) (-1955 (($ (-815 |#1|) |#2|) 52)) (-4321 (($ $) 50)) (-3857 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-3496 (((-815 |#1|) $) 62)) (-3123 (($ (-1 |#2| |#2|) $) 42)) (-2152 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-1419 (((-112) $) 48)) (-2255 ((|#2| $) 47)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-3139 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1276 |#1| |#2|) (-140) (-846) (-1045)) (T -1276)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3496 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))) (-3139 (*1 *2 *1 *3) (-12 (-5 *3 (-815 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-3139 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-2152 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-2152 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-2152 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-1417 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1045)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4321 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-2322 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1592 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-4 *4 (-172)))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-641 *3))))) +(-13 (-1045) (-1273 |t#2|) (-1034 (-815 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3496 ((-815 |t#1|) $)) (-15 -3857 ((-2 (|:| |k| (-815 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3139 (|t#2| $ (-815 |t#1|))) (-15 -3139 (|t#2| $ $)) (-15 -2152 ($ $ |t#1|)) (-15 -2152 ($ $ (-815 |t#1|))) (-15 -2152 ($ $ $)) (-15 -1417 ($ $ |t#1|)) (-15 -1417 ($ $ (-815 |t#1|))) (-15 -1417 ($ $ $)) (-15 -1955 ($ (-815 |t#1|) |t#2|)) (-15 -1492 ((-112) $)) (-15 -4321 ($ $)) (-15 -2322 ($ |t#1|)) (-15 -1419 ((-112) $)) (-15 -2255 (|t#2| $)) (-15 -4033 ((-112) $)) (-15 -2581 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1592 ($ $ $)) (-15 -1592 ($ $ (-767)))) |%noBranch|) (-15 -3123 ($ (-1 |t#2| |t#2|) $)) (-15 -2966 ((-641 |t#1|) $)) (IF (|has| |t#2| (-6 -4399)) (-6 -4399) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-815 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T)) +((-2730 (((-112) $) 14)) (-4363 (((-112) $) 13)) (-3053 (($ $) 18) (($ $ (-767)) 20))) +(((-1277 |#1| |#2|) (-10 -8 (-15 -3053 (|#1| |#1| (-767))) (-15 -3053 (|#1| |#1|)) (-15 -2730 ((-112) |#1|)) (-15 -4363 ((-112) |#1|))) (-1278 |#2|) (-363)) (T -1277)) +NIL +(-10 -8 (-15 -3053 (|#1| |#1| (-767))) (-15 -3053 (|#1| |#1|)) (-15 -2730 ((-112) |#1|)) (-15 -4363 ((-112) |#1|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-1864 (((-2 (|:| -2563 $) (|:| -4393 $) (|:| |associate| $)) $) 42)) (-3622 (($ $) 41)) (-3247 (((-112) $) 39)) (-2730 (((-112) $) 95)) (-4297 (((-767)) 91)) (-1862 (((-3 $ "failed") $ $) 19)) (-3453 (($ $) 74)) (-2657 (((-418 $) $) 73)) (-3547 (((-112) $ $) 60)) (-4157 (($) 17 T CONST)) (-3032 (((-3 |#1| "failed") $) 102)) (-1781 ((|#1| $) 103)) (-2574 (($ $ $) 56)) (-2689 (((-3 $ "failed") $) 33)) (-2552 (($ $ $) 57)) (-3121 (((-2 (|:| -3139 (-641 $)) (|:| -4095 $)) (-641 $)) 52)) (-2180 (($ $ (-767)) 88 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4229 (((-112) $) 72)) (-3717 (((-829 (-917)) $) 85 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1828 (((-112) $) 31)) (-2160 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3202 (($ $ $) 47) (($ (-641 $)) 46)) (-1418 (((-1152) $) 9)) (-2639 (($ $) 71)) (-3193 (((-112) $) 94)) (-3840 (((-1114) $) 10)) (-2837 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-3235 (($ $ $) 49) (($ (-641 $)) 48)) (-2375 (((-418 $) $) 75)) (-1829 (((-829 (-917))) 92)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4095 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2526 (((-3 $ "failed") $ $) 43)) (-1355 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3844 (((-767) $) 59)) (-3153 (((-2 (|:| -2666 $) (|:| -2598 $)) $ $) 58)) (-3337 (((-3 (-767) "failed") $ $) 86 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3480 (((-134)) 100)) (-2073 (((-829 (-917)) $) 93)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-2409 (((-3 $ "failed") $) 84 (-2789 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3179 (((-767)) 28 T CONST)) (-4024 (((-112) $ $) 40)) (-4363 (((-112) $) 96)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-3053 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-2921 (((-112) $ $) 6)) (-3034 (($ $ $) 66) (($ $ |#1|) 99)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-564)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) (((-1278 |#1|) (-140) (-363)) (T -1278)) -((-1484 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-4085 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-4142 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368))))) -(-13 (-363) (-1035 |t#1|) (-1266 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -1484 ((-112) $)) (-15 -4048 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1619 ((-830 (-918)) $)) (-15 -4085 ((-830 (-918)))) (-15 -4142 ((-768))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -3962 ($ $)) (-15 -3962 ($ $ (-768)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4078 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -4078 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T) ((-1266 |#1|) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2412 (((-641 |#1|) $) 98)) (-3520 (($ $ (-768)) 102)) (-4088 (((-3 $ "failed") $ $) NIL)) (-4060 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-768)) NIL (|has| |#2| (-172)))) (-1778 (($) NIL T CONST)) (-2113 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2347 (((-3 (-816 |#1|) "failed") $) NIL) (((-3 (-890 |#1|) "failed") $) NIL)) (-2237 (((-816 |#1|) $) NIL) (((-890 |#1|) $) NIL)) (-3396 (($ $) 101)) (-3733 (((-3 $ "failed") $) NIL)) (-3124 (((-112) $) 90)) (-1987 (($ $) 93)) (-4049 (($ $ $ (-768)) 103)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-1383 (($ (-816 |#1|) |#2|) NIL) (($ (-890 |#1|) |#2|) 28)) (-3156 (($ $) 120)) (-1557 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1525 (((-816 |#1|) $) NIL)) (-4029 (((-816 |#1|) $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL)) (-2674 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2358 (($ $ (-768)) 113 (|has| |#2| (-714 (-407 (-564)))))) (-1338 (((-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3356 (((-890 |#1|) $) 83)) (-3370 ((|#2| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-4326 (($ $ (-768)) 110 (|has| |#2| (-714 (-407 (-564)))))) (-1619 (((-768) $) 99)) (-3859 (((-112) $) 84)) (-1809 ((|#2| $) 88)) (-1831 (((-859) $) 69) (($ (-564)) NIL) (($ |#2|) 59) (($ (-816 |#1|)) NIL) (($ |#1|) 71) (($ (-890 |#1|)) NIL) (($ (-660 |#1| |#2|)) 47) (((-1274 |#1| |#2|) $) 76) (((-1283 |#1| |#2|) $) 81)) (-3227 (((-641 |#2|) $) NIL)) (-2742 ((|#2| $ (-890 |#1|)) NIL)) (-2860 ((|#2| $ (-816 |#1|)) NIL) ((|#2| $ $) NIL)) (-2219 (((-768)) NIL T CONST)) (-1293 (($) 21 T CONST)) (-1300 (($) 27 T CONST)) (-1430 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4384 (((-3 (-660 |#1| |#2|) "failed") $) 119)) (-1702 (((-112) $ $) 77)) (-1808 (($ $) 112) (($ $ $) 111)) (-1797 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 48) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-890 |#1|)) NIL))) -(((-1279 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -1831 ($ (-660 |#1| |#2|))) (-15 -1831 ((-1274 |#1| |#2|) $)) (-15 -1831 ((-1283 |#1| |#2|) $)) (-15 -4384 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -4049 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -4326 ($ $ (-768))) (-15 -2358 ($ $ (-768)))) |%noBranch|))) (-847) (-172)) (T -1279)) -((-1831 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4384 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4049 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))) (-2358 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172))))) -(-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -1831 ($ (-660 |#1| |#2|))) (-15 -1831 ((-1274 |#1| |#2|) $)) (-15 -1831 ((-1283 |#1| |#2|) $)) (-15 -4384 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -4049 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -4326 ($ $ (-768))) (-15 -2358 ($ $ (-768)))) |%noBranch|))) -((-1817 (((-112) $ $) 7)) (-1615 (((-112) $) 16)) (-2412 (((-641 |#1|) $) 41)) (-3520 (($ $ (-768)) 74)) (-4088 (((-3 $ "failed") $ $) 19)) (-4060 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-1778 (($) 17 T CONST)) (-2113 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2347 (((-3 (-816 |#1|) "failed") $) 65)) (-2237 (((-816 |#1|) $) 66)) (-3733 (((-3 $ "failed") $) 33)) (-3124 (((-112) $) 46)) (-1987 (($ $) 45)) (-2949 (((-112) $) 31)) (-2003 (((-112) $) 51)) (-1383 (($ (-816 |#1|) |#2|) 52)) (-3156 (($ $) 50)) (-1557 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-1525 (((-816 |#1|) $) 62)) (-4029 (((-816 |#1|) $) 76)) (-2449 (($ (-1 |#2| |#2|) $) 42)) (-2674 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-2723 (((-1152) $) 9)) (-2780 (((-1114) $) 10)) (-1619 (((-768) $) 75)) (-3859 (((-112) $) 48)) (-1809 ((|#2| $) 47)) (-1831 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-2860 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-2219 (((-768)) 28 T CONST)) (-1293 (($) 18 T CONST)) (-1300 (($) 30 T CONST)) (-1702 (((-112) $ $) 6)) (-1808 (($ $) 22) (($ $ $) 21)) (-1797 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1280 |#1| |#2|) (-140) (-847) (-1046)) (T -1280)) -((-4029 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))))) -(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -4029 ((-816 |t#1|) $)) (-15 -1619 ((-768) $)) (-15 -3520 ($ $ (-768))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-816 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-714 |#2|) |has| |#2| (-172)) ((-723) . T) ((-1035 #0#) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T) ((-1276 |#1| |#2|) . T)) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-2412 (((-641 (-1170)) $) NIL)) (-3772 (($ (-1274 (-1170) |#1|)) NIL)) (-3520 (($ $ (-768)) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-4060 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-768)) NIL (|has| |#1| (-172)))) (-1778 (($) NIL T CONST)) (-2113 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-2347 (((-3 (-816 (-1170)) "failed") $) NIL)) (-2237 (((-816 (-1170)) $) NIL)) (-3733 (((-3 $ "failed") $) NIL)) (-3124 (((-112) $) NIL)) (-1987 (($ $) NIL)) (-2949 (((-112) $) NIL)) (-2003 (((-112) $) NIL)) (-1383 (($ (-816 (-1170)) |#1|) NIL)) (-3156 (($ $) NIL)) (-1557 (((-2 (|:| |k| (-816 (-1170))) (|:| |c| |#1|)) $) NIL)) (-1525 (((-816 (-1170)) $) NIL)) (-4029 (((-816 (-1170)) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-2674 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3723 (((-1274 (-1170) |#1|) $) NIL)) (-1619 (((-768) $) NIL)) (-3859 (((-112) $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-816 (-1170))) NIL) (($ (-1170)) NIL)) (-2860 ((|#1| $ (-816 (-1170))) NIL) ((|#1| $ $) NIL)) (-2219 (((-768)) NIL T CONST)) (-1293 (($) NIL T CONST)) (-3229 (((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $) NIL)) (-1300 (($) NIL T CONST)) (-1702 (((-112) $ $) NIL)) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1170) $) NIL))) -(((-1281 |#1|) (-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -3723 ((-1274 (-1170) |#1|) $)) (-15 -3772 ($ (-1274 (-1170) |#1|))) (-15 -3229 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) (-1046)) (T -1281)) -((-3723 (*1 *2 *1) (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) (-5 *1 (-1281 *3)) (-4 *3 (-1046))))) -(-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -3723 ((-1274 (-1170) |#1|) $)) (-15 -3772 ($ (-1274 (-1170) |#1|))) (-15 -3229 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) NIL)) (-4088 (((-3 $ "failed") $ $) NIL)) (-1778 (($) NIL T CONST)) (-2347 (((-3 |#2| "failed") $) NIL)) (-2237 ((|#2| $) NIL)) (-3396 (($ $) NIL)) (-3733 (((-3 $ "failed") $) 40)) (-3124 (((-112) $) 35)) (-1987 (($ $) 36)) (-2949 (((-112) $) NIL)) (-4128 (((-768) $) NIL)) (-3802 (((-641 $) $) NIL)) (-2003 (((-112) $) NIL)) (-1383 (($ |#2| |#1|) NIL)) (-1525 ((|#2| $) 24)) (-4029 ((|#2| $) 22)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1338 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3356 ((|#2| $) NIL)) (-3370 ((|#1| $) NIL)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3859 (((-112) $) 32)) (-1809 ((|#1| $) 33)) (-1831 (((-859) $) 63) (($ (-564)) 44) (($ |#1|) 39) (($ |#2|) NIL)) (-3227 (((-641 |#1|) $) NIL)) (-2742 ((|#1| $ |#2|) NIL)) (-2860 ((|#1| $ |#2|) 28)) (-2219 (((-768)) 14 T CONST)) (-1293 (($) 29 T CONST)) (-1300 (($) 11 T CONST)) (-1430 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1702 (((-112) $ $) 30)) (-1823 (($ $ |#1|) 65 (|has| |#1| (-363)))) (-1808 (($ $) NIL) (($ $ $) NIL)) (-1797 (($ $ $) 48)) (** (($ $ (-918)) NIL) (($ $ (-768)) 50)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#1| $) 45) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2828 (((-768) $) 16))) -(((-1282 |#1| |#2|) (-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2828 ((-768) $)) (-15 -4029 (|#2| $)) (-15 -1525 (|#2| $)) (-15 -3396 ($ $)) (-15 -2860 (|#1| $ |#2|)) (-15 -3859 ((-112) $)) (-15 -1809 (|#1| $)) (-15 -3124 ((-112) $)) (-15 -1987 ($ $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1823 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) (-1046) (-843)) (T -1282)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-843)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-4029 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-1525 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-2860 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-1809 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-1987 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-1823 (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-843))))) -(-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2828 ((-768) $)) (-15 -4029 (|#2| $)) (-15 -1525 (|#2| $)) (-15 -3396 ($ $)) (-15 -2860 (|#1| $ |#2|)) (-15 -3859 ((-112) $)) (-15 -1809 (|#1| $)) (-15 -3124 ((-112) $)) (-15 -1987 ($ $)) (-15 -2449 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1823 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) -((-1817 (((-112) $ $) 27)) (-1615 (((-112) $) NIL)) (-2412 (((-641 |#1|) $) 131)) (-3772 (($ (-1274 |#1| |#2|)) 50)) (-3520 (($ $ (-768)) 38)) (-4088 (((-3 $ "failed") $ $) NIL)) (-4060 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-768)) 52 (|has| |#2| (-172)))) (-1778 (($) NIL T CONST)) (-2113 (($ $ |#1|) 113) (($ $ (-816 |#1|)) 114) (($ $ $) 26)) (-2347 (((-3 (-816 |#1|) "failed") $) NIL)) (-2237 (((-816 |#1|) $) NIL)) (-3733 (((-3 $ "failed") $) 121)) (-3124 (((-112) $) 116)) (-1987 (($ $) 117)) (-2949 (((-112) $) NIL)) (-2003 (((-112) $) NIL)) (-1383 (($ (-816 |#1|) |#2|) 20)) (-3156 (($ $) NIL)) (-1557 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1525 (((-816 |#1|) $) 122)) (-4029 (((-816 |#1|) $) 125)) (-2449 (($ (-1 |#2| |#2|) $) 130)) (-2674 (($ $ |#1|) 111) (($ $ (-816 |#1|)) 112) (($ $ $) 62)) (-2723 (((-1152) $) NIL)) (-2780 (((-1114) $) NIL)) (-3723 (((-1274 |#1| |#2|) $) 93)) (-1619 (((-768) $) 128)) (-3859 (((-112) $) 80)) (-1809 ((|#2| $) 32)) (-1831 (((-859) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-816 |#1|)) 18) (($ |#1|) 83)) (-2860 ((|#2| $ (-816 |#1|)) 115) ((|#2| $ $) 28)) (-2219 (((-768)) 119 T CONST)) (-1293 (($) 15 T CONST)) (-3229 (((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1300 (($) 33 T CONST)) (-1702 (((-112) $ $) 14)) (-1808 (($ $) 97) (($ $ $) 100)) (-1797 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91))) -(((-1283 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-10 -8 (-15 -3723 ((-1274 |#1| |#2|) $)) (-15 -3772 ($ (-1274 |#1| |#2|))) (-15 -3229 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-847) (-1046)) (T -1283)) -((-3723 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *1 (-1283 *3 *4)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))))) -(-13 (-1280 |#1| |#2|) (-10 -8 (-15 -3723 ((-1274 |#1| |#2|) $)) (-15 -3772 ($ (-1274 |#1| |#2|))) (-15 -3229 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4290 (((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)) 20) (((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|))) 13))) -(((-1284 |#1|) (-10 -7 (-15 -4290 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4290 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) (-1209)) (T -1284)) -((-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1284 *4)) (-4 *4 (-1209))))) -(-10 -7 (-15 -4290 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4290 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) -((-3811 (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 173) (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 172) (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 171) (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 170) (((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-1043 |#1| |#2|)) 155)) (-4083 (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|))) 84) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112)) 83) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112)) 82)) (-3399 (((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|)) 72)) (-3589 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 139) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 138) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 137) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 136) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 131)) (-2137 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 144) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 143) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 142) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 141)) (-2511 (((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) 110) (((-1166 (-1021 (-407 |#1|))) (-1166 |#1|)) 101) (((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|))) 108) (((-949 (-1021 (-407 |#1|))) (-949 |#1|)) 106) (((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|))) 32))) -(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4083 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -4083 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3399 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2511 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2511 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2511 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2511 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2511 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))))) (-13 (-845) (-307) (-147) (-1019)) (-641 (-1170)) (-641 (-1170))) (T -1285)) -((-2511 (*1 *2 *3) (-12 (-5 *3 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-1166 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *6))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *5))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-777 *4 (-861 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2137 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3589 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3589 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *4)) (|:| -2467 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3811 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3811 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-2 (|:| -3339 (-1166 *4)) (|:| -2467 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4083 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))) -(-10 -7 (-15 -4083 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4083 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -4083 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -3811 ((-641 (-2 (|:| -3339 (-1166 |#1|)) (|:| -2467 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -3589 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2137 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3399 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2511 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2511 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2511 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2511 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2511 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))))) -((-3665 (((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|) 21)) (-3753 (((-112) (-1259 |#1|)) 12)) (-3738 (((-3 (-1259 (-564)) "failed") (-1259 |#1|)) 16))) -(((-1286 |#1|) (-10 -7 (-15 -3753 ((-112) (-1259 |#1|))) (-15 -3738 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -3665 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) (-637 (-564))) (T -1286)) -((-3665 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))) (-3738 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1286 *4))))) -(-10 -7 (-15 -3753 ((-112) (-1259 |#1|))) (-15 -3738 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -3665 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) -((-1817 (((-112) $ $) NIL)) (-1615 (((-112) $) 11)) (-4088 (((-3 $ "failed") $ $) NIL)) (-3267 (((-768)) 8)) (-1778 (($) NIL T CONST)) (-3733 (((-3 $ "failed") $) 58)) (-2900 (($) 49)) (-2949 (((-112) $) 57)) (-2619 (((-3 $ "failed") $) 40)) (-1811 (((-918) $) 15)) (-2723 (((-1152) $) NIL)) (-2884 (($) 32 T CONST)) (-1468 (($ (-918)) 50)) (-2780 (((-1114) $) NIL)) (-2511 (((-564) $) 13)) (-1831 (((-859) $) 27) (($ (-564)) 24)) (-2219 (((-768)) 9 T CONST)) (-1293 (($) 29 T CONST)) (-1300 (($) 31 T CONST)) (-1702 (((-112) $ $) 38)) (-1808 (($ $) 52) (($ $ $) 47)) (-1797 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) 54)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 44) (($ $ $) 43))) -(((-1287 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1145)) (-918)) (T -1287)) +((-4363 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-1829 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-4297 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-767)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368))))) +(-13 (-363) (-1034 |t#1|) (-1266 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -4363 ((-112) $)) (-15 -2730 ((-112) $)) (-15 -3193 ((-112) $)) (-15 -2073 ((-829 (-917)) $)) (-15 -1829 ((-829 (-917)))) (-15 -4297 ((-767))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -3053 ($ $)) (-15 -3053 ($ $ (-767)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2789 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -2789 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T) ((-1266 |#1|) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2966 (((-641 |#1|) $) 98)) (-1360 (($ $ (-767)) 102)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1592 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-767)) NIL (|has| |#2| (-172)))) (-4157 (($) NIL T CONST)) (-1417 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-3032 (((-3 (-815 |#1|) "failed") $) NIL) (((-3 (-889 |#1|) "failed") $) NIL)) (-1781 (((-815 |#1|) $) NIL) (((-889 |#1|) $) NIL)) (-2710 (($ $) 101)) (-2689 (((-3 $ "failed") $) NIL)) (-4033 (((-112) $) 90)) (-2581 (($ $) 93)) (-2740 (($ $ $ (-767)) 103)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-1955 (($ (-815 |#1|) |#2|) NIL) (($ (-889 |#1|) |#2|) 28)) (-4321 (($ $) 120)) (-3857 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3496 (((-815 |#1|) $) NIL)) (-2544 (((-815 |#1|) $) NIL)) (-3123 (($ (-1 |#2| |#2|) $) NIL)) (-2152 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-3439 (($ $ (-767)) 113 (|has| |#2| (-713 (-407 (-564)))))) (-1812 (((-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2674 (((-889 |#1|) $) 83)) (-2686 ((|#2| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-3571 (($ $ (-767)) 110 (|has| |#2| (-713 (-407 (-564)))))) (-2073 (((-767) $) 99)) (-1419 (((-112) $) 84)) (-2255 ((|#2| $) 88)) (-2322 (((-858) $) 69) (($ (-564)) NIL) (($ |#2|) 59) (($ (-815 |#1|)) NIL) (($ |#1|) 71) (($ (-889 |#1|)) NIL) (($ (-660 |#1| |#2|)) 47) (((-1274 |#1| |#2|) $) 76) (((-1283 |#1| |#2|) $) 81)) (-3680 (((-641 |#2|) $) NIL)) (-3467 ((|#2| $ (-889 |#1|)) NIL)) (-3139 ((|#2| $ (-815 |#1|)) NIL) ((|#2| $ $) NIL)) (-3179 (((-767)) NIL T CONST)) (-2389 (($) 21 T CONST)) (-2403 (($) 27 T CONST)) (-4318 (((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1702 (((-3 (-660 |#1| |#2|) "failed") $) 119)) (-2921 (((-112) $ $) 77)) (-3021 (($ $) 112) (($ $ $) 111)) (-3011 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 48) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-889 |#1|)) NIL))) +(((-1279 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -2322 ($ (-660 |#1| |#2|))) (-15 -2322 ((-1274 |#1| |#2|) $)) (-15 -2322 ((-1283 |#1| |#2|) $)) (-15 -1702 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -2740 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-564)))) (PROGN (-15 -3571 ($ $ (-767))) (-15 -3439 ($ $ (-767)))) |%noBranch|))) (-846) (-172)) (T -1279)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1702 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2740 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172))))) +(-13 (-1280 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -2322 ($ (-660 |#1| |#2|))) (-15 -2322 ((-1274 |#1| |#2|) $)) (-15 -2322 ((-1283 |#1| |#2|) $)) (-15 -1702 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -2740 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-564)))) (PROGN (-15 -3571 ($ $ (-767))) (-15 -3439 ($ $ (-767)))) |%noBranch|))) +((-2310 (((-112) $ $) 7)) (-3264 (((-112) $) 16)) (-2966 (((-641 |#1|) $) 41)) (-1360 (($ $ (-767)) 74)) (-1862 (((-3 $ "failed") $ $) 19)) (-1592 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-4157 (($) 17 T CONST)) (-1417 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-3032 (((-3 (-815 |#1|) "failed") $) 65)) (-1781 (((-815 |#1|) $) 66)) (-2689 (((-3 $ "failed") $) 33)) (-4033 (((-112) $) 46)) (-2581 (($ $) 45)) (-1828 (((-112) $) 31)) (-1492 (((-112) $) 51)) (-1955 (($ (-815 |#1|) |#2|) 52)) (-4321 (($ $) 50)) (-3857 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-3496 (((-815 |#1|) $) 62)) (-2544 (((-815 |#1|) $) 76)) (-3123 (($ (-1 |#2| |#2|) $) 42)) (-2152 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-1418 (((-1152) $) 9)) (-3840 (((-1114) $) 10)) (-2073 (((-767) $) 75)) (-1419 (((-112) $) 48)) (-2255 ((|#2| $) 47)) (-2322 (((-858) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-3139 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3179 (((-767)) 28 T CONST)) (-2389 (($) 18 T CONST)) (-2403 (($) 30 T CONST)) (-2921 (((-112) $ $) 6)) (-3021 (($ $) 22) (($ $ $) 21)) (-3011 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1280 |#1| |#2|) (-140) (-846) (-1045)) (T -1280)) +((-2544 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-1360 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) +(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -2544 ((-815 |t#1|) $)) (-15 -2073 ((-767) $)) (-15 -1360 ($ $ (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-815 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T) ((-1276 |#1| |#2|) . T)) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-2966 (((-641 (-1170)) $) NIL)) (-1769 (($ (-1274 (-1170) |#1|)) NIL)) (-1360 (($ $ (-767)) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1592 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-767)) NIL (|has| |#1| (-172)))) (-4157 (($) NIL T CONST)) (-1417 (($ $ (-1170)) NIL) (($ $ (-815 (-1170))) NIL) (($ $ $) NIL)) (-3032 (((-3 (-815 (-1170)) "failed") $) NIL)) (-1781 (((-815 (-1170)) $) NIL)) (-2689 (((-3 $ "failed") $) NIL)) (-4033 (((-112) $) NIL)) (-2581 (($ $) NIL)) (-1828 (((-112) $) NIL)) (-1492 (((-112) $) NIL)) (-1955 (($ (-815 (-1170)) |#1|) NIL)) (-4321 (($ $) NIL)) (-3857 (((-2 (|:| |k| (-815 (-1170))) (|:| |c| |#1|)) $) NIL)) (-3496 (((-815 (-1170)) $) NIL)) (-2544 (((-815 (-1170)) $) NIL)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-2152 (($ $ (-1170)) NIL) (($ $ (-815 (-1170))) NIL) (($ $ $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2925 (((-1274 (-1170) |#1|) $) NIL)) (-2073 (((-767) $) NIL)) (-1419 (((-112) $) NIL)) (-2255 ((|#1| $) NIL)) (-2322 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-815 (-1170))) NIL) (($ (-1170)) NIL)) (-3139 ((|#1| $ (-815 (-1170))) NIL) ((|#1| $ $) NIL)) (-3179 (((-767)) NIL T CONST)) (-2389 (($) NIL T CONST)) (-3705 (((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $) NIL)) (-2403 (($) NIL T CONST)) (-2921 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1170) $) NIL))) +(((-1281 |#1|) (-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -2925 ((-1274 (-1170) |#1|) $)) (-15 -1769 ($ (-1274 (-1170) |#1|))) (-15 -3705 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) (-1045)) (T -1281)) +((-2925 (*1 *2 *1) (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1045)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1045)) (-5 *1 (-1281 *3)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) (-5 *1 (-1281 *3)) (-4 *3 (-1045))))) +(-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -2925 ((-1274 (-1170) |#1|) $)) (-15 -1769 ($ (-1274 (-1170) |#1|))) (-15 -3705 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-1862 (((-3 $ "failed") $ $) NIL)) (-4157 (($) NIL T CONST)) (-3032 (((-3 |#2| "failed") $) NIL)) (-1781 ((|#2| $) NIL)) (-2710 (($ $) NIL)) (-2689 (((-3 $ "failed") $) 40)) (-4033 (((-112) $) 35)) (-2581 (($ $) 36)) (-1828 (((-112) $) NIL)) (-4137 (((-767) $) NIL)) (-2071 (((-641 $) $) NIL)) (-1492 (((-112) $) NIL)) (-1955 (($ |#2| |#1|) NIL)) (-3496 ((|#2| $) 24)) (-2544 ((|#2| $) 22)) (-3123 (($ (-1 |#1| |#1|) $) NIL)) (-1812 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2674 ((|#2| $) NIL)) (-2686 ((|#1| $) NIL)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-1419 (((-112) $) 32)) (-2255 ((|#1| $) 33)) (-2322 (((-858) $) 63) (($ (-564)) 44) (($ |#1|) 39) (($ |#2|) NIL)) (-3680 (((-641 |#1|) $) NIL)) (-3467 ((|#1| $ |#2|) NIL)) (-3139 ((|#1| $ |#2|) 28)) (-3179 (((-767)) 14 T CONST)) (-2389 (($) 29 T CONST)) (-2403 (($) 11 T CONST)) (-4318 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2921 (((-112) $ $) 30)) (-3034 (($ $ |#1|) 65 (|has| |#1| (-363)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ $) 48)) (** (($ $ (-917)) NIL) (($ $ (-767)) 50)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#1| $) 45) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2059 (((-767) $) 16))) +(((-1282 |#1| |#2|) (-13 (-1045) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2059 ((-767) $)) (-15 -2544 (|#2| $)) (-15 -3496 (|#2| $)) (-15 -2710 ($ $)) (-15 -3139 (|#1| $ |#2|)) (-15 -1419 ((-112) $)) (-15 -2255 (|#1| $)) (-15 -4033 ((-112) $)) (-15 -2581 ($ $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -3034 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) (-1045) (-842)) (T -1282)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-3123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-842)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2544 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045)))) (-3496 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045)))) (-3139 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2255 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-3034 (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(-13 (-1045) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2059 ((-767) $)) (-15 -2544 (|#2| $)) (-15 -3496 (|#2| $)) (-15 -2710 ($ $)) (-15 -3139 (|#1| $ |#2|)) (-15 -1419 ((-112) $)) (-15 -2255 (|#1| $)) (-15 -4033 ((-112) $)) (-15 -2581 ($ $)) (-15 -3123 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -3034 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|))) +((-2310 (((-112) $ $) 27)) (-3264 (((-112) $) NIL)) (-2966 (((-641 |#1|) $) 131)) (-1769 (($ (-1274 |#1| |#2|)) 50)) (-1360 (($ $ (-767)) 38)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1592 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-767)) 52 (|has| |#2| (-172)))) (-4157 (($) NIL T CONST)) (-1417 (($ $ |#1|) 113) (($ $ (-815 |#1|)) 114) (($ $ $) 26)) (-3032 (((-3 (-815 |#1|) "failed") $) NIL)) (-1781 (((-815 |#1|) $) NIL)) (-2689 (((-3 $ "failed") $) 121)) (-4033 (((-112) $) 116)) (-2581 (($ $) 117)) (-1828 (((-112) $) NIL)) (-1492 (((-112) $) NIL)) (-1955 (($ (-815 |#1|) |#2|) 20)) (-4321 (($ $) NIL)) (-3857 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3496 (((-815 |#1|) $) 122)) (-2544 (((-815 |#1|) $) 125)) (-3123 (($ (-1 |#2| |#2|) $) 130)) (-2152 (($ $ |#1|) 111) (($ $ (-815 |#1|)) 112) (($ $ $) 62)) (-1418 (((-1152) $) NIL)) (-3840 (((-1114) $) NIL)) (-2925 (((-1274 |#1| |#2|) $) 93)) (-2073 (((-767) $) 128)) (-1419 (((-112) $) 80)) (-2255 ((|#2| $) 32)) (-2322 (((-858) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-815 |#1|)) 18) (($ |#1|) 83)) (-3139 ((|#2| $ (-815 |#1|)) 115) ((|#2| $ $) 28)) (-3179 (((-767)) 119 T CONST)) (-2389 (($) 15 T CONST)) (-3705 (((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2403 (($) 33 T CONST)) (-2921 (((-112) $ $) 14)) (-3021 (($ $) 97) (($ $ $) 100)) (-3011 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55)) (* (($ (-917) $) NIL) (($ (-767) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91))) +(((-1283 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-10 -8 (-15 -2925 ((-1274 |#1| |#2|) $)) (-15 -1769 ($ (-1274 |#1| |#2|))) (-15 -3705 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-846) (-1045)) (T -1283)) +((-2925 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *1 (-1283 *3 *4)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) +(-13 (-1280 |#1| |#2|) (-10 -8 (-15 -2925 ((-1274 |#1| |#2|) $)) (-15 -1769 ($ (-1274 |#1| |#2|))) (-15 -3705 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2266 (((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)) 20) (((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|))) 13))) +(((-1284 |#1|) (-10 -7 (-15 -2266 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -2266 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) (-1209)) (T -1284)) +((-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1284 *4)) (-4 *4 (-1209))))) +(-10 -7 (-15 -2266 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -2266 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) +((-2140 (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|))) 173) (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112)) 172) (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)) 171) (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112) (-112)) 170) (((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-1042 |#1| |#2|)) 155)) (-1807 (((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|))) 84) (((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112)) 83) (((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112) (-112)) 82)) (-2657 (((-641 (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|)) 72)) (-3894 (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|))) 139) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112)) 138) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112)) 137) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112) (-112)) 136) (((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 131)) (-3518 (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|))) 144) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112)) 143) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112)) 142) (((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 141)) (-3172 (((-641 (-776 |#1| (-860 |#3|))) (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) 110) (((-1166 (-1020 (-407 |#1|))) (-1166 |#1|)) 101) (((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|))) 108) (((-948 (-1020 (-407 |#1|))) (-948 |#1|)) 106) (((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|))) 32))) +(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -1807 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112) (-112))) (-15 -1807 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112))) (-15 -1807 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -2657 ((-641 (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -3172 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -3172 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -3172 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -3172 ((-1166 (-1020 (-407 |#1|))) (-1166 |#1|))) (-15 -3172 ((-641 (-776 |#1| (-860 |#3|))) (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) (-13 (-844) (-307) (-147) (-1018)) (-641 (-1170)) (-641 (-1170))) (T -1285)) +((-3172 (*1 *2 *3) (-12 (-5 *3 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-776 *4 (-860 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-1166 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3518 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3518 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3894 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3894 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3894 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2140 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *4)) (|:| -3864 (-641 (-948 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-948 *4))) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2140 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2140 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-2 (|:| -2171 (-1166 *4)) (|:| -3864 (-641 (-948 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-1042 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-1807 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))) +(-10 -7 (-15 -1807 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112) (-112))) (-15 -1807 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112))) (-15 -1807 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -2140 ((-641 (-2 (|:| -2171 (-1166 |#1|)) (|:| -3864 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -3894 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -3518 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -2657 ((-641 (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -3172 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -3172 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -3172 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -3172 ((-1166 (-1020 (-407 |#1|))) (-1166 |#1|))) (-15 -3172 ((-641 (-776 |#1| (-860 |#3|))) (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) +((-3330 (((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|) 21)) (-1609 (((-112) (-1259 |#1|)) 12)) (-2733 (((-3 (-1259 (-564)) "failed") (-1259 |#1|)) 16))) +(((-1286 |#1|) (-10 -7 (-15 -1609 ((-112) (-1259 |#1|))) (-15 -2733 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -3330 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) (-637 (-564))) (T -1286)) +((-3330 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))) (-2733 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1286 *4))))) +(-10 -7 (-15 -1609 ((-112) (-1259 |#1|))) (-15 -2733 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -3330 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) +((-2310 (((-112) $ $) NIL)) (-3264 (((-112) $) 11)) (-1862 (((-3 $ "failed") $ $) NIL)) (-1959 (((-767)) 8)) (-4157 (($) NIL T CONST)) (-2689 (((-3 $ "failed") $) 58)) (-3860 (($) 49)) (-1828 (((-112) $) 57)) (-1620 (((-3 $ "failed") $) 40)) (-1368 (((-917) $) 15)) (-1418 (((-1152) $) NIL)) (-3346 (($) 32 T CONST)) (-1998 (($ (-917)) 50)) (-3840 (((-1114) $) NIL)) (-3172 (((-564) $) 13)) (-2322 (((-858) $) 27) (($ (-564)) 24)) (-3179 (((-767)) 9 T CONST)) (-2389 (($) 29 T CONST)) (-2403 (($) 31 T CONST)) (-2921 (((-112) $ $) 38)) (-3021 (($ $) 52) (($ $ $) 47)) (-3011 (($ $ $) 35)) (** (($ $ (-917)) NIL) (($ $ (-767)) 54)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 44) (($ $ $) 43))) +(((-1287 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1145)) (-917)) (T -1287)) NIL (-13 (-172) (-368) (-612 (-564)) (-1145)) NIL @@ -5306,4 +5306,4 @@ NIL NIL NIL NIL -((-3 3199202 3199207 3199212 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3199187 3199192 3199197 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3199172 3199177 3199182 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3199157 3199162 3199167 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1287 3198326 3199032 3199109 "ZMOD" 3199114 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1286 3197436 3197600 3197809 "ZLINDEP" 3198158 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1285 3186736 3188504 3190476 "ZDSOLVE" 3195566 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1284 3185982 3186123 3186312 "YSTREAM" 3186582 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1283 3183783 3185283 3185487 "XRPOLY" 3185825 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3180363 3181654 3182229 "XPR" 3183255 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1281 3178111 3179694 3179898 "XPOLY" 3180194 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1280 3175894 3177236 3177291 "XPOLYC" 3177579 NIL XPOLYC (NIL T T) -9 NIL 3177692 NIL) (-1279 3172297 3174411 3174799 "XPBWPOLY" 3175552 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3168200 3170460 3170502 "XF" 3171123 NIL XF (NIL T) -9 NIL 3171523 NIL) (-1277 3167821 3167909 3168078 "XF-" 3168083 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1276 3163147 3164410 3164465 "XFALG" 3166637 NIL XFALG (NIL T T) -9 NIL 3167426 NIL) (-1275 3162280 3162384 3162589 "XEXPPKG" 3163039 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1274 3160416 3162130 3162226 "XDPOLY" 3162231 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3159353 3159927 3159970 "XALG" 3159975 NIL XALG (NIL T) -9 NIL 3160086 NIL) (-1272 3152822 3157330 3157824 "WUTSET" 3158945 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1271 3151105 3151874 3152197 "WP" 3152633 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1270 3150734 3150927 3150997 "WHILEAST" 3151057 T WHILEAST (NIL) -8 NIL NIL NIL) (-1269 3150233 3150451 3150545 "WHEREAST" 3150662 T WHEREAST (NIL) -8 NIL NIL NIL) (-1268 3149119 3149317 3149612 "WFFINTBS" 3150030 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1267 3147023 3147450 3147912 "WEIER" 3148691 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1266 3146170 3146594 3146636 "VSPACE" 3146772 NIL VSPACE (NIL T) -9 NIL 3146846 NIL) (-1265 3146008 3146035 3146126 "VSPACE-" 3146131 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1264 3145816 3145859 3145927 "VOID" 3145962 T VOID (NIL) -8 NIL NIL NIL) (-1263 3143952 3144311 3144717 "VIEW" 3145432 T VIEW (NIL) -7 NIL NIL NIL) (-1262 3140376 3141015 3141752 "VIEWDEF" 3143237 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1261 3129707 3131924 3134097 "VIEW3D" 3138225 T VIEW3D (NIL) -8 NIL NIL NIL) (-1260 3121985 3123618 3125197 "VIEW2D" 3128150 T VIEW2D (NIL) -8 NIL NIL NIL) (-1259 3117387 3121755 3121847 "VECTOR" 3121928 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1258 3115964 3116223 3116541 "VECTOR2" 3117117 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1257 3109491 3113748 3113791 "VECTCAT" 3114784 NIL VECTCAT (NIL T) -9 NIL 3115370 NIL) (-1256 3108505 3108759 3109149 "VECTCAT-" 3109154 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3107986 3108156 3108276 "VARIABLE" 3108420 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1254 3107919 3107924 3107954 "UTYPE" 3107959 T UTYPE (NIL) -9 NIL NIL NIL) (-1253 3106749 3106903 3107165 "UTSODETL" 3107745 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1252 3104189 3104649 3105173 "UTSODE" 3106290 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1251 3096053 3101815 3102304 "UTS" 3103758 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3087288 3092620 3092663 "UTSCAT" 3093775 NIL UTSCAT (NIL T) -9 NIL 3094532 NIL) (-1249 3084636 3085358 3086347 "UTSCAT-" 3086352 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1248 3084263 3084306 3084439 "UTS2" 3084587 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1247 3078536 3081101 3081144 "URAGG" 3083214 NIL URAGG (NIL T) -9 NIL 3083937 NIL) (-1246 3075475 3076338 3077461 "URAGG-" 3077466 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1245 3071191 3074089 3074561 "UPXSSING" 3075139 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1244 3063284 3070438 3070711 "UPXS" 3070976 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 3056384 3063188 3063260 "UPXSCONS" 3063265 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1242 3046621 3053379 3053441 "UPXSCCA" 3054015 NIL UPXSCCA (NIL T T) -9 NIL 3054248 NIL) (-1241 3046259 3046344 3046518 "UPXSCCA-" 3046523 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1240 3036349 3042880 3042923 "UPXSCAT" 3043571 NIL UPXSCAT (NIL T) -9 NIL 3044179 NIL) (-1239 3035779 3035858 3036037 "UPXS2" 3036264 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 3034433 3034686 3035037 "UPSQFREE" 3035522 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1237 3028213 3031235 3031290 "UPSCAT" 3032451 NIL UPSCAT (NIL T T) -9 NIL 3033225 NIL) (-1236 3027417 3027624 3027951 "UPSCAT-" 3027956 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 3013259 3021265 3021308 "UPOLYC" 3023409 NIL UPOLYC (NIL T) -9 NIL 3024630 NIL) (-1234 3004587 3007013 3010160 "UPOLYC-" 3010165 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1233 3004214 3004257 3004390 "UPOLYC2" 3004538 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 2995780 3003897 3004026 "UP" 3004133 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1231 2995119 2995226 2995390 "UPMP" 2995669 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1230 2994672 2994753 2994892 "UPDIVP" 2995032 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1229 2993240 2993489 2993805 "UPDECOMP" 2994421 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1228 2992475 2992587 2992772 "UPCDEN" 2993124 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1227 2991994 2992063 2992212 "UP2" 2992400 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1226 2990509 2991198 2991475 "UNISEG" 2991752 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1225 2989724 2989851 2990056 "UNISEG2" 2990352 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1224 2988784 2988964 2989190 "UNIFACT" 2989540 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1223 2972743 2987961 2988212 "ULS" 2988591 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1222 2960769 2972647 2972719 "ULSCONS" 2972724 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1221 2943377 2955327 2955389 "ULSCCAT" 2956027 NIL ULSCCAT (NIL T T) -9 NIL 2956315 NIL) (-1220 2942427 2942672 2943060 "ULSCCAT-" 2943065 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1219 2932294 2938739 2938782 "ULSCAT" 2939645 NIL ULSCAT (NIL T) -9 NIL 2940375 NIL) (-1218 2931724 2931803 2931982 "ULS2" 2932209 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1217 2930841 2931324 2931431 "UINT8" 2931542 T UINT8 (NIL) -8 NIL NIL 2931627) (-1216 2929957 2930440 2930547 "UINT64" 2930658 T UINT64 (NIL) -8 NIL NIL 2930743) (-1215 2929073 2929556 2929663 "UINT32" 2929774 T UINT32 (NIL) -8 NIL NIL 2929859) (-1214 2928189 2928672 2928779 "UINT16" 2928890 T UINT16 (NIL) -8 NIL NIL 2928975) (-1213 2926584 2927515 2927545 "UFD" 2927757 T UFD (NIL) -9 NIL 2927871 NIL) (-1212 2926378 2926424 2926519 "UFD-" 2926524 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1211 2925460 2925643 2925859 "UDVO" 2926184 T UDVO (NIL) -7 NIL NIL NIL) (-1210 2923276 2923685 2924156 "UDPO" 2925024 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1209 2923209 2923214 2923244 "TYPE" 2923249 T TYPE (NIL) -9 NIL NIL NIL) (-1208 2922996 2923164 2923195 "TYPEAST" 2923200 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2921967 2922169 2922409 "TWOFACT" 2922790 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1206 2921038 2921376 2921611 "TUPLE" 2921767 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1205 2918729 2919248 2919787 "TUBETOOL" 2920521 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1204 2917578 2917783 2918024 "TUBE" 2918522 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1203 2912334 2916550 2916833 "TS" 2917330 NIL TS (NIL T) -8 NIL NIL NIL) (-1202 2901001 2905093 2905190 "TSETCAT" 2910459 NIL TSETCAT (NIL T T T T) -9 NIL 2911990 NIL) (-1201 2895733 2897333 2899224 "TSETCAT-" 2899229 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2889995 2890842 2891784 "TRMANIP" 2894869 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1199 2889436 2889499 2889662 "TRIMAT" 2889927 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1198 2887232 2887469 2887833 "TRIGMNIP" 2889185 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1197 2886752 2886865 2886895 "TRIGCAT" 2887108 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1196 2886421 2886500 2886641 "TRIGCAT-" 2886646 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1195 2883314 2885279 2885560 "TREE" 2886175 NIL TREE (NIL T) -8 NIL NIL NIL) (-1194 2882588 2883116 2883146 "TRANFUN" 2883181 T TRANFUN (NIL) -9 NIL 2883247 NIL) (-1193 2881867 2882058 2882338 "TRANFUN-" 2882343 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1192 2881671 2881703 2881764 "TOPSP" 2881828 T TOPSP (NIL) -7 NIL NIL NIL) (-1191 2881019 2881134 2881288 "TOOLSIGN" 2881552 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1190 2879680 2880196 2880435 "TEXTFILE" 2880802 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1189 2877619 2878133 2878562 "TEX" 2879273 T TEX (NIL) -8 NIL NIL NIL) (-1188 2877400 2877431 2877503 "TEX1" 2877582 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2877048 2877111 2877201 "TEMUTL" 2877332 T TEMUTL (NIL) -7 NIL NIL NIL) (-1186 2875202 2875482 2875807 "TBCMPPK" 2876771 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1185 2867090 2873362 2873418 "TBAGG" 2873818 NIL TBAGG (NIL T T) -9 NIL 2874029 NIL) (-1184 2862160 2863648 2865402 "TBAGG-" 2865407 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1183 2861544 2861651 2861796 "TANEXP" 2862049 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1182 2855045 2861401 2861494 "TABLE" 2861499 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1181 2854457 2854556 2854694 "TABLEAU" 2854942 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2849065 2850285 2851533 "TABLBUMP" 2853243 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1179 2848287 2848434 2848615 "SYSTEM" 2848906 T SYSTEM (NIL) -8 NIL NIL NIL) (-1178 2844746 2845445 2846228 "SYSSOLP" 2847538 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1177 2843780 2844258 2844377 "SYSNNI" 2844563 NIL SYSNNI (NIL NIL) -8 NIL NIL 2844648) (-1176 2843077 2843509 2843588 "SYSINT" 2843648 NIL SYSINT (NIL NIL) -8 NIL NIL 2843693) (-1175 2839436 2840355 2841065 "SYNTAX" 2842389 T SYNTAX (NIL) -8 NIL NIL NIL) (-1174 2836594 2837196 2837828 "SYMTAB" 2838826 T SYMTAB (NIL) -8 NIL NIL NIL) (-1173 2831843 2832745 2833728 "SYMS" 2835633 T SYMS (NIL) -8 NIL NIL NIL) (-1172 2829105 2831301 2831531 "SYMPOLY" 2831648 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1171 2828622 2828697 2828820 "SYMFUNC" 2829017 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1170 2824668 2825934 2826747 "SYMBOL" 2827831 T SYMBOL (NIL) -8 NIL NIL NIL) (-1169 2818207 2819896 2821616 "SWITCH" 2822970 T SWITCH (NIL) -8 NIL NIL NIL) (-1168 2811468 2817028 2817331 "SUTS" 2817962 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2803561 2810715 2810988 "SUPXS" 2811253 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2795076 2803179 2803305 "SUP" 2803470 NIL SUP (NIL T) -8 NIL NIL NIL) (-1165 2794235 2794362 2794579 "SUPFRACF" 2794944 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2793856 2793915 2794028 "SUP2" 2794170 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2792269 2792543 2792906 "SUMRF" 2793555 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1162 2791583 2791649 2791848 "SUMFS" 2792190 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1161 2775577 2790760 2791011 "SULS" 2791390 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2775206 2775399 2775469 "SUCHTAST" 2775529 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1159 2774528 2774731 2774871 "SUCH" 2775114 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1158 2768422 2769434 2770393 "SUBSPACE" 2773616 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1157 2767852 2767942 2768106 "SUBRESP" 2768310 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1156 2761217 2762517 2763828 "STTF" 2766588 NIL STTF (NIL T) -7 NIL NIL NIL) (-1155 2755390 2756510 2757657 "STTFNC" 2760117 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2746701 2748572 2750366 "STTAYLOR" 2753631 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1153 2739945 2746565 2746648 "STRTBL" 2746653 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1152 2735336 2739900 2739931 "STRING" 2739936 T STRING (NIL) -8 NIL NIL NIL) (-1151 2730224 2734709 2734739 "STRICAT" 2734798 T STRICAT (NIL) -9 NIL 2734860 NIL) (-1150 2723027 2727843 2728454 "STREAM" 2729648 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1149 2722537 2722614 2722758 "STREAM3" 2722944 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2721519 2721702 2721937 "STREAM2" 2722350 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2721207 2721259 2721352 "STREAM1" 2721461 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2720223 2720404 2720635 "STINPROD" 2721023 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1145 2719801 2719985 2720015 "STEP" 2720095 T STEP (NIL) -9 NIL 2720173 NIL) (-1144 2713344 2719700 2719777 "STBL" 2719782 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1143 2708518 2712565 2712608 "STAGG" 2712761 NIL STAGG (NIL T) -9 NIL 2712850 NIL) (-1142 2706220 2706822 2707694 "STAGG-" 2707699 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1141 2704415 2705990 2706082 "STACK" 2706163 NIL STACK (NIL T) -8 NIL NIL NIL) (-1140 2697138 2702556 2703012 "SREGSET" 2704045 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1139 2689563 2690932 2692445 "SRDCMPK" 2695744 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2682530 2687003 2687033 "SRAGG" 2688336 T SRAGG (NIL) -9 NIL 2688944 NIL) (-1137 2681547 2681802 2682181 "SRAGG-" 2682186 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1136 2676034 2680494 2680915 "SQMATRIX" 2681173 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1135 2669781 2672752 2673479 "SPLTREE" 2675379 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1134 2665771 2666437 2667083 "SPLNODE" 2669207 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1133 2664818 2665051 2665081 "SPFCAT" 2665525 T SPFCAT (NIL) -9 NIL NIL NIL) (-1132 2663555 2663765 2664029 "SPECOUT" 2664576 T SPECOUT (NIL) -7 NIL NIL NIL) (-1131 2655207 2656951 2656981 "SPADXPT" 2661373 T SPADXPT (NIL) -9 NIL 2663407 NIL) (-1130 2654968 2655008 2655077 "SPADPRSR" 2655160 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1129 2653150 2654923 2654954 "SPADAST" 2654959 T SPADAST (NIL) -8 NIL NIL NIL) (-1128 2645121 2646868 2646911 "SPACEC" 2651284 NIL SPACEC (NIL T) -9 NIL 2653100 NIL) (-1127 2643278 2645053 2645102 "SPACE3" 2645107 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1126 2642030 2642201 2642492 "SORTPAK" 2643083 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1125 2640080 2640383 2640802 "SOLVETRA" 2641694 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1124 2639091 2639313 2639587 "SOLVESER" 2639853 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1123 2634302 2635192 2636194 "SOLVERAD" 2638143 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1122 2630117 2630726 2631455 "SOLVEFOR" 2633669 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1121 2624414 2629466 2629563 "SNTSCAT" 2629568 NIL SNTSCAT (NIL T T T T) -9 NIL 2629638 NIL) (-1120 2618547 2622737 2623128 "SMTS" 2624104 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1119 2612987 2618435 2618512 "SMP" 2618517 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1118 2611146 2611447 2611845 "SMITH" 2612684 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1117 2604033 2608197 2608300 "SMATCAT" 2609651 NIL SMATCAT (NIL NIL T T T) -9 NIL 2610201 NIL) (-1116 2600973 2601796 2602974 "SMATCAT-" 2602979 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1115 2598686 2600209 2600252 "SKAGG" 2600513 NIL SKAGG (NIL T) -9 NIL 2600648 NIL) (-1114 2595021 2598102 2598297 "SINT" 2598484 T SINT (NIL) -8 NIL NIL 2598657) (-1113 2594793 2594831 2594897 "SIMPAN" 2594977 T SIMPAN (NIL) -7 NIL NIL NIL) (-1112 2594099 2594328 2594468 "SIG" 2594675 T SIG (NIL) -8 NIL NIL NIL) (-1111 2592937 2593158 2593433 "SIGNRF" 2593858 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2591742 2591893 2592184 "SIGNEF" 2592766 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2591075 2591325 2591449 "SIGAST" 2591640 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2588765 2589219 2589725 "SHP" 2590616 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1107 2582665 2588666 2588742 "SHDP" 2588747 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1106 2582264 2582430 2582460 "SGROUP" 2582553 T SGROUP (NIL) -9 NIL 2582615 NIL) (-1105 2582122 2582148 2582221 "SGROUP-" 2582226 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1104 2578957 2579655 2580378 "SGCF" 2581421 T SGCF (NIL) -7 NIL NIL NIL) (-1103 2573352 2578404 2578501 "SFRTCAT" 2578506 NIL SFRTCAT (NIL T T T T) -9 NIL 2578545 NIL) (-1102 2566773 2567791 2568927 "SFRGCD" 2572335 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2559900 2560972 2562158 "SFQCMPK" 2565706 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2559522 2559611 2559721 "SFORT" 2559841 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1099 2558667 2559362 2559483 "SEXOF" 2559488 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1098 2557801 2558548 2558616 "SEX" 2558621 T SEX (NIL) -8 NIL NIL NIL) (-1097 2553340 2554029 2554124 "SEXCAT" 2557061 NIL SEXCAT (NIL T T T T T) -9 NIL 2557639 NIL) (-1096 2550520 2553274 2553322 "SET" 2553327 NIL SET (NIL T) -8 NIL NIL NIL) (-1095 2548771 2549233 2549538 "SETMN" 2550261 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2548377 2548503 2548533 "SETCAT" 2548650 T SETCAT (NIL) -9 NIL 2548735 NIL) (-1093 2548157 2548209 2548308 "SETCAT-" 2548313 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2544544 2546618 2546661 "SETAGG" 2547531 NIL SETAGG (NIL T) -9 NIL 2547871 NIL) (-1091 2544002 2544118 2544355 "SETAGG-" 2544360 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2543472 2543698 2543799 "SEQAST" 2543923 T SEQAST (NIL) -8 NIL NIL NIL) (-1089 2542671 2542965 2543026 "SEGXCAT" 2543312 NIL SEGXCAT (NIL T T) -9 NIL 2543432 NIL) (-1088 2541725 2542337 2542519 "SEG" 2542524 NIL SEG (NIL T) -8 NIL NIL NIL) (-1087 2540704 2540918 2540961 "SEGCAT" 2541483 NIL SEGCAT (NIL T) -9 NIL 2541704 NIL) (-1086 2539753 2540083 2540283 "SEGBIND" 2540539 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1085 2539374 2539433 2539546 "SEGBIND2" 2539688 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1084 2538974 2539175 2539252 "SEGAST" 2539319 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2538193 2538319 2538523 "SEG2" 2538818 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2537630 2538128 2538175 "SDVAR" 2538180 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1081 2529912 2537400 2537530 "SDPOL" 2537535 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1080 2528505 2528771 2529090 "SCPKG" 2529627 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1079 2527665 2527838 2528031 "SCOPE" 2528334 T SCOPE (NIL) -8 NIL NIL NIL) (-1078 2526885 2527019 2527198 "SCACHE" 2527520 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1077 2526557 2526717 2526747 "SASTCAT" 2526752 T SASTCAT (NIL) -9 NIL 2526765 NIL) (-1076 2526071 2526392 2526468 "SAOS" 2526503 T SAOS (NIL) -8 NIL NIL NIL) (-1075 2525636 2525671 2525844 "SAERFFC" 2526030 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1074 2519602 2525533 2525613 "SAE" 2525618 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1073 2519195 2519230 2519389 "SAEFACT" 2519561 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2517516 2517830 2518231 "RURPK" 2518861 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1071 2516152 2516431 2516743 "RULESET" 2517350 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1070 2513339 2513842 2514307 "RULE" 2515833 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1069 2512978 2513133 2513216 "RULECOLD" 2513291 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2512476 2512695 2512789 "RSTRCAST" 2512906 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1067 2507324 2508119 2509039 "RSETGCD" 2511675 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1066 2496581 2501633 2501730 "RSETCAT" 2505849 NIL RSETCAT (NIL T T T T) -9 NIL 2506946 NIL) (-1065 2494508 2495047 2495871 "RSETCAT-" 2495876 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1064 2486893 2488270 2489790 "RSDCMPK" 2493107 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1063 2484898 2485339 2485413 "RRCC" 2486499 NIL RRCC (NIL T T) -9 NIL 2486843 NIL) (-1062 2484249 2484423 2484702 "RRCC-" 2484707 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1061 2483719 2483945 2484046 "RPTAST" 2484170 T RPTAST (NIL) -8 NIL NIL NIL) (-1060 2457717 2467312 2467379 "RPOLCAT" 2478043 NIL RPOLCAT (NIL T T T) -9 NIL 2481202 NIL) (-1059 2449215 2451555 2454677 "RPOLCAT-" 2454682 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1058 2440262 2447426 2447908 "ROUTINE" 2448755 T ROUTINE (NIL) -8 NIL NIL NIL) (-1057 2437087 2439888 2440028 "ROMAN" 2440144 T ROMAN (NIL) -8 NIL NIL NIL) (-1056 2435358 2435947 2436207 "ROIRC" 2436892 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1055 2431743 2433994 2434024 "RNS" 2434328 T RNS (NIL) -9 NIL 2434601 NIL) (-1054 2430252 2430635 2431169 "RNS-" 2431244 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1053 2429701 2430083 2430113 "RNG" 2430118 T RNG (NIL) -9 NIL 2430139 NIL) (-1052 2429093 2429455 2429498 "RMODULE" 2429560 NIL RMODULE (NIL T) -9 NIL 2429602 NIL) (-1051 2427929 2428023 2428359 "RMCAT2" 2428994 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1050 2424806 2427275 2427572 "RMATRIX" 2427691 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1049 2417748 2419982 2420097 "RMATCAT" 2423456 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2424438 NIL) (-1048 2417123 2417270 2417577 "RMATCAT-" 2417582 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1047 2416690 2416765 2416893 "RINTERP" 2417042 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1046 2415809 2416337 2416367 "RING" 2416423 T RING (NIL) -9 NIL 2416515 NIL) (-1045 2415601 2415645 2415742 "RING-" 2415747 NIL RING- (NIL T) -8 NIL NIL NIL) (-1044 2414442 2414679 2414937 "RIDIST" 2415365 T RIDIST (NIL) -7 NIL NIL NIL) (-1043 2405758 2413910 2414116 "RGCHAIN" 2414290 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1042 2405134 2405514 2405555 "RGBCSPC" 2405613 NIL RGBCSPC (NIL T) -9 NIL 2405665 NIL) (-1041 2404318 2404673 2404714 "RGBCMDL" 2404946 NIL RGBCMDL (NIL T) -9 NIL 2405060 NIL) (-1040 2401312 2401926 2402596 "RF" 2403682 NIL RF (NIL T) -7 NIL NIL NIL) (-1039 2400958 2401021 2401124 "RFFACTOR" 2401243 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1038 2400683 2400718 2400815 "RFFACT" 2400917 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1037 2398800 2399164 2399546 "RFDIST" 2400323 T RFDIST (NIL) -7 NIL NIL NIL) (-1036 2398253 2398345 2398508 "RETSOL" 2398702 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1035 2397889 2397969 2398012 "RETRACT" 2398145 NIL RETRACT (NIL T) -9 NIL 2398232 NIL) (-1034 2397738 2397763 2397850 "RETRACT-" 2397855 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1033 2397367 2397560 2397630 "RETAST" 2397690 T RETAST (NIL) -8 NIL NIL NIL) (-1032 2390221 2397020 2397147 "RESULT" 2397262 T RESULT (NIL) -8 NIL NIL NIL) (-1031 2388839 2389490 2389689 "RESRING" 2390124 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1030 2388475 2388524 2388622 "RESLATC" 2388776 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1029 2388180 2388215 2388322 "REPSQ" 2388434 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1028 2385602 2386182 2386784 "REP" 2387600 T REP (NIL) -7 NIL NIL NIL) (-1027 2385299 2385334 2385445 "REPDB" 2385561 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1026 2379199 2380588 2381811 "REP2" 2384111 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1025 2375576 2376257 2377065 "REP1" 2378426 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1024 2368299 2373717 2374173 "REGSET" 2375206 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1023 2367112 2367447 2367697 "REF" 2368084 NIL REF (NIL T) -8 NIL NIL NIL) (-1022 2366489 2366592 2366759 "REDORDER" 2366996 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1021 2362484 2365702 2365929 "RECLOS" 2366317 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1020 2361536 2361717 2361932 "REALSOLV" 2362291 T REALSOLV (NIL) -7 NIL NIL NIL) (-1019 2361382 2361423 2361453 "REAL" 2361458 T REAL (NIL) -9 NIL 2361493 NIL) (-1018 2357865 2358667 2359551 "REAL0Q" 2360547 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1017 2353466 2354454 2355515 "REAL0" 2356846 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1016 2352964 2353183 2353277 "RDUCEAST" 2353394 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1015 2352369 2352441 2352648 "RDIV" 2352886 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1014 2351437 2351611 2351824 "RDIST" 2352191 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1013 2350034 2350321 2350693 "RDETRS" 2351145 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1012 2347846 2348300 2348838 "RDETR" 2349576 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1011 2346457 2346735 2347139 "RDEEFS" 2347562 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1010 2344952 2345258 2345690 "RDEEF" 2346145 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1009 2339205 2342088 2342118 "RCFIELD" 2343413 T RCFIELD (NIL) -9 NIL 2344143 NIL) (-1008 2337269 2337773 2338469 "RCFIELD-" 2338544 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1007 2333585 2335370 2335413 "RCAGG" 2336497 NIL RCAGG (NIL T) -9 NIL 2336962 NIL) (-1006 2333213 2333307 2333470 "RCAGG-" 2333475 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1005 2332548 2332660 2332825 "RATRET" 2333097 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1004 2332101 2332168 2332289 "RATFACT" 2332476 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1003 2331409 2331529 2331681 "RANDSRC" 2331971 T RANDSRC (NIL) -7 NIL NIL NIL) (-1002 2331143 2331187 2331260 "RADUTIL" 2331358 T RADUTIL (NIL) -7 NIL NIL NIL) (-1001 2324286 2329976 2330286 "RADIX" 2330867 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1000 2315932 2324128 2324258 "RADFF" 2324263 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-999 2315584 2315659 2315687 "RADCAT" 2315844 T RADCAT (NIL) -9 NIL NIL NIL) (-998 2315369 2315417 2315514 "RADCAT-" 2315519 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-997 2313520 2315144 2315233 "QUEUE" 2315313 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-996 2310088 2313457 2313502 "QUAT" 2313507 NIL QUAT (NIL T) -8 NIL NIL NIL) (-995 2309726 2309769 2309896 "QUATCT2" 2310039 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2303465 2306775 2306815 "QUATCAT" 2307595 NIL QUATCAT (NIL T) -9 NIL 2308361 NIL) (-993 2299609 2300646 2302033 "QUATCAT-" 2302127 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-992 2297129 2298693 2298734 "QUAGG" 2299109 NIL QUAGG (NIL T) -9 NIL 2299284 NIL) (-991 2296761 2296954 2297022 "QQUTAST" 2297081 T QQUTAST (NIL) -8 NIL NIL NIL) (-990 2295686 2296159 2296331 "QFORM" 2296633 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-989 2286890 2292103 2292143 "QFCAT" 2292801 NIL QFCAT (NIL T) -9 NIL 2293802 NIL) (-988 2282462 2283663 2285254 "QFCAT-" 2285348 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-987 2282100 2282143 2282270 "QFCAT2" 2282413 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-986 2281560 2281670 2281800 "QEQUAT" 2281990 T QEQUAT (NIL) -8 NIL NIL NIL) (-985 2274707 2275779 2276963 "QCMPACK" 2280493 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-984 2272283 2272704 2273132 "QALGSET" 2274362 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-983 2271528 2271702 2271934 "QALGSET2" 2272103 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-982 2270218 2270442 2270759 "PWFFINTB" 2271301 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-981 2268400 2268568 2268922 "PUSHVAR" 2270032 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-980 2264318 2265372 2265413 "PTRANFN" 2267297 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-979 2262720 2263011 2263333 "PTPACK" 2264029 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-978 2262352 2262409 2262518 "PTFUNC2" 2262657 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-977 2256879 2261224 2261265 "PTCAT" 2261561 NIL PTCAT (NIL T) -9 NIL 2261714 NIL) (-976 2256537 2256572 2256696 "PSQFR" 2256838 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-975 2255132 2255430 2255764 "PSEUDLIN" 2256235 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-974 2241895 2244266 2246590 "PSETPK" 2252892 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-973 2234939 2237653 2237749 "PSETCAT" 2240770 NIL PSETCAT (NIL T T T T) -9 NIL 2241584 NIL) (-972 2232775 2233409 2234230 "PSETCAT-" 2234235 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-971 2232124 2232289 2232317 "PSCURVE" 2232585 T PSCURVE (NIL) -9 NIL 2232752 NIL) (-970 2228472 2229962 2230027 "PSCAT" 2230871 NIL PSCAT (NIL T T T) -9 NIL 2231111 NIL) (-969 2227535 2227751 2228151 "PSCAT-" 2228156 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-968 2226267 2226900 2227105 "PRTITION" 2227350 T PRTITION (NIL) -8 NIL NIL NIL) (-967 2225769 2225988 2226080 "PRTDAST" 2226195 T PRTDAST (NIL) -8 NIL NIL NIL) (-966 2214859 2217073 2219261 "PRS" 2223631 NIL PRS (NIL T T) -7 NIL NIL NIL) (-965 2212717 2214209 2214249 "PRQAGG" 2214432 NIL PRQAGG (NIL T) -9 NIL 2214534 NIL) (-964 2212103 2212332 2212360 "PROPLOG" 2212545 T PROPLOG (NIL) -9 NIL 2212667 NIL) (-963 2210611 2211054 2211311 "PROPFRML" 2211879 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-962 2210071 2210181 2210311 "PROPERTY" 2210501 T PROPERTY (NIL) -8 NIL NIL NIL) (-961 2204156 2208237 2209057 "PRODUCT" 2209297 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-960 2201461 2203614 2203848 "PR" 2203967 NIL PR (NIL T T) -8 NIL NIL NIL) (-959 2201257 2201289 2201348 "PRINT" 2201422 T PRINT (NIL) -7 NIL NIL NIL) (-958 2200597 2200714 2200866 "PRIMES" 2201137 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-957 2198662 2199063 2199529 "PRIMELT" 2200176 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-956 2198391 2198440 2198468 "PRIMCAT" 2198592 T PRIMCAT (NIL) -9 NIL NIL NIL) (-955 2194554 2198329 2198374 "PRIMARR" 2198379 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-954 2193561 2193739 2193967 "PRIMARR2" 2194372 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-953 2193204 2193260 2193371 "PREASSOC" 2193499 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-952 2192679 2192812 2192840 "PPCURVE" 2193045 T PPCURVE (NIL) -9 NIL 2193181 NIL) (-951 2192301 2192474 2192557 "PORTNUM" 2192616 T PORTNUM (NIL) -8 NIL NIL NIL) (-950 2189660 2190059 2190651 "POLYROOT" 2191882 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-949 2183597 2189264 2189424 "POLY" 2189533 NIL POLY (NIL T) -8 NIL NIL NIL) (-948 2182980 2183038 2183272 "POLYLIFT" 2183533 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-947 2179255 2179704 2180333 "POLYCATQ" 2182525 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-946 2166064 2171430 2171495 "POLYCAT" 2175009 NIL POLYCAT (NIL T T T) -9 NIL 2176937 NIL) (-945 2159513 2161375 2163759 "POLYCAT-" 2163764 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-944 2159100 2159168 2159288 "POLY2UP" 2159439 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-943 2158732 2158789 2158898 "POLY2" 2159037 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-942 2157417 2157656 2157932 "POLUTIL" 2158506 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-941 2155772 2156049 2156380 "POLTOPOL" 2157139 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-940 2151287 2155708 2155754 "POINT" 2155759 NIL POINT (NIL T) -8 NIL NIL NIL) (-939 2149474 2149831 2150206 "PNTHEORY" 2150932 T PNTHEORY (NIL) -7 NIL NIL NIL) (-938 2147893 2148190 2148602 "PMTOOLS" 2149172 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-937 2147486 2147564 2147681 "PMSYM" 2147809 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-936 2146996 2147065 2147239 "PMQFCAT" 2147411 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-935 2146351 2146461 2146617 "PMPRED" 2146873 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-934 2145747 2145833 2145994 "PMPREDFS" 2146252 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-933 2144390 2144598 2144983 "PMPLCAT" 2145509 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-932 2143922 2144001 2144153 "PMLSAGG" 2144305 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-931 2143397 2143473 2143654 "PMKERNEL" 2143840 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-930 2143014 2143089 2143202 "PMINS" 2143316 NIL PMINS (NIL T) -7 NIL NIL NIL) (-929 2142442 2142511 2142727 "PMFS" 2142939 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-928 2141670 2141788 2141993 "PMDOWN" 2142319 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-927 2140833 2140992 2141174 "PMASS" 2141508 T PMASS (NIL) -7 NIL NIL NIL) (-926 2140107 2140218 2140381 "PMASSFS" 2140719 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-925 2139762 2139830 2139924 "PLOTTOOL" 2140033 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-924 2134369 2135573 2136721 "PLOT" 2138634 T PLOT (NIL) -8 NIL NIL NIL) (-923 2130173 2131217 2132138 "PLOT3D" 2133468 T PLOT3D (NIL) -8 NIL NIL NIL) (-922 2129085 2129262 2129497 "PLOT1" 2129977 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-921 2104474 2109151 2114002 "PLEQN" 2124351 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-920 2103792 2103914 2104094 "PINTERP" 2104339 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-919 2103485 2103532 2103635 "PINTERPA" 2103739 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-918 2102733 2103254 2103341 "PI" 2103381 T PI (NIL) -8 NIL NIL 2103448) (-917 2101122 2102071 2102099 "PID" 2102281 T PID (NIL) -9 NIL 2102415 NIL) (-916 2100847 2100884 2100972 "PICOERCE" 2101079 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-915 2100167 2100306 2100482 "PGROEB" 2100703 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-914 2095754 2096568 2097473 "PGE" 2099282 T PGE (NIL) -7 NIL NIL NIL) (-913 2093877 2094124 2094490 "PGCD" 2095471 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-912 2093215 2093318 2093479 "PFRPAC" 2093761 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-911 2089883 2091763 2092116 "PFR" 2092894 NIL PFR (NIL T) -8 NIL NIL NIL) (-910 2088272 2088516 2088841 "PFOTOOLS" 2089630 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-909 2086805 2087044 2087395 "PFOQ" 2088029 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-908 2085278 2085490 2085853 "PFO" 2086589 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-907 2081858 2085167 2085236 "PF" 2085241 NIL PF (NIL NIL) -8 NIL NIL NIL) (-906 2079284 2080529 2080557 "PFECAT" 2081142 T PFECAT (NIL) -9 NIL 2081526 NIL) (-905 2078729 2078883 2079097 "PFECAT-" 2079102 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-904 2077332 2077584 2077885 "PFBRU" 2078478 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-903 2075197 2075550 2075982 "PFBR" 2076983 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-902 2071106 2072573 2073249 "PERM" 2074554 NIL PERM (NIL T) -8 NIL NIL NIL) (-901 2066367 2067313 2068183 "PERMGRP" 2070269 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-900 2064499 2065430 2065471 "PERMCAT" 2065917 NIL PERMCAT (NIL T) -9 NIL 2066222 NIL) (-899 2064152 2064193 2064317 "PERMAN" 2064452 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-898 2061688 2063817 2063939 "PENDTREE" 2064063 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-897 2059773 2060515 2060556 "PDRING" 2061213 NIL PDRING (NIL T) -9 NIL 2061499 NIL) (-896 2058876 2059094 2059456 "PDRING-" 2059461 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-895 2056118 2056869 2057537 "PDEPROB" 2058228 T PDEPROB (NIL) -8 NIL NIL NIL) (-894 2053663 2054167 2054722 "PDEPACK" 2055583 T PDEPACK (NIL) -7 NIL NIL NIL) (-893 2052575 2052765 2053016 "PDECOMP" 2053462 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-892 2050180 2050997 2051025 "PDECAT" 2051812 T PDECAT (NIL) -9 NIL 2052525 NIL) (-891 2049931 2049964 2050054 "PCOMP" 2050141 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-890 2048136 2048732 2049029 "PBWLB" 2049660 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-889 2040636 2042209 2043547 "PATTERN" 2046819 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-888 2040268 2040325 2040434 "PATTERN2" 2040573 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-887 2038025 2038413 2038870 "PATTERN1" 2039857 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-886 2035420 2035974 2036455 "PATRES" 2037590 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-885 2034984 2035051 2035183 "PATRES2" 2035347 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-884 2032867 2033272 2033679 "PATMATCH" 2034651 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-883 2032403 2032586 2032627 "PATMAB" 2032734 NIL PATMAB (NIL T) -9 NIL 2032817 NIL) (-882 2030948 2031257 2031515 "PATLRES" 2032208 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-881 2030494 2030617 2030658 "PATAB" 2030663 NIL PATAB (NIL T) -9 NIL 2030835 NIL) (-880 2027975 2028507 2029080 "PARTPERM" 2029941 T PARTPERM (NIL) -7 NIL NIL NIL) (-879 2027596 2027659 2027761 "PARSURF" 2027906 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-878 2027228 2027285 2027394 "PARSU2" 2027533 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-877 2026992 2027032 2027099 "PARSER" 2027181 T PARSER (NIL) -7 NIL NIL NIL) (-876 2026613 2026676 2026778 "PARSCURV" 2026923 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-875 2026245 2026302 2026411 "PARSC2" 2026550 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-874 2025884 2025942 2026039 "PARPCURV" 2026181 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-873 2025516 2025573 2025682 "PARPC2" 2025821 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-872 2025036 2025122 2025241 "PAN2EXPR" 2025417 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-871 2023840 2024157 2024385 "PALETTE" 2024828 T PALETTE (NIL) -8 NIL NIL NIL) (-870 2022308 2022845 2023205 "PAIR" 2023526 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-869 2016205 2021567 2021761 "PADICRC" 2022163 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-868 2009461 2015551 2015735 "PADICRAT" 2016053 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-867 2007803 2009398 2009443 "PADIC" 2009448 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-866 2005005 2006543 2006583 "PADICCT" 2007164 NIL PADICCT (NIL NIL) -9 NIL 2007446 NIL) (-865 2003962 2004162 2004430 "PADEPAC" 2004792 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-864 2003174 2003307 2003513 "PADE" 2003824 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-863 2001588 2002382 2002662 "OWP" 2002978 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-862 2001108 2001294 2001391 "OVERSET" 2001511 T OVERSET (NIL) -8 NIL NIL NIL) (-861 2000181 2000713 2000885 "OVAR" 2000976 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-860 1999445 1999566 1999727 "OUT" 2000040 T OUT (NIL) -7 NIL NIL NIL) (-859 1988343 1990554 1992754 "OUTFORM" 1997265 T OUTFORM (NIL) -8 NIL NIL NIL) (-858 1987679 1987940 1988067 "OUTBFILE" 1988236 T OUTBFILE (NIL) -8 NIL NIL NIL) (-857 1986986 1987151 1987179 "OUTBCON" 1987497 T OUTBCON (NIL) -9 NIL 1987663 NIL) (-856 1986587 1986699 1986856 "OUTBCON-" 1986861 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-855 1985994 1986316 1986405 "OSI" 1986518 T OSI (NIL) -8 NIL NIL NIL) (-854 1985550 1985862 1985890 "OSGROUP" 1985895 T OSGROUP (NIL) -9 NIL 1985917 NIL) (-853 1984295 1984522 1984807 "ORTHPOL" 1985297 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-852 1981873 1984130 1984251 "OREUP" 1984256 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-851 1979303 1981564 1981691 "ORESUP" 1981815 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-850 1976831 1977331 1977892 "OREPCTO" 1978792 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-849 1970647 1972822 1972863 "OREPCAT" 1975211 NIL OREPCAT (NIL T) -9 NIL 1976315 NIL) (-848 1967794 1968576 1969634 "OREPCAT-" 1969639 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-847 1966971 1967243 1967271 "ORDSET" 1967580 T ORDSET (NIL) -9 NIL 1967744 NIL) (-846 1966490 1966612 1966805 "ORDSET-" 1966810 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-845 1965116 1965881 1965909 "ORDRING" 1966111 T ORDRING (NIL) -9 NIL 1966236 NIL) (-844 1964761 1964855 1964999 "ORDRING-" 1965004 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-843 1964167 1964604 1964632 "ORDMON" 1964637 T ORDMON (NIL) -9 NIL 1964658 NIL) (-842 1963329 1963476 1963671 "ORDFUNS" 1964016 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-841 1962693 1963086 1963114 "ORDFIN" 1963179 T ORDFIN (NIL) -9 NIL 1963253 NIL) (-840 1959279 1961279 1961688 "ORDCOMP" 1962317 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-839 1958545 1958672 1958858 "ORDCOMP2" 1959139 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-838 1955153 1956036 1956850 "OPTPROB" 1957751 T OPTPROB (NIL) -8 NIL NIL NIL) (-837 1951955 1952594 1953298 "OPTPACK" 1954469 T OPTPACK (NIL) -7 NIL NIL NIL) (-836 1949668 1950408 1950436 "OPTCAT" 1951255 T OPTCAT (NIL) -9 NIL 1951905 NIL) (-835 1949111 1949345 1949450 "OPSIG" 1949583 T OPSIG (NIL) -8 NIL NIL NIL) (-834 1948879 1948918 1948984 "OPQUERY" 1949065 T OPQUERY (NIL) -7 NIL NIL NIL) (-833 1946037 1947190 1947694 "OP" 1948408 NIL OP (NIL T) -8 NIL NIL NIL) (-832 1945572 1945743 1945784 "OPERCAT" 1945919 NIL OPERCAT (NIL T) -9 NIL 1945987 NIL) (-831 1945418 1945445 1945531 "OPERCAT-" 1945536 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-830 1942257 1944215 1944584 "ONECOMP" 1945082 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-829 1941562 1941677 1941851 "ONECOMP2" 1942129 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-828 1940981 1941087 1941217 "OMSERVER" 1941452 T OMSERVER (NIL) -7 NIL NIL NIL) (-827 1937869 1940421 1940461 "OMSAGG" 1940522 NIL OMSAGG (NIL T) -9 NIL 1940586 NIL) (-826 1936492 1936755 1937037 "OMPKG" 1937607 T OMPKG (NIL) -7 NIL NIL NIL) (-825 1935922 1936025 1936053 "OM" 1936352 T OM (NIL) -9 NIL NIL NIL) (-824 1934496 1935471 1935640 "OMLO" 1935803 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-823 1933421 1933568 1933795 "OMEXPR" 1934322 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-822 1932739 1932967 1933103 "OMERR" 1933305 T OMERR (NIL) -8 NIL NIL NIL) (-821 1931917 1932160 1932320 "OMERRK" 1932599 T OMERRK (NIL) -8 NIL NIL NIL) (-820 1931395 1931594 1931702 "OMENC" 1931829 T OMENC (NIL) -8 NIL NIL NIL) (-819 1925290 1926475 1927646 "OMDEV" 1930244 T OMDEV (NIL) -8 NIL NIL NIL) (-818 1924359 1924530 1924724 "OMCONN" 1925116 T OMCONN (NIL) -8 NIL NIL NIL) (-817 1922972 1923922 1923950 "OINTDOM" 1923955 T OINTDOM (NIL) -9 NIL 1923976 NIL) (-816 1918778 1919962 1920678 "OFMONOID" 1922288 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-815 1918216 1918715 1918760 "ODVAR" 1918765 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-814 1915666 1917961 1918116 "ODR" 1918121 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-813 1908002 1915442 1915568 "ODPOL" 1915573 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-812 1901872 1907874 1907979 "ODP" 1907984 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-811 1900638 1900853 1901128 "ODETOOLS" 1901646 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-810 1897605 1898263 1898979 "ODESYS" 1899971 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-809 1892487 1893395 1894420 "ODERTRIC" 1896680 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-808 1891913 1891995 1892189 "ODERED" 1892399 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-807 1888801 1889349 1890026 "ODERAT" 1891336 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-806 1885758 1886225 1886822 "ODEPRRIC" 1888330 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-805 1883728 1884297 1884783 "ODEPROB" 1885292 T ODEPROB (NIL) -8 NIL NIL NIL) (-804 1880248 1880733 1881380 "ODEPRIM" 1883207 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-803 1879497 1879599 1879859 "ODEPAL" 1880140 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-802 1875659 1876450 1877314 "ODEPACK" 1878653 T ODEPACK (NIL) -7 NIL NIL NIL) (-801 1874692 1874799 1875028 "ODEINT" 1875548 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-800 1868793 1870218 1871665 "ODEIFTBL" 1873265 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-799 1864128 1864914 1865873 "ODEEF" 1867952 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-798 1863463 1863552 1863782 "ODECONST" 1864033 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-797 1861614 1862249 1862277 "ODECAT" 1862882 T ODECAT (NIL) -9 NIL 1863413 NIL) (-796 1858513 1861326 1861445 "OCT" 1861527 NIL OCT (NIL T) -8 NIL NIL NIL) (-795 1858151 1858194 1858321 "OCTCT2" 1858464 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-794 1852917 1855325 1855365 "OC" 1856462 NIL OC (NIL T) -9 NIL 1857320 NIL) (-793 1850144 1850892 1851882 "OC-" 1851976 NIL OC- (NIL T T) -8 NIL NIL NIL) (-792 1849522 1849964 1849992 "OCAMON" 1849997 T OCAMON (NIL) -9 NIL 1850018 NIL) (-791 1849079 1849394 1849422 "OASGP" 1849427 T OASGP (NIL) -9 NIL 1849447 NIL) (-790 1848366 1848829 1848857 "OAMONS" 1848897 T OAMONS (NIL) -9 NIL 1848940 NIL) (-789 1847806 1848213 1848241 "OAMON" 1848246 T OAMON (NIL) -9 NIL 1848266 NIL) (-788 1847110 1847602 1847630 "OAGROUP" 1847635 T OAGROUP (NIL) -9 NIL 1847655 NIL) (-787 1846800 1846850 1846938 "NUMTUBE" 1847054 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-786 1840373 1841891 1843427 "NUMQUAD" 1845284 T NUMQUAD (NIL) -7 NIL NIL NIL) (-785 1836129 1837117 1838142 "NUMODE" 1839368 T NUMODE (NIL) -7 NIL NIL NIL) (-784 1833510 1834364 1834392 "NUMINT" 1835315 T NUMINT (NIL) -9 NIL 1836079 NIL) (-783 1832458 1832655 1832873 "NUMFMT" 1833312 T NUMFMT (NIL) -7 NIL NIL NIL) (-782 1818817 1821762 1824294 "NUMERIC" 1829965 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-781 1813214 1818266 1818361 "NTSCAT" 1818366 NIL NTSCAT (NIL T T T T) -9 NIL 1818405 NIL) (-780 1812408 1812573 1812766 "NTPOLFN" 1813053 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-779 1800240 1809233 1810045 "NSUP" 1811629 NIL NSUP (NIL T) -8 NIL NIL NIL) (-778 1799872 1799929 1800038 "NSUP2" 1800177 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-777 1789855 1799646 1799779 "NSMP" 1799784 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-776 1788287 1788588 1788945 "NREP" 1789543 NIL NREP (NIL T) -7 NIL NIL NIL) (-775 1786878 1787130 1787488 "NPCOEF" 1788030 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-774 1785944 1786059 1786275 "NORMRETR" 1786759 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-773 1783985 1784275 1784684 "NORMPK" 1785652 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-772 1783670 1783698 1783822 "NORMMA" 1783951 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-771 1783497 1783627 1783656 "NONE" 1783661 T NONE (NIL) -8 NIL NIL NIL) (-770 1783286 1783315 1783384 "NONE1" 1783461 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-769 1782769 1782831 1783017 "NODE1" 1783218 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-768 1781039 1781863 1782118 "NNI" 1782465 T NNI (NIL) -8 NIL NIL 1782700) (-767 1779459 1779772 1780136 "NLINSOL" 1780707 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-766 1775727 1776695 1777594 "NIPROB" 1778580 T NIPROB (NIL) -8 NIL NIL NIL) (-765 1774484 1774718 1775020 "NFINTBAS" 1775489 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-764 1773658 1774134 1774175 "NETCLT" 1774347 NIL NETCLT (NIL T) -9 NIL 1774429 NIL) (-763 1772366 1772597 1772878 "NCODIV" 1773426 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-762 1772128 1772165 1772240 "NCNTFRAC" 1772323 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-761 1770308 1770672 1771092 "NCEP" 1771753 NIL NCEP (NIL T) -7 NIL NIL NIL) (-760 1769205 1769952 1769980 "NASRING" 1770090 T NASRING (NIL) -9 NIL 1770170 NIL) (-759 1769000 1769044 1769138 "NASRING-" 1769143 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-758 1768153 1768652 1768680 "NARNG" 1768797 T NARNG (NIL) -9 NIL 1768888 NIL) (-757 1767845 1767912 1768046 "NARNG-" 1768051 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-756 1766724 1766931 1767166 "NAGSP" 1767630 T NAGSP (NIL) -7 NIL NIL NIL) (-755 1757996 1759680 1761353 "NAGS" 1765071 T NAGS (NIL) -7 NIL NIL NIL) (-754 1756544 1756852 1757183 "NAGF07" 1757685 T NAGF07 (NIL) -7 NIL NIL NIL) (-753 1751082 1752373 1753680 "NAGF04" 1755257 T NAGF04 (NIL) -7 NIL NIL NIL) (-752 1744050 1745664 1747297 "NAGF02" 1749469 T NAGF02 (NIL) -7 NIL NIL NIL) (-751 1739274 1740374 1741491 "NAGF01" 1742953 T NAGF01 (NIL) -7 NIL NIL NIL) (-750 1732902 1734468 1736053 "NAGE04" 1737709 T NAGE04 (NIL) -7 NIL NIL NIL) (-749 1724071 1726192 1728322 "NAGE02" 1730792 T NAGE02 (NIL) -7 NIL NIL NIL) (-748 1720024 1720971 1721935 "NAGE01" 1723127 T NAGE01 (NIL) -7 NIL NIL NIL) (-747 1717819 1718353 1718911 "NAGD03" 1719486 T NAGD03 (NIL) -7 NIL NIL NIL) (-746 1709569 1711497 1713451 "NAGD02" 1715885 T NAGD02 (NIL) -7 NIL NIL NIL) (-745 1703380 1704805 1706245 "NAGD01" 1708149 T NAGD01 (NIL) -7 NIL NIL NIL) (-744 1699589 1700411 1701248 "NAGC06" 1702563 T NAGC06 (NIL) -7 NIL NIL NIL) (-743 1698054 1698386 1698742 "NAGC05" 1699253 T NAGC05 (NIL) -7 NIL NIL NIL) (-742 1697430 1697549 1697693 "NAGC02" 1697930 T NAGC02 (NIL) -7 NIL NIL NIL) (-741 1696490 1697047 1697087 "NAALG" 1697166 NIL NAALG (NIL T) -9 NIL 1697227 NIL) (-740 1696325 1696354 1696444 "NAALG-" 1696449 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-739 1690275 1691383 1692570 "MULTSQFR" 1695221 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-738 1689594 1689669 1689853 "MULTFACT" 1690187 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-737 1682679 1686557 1686610 "MTSCAT" 1687680 NIL MTSCAT (NIL T T) -9 NIL 1688194 NIL) (-736 1682391 1682445 1682537 "MTHING" 1682619 NIL MTHING (NIL T) -7 NIL NIL NIL) (-735 1682183 1682216 1682276 "MSYSCMD" 1682351 T MSYSCMD (NIL) -7 NIL NIL NIL) (-734 1678292 1680938 1681258 "MSET" 1681896 NIL MSET (NIL T) -8 NIL NIL NIL) (-733 1675387 1677853 1677894 "MSETAGG" 1677899 NIL MSETAGG (NIL T) -9 NIL 1677933 NIL) (-732 1671255 1672766 1673511 "MRING" 1674687 NIL MRING (NIL T T) -8 NIL NIL NIL) (-731 1670821 1670888 1671019 "MRF2" 1671182 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-730 1670439 1670474 1670618 "MRATFAC" 1670780 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-729 1668051 1668346 1668777 "MPRFF" 1670144 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-728 1662103 1667905 1668002 "MPOLY" 1668007 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-727 1661593 1661628 1661836 "MPCPF" 1662062 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-726 1661107 1661150 1661334 "MPC3" 1661544 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-725 1660302 1660383 1660604 "MPC2" 1661022 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1658603 1658940 1659330 "MONOTOOL" 1659962 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-723 1657854 1658145 1658173 "MONOID" 1658392 T MONOID (NIL) -9 NIL 1658539 NIL) (-722 1657400 1657519 1657700 "MONOID-" 1657705 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-721 1648251 1654167 1654226 "MONOGEN" 1654900 NIL MONOGEN (NIL T T) -9 NIL 1655356 NIL) (-720 1645469 1646204 1647204 "MONOGEN-" 1647323 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-719 1644328 1644748 1644776 "MONADWU" 1645168 T MONADWU (NIL) -9 NIL 1645406 NIL) (-718 1643700 1643859 1644107 "MONADWU-" 1644112 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-717 1643085 1643303 1643331 "MONAD" 1643538 T MONAD (NIL) -9 NIL 1643650 NIL) (-716 1642770 1642848 1642980 "MONAD-" 1642985 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-715 1641086 1641683 1641962 "MOEBIUS" 1642523 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-714 1640478 1640856 1640896 "MODULE" 1640901 NIL MODULE (NIL T) -9 NIL 1640927 NIL) (-713 1640046 1640142 1640332 "MODULE-" 1640337 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-712 1637753 1638410 1638737 "MODRING" 1639870 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1634724 1635858 1636379 "MODOP" 1637282 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-710 1633339 1633791 1634068 "MODMONOM" 1634587 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-709 1623136 1631630 1632044 "MODMON" 1632976 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-708 1620319 1621980 1622256 "MODFIELD" 1623011 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-707 1619323 1619600 1619790 "MMLFORM" 1620149 T MMLFORM (NIL) -8 NIL NIL NIL) (-706 1618849 1618892 1619071 "MMAP" 1619274 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-705 1617058 1617799 1617840 "MLO" 1618263 NIL MLO (NIL T) -9 NIL 1618505 NIL) (-704 1614424 1614940 1615542 "MLIFT" 1616539 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-703 1613815 1613899 1614053 "MKUCFUNC" 1614335 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-702 1613414 1613484 1613607 "MKRECORD" 1613738 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-701 1612461 1612623 1612851 "MKFUNC" 1613225 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-700 1611849 1611953 1612109 "MKFLCFN" 1612344 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-699 1611392 1611759 1611818 "MKCHSET" 1611823 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-698 1610669 1610771 1610956 "MKBCFUNC" 1611285 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-697 1607403 1610223 1610359 "MINT" 1610553 T MINT (NIL) -8 NIL NIL NIL) (-696 1606215 1606458 1606735 "MHROWRED" 1607158 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-695 1601622 1604750 1605155 "MFLOAT" 1605830 T MFLOAT (NIL) -8 NIL NIL NIL) (-694 1600979 1601055 1601226 "MFINFACT" 1601534 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-693 1597294 1598142 1599026 "MESH" 1600115 T MESH (NIL) -7 NIL NIL NIL) (-692 1595684 1595996 1596349 "MDDFACT" 1596981 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-691 1592526 1594843 1594884 "MDAGG" 1595139 NIL MDAGG (NIL T) -9 NIL 1595282 NIL) (-690 1582296 1591819 1592026 "MCMPLX" 1592339 T MCMPLX (NIL) -8 NIL NIL NIL) (-689 1581437 1581583 1581783 "MCDEN" 1582145 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-688 1579327 1579597 1579977 "MCALCFN" 1581167 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-687 1578252 1578492 1578725 "MAYBE" 1579133 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-686 1575864 1576387 1576949 "MATSTOR" 1577723 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-685 1571869 1575236 1575484 "MATRIX" 1575649 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-684 1567633 1568342 1569078 "MATLIN" 1571226 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-683 1557787 1560925 1561002 "MATCAT" 1565882 NIL MATCAT (NIL T T T) -9 NIL 1567299 NIL) (-682 1554143 1555164 1556520 "MATCAT-" 1556525 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-681 1552737 1552890 1553223 "MATCAT2" 1553978 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-680 1550849 1551173 1551557 "MAPPKG3" 1552412 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-679 1549830 1550003 1550225 "MAPPKG2" 1550673 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-678 1548329 1548613 1548940 "MAPPKG1" 1549536 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-677 1547435 1547735 1547912 "MAPPAST" 1548172 T MAPPAST (NIL) -8 NIL NIL NIL) (-676 1547046 1547104 1547227 "MAPHACK3" 1547371 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-675 1546638 1546699 1546813 "MAPHACK2" 1546978 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-674 1546075 1546179 1546321 "MAPHACK1" 1546529 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-673 1544181 1544775 1545079 "MAGMA" 1545803 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-672 1543687 1543905 1543996 "MACROAST" 1544110 T MACROAST (NIL) -8 NIL NIL NIL) (-671 1540153 1541926 1542387 "M3D" 1543259 NIL M3D (NIL T) -8 NIL NIL NIL) (-670 1534307 1538522 1538563 "LZSTAGG" 1539345 NIL LZSTAGG (NIL T) -9 NIL 1539640 NIL) (-669 1530264 1531438 1532895 "LZSTAGG-" 1532900 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-668 1527378 1528155 1528642 "LWORD" 1529809 NIL LWORD (NIL T) -8 NIL NIL NIL) (-667 1526981 1527182 1527257 "LSTAST" 1527323 T LSTAST (NIL) -8 NIL NIL NIL) (-666 1520174 1526752 1526886 "LSQM" 1526891 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-665 1519398 1519537 1519765 "LSPP" 1520029 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-664 1517210 1517511 1517967 "LSMP" 1519087 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-663 1513989 1514663 1515393 "LSMP1" 1516512 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1507914 1513156 1513197 "LSAGG" 1513259 NIL LSAGG (NIL T) -9 NIL 1513337 NIL) (-661 1504609 1505533 1506746 "LSAGG-" 1506751 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-660 1502235 1503753 1504002 "LPOLY" 1504404 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-659 1501817 1501902 1502025 "LPEFRAC" 1502144 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-658 1500164 1500911 1501164 "LO" 1501649 NIL LO (NIL T T T) -8 NIL NIL NIL) (-657 1499816 1499928 1499956 "LOGIC" 1500067 T LOGIC (NIL) -9 NIL 1500148 NIL) (-656 1499678 1499701 1499772 "LOGIC-" 1499777 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1498871 1499011 1499204 "LODOOPS" 1499534 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1496321 1498787 1498853 "LODO" 1498858 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-653 1494859 1495094 1495447 "LODOF" 1496068 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-652 1491207 1493612 1493653 "LODOCAT" 1494091 NIL LODOCAT (NIL T) -9 NIL 1494302 NIL) (-651 1490940 1490998 1491125 "LODOCAT-" 1491130 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-650 1488287 1490781 1490899 "LODO2" 1490904 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-649 1485749 1488224 1488269 "LODO1" 1488274 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-648 1484609 1484774 1485086 "LODEEF" 1485572 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1479895 1482739 1482780 "LNAGG" 1483727 NIL LNAGG (NIL T) -9 NIL 1484171 NIL) (-646 1479042 1479256 1479598 "LNAGG-" 1479603 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-645 1475205 1475967 1476606 "LMOPS" 1478457 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-644 1474600 1474962 1475003 "LMODULE" 1475064 NIL LMODULE (NIL T) -9 NIL 1475106 NIL) (-643 1471846 1474245 1474368 "LMDICT" 1474510 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-642 1471572 1471754 1471814 "LITERAL" 1471819 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-641 1464803 1470518 1470816 "LIST" 1471307 NIL LIST (NIL T) -8 NIL NIL NIL) (-640 1464328 1464402 1464541 "LIST3" 1464723 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1463335 1463513 1463741 "LIST2" 1464146 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-638 1461469 1461781 1462180 "LIST2MAP" 1462982 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-637 1460191 1460835 1460876 "LINEXP" 1461131 NIL LINEXP (NIL T) -9 NIL 1461280 NIL) (-636 1458838 1459098 1459395 "LINDEP" 1459943 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1455605 1456324 1457101 "LIMITRF" 1458093 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1453880 1454176 1454592 "LIMITPS" 1455300 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1448335 1453391 1453619 "LIE" 1453701 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1447384 1447827 1447867 "LIECAT" 1448007 NIL LIECAT (NIL T) -9 NIL 1448158 NIL) (-631 1447225 1447252 1447340 "LIECAT-" 1447345 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1439837 1446674 1446839 "LIB" 1447080 T LIB (NIL) -8 NIL NIL NIL) (-629 1435472 1436355 1437290 "LGROBP" 1438954 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1433338 1433612 1433974 "LF" 1435193 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1432178 1432870 1432898 "LFCAT" 1433105 T LFCAT (NIL) -9 NIL 1433244 NIL) (-626 1429080 1429710 1430398 "LEXTRIPK" 1431542 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1425851 1426650 1427153 "LEXP" 1428660 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1425354 1425572 1425664 "LETAST" 1425779 T LETAST (NIL) -8 NIL NIL NIL) (-623 1423752 1424065 1424466 "LEADCDET" 1425036 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1422942 1423016 1423245 "LAZM3PK" 1423673 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1417886 1421019 1421557 "LAUPOL" 1422454 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1417451 1417495 1417663 "LAPLACE" 1417836 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1415417 1416552 1416803 "LA" 1417284 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1414490 1415048 1415089 "LALG" 1415151 NIL LALG (NIL T) -9 NIL 1415210 NIL) (-617 1414204 1414263 1414399 "LALG-" 1414404 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1414039 1414063 1414104 "KVTFROM" 1414166 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1412839 1413256 1413485 "KTVLOGIC" 1413830 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1412674 1412698 1412739 "KRCFROM" 1412801 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1411578 1411765 1412064 "KOVACIC" 1412474 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1411413 1411437 1411478 "KONVERT" 1411540 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1411248 1411272 1411313 "KOERCE" 1411375 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1408982 1409742 1410135 "KERNEL" 1410887 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1408484 1408565 1408695 "KERNEL2" 1408896 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1402335 1407023 1407077 "KDAGG" 1407454 NIL KDAGG (NIL T T) -9 NIL 1407660 NIL) (-607 1401864 1401988 1402193 "KDAGG-" 1402198 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1395039 1401525 1401680 "KAFILE" 1401742 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1389494 1394550 1394778 "JORDAN" 1394860 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1388900 1389143 1389264 "JOINAST" 1389393 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1388746 1388805 1388860 "JAVACODE" 1388865 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1385045 1386951 1387005 "IXAGG" 1387934 NIL IXAGG (NIL T T) -9 NIL 1388393 NIL) (-601 1383964 1384270 1384689 "IXAGG-" 1384694 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1379544 1383886 1383945 "IVECTOR" 1383950 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1378310 1378547 1378813 "ITUPLE" 1379311 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1376746 1376923 1377229 "ITRIGMNP" 1378132 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1375491 1375695 1375978 "ITFUN3" 1376522 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1375123 1375180 1375289 "ITFUN2" 1375428 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1372952 1373985 1374284 "ITAYLOR" 1374857 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1361924 1367089 1368252 "ISUPS" 1371822 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1361028 1361168 1361404 "ISUMP" 1361771 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1356292 1360829 1360908 "ISTRING" 1360981 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1355795 1356013 1356105 "ISAST" 1356220 T ISAST (NIL) -8 NIL NIL NIL) (-590 1355005 1355086 1355302 "IRURPK" 1355709 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1353941 1354142 1354382 "IRSN" 1354785 T IRSN (NIL) -7 NIL NIL NIL) (-588 1351970 1352325 1352761 "IRRF2F" 1353579 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1351717 1351755 1351831 "IRREDFFX" 1351926 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1350332 1350591 1350890 "IROOT" 1351450 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1346963 1348016 1348708 "IR" 1349672 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1344576 1345071 1345637 "IR2" 1346441 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1343648 1343761 1343982 "IR2F" 1344459 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1343439 1343473 1343533 "IPRNTPK" 1343608 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1340046 1343328 1343397 "IPF" 1343402 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1338400 1339971 1340028 "IPADIC" 1340033 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1337739 1337960 1338090 "IP4ADDR" 1338290 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1337239 1337443 1337553 "IOMODE" 1337649 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1336312 1336836 1336963 "IOBFILE" 1337132 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1335800 1336216 1336244 "IOBCON" 1336249 T IOBCON (NIL) -9 NIL 1336270 NIL) (-575 1335297 1335355 1335545 "INVLAPLA" 1335736 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1324945 1327299 1329685 "INTTR" 1332961 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1321289 1322031 1322895 "INTTOOLS" 1324130 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1320875 1320966 1321083 "INTSLPE" 1321192 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1318856 1320798 1320857 "INTRVL" 1320862 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1316458 1316970 1317545 "INTRF" 1318341 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1315869 1315966 1316108 "INTRET" 1316356 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1313866 1314255 1314725 "INTRAT" 1315477 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1311094 1311677 1312303 "INTPM" 1313351 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1307796 1308396 1309141 "INTPAF" 1310480 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1302975 1303937 1304988 "INTPACK" 1306765 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1299879 1302704 1302831 "INT" 1302868 T INT (NIL) -8 NIL NIL NIL) (-563 1299131 1299283 1299491 "INTHERTR" 1299721 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1298570 1298650 1298838 "INTHERAL" 1299045 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1296416 1296859 1297316 "INTHEORY" 1298133 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1287724 1289345 1291124 "INTG0" 1294768 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1268297 1273087 1277897 "INTFTBL" 1282934 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1267546 1267684 1267857 "INTFACT" 1268156 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1264931 1265377 1265941 "INTEF" 1267100 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1263390 1264103 1264131 "INTDOM" 1264432 T INTDOM (NIL) -9 NIL 1264639 NIL) (-555 1262759 1262933 1263175 "INTDOM-" 1263180 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1259246 1261143 1261197 "INTCAT" 1261996 NIL INTCAT (NIL T) -9 NIL 1262316 NIL) (-553 1258718 1258821 1258949 "INTBIT" 1259138 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1257389 1257543 1257857 "INTALG" 1258563 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1256846 1256936 1257106 "INTAF" 1257293 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1250300 1256656 1256796 "INTABL" 1256801 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1249631 1250070 1250135 "INT8" 1250169 T INT8 (NIL) -8 NIL NIL 1250214) (-548 1248961 1249400 1249465 "INT64" 1249499 T INT64 (NIL) -8 NIL NIL 1249544) (-547 1248291 1248730 1248795 "INT32" 1248829 T INT32 (NIL) -8 NIL NIL 1248874) (-546 1247621 1248060 1248125 "INT16" 1248159 T INT16 (NIL) -8 NIL NIL 1248204) (-545 1242628 1245310 1245338 "INS" 1246272 T INS (NIL) -9 NIL 1246937 NIL) (-544 1239868 1240639 1241613 "INS-" 1241686 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1238643 1238870 1239168 "INPSIGN" 1239621 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1237761 1237878 1238075 "INPRODPF" 1238523 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1236655 1236772 1237009 "INPRODFF" 1237641 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1235655 1235807 1236067 "INNMFACT" 1236491 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1234852 1234949 1235137 "INMODGCD" 1235554 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1233360 1233605 1233929 "INFSP" 1234597 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1232544 1232661 1232844 "INFPROD0" 1233240 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1229426 1230609 1231124 "INFORM" 1232037 T INFORM (NIL) -8 NIL NIL NIL) (-535 1229036 1229096 1229194 "INFORM1" 1229361 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1228559 1228648 1228762 "INFINITY" 1228942 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1227735 1228279 1228380 "INETCLTS" 1228478 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1226351 1226601 1226922 "INEP" 1227483 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1225627 1226248 1226313 "INDE" 1226318 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1225191 1225259 1225376 "INCRMAPS" 1225554 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1224009 1224460 1224666 "INBFILE" 1225005 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1219309 1220245 1221189 "INBFF" 1223097 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1218217 1218486 1218514 "INBCON" 1219027 T INBCON (NIL) -9 NIL 1219293 NIL) (-526 1217469 1217692 1217968 "INBCON-" 1217973 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1216975 1217193 1217284 "INAST" 1217398 T INAST (NIL) -8 NIL NIL NIL) (-524 1216429 1216654 1216760 "IMPTAST" 1216889 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1212923 1216273 1216377 "IMATRIX" 1216382 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1211635 1211758 1212073 "IMATQF" 1212779 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1209855 1210082 1210419 "IMATLIN" 1211391 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1204481 1209779 1209837 "ILIST" 1209842 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1202434 1204341 1204454 "IIARRAY2" 1204459 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1197859 1202345 1202409 "IFF" 1202414 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1197233 1197476 1197592 "IFAST" 1197763 T IFAST (NIL) -8 NIL NIL NIL) (-516 1192276 1196525 1196713 "IFARRAY" 1197090 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1191483 1192180 1192253 "IFAMON" 1192258 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1191067 1191132 1191186 "IEVALAB" 1191393 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1190742 1190810 1190970 "IEVALAB-" 1190975 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1190400 1190656 1190719 "IDPO" 1190724 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1189677 1190289 1190364 "IDPOAMS" 1190369 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1189011 1189566 1189641 "IDPOAM" 1189646 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1188096 1188346 1188399 "IDPC" 1188812 NIL IDPC (NIL T T) -9 NIL 1188961 NIL) (-508 1187592 1187988 1188061 "IDPAM" 1188066 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1186995 1187484 1187557 "IDPAG" 1187562 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1186667 1186831 1186906 "IDENT" 1186940 T IDENT (NIL) -8 NIL NIL NIL) (-505 1182922 1183770 1184665 "IDECOMP" 1185824 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1175786 1176845 1177892 "IDEAL" 1181958 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1174950 1175062 1175261 "ICDEN" 1175670 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1174048 1174430 1174577 "ICARD" 1174823 T ICARD (NIL) -8 NIL NIL NIL) (-501 1172108 1172421 1172826 "IBPTOOLS" 1173725 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1167742 1171728 1171841 "IBITS" 1172027 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1164465 1165041 1165736 "IBATOOL" 1167159 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1162244 1162706 1163239 "IBACHIN" 1164000 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1160121 1162090 1162193 "IARRAY2" 1162198 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1156275 1160047 1160104 "IARRAY1" 1160109 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1150259 1154687 1155168 "IAN" 1155814 T IAN (NIL) -8 NIL NIL NIL) (-494 1149770 1149827 1150000 "IALGFACT" 1150196 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1149298 1149411 1149439 "HYPCAT" 1149646 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1148836 1148953 1149139 "HYPCAT-" 1149144 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1148458 1148631 1148714 "HOSTNAME" 1148773 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1148303 1148340 1148381 "HOMOTOP" 1148386 NIL HOMOTOP (NIL T) -9 NIL 1148419 NIL) (-489 1144982 1146313 1146354 "HOAGG" 1147335 NIL HOAGG (NIL T) -9 NIL 1148014 NIL) (-488 1143576 1143975 1144501 "HOAGG-" 1144506 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1137607 1143171 1143320 "HEXADEC" 1143447 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1136355 1136577 1136840 "HEUGCD" 1137384 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1135458 1136192 1136322 "HELLFDIV" 1136327 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1133685 1135235 1135323 "HEAP" 1135402 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1132975 1133237 1133371 "HEADAST" 1133571 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1126889 1132890 1132952 "HDP" 1132957 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1120632 1126524 1126676 "HDMP" 1126790 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1119956 1120096 1120260 "HB" 1120488 T HB (NIL) -7 NIL NIL NIL) (-479 1113453 1119802 1119906 "HASHTBL" 1119911 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1112956 1113174 1113266 "HASAST" 1113381 T HASAST (NIL) -8 NIL NIL NIL) (-477 1110761 1112578 1112760 "HACKPI" 1112794 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1106456 1110614 1110727 "GTSET" 1110732 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1099982 1106334 1106432 "GSTBL" 1106437 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1092287 1099013 1099278 "GSERIES" 1099773 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1091454 1091845 1091873 "GROUP" 1092076 T GROUP (NIL) -9 NIL 1092210 NIL) (-472 1090820 1090979 1091230 "GROUP-" 1091235 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1089187 1089508 1089895 "GROEBSOL" 1090497 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1088127 1088389 1088440 "GRMOD" 1088969 NIL GRMOD (NIL T T) -9 NIL 1089137 NIL) (-469 1087895 1087931 1088059 "GRMOD-" 1088064 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1083212 1084249 1085249 "GRIMAGE" 1086915 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1081678 1081939 1082263 "GRDEF" 1082908 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1081122 1081238 1081379 "GRAY" 1081557 T GRAY (NIL) -7 NIL NIL NIL) (-465 1080335 1080715 1080766 "GRALG" 1080919 NIL GRALG (NIL T T) -9 NIL 1081012 NIL) (-464 1079996 1080069 1080232 "GRALG-" 1080237 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1076800 1079581 1079759 "GPOLSET" 1079903 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1076154 1076211 1076469 "GOSPER" 1076737 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1071913 1072592 1073118 "GMODPOL" 1075853 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1070918 1071102 1071340 "GHENSEL" 1071725 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1064969 1065812 1066839 "GENUPS" 1070002 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1064666 1064717 1064806 "GENUFACT" 1064912 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1064078 1064155 1064320 "GENPGCD" 1064584 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1063552 1063587 1063800 "GENMFACT" 1064037 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1062118 1062375 1062682 "GENEEZ" 1063295 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1056019 1061729 1061891 "GDMP" 1062041 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1045388 1049790 1050896 "GCNAALG" 1055002 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1043807 1044643 1044671 "GCDDOM" 1044926 T GCDDOM (NIL) -9 NIL 1045083 NIL) (-451 1043277 1043404 1043619 "GCDDOM-" 1043624 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1041949 1042134 1042438 "GB" 1043056 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1030565 1032895 1035287 "GBINTERN" 1039640 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1028402 1028694 1029115 "GBF" 1030240 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1027183 1027348 1027615 "GBEUCLID" 1028218 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1026532 1026657 1026806 "GAUSSFAC" 1027054 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1024899 1025201 1025515 "GALUTIL" 1026251 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1023207 1023481 1023805 "GALPOLYU" 1024626 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1020572 1020862 1021269 "GALFACTU" 1022904 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1012378 1013877 1015485 "GALFACT" 1019004 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1009766 1010424 1010452 "FVFUN" 1011608 T FVFUN (NIL) -9 NIL 1012328 NIL) (-440 1009032 1009214 1009242 "FVC" 1009533 T FVC (NIL) -9 NIL 1009716 NIL) (-439 1008702 1008857 1008925 "FUNDESC" 1008984 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1008344 1008499 1008580 "FUNCTION" 1008654 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1006115 1006666 1007132 "FT" 1007898 T FT (NIL) -8 NIL NIL NIL) (-436 1004933 1005416 1005619 "FTEM" 1005932 T FTEM (NIL) -8 NIL NIL NIL) (-435 1003189 1003478 1003882 "FSUPFACT" 1004624 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1001586 1001875 1002207 "FST" 1002877 T FST (NIL) -8 NIL NIL NIL) (-433 1000757 1000863 1001058 "FSRED" 1001468 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 999435 999691 1000045 "FSPRMELT" 1000472 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 996520 996958 997457 "FSPECF" 998998 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 978574 987023 987063 "FS" 990911 NIL FS (NIL T) -9 NIL 993200 NIL) (-429 967221 970214 974270 "FS-" 974567 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 966735 966789 966966 "FSINT" 967162 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 965054 965728 966031 "FSERIES" 966514 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 964068 964184 964415 "FSCINT" 964934 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 960302 963012 963053 "FSAGG" 963423 NIL FSAGG (NIL T) -9 NIL 963682 NIL) (-424 958064 958665 959461 "FSAGG-" 959556 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 957106 957249 957476 "FSAGG2" 957917 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 954760 955040 955594 "FS2UPS" 956824 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 954342 954385 954540 "FS2" 954711 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 953199 953370 953679 "FS2EXPXP" 954167 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 952625 952740 952892 "FRUTIL" 953079 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 944065 948120 949478 "FR" 951299 NIL FR (NIL T) -8 NIL NIL NIL) (-417 939140 941783 941823 "FRNAALG" 943219 NIL FRNAALG (NIL T) -9 NIL 943826 NIL) (-416 934813 935889 937164 "FRNAALG-" 937914 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 934451 934494 934621 "FRNAAF2" 934764 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 932858 933305 933600 "FRMOD" 934263 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 930636 931241 931558 "FRIDEAL" 932649 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 929831 929918 930207 "FRIDEAL2" 930543 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 928964 929378 929419 "FRETRCT" 929424 NIL FRETRCT (NIL T) -9 NIL 929600 NIL) (-410 928076 928307 928658 "FRETRCT-" 928663 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 925280 926464 926523 "FRAMALG" 927405 NIL FRAMALG (NIL T T) -9 NIL 927697 NIL) (-408 923414 923869 924499 "FRAMALG-" 924722 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 917362 922889 923165 "FRAC" 923170 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 916998 917055 917162 "FRAC2" 917299 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 916634 916691 916798 "FR2" 916935 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 911299 914159 914187 "FPS" 915306 T FPS (NIL) -9 NIL 915863 NIL) (-403 910748 910857 911021 "FPS-" 911167 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 908194 909837 909865 "FPC" 910090 T FPC (NIL) -9 NIL 910232 NIL) (-401 907987 908027 908124 "FPC-" 908129 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 906865 907475 907516 "FPATMAB" 907521 NIL FPATMAB (NIL T) -9 NIL 907673 NIL) (-399 904565 905041 905467 "FPARFRAC" 906502 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 899958 900457 901139 "FORTRAN" 903997 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 897674 898174 898713 "FORT" 899439 T FORT (NIL) -7 NIL NIL NIL) (-396 895350 895912 895940 "FORTFN" 897000 T FORTFN (NIL) -9 NIL 897624 NIL) (-395 895114 895164 895192 "FORTCAT" 895251 T FORTCAT (NIL) -9 NIL 895313 NIL) (-394 893247 893730 894120 "FORMULA" 894744 T FORMULA (NIL) -8 NIL NIL NIL) (-393 893035 893065 893134 "FORMULA1" 893211 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 892558 892610 892783 "FORDER" 892977 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 891654 891818 892011 "FOP" 892385 T FOP (NIL) -7 NIL NIL NIL) (-390 890262 890934 891108 "FNLA" 891536 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 889017 889406 889434 "FNCAT" 889894 T FNCAT (NIL) -9 NIL 890154 NIL) (-388 888583 888976 889004 "FNAME" 889009 T FNAME (NIL) -8 NIL NIL NIL) (-387 887238 888175 888203 "FMTC" 888208 T FMTC (NIL) -9 NIL 888244 NIL) (-386 883598 884761 885390 "FMONOID" 886642 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 882817 883340 883489 "FM" 883494 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 880241 880887 880915 "FMFUN" 882059 T FMFUN (NIL) -9 NIL 882767 NIL) (-383 879510 879691 879719 "FMC" 880009 T FMC (NIL) -9 NIL 880191 NIL) (-382 876704 877538 877592 "FMCAT" 878787 NIL FMCAT (NIL T T) -9 NIL 879282 NIL) (-381 875597 876470 876570 "FM1" 876649 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 873371 873787 874281 "FLOATRP" 875148 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 866972 871100 871721 "FLOAT" 872770 T FLOAT (NIL) -8 NIL NIL NIL) (-378 864410 864910 865488 "FLOATCP" 866439 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 863211 864023 864064 "FLINEXP" 864069 NIL FLINEXP (NIL T) -9 NIL 864162 NIL) (-376 862365 862600 862928 "FLINEXP-" 862933 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 861441 861585 861809 "FLASORT" 862217 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 858658 859500 859552 "FLALG" 860779 NIL FLALG (NIL T T) -9 NIL 861246 NIL) (-373 852442 856144 856185 "FLAGG" 857447 NIL FLAGG (NIL T) -9 NIL 858099 NIL) (-372 851168 851507 851997 "FLAGG-" 852002 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 850210 850353 850580 "FLAGG2" 851021 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 847177 848159 848218 "FINRALG" 849346 NIL FINRALG (NIL T T) -9 NIL 849854 NIL) (-369 846337 846566 846905 "FINRALG-" 846910 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 845743 845956 845984 "FINITE" 846180 T FINITE (NIL) -9 NIL 846287 NIL) (-367 838201 840362 840402 "FINAALG" 844069 NIL FINAALG (NIL T) -9 NIL 845522 NIL) (-366 833533 834583 835727 "FINAALG-" 837106 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 832928 833288 833391 "FILE" 833463 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 831612 831924 831978 "FILECAT" 832662 NIL FILECAT (NIL T T) -9 NIL 832878 NIL) (-363 829472 830974 831002 "FIELD" 831042 T FIELD (NIL) -9 NIL 831122 NIL) (-362 828092 828477 828988 "FIELD-" 828993 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 825969 826727 827074 "FGROUP" 827778 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 825059 825223 825443 "FGLMICPK" 825801 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 820918 824984 825041 "FFX" 825046 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 820519 820580 820715 "FFSLPE" 820851 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 816508 817291 818087 "FFPOLY" 819755 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 816012 816048 816257 "FFPOLY2" 816466 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 811882 815931 815994 "FFP" 815999 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 807307 811793 811857 "FF" 811862 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 802460 806650 806840 "FFNBX" 807161 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 797416 801595 801853 "FFNBP" 802314 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 792076 796700 796911 "FFNB" 797249 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 790908 791106 791421 "FFINTBAS" 791873 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 787128 789315 789343 "FFIELDC" 789963 T FFIELDC (NIL) -9 NIL 790339 NIL) (-348 785790 786161 786658 "FFIELDC-" 786663 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 785359 785405 785529 "FFHOM" 785732 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 783054 783541 784058 "FFF" 784874 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778699 782796 782897 "FFCGX" 782997 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 774347 778431 778538 "FFCGP" 778642 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 769557 774074 774182 "FFCG" 774283 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 751382 760428 760514 "FFCAT" 765679 NIL FFCAT (NIL T T T) -9 NIL 767130 NIL) (-341 746580 747627 748941 "FFCAT-" 750171 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745991 746034 746269 "FFCAT2" 746531 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 735188 738963 740183 "FEXPR" 744843 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 734188 734623 734664 "FEVALAB" 734748 NIL FEVALAB (NIL T) -9 NIL 735009 NIL) (-337 733347 733557 733895 "FEVALAB-" 733900 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 731940 732730 732933 "FDIV" 733246 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 729006 729721 729836 "FDIVCAT" 731404 NIL FDIVCAT (NIL T T T T) -9 NIL 731841 NIL) (-334 728768 728795 728965 "FDIVCAT-" 728970 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 727988 728075 728352 "FDIV2" 728675 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726674 726933 727222 "FCPAK1" 727719 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725800 726174 726315 "FCOMP" 726565 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 709529 712950 716488 "FC" 722282 T FC (NIL) -8 NIL NIL NIL) (-329 702100 706093 706133 "FAXF" 707935 NIL FAXF (NIL T) -9 NIL 708627 NIL) (-328 699376 700034 700859 "FAXF-" 701324 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 694476 698752 698928 "FARRAY" 699233 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689721 691761 691814 "FAMR" 692837 NIL FAMR (NIL T T) -9 NIL 693297 NIL) (-325 688611 688913 689348 "FAMR-" 689353 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687807 688533 688586 "FAMONOID" 688591 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 685619 686303 686356 "FAMONC" 687297 NIL FAMONC (NIL T T) -9 NIL 687683 NIL) (-322 684311 685373 685510 "FAGROUP" 685515 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 682106 682425 682828 "FACUTIL" 683992 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 681205 681390 681612 "FACTFUNC" 681916 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 673602 680456 680668 "EXPUPXS" 681061 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 671085 671625 672211 "EXPRTUBE" 673036 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 667279 667871 668608 "EXPRODE" 670424 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 652645 665934 666362 "EXPR" 666883 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 647052 647639 648452 "EXPR2UPS" 651943 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646688 646745 646852 "EXPR2" 646989 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 638085 645820 646117 "EXPEXPAN" 646525 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 637912 638042 638071 "EXIT" 638076 T EXIT (NIL) -8 NIL NIL NIL) (-311 637419 637636 637727 "EXITAST" 637841 T EXITAST (NIL) -8 NIL NIL NIL) (-310 637046 637108 637221 "EVALCYC" 637351 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 636587 636705 636746 "EVALAB" 636916 NIL EVALAB (NIL T) -9 NIL 637020 NIL) (-308 636068 636190 636411 "EVALAB-" 636416 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 633528 634804 634832 "EUCDOM" 635387 T EUCDOM (NIL) -9 NIL 635737 NIL) (-306 631933 632375 632965 "EUCDOM-" 632970 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 619471 622231 624981 "ESTOOLS" 629203 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 619103 619160 619269 "ESTOOLS2" 619408 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618854 618896 618976 "ESTOOLS1" 619055 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612759 614487 614515 "ES" 617283 T ES (NIL) -9 NIL 618692 NIL) (-301 607706 608993 610810 "ES-" 610974 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 604080 604841 605621 "ESCONT" 606946 T ESCONT (NIL) -7 NIL NIL NIL) (-299 603825 603857 603939 "ESCONT1" 604042 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 603500 603550 603650 "ES2" 603769 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 603130 603188 603297 "ES1" 603436 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 602346 602475 602651 "ERROR" 602974 T ERROR (NIL) -7 NIL NIL NIL) (-295 595849 602205 602296 "EQTBL" 602301 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 588400 591163 592612 "EQ" 594433 NIL -3382 (NIL T) -8 NIL NIL NIL) (-293 588032 588089 588198 "EQ2" 588337 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 583321 584370 585463 "EP" 586971 NIL EP (NIL T) -7 NIL NIL NIL) (-291 581899 582196 582508 "ENV" 583029 T ENV (NIL) -8 NIL NIL NIL) (-290 581070 581598 581626 "ENTIRER" 581631 T ENTIRER (NIL) -9 NIL 581677 NIL) (-289 577564 579025 579395 "EMR" 580869 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576708 576893 576947 "ELTAGG" 577327 NIL ELTAGG (NIL T T) -9 NIL 577538 NIL) (-287 576427 576489 576630 "ELTAGG-" 576635 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 576216 576245 576299 "ELTAB" 576383 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 575342 575488 575687 "ELFUTS" 576067 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 575084 575140 575168 "ELEMFUN" 575273 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574954 574975 575043 "ELEMFUN-" 575048 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569845 573054 573095 "ELAGG" 574035 NIL ELAGG (NIL T) -9 NIL 574498 NIL) (-281 568130 568564 569227 "ELAGG-" 569232 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566795 567073 567366 "ELABEXPR" 567857 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559659 561462 562289 "EFUPXS" 566071 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 553109 554910 555720 "EFULS" 558935 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 550531 550889 551368 "EFSTRUC" 552741 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 539602 541168 542728 "EF" 549046 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 538703 539087 539236 "EAB" 539473 T EAB (NIL) -8 NIL NIL NIL) (-274 537912 538662 538690 "E04UCFA" 538695 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 537121 537871 537899 "E04NAFA" 537904 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 536330 537080 537108 "E04MBFA" 537113 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 535539 536289 536317 "E04JAFA" 536322 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 534750 535498 535526 "E04GCFA" 535531 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533961 534709 534737 "E04FDFA" 534742 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 533170 533920 533948 "E04DGFA" 533953 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 527343 528695 530059 "E04AGNT" 531826 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 526049 526529 526569 "DVARCAT" 527044 NIL DVARCAT (NIL T) -9 NIL 527243 NIL) (-265 525253 525465 525779 "DVARCAT-" 525784 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 518145 525052 525181 "DSMP" 525186 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512954 514090 515158 "DROPT" 517097 T DROPT (NIL) -8 NIL NIL NIL) (-262 512619 512678 512776 "DROPT1" 512889 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 507734 508860 509997 "DROPT0" 511502 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 506079 506404 506790 "DRAWPT" 507368 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 500666 501589 502668 "DRAW" 505053 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 500299 500352 500470 "DRAWHACK" 500607 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 499030 499299 499590 "DRAWCX" 500028 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 498545 498614 498765 "DRAWCURV" 498956 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 489013 490975 493090 "DRAWCFUN" 496450 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 485826 487708 487749 "DQAGG" 488378 NIL DQAGG (NIL T) -9 NIL 488651 NIL) (-253 474097 480804 480887 "DPOLCAT" 482739 NIL DPOLCAT (NIL T T T T) -9 NIL 483284 NIL) (-252 468933 470282 472240 "DPOLCAT-" 472245 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 462082 468794 468892 "DPMO" 468897 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 455134 461862 462029 "DPMM" 462034 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 454766 455053 455101 "DOMCTOR" 455106 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 454061 454288 454425 "DOMAIN" 454649 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 447804 453696 453848 "DMP" 453962 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 447404 447460 447604 "DLP" 447742 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 441274 446731 446921 "DLIST" 447246 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 438118 440127 440168 "DLAGG" 440718 NIL DLAGG (NIL T) -9 NIL 440948 NIL) (-243 436923 437561 437589 "DIVRING" 437681 T DIVRING (NIL) -9 NIL 437764 NIL) (-242 436160 436350 436650 "DIVRING-" 436655 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 434262 434619 435025 "DISPLAY" 435774 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 428198 434176 434239 "DIRPROD" 434244 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 427046 427249 427514 "DIRPROD2" 427991 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 416303 422261 422314 "DIRPCAT" 422724 NIL DIRPCAT (NIL NIL T) -9 NIL 423564 NIL) (-237 413629 414271 415152 "DIRPCAT-" 415489 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412916 413076 413262 "DIOSP" 413463 T DIOSP (NIL) -7 NIL NIL NIL) (-235 409618 411828 411869 "DIOPS" 412303 NIL DIOPS (NIL T) -9 NIL 412532 NIL) (-234 409167 409281 409472 "DIOPS-" 409477 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 408051 408653 408681 "DIFRING" 408868 T DIFRING (NIL) -9 NIL 408978 NIL) (-232 407697 407774 407926 "DIFRING-" 407931 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 405494 406740 406781 "DIFEXT" 407144 NIL DIFEXT (NIL T) -9 NIL 407438 NIL) (-230 403779 404207 404873 "DIFEXT-" 404878 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 401101 403311 403352 "DIAGG" 403357 NIL DIAGG (NIL T) -9 NIL 403377 NIL) (-228 400485 400642 400894 "DIAGG-" 400899 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395950 399444 399721 "DHMATRIX" 400254 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 391562 392471 393481 "DFSFUN" 394960 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 386667 390493 390805 "DFLOAT" 391270 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384895 385176 385572 "DFINTTLS" 386375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381951 382916 383316 "DERHAM" 384561 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 379800 381726 381815 "DEQUEUE" 381895 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 379015 379148 379344 "DEGRED" 379662 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 375410 376155 377008 "DEFINTRF" 378243 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372937 373406 374005 "DEFINTEF" 374929 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 372314 372557 372672 "DEFAST" 372842 T DEFAST (NIL) -8 NIL NIL NIL) (-217 366345 371909 372058 "DECIMAL" 372185 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363855 364315 364821 "DDFACT" 365889 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 363451 363494 363645 "DBLRESP" 363806 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 361350 361684 362044 "DBASE" 363218 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 360619 360830 360976 "DATAARY" 361249 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 359752 360578 360606 "D03FAFA" 360611 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358886 359711 359739 "D03EEFA" 359744 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 356836 357302 357791 "D03AGNT" 358417 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 356152 356795 356823 "D02EJFA" 356828 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 355468 356111 356139 "D02CJFA" 356144 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 354784 355427 355455 "D02BHFA" 355460 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 354100 354743 354771 "D02BBFA" 354776 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 347297 348886 350492 "D02AGNT" 352514 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 345065 345588 346134 "D01WGTS" 346771 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 344159 345024 345052 "D01TRNS" 345057 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 343254 344118 344146 "D01GBFA" 344151 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 342349 343213 343241 "D01FCFA" 343246 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 341444 342308 342336 "D01ASFA" 342341 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 340539 341403 341431 "D01AQFA" 341436 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 339634 340498 340526 "D01APFA" 340531 T D01APFA (NIL) -8 NIL NIL NIL) (-197 338729 339593 339621 "D01ANFA" 339626 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 337824 338688 338716 "D01AMFA" 338721 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336919 337783 337811 "D01ALFA" 337816 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 336014 336878 336906 "D01AKFA" 336911 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 335109 335973 336001 "D01AJFA" 336006 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 328404 329957 331518 "D01AGNT" 333568 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327741 327869 328021 "CYCLOTOM" 328272 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 324476 325189 325916 "CYCLES" 327034 T CYCLES (NIL) -7 NIL NIL NIL) (-189 323788 323922 324093 "CVMP" 324337 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 321559 321817 322193 "CTRIGMNP" 323516 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 321054 321353 321426 "CTOR" 321506 T CTOR (NIL) -8 NIL NIL NIL) (-186 320590 320785 320886 "CTORKIND" 320973 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319938 320197 320225 "CTORCAT" 320407 T CTORCAT (NIL) -9 NIL 320520 NIL) (-184 319536 319647 319806 "CTORCAT-" 319811 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 319052 319239 319337 "CTORCALL" 319458 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 318426 318525 318678 "CSTTOOLS" 318949 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 314225 314882 315640 "CRFP" 317738 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313727 313946 314038 "CRCEAST" 314153 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312774 312959 313187 "CRAPACK" 313531 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 312158 312259 312463 "CPMATCH" 312650 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311883 311911 312017 "CPIMA" 312124 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 308247 308919 309637 "COORDSYS" 311218 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307655 307777 307920 "CONTOUR" 308124 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 303573 305658 306150 "CONTFRAC" 307195 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 303453 303474 303502 "CONDUIT" 303539 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 302618 303146 303174 "COMRING" 303179 T COMRING (NIL) -9 NIL 303231 NIL) (-171 301699 301976 302160 "COMPPROP" 302454 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 301360 301395 301523 "COMPLPAT" 301658 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 291409 301169 301278 "COMPLEX" 301283 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 291045 291102 291209 "COMPLEX2" 291346 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 290763 290798 290896 "COMPFACT" 291004 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274917 285145 285185 "COMPCAT" 286189 NIL COMPCAT (NIL T) -9 NIL 287585 NIL) (-165 264428 267356 270983 "COMPCAT-" 271339 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264157 264185 264288 "COMMUPC" 264394 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263951 263985 264044 "COMMONOP" 264118 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263534 263702 263789 "COMM" 263884 T COMM (NIL) -8 NIL NIL NIL) (-161 263137 263338 263413 "COMMAAST" 263479 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 262386 262580 262608 "COMBOPC" 262946 T COMBOPC (NIL) -9 NIL 263121 NIL) (-159 261282 261492 261734 "COMBINAT" 262176 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 257479 258053 258693 "COMBF" 260704 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256264 256595 256830 "COLOR" 257264 T COLOR (NIL) -8 NIL NIL NIL) (-156 255767 255985 256077 "COLONAST" 256192 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255407 255454 255579 "CMPLXRT" 255714 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254882 255107 255206 "CLLCTAST" 255328 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250382 251412 252492 "CLIP" 253822 T CLIP (NIL) -7 NIL NIL NIL) (-152 248755 249488 249727 "CLIF" 250209 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244977 246901 246942 "CLAGG" 247871 NIL CLAGG (NIL T) -9 NIL 248407 NIL) (-150 243399 243856 244439 "CLAGG-" 244444 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242943 243028 243168 "CINTSLPE" 243308 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240444 240915 241463 "CHVAR" 242471 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 239679 240207 240235 "CHARZ" 240240 T CHARZ (NIL) -9 NIL 240255 NIL) (-146 239433 239473 239551 "CHARPOL" 239633 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238552 239113 239141 "CHARNZ" 239188 T CHARNZ (NIL) -9 NIL 239244 NIL) (-144 236541 237242 237577 "CHAR" 238237 T CHAR (NIL) -8 NIL NIL NIL) (-143 236267 236328 236356 "CFCAT" 236467 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235512 235623 235805 "CDEN" 236151 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231504 234665 234945 "CCLASS" 235252 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230811 230954 231117 "CATEGORY" 231361 T -10 (NIL) -8 NIL NIL NIL) (-139 230443 230730 230778 "CATCTOR" 230783 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229921 230146 230244 "CATAST" 230365 T CATAST (NIL) -8 NIL NIL NIL) (-137 229424 229642 229734 "CASEAST" 229849 T CASEAST (NIL) -8 NIL NIL NIL) (-136 224460 225453 226206 "CARTEN" 228727 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 223568 223716 223937 "CARTEN2" 224307 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221910 222718 222975 "CARD" 223331 T CARD (NIL) -8 NIL NIL NIL) (-133 221513 221714 221789 "CAPSLAST" 221855 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220885 221213 221241 "CACHSET" 221373 T CACHSET (NIL) -9 NIL 221450 NIL) (-131 220381 220677 220705 "CABMON" 220755 T CABMON (NIL) -9 NIL 220811 NIL) (-130 219881 220085 220195 "BYTEORD" 220291 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218884 219415 219557 "BYTE" 219720 T BYTE (NIL) -8 NIL NIL 219842) (-128 214284 218389 218561 "BYTEBUF" 218732 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211841 213976 214083 "BTREE" 214210 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209338 211489 211611 "BTOURN" 211751 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206755 208808 208849 "BTCAT" 208917 NIL BTCAT (NIL T) -9 NIL 208994 NIL) (-124 206422 206502 206651 "BTCAT-" 206656 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201714 205565 205593 "BTAGG" 205815 T BTAGG (NIL) -9 NIL 205976 NIL) (-122 201204 201329 201535 "BTAGG-" 201540 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198247 200482 200697 "BSTREE" 201021 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197385 197511 197695 "BRILL" 198103 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194084 196111 196152 "BRAGG" 196801 NIL BRAGG (NIL T) -9 NIL 197059 NIL) (-118 192613 193019 193574 "BRAGG-" 193579 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185869 191959 192143 "BPADICRT" 192461 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184211 185806 185851 "BPADIC" 185856 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183909 183939 184053 "BOUNDZRO" 184175 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179021 180193 181138 "BOP" 182984 T BOP (NIL) -8 NIL NIL NIL) (-113 176642 177086 177606 "BOP1" 178534 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175344 176066 176259 "BOOLEAN" 176469 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174706 175084 175138 "BMODULE" 175143 NIL BMODULE (NIL T T) -9 NIL 175208 NIL) (-110 170534 174504 174577 "BITS" 174653 T BITS (NIL) -8 NIL NIL NIL) (-109 169946 170068 170210 "BINDING" 170412 T BINDING (NIL) -8 NIL NIL NIL) (-108 163980 169543 169691 "BINARY" 169818 T BINARY (NIL) -8 NIL NIL NIL) (-107 161807 163235 163276 "BGAGG" 163536 NIL BGAGG (NIL T) -9 NIL 163673 NIL) (-106 161638 161670 161761 "BGAGG-" 161766 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160736 161022 161227 "BFUNCT" 161453 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159426 159604 159892 "BEZOUT" 160560 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155943 158278 158608 "BBTREE" 159129 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155677 155730 155758 "BASTYPE" 155877 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155530 155558 155631 "BASTYPE-" 155636 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154964 155040 155192 "BALFACT" 155441 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153847 154379 154565 "AUTOMOR" 154809 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153573 153578 153604 "ATTREG" 153609 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151852 152270 152622 "ATTRBUT" 153239 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151487 151680 151746 "ATTRAST" 151804 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151023 151136 151162 "ATRIG" 151363 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150832 150873 150960 "ATRIG-" 150965 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150503 150663 150689 "ASTCAT" 150694 T ASTCAT (NIL) -9 NIL 150724 NIL) (-92 150230 150289 150408 "ASTCAT-" 150413 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148427 150006 150094 "ASTACK" 150173 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146932 147229 147594 "ASSOCEQ" 148109 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145964 146591 146715 "ASP9" 146839 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145727 145912 145951 "ASP8" 145956 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144595 145332 145474 "ASP80" 145616 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143493 144230 144362 "ASP7" 144494 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142447 143170 143288 "ASP78" 143406 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141416 142127 142244 "ASP77" 142361 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140328 141054 141185 "ASP74" 141316 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139228 139963 140095 "ASP73" 140227 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138332 139054 139154 "ASP6" 139159 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137276 138009 138127 "ASP55" 138245 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136225 136950 137069 "ASP50" 137188 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135313 135926 136036 "ASP4" 136146 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134401 135014 135124 "ASP49" 135234 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133185 133940 134108 "ASP42" 134290 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131961 132718 132888 "ASP41" 133072 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130911 131638 131756 "ASP35" 131874 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130676 130859 130898 "ASP34" 130903 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130413 130480 130556 "ASP33" 130631 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129306 130048 130180 "ASP31" 130312 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129071 129254 129293 "ASP30" 129298 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128806 128875 128951 "ASP29" 129026 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128571 128754 128793 "ASP28" 128798 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128336 128519 128558 "ASP27" 128563 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127420 128034 128145 "ASP24" 128256 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126496 127222 127334 "ASP20" 127339 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125584 126197 126307 "ASP1" 126417 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124526 125258 125377 "ASP19" 125496 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124263 124330 124406 "ASP12" 124481 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123115 123862 124006 "ASP10" 124150 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121014 122959 123050 "ARRAY2" 123055 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116827 120662 120776 "ARRAY1" 120931 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115859 116032 116253 "ARRAY12" 116650 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110218 112089 112164 "ARR2CAT" 114794 NIL ARR2CAT (NIL T T T) -9 NIL 115552 NIL) (-56 107652 108396 109350 "ARR2CAT-" 109355 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106996 107279 107404 "ARITY" 107545 T ARITY (NIL) -8 NIL NIL NIL) (-54 105744 105896 106202 "APPRULE" 106832 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105395 105443 105562 "APPLYORE" 105690 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104369 104660 104855 "ANY" 105218 T ANY (NIL) -8 NIL NIL NIL) (-51 103647 103770 103927 "ANY1" 104243 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101204 102084 102411 "ANTISYM" 103371 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100723 100911 101007 "ANON" 101126 T ANON (NIL) -8 NIL NIL NIL) (-48 94847 99262 99716 "AN" 100287 T AN (NIL) -8 NIL NIL NIL) (-47 91095 92457 92508 "AMR" 93256 NIL AMR (NIL T T) -9 NIL 93856 NIL) (-46 90207 90428 90791 "AMR-" 90796 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74757 90124 90185 "ALIST" 90190 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71586 74351 74520 "ALGSC" 74675 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68141 68696 69303 "ALGPKG" 71026 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67418 67519 67703 "ALGMFACT" 68027 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63155 63842 64497 "ALGMANIP" 66941 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54552 62781 62931 "ALGFF" 63088 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52805 53379 53417 "ALGEBRA" 53422 NIL ALGEBRA (NIL T) -9 NIL 53463 NIL) (-37 52523 52582 52714 "ALGEBRA-" 52719 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34782 50525 50577 "ALAGG" 50713 NIL ALAGG (NIL T T) -9 NIL 50874 NIL) (-35 34318 34431 34457 "AHYP" 34658 T AHYP (NIL) -9 NIL NIL NIL) (-34 33249 33497 33523 "AGG" 34022 T AGG (NIL) -9 NIL 34301 NIL) (-33 32683 32845 33059 "AGG-" 33064 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30359 30782 31200 "AF" 32325 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29866 30084 30174 "ADDAST" 30287 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29134 29393 29549 "ACPLOT" 29728 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18418 26347 26398 "ACFS" 27109 NIL ACFS (NIL T) -9 NIL 27348 NIL) (-28 16432 16922 17697 "ACFS-" 17702 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14599 14625 "ACF" 15504 T ACF (NIL) -9 NIL 15916 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3 3198953 3198958 3198963 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3198938 3198943 3198948 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3198923 3198928 3198933 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3198908 3198913 3198918 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1287 3198077 3198783 3198860 "ZMOD" 3198865 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1286 3197187 3197351 3197560 "ZLINDEP" 3197909 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1285 3186487 3188255 3190227 "ZDSOLVE" 3195317 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1284 3185733 3185874 3186063 "YSTREAM" 3186333 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1283 3183534 3185034 3185238 "XRPOLY" 3185576 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3180114 3181405 3181980 "XPR" 3183006 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1281 3177862 3179445 3179649 "XPOLY" 3179945 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1280 3175645 3176987 3177042 "XPOLYC" 3177330 NIL XPOLYC (NIL T T) -9 NIL 3177443 NIL) (-1279 3172048 3174162 3174550 "XPBWPOLY" 3175303 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3167951 3170211 3170253 "XF" 3170874 NIL XF (NIL T) -9 NIL 3171274 NIL) (-1277 3167572 3167660 3167829 "XF-" 3167834 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1276 3162898 3164161 3164216 "XFALG" 3166388 NIL XFALG (NIL T T) -9 NIL 3167177 NIL) (-1275 3162031 3162135 3162340 "XEXPPKG" 3162790 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1274 3160167 3161881 3161977 "XDPOLY" 3161982 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3159104 3159678 3159721 "XALG" 3159726 NIL XALG (NIL T) -9 NIL 3159837 NIL) (-1272 3152573 3157081 3157575 "WUTSET" 3158696 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1271 3150856 3151625 3151948 "WP" 3152384 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1270 3150485 3150678 3150748 "WHILEAST" 3150808 T WHILEAST (NIL) -8 NIL NIL NIL) (-1269 3149984 3150202 3150296 "WHEREAST" 3150413 T WHEREAST (NIL) -8 NIL NIL NIL) (-1268 3148870 3149068 3149363 "WFFINTBS" 3149781 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1267 3146774 3147201 3147663 "WEIER" 3148442 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1266 3145921 3146345 3146387 "VSPACE" 3146523 NIL VSPACE (NIL T) -9 NIL 3146597 NIL) (-1265 3145759 3145786 3145877 "VSPACE-" 3145882 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1264 3145567 3145610 3145678 "VOID" 3145713 T VOID (NIL) -8 NIL NIL NIL) (-1263 3143703 3144062 3144468 "VIEW" 3145183 T VIEW (NIL) -7 NIL NIL NIL) (-1262 3140127 3140766 3141503 "VIEWDEF" 3142988 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1261 3129458 3131675 3133848 "VIEW3D" 3137976 T VIEW3D (NIL) -8 NIL NIL NIL) (-1260 3121736 3123369 3124948 "VIEW2D" 3127901 T VIEW2D (NIL) -8 NIL NIL NIL) (-1259 3117138 3121506 3121598 "VECTOR" 3121679 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1258 3115715 3115974 3116292 "VECTOR2" 3116868 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1257 3109242 3113499 3113542 "VECTCAT" 3114535 NIL VECTCAT (NIL T) -9 NIL 3115121 NIL) (-1256 3108256 3108510 3108900 "VECTCAT-" 3108905 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3107737 3107907 3108027 "VARIABLE" 3108171 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1254 3107670 3107675 3107705 "UTYPE" 3107710 T UTYPE (NIL) -9 NIL NIL NIL) (-1253 3106500 3106654 3106916 "UTSODETL" 3107496 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1252 3103940 3104400 3104924 "UTSODE" 3106041 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1251 3095804 3101566 3102055 "UTS" 3103509 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3087039 3092371 3092414 "UTSCAT" 3093526 NIL UTSCAT (NIL T) -9 NIL 3094283 NIL) (-1249 3084387 3085109 3086098 "UTSCAT-" 3086103 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1248 3084014 3084057 3084190 "UTS2" 3084338 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1247 3078287 3080852 3080895 "URAGG" 3082965 NIL URAGG (NIL T) -9 NIL 3083688 NIL) (-1246 3075226 3076089 3077212 "URAGG-" 3077217 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1245 3070942 3073840 3074312 "UPXSSING" 3074890 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1244 3063035 3070189 3070462 "UPXS" 3070727 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 3056135 3062939 3063011 "UPXSCONS" 3063016 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1242 3046372 3053130 3053192 "UPXSCCA" 3053766 NIL UPXSCCA (NIL T T) -9 NIL 3053999 NIL) (-1241 3046010 3046095 3046269 "UPXSCCA-" 3046274 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1240 3036100 3042631 3042674 "UPXSCAT" 3043322 NIL UPXSCAT (NIL T) -9 NIL 3043930 NIL) (-1239 3035530 3035609 3035788 "UPXS2" 3036015 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 3034184 3034437 3034788 "UPSQFREE" 3035273 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1237 3027964 3030986 3031041 "UPSCAT" 3032202 NIL UPSCAT (NIL T T) -9 NIL 3032976 NIL) (-1236 3027168 3027375 3027702 "UPSCAT-" 3027707 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 3013010 3021016 3021059 "UPOLYC" 3023160 NIL UPOLYC (NIL T) -9 NIL 3024381 NIL) (-1234 3004338 3006764 3009911 "UPOLYC-" 3009916 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1233 3003965 3004008 3004141 "UPOLYC2" 3004289 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 2995531 3003648 3003777 "UP" 3003884 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1231 2994870 2994977 2995141 "UPMP" 2995420 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1230 2994423 2994504 2994643 "UPDIVP" 2994783 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1229 2992991 2993240 2993556 "UPDECOMP" 2994172 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1228 2992226 2992338 2992523 "UPCDEN" 2992875 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1227 2991745 2991814 2991963 "UP2" 2992151 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1226 2990260 2990949 2991226 "UNISEG" 2991503 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1225 2989475 2989602 2989807 "UNISEG2" 2990103 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1224 2988535 2988715 2988941 "UNIFACT" 2989291 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1223 2972494 2987712 2987963 "ULS" 2988342 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1222 2960520 2972398 2972470 "ULSCONS" 2972475 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1221 2943128 2955078 2955140 "ULSCCAT" 2955778 NIL ULSCCAT (NIL T T) -9 NIL 2956066 NIL) (-1220 2942178 2942423 2942811 "ULSCCAT-" 2942816 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1219 2932045 2938490 2938533 "ULSCAT" 2939396 NIL ULSCAT (NIL T) -9 NIL 2940126 NIL) (-1218 2931475 2931554 2931733 "ULS2" 2931960 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1217 2930592 2931075 2931182 "UINT8" 2931293 T UINT8 (NIL) -8 NIL NIL 2931378) (-1216 2929708 2930191 2930298 "UINT64" 2930409 T UINT64 (NIL) -8 NIL NIL 2930494) (-1215 2928824 2929307 2929414 "UINT32" 2929525 T UINT32 (NIL) -8 NIL NIL 2929610) (-1214 2927940 2928423 2928530 "UINT16" 2928641 T UINT16 (NIL) -8 NIL NIL 2928726) (-1213 2926335 2927266 2927296 "UFD" 2927508 T UFD (NIL) -9 NIL 2927622 NIL) (-1212 2926129 2926175 2926270 "UFD-" 2926275 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1211 2925211 2925394 2925610 "UDVO" 2925935 T UDVO (NIL) -7 NIL NIL NIL) (-1210 2923027 2923436 2923907 "UDPO" 2924775 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1209 2922960 2922965 2922995 "TYPE" 2923000 T TYPE (NIL) -9 NIL NIL NIL) (-1208 2922747 2922915 2922946 "TYPEAST" 2922951 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2921718 2921920 2922160 "TWOFACT" 2922541 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1206 2920789 2921127 2921362 "TUPLE" 2921518 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1205 2918480 2918999 2919538 "TUBETOOL" 2920272 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1204 2917329 2917534 2917775 "TUBE" 2918273 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1203 2912085 2916301 2916584 "TS" 2917081 NIL TS (NIL T) -8 NIL NIL NIL) (-1202 2900752 2904844 2904941 "TSETCAT" 2910210 NIL TSETCAT (NIL T T T T) -9 NIL 2911741 NIL) (-1201 2895484 2897084 2898975 "TSETCAT-" 2898980 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2889746 2890593 2891535 "TRMANIP" 2894620 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1199 2889187 2889250 2889413 "TRIMAT" 2889678 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1198 2886983 2887220 2887584 "TRIGMNIP" 2888936 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1197 2886503 2886616 2886646 "TRIGCAT" 2886859 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1196 2886172 2886251 2886392 "TRIGCAT-" 2886397 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1195 2883065 2885030 2885311 "TREE" 2885926 NIL TREE (NIL T) -8 NIL NIL NIL) (-1194 2882339 2882867 2882897 "TRANFUN" 2882932 T TRANFUN (NIL) -9 NIL 2882998 NIL) (-1193 2881618 2881809 2882089 "TRANFUN-" 2882094 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1192 2881422 2881454 2881515 "TOPSP" 2881579 T TOPSP (NIL) -7 NIL NIL NIL) (-1191 2880770 2880885 2881039 "TOOLSIGN" 2881303 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1190 2879431 2879947 2880186 "TEXTFILE" 2880553 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1189 2877370 2877884 2878313 "TEX" 2879024 T TEX (NIL) -8 NIL NIL NIL) (-1188 2877151 2877182 2877254 "TEX1" 2877333 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2876799 2876862 2876952 "TEMUTL" 2877083 T TEMUTL (NIL) -7 NIL NIL NIL) (-1186 2874953 2875233 2875558 "TBCMPPK" 2876522 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1185 2866841 2873113 2873169 "TBAGG" 2873569 NIL TBAGG (NIL T T) -9 NIL 2873780 NIL) (-1184 2861911 2863399 2865153 "TBAGG-" 2865158 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1183 2861295 2861402 2861547 "TANEXP" 2861800 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1182 2854796 2861152 2861245 "TABLE" 2861250 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1181 2854208 2854307 2854445 "TABLEAU" 2854693 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2848816 2850036 2851284 "TABLBUMP" 2852994 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1179 2848038 2848185 2848366 "SYSTEM" 2848657 T SYSTEM (NIL) -8 NIL NIL NIL) (-1178 2844497 2845196 2845979 "SYSSOLP" 2847289 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1177 2843531 2844009 2844128 "SYSNNI" 2844314 NIL SYSNNI (NIL NIL) -8 NIL NIL 2844399) (-1176 2842828 2843260 2843339 "SYSINT" 2843399 NIL SYSINT (NIL NIL) -8 NIL NIL 2843444) (-1175 2839187 2840106 2840816 "SYNTAX" 2842140 T SYNTAX (NIL) -8 NIL NIL NIL) (-1174 2836345 2836947 2837579 "SYMTAB" 2838577 T SYMTAB (NIL) -8 NIL NIL NIL) (-1173 2831594 2832496 2833479 "SYMS" 2835384 T SYMS (NIL) -8 NIL NIL NIL) (-1172 2828856 2831052 2831282 "SYMPOLY" 2831399 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1171 2828373 2828448 2828571 "SYMFUNC" 2828768 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1170 2824419 2825685 2826498 "SYMBOL" 2827582 T SYMBOL (NIL) -8 NIL NIL NIL) (-1169 2817958 2819647 2821367 "SWITCH" 2822721 T SWITCH (NIL) -8 NIL NIL NIL) (-1168 2811219 2816779 2817082 "SUTS" 2817713 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2803312 2810466 2810739 "SUPXS" 2811004 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2794827 2802930 2803056 "SUP" 2803221 NIL SUP (NIL T) -8 NIL NIL NIL) (-1165 2793986 2794113 2794330 "SUPFRACF" 2794695 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2793607 2793666 2793779 "SUP2" 2793921 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2792020 2792294 2792657 "SUMRF" 2793306 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1162 2791334 2791400 2791599 "SUMFS" 2791941 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1161 2775328 2790511 2790762 "SULS" 2791141 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2774957 2775150 2775220 "SUCHTAST" 2775280 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1159 2774279 2774482 2774622 "SUCH" 2774865 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1158 2768173 2769185 2770144 "SUBSPACE" 2773367 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1157 2767603 2767693 2767857 "SUBRESP" 2768061 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1156 2760968 2762268 2763579 "STTF" 2766339 NIL STTF (NIL T) -7 NIL NIL NIL) (-1155 2755141 2756261 2757408 "STTFNC" 2759868 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2746452 2748323 2750117 "STTAYLOR" 2753382 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1153 2739696 2746316 2746399 "STRTBL" 2746404 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1152 2735087 2739651 2739682 "STRING" 2739687 T STRING (NIL) -8 NIL NIL NIL) (-1151 2729975 2734460 2734490 "STRICAT" 2734549 T STRICAT (NIL) -9 NIL 2734611 NIL) (-1150 2722778 2727594 2728205 "STREAM" 2729399 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1149 2722288 2722365 2722509 "STREAM3" 2722695 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2721270 2721453 2721688 "STREAM2" 2722101 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2720958 2721010 2721103 "STREAM1" 2721212 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2719974 2720155 2720386 "STINPROD" 2720774 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1145 2719552 2719736 2719766 "STEP" 2719846 T STEP (NIL) -9 NIL 2719924 NIL) (-1144 2713095 2719451 2719528 "STBL" 2719533 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1143 2708269 2712316 2712359 "STAGG" 2712512 NIL STAGG (NIL T) -9 NIL 2712601 NIL) (-1142 2705971 2706573 2707445 "STAGG-" 2707450 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1141 2704166 2705741 2705833 "STACK" 2705914 NIL STACK (NIL T) -8 NIL NIL NIL) (-1140 2696889 2702307 2702763 "SREGSET" 2703796 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1139 2689314 2690683 2692196 "SRDCMPK" 2695495 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2682281 2686754 2686784 "SRAGG" 2688087 T SRAGG (NIL) -9 NIL 2688695 NIL) (-1137 2681298 2681553 2681932 "SRAGG-" 2681937 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1136 2675785 2680245 2680666 "SQMATRIX" 2680924 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1135 2669532 2672503 2673230 "SPLTREE" 2675130 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1134 2665522 2666188 2666834 "SPLNODE" 2668958 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1133 2664569 2664802 2664832 "SPFCAT" 2665276 T SPFCAT (NIL) -9 NIL NIL NIL) (-1132 2663306 2663516 2663780 "SPECOUT" 2664327 T SPECOUT (NIL) -7 NIL NIL NIL) (-1131 2654958 2656702 2656732 "SPADXPT" 2661124 T SPADXPT (NIL) -9 NIL 2663158 NIL) (-1130 2654719 2654759 2654828 "SPADPRSR" 2654911 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1129 2652901 2654674 2654705 "SPADAST" 2654710 T SPADAST (NIL) -8 NIL NIL NIL) (-1128 2644872 2646619 2646662 "SPACEC" 2651035 NIL SPACEC (NIL T) -9 NIL 2652851 NIL) (-1127 2643029 2644804 2644853 "SPACE3" 2644858 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1126 2641781 2641952 2642243 "SORTPAK" 2642834 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1125 2639831 2640134 2640553 "SOLVETRA" 2641445 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1124 2638842 2639064 2639338 "SOLVESER" 2639604 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1123 2634053 2634943 2635945 "SOLVERAD" 2637894 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1122 2629868 2630477 2631206 "SOLVEFOR" 2633420 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1121 2624165 2629217 2629314 "SNTSCAT" 2629319 NIL SNTSCAT (NIL T T T T) -9 NIL 2629389 NIL) (-1120 2618298 2622488 2622879 "SMTS" 2623855 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1119 2612738 2618186 2618263 "SMP" 2618268 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1118 2610897 2611198 2611596 "SMITH" 2612435 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1117 2603784 2607948 2608051 "SMATCAT" 2609402 NIL SMATCAT (NIL NIL T T T) -9 NIL 2609952 NIL) (-1116 2600724 2601547 2602725 "SMATCAT-" 2602730 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1115 2598437 2599960 2600003 "SKAGG" 2600264 NIL SKAGG (NIL T) -9 NIL 2600399 NIL) (-1114 2594772 2597853 2598048 "SINT" 2598235 T SINT (NIL) -8 NIL NIL 2598408) (-1113 2594544 2594582 2594648 "SIMPAN" 2594728 T SIMPAN (NIL) -7 NIL NIL NIL) (-1112 2593850 2594079 2594219 "SIG" 2594426 T SIG (NIL) -8 NIL NIL NIL) (-1111 2592688 2592909 2593184 "SIGNRF" 2593609 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2591493 2591644 2591935 "SIGNEF" 2592517 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2590826 2591076 2591200 "SIGAST" 2591391 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2588516 2588970 2589476 "SHP" 2590367 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1107 2582416 2588417 2588493 "SHDP" 2588498 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1106 2582015 2582181 2582211 "SGROUP" 2582304 T SGROUP (NIL) -9 NIL 2582366 NIL) (-1105 2581873 2581899 2581972 "SGROUP-" 2581977 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1104 2578708 2579406 2580129 "SGCF" 2581172 T SGCF (NIL) -7 NIL NIL NIL) (-1103 2573103 2578155 2578252 "SFRTCAT" 2578257 NIL SFRTCAT (NIL T T T T) -9 NIL 2578296 NIL) (-1102 2566524 2567542 2568678 "SFRGCD" 2572086 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2559651 2560723 2561909 "SFQCMPK" 2565457 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2559273 2559362 2559472 "SFORT" 2559592 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1099 2558418 2559113 2559234 "SEXOF" 2559239 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1098 2557552 2558299 2558367 "SEX" 2558372 T SEX (NIL) -8 NIL NIL NIL) (-1097 2553091 2553780 2553875 "SEXCAT" 2556812 NIL SEXCAT (NIL T T T T T) -9 NIL 2557390 NIL) (-1096 2550271 2553025 2553073 "SET" 2553078 NIL SET (NIL T) -8 NIL NIL NIL) (-1095 2548522 2548984 2549289 "SETMN" 2550012 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2548128 2548254 2548284 "SETCAT" 2548401 T SETCAT (NIL) -9 NIL 2548486 NIL) (-1093 2547908 2547960 2548059 "SETCAT-" 2548064 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2544295 2546369 2546412 "SETAGG" 2547282 NIL SETAGG (NIL T) -9 NIL 2547622 NIL) (-1091 2543753 2543869 2544106 "SETAGG-" 2544111 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2543223 2543449 2543550 "SEQAST" 2543674 T SEQAST (NIL) -8 NIL NIL NIL) (-1089 2542422 2542716 2542777 "SEGXCAT" 2543063 NIL SEGXCAT (NIL T T) -9 NIL 2543183 NIL) (-1088 2541476 2542088 2542270 "SEG" 2542275 NIL SEG (NIL T) -8 NIL NIL NIL) (-1087 2540455 2540669 2540712 "SEGCAT" 2541234 NIL SEGCAT (NIL T) -9 NIL 2541455 NIL) (-1086 2539504 2539834 2540034 "SEGBIND" 2540290 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1085 2539125 2539184 2539297 "SEGBIND2" 2539439 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1084 2538725 2538926 2539003 "SEGAST" 2539070 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2537944 2538070 2538274 "SEG2" 2538569 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2537381 2537879 2537926 "SDVAR" 2537931 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1081 2529663 2537151 2537281 "SDPOL" 2537286 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1080 2528256 2528522 2528841 "SCPKG" 2529378 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1079 2527416 2527589 2527782 "SCOPE" 2528085 T SCOPE (NIL) -8 NIL NIL NIL) (-1078 2526636 2526770 2526949 "SCACHE" 2527271 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1077 2526308 2526468 2526498 "SASTCAT" 2526503 T SASTCAT (NIL) -9 NIL 2526516 NIL) (-1076 2525822 2526143 2526219 "SAOS" 2526254 T SAOS (NIL) -8 NIL NIL NIL) (-1075 2525387 2525422 2525595 "SAERFFC" 2525781 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1074 2519353 2525284 2525364 "SAE" 2525369 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1073 2518946 2518981 2519140 "SAEFACT" 2519312 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2517267 2517581 2517982 "RURPK" 2518612 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1071 2515903 2516182 2516494 "RULESET" 2517101 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1070 2513090 2513593 2514058 "RULE" 2515584 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1069 2512729 2512884 2512967 "RULECOLD" 2513042 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2512519 2512547 2512618 "RTVALUE" 2512680 T RTVALUE (NIL) -8 NIL NIL NIL) (-1067 2512017 2512236 2512330 "RSTRCAST" 2512447 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1066 2506865 2507660 2508580 "RSETGCD" 2511216 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1065 2496122 2501174 2501271 "RSETCAT" 2505390 NIL RSETCAT (NIL T T T T) -9 NIL 2506487 NIL) (-1064 2494049 2494588 2495412 "RSETCAT-" 2495417 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1063 2486434 2487811 2489331 "RSDCMPK" 2492648 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2484439 2484880 2484954 "RRCC" 2486040 NIL RRCC (NIL T T) -9 NIL 2486384 NIL) (-1061 2483790 2483964 2484243 "RRCC-" 2484248 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1060 2483260 2483486 2483587 "RPTAST" 2483711 T RPTAST (NIL) -8 NIL NIL NIL) (-1059 2457258 2466853 2466920 "RPOLCAT" 2477584 NIL RPOLCAT (NIL T T T) -9 NIL 2480743 NIL) (-1058 2448756 2451096 2454218 "RPOLCAT-" 2454223 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1057 2439803 2446967 2447449 "ROUTINE" 2448296 T ROUTINE (NIL) -8 NIL NIL NIL) (-1056 2436628 2439429 2439569 "ROMAN" 2439685 T ROMAN (NIL) -8 NIL NIL NIL) (-1055 2434899 2435488 2435748 "ROIRC" 2436433 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1054 2431284 2433535 2433565 "RNS" 2433869 T RNS (NIL) -9 NIL 2434142 NIL) (-1053 2429793 2430176 2430710 "RNS-" 2430785 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1052 2429242 2429624 2429654 "RNG" 2429659 T RNG (NIL) -9 NIL 2429680 NIL) (-1051 2428634 2428996 2429039 "RMODULE" 2429101 NIL RMODULE (NIL T) -9 NIL 2429143 NIL) (-1050 2427470 2427564 2427900 "RMCAT2" 2428535 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1049 2424347 2426816 2427113 "RMATRIX" 2427232 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1048 2417289 2419523 2419638 "RMATCAT" 2422997 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2423979 NIL) (-1047 2416664 2416811 2417118 "RMATCAT-" 2417123 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1046 2416231 2416306 2416434 "RINTERP" 2416583 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1045 2415350 2415878 2415908 "RING" 2415964 T RING (NIL) -9 NIL 2416056 NIL) (-1044 2415142 2415186 2415283 "RING-" 2415288 NIL RING- (NIL T) -8 NIL NIL NIL) (-1043 2413983 2414220 2414478 "RIDIST" 2414906 T RIDIST (NIL) -7 NIL NIL NIL) (-1042 2405299 2413451 2413657 "RGCHAIN" 2413831 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1041 2404675 2405055 2405096 "RGBCSPC" 2405154 NIL RGBCSPC (NIL T) -9 NIL 2405206 NIL) (-1040 2403859 2404214 2404255 "RGBCMDL" 2404487 NIL RGBCMDL (NIL T) -9 NIL 2404601 NIL) (-1039 2400853 2401467 2402137 "RF" 2403223 NIL RF (NIL T) -7 NIL NIL NIL) (-1038 2400499 2400562 2400665 "RFFACTOR" 2400784 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1037 2400224 2400259 2400356 "RFFACT" 2400458 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1036 2398341 2398705 2399087 "RFDIST" 2399864 T RFDIST (NIL) -7 NIL NIL NIL) (-1035 2397794 2397886 2398049 "RETSOL" 2398243 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1034 2397430 2397510 2397553 "RETRACT" 2397686 NIL RETRACT (NIL T) -9 NIL 2397773 NIL) (-1033 2397279 2397304 2397391 "RETRACT-" 2397396 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1032 2396908 2397101 2397171 "RETAST" 2397231 T RETAST (NIL) -8 NIL NIL NIL) (-1031 2389762 2396561 2396688 "RESULT" 2396803 T RESULT (NIL) -8 NIL NIL NIL) (-1030 2388380 2389031 2389230 "RESRING" 2389665 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1029 2388016 2388065 2388163 "RESLATC" 2388317 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1028 2387721 2387756 2387863 "REPSQ" 2387975 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1027 2385143 2385723 2386325 "REP" 2387141 T REP (NIL) -7 NIL NIL NIL) (-1026 2384840 2384875 2384986 "REPDB" 2385102 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1025 2378740 2380129 2381352 "REP2" 2383652 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1024 2375117 2375798 2376606 "REP1" 2377967 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1023 2367840 2373258 2373714 "REGSET" 2374747 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1022 2366653 2366988 2367238 "REF" 2367625 NIL REF (NIL T) -8 NIL NIL NIL) (-1021 2366030 2366133 2366300 "REDORDER" 2366537 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1020 2362025 2365243 2365470 "RECLOS" 2365858 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1019 2361077 2361258 2361473 "REALSOLV" 2361832 T REALSOLV (NIL) -7 NIL NIL NIL) (-1018 2360923 2360964 2360994 "REAL" 2360999 T REAL (NIL) -9 NIL 2361034 NIL) (-1017 2357406 2358208 2359092 "REAL0Q" 2360088 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1016 2353007 2353995 2355056 "REAL0" 2356387 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1015 2352505 2352724 2352818 "RDUCEAST" 2352935 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1014 2351910 2351982 2352189 "RDIV" 2352427 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1013 2350978 2351152 2351365 "RDIST" 2351732 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1012 2349575 2349862 2350234 "RDETRS" 2350686 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1011 2347387 2347841 2348379 "RDETR" 2349117 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1010 2345998 2346276 2346680 "RDEEFS" 2347103 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1009 2344493 2344799 2345231 "RDEEF" 2345686 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1008 2338746 2341629 2341659 "RCFIELD" 2342954 T RCFIELD (NIL) -9 NIL 2343684 NIL) (-1007 2336810 2337314 2338010 "RCFIELD-" 2338085 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1006 2333126 2334911 2334954 "RCAGG" 2336038 NIL RCAGG (NIL T) -9 NIL 2336503 NIL) (-1005 2332754 2332848 2333011 "RCAGG-" 2333016 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1004 2332089 2332201 2332366 "RATRET" 2332638 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1003 2331642 2331709 2331830 "RATFACT" 2332017 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1002 2330950 2331070 2331222 "RANDSRC" 2331512 T RANDSRC (NIL) -7 NIL NIL NIL) (-1001 2330684 2330728 2330801 "RADUTIL" 2330899 T RADUTIL (NIL) -7 NIL NIL NIL) (-1000 2323827 2329517 2329827 "RADIX" 2330408 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-999 2315475 2323671 2323799 "RADFF" 2323804 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-998 2315127 2315202 2315230 "RADCAT" 2315387 T RADCAT (NIL) -9 NIL NIL NIL) (-997 2314912 2314960 2315057 "RADCAT-" 2315062 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-996 2313063 2314687 2314776 "QUEUE" 2314856 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-995 2309631 2313000 2313045 "QUAT" 2313050 NIL QUAT (NIL T) -8 NIL NIL NIL) (-994 2309269 2309312 2309439 "QUATCT2" 2309582 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-993 2303008 2306318 2306358 "QUATCAT" 2307138 NIL QUATCAT (NIL T) -9 NIL 2307904 NIL) (-992 2299152 2300189 2301576 "QUATCAT-" 2301670 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-991 2296672 2298236 2298277 "QUAGG" 2298652 NIL QUAGG (NIL T) -9 NIL 2298827 NIL) (-990 2296304 2296497 2296565 "QQUTAST" 2296624 T QQUTAST (NIL) -8 NIL NIL NIL) (-989 2295229 2295702 2295874 "QFORM" 2296176 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-988 2286433 2291646 2291686 "QFCAT" 2292344 NIL QFCAT (NIL T) -9 NIL 2293345 NIL) (-987 2282005 2283206 2284797 "QFCAT-" 2284891 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-986 2281643 2281686 2281813 "QFCAT2" 2281956 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-985 2281103 2281213 2281343 "QEQUAT" 2281533 T QEQUAT (NIL) -8 NIL NIL NIL) (-984 2274250 2275322 2276506 "QCMPACK" 2280036 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-983 2271826 2272247 2272675 "QALGSET" 2273905 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-982 2271071 2271245 2271477 "QALGSET2" 2271646 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-981 2269761 2269985 2270302 "PWFFINTB" 2270844 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-980 2267943 2268111 2268465 "PUSHVAR" 2269575 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-979 2263861 2264915 2264956 "PTRANFN" 2266840 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-978 2262263 2262554 2262876 "PTPACK" 2263572 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-977 2261895 2261952 2262061 "PTFUNC2" 2262200 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-976 2256422 2260767 2260808 "PTCAT" 2261104 NIL PTCAT (NIL T) -9 NIL 2261257 NIL) (-975 2256080 2256115 2256239 "PSQFR" 2256381 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-974 2254675 2254973 2255307 "PSEUDLIN" 2255778 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-973 2241438 2243809 2246133 "PSETPK" 2252435 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-972 2234482 2237196 2237292 "PSETCAT" 2240313 NIL PSETCAT (NIL T T T T) -9 NIL 2241127 NIL) (-971 2232318 2232952 2233773 "PSETCAT-" 2233778 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-970 2231667 2231832 2231860 "PSCURVE" 2232128 T PSCURVE (NIL) -9 NIL 2232295 NIL) (-969 2228015 2229505 2229570 "PSCAT" 2230414 NIL PSCAT (NIL T T T) -9 NIL 2230654 NIL) (-968 2227078 2227294 2227694 "PSCAT-" 2227699 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2225810 2226443 2226648 "PRTITION" 2226893 T PRTITION (NIL) -8 NIL NIL NIL) (-966 2225312 2225531 2225623 "PRTDAST" 2225738 T PRTDAST (NIL) -8 NIL NIL NIL) (-965 2214402 2216616 2218804 "PRS" 2223174 NIL PRS (NIL T T) -7 NIL NIL NIL) (-964 2212260 2213752 2213792 "PRQAGG" 2213975 NIL PRQAGG (NIL T) -9 NIL 2214077 NIL) (-963 2211646 2211875 2211903 "PROPLOG" 2212088 T PROPLOG (NIL) -9 NIL 2212210 NIL) (-962 2210154 2210597 2210854 "PROPFRML" 2211422 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-961 2209614 2209724 2209854 "PROPERTY" 2210044 T PROPERTY (NIL) -8 NIL NIL NIL) (-960 2203699 2207780 2208600 "PRODUCT" 2208840 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-959 2201004 2203157 2203391 "PR" 2203510 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2200800 2200832 2200891 "PRINT" 2200965 T PRINT (NIL) -7 NIL NIL NIL) (-957 2200140 2200257 2200409 "PRIMES" 2200680 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-956 2198205 2198606 2199072 "PRIMELT" 2199719 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-955 2197934 2197983 2198011 "PRIMCAT" 2198135 T PRIMCAT (NIL) -9 NIL NIL NIL) (-954 2194097 2197872 2197917 "PRIMARR" 2197922 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-953 2193104 2193282 2193510 "PRIMARR2" 2193915 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-952 2192747 2192803 2192914 "PREASSOC" 2193042 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-951 2192222 2192355 2192383 "PPCURVE" 2192588 T PPCURVE (NIL) -9 NIL 2192724 NIL) (-950 2191844 2192017 2192100 "PORTNUM" 2192159 T PORTNUM (NIL) -8 NIL NIL NIL) (-949 2189203 2189602 2190194 "POLYROOT" 2191425 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-948 2183140 2188807 2188967 "POLY" 2189076 NIL POLY (NIL T) -8 NIL NIL NIL) (-947 2182523 2182581 2182815 "POLYLIFT" 2183076 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-946 2178798 2179247 2179876 "POLYCATQ" 2182068 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-945 2165607 2170973 2171038 "POLYCAT" 2174552 NIL POLYCAT (NIL T T T) -9 NIL 2176480 NIL) (-944 2159056 2160918 2163302 "POLYCAT-" 2163307 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-943 2158643 2158711 2158831 "POLY2UP" 2158982 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-942 2158275 2158332 2158441 "POLY2" 2158580 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-941 2156960 2157199 2157475 "POLUTIL" 2158049 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-940 2155315 2155592 2155923 "POLTOPOL" 2156682 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-939 2150830 2155251 2155297 "POINT" 2155302 NIL POINT (NIL T) -8 NIL NIL NIL) (-938 2149017 2149374 2149749 "PNTHEORY" 2150475 T PNTHEORY (NIL) -7 NIL NIL NIL) (-937 2147436 2147733 2148145 "PMTOOLS" 2148715 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-936 2147029 2147107 2147224 "PMSYM" 2147352 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-935 2146539 2146608 2146782 "PMQFCAT" 2146954 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-934 2145894 2146004 2146160 "PMPRED" 2146416 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-933 2145290 2145376 2145537 "PMPREDFS" 2145795 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-932 2143933 2144141 2144526 "PMPLCAT" 2145052 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-931 2143465 2143544 2143696 "PMLSAGG" 2143848 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-930 2142940 2143016 2143197 "PMKERNEL" 2143383 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-929 2142557 2142632 2142745 "PMINS" 2142859 NIL PMINS (NIL T) -7 NIL NIL NIL) (-928 2141985 2142054 2142270 "PMFS" 2142482 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-927 2141213 2141331 2141536 "PMDOWN" 2141862 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-926 2140376 2140535 2140717 "PMASS" 2141051 T PMASS (NIL) -7 NIL NIL NIL) (-925 2139650 2139761 2139924 "PMASSFS" 2140262 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-924 2139305 2139373 2139467 "PLOTTOOL" 2139576 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-923 2133912 2135116 2136264 "PLOT" 2138177 T PLOT (NIL) -8 NIL NIL NIL) (-922 2129716 2130760 2131681 "PLOT3D" 2133011 T PLOT3D (NIL) -8 NIL NIL NIL) (-921 2128628 2128805 2129040 "PLOT1" 2129520 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-920 2104017 2108694 2113545 "PLEQN" 2123894 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-919 2103335 2103457 2103637 "PINTERP" 2103882 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-918 2103028 2103075 2103178 "PINTERPA" 2103282 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-917 2102276 2102797 2102884 "PI" 2102924 T PI (NIL) -8 NIL NIL 2102991) (-916 2100665 2101614 2101642 "PID" 2101824 T PID (NIL) -9 NIL 2101958 NIL) (-915 2100390 2100427 2100515 "PICOERCE" 2100622 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-914 2099710 2099849 2100025 "PGROEB" 2100246 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-913 2095297 2096111 2097016 "PGE" 2098825 T PGE (NIL) -7 NIL NIL NIL) (-912 2093420 2093667 2094033 "PGCD" 2095014 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-911 2092758 2092861 2093022 "PFRPAC" 2093304 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-910 2089426 2091306 2091659 "PFR" 2092437 NIL PFR (NIL T) -8 NIL NIL NIL) (-909 2087815 2088059 2088384 "PFOTOOLS" 2089173 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-908 2086348 2086587 2086938 "PFOQ" 2087572 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-907 2084821 2085033 2085396 "PFO" 2086132 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-906 2081401 2084710 2084779 "PF" 2084784 NIL PF (NIL NIL) -8 NIL NIL NIL) (-905 2078827 2080072 2080100 "PFECAT" 2080685 T PFECAT (NIL) -9 NIL 2081069 NIL) (-904 2078272 2078426 2078640 "PFECAT-" 2078645 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-903 2076875 2077127 2077428 "PFBRU" 2078021 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-902 2074740 2075093 2075525 "PFBR" 2076526 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-901 2070649 2072116 2072792 "PERM" 2074097 NIL PERM (NIL T) -8 NIL NIL NIL) (-900 2065910 2066856 2067726 "PERMGRP" 2069812 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-899 2064042 2064973 2065014 "PERMCAT" 2065460 NIL PERMCAT (NIL T) -9 NIL 2065765 NIL) (-898 2063695 2063736 2063860 "PERMAN" 2063995 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-897 2061231 2063360 2063482 "PENDTREE" 2063606 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-896 2059316 2060058 2060099 "PDRING" 2060756 NIL PDRING (NIL T) -9 NIL 2061042 NIL) (-895 2058419 2058637 2058999 "PDRING-" 2059004 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-894 2055661 2056412 2057080 "PDEPROB" 2057771 T PDEPROB (NIL) -8 NIL NIL NIL) (-893 2053206 2053710 2054265 "PDEPACK" 2055126 T PDEPACK (NIL) -7 NIL NIL NIL) (-892 2052118 2052308 2052559 "PDECOMP" 2053005 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-891 2049723 2050540 2050568 "PDECAT" 2051355 T PDECAT (NIL) -9 NIL 2052068 NIL) (-890 2049474 2049507 2049597 "PCOMP" 2049684 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-889 2047679 2048275 2048572 "PBWLB" 2049203 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-888 2040179 2041752 2043090 "PATTERN" 2046362 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-887 2039811 2039868 2039977 "PATTERN2" 2040116 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-886 2037568 2037956 2038413 "PATTERN1" 2039400 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-885 2034963 2035517 2035998 "PATRES" 2037133 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-884 2034527 2034594 2034726 "PATRES2" 2034890 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-883 2032410 2032815 2033222 "PATMATCH" 2034194 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-882 2031946 2032129 2032170 "PATMAB" 2032277 NIL PATMAB (NIL T) -9 NIL 2032360 NIL) (-881 2030491 2030800 2031058 "PATLRES" 2031751 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-880 2030037 2030160 2030201 "PATAB" 2030206 NIL PATAB (NIL T) -9 NIL 2030378 NIL) (-879 2027518 2028050 2028623 "PARTPERM" 2029484 T PARTPERM (NIL) -7 NIL NIL NIL) (-878 2027139 2027202 2027304 "PARSURF" 2027449 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-877 2026771 2026828 2026937 "PARSU2" 2027076 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-876 2026535 2026575 2026642 "PARSER" 2026724 T PARSER (NIL) -7 NIL NIL NIL) (-875 2026156 2026219 2026321 "PARSCURV" 2026466 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-874 2025788 2025845 2025954 "PARSC2" 2026093 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-873 2025427 2025485 2025582 "PARPCURV" 2025724 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-872 2025059 2025116 2025225 "PARPC2" 2025364 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-871 2024579 2024665 2024784 "PAN2EXPR" 2024960 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-870 2023383 2023700 2023928 "PALETTE" 2024371 T PALETTE (NIL) -8 NIL NIL NIL) (-869 2021851 2022388 2022748 "PAIR" 2023069 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-868 2015748 2021110 2021304 "PADICRC" 2021706 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-867 2009004 2015094 2015278 "PADICRAT" 2015596 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-866 2007346 2008941 2008986 "PADIC" 2008991 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-865 2004548 2006086 2006126 "PADICCT" 2006707 NIL PADICCT (NIL NIL) -9 NIL 2006989 NIL) (-864 2003505 2003705 2003973 "PADEPAC" 2004335 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-863 2002717 2002850 2003056 "PADE" 2003367 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-862 2001131 2001925 2002205 "OWP" 2002521 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-861 2000651 2000837 2000934 "OVERSET" 2001054 T OVERSET (NIL) -8 NIL NIL NIL) (-860 1999724 2000256 2000428 "OVAR" 2000519 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-859 1998988 1999109 1999270 "OUT" 1999583 T OUT (NIL) -7 NIL NIL NIL) (-858 1987886 1990097 1992297 "OUTFORM" 1996808 T OUTFORM (NIL) -8 NIL NIL NIL) (-857 1987222 1987483 1987610 "OUTBFILE" 1987779 T OUTBFILE (NIL) -8 NIL NIL NIL) (-856 1986529 1986694 1986722 "OUTBCON" 1987040 T OUTBCON (NIL) -9 NIL 1987206 NIL) (-855 1986130 1986242 1986399 "OUTBCON-" 1986404 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-854 1985537 1985859 1985948 "OSI" 1986061 T OSI (NIL) -8 NIL NIL NIL) (-853 1985093 1985405 1985433 "OSGROUP" 1985438 T OSGROUP (NIL) -9 NIL 1985460 NIL) (-852 1983838 1984065 1984350 "ORTHPOL" 1984840 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-851 1981416 1983673 1983794 "OREUP" 1983799 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-850 1978846 1981107 1981234 "ORESUP" 1981358 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-849 1976374 1976874 1977435 "OREPCTO" 1978335 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-848 1970190 1972365 1972406 "OREPCAT" 1974754 NIL OREPCAT (NIL T) -9 NIL 1975858 NIL) (-847 1967337 1968119 1969177 "OREPCAT-" 1969182 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-846 1966514 1966786 1966814 "ORDSET" 1967123 T ORDSET (NIL) -9 NIL 1967287 NIL) (-845 1966033 1966155 1966348 "ORDSET-" 1966353 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-844 1964659 1965424 1965452 "ORDRING" 1965654 T ORDRING (NIL) -9 NIL 1965779 NIL) (-843 1964304 1964398 1964542 "ORDRING-" 1964547 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-842 1963710 1964147 1964175 "ORDMON" 1964180 T ORDMON (NIL) -9 NIL 1964201 NIL) (-841 1962872 1963019 1963214 "ORDFUNS" 1963559 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-840 1962236 1962629 1962657 "ORDFIN" 1962722 T ORDFIN (NIL) -9 NIL 1962796 NIL) (-839 1958822 1960822 1961231 "ORDCOMP" 1961860 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-838 1958088 1958215 1958401 "ORDCOMP2" 1958682 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1954696 1955579 1956393 "OPTPROB" 1957294 T OPTPROB (NIL) -8 NIL NIL NIL) (-836 1951498 1952137 1952841 "OPTPACK" 1954012 T OPTPACK (NIL) -7 NIL NIL NIL) (-835 1949211 1949951 1949979 "OPTCAT" 1950798 T OPTCAT (NIL) -9 NIL 1951448 NIL) (-834 1948654 1948888 1948993 "OPSIG" 1949126 T OPSIG (NIL) -8 NIL NIL NIL) (-833 1948422 1948461 1948527 "OPQUERY" 1948608 T OPQUERY (NIL) -7 NIL NIL NIL) (-832 1945580 1946733 1947237 "OP" 1947951 NIL OP (NIL T) -8 NIL NIL NIL) (-831 1945115 1945286 1945327 "OPERCAT" 1945462 NIL OPERCAT (NIL T) -9 NIL 1945530 NIL) (-830 1944961 1944988 1945074 "OPERCAT-" 1945079 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-829 1941800 1943758 1944127 "ONECOMP" 1944625 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-828 1941105 1941220 1941394 "ONECOMP2" 1941672 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-827 1940524 1940630 1940760 "OMSERVER" 1940995 T OMSERVER (NIL) -7 NIL NIL NIL) (-826 1937412 1939964 1940004 "OMSAGG" 1940065 NIL OMSAGG (NIL T) -9 NIL 1940129 NIL) (-825 1936035 1936298 1936580 "OMPKG" 1937150 T OMPKG (NIL) -7 NIL NIL NIL) (-824 1935465 1935568 1935596 "OM" 1935895 T OM (NIL) -9 NIL NIL NIL) (-823 1934039 1935014 1935183 "OMLO" 1935346 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-822 1932964 1933111 1933338 "OMEXPR" 1933865 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-821 1932282 1932510 1932646 "OMERR" 1932848 T OMERR (NIL) -8 NIL NIL NIL) (-820 1931460 1931703 1931863 "OMERRK" 1932142 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1930938 1931137 1931245 "OMENC" 1931372 T OMENC (NIL) -8 NIL NIL NIL) (-818 1924833 1926018 1927189 "OMDEV" 1929787 T OMDEV (NIL) -8 NIL NIL NIL) (-817 1923902 1924073 1924267 "OMCONN" 1924659 T OMCONN (NIL) -8 NIL NIL NIL) (-816 1922515 1923465 1923493 "OINTDOM" 1923498 T OINTDOM (NIL) -9 NIL 1923519 NIL) (-815 1918321 1919505 1920221 "OFMONOID" 1921831 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-814 1917759 1918258 1918303 "ODVAR" 1918308 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-813 1915209 1917504 1917659 "ODR" 1917664 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-812 1907545 1914985 1915111 "ODPOL" 1915116 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-811 1901415 1907417 1907522 "ODP" 1907527 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-810 1900181 1900396 1900671 "ODETOOLS" 1901189 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-809 1897148 1897806 1898522 "ODESYS" 1899514 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-808 1892030 1892938 1893963 "ODERTRIC" 1896223 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-807 1891456 1891538 1891732 "ODERED" 1891942 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-806 1888344 1888892 1889569 "ODERAT" 1890879 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-805 1885301 1885768 1886365 "ODEPRRIC" 1887873 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-804 1883271 1883840 1884326 "ODEPROB" 1884835 T ODEPROB (NIL) -8 NIL NIL NIL) (-803 1879791 1880276 1880923 "ODEPRIM" 1882750 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-802 1879040 1879142 1879402 "ODEPAL" 1879683 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-801 1875202 1875993 1876857 "ODEPACK" 1878196 T ODEPACK (NIL) -7 NIL NIL NIL) (-800 1874235 1874342 1874571 "ODEINT" 1875091 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-799 1868336 1869761 1871208 "ODEIFTBL" 1872808 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-798 1863671 1864457 1865416 "ODEEF" 1867495 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-797 1863006 1863095 1863325 "ODECONST" 1863576 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-796 1861157 1861792 1861820 "ODECAT" 1862425 T ODECAT (NIL) -9 NIL 1862956 NIL) (-795 1858056 1860869 1860988 "OCT" 1861070 NIL OCT (NIL T) -8 NIL NIL NIL) (-794 1857694 1857737 1857864 "OCTCT2" 1858007 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-793 1852460 1854868 1854908 "OC" 1856005 NIL OC (NIL T) -9 NIL 1856863 NIL) (-792 1849687 1850435 1851425 "OC-" 1851519 NIL OC- (NIL T T) -8 NIL NIL NIL) (-791 1849065 1849507 1849535 "OCAMON" 1849540 T OCAMON (NIL) -9 NIL 1849561 NIL) (-790 1848622 1848937 1848965 "OASGP" 1848970 T OASGP (NIL) -9 NIL 1848990 NIL) (-789 1847909 1848372 1848400 "OAMONS" 1848440 T OAMONS (NIL) -9 NIL 1848483 NIL) (-788 1847349 1847756 1847784 "OAMON" 1847789 T OAMON (NIL) -9 NIL 1847809 NIL) (-787 1846653 1847145 1847173 "OAGROUP" 1847178 T OAGROUP (NIL) -9 NIL 1847198 NIL) (-786 1846343 1846393 1846481 "NUMTUBE" 1846597 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-785 1839916 1841434 1842970 "NUMQUAD" 1844827 T NUMQUAD (NIL) -7 NIL NIL NIL) (-784 1835672 1836660 1837685 "NUMODE" 1838911 T NUMODE (NIL) -7 NIL NIL NIL) (-783 1833053 1833907 1833935 "NUMINT" 1834858 T NUMINT (NIL) -9 NIL 1835622 NIL) (-782 1832001 1832198 1832416 "NUMFMT" 1832855 T NUMFMT (NIL) -7 NIL NIL NIL) (-781 1818360 1821305 1823837 "NUMERIC" 1829508 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-780 1812757 1817809 1817904 "NTSCAT" 1817909 NIL NTSCAT (NIL T T T T) -9 NIL 1817948 NIL) (-779 1811951 1812116 1812309 "NTPOLFN" 1812596 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-778 1799783 1808776 1809588 "NSUP" 1811172 NIL NSUP (NIL T) -8 NIL NIL NIL) (-777 1799415 1799472 1799581 "NSUP2" 1799720 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-776 1789398 1799189 1799322 "NSMP" 1799327 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-775 1787830 1788131 1788488 "NREP" 1789086 NIL NREP (NIL T) -7 NIL NIL NIL) (-774 1786421 1786673 1787031 "NPCOEF" 1787573 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-773 1785487 1785602 1785818 "NORMRETR" 1786302 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-772 1783528 1783818 1784227 "NORMPK" 1785195 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-771 1783213 1783241 1783365 "NORMMA" 1783494 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-770 1783040 1783170 1783199 "NONE" 1783204 T NONE (NIL) -8 NIL NIL NIL) (-769 1782829 1782858 1782927 "NONE1" 1783004 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-768 1782312 1782374 1782560 "NODE1" 1782761 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-767 1780582 1781406 1781661 "NNI" 1782008 T NNI (NIL) -8 NIL NIL 1782243) (-766 1779002 1779315 1779679 "NLINSOL" 1780250 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-765 1775270 1776238 1777137 "NIPROB" 1778123 T NIPROB (NIL) -8 NIL NIL NIL) (-764 1774027 1774261 1774563 "NFINTBAS" 1775032 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-763 1773201 1773677 1773718 "NETCLT" 1773890 NIL NETCLT (NIL T) -9 NIL 1773972 NIL) (-762 1771909 1772140 1772421 "NCODIV" 1772969 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-761 1771671 1771708 1771783 "NCNTFRAC" 1771866 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-760 1769851 1770215 1770635 "NCEP" 1771296 NIL NCEP (NIL T) -7 NIL NIL NIL) (-759 1768748 1769495 1769523 "NASRING" 1769633 T NASRING (NIL) -9 NIL 1769713 NIL) (-758 1768543 1768587 1768681 "NASRING-" 1768686 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-757 1767696 1768195 1768223 "NARNG" 1768340 T NARNG (NIL) -9 NIL 1768431 NIL) (-756 1767388 1767455 1767589 "NARNG-" 1767594 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-755 1766267 1766474 1766709 "NAGSP" 1767173 T NAGSP (NIL) -7 NIL NIL NIL) (-754 1757539 1759223 1760896 "NAGS" 1764614 T NAGS (NIL) -7 NIL NIL NIL) (-753 1756087 1756395 1756726 "NAGF07" 1757228 T NAGF07 (NIL) -7 NIL NIL NIL) (-752 1750625 1751916 1753223 "NAGF04" 1754800 T NAGF04 (NIL) -7 NIL NIL NIL) (-751 1743593 1745207 1746840 "NAGF02" 1749012 T NAGF02 (NIL) -7 NIL NIL NIL) (-750 1738817 1739917 1741034 "NAGF01" 1742496 T NAGF01 (NIL) -7 NIL NIL NIL) (-749 1732445 1734011 1735596 "NAGE04" 1737252 T NAGE04 (NIL) -7 NIL NIL NIL) (-748 1723614 1725735 1727865 "NAGE02" 1730335 T NAGE02 (NIL) -7 NIL NIL NIL) (-747 1719567 1720514 1721478 "NAGE01" 1722670 T NAGE01 (NIL) -7 NIL NIL NIL) (-746 1717362 1717896 1718454 "NAGD03" 1719029 T NAGD03 (NIL) -7 NIL NIL NIL) (-745 1709112 1711040 1712994 "NAGD02" 1715428 T NAGD02 (NIL) -7 NIL NIL NIL) (-744 1702923 1704348 1705788 "NAGD01" 1707692 T NAGD01 (NIL) -7 NIL NIL NIL) (-743 1699132 1699954 1700791 "NAGC06" 1702106 T NAGC06 (NIL) -7 NIL NIL NIL) (-742 1697597 1697929 1698285 "NAGC05" 1698796 T NAGC05 (NIL) -7 NIL NIL NIL) (-741 1696973 1697092 1697236 "NAGC02" 1697473 T NAGC02 (NIL) -7 NIL NIL NIL) (-740 1696033 1696590 1696630 "NAALG" 1696709 NIL NAALG (NIL T) -9 NIL 1696770 NIL) (-739 1695868 1695897 1695987 "NAALG-" 1695992 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-738 1689818 1690926 1692113 "MULTSQFR" 1694764 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-737 1689137 1689212 1689396 "MULTFACT" 1689730 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-736 1682222 1686100 1686153 "MTSCAT" 1687223 NIL MTSCAT (NIL T T) -9 NIL 1687737 NIL) (-735 1681934 1681988 1682080 "MTHING" 1682162 NIL MTHING (NIL T) -7 NIL NIL NIL) (-734 1681726 1681759 1681819 "MSYSCMD" 1681894 T MSYSCMD (NIL) -7 NIL NIL NIL) (-733 1677835 1680481 1680801 "MSET" 1681439 NIL MSET (NIL T) -8 NIL NIL NIL) (-732 1674930 1677396 1677437 "MSETAGG" 1677442 NIL MSETAGG (NIL T) -9 NIL 1677476 NIL) (-731 1670798 1672309 1673054 "MRING" 1674230 NIL MRING (NIL T T) -8 NIL NIL NIL) (-730 1670364 1670431 1670562 "MRF2" 1670725 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-729 1669982 1670017 1670161 "MRATFAC" 1670323 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-728 1667594 1667889 1668320 "MPRFF" 1669687 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-727 1661646 1667448 1667545 "MPOLY" 1667550 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-726 1661136 1661171 1661379 "MPCPF" 1661605 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-725 1660650 1660693 1660877 "MPC3" 1661087 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1659845 1659926 1660147 "MPC2" 1660565 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1658146 1658483 1658873 "MONOTOOL" 1659505 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-722 1657397 1657688 1657716 "MONOID" 1657935 T MONOID (NIL) -9 NIL 1658082 NIL) (-721 1656943 1657062 1657243 "MONOID-" 1657248 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-720 1647794 1653710 1653769 "MONOGEN" 1654443 NIL MONOGEN (NIL T T) -9 NIL 1654899 NIL) (-719 1645012 1645747 1646747 "MONOGEN-" 1646866 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-718 1643871 1644291 1644319 "MONADWU" 1644711 T MONADWU (NIL) -9 NIL 1644949 NIL) (-717 1643243 1643402 1643650 "MONADWU-" 1643655 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-716 1642628 1642846 1642874 "MONAD" 1643081 T MONAD (NIL) -9 NIL 1643193 NIL) (-715 1642313 1642391 1642523 "MONAD-" 1642528 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-714 1640629 1641226 1641505 "MOEBIUS" 1642066 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-713 1640021 1640399 1640439 "MODULE" 1640444 NIL MODULE (NIL T) -9 NIL 1640470 NIL) (-712 1639589 1639685 1639875 "MODULE-" 1639880 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-711 1637296 1637953 1638280 "MODRING" 1639413 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1634267 1635401 1635922 "MODOP" 1636825 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-709 1632882 1633334 1633611 "MODMONOM" 1634130 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-708 1622679 1631173 1631587 "MODMON" 1632519 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-707 1619862 1621523 1621799 "MODFIELD" 1622554 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-706 1618866 1619143 1619333 "MMLFORM" 1619692 T MMLFORM (NIL) -8 NIL NIL NIL) (-705 1618392 1618435 1618614 "MMAP" 1618817 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-704 1616601 1617342 1617383 "MLO" 1617806 NIL MLO (NIL T) -9 NIL 1618048 NIL) (-703 1613967 1614483 1615085 "MLIFT" 1616082 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-702 1613358 1613442 1613596 "MKUCFUNC" 1613878 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-701 1612957 1613027 1613150 "MKRECORD" 1613281 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-700 1612004 1612166 1612394 "MKFUNC" 1612768 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-699 1611392 1611496 1611652 "MKFLCFN" 1611887 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-698 1610669 1610771 1610956 "MKBCFUNC" 1611285 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-697 1607403 1610223 1610359 "MINT" 1610553 T MINT (NIL) -8 NIL NIL NIL) (-696 1606215 1606458 1606735 "MHROWRED" 1607158 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-695 1601622 1604750 1605155 "MFLOAT" 1605830 T MFLOAT (NIL) -8 NIL NIL NIL) (-694 1600979 1601055 1601226 "MFINFACT" 1601534 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-693 1597294 1598142 1599026 "MESH" 1600115 T MESH (NIL) -7 NIL NIL NIL) (-692 1595684 1595996 1596349 "MDDFACT" 1596981 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-691 1592526 1594843 1594884 "MDAGG" 1595139 NIL MDAGG (NIL T) -9 NIL 1595282 NIL) (-690 1582296 1591819 1592026 "MCMPLX" 1592339 T MCMPLX (NIL) -8 NIL NIL NIL) (-689 1581437 1581583 1581783 "MCDEN" 1582145 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-688 1579327 1579597 1579977 "MCALCFN" 1581167 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-687 1578252 1578492 1578725 "MAYBE" 1579133 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-686 1575864 1576387 1576949 "MATSTOR" 1577723 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-685 1571869 1575236 1575484 "MATRIX" 1575649 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-684 1567633 1568342 1569078 "MATLIN" 1571226 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-683 1557787 1560925 1561002 "MATCAT" 1565882 NIL MATCAT (NIL T T T) -9 NIL 1567299 NIL) (-682 1554143 1555164 1556520 "MATCAT-" 1556525 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-681 1552737 1552890 1553223 "MATCAT2" 1553978 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-680 1550849 1551173 1551557 "MAPPKG3" 1552412 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-679 1549830 1550003 1550225 "MAPPKG2" 1550673 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-678 1548329 1548613 1548940 "MAPPKG1" 1549536 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-677 1547435 1547735 1547912 "MAPPAST" 1548172 T MAPPAST (NIL) -8 NIL NIL NIL) (-676 1547046 1547104 1547227 "MAPHACK3" 1547371 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-675 1546638 1546699 1546813 "MAPHACK2" 1546978 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-674 1546075 1546179 1546321 "MAPHACK1" 1546529 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-673 1544181 1544775 1545079 "MAGMA" 1545803 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-672 1543687 1543905 1543996 "MACROAST" 1544110 T MACROAST (NIL) -8 NIL NIL NIL) (-671 1540153 1541926 1542387 "M3D" 1543259 NIL M3D (NIL T) -8 NIL NIL NIL) (-670 1534307 1538522 1538563 "LZSTAGG" 1539345 NIL LZSTAGG (NIL T) -9 NIL 1539640 NIL) (-669 1530264 1531438 1532895 "LZSTAGG-" 1532900 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-668 1527378 1528155 1528642 "LWORD" 1529809 NIL LWORD (NIL T) -8 NIL NIL NIL) (-667 1526981 1527182 1527257 "LSTAST" 1527323 T LSTAST (NIL) -8 NIL NIL NIL) (-666 1520174 1526752 1526886 "LSQM" 1526891 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-665 1519398 1519537 1519765 "LSPP" 1520029 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-664 1517210 1517511 1517967 "LSMP" 1519087 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-663 1513989 1514663 1515393 "LSMP1" 1516512 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1507914 1513156 1513197 "LSAGG" 1513259 NIL LSAGG (NIL T) -9 NIL 1513337 NIL) (-661 1504609 1505533 1506746 "LSAGG-" 1506751 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-660 1502235 1503753 1504002 "LPOLY" 1504404 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-659 1501817 1501902 1502025 "LPEFRAC" 1502144 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-658 1500164 1500911 1501164 "LO" 1501649 NIL LO (NIL T T T) -8 NIL NIL NIL) (-657 1499816 1499928 1499956 "LOGIC" 1500067 T LOGIC (NIL) -9 NIL 1500148 NIL) (-656 1499678 1499701 1499772 "LOGIC-" 1499777 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1498871 1499011 1499204 "LODOOPS" 1499534 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1496321 1498787 1498853 "LODO" 1498858 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-653 1494859 1495094 1495447 "LODOF" 1496068 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-652 1491207 1493612 1493653 "LODOCAT" 1494091 NIL LODOCAT (NIL T) -9 NIL 1494302 NIL) (-651 1490940 1490998 1491125 "LODOCAT-" 1491130 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-650 1488287 1490781 1490899 "LODO2" 1490904 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-649 1485749 1488224 1488269 "LODO1" 1488274 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-648 1484609 1484774 1485086 "LODEEF" 1485572 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1479895 1482739 1482780 "LNAGG" 1483727 NIL LNAGG (NIL T) -9 NIL 1484171 NIL) (-646 1479042 1479256 1479598 "LNAGG-" 1479603 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-645 1475205 1475967 1476606 "LMOPS" 1478457 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-644 1474600 1474962 1475003 "LMODULE" 1475064 NIL LMODULE (NIL T) -9 NIL 1475106 NIL) (-643 1471846 1474245 1474368 "LMDICT" 1474510 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-642 1471572 1471754 1471814 "LITERAL" 1471819 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-641 1464803 1470518 1470816 "LIST" 1471307 NIL LIST (NIL T) -8 NIL NIL NIL) (-640 1464328 1464402 1464541 "LIST3" 1464723 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1463335 1463513 1463741 "LIST2" 1464146 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-638 1461469 1461781 1462180 "LIST2MAP" 1462982 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-637 1460191 1460835 1460876 "LINEXP" 1461131 NIL LINEXP (NIL T) -9 NIL 1461280 NIL) (-636 1458838 1459098 1459395 "LINDEP" 1459943 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1455605 1456324 1457101 "LIMITRF" 1458093 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1453880 1454176 1454592 "LIMITPS" 1455300 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1448335 1453391 1453619 "LIE" 1453701 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1447384 1447827 1447867 "LIECAT" 1448007 NIL LIECAT (NIL T) -9 NIL 1448158 NIL) (-631 1447225 1447252 1447340 "LIECAT-" 1447345 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1439837 1446674 1446839 "LIB" 1447080 T LIB (NIL) -8 NIL NIL NIL) (-629 1435472 1436355 1437290 "LGROBP" 1438954 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1433338 1433612 1433974 "LF" 1435193 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1432178 1432870 1432898 "LFCAT" 1433105 T LFCAT (NIL) -9 NIL 1433244 NIL) (-626 1429080 1429710 1430398 "LEXTRIPK" 1431542 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1425851 1426650 1427153 "LEXP" 1428660 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1425354 1425572 1425664 "LETAST" 1425779 T LETAST (NIL) -8 NIL NIL NIL) (-623 1423752 1424065 1424466 "LEADCDET" 1425036 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1422942 1423016 1423245 "LAZM3PK" 1423673 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1417886 1421019 1421557 "LAUPOL" 1422454 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1417451 1417495 1417663 "LAPLACE" 1417836 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1415417 1416552 1416803 "LA" 1417284 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1414490 1415048 1415089 "LALG" 1415151 NIL LALG (NIL T) -9 NIL 1415210 NIL) (-617 1414204 1414263 1414399 "LALG-" 1414404 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1414039 1414063 1414104 "KVTFROM" 1414166 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1412839 1413256 1413485 "KTVLOGIC" 1413830 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1412674 1412698 1412739 "KRCFROM" 1412801 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1411578 1411765 1412064 "KOVACIC" 1412474 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1411413 1411437 1411478 "KONVERT" 1411540 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1411248 1411272 1411313 "KOERCE" 1411375 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1408982 1409742 1410135 "KERNEL" 1410887 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1408484 1408565 1408695 "KERNEL2" 1408896 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1402335 1407023 1407077 "KDAGG" 1407454 NIL KDAGG (NIL T T) -9 NIL 1407660 NIL) (-607 1401864 1401988 1402193 "KDAGG-" 1402198 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1395039 1401525 1401680 "KAFILE" 1401742 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1389494 1394550 1394778 "JORDAN" 1394860 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1388900 1389143 1389264 "JOINAST" 1389393 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1388746 1388805 1388860 "JAVACODE" 1388865 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1385045 1386951 1387005 "IXAGG" 1387934 NIL IXAGG (NIL T T) -9 NIL 1388393 NIL) (-601 1383964 1384270 1384689 "IXAGG-" 1384694 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1379544 1383886 1383945 "IVECTOR" 1383950 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1378310 1378547 1378813 "ITUPLE" 1379311 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1376746 1376923 1377229 "ITRIGMNP" 1378132 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1375491 1375695 1375978 "ITFUN3" 1376522 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1375123 1375180 1375289 "ITFUN2" 1375428 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1372952 1373985 1374284 "ITAYLOR" 1374857 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1361924 1367089 1368252 "ISUPS" 1371822 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1361028 1361168 1361404 "ISUMP" 1361771 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1356292 1360829 1360908 "ISTRING" 1360981 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1355795 1356013 1356105 "ISAST" 1356220 T ISAST (NIL) -8 NIL NIL NIL) (-590 1355005 1355086 1355302 "IRURPK" 1355709 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1353941 1354142 1354382 "IRSN" 1354785 T IRSN (NIL) -7 NIL NIL NIL) (-588 1351970 1352325 1352761 "IRRF2F" 1353579 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1351717 1351755 1351831 "IRREDFFX" 1351926 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1350332 1350591 1350890 "IROOT" 1351450 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1346963 1348016 1348708 "IR" 1349672 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1344576 1345071 1345637 "IR2" 1346441 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1343648 1343761 1343982 "IR2F" 1344459 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1343439 1343473 1343533 "IPRNTPK" 1343608 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1340046 1343328 1343397 "IPF" 1343402 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1338400 1339971 1340028 "IPADIC" 1340033 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1337739 1337960 1338090 "IP4ADDR" 1338290 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1337239 1337443 1337553 "IOMODE" 1337649 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1336312 1336836 1336963 "IOBFILE" 1337132 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1335800 1336216 1336244 "IOBCON" 1336249 T IOBCON (NIL) -9 NIL 1336270 NIL) (-575 1335297 1335355 1335545 "INVLAPLA" 1335736 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1324945 1327299 1329685 "INTTR" 1332961 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1321289 1322031 1322895 "INTTOOLS" 1324130 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1320875 1320966 1321083 "INTSLPE" 1321192 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1318856 1320798 1320857 "INTRVL" 1320862 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1316458 1316970 1317545 "INTRF" 1318341 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1315869 1315966 1316108 "INTRET" 1316356 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1313866 1314255 1314725 "INTRAT" 1315477 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1311094 1311677 1312303 "INTPM" 1313351 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1307796 1308396 1309141 "INTPAF" 1310480 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1302975 1303937 1304988 "INTPACK" 1306765 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1299879 1302704 1302831 "INT" 1302868 T INT (NIL) -8 NIL NIL NIL) (-563 1299131 1299283 1299491 "INTHERTR" 1299721 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1298570 1298650 1298838 "INTHERAL" 1299045 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1296416 1296859 1297316 "INTHEORY" 1298133 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1287724 1289345 1291124 "INTG0" 1294768 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1268297 1273087 1277897 "INTFTBL" 1282934 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1267546 1267684 1267857 "INTFACT" 1268156 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1264931 1265377 1265941 "INTEF" 1267100 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1263390 1264103 1264131 "INTDOM" 1264432 T INTDOM (NIL) -9 NIL 1264639 NIL) (-555 1262759 1262933 1263175 "INTDOM-" 1263180 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1259246 1261143 1261197 "INTCAT" 1261996 NIL INTCAT (NIL T) -9 NIL 1262316 NIL) (-553 1258718 1258821 1258949 "INTBIT" 1259138 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1257389 1257543 1257857 "INTALG" 1258563 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1256846 1256936 1257106 "INTAF" 1257293 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1250300 1256656 1256796 "INTABL" 1256801 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1249631 1250070 1250135 "INT8" 1250169 T INT8 (NIL) -8 NIL NIL 1250214) (-548 1248961 1249400 1249465 "INT64" 1249499 T INT64 (NIL) -8 NIL NIL 1249544) (-547 1248291 1248730 1248795 "INT32" 1248829 T INT32 (NIL) -8 NIL NIL 1248874) (-546 1247621 1248060 1248125 "INT16" 1248159 T INT16 (NIL) -8 NIL NIL 1248204) (-545 1242628 1245310 1245338 "INS" 1246272 T INS (NIL) -9 NIL 1246937 NIL) (-544 1239868 1240639 1241613 "INS-" 1241686 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1238643 1238870 1239168 "INPSIGN" 1239621 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1237761 1237878 1238075 "INPRODPF" 1238523 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1236655 1236772 1237009 "INPRODFF" 1237641 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1235655 1235807 1236067 "INNMFACT" 1236491 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1234852 1234949 1235137 "INMODGCD" 1235554 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1233360 1233605 1233929 "INFSP" 1234597 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1232544 1232661 1232844 "INFPROD0" 1233240 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1229426 1230609 1231124 "INFORM" 1232037 T INFORM (NIL) -8 NIL NIL NIL) (-535 1229036 1229096 1229194 "INFORM1" 1229361 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1228559 1228648 1228762 "INFINITY" 1228942 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1227735 1228279 1228380 "INETCLTS" 1228478 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1226351 1226601 1226922 "INEP" 1227483 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1225627 1226248 1226313 "INDE" 1226318 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1225191 1225259 1225376 "INCRMAPS" 1225554 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1224009 1224460 1224666 "INBFILE" 1225005 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1219309 1220245 1221189 "INBFF" 1223097 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1218217 1218486 1218514 "INBCON" 1219027 T INBCON (NIL) -9 NIL 1219293 NIL) (-526 1217469 1217692 1217968 "INBCON-" 1217973 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1216975 1217193 1217284 "INAST" 1217398 T INAST (NIL) -8 NIL NIL NIL) (-524 1216429 1216654 1216760 "IMPTAST" 1216889 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1212923 1216273 1216377 "IMATRIX" 1216382 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1211635 1211758 1212073 "IMATQF" 1212779 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1209855 1210082 1210419 "IMATLIN" 1211391 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1204481 1209779 1209837 "ILIST" 1209842 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1202434 1204341 1204454 "IIARRAY2" 1204459 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1197859 1202345 1202409 "IFF" 1202414 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1197233 1197476 1197592 "IFAST" 1197763 T IFAST (NIL) -8 NIL NIL NIL) (-516 1192276 1196525 1196713 "IFARRAY" 1197090 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1191483 1192180 1192253 "IFAMON" 1192258 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1191067 1191132 1191186 "IEVALAB" 1191393 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1190742 1190810 1190970 "IEVALAB-" 1190975 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1190400 1190656 1190719 "IDPO" 1190724 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1189677 1190289 1190364 "IDPOAMS" 1190369 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1189011 1189566 1189641 "IDPOAM" 1189646 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1188096 1188346 1188399 "IDPC" 1188812 NIL IDPC (NIL T T) -9 NIL 1188961 NIL) (-508 1187592 1187988 1188061 "IDPAM" 1188066 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1186995 1187484 1187557 "IDPAG" 1187562 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1186667 1186831 1186906 "IDENT" 1186940 T IDENT (NIL) -8 NIL NIL NIL) (-505 1182922 1183770 1184665 "IDECOMP" 1185824 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1175786 1176845 1177892 "IDEAL" 1181958 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1174950 1175062 1175261 "ICDEN" 1175670 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1174048 1174430 1174577 "ICARD" 1174823 T ICARD (NIL) -8 NIL NIL NIL) (-501 1172108 1172421 1172826 "IBPTOOLS" 1173725 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1167742 1171728 1171841 "IBITS" 1172027 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1164465 1165041 1165736 "IBATOOL" 1167159 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1162244 1162706 1163239 "IBACHIN" 1164000 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1160121 1162090 1162193 "IARRAY2" 1162198 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1156275 1160047 1160104 "IARRAY1" 1160109 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1150259 1154687 1155168 "IAN" 1155814 T IAN (NIL) -8 NIL NIL NIL) (-494 1149770 1149827 1150000 "IALGFACT" 1150196 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1149298 1149411 1149439 "HYPCAT" 1149646 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1148836 1148953 1149139 "HYPCAT-" 1149144 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1148458 1148631 1148714 "HOSTNAME" 1148773 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1148303 1148340 1148381 "HOMOTOP" 1148386 NIL HOMOTOP (NIL T) -9 NIL 1148419 NIL) (-489 1144982 1146313 1146354 "HOAGG" 1147335 NIL HOAGG (NIL T) -9 NIL 1148014 NIL) (-488 1143576 1143975 1144501 "HOAGG-" 1144506 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1137607 1143171 1143320 "HEXADEC" 1143447 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1136355 1136577 1136840 "HEUGCD" 1137384 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1135458 1136192 1136322 "HELLFDIV" 1136327 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1133685 1135235 1135323 "HEAP" 1135402 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1132975 1133237 1133371 "HEADAST" 1133571 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1126889 1132890 1132952 "HDP" 1132957 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1120632 1126524 1126676 "HDMP" 1126790 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1119956 1120096 1120260 "HB" 1120488 T HB (NIL) -7 NIL NIL NIL) (-479 1113453 1119802 1119906 "HASHTBL" 1119911 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1112956 1113174 1113266 "HASAST" 1113381 T HASAST (NIL) -8 NIL NIL NIL) (-477 1110761 1112578 1112760 "HACKPI" 1112794 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1106456 1110614 1110727 "GTSET" 1110732 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1099982 1106334 1106432 "GSTBL" 1106437 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1092287 1099013 1099278 "GSERIES" 1099773 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1091454 1091845 1091873 "GROUP" 1092076 T GROUP (NIL) -9 NIL 1092210 NIL) (-472 1090820 1090979 1091230 "GROUP-" 1091235 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1089187 1089508 1089895 "GROEBSOL" 1090497 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1088127 1088389 1088440 "GRMOD" 1088969 NIL GRMOD (NIL T T) -9 NIL 1089137 NIL) (-469 1087895 1087931 1088059 "GRMOD-" 1088064 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1083212 1084249 1085249 "GRIMAGE" 1086915 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1081678 1081939 1082263 "GRDEF" 1082908 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1081122 1081238 1081379 "GRAY" 1081557 T GRAY (NIL) -7 NIL NIL NIL) (-465 1080335 1080715 1080766 "GRALG" 1080919 NIL GRALG (NIL T T) -9 NIL 1081012 NIL) (-464 1079996 1080069 1080232 "GRALG-" 1080237 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1076800 1079581 1079759 "GPOLSET" 1079903 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1076154 1076211 1076469 "GOSPER" 1076737 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1071913 1072592 1073118 "GMODPOL" 1075853 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1070918 1071102 1071340 "GHENSEL" 1071725 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1064969 1065812 1066839 "GENUPS" 1070002 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1064666 1064717 1064806 "GENUFACT" 1064912 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1064078 1064155 1064320 "GENPGCD" 1064584 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1063552 1063587 1063800 "GENMFACT" 1064037 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1062118 1062375 1062682 "GENEEZ" 1063295 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1056019 1061729 1061891 "GDMP" 1062041 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1045388 1049790 1050896 "GCNAALG" 1055002 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1043807 1044643 1044671 "GCDDOM" 1044926 T GCDDOM (NIL) -9 NIL 1045083 NIL) (-451 1043277 1043404 1043619 "GCDDOM-" 1043624 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1041949 1042134 1042438 "GB" 1043056 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1030565 1032895 1035287 "GBINTERN" 1039640 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1028402 1028694 1029115 "GBF" 1030240 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1027183 1027348 1027615 "GBEUCLID" 1028218 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1026532 1026657 1026806 "GAUSSFAC" 1027054 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1024899 1025201 1025515 "GALUTIL" 1026251 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1023207 1023481 1023805 "GALPOLYU" 1024626 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1020572 1020862 1021269 "GALFACTU" 1022904 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1012378 1013877 1015485 "GALFACT" 1019004 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1009766 1010424 1010452 "FVFUN" 1011608 T FVFUN (NIL) -9 NIL 1012328 NIL) (-440 1009032 1009214 1009242 "FVC" 1009533 T FVC (NIL) -9 NIL 1009716 NIL) (-439 1008702 1008857 1008925 "FUNDESC" 1008984 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1008344 1008499 1008580 "FUNCTION" 1008654 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1006115 1006666 1007132 "FT" 1007898 T FT (NIL) -8 NIL NIL NIL) (-436 1004933 1005416 1005619 "FTEM" 1005932 T FTEM (NIL) -8 NIL NIL NIL) (-435 1003189 1003478 1003882 "FSUPFACT" 1004624 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1001586 1001875 1002207 "FST" 1002877 T FST (NIL) -8 NIL NIL NIL) (-433 1000757 1000863 1001058 "FSRED" 1001468 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 999435 999691 1000045 "FSPRMELT" 1000472 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 996520 996958 997457 "FSPECF" 998998 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 978574 987023 987063 "FS" 990911 NIL FS (NIL T) -9 NIL 993200 NIL) (-429 967221 970214 974270 "FS-" 974567 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 966735 966789 966966 "FSINT" 967162 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 965054 965728 966031 "FSERIES" 966514 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 964068 964184 964415 "FSCINT" 964934 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 960302 963012 963053 "FSAGG" 963423 NIL FSAGG (NIL T) -9 NIL 963682 NIL) (-424 958064 958665 959461 "FSAGG-" 959556 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 957106 957249 957476 "FSAGG2" 957917 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 954760 955040 955594 "FS2UPS" 956824 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 954342 954385 954540 "FS2" 954711 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 953199 953370 953679 "FS2EXPXP" 954167 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 952625 952740 952892 "FRUTIL" 953079 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 944065 948120 949478 "FR" 951299 NIL FR (NIL T) -8 NIL NIL NIL) (-417 939140 941783 941823 "FRNAALG" 943219 NIL FRNAALG (NIL T) -9 NIL 943826 NIL) (-416 934813 935889 937164 "FRNAALG-" 937914 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 934451 934494 934621 "FRNAAF2" 934764 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 932858 933305 933600 "FRMOD" 934263 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 930636 931241 931558 "FRIDEAL" 932649 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 929831 929918 930207 "FRIDEAL2" 930543 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 928964 929378 929419 "FRETRCT" 929424 NIL FRETRCT (NIL T) -9 NIL 929600 NIL) (-410 928076 928307 928658 "FRETRCT-" 928663 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 925280 926464 926523 "FRAMALG" 927405 NIL FRAMALG (NIL T T) -9 NIL 927697 NIL) (-408 923414 923869 924499 "FRAMALG-" 924722 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 917362 922889 923165 "FRAC" 923170 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 916998 917055 917162 "FRAC2" 917299 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 916634 916691 916798 "FR2" 916935 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 911299 914159 914187 "FPS" 915306 T FPS (NIL) -9 NIL 915863 NIL) (-403 910748 910857 911021 "FPS-" 911167 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 908194 909837 909865 "FPC" 910090 T FPC (NIL) -9 NIL 910232 NIL) (-401 907987 908027 908124 "FPC-" 908129 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 906865 907475 907516 "FPATMAB" 907521 NIL FPATMAB (NIL T) -9 NIL 907673 NIL) (-399 904565 905041 905467 "FPARFRAC" 906502 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 899958 900457 901139 "FORTRAN" 903997 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 897674 898174 898713 "FORT" 899439 T FORT (NIL) -7 NIL NIL NIL) (-396 895350 895912 895940 "FORTFN" 897000 T FORTFN (NIL) -9 NIL 897624 NIL) (-395 895114 895164 895192 "FORTCAT" 895251 T FORTCAT (NIL) -9 NIL 895313 NIL) (-394 893247 893730 894120 "FORMULA" 894744 T FORMULA (NIL) -8 NIL NIL NIL) (-393 893035 893065 893134 "FORMULA1" 893211 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 892558 892610 892783 "FORDER" 892977 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 891654 891818 892011 "FOP" 892385 T FOP (NIL) -7 NIL NIL NIL) (-390 890262 890934 891108 "FNLA" 891536 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 889017 889406 889434 "FNCAT" 889894 T FNCAT (NIL) -9 NIL 890154 NIL) (-388 888583 888976 889004 "FNAME" 889009 T FNAME (NIL) -8 NIL NIL NIL) (-387 887238 888175 888203 "FMTC" 888208 T FMTC (NIL) -9 NIL 888244 NIL) (-386 883598 884761 885390 "FMONOID" 886642 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 882817 883340 883489 "FM" 883494 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 880241 880887 880915 "FMFUN" 882059 T FMFUN (NIL) -9 NIL 882767 NIL) (-383 879510 879691 879719 "FMC" 880009 T FMC (NIL) -9 NIL 880191 NIL) (-382 876704 877538 877592 "FMCAT" 878787 NIL FMCAT (NIL T T) -9 NIL 879282 NIL) (-381 875597 876470 876570 "FM1" 876649 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 873371 873787 874281 "FLOATRP" 875148 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 866972 871100 871721 "FLOAT" 872770 T FLOAT (NIL) -8 NIL NIL NIL) (-378 864410 864910 865488 "FLOATCP" 866439 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 863211 864023 864064 "FLINEXP" 864069 NIL FLINEXP (NIL T) -9 NIL 864162 NIL) (-376 862365 862600 862928 "FLINEXP-" 862933 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 861441 861585 861809 "FLASORT" 862217 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 858658 859500 859552 "FLALG" 860779 NIL FLALG (NIL T T) -9 NIL 861246 NIL) (-373 852442 856144 856185 "FLAGG" 857447 NIL FLAGG (NIL T) -9 NIL 858099 NIL) (-372 851168 851507 851997 "FLAGG-" 852002 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 850210 850353 850580 "FLAGG2" 851021 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 847177 848159 848218 "FINRALG" 849346 NIL FINRALG (NIL T T) -9 NIL 849854 NIL) (-369 846337 846566 846905 "FINRALG-" 846910 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 845743 845956 845984 "FINITE" 846180 T FINITE (NIL) -9 NIL 846287 NIL) (-367 838201 840362 840402 "FINAALG" 844069 NIL FINAALG (NIL T) -9 NIL 845522 NIL) (-366 833533 834583 835727 "FINAALG-" 837106 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 832928 833288 833391 "FILE" 833463 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 831612 831924 831978 "FILECAT" 832662 NIL FILECAT (NIL T T) -9 NIL 832878 NIL) (-363 829472 830974 831002 "FIELD" 831042 T FIELD (NIL) -9 NIL 831122 NIL) (-362 828092 828477 828988 "FIELD-" 828993 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 825969 826727 827074 "FGROUP" 827778 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 825059 825223 825443 "FGLMICPK" 825801 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 820918 824984 825041 "FFX" 825046 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 820519 820580 820715 "FFSLPE" 820851 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 816508 817291 818087 "FFPOLY" 819755 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 816012 816048 816257 "FFPOLY2" 816466 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 811882 815931 815994 "FFP" 815999 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 807307 811793 811857 "FF" 811862 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 802460 806650 806840 "FFNBX" 807161 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 797416 801595 801853 "FFNBP" 802314 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 792076 796700 796911 "FFNB" 797249 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 790908 791106 791421 "FFINTBAS" 791873 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 787128 789315 789343 "FFIELDC" 789963 T FFIELDC (NIL) -9 NIL 790339 NIL) (-348 785790 786161 786658 "FFIELDC-" 786663 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 785359 785405 785529 "FFHOM" 785732 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 783054 783541 784058 "FFF" 784874 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778699 782796 782897 "FFCGX" 782997 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 774347 778431 778538 "FFCGP" 778642 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 769557 774074 774182 "FFCG" 774283 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 751382 760428 760514 "FFCAT" 765679 NIL FFCAT (NIL T T T) -9 NIL 767130 NIL) (-341 746580 747627 748941 "FFCAT-" 750171 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745991 746034 746269 "FFCAT2" 746531 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 735188 738963 740183 "FEXPR" 744843 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 734188 734623 734664 "FEVALAB" 734748 NIL FEVALAB (NIL T) -9 NIL 735009 NIL) (-337 733347 733557 733895 "FEVALAB-" 733900 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 731940 732730 732933 "FDIV" 733246 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 729006 729721 729836 "FDIVCAT" 731404 NIL FDIVCAT (NIL T T T T) -9 NIL 731841 NIL) (-334 728768 728795 728965 "FDIVCAT-" 728970 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 727988 728075 728352 "FDIV2" 728675 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726674 726933 727222 "FCPAK1" 727719 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725800 726174 726315 "FCOMP" 726565 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 709529 712950 716488 "FC" 722282 T FC (NIL) -8 NIL NIL NIL) (-329 702100 706093 706133 "FAXF" 707935 NIL FAXF (NIL T) -9 NIL 708627 NIL) (-328 699376 700034 700859 "FAXF-" 701324 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 694476 698752 698928 "FARRAY" 699233 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689721 691761 691814 "FAMR" 692837 NIL FAMR (NIL T T) -9 NIL 693297 NIL) (-325 688611 688913 689348 "FAMR-" 689353 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687807 688533 688586 "FAMONOID" 688591 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 685619 686303 686356 "FAMONC" 687297 NIL FAMONC (NIL T T) -9 NIL 687683 NIL) (-322 684311 685373 685510 "FAGROUP" 685515 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 682106 682425 682828 "FACUTIL" 683992 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 681205 681390 681612 "FACTFUNC" 681916 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 673602 680456 680668 "EXPUPXS" 681061 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 671085 671625 672211 "EXPRTUBE" 673036 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 667279 667871 668608 "EXPRODE" 670424 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 652645 665934 666362 "EXPR" 666883 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 647052 647639 648452 "EXPR2UPS" 651943 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646688 646745 646852 "EXPR2" 646989 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 638085 645820 646117 "EXPEXPAN" 646525 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 637912 638042 638071 "EXIT" 638076 T EXIT (NIL) -8 NIL NIL NIL) (-311 637419 637636 637727 "EXITAST" 637841 T EXITAST (NIL) -8 NIL NIL NIL) (-310 637046 637108 637221 "EVALCYC" 637351 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 636587 636705 636746 "EVALAB" 636916 NIL EVALAB (NIL T) -9 NIL 637020 NIL) (-308 636068 636190 636411 "EVALAB-" 636416 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 633528 634804 634832 "EUCDOM" 635387 T EUCDOM (NIL) -9 NIL 635737 NIL) (-306 631933 632375 632965 "EUCDOM-" 632970 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 619471 622231 624981 "ESTOOLS" 629203 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 619103 619160 619269 "ESTOOLS2" 619408 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618854 618896 618976 "ESTOOLS1" 619055 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612759 614487 614515 "ES" 617283 T ES (NIL) -9 NIL 618692 NIL) (-301 607706 608993 610810 "ES-" 610974 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 604080 604841 605621 "ESCONT" 606946 T ESCONT (NIL) -7 NIL NIL NIL) (-299 603825 603857 603939 "ESCONT1" 604042 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 603500 603550 603650 "ES2" 603769 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 603130 603188 603297 "ES1" 603436 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 602346 602475 602651 "ERROR" 602974 T ERROR (NIL) -7 NIL NIL NIL) (-295 595849 602205 602296 "EQTBL" 602301 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 588400 591163 592612 "EQ" 594433 NIL -2056 (NIL T) -8 NIL NIL NIL) (-293 588032 588089 588198 "EQ2" 588337 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 583321 584370 585463 "EP" 586971 NIL EP (NIL T) -7 NIL NIL NIL) (-291 581899 582196 582508 "ENV" 583029 T ENV (NIL) -8 NIL NIL NIL) (-290 581070 581598 581626 "ENTIRER" 581631 T ENTIRER (NIL) -9 NIL 581677 NIL) (-289 577564 579025 579395 "EMR" 580869 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576708 576893 576947 "ELTAGG" 577327 NIL ELTAGG (NIL T T) -9 NIL 577538 NIL) (-287 576427 576489 576630 "ELTAGG-" 576635 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 576216 576245 576299 "ELTAB" 576383 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 575342 575488 575687 "ELFUTS" 576067 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 575084 575140 575168 "ELEMFUN" 575273 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574954 574975 575043 "ELEMFUN-" 575048 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569845 573054 573095 "ELAGG" 574035 NIL ELAGG (NIL T) -9 NIL 574498 NIL) (-281 568130 568564 569227 "ELAGG-" 569232 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566795 567073 567366 "ELABEXPR" 567857 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559659 561462 562289 "EFUPXS" 566071 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 553109 554910 555720 "EFULS" 558935 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 550531 550889 551368 "EFSTRUC" 552741 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 539602 541168 542728 "EF" 549046 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 538703 539087 539236 "EAB" 539473 T EAB (NIL) -8 NIL NIL NIL) (-274 537912 538662 538690 "E04UCFA" 538695 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 537121 537871 537899 "E04NAFA" 537904 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 536330 537080 537108 "E04MBFA" 537113 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 535539 536289 536317 "E04JAFA" 536322 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 534750 535498 535526 "E04GCFA" 535531 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533961 534709 534737 "E04FDFA" 534742 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 533170 533920 533948 "E04DGFA" 533953 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 527343 528695 530059 "E04AGNT" 531826 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 526049 526529 526569 "DVARCAT" 527044 NIL DVARCAT (NIL T) -9 NIL 527243 NIL) (-265 525253 525465 525779 "DVARCAT-" 525784 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 518145 525052 525181 "DSMP" 525186 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512954 514090 515158 "DROPT" 517097 T DROPT (NIL) -8 NIL NIL NIL) (-262 512619 512678 512776 "DROPT1" 512889 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 507734 508860 509997 "DROPT0" 511502 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 506079 506404 506790 "DRAWPT" 507368 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 500666 501589 502668 "DRAW" 505053 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 500299 500352 500470 "DRAWHACK" 500607 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 499030 499299 499590 "DRAWCX" 500028 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 498545 498614 498765 "DRAWCURV" 498956 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 489013 490975 493090 "DRAWCFUN" 496450 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 485826 487708 487749 "DQAGG" 488378 NIL DQAGG (NIL T) -9 NIL 488651 NIL) (-253 474097 480804 480887 "DPOLCAT" 482739 NIL DPOLCAT (NIL T T T T) -9 NIL 483284 NIL) (-252 468933 470282 472240 "DPOLCAT-" 472245 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 462082 468794 468892 "DPMO" 468897 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 455134 461862 462029 "DPMM" 462034 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 454766 455053 455101 "DOMCTOR" 455106 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 454061 454288 454425 "DOMAIN" 454649 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 447804 453696 453848 "DMP" 453962 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 447404 447460 447604 "DLP" 447742 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 441274 446731 446921 "DLIST" 447246 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 438118 440127 440168 "DLAGG" 440718 NIL DLAGG (NIL T) -9 NIL 440948 NIL) (-243 436923 437561 437589 "DIVRING" 437681 T DIVRING (NIL) -9 NIL 437764 NIL) (-242 436160 436350 436650 "DIVRING-" 436655 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 434262 434619 435025 "DISPLAY" 435774 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 428198 434176 434239 "DIRPROD" 434244 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 427046 427249 427514 "DIRPROD2" 427991 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 416303 422261 422314 "DIRPCAT" 422724 NIL DIRPCAT (NIL NIL T) -9 NIL 423564 NIL) (-237 413629 414271 415152 "DIRPCAT-" 415489 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412916 413076 413262 "DIOSP" 413463 T DIOSP (NIL) -7 NIL NIL NIL) (-235 409618 411828 411869 "DIOPS" 412303 NIL DIOPS (NIL T) -9 NIL 412532 NIL) (-234 409167 409281 409472 "DIOPS-" 409477 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 408051 408653 408681 "DIFRING" 408868 T DIFRING (NIL) -9 NIL 408978 NIL) (-232 407697 407774 407926 "DIFRING-" 407931 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 405494 406740 406781 "DIFEXT" 407144 NIL DIFEXT (NIL T) -9 NIL 407438 NIL) (-230 403779 404207 404873 "DIFEXT-" 404878 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 401101 403311 403352 "DIAGG" 403357 NIL DIAGG (NIL T) -9 NIL 403377 NIL) (-228 400485 400642 400894 "DIAGG-" 400899 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395950 399444 399721 "DHMATRIX" 400254 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 391562 392471 393481 "DFSFUN" 394960 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 386667 390493 390805 "DFLOAT" 391270 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384895 385176 385572 "DFINTTLS" 386375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381951 382916 383316 "DERHAM" 384561 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 379800 381726 381815 "DEQUEUE" 381895 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 379015 379148 379344 "DEGRED" 379662 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 375410 376155 377008 "DEFINTRF" 378243 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372937 373406 374005 "DEFINTEF" 374929 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 372314 372557 372672 "DEFAST" 372842 T DEFAST (NIL) -8 NIL NIL NIL) (-217 366345 371909 372058 "DECIMAL" 372185 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363855 364315 364821 "DDFACT" 365889 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 363451 363494 363645 "DBLRESP" 363806 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 361350 361684 362044 "DBASE" 363218 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 360619 360830 360976 "DATAARY" 361249 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 359752 360578 360606 "D03FAFA" 360611 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358886 359711 359739 "D03EEFA" 359744 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 356836 357302 357791 "D03AGNT" 358417 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 356152 356795 356823 "D02EJFA" 356828 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 355468 356111 356139 "D02CJFA" 356144 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 354784 355427 355455 "D02BHFA" 355460 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 354100 354743 354771 "D02BBFA" 354776 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 347297 348886 350492 "D02AGNT" 352514 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 345065 345588 346134 "D01WGTS" 346771 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 344159 345024 345052 "D01TRNS" 345057 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 343254 344118 344146 "D01GBFA" 344151 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 342349 343213 343241 "D01FCFA" 343246 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 341444 342308 342336 "D01ASFA" 342341 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 340539 341403 341431 "D01AQFA" 341436 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 339634 340498 340526 "D01APFA" 340531 T D01APFA (NIL) -8 NIL NIL NIL) (-197 338729 339593 339621 "D01ANFA" 339626 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 337824 338688 338716 "D01AMFA" 338721 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336919 337783 337811 "D01ALFA" 337816 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 336014 336878 336906 "D01AKFA" 336911 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 335109 335973 336001 "D01AJFA" 336006 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 328404 329957 331518 "D01AGNT" 333568 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327741 327869 328021 "CYCLOTOM" 328272 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 324476 325189 325916 "CYCLES" 327034 T CYCLES (NIL) -7 NIL NIL NIL) (-189 323788 323922 324093 "CVMP" 324337 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 321559 321817 322193 "CTRIGMNP" 323516 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 321054 321353 321426 "CTOR" 321506 T CTOR (NIL) -8 NIL NIL NIL) (-186 320590 320785 320886 "CTORKIND" 320973 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319938 320197 320225 "CTORCAT" 320407 T CTORCAT (NIL) -9 NIL 320520 NIL) (-184 319536 319647 319806 "CTORCAT-" 319811 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 319052 319239 319337 "CTORCALL" 319458 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 318426 318525 318678 "CSTTOOLS" 318949 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 314225 314882 315640 "CRFP" 317738 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313727 313946 314038 "CRCEAST" 314153 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312774 312959 313187 "CRAPACK" 313531 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 312158 312259 312463 "CPMATCH" 312650 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311883 311911 312017 "CPIMA" 312124 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 308247 308919 309637 "COORDSYS" 311218 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307655 307777 307920 "CONTOUR" 308124 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 303573 305658 306150 "CONTFRAC" 307195 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 303453 303474 303502 "CONDUIT" 303539 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 302618 303146 303174 "COMRING" 303179 T COMRING (NIL) -9 NIL 303231 NIL) (-171 301699 301976 302160 "COMPPROP" 302454 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 301360 301395 301523 "COMPLPAT" 301658 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 291409 301169 301278 "COMPLEX" 301283 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 291045 291102 291209 "COMPLEX2" 291346 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 290763 290798 290896 "COMPFACT" 291004 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274917 285145 285185 "COMPCAT" 286189 NIL COMPCAT (NIL T) -9 NIL 287585 NIL) (-165 264428 267356 270983 "COMPCAT-" 271339 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264157 264185 264288 "COMMUPC" 264394 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263951 263985 264044 "COMMONOP" 264118 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263534 263702 263789 "COMM" 263884 T COMM (NIL) -8 NIL NIL NIL) (-161 263137 263338 263413 "COMMAAST" 263479 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 262386 262580 262608 "COMBOPC" 262946 T COMBOPC (NIL) -9 NIL 263121 NIL) (-159 261282 261492 261734 "COMBINAT" 262176 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 257479 258053 258693 "COMBF" 260704 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256264 256595 256830 "COLOR" 257264 T COLOR (NIL) -8 NIL NIL NIL) (-156 255767 255985 256077 "COLONAST" 256192 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255407 255454 255579 "CMPLXRT" 255714 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254882 255107 255206 "CLLCTAST" 255328 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250382 251412 252492 "CLIP" 253822 T CLIP (NIL) -7 NIL NIL NIL) (-152 248755 249488 249727 "CLIF" 250209 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244977 246901 246942 "CLAGG" 247871 NIL CLAGG (NIL T) -9 NIL 248407 NIL) (-150 243399 243856 244439 "CLAGG-" 244444 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242943 243028 243168 "CINTSLPE" 243308 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240444 240915 241463 "CHVAR" 242471 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 239679 240207 240235 "CHARZ" 240240 T CHARZ (NIL) -9 NIL 240255 NIL) (-146 239433 239473 239551 "CHARPOL" 239633 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238552 239113 239141 "CHARNZ" 239188 T CHARNZ (NIL) -9 NIL 239244 NIL) (-144 236541 237242 237577 "CHAR" 238237 T CHAR (NIL) -8 NIL NIL NIL) (-143 236267 236328 236356 "CFCAT" 236467 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235512 235623 235805 "CDEN" 236151 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231504 234665 234945 "CCLASS" 235252 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230811 230954 231117 "CATEGORY" 231361 T -10 (NIL) -8 NIL NIL NIL) (-139 230443 230730 230778 "CATCTOR" 230783 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229921 230146 230244 "CATAST" 230365 T CATAST (NIL) -8 NIL NIL NIL) (-137 229424 229642 229734 "CASEAST" 229849 T CASEAST (NIL) -8 NIL NIL NIL) (-136 224460 225453 226206 "CARTEN" 228727 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 223568 223716 223937 "CARTEN2" 224307 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221910 222718 222975 "CARD" 223331 T CARD (NIL) -8 NIL NIL NIL) (-133 221513 221714 221789 "CAPSLAST" 221855 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220885 221213 221241 "CACHSET" 221373 T CACHSET (NIL) -9 NIL 221450 NIL) (-131 220381 220677 220705 "CABMON" 220755 T CABMON (NIL) -9 NIL 220811 NIL) (-130 219881 220085 220195 "BYTEORD" 220291 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218884 219415 219557 "BYTE" 219720 T BYTE (NIL) -8 NIL NIL 219842) (-128 214284 218389 218561 "BYTEBUF" 218732 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211841 213976 214083 "BTREE" 214210 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209338 211489 211611 "BTOURN" 211751 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206755 208808 208849 "BTCAT" 208917 NIL BTCAT (NIL T) -9 NIL 208994 NIL) (-124 206422 206502 206651 "BTCAT-" 206656 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201714 205565 205593 "BTAGG" 205815 T BTAGG (NIL) -9 NIL 205976 NIL) (-122 201204 201329 201535 "BTAGG-" 201540 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198247 200482 200697 "BSTREE" 201021 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197385 197511 197695 "BRILL" 198103 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194084 196111 196152 "BRAGG" 196801 NIL BRAGG (NIL T) -9 NIL 197059 NIL) (-118 192613 193019 193574 "BRAGG-" 193579 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185869 191959 192143 "BPADICRT" 192461 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184211 185806 185851 "BPADIC" 185856 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183909 183939 184053 "BOUNDZRO" 184175 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179021 180193 181138 "BOP" 182984 T BOP (NIL) -8 NIL NIL NIL) (-113 176642 177086 177606 "BOP1" 178534 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175344 176066 176259 "BOOLEAN" 176469 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174706 175084 175138 "BMODULE" 175143 NIL BMODULE (NIL T T) -9 NIL 175208 NIL) (-110 170534 174504 174577 "BITS" 174653 T BITS (NIL) -8 NIL NIL NIL) (-109 169946 170068 170210 "BINDING" 170412 T BINDING (NIL) -8 NIL NIL NIL) (-108 163980 169543 169691 "BINARY" 169818 T BINARY (NIL) -8 NIL NIL NIL) (-107 161807 163235 163276 "BGAGG" 163536 NIL BGAGG (NIL T) -9 NIL 163673 NIL) (-106 161638 161670 161761 "BGAGG-" 161766 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160736 161022 161227 "BFUNCT" 161453 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159426 159604 159892 "BEZOUT" 160560 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155943 158278 158608 "BBTREE" 159129 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155677 155730 155758 "BASTYPE" 155877 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155530 155558 155631 "BASTYPE-" 155636 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154964 155040 155192 "BALFACT" 155441 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153847 154379 154565 "AUTOMOR" 154809 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153573 153578 153604 "ATTREG" 153609 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151852 152270 152622 "ATTRBUT" 153239 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151487 151680 151746 "ATTRAST" 151804 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151023 151136 151162 "ATRIG" 151363 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150832 150873 150960 "ATRIG-" 150965 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150503 150663 150689 "ASTCAT" 150694 T ASTCAT (NIL) -9 NIL 150724 NIL) (-92 150230 150289 150408 "ASTCAT-" 150413 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148427 150006 150094 "ASTACK" 150173 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146932 147229 147594 "ASSOCEQ" 148109 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145964 146591 146715 "ASP9" 146839 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145727 145912 145951 "ASP8" 145956 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144595 145332 145474 "ASP80" 145616 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143493 144230 144362 "ASP7" 144494 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142447 143170 143288 "ASP78" 143406 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141416 142127 142244 "ASP77" 142361 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140328 141054 141185 "ASP74" 141316 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139228 139963 140095 "ASP73" 140227 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138332 139054 139154 "ASP6" 139159 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137276 138009 138127 "ASP55" 138245 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136225 136950 137069 "ASP50" 137188 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135313 135926 136036 "ASP4" 136146 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134401 135014 135124 "ASP49" 135234 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133185 133940 134108 "ASP42" 134290 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131961 132718 132888 "ASP41" 133072 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130911 131638 131756 "ASP35" 131874 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130676 130859 130898 "ASP34" 130903 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130413 130480 130556 "ASP33" 130631 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129306 130048 130180 "ASP31" 130312 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129071 129254 129293 "ASP30" 129298 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128806 128875 128951 "ASP29" 129026 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128571 128754 128793 "ASP28" 128798 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128336 128519 128558 "ASP27" 128563 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127420 128034 128145 "ASP24" 128256 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126496 127222 127334 "ASP20" 127339 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125584 126197 126307 "ASP1" 126417 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124526 125258 125377 "ASP19" 125496 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124263 124330 124406 "ASP12" 124481 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123115 123862 124006 "ASP10" 124150 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121014 122959 123050 "ARRAY2" 123055 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116827 120662 120776 "ARRAY1" 120931 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115859 116032 116253 "ARRAY12" 116650 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110218 112089 112164 "ARR2CAT" 114794 NIL ARR2CAT (NIL T T T) -9 NIL 115552 NIL) (-56 107652 108396 109350 "ARR2CAT-" 109355 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106996 107279 107404 "ARITY" 107545 T ARITY (NIL) -8 NIL NIL NIL) (-54 105744 105896 106202 "APPRULE" 106832 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105395 105443 105562 "APPLYORE" 105690 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104369 104660 104855 "ANY" 105218 T ANY (NIL) -8 NIL NIL NIL) (-51 103647 103770 103927 "ANY1" 104243 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101204 102084 102411 "ANTISYM" 103371 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100723 100911 101007 "ANON" 101126 T ANON (NIL) -8 NIL NIL NIL) (-48 94847 99262 99716 "AN" 100287 T AN (NIL) -8 NIL NIL NIL) (-47 91095 92457 92508 "AMR" 93256 NIL AMR (NIL T T) -9 NIL 93856 NIL) (-46 90207 90428 90791 "AMR-" 90796 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74757 90124 90185 "ALIST" 90190 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71586 74351 74520 "ALGSC" 74675 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68141 68696 69303 "ALGPKG" 71026 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67418 67519 67703 "ALGMFACT" 68027 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63155 63842 64497 "ALGMANIP" 66941 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54552 62781 62931 "ALGFF" 63088 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52805 53379 53417 "ALGEBRA" 53422 NIL ALGEBRA (NIL T) -9 NIL 53463 NIL) (-37 52523 52582 52714 "ALGEBRA-" 52719 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34782 50525 50577 "ALAGG" 50713 NIL ALAGG (NIL T T) -9 NIL 50874 NIL) (-35 34318 34431 34457 "AHYP" 34658 T AHYP (NIL) -9 NIL NIL NIL) (-34 33249 33497 33523 "AGG" 34022 T AGG (NIL) -9 NIL 34301 NIL) (-33 32683 32845 33059 "AGG-" 33064 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30359 30782 31200 "AF" 32325 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29866 30084 30174 "ADDAST" 30287 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29134 29393 29549 "ACPLOT" 29728 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18418 26347 26398 "ACFS" 27109 NIL ACFS (NIL T) -9 NIL 27348 NIL) (-28 16432 16922 17697 "ACFS-" 17702 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14599 14625 "ACF" 15504 T ACF (NIL) -9 NIL 15916 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index dc47058f..a4a5a790 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,2871 +1,694 @@ -(735565 . 3451054385) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) - (-4 *2 (-1235 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) - (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) - (-5 *1 (-660 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) - (-4 *3 (-847)) (-4 *4 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1094)) - (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) - (-5 *1 (-1070 *3 *4 *2)) - (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1094))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3955)) (-5 *2 (-112)) (-5 *1 (-615)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3033)) (-5 *2 (-112)) (-5 *1 (-615)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2788)) (-5 *2 (-112)) (-5 *1 (-615)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2762)) (-5 *2 (-112)) (-5 *1 (-687 *4)) - (-4 *4 (-611 (-859))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112)) - (-5 *1 (-687 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-967))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175))))) -(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1094)) - (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) - (-5 *1 (-1070 *3 *4 *2)) - (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1235 (-169 *3)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) - (-4 *1 (-1066 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1114)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *1) +(735619 . 3451299469) +(((*1 *2 *3 *4) (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-330))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) -(((*1 *1) (-5 *1 (-800)))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *1) (-4 *1 (-964)))) + (-5 *3 + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) + (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) + (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-564)) + (-5 *1 (-920 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3053 (-564)) (|:| -3840 (-641 *3)))) - (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028))))) -(((*1 *2 *1) - (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564)))) + (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) + (-4 *5 (-452)) + (-5 *2 + (-2 (|:| |gblist| (-641 (-247 *4 *5))) + (|:| |gvlist| (-641 (-564))))) + (-5 *1 (-629 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-225))) (-5 *4 (-767)) (-5 *2 (-685 (-225))) + (-5 *1 (-305))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2)))) ((*1 *2 *1) - (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) - (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967)))) - ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068)))) - ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) - (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5)) - (-4 *5 (-1235 (-407 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129)))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) - (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *1) (-4 *1 (-964)))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) - (-5 *1 (-693)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) - (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225))) - (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693))))) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225))) - (-5 *1 (-468))))) -(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) - ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) - (-5 *1 (-1154 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) - (-14 *4 (-1170)) (-14 *5 *3)))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1) (-4 *1 (-964))) ((*1 *1 *1) (-5 *1 (-1114)))) -(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1170)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-641 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3521 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1194) (-27) (-430 *8))) - (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) - (-5 *3 (-564)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3777 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1010 *8 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) - (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) - (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) - (-4 *4 (-13 (-430 *7) (-27) (-1194))) - (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) - (-4 *4 (-13 (-430 *7) (-27) (-1194))) - (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4)) - (-4 *4 (-307)) (-5 *1 (-460 *4 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4)) - (-4 *4 (-1094))))) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1088 (-839 (-225)))) (-5 *1 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) - (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363)) - (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *1 *1) (-4 *1 (-284))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) - (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) - (-14 *5 (-918)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) - (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) - (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172))))) -(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368)) - (-5 *2 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-291)))) -(((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4))))) + (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6)) - (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6))))) -(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) - ((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-363)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046)) - (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-5 *1 (-985 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-5 *1 (-1101 *3 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264)) - (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1235 (-169 *2)))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-768)) - (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) - (-5 *1 (-246 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) - (-5 *2 (-407 (-564)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) + (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) + (-5 *2 (-641 (-641 (-641 (-767)))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-870)) + (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-966)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-990)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1032)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1067))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-789)) + (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) - (-14 *4 (-918)) (-4 *5 (-1046))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-564)))) - (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2777 ($ $ $))))) - (-4 *3 (-556)) (-5 *1 (-1238 *3 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25)))))) -(((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) - ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) - (-5 *1 (-1284 *4)) (-4 *4 (-1209)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) - (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))) - ((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1133)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859)) - (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) - (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) - (-4 *4 (-13 (-1094) (-34)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) + (-12 (-4 *2 (-1235 *4)) (-5 *1 (-805 *4 *2 *3 *5)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) + (-4 *5 (-652 (-407 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) + (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-357 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112)) - (-5 *1 (-668 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) - (-4 *7 (-1235 *6)) - (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3345 (-418 *3)) (|:| |special| (-418 *3)))) - (-5 *1 (-724 *5 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-564)) (-5 *1 (-204))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) - (-5 *2 (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -1678 *1))) - (-4 *1 (-1060 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -1678 *1))) - (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) + (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) - (-4 *3 (-13 (-1094) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270))))) -(((*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1) (-5 *1 (-820)))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-845))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3840 (-418 *3)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) - ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094)) - (-5 *1 (-674 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) - (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) - (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) - (-4 *6 (-556))))) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) - (-5 *1 (-663 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-363)) - (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4407)))) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))) - (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) - (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2)))) + (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) + ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)) - (-5 *3 (-564))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) - (-4 *2 (-1209))))) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4)) - (-5 *3 (-641 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4)) - (-5 *3 (-1096 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4)) - (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) - (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3521 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-363)) (-4 *7 (-1235 *6)) - (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) - (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) - (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) - (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) - (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) - (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) - (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) - (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) - (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) - (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) - (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6))) - (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170)) - (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4)) - (-4 *4 (-1235 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-5 *2 (-2 (|:| -3689 (-641 *6)) (|:| -1669 (-641 *6))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) - (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) - (-4 *2 (-683 *3 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046))))) -(((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *3) - (-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3)) - (-4 *3 (-1235 *2))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) - (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790)) - (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) - (-5 *1 (-263))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| |minor| (-641 (-918))) (|:| -4252 *3) - (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) - (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) - (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564)))) - (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) - (-5 *2 (-1032)) (-5 *1 (-753))))) -(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847)) - (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) - (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6)) - (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) - (-5 *1 (-686 *4))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-685 (-564))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) - (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) - (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) - (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) - (-5 *2 (-685 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-641 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) - (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) - (-5 *1 (-190))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2777 (-779 *3)) (|:| |coef2| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-2 (|:| -2777 *1) (|:| |coef2| *1))) - (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564))))) -(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-749))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) - ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215))) - ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217)))) -(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| -3070 *4) (|:| -1619 (-564))))) - (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) - (-5 *1 (-1180 *6)) (-5 *5 (-641 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-748))))) + (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) - (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1032)) (-5 *1 (-753))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) - (-4 *4 (-172)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194))) - (-5 *1 (-227 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) + (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 (-641 *4)))) + (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) + (-4 *5 (-373 *2)) (-4 *2 (-1209)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 (-564)) (-14 *5 (-767)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) + (-14 *4 (-767)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ *3)) (-15 -1624 ((-1264) $)) + (-15 -3948 ((-1264) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) - (-4 *6 (-238 (-2828 *3) (-768))) - (-14 *7 - (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *6)) - (-2 (|:| -1468 *5) (|:| -1558 *6)))) - (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847)) - (-4 *2 (-946 *4 *6 (-861 *3))))) + (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) + (-15 -3948 ((-1264) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-680 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3)) - (-4 *4 (-373 *3)))) + (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *2 (-373 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) + (-4 *4 (-1235 (-407 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-641 (-888 *4))) (-5 *1 (-888 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) + (-5 *1 (-989 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-917)) (-4 *4 (-1094)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) + (-5 *1 (-1070 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-917)) (-4 *4 (-1094)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) + (-5 *1 (-1071 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-717))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) + (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) + (-4 *7 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) + (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) + ((*1 *1 *1 *1) (-4 *1 (-1138))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) - (-5 *1 (-966 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053)))) - ((*1 *1 *1 *1) (-4 *1 (-1106))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4)) - (-4 *5 (-238 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) - (-4 *2 (-946 *3 (-531 *4) *4)))) + (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1045)) + (-4 *2 (-363)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) + (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)) + (-4 *3 (-556)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5))) - (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-928 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) - ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215))) - ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) - (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) - (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) - (-4 *3 (-849 *5))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) - (-5 *2 (-918))))) -(((*1 *2 *3) - (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564))) - (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302)) - (-5 *2 (-1166 *1))))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) - (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) - (-5 *1 (-1210 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) - (-5 *1 (-1210 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2))) - (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) - (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| -2860 *3) (|:| -1383 *4)))) - (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307)) - (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1357 *3) (|:| |coef1| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906)) - (-5 *2 (-1259 *1))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046)))) - ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1250 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) - (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1250 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) - (-5 *1 (-1146 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) - (-4 *3 (-1209))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-641 - (-2 - (|:| -2568 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) - (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) - (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -1389 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379))))))) - (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))) -(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5)) - (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) - (-4 *5 (-652 (-407 *2)))))) + (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-652 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) + (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5))))) (((*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) ((*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) - (-5 *2 (-1166 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) - (-4 *3 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-685 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) - (-4 *2 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *5 *2))))) -(((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-752))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-294 (-949 (-564)))) - (-5 *2 - (-2 (|:| |varOrder| (-641 (-1170))) - (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) - (|:| |hom| (-641 (-1259 (-768)))))) - (-5 *1 (-236))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) - (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) - (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094)) - (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5)))) - (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *1 *1 *1) (-4 *1 (-964)))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) - (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) - (-4338 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) - (-5 *1 (-636 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) - (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) - (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-723))))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847)) - (-5 *1 (-609 *2 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) - (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) - (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) - (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) - (-5 *1 (-915 *4))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) - (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) - (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) - (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-307))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) - (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) - (-4 *3 (-342 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) - (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046)) - (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) - (-4 *7 (-1235 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *5 (-790)) (-4 *2 (-266 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) - (-14 *4 (-918)) (-4 *5 (-1046))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) - (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790)) - (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) - (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) - (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) - (-5 *2 (-641 (-2 (|:| -1389 *3) (|:| -2791 (-768)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) - (-5 *2 (-918))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) -(((*1 *1) (-5 *1 (-1058)))) + (|partial| -12 + (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-556))) + (-5 *1 (-276 *4 *2))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) - (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) - ((*1 *2) - (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918)))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) - (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) - (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) - (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) - (-5 *4 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) - (-5 *4 (-316 (-564))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) - (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) - (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) - (-5 *4 (-316 (-690))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) - (-5 *4 (-316 (-695))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) - (-5 *4 (-316 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2595 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-641 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) - (-5 *2 (-641 (-2 (|:| -1809 *5) (|:| -4252 *3)))) - (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) - (-4 *7 (-652 (-407 *6)))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) - (-4 *4 (-1209)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174))))) -(((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1357 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97))))) -(((*1 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) - (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170))))) -(((*1 *1 *1) (-5 *1 (-1169))) - ((*1 *1 *2) - (-12 + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) - (-5 *3 (-641 (-564))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) - (-5 *3 (-641 (-564)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-557 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4)) - (-5 *1 (-444 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) - (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-1046)) (-4 *4 (-172)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)) - (-4 *3 (-172))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847)) - (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1558 (-564)))) - (-4 *1 (-430 *4)))) + (-641 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) + (|:| |outvect| (-641 (-685 (-169 *4))))))) + (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) + (-5 *2 (-407 (-948 *4))))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847)) - (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1558 (-564)))) - (-4 *1 (-430 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) - (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1558 (-564)))) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -1558 (-768)))) - (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -1558 (-768)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) - (-4 *7 (-946 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1558 (-564)))) - (-5 *1 (-947 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) - (-15 -3693 (*7 $)))))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-641 *11)) - (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2956 *11)))))) - (-5 *6 (-768)) - (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2956 *11)))) - (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) - (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) - (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-641 *11)) - (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2956 *11)))))) - (-5 *6 (-768)) - (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2956 *11)))) - (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) - (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) - (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11))))) -(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) - (-4 *3 (-644 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) - (-4 *3 (-644 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) - ((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847)) - (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) - (-4 *8 (-946 *3 *7 *6))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3521 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) - (-5 *3 (-407 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-574 *7 *8))))) + (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) + (-5 *2 (-407 (-948 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170))) - (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4))))) - (-5 *1 (-504 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) - (-5 *1 (-1123 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147))) - (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) - (-5 *1 (-1123 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-294 (-407 (-949 *4)))) - (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) - (-5 *1 (-1123 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) - (-4 *5 (-13 (-307) (-847) (-147))) - (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-407 (-949 *4)))) - (-4 *4 (-13 (-307) (-847) (-147))) - (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170))) - (-4 *5 (-13 (-307) (-847) (-147))) - (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) - (-4 *4 (-13 (-307) (-847) (-147))) - (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) - (-4 *5 (-1046)) - (-5 *2 (-2 (|:| -2394 (-685 *5)) (|:| |vec| (-1259 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046)) - (-5 *2 (-685 *4))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) + (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) - (-4 *4 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) - (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) - (-5 *2 (-1032)) (-5 *1 (-751))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) - (-5 *1 (-724 *5 *2)) (-4 *5 (-363))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)))) - ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1357 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) - (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) - (-4 *4 (-38 (-407 (-564))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) - ((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1) (-4 *1 (-866 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) - (-4 *4 (-847))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1235 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) - (-5 *3 (-641 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) - (-5 *1 (-262 *2)) (-4 *2 (-1209)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) - (-5 *1 (-263))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) - (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) - (-4 *3 (-342 *5 *2 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-816 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) - (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) - (-5 *2 (-685 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) - (-4 *3 (-13 (-430 *7) (-27) (-1194))) - (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) - (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) - (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3)) - (-4 *3 (-670 *4))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) - (-4 *5 (-1235 *4)) - (-5 *2 (-2 (|:| -3521 (-407 *5)) (|:| |coeff| (-407 *5)))) - (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) - (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) - (-14 *6 (-1170)) (-14 *7 *3)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363)) - (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) - ((*1 *1) (-5 *1 (-859))) - ((*1 *1) - (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) - (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1079))) - ((*1 *1) - (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) - (-4 *3 (-13 (-1094) (-34))))) - ((*1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1174)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) - (-4 *6 (-13 (-27) (-430 *5))) - (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) - (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) - (-4 *3 (-342 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4)) - (-4 *4 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7)) - (-5 *2 (-2 (|:| -2394 (-685 *6)) (|:| |vec| (-1259 *5)))) - (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-924)) - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) - (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) - (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) - (-5 *1 (-153))))) -(((*1 *2) - (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) - (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-407 (-564)))) - (-5 *2 - (-641 - (-2 (|:| |outval| *4) (|:| |outmult| (-564)) - (|:| |outvect| (-641 (-685 *4)))))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046))))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1209))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) - (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4)) - (-4 *4 (-172))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-641 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-564))))) - (-5 *1 (-418 *3)) (-4 *3 (-556)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) - (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) - (-4 *6 (-1235 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) - (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556))) - (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845))) - (-5 *2 (-641 (-2 (|:| -3840 (-641 *3)) (|:| -2044 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-363) (-845))) - (-5 *2 (-641 (-2 (|:| -3840 (-641 *3)) (|:| -2044 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) - (-4 *4 (-1094)) (-4 *5 (-1094))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) - (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) - (-5 *1 (-807 *4 *2)) - (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *4 (-610 $)) $)) - (-15 -3693 ((-1119 *4 (-610 $)) $)) - (-15 -1831 ($ (-1119 *4 (-610 $)))))))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) - (|:| |f4| (-641 *5)))) - (-5 *1 (-1180 *6)) (-5 *4 (-641 *5))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) - (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) - (-4 *3 (-849 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3)) - (-4 *3 (-971))))) -(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) -(((*1 *2 *3) - (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) - (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) - (-15 -3693 ((-1119 *3 (-610 $)) $)) - (-15 -1831 ($ (-1119 *3 (-610 $)))))))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140))))) -(((*1 *2 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) - (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368))))) -(((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5))) - (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564))))) - (-14 *6 (-918))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) - (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) - (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) - (-14 *3 (-918)) (-4 *4 (-1046)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615)))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) - (-4 *7 (-790)) - (-5 *2 - (-641 - (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) - (|:| |cols| (-641 (-564)))))) - (-5 *1 (-921 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) - (-4 *3 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-737 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-847)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *1 (-977 *3)) (-4 *3 (-1046)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) - (|:| |polypart| *6))) - (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-621 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3777 *4) (|:| |sol?| (-112))) - (-564) *4)) - (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) - (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) - (-5 *1 (-1263)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) - (-5 *2 (-1260)) (-5 *1 (-1263))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) + (-5 *2 (-1166 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) (((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-418 *4)) (-4 *4 (-556))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) - (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4)) - (-5 *1 (-1026 *4))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *4))))))) - (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) - (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) - (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-5 *2 (-924)) (-5 *1 (-922 *3)) - (-4 *3 (-612 (-536))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-924)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1235 *4)) - (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) + (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-564)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) - (-4 *4 (-452)) (-4 *6 (-847))))) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2)) - (-4 *2 (-1235 (-407 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1046)) - (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) - (-5 *2 (-768)) (-5 *1 (-455 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6)) - (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-556) (-147))) - (-5 *2 (-2 (|:| -3766 *3) (|:| -3777 *3))) (-5 *1 (-1229 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2860 *3) (|:| |gap| (-768)) (|:| -4347 (-779 *3)) - (|:| -1678 (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-1046)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) - (-5 *2 - (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -4347 *1) - (|:| -1678 *1))) - (-4 *1 (-1060 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 - (-2 (|:| -2860 *1) (|:| |gap| (-768)) (|:| -4347 *1) - (|:| -1678 *1))) - (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 *4)))) - (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) - (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4))))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-790)) - (-4 *3 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *5 (-556)) - (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1094)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *3 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *6)) - (-4 *6 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) - (-4 *2 (-946 (-949 *4) *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837)))) - ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) - (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032)) - (-5 *1 (-837)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) - (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) - (-5 *1 (-837)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) - (-5 *2 (-1032)) (-5 *1 (-837))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5))) - (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1086 (-840 *3))) (-5 *5 (-1152)) - (-4 *3 (-13 (-1194) (-956) (-29 *6))) - (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1086 (-840 (-316 *5)))) - (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1086 (-840 (-316 *6)))) - (-5 *5 (-1152)) - (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1086 (-840 (-407 (-949 *5))))) (-5 *3 (-407 (-949 *5))) - (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1086 (-840 (-407 (-949 *6))))) (-5 *5 (-1152)) - (-5 *3 (-407 (-949 *6))) - (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) - (-4 *3 (-13 (-1194) (-956) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) - (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) - (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) - (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) - (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) - (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) - (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) - (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) - (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) - (-5 *5 (-1152)) (-5 *2 (-1032)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) - (-5 *5 (-1170)) (-5 *2 (-1032)) (-5 *1 (-565)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) - (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) - (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)) - (-4 *3 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-407 (-564)))) - (-4 *3 (-1046)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-4 *2 (-847)) - (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) - (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-4078 - (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) - (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) - (-4 *3 (-38 (-407 (-564)))))) - (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) - (-12 (|has| *3 (-15 -3209 ((-641 *2) *3))) - (|has| *3 (-15 -3907 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-4078 - (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) - (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) - (-4 *3 (-38 (-407 (-564)))))) - (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) - (-12 (|has| *3 (-15 -3209 ((-641 *2) *3))) - (|has| *3 (-15 -3907 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1094)))) ((*1 *1 *1 *2) - (-4078 - (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) - (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) - (-4 *3 (-38 (-407 (-564)))))) - (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) - (-12 (|has| *3 (-15 -3209 ((-641 *2) *3))) - (|has| *3 (-15 -3907 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045)) + (-5 *1 (-710 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) - (-5 *1 (-887 *4 *5)) (-4 *5 (-1209))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) - (-5 *1 (-693))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) - (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) - (-5 *1 (-785))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4)) - (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-1230 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756))))) -(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) - (-4 *3 (-1235 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) - (-4 *3 (-789))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) - (-5 *2 (-641 (-641 (-641 (-940 *3)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) - (-5 *2 (-413 *4 (-407 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))) - (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) - (-5 *1 (-413 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) - (-5 *2 (-641 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) - ((*1 *1 *1) (-4 *1 (-160)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) - (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) - (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) - (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3)))) - (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) - ((*1 *1 *1) (|partial| -4 *1 (-719)))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) - (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-5 *2 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))) -(((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8)))) - (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) - (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170)))) - (-4 *10 (-790)) - (-5 *2 - (-2 - (|:| |rgl| - (-641 - (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) - (|:| |wcond| (-641 (-949 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *8)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *8)))))))))) - (|:| |rgsz| (-564)))) - (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1170)) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-4 *4 (-13 (-29 *6) (-1194) (-955))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3342 (-641 *4)))) + (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-652 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) + (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847)) - (-5 *1 (-1180 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-843))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) - (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) - (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) - (-14 *6 (-1259 (-685 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) - (-14 *6 (-1259 (-685 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) - ((*1 *1) - (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918)) - (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) + (-12 (-5 *3 (-407 (-564))) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) - (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194))) - (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2)) - (-4 *6 (-13 (-430 *5) (-999) (-1194)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) - (-5 *2 (-1032)) (-5 *1 (-745))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) - (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2777 (-779 *3)) (|:| |coef1| (-779 *3)) - (|:| |coef2| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-2 (|:| -2777 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1060 *3 *4 *5))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) + (-4 *2 + (-13 (-402) + (-10 -7 (-15 -2322 (*2 *4)) (-15 -1368 ((-917) *2)) + (-15 -3342 ((-1259 *2) (-917))) (-15 -3053 (*2 *2))))) + (-5 *1 (-356 *2 *4))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) - (-5 *2 (-2 (|:| -2860 (-564)) (|:| |var| (-610 *1)))) - (-4 *1 (-430 *3))))) -(((*1 *2 *3 *4) (-12 - (-5 *3 + (-5 *2 (-641 - (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) - (|:| |wcond| (-641 (-949 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) - (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) - (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) - (-5 *1 (-921 *5 *6 *7 *8))))) -(((*1 *2) - (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *2) - (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871)) - (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) + (-2 + (|:| -3076 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2511 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4195 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-559)))) + ((*1 *2 *1) + (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) + (-5 *2 (-641 *4))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 (-564))))) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 (-768))))) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| -3070 *3) (|:| -1558 (-564))))) + (-12 (-5 *2 (-641 (-2 (|:| -2375 *3) (|:| -3866 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 (-768))))) - (-5 *1 (-816 *3)) (-4 *3 (-847))))) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 (-767))))) + (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-846)) + (-4 *3 (-13 (-172) (-713 (-407 (-564))))) (-14 *4 (-917)))) + ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) +(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) + (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) + (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1194)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1) (-4 *1 (-143))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) (((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788)) (-4 *3 (-172))))) +(((*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170)))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264)))) + ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) + (-4 *2 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *5 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4095 *1))) + (-4 *1 (-848 *3))))) +(((*1 *2) + (-12 + (-5 *2 + (-1259 (-641 (-2 (|:| -2053 (-906 *3)) (|:| -1998 (-1114)))))) + (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114)))))) + (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114)))))) + (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-847)))) + (-5 *1 (-121 *3)) (-4 *3 (-846)))) ((*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) - (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-4 *3 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *1 (-583 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-585 (-407 (-949 *3)))) - (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-12 (-5 *2 (-585 (-407 (-948 *3)))) + (-4 *3 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) (-5 *1 (-588 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3345 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3)))) + (-5 *2 (-2 (|:| -3781 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) - (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) + (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046)) - (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) + (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564))))) + (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-948 *9)))) + (-5 *6 (-641 (-641 *12))) (-5 *7 (-767)) (-5 *8 (-564)) + (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) + (-4 *10 (-13 (-846) (-612 (-1170)))) (-4 *11 (-789)) + (-5 *2 + (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) + (|:| |wcond| (-641 (-948 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *9)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *9))))))))) + (-5 *1 (-920 *9 *10 *11 *12))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1045))))) +(((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-767))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-1158 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261))))) +(((*1 *2 *1) + (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-846)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-556)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *1)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *4)) (-4 *4 (-1045)) (-4 *1 (-1117 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) + ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1170)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-641 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1370 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1194) (-27) (-430 *8))) + (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-637 *3))) + (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1010 *8 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-751))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170)))) + (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790)) - (-4 *4 (-847)) (-4 *7 (-556)) + (-12 (-5 *5 (-1088 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) + (-4 *4 (-846)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556)) + (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) - (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1) (-5 *1 (-859))) + (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-5 *1 (-858))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) - (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5)))) + (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) + (-5 *2 (-407 (-948 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-948 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) - (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5)) - (-5 *3 (-407 (-949 *5))))) + (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) + (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1163 *5)) + (-5 *3 (-407 (-948 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5)) - (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3)) + (-12 (-5 *4 (-1086 (-948 *5))) (-5 *3 (-948 *5)) + (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) - (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5))) + (-12 (-5 *4 (-1086 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) - (-4 *8 (-946 *7 *5 *6)) - (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *3) (|:| |radicand| *3))) - (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768)) + (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) + (-4 *8 (-945 *7 *5 *6)) + (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *3) (|:| |radicand| *3))) + (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) - (-10 -8 (-15 -1831 ($ *8)) (-15 -3678 (*8 $)) (-15 -3693 (*8 $)))))))) + (-10 -8 (-15 -2322 ($ *8)) (-15 -4189 (*8 $)) (-15 -4201 (*8 $)))))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *2 (-112)) (-5 *1 (-210))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-1235 *4)) (-4 *4 (-1045)) + (-5 *2 (-1259 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3777 *7) (|:| |sol?| (-112))) + (-1 (-2 (|:| |ans| *7) (|:| -4250 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) @@ -2878,1187 +701,991 @@ (|:| |a0| *7))) (-5 *1 (-574 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) - (-4 *4 (-1209))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) - (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-468)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-744))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) + (-4 *4 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) + (-14 *4 (-564))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1272 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) + (-4 *2 (-652 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))) + (-12 (-5 *3 (-294 (-948 (-564)))) + (-5 *2 + (-2 (|:| |varOrder| (-641 (-1170))) + (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) + (|:| |hom| (-641 (-1259 (-767)))))) + (-5 *1 (-236))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) - (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-4 *3 (-556))))) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) + (-4 *4 (-452)) (-5 *1 (-629 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) - (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) + (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) + (-4 *4 (-1209))))) (((*1 *2 *3) - (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-14 *5 (-641 (-1170))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *4)) (|:| -2467 (-641 (-949 *4)))))) - (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) - (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) - (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) - (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *4)) (|:| -2467 (-641 (-949 *4)))))) - (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4))) - (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) - ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) - (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) - (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094))))) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-564)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) (((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) - (-4 *1 (-382 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-723)))) + (-12 (-5 *2 (-1022 (-839 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) + (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1094)) + (-4 *6 (-13 (-1045) (-882 *5) (-846) (-612 (-888 *5)))) + (-4 *2 (-13 (-430 *6) (-882 *5) (-612 (-888 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) ((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-946 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) - (-5 *1 (-1104))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-641 (-225))) (-5 *1 (-204))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) (((*1 *1 *1) - (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) - (-4 *3 (-13 (-1094) (-34)))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) - (-4 *3 (-1046)) (-4 *2 (-789)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) - (-4 *3 (-1046)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) - (-4 *3 (-1046))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1235 (-169 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5)) - (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) - (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) - (-14 *6 (-1259 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-4 *5 (-1046)) - (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) - (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) - (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4)) - (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) - (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5)))) - (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5)))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) - (-5 *2 (-112)) (-5 *1 (-1134 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) - (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) - (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1674 *1) (|:| -4393 *1) (|:| |associate| *1))) - (-4 *1 (-556))))) -(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) - (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) - (-5 *1 (-751))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) - (-5 *1 (-267))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) - (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *9) (|:| |radicand| *9))) - (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768)) - (-4 *9 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *8)) (-15 -3678 (*8 $)) (-15 -3693 (*8 $)))))))) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) + (-14 *3 (-641 (-1170)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) (((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) + ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-974 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) - (-4 *1 (-329 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) - (-4 *2 (-1235 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) - (-5 *1 (-528 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-564)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) - (-5 *1 (-449 *5 *6 *7 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *1 (-1283 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) - (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1260)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1260)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1261)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-847) (-1035 (-564)))) - (-5 *2 (-1260)) (-5 *1 (-256 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) - (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1094))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-874 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-874 *5)) (-5 *4 (-1086 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) - (-5 *1 (-259 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) - (-5 *1 (-259 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) - (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1094))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) - (-5 *1 (-259 *5)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) + (-5 *2 (-685 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))) + (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1025 *4)) + (-4 *4 (-363)) (-4 *4 (-1045)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) - (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-641 (-263))) - (-5 *2 (-1260)) (-5 *1 (-260)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) - (-5 *1 (-260))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) - (-4 *3 (-1235 *2))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) - (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) - (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1023 (-840 (-564)))) - (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046)) - (-5 *1 (-594 *4))))) + (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) + (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-578)))) -(((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-13 (-847) (-556)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) - (-5 *1 (-1173)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) - (-5 *1 (-1173)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) - (-5 *1 (-1173))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) - (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) - (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) - (-14 *7 (-918))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1831 ($ *7))))) - (-4 *7 (-845)) - (-4 *8 - (-13 (-1237 *3 *7) (-363) (-1194) - (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) - (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) - (-14 *10 (-1170))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847)) - (-5 *1 (-610 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) - (-5 *1 (-1286 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) - (-4 *3 (-1209)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) - (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046)) - (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847)) - (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) - (|:| -3331 (-641 (-1259 (-407 *8)))))) - (-5 *1 (-665 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2) - (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) + (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-861)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-685 (-316 (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) - (-5 *1 (-205))))) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| -3139 (-407 *5)) (|:| |poly| *3))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187))))) (((*1 *2 *3) - (-12 (-5 *3 (-918)) - (-5 *2 - (-3 (-1166 *4) - (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114))))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) + (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1831 ($ *7))))) - (-4 *7 (-845)) - (-4 *8 - (-13 (-1237 *3 *7) (-363) (-1194) - (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) - (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) - (-14 *10 (-1170))))) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) + (-5 *2 (-1031)) (-5 *1 (-751))))) +(((*1 *2) (-12 (-5 *2 (-829 (-564))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -1370 (-407 *6)) (|:| |coeff| (-407 *6)))) + (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-948 *4)) (-948 *4))) + (-5 *1 (-1267 *4)) (-4 *4 (-363))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) - (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) - (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) - (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2956 *9)))) - (-5 *1 (-1067 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) - (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363)) - (-14 *4 (-990 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *1 *1) (|partial| -4 *1 (-719))) - ((*1 *1 *1) (|partial| -4 *1 (-723))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) - (-4 *2 (-1235 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 - (-2 (|:| |solns| (-641 *5)) - (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) - (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-157)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) ((*1 *2 *3) - (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094))))) -(((*1 *2 *2) (-12 - (-5 *2 - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) - (-5 *1 (-267))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) - (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) - (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170))) - (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) - (-5 *1 (-887 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847)) - (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847)) - (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) - (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) - (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) - (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094)) - (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) - (-5 *1 (-1070 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847))) - (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) - (-4 *5 (-1046)))) - ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) - (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) - (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-407 (-949 *4)))) - (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) - (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) - (-4 *2 (-1143 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-1046))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1032)) (-5 *1 (-745))))) -(((*1 *2 *3) - (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) - (-4 *4 (-1094)) (-4 *5 (-1094))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-564))))) + (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) + ((*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) + (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) - (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(((*1 *2) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) + (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) + (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045))))) +(((*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-564)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) + (-5 *1 (-449 *5 *6 *7 *4))))) (((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-13 (-847) (-556))))) + (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-846) (-556))))) ((*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1194)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 (*2 $)) - (-15 -3595 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) - ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) - (-5 *2 (-1264)) (-5 *1 (-1173)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) - (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *2 (-1264)) - (-5 *1 (-1173)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1170)) - (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *2 (-1264)) - (-5 *1 (-1173))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1060 *3 *4 *5))))) + (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) + (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1370 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-2 (|:| -3187 (-1150 *4)) (|:| -3199 (-1150 *4)))) - (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) + (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3235 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) + (-5 *1 (-437))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25)))))) + (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) +(((*1 *1 *1 *1) (-4 *1 (-963)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) + (-5 *1 (-879))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209))))) (((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-657)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768)) + (-12 (-5 *2 - (-2 (|:| |contp| (-564)) - (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) - (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-641 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) - (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4252 *3)))) - (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) - (-4 *7 (-652 (-407 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-641 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *6 (-1235 *5)) - (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4252 (-650 *6 (-407 *6)))))) - (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1166 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-657)))) + (-641 + (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) + (|:| |logand| (-1166 *3))))) + (-5 *1 (-585 *3)) (-4 *3 (-363))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) + (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782))))) (((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) - (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) + (-12 (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) + (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) + (-12 (-4 *3 (-556)) (-4 *3 (-846)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) - (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) - (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) - (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) - (-5 *1 (-1071 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546)))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) - (-5 *2 (-112)) (-5 *1 (-1135 *5 *6))))) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) + (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) + (-4 *4 (-1094)))) + ((*1 *1 *2) + (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) (((*1 *2 *3) - (-12 (-4 *4 (-1046)) - (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2)) - (-4 *2 (-13 (-1094) (-10 -8 (-15 -1797 ($ $ $)))))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) - (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) - (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7)) - (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-418 *2)) (-4 *2 (-556))))) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) (((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) + (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) - (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) + (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) + (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) ((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-723) *3)))) + (-4 *4 (|SubsetCategory| (-722) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-723) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818))))) -(((*1 *2 *1 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-658 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-722) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-858)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1045)) + (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -1357 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) -(((*1 *1 *1) (-5 *1 (-1058)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1170))) - (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7)) - (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452)) - (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3)) - (-5 *1 (-573 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) - (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4))))) + (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) + (|:| |genIdeal| (-504 *3 *4 *5 *6)))) + (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *1) (-5 *1 (-1058)))) + (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-556))) + (-5 *2 (-858)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-449 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) + (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) + (-2329 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) + (-5 *1 (-636 *5 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1260))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 *4)))) + (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-767)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) + (-4 *3 (-556)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) + (-4 *3 (-1034 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-939 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *1 *1) (-4 *1 (-657)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *1 *1) (-5 *1 (-379))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3))))) +(((*1 *1) (-5 *1 (-468)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) - (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52))))) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-564)))) + (-4 *2 (-172))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1006 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) + ((*1 *1) (-4 *1 (-722))) ((*1 *1) (-5 *1 (-1170))) + ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) + ((*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) + ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215))) + ((*1 *1) (-5 *1 (-1216))) ((*1 *1) (-5 *1 (-1217)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) - (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4))))) + (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564)))) + (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767))))) +(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190))))) +(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) + (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *2) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) + (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) + (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) + (-5 *1 (-1104))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) + (-5 *1 (-305))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-357 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-528 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917))))) (((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) ((*1 *1) (-4 *1 (-545))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) + (-12 (-5 *2 (-767)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094)))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1094)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) ((*1 *1) (-5 *1 (-394))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) ((*1 *1) - (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) + (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) - ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) + ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) ((*1 *1 *2) - (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046)))) - ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) + (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) + ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) ((*1 *1 *1) (-5 *1 (-1170))) ((*1 *1) (-5 *1 (-1170))) ((*1 *1) (-5 *1 (-1189)))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))) (((*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847)) - (-5 *1 (-573 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) -(((*1 *1) (-5 *1 (-578)))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) - (-4 *4 (-847)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) - (-4 *3 (-1094)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) - (-5 *1 (-734 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) - (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) - (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) - (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) - (-5 *2 - (-2 (|:| -2779 (-768)) (|:| |curves| (-768)) - (|:| |polygons| (-768)) (|:| |constructs| (-768))))))) + (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-846)) (-4 *2 (-846)) + (-5 *1 (-609 *2 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) + (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5)))))) (((*1 *1 *2) - (-12 (-5 *2 (-641 (-2 (|:| -2568 *3) (|:| -1389 *4)))) + (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045)) + (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| -3076 *3) (|:| -2511 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(((*1 *2 *2) - (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) + (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) + (-4 *4 (-683 *2 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6)) - (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))) + (-12 (-5 *3 (-1166 (-948 *6))) (-4 *6 (-556)) + (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) + (-4 *5 (-789)) + (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114))) - (-5 *1 (-346 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6)) - (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) - (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))) -(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-753))))) + (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-556))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2513 *5) (|:| -2772 *5)))) - (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5)) - (-4 *6 (-652 (-407 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2513 *4) (|:| -2772 *4)))) - (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4)) - (-4 *6 (-652 (-407 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2513 *5) (|:| -2772 *5)))) - (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5)) - (-4 *3 (-652 (-407 *5))))) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2513 *4) (|:| -2772 *4)))) - (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4)) - (-4 *3 (-652 (-407 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) - (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) - (-4 *1 (-367 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) - (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-641 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545))))) +(((*1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-641 (-1170))))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1235 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))) + (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-641 (-1170))))) + ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-4 *2 (-342 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *2) + (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) + (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) + (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) + (-4 *2 (-670 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1259 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3823 (-564)) + (|:| -2114 (-564)) (|:| |spline| (-564)) (|:| -3491 (-564)) + (|:| |axesColor| (-870)) (|:| -3026 (-564)) + (|:| |unitsColor| (-870)) (|:| |showing| (-564))))) + (-5 *1 (-1260))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214)))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1138)))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-373 *3)) - (-4 *3 (-1209))))) -(((*1 *1) (-5 *1 (-330)))) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-641 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-556)) + (-4 *3 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768)) - (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4))))) + (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-263)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3268 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819))))) + (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-652 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3482 *3) (|:| -1513 (-641 *5)))) + (-5 *1 (-1021 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-112)) + (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-767)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-767)) (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-564))))) + (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) + (-5 *1 (-505 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-790)) - (-4 *5 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *6 (-556)) - (-5 *2 (-2 (|:| -1986 (-949 *6)) (|:| -1351 (-949 *6)))) - (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5))))) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) + (-4 *4 (-1094)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-556))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1264)) + (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -4322 (-641 (-2 (|:| |irr| *10) (|:| -3871 (-564))))))) + (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-846)) (-4 *3 (-307)) + (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) + (-5 *2 + (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) + (|:| |corrfact| (-641 (-1166 *3))))) + (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) - (-5 *1 (-594 *3)) (-4 *3 (-1046))))) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-12 (-5 *3 (-767)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) + (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) + (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) + (-5 *2 (-1166 (-948 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| -2053 *4) (|:| -4145 (-564))))) + (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) + (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-807 *5 *6)))) + (-641 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) + (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-2 (|:| -3331 (-641 (-407 *6))) (|:| -2394 (-685 *5)))) - (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) + (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-807 *5 *6)))) + (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-2 (|:| -3331 (-641 (-407 *6))) (|:| -2394 (-685 *5)))) - (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6)))))) + (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) + (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-5 *2 (-1166 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) + (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) + (-4 *7 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) + (-4 *2 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-815 *2)) (-4 *2 (-846))))) +(((*1 *1) (-5 *1 (-330)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1128 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1264)) + (-5 *1 (-1261))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-948 *6)))) + (-5 *3 (-407 (-948 *6))) + (-4 *6 (-13 (-556) (-1034 (-564)) (-147))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-948 (-564))) (-5 *3 (-1170)) + (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) + (-4 *3 (-1235 *2))))) (((*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) @@ -4067,89 +1694,527 @@ (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) + (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) + (-4 *2 (-131))))) +(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) + ((*1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-842))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *2 (-556)) (-5 *1 (-965 *2 *4)) + (-4 *4 (-1235 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) - (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7)) - (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046)) - (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5))))) + (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) + (-5 *1 (-468))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) + ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *6))))) +(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *2 (-2 (|:| -1600 (-641 *6)) (|:| -4197 (-641 *6))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) + (-4 *2 (-1250 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) + (-4 *5 (-1235 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) + (-4 *2 (-1250 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) + (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) + (-5 *1 (-1146 *4))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-856)) (-5 *2 (-687 (-129))) (-5 *3 (-129))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) + ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *1 *2) + (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) + (-5 *1 (-399 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-2 (|:| -3330 (-1150 *4)) (|:| -3344 (-1150 *4)))) - (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032)) - (-5 *1 (-743))))) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) + (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-418 *4)) (-4 *4 (-556))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) + (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1846 (-641 *9)))) + (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1846 (-641 *8)))) + (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) + (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) + (-4 *3 (-342 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) + (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) (((*1 *1 *1) - (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) - (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) + (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209))))) (((*1 *2 *1) - (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5)) - (-4 *3 (-1094)) (-4 *5 (-662 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4)) - (-14 *3 (-918))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) - (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564))))) - ((*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) + (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) + (-5 *5 (-1150 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) + (-5 *2 (-2 (|:| -3934 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) + (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) + (-4 *2 (-683 *3 *5 *6))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564))))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) + (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) + (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) + (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) + (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) + (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-767))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1045)) (-5 *2 (-685 *4)) + (-5 *1 (-1025 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-27) (-430 *4))) + (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) + (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) + (-4 *2 (-342 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-434)) + (-5 *2 + (-641 + (-3 (|:| -2420 (-1170)) + (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) + (-5 *1 (-1174))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094))))) (((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5)) + (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) + (-4 *6 (-452)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5)) + (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) + (-4 *6 (-452))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3392 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) + (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-922))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *4))))))) + (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) + (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) + (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) + (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-923)) (-5 *1 (-921 *3)) + (-4 *3 (-612 (-536))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) +(((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) (((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-294 (-829 *3))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-829 *3)) (-5 *1 (-634 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) + (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-635 *5)) + (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-635 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-641 *5)) (-4 *5 (-846)) (-5 *1 (-1180 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) +(((*1 *2 *3) + (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-641 *6))) + (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) + (-4 *3 (-1034 (-1170))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-948 *3)))) + (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) + (-2329 (-4 *3 (-1034 (-1170)))) (-4 *3 (-882 *5)) + (-4 *4 (-612 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) + (-2329 (-4 *3 (-1034 (-1170)))) (-2329 (-4 *3 (-1045))) + (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) + (-4 *3 (-1235 *2))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) + (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 (*2 $)) - (-15 -3595 (*2 $))))))) + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 (*2 $)) + (-15 -3948 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 (*2 $)) - (-15 -3595 (*2 $))))))) + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 (*2 $)) + (-15 -3948 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-192))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) + (-4 *2 (-13 (-1094) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1235 *4)) + (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379))) + ((*1 *1) (-5 *1 (-379)))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) + (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) + (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-789)) (-4 *2 (-266 *4))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) + (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) + (-4 *4 (-452)) (-4 *6 (-846))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) + (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) + (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) + (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) + (-5 *1 (-263))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-192))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) + (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-909 *3 *2)) + (-4 *2 (-1235 (-407 *3)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1235 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *5 (-556)) + (-5 *2 + (-2 (|:| |minor| (-641 (-917))) (|:| -3482 *3) + (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) + (-4 *3 (-1235 *2)))) + ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4)) + (-4 *4 (-1094)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094))))) (((*1 *2 *3) (-12 (-5 *3 @@ -4160,997 +2225,500 @@ (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205))))) +(((*1 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) + (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) + (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) + (|:| |vals| (-641 *3)))) + (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) + (-4 *3 (-373 *4)) (-4 *5 (-373 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) + (-5 *2 (-1031)) (-5 *1 (-742))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556))))) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-407 (-564))) + (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) + (-4 *5 (-13 (-846) (-556) (-1034 (-564)))) + (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) + (-5 *2 (-767)) (-5 *1 (-455 *5 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| -1600 *1) (|:| -4197 (-641 *7))))) + (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) + (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170))) - (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379)))) + (-12 (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-641 (-1170))) + (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) ((*1 *2 *3) - (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) - (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) + (-12 (-5 *3 (-641 (-948 *4))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-564)) + (-5 *6 + (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379)))) + (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-784)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-564)) + (-5 *6 + (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1435 (-379)))) + (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-784))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) + (-5 *2 (-1264)) (-5 *1 (-468)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) + (-5 *2 (-1264)) (-5 *1 (-468))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) + (-5 *2 (-641 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) + (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844)))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) + (-5 *1 (-754))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) + (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 (-437))))) + (-5 *1 (-1174))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-867 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-564)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4)) - (-4 *4 (-866 *3)))) + (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) + (-4 *4 (-865 *3)))) ((*1 *1 *1) - (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2)))) + (-12 (-14 *2 (-564)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) + (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5))))) -(((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *1 *1) (-5 *1 (-1058)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)) - (-5 *1 (-990 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) + (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1250 *2))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) - (-5 *1 (-626 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) - (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) - (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) - (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) - (-5 *1 (-924))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) - (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) - (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) - (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-685 *2)) (-5 *4 (-768)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291))))) -(((*1 *2) - (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) - (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918)))) - ((*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) -(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) - (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1035 (-48))) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) - (-4 *3 (-1235 *5))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-961))) (-5 *1 (-291))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) - (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)) (-4 *2 (-307)))) - ((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) - (-4 *2 (-683 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556))))) -(((*1 *2 *3) - (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) - (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) + (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *6)) (-15 -4189 (*6 $)) + (-15 -4201 (*6 $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) - (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5))))) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) + (-5 *2 (-1170)) (-5 *1 (-1039 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-752))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4407)) (-4 *4 (-363)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) - (-4 *3 (-683 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4407)) (-4 *4 (-556)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7)) - (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) - (-4 *10 (-683 *7 *8 *9)))) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 (-641 (-641 (-564)))) + (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) + (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2) + (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) + (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) + (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1170)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) + (-12 (-4 *2 (-1094)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) + (-14 *4 + (-1 (-112) (-2 (|:| -1998 *3) (|:| -3866 *2)) + (-2 (|:| -1998 *3) (|:| -3866 *2))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) - (-4 *3 (-683 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) - (-5 *2 (-641 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-685 *4)) (-4 *5 (-652 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859)))) - ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959))))) -(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) - (-4 *4 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847)))) - ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) - (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) - (-4 *4 (-1235 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) - (-4 *3 (-1235 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2)) - (-5 *3 (-1170)))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-1259 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) - (-4 *4 (-1094)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3)))) -(((*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) - (-14 *4 *2) (-4 *5 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918)))) - ((*1 *2) - (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) - (-5 *2 (-918)))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) - (-5 *2 (-768)) (-5 *1 (-663 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-768)) - (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-1259 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) - (-4 *3 (-683 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) - (-5 *2 (-768))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5)) - (-4 *3 (-1094)) (-4 *5 (-662 *4))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) - (-5 *1 (-751))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923))) - (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) - (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) - (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) - (-5 *2 (-1204 (-923))) (-5 *1 (-318))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) - (-5 *3 (-407 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) - (-4 *6 (-13 (-27) (-430 *5))) - (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) - (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) - (-4 *3 (-342 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) + (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5))))) (((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-846))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1045)) (-5 *2 (-1259 *4)) + (-5 *1 (-1171 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) + (-4 *3 (-1045))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) - (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) - (|:| |args| (-641 (-859))))) - (-5 *1 (-1170)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) - (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5)) - (-5 *3 (-407 *5))))) -(((*1 *1) (-5 *1 (-1076)))) -(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-1046))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) - (-4 *4 (-13 (-430 *7) (-27) (-1194))) - (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-2 + (|:| -3076 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2511 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4195 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-559)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) - (-14 *3 (-641 (-1170)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) + (-2 + (|:| -3076 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -2511 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))))) + (-5 *1 (-799)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349)))) + ((*1 *1) (-4 *1 (-368))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3655 *3) (|:| -1558 (-768)))) (-5 *1 (-586 *3)) - (-4 *3 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1) (-5 *1 (-506)))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183))))) -(((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307)) - (-4 *9 (-946 *8 *6 *7)) - (-5 *2 (-2 (|:| -3194 (-1166 *9)) (|:| |polval| (-1166 *8)))) - (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) - (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5))))) + (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349)))) + ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545))) + ((*1 *1 *1) (-5 *1 (-564))) ((*1 *1 *1) (-5 *1 (-767))) + ((*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) + (-4 *4 (-1094)))) + ((*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-556))))) (((*1 *2 *3) - (-12 (-4 *4 (-847)) - (-5 *2 - (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) - (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) - (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) - (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046)))) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) + (-4 *3 (-945 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) - (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032))))) + (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 (-685 (-407 (-948 *4)))) + (-5 *1 (-920 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 (-641 (-407 (-948 *4)))) + (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261))))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) - (-4 *3 (-13 (-1094) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))) -(((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) - (-14 *3 (-641 (-1170)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) - (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751))))) -(((*1 *1) (-5 *1 (-1264)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3521 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-641 - (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) - (|:| |logand| (-1166 *3))))) - (-5 *1 (-585 *3)) (-4 *3 (-363))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 *4)))) - (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) - (-4 *2 (-172))))) -(((*1 *2) - (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) - (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) - (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) - (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) -(((*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1259 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2779 (-564)) - (|:| -4114 (-564)) (|:| |spline| (-564)) (|:| -2431 (-564)) - (|:| |axesColor| (-871)) (|:| -2521 (-564)) - (|:| |unitsColor| (-871)) (|:| |showing| (-564))))) - (-5 *1 (-1260))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379))))) -(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822))))) -(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-771)) (-5 *1 (-114)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-803 *5 *6 *7 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))) -(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302)))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) -(((*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))) -(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) - (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) - (-15 -3693 ((-1119 *3 (-610 $)) $)) - (-15 -1831 ($ (-1119 *3 (-610 $)))))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) - (-5 *1 (-711 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) - (-4 *3 (-1209))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))) -(((*1 *2 *1) - (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) - (-4 *5 (-238 (-2828 *3) (-768))) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *5)) - (-2 (|:| -1468 *2) (|:| -1558 *5)))) - (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-946 *4 *5 (-861 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257))))) -(((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-5 *2 (-1152))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) - (-5 *1 (-1150 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170)) - (-5 *2 - (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) - (|:| |singularities| (-1150 (-225))))) - (-5 *1 (-105))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-4 *3 (-1094)) (-5 *2 (-767)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) + (-4 *4 (-1209)) (-5 *2 (-767))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) - (-5 *5 (-1 (-418 *7) *7)) - (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) - (-5 *5 (-1 (-418 *7) *7)) - (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) - (-4 *6 (-1235 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) + (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-844))))) ((*1 *2 *3) - (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) - (-4 *6 (-1235 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) - (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) - (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5))))))) -(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305))))) -(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-747))))) -(((*1 *2 *1) - (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) - (-4 *2 (-847))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) - (-5 *1 (-745))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) - (-4 *5 (-373 *4)) (-4 *3 (-373 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) - (-4 *4 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) - (-4 *4 (-1235 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) - (-4 *3 (-1235 *2)))) - ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) - (-4 *4 (-1094)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046)) - (-5 *1 (-1026 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) + (-4 *3 (-1094)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *7)))) + (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) + (-5 *2 (-564)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4)) - (-4 *4 (-1094))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) - (-247 *4 (-407 (-564))))) - (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) + (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-846)) + (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) + (-5 *2 (-641 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6)) - (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) - (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) - (-5 *1 (-865 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) - (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) - (-5 *1 (-865 *5 *6 *7))))) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) + (-5 *1 (-305))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677))))) (((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1032)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746))))) -(((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) - (-4 *3 (-683 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) - (-5 *2 (-768))))) -(((*1 *2 *3) - (-12 (-4 *1 (-836)) - (-5 *3 - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) - (-5 *2 (-1032)))) - ((*1 *2 *3) - (-12 (-4 *1 (-836)) - (-5 *3 - (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) - (-5 *2 (-1032))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) - (-5 *1 (-902 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1426 *1))) - (-4 *1 (-849 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) - (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) - (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-767)))) ((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3)) - (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) - (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) - (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) - (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2777 ($ $ $))))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) + (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846)))) ((*1 *2 *3) - (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-14 *5 (-641 (-1170))) - (-5 *2 - (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6))))) - (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859))))) + (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263))))) +(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-839 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) - (-14 *3 (-641 (-1170))))) - ((*1 *1 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) - ((*1 *1 *1) - (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) - (-4 *5 (-238 (-2828 *2) (-768))) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *4) (|:| -1558 *5)) - (-2 (|:| -1468 *4) (|:| -1558 *5)))) - (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847)) - (-4 *7 (-946 *3 *5 (-861 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) - ((*1 *1 *1) - (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) - ((*1 *1 *1) - (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046)) - (-4 *3 (-723)))) - ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-4 *1 (-493))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) @@ -5158,45 +2726,57 @@ ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3)) - (-4 *3 (-1235 *2))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *2 *3) - (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-847))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847)) - (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5))))) -(((*1 *1) (-5 *1 (-291)))) + (|partial| -12 (-4 *4 (-13 (-556) (-147))) + (-5 *2 (-2 (|:| -4237 *3) (|:| -4250 *3))) (-5 *1 (-1229 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) + (-5 *2 + (-641 + (-2 (|:| -3342 (-685 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-685 *6))))) + (-5 *1 (-498 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3342 (-685 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-685 *6)))) + (-4 *7 (-1235 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) - (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) - (-5 *2 (-685 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3)) - (-4 *3 (-1235 *4))))) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))) (((*1 *2 *3) - (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) + ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-4 *1 (-493))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) @@ -5204,68 +2784,104 @@ ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-4 *6 (-1059 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -1421 *1) (|:| |upper| *1))) + (-4 *1 (-972 *4 *5 *3 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) + (-14 *3 (-641 (-1170))) (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) + (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) + (-4 *5 (-238 (-2059 *3) (-767))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) + (-14 *3 (-641 (-1170))) (-4 *4 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-316 (-564)))) + (-5 *1 (-1027))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-846)) + (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1067)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-966)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1032)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1060)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175))))) (((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-946 *3 *4 *5))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1370 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-307)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1426 *1))) - (-4 *1 (-307))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) - (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564))))))) - (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 (-169 (-564))))) - (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564)))))) - (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-845)))))) -(((*1 *1) - (-12 (-4 *1 (-404)) (-4338 (|has| *1 (-6 -4397))) - (-4338 (|has| *1 (-6 -4389))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) - ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847))) - ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) - (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) - (-4 *3 (-849 *5))))) + (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) + (-2 (|:| -1370 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) ((*1 *1 *1) (-4 *1 (-493))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) @@ -5273,90 +2889,57 @@ ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) - ((*1 *2 *1) - (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) - ((*1 *2 *1) - (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2828 *3) (-768))) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *4) (|:| -1558 *5)) - (-2 (|:| -1468 *4) (|:| -1558 *5)))) - (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847)) - (-4 *7 (-946 *2 *5 (-861 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) - (-4 *3 (-723)))) - ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) - ((*1 *2 *1) - (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847)) - (-4 *2 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) - (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2)) - (-4 *2 (-1235 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3139 *3) (|:| |gap| (-767)) (|:| -2666 (-778 *3)) + (|:| -2598 (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-5 *2 + (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2666 *1) + (|:| -2598 *1))) + (-4 *1 (-1059 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 + (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2666 *1) + (|:| -2598 *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-767)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) - (-4 *3 (-13 (-404) (-1194))))) - ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -3194 *3)))) - (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) - (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) - (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) - (-4 *3 (-1094)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) - (-5 *2 (-564)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) - (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564))))) -(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) - (-5 *1 (-176 *3))))) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) + (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *6 (-896 *5)) (-5 *2 (-685 *6)) + (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) +(((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-2 (|:| -2375 (-1166 *6)) (|:| -3866 (-564))))) + (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) @@ -5367,145 +2950,68 @@ ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) - ((*1 *2 *1) - (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) - (-4 *6 (-238 (-2828 *3) (-768))) - (-14 *7 - (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *6)) - (-2 (|:| -1468 *5) (|:| -1558 *6)))) - (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2)) - (-4 *3 (-1046)))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-767)) (-4 *5 (-172)))) ((*1 *1 *1) - (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) - (-4 *4 (-847))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) - (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-641 (-2 (|:| -3070 (-1166 *9)) (|:| -1558 (-564))))))) - (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6))))) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) + (-4 *4 (-373 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) (((*1 *2) - (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3331 (-641 *1)))) - (-4 *1 (-367 *3)))) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) + (-4 *3 (-342 *4 *5 *6)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-453 *3 *4 *5 *6)) - (|:| -3331 (-641 (-453 *3 *4 *5 *6))))) - (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) - ((*1 *1 *1) (-4 *1 (-302))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147))) - (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2)) - (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790))))) -(((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564))) - (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-134))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) - (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) - (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) - (-4 *6 (-980 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-284))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *1) (-5 *1 (-379))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-1106)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-536)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *4 (-1094)) - (-5 *1 (-678 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) - (-5 *1 (-686 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)) - (-4 *4 (-644 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1046)) - (-5 *1 (-711 *4 *5)) (-4 *5 (-644 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-768)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-833 *3)) (-4 *3 (-1046)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-833 *4)) (-4 *4 (-1046)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-407 (-564))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-918)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-939 *4)))) + (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) + (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 *4))))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) + (-5 *1 (-686 *4))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847))) - (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) - (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) - (-4 *3 (-1094))))) -(((*1 *1 *1) (-5 *1 (-1058)))) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) (-5 *1 (-1057)))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379))))) + (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) @@ -5516,609 +3022,651 @@ ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) - (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) - (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) - (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) - (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) - (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768)))) - ((*1 *1 *1) (-4 *1 (-402)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) - (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) - (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) - (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845)))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) - (-4 *2 (-1094))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) -(((*1 *2 *1) - (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) - (-4 *3 (-1094))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 (-939 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1045)) + (-5 *2 (-767))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *2 *3) + (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-967)) + (-5 *3 (-641 (-564)))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545))) + ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) - (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) - (-4 *1 (-329 *4)))) - ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) - ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) - (-4 *1 (-409 *3 *4)))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) - (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) - (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) + (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) - (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-4 *6 (-409 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) + (-5 *1 (-989 *3 *4))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) - (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) - (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-917)) (-5 *1 (-466))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) - (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) -(((*1 *2 *1) - (-12 (-5 *2 (-687 (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-1094))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))) + (-12 + (-5 *3 + (-641 + (-2 (|:| -3105 (-767)) + (|:| |eqns| + (-641 + (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (|:| |fgb| (-641 *7))))) + (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767)) + (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-846)) + (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-685 (-564))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *1 *1) (-4 *1 (-243))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-4078 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) - ((*1 *1 *1) (-4 *1 (-473))) - ((*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) - (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) - (-4 *4 (-1235 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) - (-5 *2 (-316 *5)) (-5 *1 (-588 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *3) - (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) - (-5 *3 (-641 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5)) - (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-687 (-870 (-963 *3) (-963 *3)))) (-5 *1 (-963 *3)) - (-4 *3 (-1094))))) -(((*1 *2 *1) - (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *2 *1) - (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847)) + (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-687 (-533))) + (-5 *1 (-533)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-950)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) + (-4 *1 (-763 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) + (-4 *3 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) - ((*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4407)) (-4 *1 (-647 *2)) + (-4 *2 (-1209)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4407)) (-4 *1 (-1006 *2)) + (-4 *2 (-1209)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) + (-4 *2 (-1209)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) + (-4 *3 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) + (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -2860 (-641 *1)) (|:| -1426 *1))) - (-5 *3 (-641 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) -(((*1 *1) (-4 *1 (-349)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847)) - (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-734))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) + (-5 *1 (-626 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) (((*1 *2 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) - ((*1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))) + (-12 (-4 *3 (-1045)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1235 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-685 (-407 (-948 (-564))))) + (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)) + (-5 *3 (-316 (-564)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) + (-5 *1 (-1001))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-363) (-147))) - (-5 *2 (-641 (-2 (|:| -1558 (-768)) (|:| -2513 *4) (|:| |num| *4)))) - (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-963 *3)) (-4 *3 (-1094))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-610 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) - (-4 *2 (-13 (-430 *5) (-27) (-1194))) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1194) (-430 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-564))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) - (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) - (-4 *8 (-13 (-27) (-1194) (-430 *7))) - (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) - (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) - (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3)) - (-4 *3 (-1219 *4))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-784)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-784))))) +(((*1 *1) (-5 *1 (-1264)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) + (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) + (-5 *1 (-397)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) + (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) + (-5 *1 (-397)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) + (-5 *2 (-1098)) (-5 *1 (-397))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1 *1) (-5 *1 (-379))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) + (-5 *1 (-1013 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1043))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) - (-5 *1 (-915 *4))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) - (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768))) - (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847)) - (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790)) - (-5 *1 (-704 *9 *10 *8 *11))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) - (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) - (-4 *5 (-13 (-363) (-845)))))) + (-12 (-4 *4 (-789)) + (-4 *3 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *5 (-556)) + (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *6)) + (-4 *6 + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) + (-4 *2 (-945 (-948 *4) *5 *6))))) (((*1 *2 *3) - (-12 + (-12 (-4 *1 (-796)) (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-300))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847)) - (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046)) - (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) - (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4)) - (-5 *3 (-1166 *4))))) + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-1031))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1194) (-430 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-1259 (-685 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) + (-5 *2 (-1259 (-685 (-407 (-948 *5))))) (-5 *1 (-1080 *5)) + (-5 *4 (-685 (-407 (-948 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564)) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) - (-4 *7 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) - (-4 *3 (-13 (-27) (-1194) (-430 *7))) - (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3)) - (-4 *3 (-1250 *4)))) + (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) + (-5 *2 (-1259 (-685 (-948 *5)))) (-5 *1 (-1080 *5)) + (-5 *4 (-685 (-948 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) + (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) + (-12 (-4 *3 (-1094)) + (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) + (-5 *1 (-1070 *3 *4 *2)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) + (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) + (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-1180 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *1 *1 *1) (-5 *1 (-379))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) - (-5 *1 (-179 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1086 (-839 *3))) (-4 *3 (-13 (-1194) (-955) (-29 *5))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 *8)) - (-5 *4 - (-641 - (-2 (|:| -3331 (-685 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-685 *7))))) - (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) + (-12 (-5 *4 (-1086 (-839 *3))) (-5 *5 (-1152)) + (-4 *3 (-13 (-1194) (-955) (-29 *6))) + (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 - (-2 (|:| -3331 (-685 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-685 *7)))) - (-5 *1 (-498 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) - (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *1)))) - (-4 *1 (-1066 *4 *5 *6 *3))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) - (-4 *3 (-946 *7 *5 *6)) + (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1086 (-839 (-316 *5)))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 - (-2 (|:| -1558 (-768)) (|:| -2860 *3) (|:| |radicand| (-641 *3)))) - (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768)) - (-4 *8 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *3)) (-15 -3678 (*3 $)) (-15 -3693 (*3 $)))))))) -(((*1 *1 *1) (-5 *1 (-1058)))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) - (-5 *2 (-768)))) - ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) - ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) - ((*1 *2) - (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4)) - (-4 *3 (-425 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768)) - (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) - (-4 *3 (-1235 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1194) (-430 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1086 (-839 (-316 *6)))) + (-5 *5 (-1152)) + (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + (-12 (-5 *4 (-1086 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1086 (-839 (-407 (-948 *6))))) (-5 *5 (-1152)) + (-5 *3 (-407 (-948 *6))) + (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1194) (-955) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) + (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-768)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) + (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) + (-5 *2 (-1031)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) + (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768))) - (-4 *7 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768))) - (-4 *3 (-13 (-27) (-1194) (-430 *7))) - (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379)))) + (-5 *5 (-1152)) (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379)))) + (-5 *5 (-1170)) (-5 *2 (-1031)) (-5 *1 (-565)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) + (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) + (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) - (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))) -(((*1 *2) - (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) + (-4 *3 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-564)))) + (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-4 *2 (-846)) + (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) + (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-2789 + (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045)) + (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) + (-4 *3 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045)) + (-12 (|has| *3 (-15 -2534 ((-641 *2) *3))) + (|has| *3 (-15 -3719 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2) + (-2789 + (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045)) + (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) + (-4 *3 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045)) + (-12 (|has| *3 (-15 -2534 ((-641 *2) *3))) + (|has| *3 (-15 -3719 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2789 + (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045)) + (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) + (-4 *3 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045)) + (-12 (|has| *3 (-15 -2534 ((-641 *2) *3))) + (|has| *3 (-15 -3719 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) + (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) + (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) + (-4 *3 (-846)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) + (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-767)) + (-5 *1 (-907 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) + (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) + (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-767)) + (-5 *1 (-908 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) + (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) + (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) + (-5 *1 (-1014 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)) + (-5 *2 (-767)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1094)) + (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) + (-5 *1 (-1070 *3 *4 *2)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094))))) (((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) - (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1166 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2)) + (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) + (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) + (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-846)) (-4 *5 (-612 *2)) (-5 *2 (-379)) + (-5 *1 (-781 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) @@ -6128,53 +3676,47 @@ ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) + (-5 *1 (-886 *4 *5)) (-4 *5 (-1209))))) (((*1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) - (-4 *3 (-373 *4)) (-4 *5 (-373 *4))))) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1) (|partial| -4 *1 (-718)))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) + (-5 *1 (-1281 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) + (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-846))) + (-5 *1 (-1124 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-899 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) - (-5 *2 (-641 (-2 (|:| -3689 *1) (|:| -1669 (-641 *7))))) - (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-753))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046)) - (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2))))) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) + (-4 *2 (-1235 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) @@ -6182,54 +3724,68 @@ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) ((*1 *1 *1) (-4 *1 (-1197)))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) + (-4 *3 (-363))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) + (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846))))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) + (-12 (-5 *3 (-1259 (-316 (-225)))) + (-5 *2 + (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) + (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4)) - (-4 *4 (-1235 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) - (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) - (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046)) - (-4 *5 (-238 (-2828 *3) (-768))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) - (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) -(((*1 *2) - (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) - (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) - (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046)) - (-5 *2 (-768))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-685 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) + (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1094))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-834)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) @@ -6237,74 +3793,50 @@ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) ((*1 *1 *1) (-4 *1 (-1197)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) - (-5 *1 (-1002))))) -(((*1 *2 *3) - (-12 (-4 *1 (-797)) - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1032))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) - (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) - (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))))) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-723)))) - ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4)) - (-4 *4 (-644 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5)) - (-4 *3 (-1094)) (-4 *5 (-662 *4)))) + (-12 (-5 *2 (-641 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) - (-5 *2 (-1261)) (-5 *1 (-257))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) + (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-5 *2 (-1150 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) + (-4 *3 (-1094))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) @@ -6312,60 +3844,40 @@ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) ((*1 *1 *1) (-4 *1 (-1197)))) -(((*1 *1 *1) (-4 *1 (-1055))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) + (-4 *4 (-644 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) - (-4 *2 (-1250 *3))))) + (-12 (-4 *2 (-1209)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))) (((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) - (-5 *1 (-753))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046)) - (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046))) - (-5 *2 (-1152)) (-5 *1 (-823 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) - (-5 *1 (-823 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-819)) (-5 *4 (-316 *5)) - (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) - (-5 *1 (-823 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) - (-5 *1 (-823 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264))))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1094)) (-5 *2 (-55))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) + (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)) (-5 *3 (-1152))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) @@ -6376,77 +3888,50 @@ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) ((*1 *1 *1) (-4 *1 (-1197)))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-2 (|:| -3076 *3) (|:| -2511 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) - (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-641 *5)) - (-5 *1 (-321 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-387)))) - ((*1 *2 *1) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-641 (-1170))))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-641 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) - (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *5)) - (-5 *1 (-947 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-4 *5 (-847)) (-5 *2 (-641 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) - (-5 *1 (-1040 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452))))) + (-12 (-4 *4 (-13 (-556) (-846))) + (-4 *2 (-13 (-430 *4) (-998) (-1194))) (-5 *1 (-598 *4 *2 *3)) + (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194)))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) + (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) -(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) + (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) + (-4 *3 (-1094)) (-4 *5 (-662 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) - (-14 *4 (-564))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) + (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| -3070 *4) (|:| -1619 (-564))))) - (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4)))) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) + (-5 *2 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) + (-5 *1 (-346 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) ((*1 *2 *3) - (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046)) - (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) - (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) @@ -6457,99 +3942,77 @@ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) ((*1 *1 *1) (-4 *1 (-1197)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) - (-4 *2 (-13 (-430 *5) (-27) (-1194))) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *3 (-847)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1046)) (-4 *1 (-946 *4 *5 *3)) - (-4 *5 (-790)) (-4 *3 (-847)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-790)) (-4 *4 (-847)) - (-4 *6 (-1046)) - (-4 *2 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))) - (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170)) - (-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556))))) -(((*1 *2 *3) - (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) - (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) - (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) - (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-696 *3)) - (-4 *3 (-307))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) - (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) - (-5 *1 (-528 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2)) - (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) - ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090)))) ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) - (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) - (-4 *3 (-409 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4)) - (-4 *4 (-409 *2 *3)))) + (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *3 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172))))) + (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) + (-5 *1 (-693))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) - (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))))) + (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) + (-5 *2 (-1261)) (-5 *1 (-257))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) + (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) + (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923))))) +(((*1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6)))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1043))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) @@ -6560,3577 +4023,2208 @@ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) ((*1 *1 *1) (-4 *1 (-1197)))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-641 (-918))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) - (-4 *2 (-363)) (-14 *5 (-990 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847)) - (-4 *6 (-238 (-2828 *4) (-768))) - (-14 *7 - (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *6)) - (-2 (|:| -1468 *5) (|:| -1558 *6)))) - (-14 *4 (-641 (-1170))) (-4 *2 (-172)) - (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) - (-4 *4 (-1235 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-732 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-723)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) - (-4 *4 (-1046)) (-4 *5 (-847)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) - (-4 *2 (-847)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) - (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *2 (-847)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-970 *4 *5 *6)) - (-4 *4 (-1046)) (-4 *5 (-789)) (-4 *6 (-847)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789)) - (-4 *2 (-847))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) - (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-641 (-1170))) - (-5 *2 - (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) - (-5 *1 (-626 *5 *6))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2)) - (-4 *2 (-1235 (-564))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2)) - (-4 *2 (-1235 (-564))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2)) - (-4 *2 (-1235 (-564))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) - (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) - (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) - (-5 *1 (-444 *5 *2)) (-4 *5 (-1046))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) + (-14 *4 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) - (-4 *7 (-946 *6 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) - (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752))))) -(((*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-744))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3)) - (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) (((*1 *1 *1) (-4 *1 (-627))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-564)) (-14 *4 (-768))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1194)))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) + (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) + (-5 *1 (-733 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -3581 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1235 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046)) - (-5 *2 (-685 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) - ((*1 *1 *1) (-5 *1 (-1261)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3)) - (-4 *2 (-363)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)) - (-4 *2 (-13 (-430 *4) (-999) (-1194))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))) - (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) - (-5 *1 (-745))))) + (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-981 *4 *2 *3 *5)) + (-4 *4 (-349)) (-4 *5 (-720 *2 *3))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))) (((*1 *2 *3) - (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4)))) - (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) - (-5 *2 (-407 (-949 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) - (-5 *2 (-407 (-949 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1094)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) - (-5 *1 (-711 *3 *4)))) + (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) + (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-1054))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847)) - (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918)))) - ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-789)) (-4 *3 (-172))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-585 *3)) (-4 *3 (-363))))) +(((*1 *1 *1) (-4 *1 (-556)))) +(((*1 *2 *2 *2) (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) - (|:| |cols| (-641 (-564))))) - (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9)))) - (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564)) - (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) - (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790)) (-5 *2 - (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) - (|:| |wcond| (-641 (-949 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *9)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *9))))))))) - (-5 *1 (-921 *9 *10 *11 *12))))) -(((*1 *1) (-5 *1 (-820)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046)) - (-5 *2 (-1259 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) - (-4 *4 (-1046))))) -(((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3521 (-407 *6)) (|:| |coeff| (-407 *6)))) - (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) - (-5 *1 (-437))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 *4)))) - (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) - (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750))))) + (-641 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) + (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8))))) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4)))) + (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *1) - (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209)))) - ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) + (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1250 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) - (-5 *1 (-1104))))) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1045)) + (-5 *2 (-685 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) - ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) + (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) + (-5 *1 (-190))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) + (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) + (-4 *2 (-683 *3 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) + (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) + (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-784))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-784))))) +(((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) (((*1 *2) - (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) - (-4 *4 (-1235 *3))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1138)))) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3235 (-778 *3)) (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3235 *1) (|:| |coef2| *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) + ((*1 *1 *1) (-4 *1 (-844))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) + ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1) (-4 *1 (-1133)))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1194)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264)) - (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-827))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6)))) - (-5 *3 (-407 (-949 *6))) - (-4 *6 (-13 (-556) (-1035 (-564)) (-147))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-843))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) - (-5 *1 (-176 *3))))) + (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-564))) + (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) + (-15 -4201 ((-1119 *3 (-610 $)) $)) + (-15 -2322 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *2 (-641 (-225))) (-5 *1 (-305))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) - (-5 *2 (-2 (|:| -2792 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-27) (-430 *4))) - (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) - (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) - (-4 *2 (-342 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) - (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52))))) + (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) - (-4 *3 (-13 (-1094) (-34)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) - (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) - (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) - (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) - (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561))))) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5)) - (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) - (-4 *2 (-847))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) - (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5))) - (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) - (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) - (-5 *2 (-641 (-949 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) - (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) - (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) + (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-846) (-556)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-641 (-1170))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-685 (-407 (-949 (-564))))) - (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) - (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *1 *1) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-284))) + ((*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) - ((*1 *1 *1) (-4 *1 (-999))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1009)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918)))) - ((*1 *1 *1) (-4 *1 (-1009)))) -(((*1 *2 *3) - (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) - (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-847) (-556)))))) -(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) -(((*1 *1 *1) (-5 *1 (-536)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) - (-4 *2 (-683 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) + (-14 *5 (-917)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) + (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) + (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *1 *1) (-4 *1 (-173))) + ((*1 *1 *1) + (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-564)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-867 *4)) (-14 *4 *3) + (-5 *3 (-564)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-868 *4 *5)) + (-5 *3 (-564)) (-4 *5 (-865 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-564))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) + (-4 *3 (-1235 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2322 (*2 (-1170)))) + (-4 *2 (-1045))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-860 *4)) + (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) + (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) - (-4 *4 (-349))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1235 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) - (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) - (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1235 (-169 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1235 *4)))) + (-12 (-4 *3 (-1235 (-407 (-564)))) + (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) + (-5 *1 (-909 *3 *4)) (-4 *4 (-1235 (-407 *3))))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1235 (-407 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) + (-5 *2 (-1152)) (-5 *1 (-822 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1235 (-564))))) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1152)) + (-5 *1 (-822 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1235 (-564))))) + (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) + (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1264)) + (-5 *1 (-822 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) - (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1235 (-564))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) - (-5 *3 (-169 (-564))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3)) - (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) - (-4 *3 (-946 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) - (-5 *3 (-1166 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) - (-4 *7 (-13 (-363) (-147) (-721 *5 *6))) (-5 *2 (-418 *3)) - (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) - (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) - (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) - (-4 *3 (-946 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) - (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) - (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) - (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-641 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) - (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) - (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-668 *4))) - (-5 *1 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) - (-4 *3 (-1235 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-5 *2 (-418 *3)) - (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) - (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) - (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) - (-4 *5 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3)) - (-4 *3 (-946 (-949 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) - (-4 *5 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *6 (-556)) - (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) - (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-13 (-307) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) - (-4 *3 (-946 (-407 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) - (-4 *3 (-946 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) - (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) - (-4 *3 (-1235 (-407 (-564)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1038 *3)) - (-4 *3 (-1235 (-407 (-949 (-564))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1235 (-407 (-564)))) - (-4 *5 (-13 (-363) (-147) (-721 (-407 (-564)) *4))) - (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1235 (-407 (-949 (-564))))) - (-4 *5 (-13 (-363) (-147) (-721 (-407 (-949 (-564))) *4))) - (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) - (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) - (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264)))) - ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) - ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132))))) -(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -3194 *4))) (-5 *5 (-768)) - (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-449 *6 *7 *8 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) - (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) - (-5 *1 (-886 *4 *5)) (-4 *5 (-1094)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) - (-5 *1 (-887 *5 *3)) (-4 *3 (-1209)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) - (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) - (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) - (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) - (-14 *6 *4)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) - (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-610 *3)) - (-4 *3 (-13 (-430 *5) (-27) (-1194))) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) - (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391))))) + (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1264)) + (-5 *1 (-822 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1152)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1152)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1264)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1264))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) - (-5 *1 (-332))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) + (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) + (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) + (-5 *1 (-1252 *5 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-1045)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1235 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1194) (-955)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046)) - (-5 *1 (-1154 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-473))) - ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880)))) - ((*1 *1 *1) (-5 *1 (-968))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) + (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-1230 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) + (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) + (-5 *1 (-974 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *1 *1) (-5 *1 (-1058)))) + (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) + (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) + (-4 *4 (-683 *2 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *3 (-1235 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-652 *3)) + (-4 *5 (-652 (-407 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-407 *5)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) + (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) - (-5 *1 (-1272 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) - (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) - (-5 *1 (-1272 *6 *7 *8 *9))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) + (-12 (-5 *3 (-641 (-2 (|:| |deg| (-767)) (|:| -2747 *5)))) + (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) + (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-2 (|:| -2375 *5) (|:| -2073 (-564))))) + (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) + (-5 *1 (-692 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-5 *2 (-641 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305)))) + (-12 (-5 *3 (-641 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) ((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *1) (-5 *1 (-1058))) + ((*1 *1 *1 *1) (-5 *1 (-1057))) ((*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) - (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) - (-5 *1 (-190))))) + (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) + (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) + (-4 *3 (-13 (-430 *4) (-998)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-564))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)) - (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) - (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1046)) - (-5 *2 (-1232 *5 (-949 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-949 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-1166 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-1166 *1)) - (-4 *1 (-946 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) - (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) - (-5 *1 (-947 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1166 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $))))) - (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847)) - (-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-4 *5 (-556)) - (-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5)) - (-5 *3 (-407 (-949 *5)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-754))))) + (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1057)) (-5 *3 (-1152))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-55)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *4)) + (-4 *4 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) + ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *4)) + (-4 *4 (-13 (-430 *3) (-998) (-1194))))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) + (-5 *1 (-332)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-948 (-564)))) (-5 *2 (-330)) + (-5 *1 (-332)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045)) + (-4 *3 (-1094))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) + (-4 *3 (-788))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) - (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) - (-4 *3 (-1094)))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) - (-4 *3 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *3) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) - (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) - (-4 *6 (-1235 *2)))) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) - (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) - (-4 *6 (-1235 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3777 *6) (|:| |sol?| (-112))) (-564) - *6)) - (-4 *6 (-363)) (-4 *7 (-1235 *6)) - (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *1) (-5 *1 (-615)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046))))) -(((*1 *1 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) - (-4 *2 (-452)))) - ((*1 *1 *1) - (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) - (-4 *4 (-1235 (-407 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *3 (-452)))) - ((*1 *1 *1) - (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452)))) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-948 *4))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *3 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *5 (-556)) + (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) - (-4 *2 (-1235 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) - ((*1 *2 *1) - (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-4 *5 (-847)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2777 *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) - ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302))))) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *6)) + (-4 *6 + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) + (-4 *2 (-945 (-948 *4) *5 *6))))) +(((*1 *1 *1) (-5 *1 (-536)))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (-840 *3) - (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) - (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) - "failed")) - (-5 *1 (-634 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452)) - (-5 *2 - (-3 (-840 (-407 (-949 *5))) - (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))) - "failed")) - (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) - (-4 *5 (-452)) - (-5 *2 - (-3 (-840 *3) - (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) - (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) - "failed")) - (-5 *1 (-635 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152)) - (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3)) - (-5 *1 (-635 *6))))) + (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) + (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) + (-5 *2 (-112)) (-5 *1 (-1025 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) (((*1 *2 *1) - (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) - (-4 *3 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) + (-5 *2 (-641 (-641 (-641 (-939 *3)))))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1357 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) - (-5 *2 (-1032)) (-5 *1 (-751))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) - (-4 *2 (-13 (-847) (-21)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302)))) - ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) - ((*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) - (-4 *2 (-1235 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) - ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1094)) - (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) - (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) -(((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-784)) (-5 *2 (-1032)) - (-5 *3 - (-2 (|:| |fn| (-316 (-225))) - (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-784)) (-5 *2 (-1032)) - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) -(((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) + (-4 *6 (-1045)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1025 *6)) + (-5 *3 (-641 (-685 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) + (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1025 *4)) + (-5 *3 (-641 (-685 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) + (-5 *3 (-641 (-685 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) + (-5 *3 (-641 (-685 *5)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-685 *2)) (-5 *4 (-767)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) - (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) - (-5 *1 (-1064 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) - (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) + (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264)) + (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) + (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) - (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-568 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) + (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1235 *5)) + (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) + (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)) - (-4 *2 (-452)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) - (-5 *1 (-486 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *3 (-452))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491))))) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) + (-5 *2 (-413 *4 (-407 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) + (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) + (-5 *1 (-413 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *1 *1 *1) (-4 *1 (-657)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-815 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) + (-14 *4 (-564))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1094)) + (-5 *1 (-674 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) - (-4 *3 (-612 (-379))))) - ((*1 *2 *3) - (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-169 *5)) (-5 *4 (-918)) (-4 *5 (-172)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) + (-5 *2 (-641 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1 *1) (-4 *1 (-657)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) ((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + (-12 (-5 *3 (-641 (-2 (|:| -2375 *4) (|:| -2073 (-564))))) + (-4 *4 (-1235 (-564))) (-5 *2 (-767)) (-5 *1 (-442 *4))))) +(((*1 *2) + (-12 (-14 *4 (-767)) (-4 *5 (-1209)) (-5 *2 (-134)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) + ((*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) + (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) + (-14 *4 + (-3 (-1166 *3) + (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114))))))))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-917))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) + (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) + ((*1 *1 *1) (-4 *1 (-160)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 *4)))) + (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-641 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) + (-5 *1 (-1180 *6)) (-5 *5 (-641 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-917)) (-14 *5 (-989 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) + (-4 *4 (-1235 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) + (-4 *2 (-846)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6)) + (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *2 (-846)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) + (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1203 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) + (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) + (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) + (-4 *6 (-13 (-1094) (-1034 *3))) (-4 *3 (-882 *5)) + (-5 *1 (-927 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) + (-4 *3 (-13 (-430 *6) (-612 *4) (-882 *5) (-1034 (-610 $)))) + (-5 *4 (-888 *5)) (-4 *6 (-13 (-556) (-846) (-882 *5))) + (-5 *1 (-928 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 (-564) *3)) (-5 *4 (-888 (-564))) (-4 *3 (-545)) + (-5 *1 (-929 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) + (-4 *6 (-13 (-846) (-1034 (-610 $)) (-612 *4) (-882 *5))) + (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) + (-4 *6 (-882 *5)) (-4 *3 (-662 *6)) (-5 *1 (-931 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) + (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) + (-4 *6 (-1094)) (-4 *3 (-13 (-945 *9 *7 *8) (-612 *4))) + (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) + (-5 *1 (-932 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) + (-4 *3 (-13 (-945 *8 *6 *7) (-612 *4))) (-5 *4 (-888 *5)) + (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-13 (-1045) (-846) (-882 *5))) + (-5 *1 (-932 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-988 *6)) + (-4 *6 (-13 (-556) (-882 *5) (-612 *4))) (-5 *4 (-888 *5)) + (-5 *1 (-935 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-888 *5)) + (-4 *5 (-1094)) (-5 *1 (-936 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-641 (-888 *7))) (-5 *5 (-1 *9 (-641 *9))) + (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1094)) + (-4 *9 (-13 (-1045) (-612 (-888 *7)) (-1034 *8))) + (-5 *2 (-885 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1045) (-846))) + (-5 *1 (-937 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| -2375 *4) (|:| -2073 (-564))))) + (-4 *4 (-1235 (-564))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1045)) + (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) + (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170)))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) + (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) + (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) +(((*1 *2 *3) + (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-782 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) - (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094))))) + (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) + (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) - (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) +(((*1 *2) + (-12 (-4 *1 (-349)) + (-5 *2 (-641 (-2 (|:| -2375 (-564)) (|:| -3866 (-564)))))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-1264)) + (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3))))) +(((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) + (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *1)))) + (-4 *1 (-1065 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1213))) + ((*1 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -3235 ($ $ $)))))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1235 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) - (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1235 (-564))))) + (|partial| -12 (-4 *5 (-1034 (-48))) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) + (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) + (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-767)) + (-5 *2 (-685 (-225))) (-5 *1 (-267))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) + (-4 *2 (-13 (-1094) (-10 -8 (-15 -3011 ($ $ $)))))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) + (-4 *3 (-238 (-2059 *4) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *3)) + (-2 (|:| -1998 *5) (|:| -3866 *3)))) + (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) + (-4 *7 (-945 *2 *3 (-860 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) + (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) + (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-696 *3)) + (-4 *3 (-307))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) - (-4 *3 (-1235 (-407 (-564)))))) + (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) + (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)) (-4 *2 (-307)))) + ((*1 *2 *2) + (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-767))) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-284))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-847) (-556)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) - (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) - (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826))))) + (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) + (-5 *2 (-641 (-2 (|:| -3139 (-767)) (|:| |logand| *4)))) + (-5 *1 (-320 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) + (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) + (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046)) - (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) - (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1170)) (-5 *6 (-112)) - (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-4 *3 (-13 (-1194) (-956) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3))))) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) - (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) - (|:| -1401 *6))) - (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) + (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) + ((*1 *1) (-5 *1 (-330)))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) + (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) + (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2244 *9)))) + (-5 *1 (-1102 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-767)) + (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) + (-5 *1 (-246 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2362 *4))) (-5 *1 (-966 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 (-437))))) - (-5 *1 (-1174))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241))))) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3235 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) + (-5 *1 (-528 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) (((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3)) + (-5 *2 (-407 (-564)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847)) - (-5 *1 (-113 *2))))) + (|partial| -12 (-5 *3 (-685 (-407 (-948 (-564))))) + (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027))))) (((*1 *2 *3) - (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-373 *4)))) + (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) - (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556)) - (-5 *1 (-689 *2 *4)))) + (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) + (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5))))) +(((*1 *1) (-4 *1 (-349))) ((*1 *2 *3) - (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556)) - (-4 *7 (-946 *3 *5 *6)) - (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *8) (|:| |radicand| *8))) - (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768)) - (-4 *8 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) (-15 -3693 (*7 $)))))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) - (-5 *1 (-1154 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) - (-14 *4 (-1170)) (-14 *5 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) - (-4 *2 (-1219 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) + (-4 *4 (-13 (-556) (-846) (-147))) (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) - (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *1 *2) - (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032)) - (-5 *1 (-746))))) -(((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768)) - (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) - (-14 *4 (-918)) (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) - (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) - (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) + (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) + (|:| |prim| (-1166 *5)))) + (-5 *1 (-432 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-556) (-846) (-147))) (-5 *2 - (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) - (|:| |Lfact| - (-641 (-2 (|:| -3070 (-1166 *8)) (|:| -1558 (-564))))) - (|:| |ctpol| *8))) - (-5 *1 (-739 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *2)) - (-2 (|:| -1468 *5) (|:| -1558 *2)))) - (-4 *2 (-238 (-2828 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *1 *1 *1) (-4 *1 (-964)))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) - (-4 *3 (-1094)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) - (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) - (-5 *1 (-947 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) - (-15 -3693 (*7 $)))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *8 (-1060 *5 *6 *7)) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) + (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) + (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-948 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 - (-2 (|:| |val| (-641 *8)) - (|:| |towers| (-641 (-1024 *5 *6 *7 *8))))) - (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *8 (-1060 *5 *6 *7)) + (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) + (|:| |prim| (-1166 *5)))) + (-5 *1 (-956 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-363) (-147))) (-5 *2 - (-2 (|:| |val| (-641 *8)) - (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) - (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) - (-4 *4 (-238 (-2828 *5) (-768))) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *3) (|:| -1558 *4)) - (-2 (|:| -1468 *3) (|:| -1558 *4)))) - (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847)) - (-4 *7 (-946 *2 *4 (-861 *5)))))) + (-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) + (|:| |prim| (-1166 *5)))) + (-5 *1 (-956 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) + (-4 *6 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| -3139 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) + (|:| |prim| (-1166 *6)))) + (-5 *1 (-956 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10)) - (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) - (-4 *10 (-1103 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) - (-5 *1 (-626 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-641 (-1170))) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 - (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) - (-5 *1 (-626 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) - (-5 *1 (-1043 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-1202 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) + (-641 + (-2 (|:| |outval| *4) (|:| |outmult| (-564)) + (|:| |outvect| (-641 (-685 *4)))))) + (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) - (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1235 (-407 *4)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4407)) (-4 *4 (-363)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4)) - (-4 *4 (-1046)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564)) - (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) + (-12 (|has| *9 (-6 -4407)) (-4 *4 (-556)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) + (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) + (-4 *10 (-683 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) - (-5 *1 (-1025 *4)) (-4 *4 (-1046))))) -(((*1 *1 *1) - (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) - (-4 *4 (-266 *3)) (-4 *5 (-790))))) -(((*1 *2 *1) - (-12 + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) + (-5 *2 (-641 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) + ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1150 (-564)))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) + (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-452)) (-5 *2 (-641 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))) - (-5 *1 (-559)))) + (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))) + (|:| |eigmult| (-767)) + (|:| |eigvec| (-641 (-685 (-407 (-948 *4)))))))) + (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4))))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564)))) + (-4 *5 (-882 (-564))) + (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-685 *4)) (-4 *5 (-652 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) + ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) ((*1 *2 *1) - (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-5 *2 (-641 *3)))) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-870)))) + ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) + (-5 *1 (-1180 *4)) (-4 *4 (-846))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) + (-4 *2 (-1209))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) + (-4 *3 (-409 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-764 *3 *4)) + (-4 *4 (-409 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) + (-5 *1 (-810 *4 *3)) (-4 *3 (-652 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-641 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225))))) - (-5 *1 (-800))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -3070 *3) (|:| -1619 *4)))) - (-5 *1 (-692 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1032)) (-5 *1 (-750))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) + (-2 (|:| -2595 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) + ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 (-846)) (-5 *2 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) - (-4 *4 (-1046))))) + (-12 (-4 *4 (-1045)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) + (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) - (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) (((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) - (-5 *1 (-176 *3))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) + (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-450 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) + (-5 *1 (-974 *6)) (-5 *3 (-685 *6))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-767))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) + (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -3482 *3)))) + (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-652 *7)) + (-4 *8 (-652 (-407 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 + (-641 (-2 (|:| |frac| (-407 *6)) (|:| -3482 (-650 *6 (-407 *6)))))) + (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6)))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094))))) +(((*1 *1 *2) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) + (-4 *4 (-172))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-267))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483))))) + (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) + (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5)))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1170)) + (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) + (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) + (-5 *2 + (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) + (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) + (-5 *2 + (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859)) - (-4 *1 (-1009)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363))) - (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) + (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) + (-5 *2 + (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) + (-5 *2 + (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) (((*1 *2 *1) - (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) + (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1170))) + (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) + (-5 *4 (-1170)) (-4 *7 (-612 (-888 (-564)))) (-4 *7 (-452)) + (-4 *7 (-882 (-564))) (-4 *7 (-846)) (-5 *2 (-585 *3)) + (-5 *1 (-573 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) + (-4 *6 (-363)) + (-5 *2 + (-641 + (-2 (|:| |outval| *7) (|:| |outmult| (-564)) + (|:| |outvect| (-641 (-685 *7)))))) + (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1209)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) - (-14 *3 (-918)) (-4 *4 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1166 (-1020 *3)))) + (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018)))))) +(((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564))))) +(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 - (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) - (|:| |wcond| (-641 (-949 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *4)))))))))) - (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5))))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) - (-5 *2 (-1032)) (-5 *1 (-750))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-564))))) + (-5 *1 (-418 *3)) (-4 *3 (-556)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) + (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) + (-4 *6 (-1235 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *1) + (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) + (-4 *3 (-1094))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) - (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-1272 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094)) - (-5 *1 (-674 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| -1558 (-768)) (|:| -2860 *5) (|:| |radicand| (-641 *5)))) - (-5 *1 (-320 *5)) (-5 *4 (-768)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3581 (-114)) (|:| |arg| (-641 (-889 *3))))) - (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4))) - (-5 *1 (-889 *4)) (-4 *4 (-1094))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) -(((*1 *2) - (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918)) - (-14 *4 (-918)))) - ((*1 *2) - (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-1166 *3)))) - ((*1 *2) - (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-918))))) -(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))) -(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-641 - (-2 - (|:| -2568 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -1389 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1150 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-559))))) -(((*1 *2 *3) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767))) + (-5 *1 (-900 *4))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *1 *1) (-4 *1 (-866 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) -(((*1 *1 *2) - (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307)) - (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) - (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3)) - (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349)))) - ((*1 *1) (-4 *1 (-368))) - ((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349)))) - ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545))) - ((*1 *1 *1) (-5 *1 (-564))) ((*1 *1 *1) (-5 *1 (-768))) - ((*1 *2 *1) (-12 (-5 *2 (-902 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) - (-4 *4 (-1094)))) - ((*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) - (-5 *2 (-112)) (-5 *1 (-663 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-112)) - (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5)) - (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) - (-4 *5 (-652 (-407 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3)) - (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2)) - (-4 *3 (-652 (-407 *2)))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-564)))) + (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -3235 ($ $ $))))) + (-4 *3 (-556)) (-5 *1 (-1238 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263))) - (-5 *1 (-261)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) - (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) - (-5 *1 (-629 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) - (-4 *4 (-906)) (-5 *1 (-659 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556))))) -(((*1 *2 *2) - (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) - (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) + (-4 *4 (-1045)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) + (-4 *6 (-652 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129))))) +(((*1 *1 *1) + (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) + (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) ((*1 *1) (-4 *1 (-1145)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3331 (-641 *6))) - *7 *6)) - (-4 *6 (-363)) (-4 *7 (-652 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1259 *6) "failed")) - (|:| -3331 (-641 (-1259 *6))))) - (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-754))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768))) - (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) + (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-556))) + (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) - (-5 *2 (-1166 *3))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3103 (-641 (-1170))) (|:| -3264 (-641 (-1170))))) - (-5 *1 (-1211))))) -(((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) - (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) - (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046)))) + (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) + (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) - (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) + (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) + (-4 *1 (-329 *4)))) + ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) + ((*1 *2) + (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) + (-4 *1 (-409 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1046))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) - (-5 *2 - (-2 (|:| |dpolys| (-641 (-247 *5 *6))) - (|:| |coords| (-641 (-564))))) - (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) + (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) + (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) + (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) + (-4 *6 (-409 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) ((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) (((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) - (-5 *1 (-190))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3)) - (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) - (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))) -(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1150 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1032)) (-5 *1 (-305))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) - (-5 *1 (-1180 *4)) (-4 *4 (-847))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) - (-4 *6 (-1060 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -1818 *1) (|:| |upper| *1))) - (-4 *1 (-973 *4 *5 *3 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847)) - (-4 *2 (-172)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847)) - (-4 *2 (-1046)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843))))) + (-5 *2 + (-983 (-407 (-564)) (-860 *3) (-240 *4 (-767)) + (-247 *3 (-407 (-564))))) + (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267))))) -(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-775 *4)) + (-4 *4 (-13 (-363) (-844)))))) (((*1 *2 *1) - (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) - (-14 *4 (-768)) (-4 *5 (-172))))) -(((*1 *1) (-5 *1 (-291)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-641 (-1170)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) + (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) (((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-641 (-949 *4))))) + (-5 *2 (-641 (-948 *4))))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4)) + (-12 (-4 *4 (-172)) (-5 *2 (-641 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3))))) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-948 *3))))) ((*1 *2) - (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-12 (-5 *2 (-641 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4))) + (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-948 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) - (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4)))))) + (-14 *5 (-917)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) + (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) (((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088 (-839 (-379)))) (-5 *2 (-1088 (-839 (-225)))) + (-5 *1 (-305))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))) +(((*1 *1) (-5 *1 (-615)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) + (-5 *2 (-641 (-2 (|:| -4322 (-641 *3)) (|:| -2532 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-363) (-844))) + (-5 *2 (-641 (-2 (|:| -4322 (-641 *3)) (|:| -2532 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846)) + (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) +(((*1 *1) (-5 *1 (-1057)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) + (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-641 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-859))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) + (-4 *4 (-1094)) (-4 *5 (-1094))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *2) + (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) + (-4 *3 (-644 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-564)) (-5 *2 (-858)) + (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-858)) (-5 *1 (-1166 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-449 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) + (-12 (-4 *3 (-1094)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) + (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) + (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))) + (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) + (-5 *2 (-1166 (-948 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) - (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))) + (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) + (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) + (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) + (-5 *7 (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| *13))))) + (-5 *8 (-641 (-767))) (-5 *9 (-1259 (-641 (-1166 *10)))) + (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) + (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) + (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-556))) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) + (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) + (-4 *6 (-13 (-556) (-1034 *5))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407)))))) ((*1 *2 *2) - (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) + (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) + (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) + (-5 *1 (-1252 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1060))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536))))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-357 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094))))) +(((*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858)))))) +(((*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-767)) (-5 *1 (-589))))) +(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-860 *3)) (-14 *3 (-641 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))) (((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-5 *2 (-687 (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) + (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-1034 (-564)) (-147))) (-5 *1 (-570 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615)))) (((*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 - (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -4252 *6) + (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -3482 *6) (|:| |rh| *5)))))) - (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) + (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) - (-5 *2 (-2 (|:| -2394 (-685 *6)) (|:| |vec| (-1259 *5)))) - (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))) -(((*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) - (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) - (-5 *1 (-259 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) - (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1094))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1094))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) - (-5 *1 (-259 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768))))) + (-5 *2 (-2 (|:| -4379 (-685 *6)) (|:| |vec| (-1259 *5)))) + (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1235 (-169 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1235 (-169 *2)))))) + (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) - (-4 *7 (-1235 (-407 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3493 *3))) - (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |answer| (-407 *6)) (|:| -3493 (-407 *6)) - (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) - (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) - (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349)) - (-5 *1 (-528 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) + (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) + (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748))))) (((*1 *2 *3) - (-12 (-4 *4 (-1046)) - (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-4 *5 (-1046)) - (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) - (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-34)) (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-843))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1032)) (-5 *1 (-746))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1558 (-564)))) (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -1558 (-889 *3)))) - (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) - (-4 *7 (-946 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1558 (-564)))) - (-5 *1 (-947 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) - (-15 -3693 (*7 $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) + (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) - (-5 *2 (-379)) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) - (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *6 (-342 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3)) - (-4 *3 (-1060 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) - (-4 *3 (-1060 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *2) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) -(((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) - (-5 *1 (-1175))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) - (-5 *1 (-919 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564))) - (-5 *2 (-685 (-564))) (-5 *1 (-589)))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) + (-5 *1 (-668 *4))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4406)) + (-4 *1 (-151 *2)) (-4 *2 (-1209)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) + (-4 *2 (-1209)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) + (-4 *2 (-1209)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) - (-5 *1 (-589)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564)))) - (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + (-12 (-4 *4 (-1045)) + (-5 *2 (-2 (|:| -3429 (-1166 *4)) (|:| |deg| (-917)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-846))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) + (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-846)))) ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) - (-14 *4 *2)))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-5 *1 (-985 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-5 *1 (-1101 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) - (-4 *6 (-1235 (-407 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-342 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *2 (-1032)) (-5 *1 (-748))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) - (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3)) - (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) - (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) - (-14 *6 (-641 (-1170))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *4)) (|:| -2467 (-641 (-949 *4)))))) - (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4))) - (-14 *5 (-641 (-1170))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) - (-5 *2 - (-641 (-2 (|:| -3339 (-1166 *5)) (|:| -2467 (-641 (-949 *5)))))) - (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) - (-14 *6 (-641 (-1170)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) - (-4 *2 (-131))))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) - (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379))) - ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) - (-4 *3 (-1094))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) - (-4 *3 (-1094)) (-5 *2 (-768)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) - (-4 *4 (-1209)) (-5 *2 (-768))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) - (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) - (|:| |vals| (-641 *3)))) - (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615)))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) - (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7)) - (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291))))) -(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) + (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) + (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) + (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) + (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) + ((*1 *1 *1) (-5 *1 (-495))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) + (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) + (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2568 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -1389 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1150 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-559)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) + (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2568 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -1389 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))))) - (-5 *1 (-800)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) + (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) + (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-953 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) + (-14 *6 (-641 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) + (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) + (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) ((*1 *1 *1 *1) (-4 *1 (-452))) ((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-768))) + ((*1 *1 *1 *1) (-5 *1 (-767))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) - (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) + (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) - (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5)) + (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7)) - (-4 *7 (-946 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-918))) + (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-912 *4 *5 *6 *7)) + (-4 *7 (-945 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-917))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) + (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-768)) (-4 *5 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) - (-4 *4 (-172)))) - ((*1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) - (-4 *4 (-373 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) - (-5 *1 (-1086 *4))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) - (-5 *2 (-1032)) (-5 *1 (-751))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1235 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))) (((*1 *2 *3) - (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) - (-5 *1 (-1014 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) + (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2)) + (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))))) ((*1 *2 *3) - (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) - (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) - ((*1 *1 *1) (|partial| -4 *1 (-719)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1) (-5 *1 (-1058)))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847))) - (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3)) - (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) - (-14 *4 (-564))))) -(((*1 *2 *3) - (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) - (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))) + (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) + (-5 *1 (-806 *4 *2)) + (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-556)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) + (-4 *7 (-1235 *6)) + (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828))))) + (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) + (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) + (-5 *7 (-641 (-767))) (-5 *8 (-641 *11)) (-4 *10 (-846)) + (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) + (-5 *2 (-641 (-1166 *5))) (-5 *1 (-738 *9 *10 *11 *5)) + (-5 *3 (-1166 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) + (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-641 *2))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) - (-5 *1 (-332)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330)) - (-5 *1 (-332)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) - (-4 *3 (-1094))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) - (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1032)) (-5 *1 (-746))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) - (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-918)) (-14 *5 (-990 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) - (-4 *4 (-1235 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) - (-4 *4 (-1046)) (-4 *5 (-847)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) - (-4 *2 (-847)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) - (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *2 (-847)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5)) - (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4)) - (-4 *4 (-1046))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) - (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) - (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) - ((*1 *1 *1 *1) (-4 *1 (-452)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) - (-4 *3 (-238 (-2828 *4) (-768))) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *5) (|:| -1558 *3)) - (-2 (|:| -1468 *5) (|:| -1558 *3)))) - (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847)) - (-4 *7 (-946 *2 *3 (-861 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) - (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) - (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1401 *6))) - (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))) (((*1 *1 *2) - (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-363)) (-14 *5 (-990 *3 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) - (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768))) - (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) - (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12))) - (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12))))) + (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-363)) (-14 *5 (-989 *3 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) - (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152))))) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217)))))) + (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) + (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-749))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) + (-641 + (-2 (|:| -3105 (-767)) + (|:| |eqns| + (-641 + (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (|:| |fgb| (-641 *7))))) + (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767)) + (-5 *1 (-920 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1046))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-751))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) - (-5 *1 (-1154 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5)) - (-14 *3 (-768)) (-14 *4 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) - (-4 *5 (-452)) - (-5 *2 - (-2 (|:| |gblist| (-641 (-247 *4 *5))) - (|:| |gvlist| (-641 (-564))))) - (-5 *1 (-629 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) + (-5 *2 (-316 *5)) (-5 *1 (-588 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1055 (-1020 *4) (-1166 (-1020 *4)))) (-5 *3 (-858)) + (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018)))))) +(((*1 *1) + (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) + (-4 *4 (-662 *3)))) + ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-169 (-407 (-564))))) - (-5 *2 - (-641 - (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) - (|:| |outvect| (-641 (-685 (-169 *4))))))) - (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-641 (-316 (-225)))) - (|:| |constraints| - (-641 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-768)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) - (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-817))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) + ((*1 *1 *1 *1) (-4 *1 (-452)))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) - (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)) - (-4 *4 (-363)) (-4 *4 (-1046)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) - (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) - (-5 *2 (-1032)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-564)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) - (-5 *1 (-449 *5 *6 *7 *4))))) -(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-768)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1150 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-559))))) -(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) - (-14 *4 (-768)) (-4 *5 (-172))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) - (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) - (-4 *4 (-683 *2 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -4252 *3) (|:| -3581 (-641 *5)))) - (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) - (-4 *4 (-1235 *2))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-578)))) (((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) - (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3)) - (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) - (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564)))))) -(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))) -(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) - ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3) - (-247 *3 (-407 (-564))))) - (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) - (-4 *3 (-363))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) - (-14 *4 *2)))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-171))))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) - (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468))))) -(((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-305)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3)) - (-4 *3 (-612 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) - (-5 *2 (-379)) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) - (-5 *2 (-379)) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2))))) ((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) - (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058))))) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) - (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556)))) - ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *1) (-5 *1 (-144))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263))))) + (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) + (-5 *3 (-641 *4))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) - (-5 *2 (-641 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) + (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) - (-5 *1 (-190)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) - (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) - (-4 *3 (-1209)) (-5 *1 (-294 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) - (-5 *1 (-294 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) - (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) - (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) - (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) - (-4 *4 (-847)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 (-641 *1))) - (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) - (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-847)) - (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) - (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) - (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) - (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-612 (-536))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-847)) - (-4 *4 (-612 (-536))))) - ((*1 *1 *1) - (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-612 (-536))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-847)) - (-4 *3 (-612 (-536))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)) - (-4 *3 (-612 (-536))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) - (-4 *4 (-1094)) (-4 *5 (-1209)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-830 *3)) (-4 *3 (-363)) (-5 *1 (-715 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) - (-5 *1 (-1040 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-949 *5)))) - (-5 *2 (-407 (-949 *5))) (-4 *5 (-556)) (-5 *1 (-1040 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-5 *2 (-407 (-949 *4))) - (-4 *4 (-556)) (-5 *1 (-1040 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-5 *2 (-407 (-949 *4))) - (-4 *4 (-556)) (-5 *1 (-1040 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3))))) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) (((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205))))) -(((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) - (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1032)) (-5 *1 (-750))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *1)))) - (-4 *1 (-1066 *4 *5 *6 *3))))) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5)) - (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046)) - (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) - (-14 *4 (-918)) (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) - (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-766)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) - (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-1058)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) - (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-784)) (-5 *3 (-1058)) - (-5 *4 - (-2 (|:| |fn| (-316 (-225))) - (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) - (|:| |extra| (-1032)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-784)) (-5 *3 (-1058)) - (-5 *4 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)) - (|:| |extra| (-1032)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-797)) (-5 *3 (-1058)) - (-5 *4 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-805)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *1 (-802)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-805)) (-5 *4 (-1058)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *1 (-802)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-836)) (-5 *3 (-1058)) - (-5 *4 - (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) - (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-836)) (-5 *3 (-1058)) - (-5 *4 - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) - (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-838)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *1 (-837)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-838)) (-5 *4 (-1058)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *1 (-837)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-892)) (-5 *3 (-1058)) - (-5 *4 - (-2 (|:| |pde| (-641 (-316 (-225)))) - (|:| |constraints| - (-641 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-768)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) - (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) - (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -2620 (-379)) (|:| |explanations| (-1152)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-895)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *1 (-894)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1058)) - (-5 *2 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *1 (-894))))) -(((*1 *1 *1) (|partial| -4 *1 (-1145)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579))))) + (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1235 *5)) + (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5))))) (((*1 *2) - (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) - (-14 *4 (-918)))) + (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) ((*1 *2) - (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1166 *3) - (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114))))))))) + (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-918))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) - (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-758)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368)) - (-4 *3 (-1094))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3)) - (-4 *3 (-612 (-536)))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) - (-5 *4 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-407 (-564))) - (-5 *2 (-641 (-2 (|:| -3766 *5) (|:| -3777 *5)))) (-5 *1 (-1017 *3)) - (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -3766 *5) (|:| -3777 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))) - (-5 *4 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-564))) - (-5 *2 (-641 (-2 (|:| -3766 *4) (|:| -3777 *4)))) (-5 *1 (-1018 *3)) - (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-407 (-564))) - (-5 *2 (-641 (-2 (|:| -3766 *5) (|:| -3777 *5)))) (-5 *1 (-1018 *3)) - (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -3766 *5) (|:| -3777 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) - (-4 *3 (-1235 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -1316 (-1152)))) - (-5 *1 (-819))))) + (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545)))) + ((*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) + (-4 *3 (-793 *4)))) + ((*1 *2) + (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) + (-4 *3 (-988 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) + (-4 *3 (-993 *4)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008)))) + ((*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) - (-4 *3 (-1209))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-5 *2 (-2 (|:| -2568 *3) (|:| -1389 *4)))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) - (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) - (-5 *1 (-572)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) - (-4 *1 (-906))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3)) - (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4406))))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1032)) (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6))) - (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094)) - (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7))) - (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847))) - (-5 *1 (-938 *6 *7 *8))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847)) - (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4))))) -(((*1 *1 *1) (-5 *1 (-1058)))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1133))) ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) - (-14 *4 (-1170)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -1831 ($ *4))))) - (-4 *4 (-845)) - (-4 *5 - (-13 (-1237 *2 *4) (-363) (-1194) - (-10 -8 (-15 -3534 ($ $)) (-15 -3907 ($ $))))) - (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) - (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) - (-5 *2 (-1032)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) + (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) + (-4 *3 (-1094)) (-4 *5 (-662 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) - (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) - (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170)) - (-5 *5 (-840 *7)) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6)) - (-4 *6 (-13 (-1194) (-29 *5))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-224 *5 *6))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -3781 (-418 *3)) (|:| |special| (-418 *3)))) + (-5 *1 (-723 *5 *3))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) - (-4 *2 (-1094)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-235 *3)) + (-4 *3 (-1094)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) - (-4 *3 (-1209)))) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) + (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) - (-5 *1 (-734 *4)))) + (-5 *1 (-733 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) + (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) - ((*1 *1 *1) (-5 *1 (-1260)))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) - (-4 *2 (-847)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4407)) - (-4 *1 (-373 *3)) (-4 *3 (-1209))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) -(((*1 *1) (-5 *1 (-1079)))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1170)) - (|:| |arrayIndex| (-641 (-949 (-564)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) - (|:| |elseClause| (-330)))) - (|:| |returnBranch| - (-2 (|:| -4284 (-112)) - (|:| -1522 - (-2 (|:| |ints2Floats?| (-112)) (|:| -3832 (-859)))))) - (|:| |blockBranch| (-641 (-330))) - (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) - (|:| |forBranch| - (-2 (|:| -4133 (-1086 (-949 (-564)))) - (|:| |span| (-949 (-564))) (|:| -1328 (-330)))) - (|:| |labelBranch| (-1114)) - (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -1328 (-330)))) - (|:| |commonBranch| - (-2 (|:| -1316 (-1170)) (|:| |contents| (-641 (-1170))))) - (|:| |printBranch| (-641 (-859))))) - (-5 *1 (-330))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-733 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094)))) + ((*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094))))) (((*1 *2 *3) - (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) - (-5 *3 (-564))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) - (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) - (-5 *4 (-641 (-918))) (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) - ((*1 *1 *1) (-5 *1 (-468)))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) - ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) - (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) - (-5 *1 (-1135 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) - (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) - (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) - (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) - (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-789))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) - ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) - (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -4252 *3)))) - (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7)) - (-4 *8 (-652 (-407 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) - (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) - (-5 *2 - (-641 (-2 (|:| |frac| (-407 *6)) (|:| -4252 (-650 *6 (-407 *6)))))) - (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) - (-4 *4 (-1235 *3))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3)))) - (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) - (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) - (-4 *6 (-652 *5))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768)) - (-247 *3 (-407 (-564))))) - (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) -(((*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) - (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *2 (-1032)) (-5 *1 (-748))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) - ((*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) - (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-447 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) - (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-447 *4 *5 *6 *7))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790)) - (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) - (-5 *1 (-462 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1035 (-407 (-564))) (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) - (-15 -3693 (*7 $)))))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *5 (-1235 *4)) - (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -4252 *5)))) - (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5)) - (-4 *6 (-652 (-407 *5)))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) - (-4 *3 (-1094)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) - (-5 *1 (-901 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3)) - (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) - (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468)) - (-5 *1 (-1263)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) - (-5 *2 (-468)) (-5 *1 (-1263))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) - (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) - (-4 *3 (-1094)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) - (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) - (-5 *1 (-947 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *7)) (-15 -3678 (*7 $)) - (-15 -3693 (*7 $)))))))) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4)) + (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-888 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-1088 (-840 (-379))))) - (-5 *2 (-641 (-1088 (-840 (-225))))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-394)))) + (-12 (-5 *3 (-641 (-1088 (-839 (-379))))) + (-5 *2 (-641 (-1088 (-839 (-225))))) (-5 *1 (-305)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) @@ -10141,416 +6235,294 @@ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) - (-4 *3 (-847)))) + (-4 *3 (-846)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-463 *3 *4 *5 *6)))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) ((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) + (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) ((*1 *1 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) - (-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847)))) + (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) + (-4 *5 (-612 (-1170))) (-4 *4 (-789)) (-4 *5 (-846)))) ((*1 *1 *2) - (-4078 - (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) - (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) + (-2789 + (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) - (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) + (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) ((*1 *1 *2) - (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) - (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) - (-5 *1 (-1064 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) - (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) + (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152)) + (-5 *1 (-1063 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189)))) ((*1 *2 *3) - (-12 (-5 *3 (-777 *4 (-861 *5))) - (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) - (-5 *2 (-777 *4 (-861 *6))) (-5 *1 (-1285 *4 *5 *6)) + (-12 (-5 *3 (-776 *4 (-860 *5))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) + (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-5 *3 (-777 *4 (-861 *6))) - (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) - (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) + (-12 (-5 *3 (-776 *4 (-860 *6))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170))) + (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-1166 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-1166 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) ((*1 *2 *3) (-12 - (-5 *3 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))) - (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) - (-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6)) + (-5 *3 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170))) + (-5 *2 (-641 (-776 *4 (-860 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-685 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-564)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-868 *4)) (-14 *4 *3) - (-5 *3 (-564)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-869 *4 *5)) - (-5 *3 (-564)) (-4 *5 (-866 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1009)) (-5 *2 (-407 (-564))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) - (-4 *3 (-1235 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1831 (*2 (-1170)))) - (-4 *2 (-1046))))) -(((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847)) - (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4)) - (-4 *2 (-1235 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5)) - (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) - (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194)))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-948 (-564)))) (-5 *1 (-437)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) + (-5 *1 (-755)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) + (-5 *1 (-755))))) (((*1 *2 *3) - (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768)) - (-5 *2 - (-641 - (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) - (-247 *4 (-407 (-564)))))) - (-5 *1 (-505 *4 *5)) - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) - (-247 *4 (-407 (-564)))))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) - (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) + (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *4 (-610 $)) $)) + (-15 -4201 ((-1119 *4 (-610 $)) $)) + (-15 -2322 ($ (-1119 *4 (-610 $)))))))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))) - (-5 *2 (-1032)) (-5 *1 (-305))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179))))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) - ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) (-5 *3 (-225)) - (-5 *2 (-1032)) (-5 *1 (-745))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) - (-5 *2 (-641 (-641 (-940 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046)) - (-4 *1 (-1128 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046)) - (-4 *1 (-1128 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) - (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) - (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) - (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171))) - (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-610 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) - (-4 *2 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-610 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) - (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) - (-5 *1 (-1154 *3))))) + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-564)) (-5 *1 (-204))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) (((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) - (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-447 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-447 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1235 *4)) - (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1032)) (-5 *1 (-750))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-506)) (-5 *2 (-687 (-771))) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-748))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) - (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) - (-4 *6 (-452)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) - (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) - (-4 *6 (-452))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) - (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4))))) + (-12 (-5 *3 (-685 (-407 (-948 (-564))))) + (-5 *2 + (-641 + (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) + (|:| |radvect| (-641 (-685 (-316 (-564)))))))) + (-5 *1 (-1027))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-846)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) + (|:| |f4| (-641 *5)))) + (-5 *1 (-1180 *6)) (-5 *4 (-641 *5))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-294 (-830 *3))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452)) - (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5)) - (-5 *3 (-407 (-949 *5))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-4 *7 (-1235 (-407 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -4205 *3))) + (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) - (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) -(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556)))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |answer| (-407 *6)) (|:| -4205 (-407 *6)) + (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) + (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *1) (-5 *1 (-1173)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564))) - (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) - (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) - (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-564)) - (-5 *6 - (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379)))) - (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) - (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) - (-5 *1 (-785)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-564)) - (-5 *6 - (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3938 (-379)))) - (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) - (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) - (-5 *1 (-785))))) -(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2598 *1))) + (-4 *1 (-1059 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3139 *1) (|:| |gap| (-767)) (|:| -2598 *1))) + (-4 *1 (-1059 *3 *4 *5))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) - (-4 *5 (-847)) (-5 *2 (-949 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) - (-4 *5 (-847)) (-5 *2 (-949 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) - (-5 *2 (-949 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) - (-5 *2 (-949 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) - (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) - (-5 *2 (-685 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-685 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-1259 *4)))) + (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) + (-4 *6 (-556)) (-4 *7 (-945 *6 *5 *3)) + (-5 *1 (-462 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1034 (-407 (-564))) (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) + (-15 -4201 (*7 $)))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-307)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) + (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2666 (-767)) (|:| -2598 (-767)))) + (-5 *1 (-767)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) - (-5 *2 (-1259 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) - (-5 *2 (-685 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) - (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) + (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) + (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) + (-4 *7 (-1209)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3521 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-363)) (-4 *7 (-1235 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) - (-2 (|:| -3521 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-641 (-2 (|:| -3070 (-1166 *6)) (|:| -1558 (-564))))) - (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) + (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) - (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) - (-5 *1 (-785)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) - (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) - (-5 *1 (-785))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) + (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) - (-5 *2 (-379)) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) - (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) - (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) - (-5 *1 (-782 *5))))) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3392 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-939 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495))))) -(((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55))))) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194))) + (-4 *4 (-13 (-556) (-846))) + (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194))) + (-5 *1 (-598 *4 *5 *2))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) + (-4 *2 (-172)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-815 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-846)) + (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536))))) +(((*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027))))) +(((*1 *2 *1) + (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-641 *6)) + (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *5 (-1235 *4)) + (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -3482 *5)))) + (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-652 *5)) + (-4 *6 (-652 (-407 *5)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-1204 *3)) + (-4 *3 (-970))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1259 *5)) (-5 *3 (-767)) (-5 *4 (-1114)) (-4 *5 (-349)) + (-5 *1 (-528 *5))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-789)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-50 *3 *4)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) @@ -10566,16 +6538,16 @@ (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) - (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) + (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1046) (-847))) + (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) ((*1 *2 *3 *4) @@ -10592,11 +6564,11 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-847)) - (-4 *6 (-847)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) + (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) @@ -10615,7 +6587,7 @@ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) @@ -10625,20 +6597,20 @@ (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) - (-4 *6 (-989 *5)) (-4 *7 (-1235 *6)) - (-4 *8 (-13 (-409 *6 *7) (-1035 *6))) (-4 *9 (-307)) - (-4 *10 (-989 *9)) (-4 *11 (-1235 *10)) + (-4 *6 (-988 *5)) (-4 *7 (-1235 *6)) + (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) + (-4 *10 (-988 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-409 *10 *11) (-1035 *10))))) + (-4 *12 (-13 (-409 *10 *11) (-1034 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1046) (-847))) - (-4 *6 (-13 (-1046) (-847))) (-4 *2 (-430 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) + (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) @@ -10647,15 +6619,15 @@ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-847)))) + (-4 *4 (-846)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3521 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -1370 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) - (-5 *2 (-2 (|:| -3521 *6) (|:| |coeff| *6))) + (-5 *2 (-2 (|:| -1370 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) @@ -10701,126 +6673,126 @@ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1046)) - (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) + (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) - (-5 *1 (-706 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) + (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1046)) (-4 *9 (-1046)) - (-4 *5 (-847)) (-4 *6 (-790)) (-4 *2 (-946 *9 *7 *5)) - (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) - (-4 *4 (-946 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) + (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) + (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) + (-4 *4 (-945 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-4 *7 (-790)) - (-4 *9 (-1046)) (-4 *2 (-946 *9 *8 *6)) - (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-790)) - (-4 *4 (-946 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) + (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) + (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) + (-4 *4 (-945 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5 *7)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-4 *7 (-723)) (-5 *2 (-732 *6 *7)) - (-5 *1 (-731 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) + (-5 *1 (-730 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-732 *3 *4)) - (-4 *4 (-723)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) + (-4 *4 (-722)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-794 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-794 *5)))) + (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-830 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) + (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-828 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-5 *2 (-840 *6)) (-5 *1 (-839 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-840 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) + (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-838 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1209)) - (-4 *6 (-1209)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1209)) - (-4 *6 (-1209)) (-5 *2 (-876 *6)) (-5 *1 (-875 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1209)) - (-4 *6 (-1209)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-886 *5 *6)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-886 *5 *7)) - (-5 *1 (-885 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-885 *5 *7)) + (-5 *1 (-884 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-5 *2 (-949 *6)) (-5 *1 (-943 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-847)) - (-4 *8 (-1046)) (-4 *6 (-790)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) + (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1094) - (-10 -8 (-15 -1797 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) - (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7)))) + (-10 -8 (-15 -3011 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) + (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) - (-4 *6 (-1209)) (-5 *2 (-955 *6)) (-5 *1 (-954 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-5 *2 (-940 *6)) (-5 *1 (-978 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1046)) - (-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790)) + (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) + (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-5 *1 (-981 *4 *5 *6 *2)))) + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-5 *1 (-980 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) - (-4 *2 (-989 *6)) (-5 *1 (-987 *5 *6 *4 *2)) (-4 *4 (-989 *5)))) + (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5)))) + (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) - (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) + (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) - (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1046)) (-4 *10 (-1046)) - (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *2 (-1049 *5 *6 *10 *11 *12)) - (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) + (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) + (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) + (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-845)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-844)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1143 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) @@ -10830,37 +6802,37 @@ (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-845)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-844)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) - (-4 *6 (-1046)) (-4 *8 (-1046)) (-5 *2 (-1232 *7 *8)) + (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1046)) - (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) @@ -10870,473 +6842,741 @@ (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-1046)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4)) - (-4 *4 (-843))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) - (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) - (-4 *2 (-683 *3 *5 *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1282 *3 *4)) + (-4 *4 (-842))))) +(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) (((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-1046)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1235 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) - (-5 *2 (-1032)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) - (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) - (-5 *2 (-112)) (-5 *1 (-1026 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) + (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -3139 (-641 *1)) (|:| -4095 *1))) + (-5 *3 (-641 *1))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) + (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112)))))) +(((*1 *1) (-5 *1 (-819)))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) - (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4)))) - ((*1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) - (-14 *4 (-918)))) - ((*1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1166 *3) - (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114))))))))) - ((*1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-918))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452)))) + (-12 (-4 *4 (-846)) + (-5 *2 + (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) + (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) + (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4))))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-4 *3 (-1094)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *1)))) - (-4 *1 (-1066 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1213))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2777 ($ $ $)))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2777 *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *1 *2 *2) + (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) + (-5 *1 (-900 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| -4379 (-685 (-407 (-948 *4)))) + (|:| |vec| (-641 (-407 (-948 *4)))) (|:| -3105 (-767)) + (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) + (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *4))))))) + (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) + (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564))))) - (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028))))) -(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) - ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) - (-5 *2 (-1032)) (-5 *1 (-742))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) -(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) - (-5 *3 (-1170)))) + (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-917) (-767)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1) (-4 *1 (-349)))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) + (-14 *4 *2) (-4 *5 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) + ((*1 *2) + (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-917)))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-768)) (-5 *2 (-641 (-1170))) - (-5 *1 (-267)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) - (-5 *2 (-641 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) + (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) + (-5 *2 (-767)) (-5 *1 (-663 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-767)) + (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-641 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) - (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) - (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112)) - (-5 *1 (-921 *5 *6 *7 *8))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) - (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768)))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) + (-5 *2 (-767))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170))) - (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) - (-4 *5 (-13 (-845) (-363))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-685 *3)) + (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) + (-5 *1 (-190)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) + (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) + (-4 *3 (-1209)) (-5 *1 (-294 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) + (-5 *1 (-294 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) + (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) + (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-845) (-363)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1166 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1166 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) - (-4 *4 (-172))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3))))) + (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) + (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) + (-4 *4 (-846)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-641 *1))) + (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767))) + (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) + (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767))) + (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) + (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) + (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-612 (-536))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-846)) + (-4 *4 (-612 (-536))))) + ((*1 *1 *1) + (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-612 (-536))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-846)) + (-4 *3 (-612 (-536))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)) + (-4 *3 (-612 (-536))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) + (-4 *4 (-1094)) (-4 *5 (-1209)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) + (-5 *1 (-1039 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-948 *5)))) + (-5 *2 (-407 (-948 *5))) (-4 *5 (-556)) (-5 *1 (-1039 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) + (-4 *4 (-556)) (-5 *1 (-1039 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) + (-4 *4 (-556)) (-5 *1 (-1039 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) - (-5 *1 (-305))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) - (-5 *2 (-641 (-641 (-641 (-768)))))))) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))) + (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) + (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) - ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) + (-12 (-4 *4 (-13 (-363) (-844))) + (-5 *2 (-2 (|:| |start| *3) (|:| -4322 (-418 *3)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870)) + (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-744))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4))))) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-468)) + (-5 *1 (-1263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263))) + (-5 *2 (-468)) (-5 *1 (-1263))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) - (-4 *2 - (-13 (-402) - (-10 -7 (-15 -1831 (*2 *4)) (-15 -1811 ((-918) *2)) - (-15 -3331 ((-1259 *2) (-918))) (-15 -3962 (*2 *2))))) - (-5 *1 (-356 *2 *4))))) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1114))) + (-5 *1 (-346 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1031)) (-5 *1 (-745))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1426 *1))) - (-4 *1 (-849 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112)))) + (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-564))) + (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) + (-15 -4201 ((-1119 *3 (-610 $)) $)) + (-15 -2322 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *1) (-5 *1 (-1079)))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) - (-5 *2 (-112))))) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-564)))) + ((*1 *2 *3) + (|partial| -12 + (-4 *4 (-13 (-556) (-846) (-1034 *2) (-637 *2) (-452))) + (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-846) (-1034 *2) (-637 *2) (-452))) + (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) + (-4 *6 (-13 (-556) (-846) (-1034 *2) (-637 *2) (-452))) + (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-564)) + (-5 *1 (-1111 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 (-407 (-948 *6)))) + (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-564)) + (-5 *1 (-1111 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1170)) + (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) (((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-430 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *1 *2 *2) + (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3)) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) + (-15 -4201 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -3629 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) - (-5 *1 (-1169))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) - (-4 *4 (-452)) (-5 *1 (-629 *3 *4))))) + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1170)) + (|:| |arrayIndex| (-641 (-948 (-564)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) + (|:| |elseClause| (-330)))) + (|:| |returnBranch| + (-2 (|:| -3282 (-112)) + (|:| -2053 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3213 (-858)))))) + (|:| |blockBranch| (-641 (-330))) + (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) + (|:| |forBranch| + (-2 (|:| -4195 (-1086 (-948 (-564)))) + (|:| |span| (-948 (-564))) (|:| -2433 (-330)))) + (|:| |labelBranch| (-1114)) + (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2433 (-330)))) + (|:| |commonBranch| + (-2 (|:| -2420 (-1170)) (|:| |contents| (-641 (-1170))))) + (|:| |printBranch| (-641 (-858))))) + (-5 *1 (-330))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-700 *3)) + (-4 *3 (-612 (-536)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) + (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3866 (-564)))) (-4 *1 (-430 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) - (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3866 (-888 *3)))) + (-5 *1 (-888 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3866 (-564)))) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) + (-15 -4201 (*7 $)))))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *7 (-896 *6)) + (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) + (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) - ((*1 *1 *1) (-5 *1 (-379))) + (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1007 *2)) (-4 *2 (-1209))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) - (-5 *1 (-745))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-357 *4)))) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1260)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1260)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-846) (-1034 (-564)))) + (-5 *2 (-1260)) (-5 *1 (-256 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) + (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-873 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-873 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) + (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) + (-5 *1 (-260)))) ((*1 *2 *3) - (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-528 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-641 (-263))) + (-5 *2 (-1260)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) + (-5 *1 (-260))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) - (-5 *1 (-332))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) + (-12 (-5 *3 (-1166 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) + (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) + (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) + (-4 *6 (-556))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *3 (-896 *6)) + (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) + (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-556)))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-834))) (-5 *1 (-140))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-363) (-147))) + (-5 *2 (-641 (-2 (|:| -3866 (-767)) (|:| -2965 *4) (|:| |num| *4)))) + (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-846)) + (-5 *1 (-610 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| -1522 *4) (|:| -4129 (-564))))) - (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4))))) + (-12 (-5 *3 (-767)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) - (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) - (-4 *7 (-1209))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3)) - (-4 *3 (-1235 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) - (-4 *2 (-1250 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) - (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) - (-4 *2 (-1250 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) - (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) - (-5 *1 (-1146 *4))))) -(((*1 *2) - (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) - (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) - (-5 *2 - (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-685 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1235 (-564))) - (-5 *2 - (-2 (|:| -3331 (-685 (-564))) (|:| |basisDen| (-564)) - (|:| |basisInv| (-685 (-564))))) - (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3)))) - ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) - (-5 *2 - (-2 (|:| -3331 (-685 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-685 *4)))) - (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) - (-5 *2 - (-2 (|:| -3331 (-685 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-685 *4)))) - (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) + (-12 (-4 *4 (-1045)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) + (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *1 *1) (-4 *1 (-284))) + (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) + (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-917)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) + (-5 *2 (-379)) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) - (-5 *2 (-641 (-2 (|:| -2860 (-768)) (|:| |logand| *4)))) - (-5 *1 (-320 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) - (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3)))) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) - (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) - (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) + (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-973 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) - (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) + (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706))))) +(((*1 *1 *1) + (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) + (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-962 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) + (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) + ((*1 *1 *1 *1) + (-2789 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) + ((*1 *1 *1 *1) (-4 *1 (-363))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-846)) + (-4 *1 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-473))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-713 *4)) + (-4 *3 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4)) + (-4 *2 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) + (-4 *2 (-1045)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-767))) + (-14 *5 (-767)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) + (-4 *4 (-789)) (-14 *6 (-641 *3)) + (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) + (-14 *7 (-641 (-767))) (-14 *8 (-767)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) + (-4 *3 (-842))))) (((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) - (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (|partial| -12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) @@ -11346,3040 +7586,4298 @@ (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-564))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) - (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-774 *4 *5 *6 *3 *7)) - (-4 *3 (-1235 *6)) (-14 *7 (-918)))) + (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) + (-4 *3 (-1235 *6)) (-14 *7 (-917)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *1 (-973 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) + (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (|partial| -4078 - (-12 (-5 *2 (-949 *3)) - (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) - (-4338 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847))) - (-12 (-5 *2 (-949 *3)) - (-12 (-4338 (-4 *3 (-545))) (-4338 (-4 *3 (-38 (-407 (-564))))) + (|partial| -2789 + (-12 (-5 *2 (-948 *3)) + (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) + (-2329 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2329 (-4 *3 (-545))) (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847))) - (-12 (-5 *2 (-949 *3)) - (-12 (-4338 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2329 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847))))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))))) ((*1 *1 *2) - (|partial| -4078 - (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) - (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) + (|partial| -2789 + (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) - (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) + (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) + (|partial| -12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) - (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-660 *4 *5))) + (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-564))))) + (-14 *6 (-917))))) +(((*1 *2 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-685 (-948 *4))) (-5 *1 (-1024 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-610 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) + (-4 *2 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) + (-5 *1 (-663 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-363)) + (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4407)))) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407)))) + (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) + (-5 *1 (-810 *2 *3)) (-4 *3 (-652 *2)))) ((*1 *2 *3) - (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) -(((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162))))) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *2 *3) - (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) - (-4 *3 (-556))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) - (-4 *2 (-1094)))) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2965 *5) (|:| -1866 *5)))) + (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-652 *5)) + (-4 *6 (-652 (-407 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2965 *4) (|:| -1866 *4)))) + (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-652 *4)) + (-4 *6 (-652 (-407 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847)) - (-5 *1 (-1210 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307)) - (-4 *10 (-946 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-641 (-1166 *10))) - (|:| |dterm| - (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) - (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) - (-5 *5 (-641 *10))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) - (-5 *1 (-787 *3)) (-4 *3 (-971)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112)) - (-5 *1 (-1204 *2)) (-4 *2 (-971))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-752))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) - (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2956 *8))) - (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-1101 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2965 *5) (|:| -1866 *5)))) + (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-652 *5)) + (-4 *3 (-652 (-407 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2965 *4) (|:| -1866 *4)))) + (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-652 *4)) + (-4 *3 (-652 (-407 *4)))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1244 *4 *5 *6)) + (|:| |%expon| (-319 *4 *5 *6)) + (|:| |%expTerms| + (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) + (|:| |%type| (-1152)))) + (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) + (-14 *5 (-1170)) (-14 *6 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-701 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-846))) (-5 *2 (-169 *5)) + (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1194))) + (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194)))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) - (-15 -3693 ((-1119 *3 (-610 $)) $)) - (-15 -1831 ($ (-1119 *3 (-610 $))))))))) + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) + (-15 -3948 ((-1264) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) - (-15 -3693 ((-1119 *3 (-610 $)) $)) - (-15 -1831 ($ (-1119 *3 (-610 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *4 (-610 $)) $)) - (-15 -3693 ((-1119 *4 (-610 $)) $)) - (-15 -1831 ($ (-1119 *4 (-610 $))))))) - (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-917))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) + (-5 *1 (-689 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *6 (-1235 *5)) + (-5 *2 (-2 (|:| -3482 *7) (|:| |rh| (-641 (-407 *6))))) + (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) + (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) + (-4 *3 (-1235 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4408 "*"))) + (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-610 *2))) + (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) + (|has| *4 (-6 (-4408 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) + (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) + (-4 *1 (-367 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) + (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1170)) + (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-575 *4 *2)) + (-4 *2 (-13 (-1194) (-955) (-1133) (-29 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *4 (-610 $)) $)) - (-15 -3693 ((-1119 *4 (-610 $)) $)) - (-15 -1831 ($ (-1119 *4 (-610 $))))))) - (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-789)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847)) - (-4 *3 (-1094))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) - (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) - (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 ((-1264) $)) + (-15 -3948 ((-1264) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) + (-4 *2 (-1235 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046)) - (-5 *1 (-1025 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046)) - (-5 *1 (-1025 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1155 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1156 *3))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -3057 (-768)) (|:| |period| (-768)))) - (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) - (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) + (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *6 (-342 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) + (-5 *1 (-914 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) - ((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *2) - (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-685 *3)))) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553))))) -(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) + (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) (((*1 *2 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) - (-5 *1 (-1267 *4)) (-4 *4 (-363))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564))) - (-5 *1 (-330)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) - (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4252 (-641 *9)) (|:| -2956 *4) (|:| |ineq| (-641 *9)))) - (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) - (-4 *4 (-1066 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) - (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4252 (-641 *9)) (|:| -2956 *4) (|:| |ineq| (-641 *9)))) - (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) - (-4 *4 (-1066 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) - (-4 *7 (-790)) + (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-641 - (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) - (|:| |wcond| (-641 (-949 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) - (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) + (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-564)))))) + (-5 *1 (-505 *4 *5)) + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-564)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3342 (-641 *1)))) + (-4 *1 (-367 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-453 *3 *4 *5 *6)) + (|:| -3342 (-641 (-453 *3 *4 *5 *6))))) + (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-373 *3)) + (-4 *3 (-1209))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) + (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-767))) + (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-846)) + (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) + (-5 *1 (-703 *9 *10 *8 *11))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-556)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) - (-4 *7 (-790)) - (-5 *2 - (-641 - (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) - (|:| |wcond| (-641 (-949 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) - (-5 *1 (-921 *5 *6 *7 *8)))) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)) + (-5 *3 (-564))))) +(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) ((*1 *2 *3) - (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) - (-5 *2 - (-641 - (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) - (|:| |wcond| (-641 (-949 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *4)))))))))) - (-5 *1 (-921 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) - (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) - (-4 *8 (-790)) - (-5 *2 - (-641 - (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) - (|:| |wcond| (-641 (-949 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *6)))))))))) - (-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) - (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) - (-5 *2 - (-641 - (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) - (|:| |wcond| (-641 (-949 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *6)))))))))) - (-5 *1 (-921 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) - (-4 *7 (-790)) - (-5 *2 - (-641 - (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) - (|:| |wcond| (-641 (-949 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *5)))))))))) - (-5 *1 (-921 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) - (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) - (-5 *1 (-921 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) - (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) - (-5 *1 (-921 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-946 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) - (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-918)) - (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) - (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) - (-5 *1 (-921 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) - (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) - (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) - (-5 *1 (-921 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *9)) (-5 *4 (-918)) (-5 *5 (-1152)) - (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) - (-5 *1 (-921 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1046)) - (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-768))))) -(((*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971))))) + (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-685 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) + (-12 (-5 *3 (-506)) (-5 *2 (-687 (-770))) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-770)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-961))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) + (-5 *1 (-941 *4 *5)) (-4 *5 (-1235 *4))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-917)) (-4 *4 (-1045)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) + (-4 *3 (-1059 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-641 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) + (-4 *3 (-1059 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) + (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) + (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) + (-4 *6 (-945 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) - (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) - (-5 *1 (-583 *4 *2)) - (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-585 (-407 (-949 *4)))) - (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) - (-5 *2 (-316 *4)) (-5 *1 (-588 *4))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-946 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) - (-4 *1 (-1235 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225)))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) - (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) + (-4 *2 (-1209))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) + (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) + (-4 *5 (-13 (-363) (-844)))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) - (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)) - (-4 *7 (-946 *4 *6 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3)) - (-4 *2 (-1235 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) + (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147))) - (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) - (-5 *1 (-1123 *5)))) + (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) + (-5 *1 (-803 *5 *2 *3 *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) + (-4 *3 (-652 *2)) (-4 *6 (-652 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147))) - (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) - (-5 *1 (-1123 *5))))) + (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) + (-5 *1 (-803 *5 *2 *3 *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) + (-4 *6 (-652 (-407 *2)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-900 *4)) + (-5 *3 (-641 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-900 *4)) + (-5 *3 (-1096 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) + (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) + (-5 *3 (-1170)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-641 (-1170))) + (-5 *1 (-267)))) ((*1 *2 *1) - (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) + (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-641 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) + (-5 *1 (-241)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564))))))) + (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) - (-5 *2 (-641 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) + (-4 *7 (-789)) + (-5 *2 + (-641 + (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (-5 *1 (-920 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-300))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) + (-4 *3 (-13 (-363) (-147)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) - (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847)) - (-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-430 *5)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *5 (-610 $)) $)) - (-15 -3693 ((-1119 *5 (-610 $)) $)) - (-15 -1831 ($ (-1119 *5 (-610 $)))))))))) -(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) - (-5 *1 (-419 *4)))) - ((*1 *1 *1) (-5 *1 (-923))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) - ((*1 *1 *1) (-5 *1 (-924))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) - (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) - (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) - (-4 *3 (-1235 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529))))) + (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *1 (-1206 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-961))) (-5 *1 (-291))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858)))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-846)) + (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) + (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) +(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173))))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) - (-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) - (-4 *2 (-1209))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1046))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174))))) + (-12 (-4 *4 (-789)) + (-4 *5 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *6 (-556)) + (-5 *2 (-2 (|:| -2568 (-948 *6)) (|:| -3357 (-948 *6)))) + (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) - (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-641 (-316 (-225)))) - (|:| -2884 (-641 (-225))))))) - (-5 *2 (-641 (-1152))) (-5 *1 (-267))))) -(((*1 *1) (-5 *1 (-1261)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))) + (-5 *2 (-1031)) (-5 *1 (-305))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-846)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) + (-5 *1 (-1175))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) - (-4 *2 (-1250 *3))))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) + (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) - (-4 *3 (-1209))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) - (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564)) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) + (-5 *1 (-594 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) + (-5 *1 (-918 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4252 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1012 *6 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) + (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) + (|:| |polypart| *6))) + (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1166 *4))) (-5 *1 (-357 *4)) + (-5 *3 (-1166 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) - (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) - (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *2) - (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2956 *7)))) - (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2956 *7)))) - (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) - (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6)))) + (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-945 *3 *5 *4)) + (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170)))) + (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *6 (-13 (-556) (-846))) + (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) + (-4 *5 (-1045)))) + ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) ((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) - (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) - (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-574 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-751))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) - (-14 *4 (-641 *2)) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) - ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) + (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) + (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-407 (-948 *4)))) + (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) + (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| |mdnia| - (-2 (|:| |fn| (-316 (-225))) - (|:| -4133 (-641 (-1088 (-840 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-766)))) + (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1143 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844)) + (-4 *2 (-1143 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194))))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-805)))) + (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 + (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)) + (-4 *3 (-556)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) - (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-641 (-316 (-225)))) - (|:| -2884 (-641 (-225))))))) - (-5 *1 (-838)))) - ((*1 *2 *1) - (-12 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-806 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-2 (|:| -3342 (-641 (-407 *6))) (|:| -4379 (-685 *5)))) + (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 - (-2 (|:| |pde| (-641 (-316 (-225)))) - (|:| |constraints| - (-641 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-768)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) - (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) - (|:| |tol| (-225)))) - (-5 *1 (-895)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2) - (-4078 - (-12 (-5 *2 (-949 *3)) - (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) - (-4338 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847))) - (-12 (-5 *2 (-949 *3)) - (-12 (-4338 (-4 *3 (-545))) (-4338 (-4 *3 (-38 (-407 (-564))))) - (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847))) - (-12 (-5 *2 (-949 *3)) - (-12 (-4338 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) - (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847))))) - ((*1 *1 *2) - (-4078 - (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) - (-12 (-4338 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) - (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) - (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) - (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-806 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-2 (|:| -3342 (-641 (-407 *6))) (|:| -4379 (-685 *5)))) + (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1209))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4)) - (-4 *4 (-13 (-363) (-845)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) - (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225)))) - (-5 *1 (-305))))) -(((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) - (-4 *3 (-644 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) - (-5 *2 (-1166 (-949 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) + (-12 (-5 *3 (-641 (-564))) (-5 *4 (-901 (-564))) + (-5 *2 (-685 (-564))) (-5 *1 (-589)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) - (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) - (-5 *1 (-1252 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) - (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-641 - (-2 (|:| -3531 (-768)) - (|:| |eqns| - (-641 - (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) - (|:| |cols| (-641 (-564)))))) - (|:| |fgb| (-641 *7))))) - (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) - (-5 *1 (-921 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545)))) - ((*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4)) - (-4 *3 (-794 *4)))) - ((*1 *2) - (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4)) - (-4 *3 (-989 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4)) - (-4 *3 (-994 *4)))) - ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009)))) - ((*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768)))) - ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-974 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-1173)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) - (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) - (-4 *7 (-1209)))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) + (-5 *1 (-589)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6)) - (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) + (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-901 (-564)))) + (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-621 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112))) + (-564) *4)) + (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) - (-4 *4 (-13 (-556) (-847))) - (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) - (-5 *1 (-598 *4 *5 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) -(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) -(((*1 *1) (-5 *1 (-1079)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) - (-5 *2 (-1032)) (-5 *1 (-745))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043))))) (((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) + (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1) (-5 *1 (-630)))) +(((*1 *1) (-5 *1 (-330)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) - (-5 *1 (-689 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *6 (-1235 *5)) - (-5 *2 (-2 (|:| -4252 *7) (|:| |rh| (-641 (-407 *6))))) - (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) - (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) - (-4 *3 (-1235 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) - ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)) - (-4 *2 (-1094))))) + (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-886 *4 *5)) (-4 *5 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-847) (-556)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) - (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4))))) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) + (-5 *2 (-641 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *6)) (-4 *7 (-945 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) (-5 *3 (-225)) + (-5 *2 (-1031)) (-5 *1 (-744))))) (((*1 *2 *3) - (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) - (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870)) + (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) + (-5 *1 (-1263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263))) + (-5 *2 (-1260)) (-5 *1 (-1263))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) + (-5 *1 (-179 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 *8)) + (-5 *4 + (-641 + (-2 (|:| -3342 (-685 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-685 *7))))) + (-5 *5 (-767)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) + (-5 *2 + (-2 (|:| -3342 (-685 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-685 *7)))) + (-5 *1 (-498 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1370 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) + (-5 *2 (-641 (-641 (-939 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) + (-4 *1 (-1128 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 (-939 *3)))) (-4 *3 (-1045)) + (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) + (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) + (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) + (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-641 (-939 *5)))) (-5 *3 (-641 (-171))) + (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) - (-4 *5 (-373 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) - (-14 *4 (-918)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046))))) + (-12 (-5 *3 (-564)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) + (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-984 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-1101 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *1)))) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-2 (|:| -3779 (-1150 *4)) (|:| -3792 (-1150 *4)))) + (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) + (-4 *3 (-1065 *4 *5 *6 *2))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-610 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) + (-4 *2 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-610 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) + (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194))) + (-5 *1 (-227 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) + ((*1 *1 *2 *1) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *6 (-238 (-2059 *3) (-767))) + (-14 *7 + (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *6)) + (-2 (|:| -1998 *5) (|:| -3866 *6)))) + (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) + (-4 *2 (-945 *4 *6 (-860 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-680 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) + (-4 *4 (-373 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *2 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-716))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) + (-5 *1 (-965 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-4 *1 (-1106))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) + (-4 *5 (-238 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2)) + (-4 *2 (-945 *3 (-531 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4))) + (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452))))) +(((*1 *2 *1) + (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) + (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) + (-4 *5 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) + (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) + (-4 *7 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) + (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) + (-4 *7 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) + (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) + (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) + (-4 *6 (-13 (-846) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) + (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *7 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) + (-5 *1 (-742))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) + (-4 *6 (-1235 (-407 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-342 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046))))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) + (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-846)) (-5 *1 (-1180 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1057))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) +(((*1 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) + (-4 *4 (-1045)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) + (-4 *3 (-945 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3866 (-767)) (|:| -3139 *3) (|:| |radicand| (-641 *3)))) + (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) + (-4 *8 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *3)) (-15 -4189 (*3 $)) (-15 -4201 (*3 $)))))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-917))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-641 *3)) + (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) + (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5))) + (-14 *6 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *4)) (|:| -3864 (-641 (-948 *4)))))) + (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-948 *4))) + (-14 *5 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) + (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5))) + (-14 *6 (-641 (-1170)))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) - (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) + (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) - (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) + (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *1 *2) + (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) + (-4 *4 (-1209)))) + ((*1 *1 *2) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *5 (-238 (-2059 *3) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *5)) + (-2 (|:| -1998 *2) (|:| -3866 *5)))) + (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) + (-4 *7 (-945 *4 *5 (-860 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1235 (-169 *3)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-641 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))) + (-5 *1 (-559)))) + ((*1 *2 *1) + (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-641 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-641 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225))))) + (-5 *1 (-799))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) - (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6))))) + (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-905))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1034 (-564))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) + (-5 *1 (-1154 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-641 *11)) + (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2244 *11)))))) + (-5 *6 (-767)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2244 *11)))) + (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9)) + (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-641 *11)) + (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2244 *11)))))) + (-5 *6 (-767)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2244 *11)))) + (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9)) + (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-5 *1 (-1139 *7 *8 *9 *10 *11))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) - (-5 *2 (-2 (|:| -1558 (-768)) (|:| -2860 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3))))) + (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1235 *3))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-899 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1235 *4)) + (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) + (-4 *3 (-644 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) + (-4 *3 (-644 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))) +(((*1 *2) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) + (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-858)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-958))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-752))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) + (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1259 (-767))) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-767)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-846)) + (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) + (-4 *8 (-945 *3 *7 *6))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2777 (-779 *3)) (|:| |coef1| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-2 (|:| -3235 (-778 *3)) (|:| |coef1| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-2 (|:| -2777 *1) (|:| |coef1| *1))) - (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3235 *1) (|:| |coef1| *1))) + (-4 *1 (-1059 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466))))) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) - (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) - (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) - (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1235 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) (((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) - (-5 *1 (-755))))) + (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-917)) + (-5 *1 (-909 *4 *5)) (-4 *5 (-1235 (-407 *4)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2)) - (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -1831 ($ *6)) (-15 -3678 (*6 $)) - (-15 -3693 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) - (-5 *2 (-1170)) (-5 *1 (-1040 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3)) - (-4 *3 (-946 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *2 (-685 (-407 (-949 *4)))) - (-5 *1 (-921 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) - (-5 *1 (-921 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) - (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) - ((*1 *2 *3) - (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) + (-12 (-5 *2 - (-641 - (-2 (|:| -3331 (-685 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-685 *6))))) - (-5 *1 (-498 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3331 (-685 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-685 *6)))) - (-4 *7 (-1235 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) -(((*1 *2 *3) + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4) (-12 - (-5 *3 - (-641 - (-2 (|:| -3531 (-768)) - (|:| |eqns| - (-641 - (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) - (|:| |cols| (-641 (-564)))))) - (|:| |fgb| (-641 *7))))) - (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) - (-5 *1 (-921 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-685 (-407 (-949 (-564))))) - (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)) - (-5 *3 (-316 (-564)))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) - (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918)))) - ((*1 *2 *3) - (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) - (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) - (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918))))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) - ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) - (-4 *4 (-1235 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) - (-4 *3 (-847)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)) - (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) - (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) - (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768)) - (-5 *1 (-908 *4 *5 *6 *7 *8)))) + (-5 *2 + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) + (-5 *4 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-407 (-564))) + (-5 *2 (-641 (-2 (|:| -4237 *5) (|:| -4250 *5)))) (-5 *1 (-1016 *3)) + (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -4237 *5) (|:| -4250 *5))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) - (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) - (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768)) - (-5 *1 (-909 *4 *5 *6)))) + (-12 + (-5 *2 + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))) + (-5 *4 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-564))) + (-5 *2 (-641 (-2 (|:| -4237 *4) (|:| -4250 *4)))) (-5 *1 (-1017 *3)) + (-4 *3 (-1235 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) - (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) - (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768)) - (-5 *1 (-1015 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)) - (-5 *2 (-768)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) + (-12 (-5 *5 (-407 (-564))) + (-5 *2 (-641 (-2 (|:| -4237 *5) (|:| -4250 *5)))) (-5 *1 (-1017 *3)) + (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -4237 *5) (|:| -4250 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) + (-5 *2 + (-3 (-1166 *4) + (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114))))))) + (-5 *1 (-346 *4)) (-4 *4 (-349))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-4 *1 (-404)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) ((*1 *2 *1) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847))) - (-5 *1 (-1124 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) - (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) - (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) + (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) + (-4 *5 (-1209)) (-5 *1 (-886 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-888 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) + (-4 *5 (-1209)) (-5 *1 (-886 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-888 *5)) (-5 *3 (-641 (-1170))) + (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) + (-5 *1 (-886 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-846)) + (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-846)) + (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) + (-5 *2 (-316 (-564))) (-5 *1 (-934 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) + (-5 *2 (-316 (-564))) (-5 *1 (-934 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) + (-4 *6 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) + (-5 *1 (-1070 *4 *5 *6))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1272 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) - (-4 *2 (-683 *3 *4 *5))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-585 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) - (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) - (-5 *1 (-785))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) - (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) - (-15 -3693 ((-1119 *3 (-610 $)) $)) - (-15 -1831 ($ (-1119 *3 (-610 $)))))))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) - (-5 *2 (-1032)) (-5 *1 (-744))))) + (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *1) + (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *6)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1370 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) + (-5 *3 (-407 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-574 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1264))))) +(((*1 *1 *1) (-5 *1 (-1169))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) (((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-13 (-847) (-556)))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) - (-5 *1 (-693))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) - (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) - (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *1) (-5 *1 (-799)))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -2420 (-1152)))) + (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) - (-4 *3 (-13 (-430 *4) (-999)))))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-612 (-1170))) + (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *2 (-1159 (-641 (-948 *4)) (-641 (-294 (-948 *4))))) + (-5 *1 (-504 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) - (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) - (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) - (-4 *4 (-13 (-845) (-307) (-147) (-1019))) - (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) - (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) - (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6)) - (-5 *3 (-641 (-685 *6))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))) + (-5 *1 (-799))))) +(((*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2322 ($ *7))))) + (-4 *7 (-844)) + (-4 *8 + (-13 (-1237 *3 *7) (-363) (-1194) + (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) + (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8)) + (-14 *10 (-1170))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) + (-4 *3 (-1209))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) + (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) + (-5 *1 (-1071 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) + (-5 *1 (-1123 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046)) - (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4)) - (-5 *3 (-641 (-685 *4))))) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) + (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) - (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) - (-5 *3 (-641 (-685 *5))))) + (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) + (-5 *1 (-1123 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 (-407 (-948 *4)))) + (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) + (-5 *1 (-1123 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) - (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) - (-5 *3 (-641 (-685 *5)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) - (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1) (-5 *1 (-859))) + (-12 (-5 *3 (-641 (-407 (-948 *4)))) + (-4 *4 (-13 (-307) (-846) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-294 (-407 (-948 *5))))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046))))) + (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) + (-4 *4 (-13 (-307) (-846) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) - (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5)) - (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4)) - (-4 *4 (-1094)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) - (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5)) - (-5 *1 (-928 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) - (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $)))) - (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5))) - (-5 *1 (-929 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545)) - (-5 *1 (-930 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) - (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5))) - (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) - (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3))) - (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6)) - (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4))) - (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6))) - (-5 *1 (-933 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) - (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5)) - (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *8 (-13 (-1046) (-847) (-883 *5))) - (-5 *1 (-933 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6)) - (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5)) - (-5 *1 (-936 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5)) - (-4 *5 (-1094)) (-5 *1 (-937 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9))) - (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094)) - (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8))) - (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847))) - (-5 *1 (-938 *7 *8 *9))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1031)) (-5 *1 (-745)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -1491 (-564)) (|:| -4322 (-641 *3)))) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) - (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) - ((*1 *1) (-5 *1 (-330)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))) -(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1094)) + (-5 *1 (-674 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) + (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -4379 (-685 *5)) (|:| |vec| (-1259 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1045)) + (-5 *2 (-685 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) - (-5 *2 - (-641 - (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) - (|:| |eigmult| (-768)) - (|:| |eigvec| (-641 (-685 (-407 (-949 *4)))))))) - (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871)))) - ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) - (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) - (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-450 *4 *5 *6 *2)))) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4)))) + (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) + (-5 *2 (-767))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2244 *9)))) + (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) + (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2244 *9)))) + (-5 *1 (-1066 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 - (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) - (-5 *1 (-975 *6)) (-5 *3 (-685 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1170)) - (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) - (-4 *2 (-1046))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) - (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) - (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-330))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-556))) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) - (-4 *4 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) + (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) - (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) - (-5 *1 (-1070 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1094)) - (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) - (-5 *1 (-1070 *3 *4 *2)) - (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452))))) -(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3777 *6) (|:| |sol?| (-112))) (-564) - *6)) - (-4 *6 (-363)) (-4 *7 (-1235 *6)) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 - (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) - (-2 (|:| -3521 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917))))) -(((*1 *1) - (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) - (-4 *4 (-662 *3)))) - ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) - (-4 *2 (-13 (-847) (-21)))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) - (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) - (-4 *1 (-1066 *4 *5 *6 *3))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) - (-4 *2 (-1235 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859))))) + (-2 (|:| -3866 (-767)) (|:| -3139 *5) (|:| |radicand| (-641 *5)))) + (-5 *1 (-320 *5)) (-5 *4 (-767)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-564))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) - (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768)))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) - (-14 *4 (-564))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-750))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) - (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4)))))) -(((*1 *1) (-5 *1 (-157)))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) - (-4 *3 (-1060 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2777 *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) - (-14 *4 (-768)) (-4 *5 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556))) - (-5 *2 (-859)) (-5 *1 (-32 *4 *5))))) + (-12 (-4 *1 (-835)) + (-5 *3 + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-839 (-225)))))) + (-5 *2 (-1031)))) + ((*1 *2 *3) + (-12 (-4 *1 (-835)) + (-5 *3 + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) + (-5 *2 (-1031))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *3 (-948 (-564))) + (-5 *1 (-330)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *1 (-330))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) - (-4 *3 (-556)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) - (-4 *3 (-1094)))) + (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-174 (-564))) (-5 *1 (-761 *3)) (-4 *3 (-404)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) - (-4 *3 (-1094)))) + (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-867 *3)) (-14 *3 (-564)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) + (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) + (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) + (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) + (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) + (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) + (-5 *1 (-572)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) + (-4 *1 (-905))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) + (-4 *4 (-846)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-846))))) +(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) + (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3482 (-641 *9)) (|:| -2244 *4) (|:| |ineq| (-641 *9)))) + (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) + (-4 *4 (-1065 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) + (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3482 (-641 *9)) (|:| -2244 *4) (|:| |ineq| (-641 *9)))) + (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) + (-4 *4 (-1065 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) - (-4 *3 (-1035 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) - (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845)))))) -(((*1 *1 *1) (-5 *1 (-1058)))) -(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) - (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) - (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084))))) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) + (-12 (-4 *4 (-1094)) (-4 *2 (-896 *4)) (-5 *1 (-688 *4 *2 *5 *3)) + (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4406))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) - (-4 *2 (-670 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-768)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-768)) (-4 *5 (-172)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) - (-247 *4 (-407 (-564))))) - (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) + (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926))))) +(((*1 *2 *1) (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3840 (-641 (-2 (|:| |irr| *10) (|:| -1874 (-564))))))) - (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307)) - (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790)) - (-5 *2 - (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) - (|:| |corrfact| (-641 (-1166 *3))))) - (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3)))))) + (-5 *2 (-2 (|:| -1513 (-114)) (|:| |arg| (-641 (-888 *3))))) + (-5 *1 (-888 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-888 *4))) + (-5 *1 (-888 *4)) (-4 *4 (-1094))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) + (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *2) - (-12 + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-330))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) + (-14 *3 (-641 (-1170))))) + ((*1 *1 *1) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))) + ((*1 *1 *1) + (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) + (-4 *5 (-238 (-2059 *2) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *4) (|:| -3866 *5)) + (-2 (|:| -1998 *4) (|:| -3866 *5)))) + (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) + (-4 *7 (-945 *3 *5 (-860 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))) + ((*1 *1 *1) + (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1) + (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) + (-4 *3 (-722)))) + ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) + (-5 *1 (-723 *5 *2)) (-4 *5 (-363))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) + (-4 *7 (-789)) (-5 *2 (-641 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) - (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4)) - (-4 *4 (-1046)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264)) - (-5 *1 (-1261))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) - (-5 *1 (-399 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) + (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) + (-4 *7 (-789)) (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) + (-5 *1 (-920 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) + (|:| |wcond| (-641 (-948 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *4)))))))))) + (-5 *1 (-920 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) + (-12 (-5 *3 (-685 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) + (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) + (-4 *8 (-789)) (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + (-641 + (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) + (|:| |wcond| (-641 (-948 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *6)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *6)))))))))) + (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-917)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) + (|:| |wcond| (-641 (-948 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *6)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *6)))))))))) + (-5 *1 (-920 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) + (-4 *7 (-789)) (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2)) - (-4 *2 (-430 *4)))) + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *5)))))))))) + (-5 *1 (-920 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) + (-5 *1 (-920 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) + (-5 *1 (-920 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) - (-5 *1 (-927))))) -(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) - (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) - (-5 *2 (-112))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-685 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) + (-4 *7 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-917)) + (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) + (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564)) + (-5 *1 (-920 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-917)) + (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) + (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564)) + (-5 *1 (-920 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-917)) (-5 *5 (-1152)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) + (-5 *1 (-920 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) + (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *5)) + (-4 *5 (-1235 (-407 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2)) - (-4 *2 (-644 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) - (-5 *1 (-296))))) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1045)) + (-5 *1 (-1154 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-945 *3 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2595 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) + (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) + (-14 *4 (-989 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *1) (|partial| -4 *1 (-718))) + ((*1 *1 *1) (|partial| -4 *1 (-722))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) + (-4 *2 (-1235 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2059 *3) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *4) (|:| -3866 *5)) + (-2 (|:| -1998 *4) (|:| -3866 *5)))) + (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) + (-4 *7 (-945 *2 *5 (-860 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) + (-4 *3 (-722)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) + (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846))))) +(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3))))) +(((*1 *2) + (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-1166 *3)))) + ((*1 *2) + (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-917))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4095 *1))) + (-4 *1 (-848 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-564))))) + (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 + (-2 (|:| |solns| (-641 *5)) + (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-473))) + ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-879)))) + ((*1 *1 *1) (-5 *1 (-967))) + ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) + ((*1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *6 (-238 (-2059 *3) (-767))) + (-14 *7 + (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *6)) + (-2 (|:| -1998 *5) (|:| -3866 *6)))) + (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) + (-4 *3 (-1045)))) + ((*1 *1 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *4 (-846))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))) + (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1235 (-169 *3)))))) + (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-888 *6))) + (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1094)) + (-4 *8 (-13 (-1045) (-612 (-888 *6)) (-1034 *7))) + (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) + (-5 *1 (-937 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) + (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) + (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) + (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) + (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -3235 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-641 (-1170))) + (-5 *2 + (-641 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-970))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) + (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) - (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1094)) - (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) - (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-846)) + (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) - (-5 *2 (-112)) (-5 *1 (-455 *3 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) - (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) - (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) + (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) + (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) + (-641 + (-2 + (|:| -3076 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2511 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4195 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-559))))) +(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) + (-5 *1 (-1272 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) + (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) + (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) + (-5 *1 (-1272 *6 *7 *8 *9))))) +(((*1 *1 *1) (-4 *1 (-243))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-2789 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) + ((*1 *1 *1) (-4 *1 (-473))) + ((*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) + (-4 *4 (-38 (-407 (-564))))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |done| (-641 *4)) - (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))))) - (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) + (-5 *1 (-693)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) + (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693))))) (((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) + (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133))) ((*1 *1 *1 *1) (-4 *1 (-1133)))) (((*1 *2 *3) - (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) - (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) - (-5 *2 (-1032)) (-5 *1 (-837))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564)) - (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) - (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))))) + (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) + (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) (-5 *2 (-112)) + (-5 *1 (-907 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1235 *4)) - (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) + (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) + (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-908 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *1 *1) (-4 *1 (-865 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *1 *1) + (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) +(((*1 *1) + (-12 (-4 *1 (-404)) (-2329 (|has| *1 (-6 -4397))) + (-2329 (|has| *1 (-6 -4389))))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))) + ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846))) + ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) - (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-407 (-949 (-564))))) - (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-845) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564)))))) - (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-845) (-363))))) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4)))) - (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) + (-12 (-5 *4 (-407 (-564))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-949 (-564))))) - (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-845) (-363))))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1170)) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-4 *4 (-13 (-29 *6) (-1194) (-956))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3331 (-641 *4)))) - (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) - (-4 *2 (-13 (-29 *6) (-1194) (-956))) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1259 *5) "failed")) - (|:| -3331 (-641 (-1259 *5))))) - (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1259 *5) "failed")) - (|:| -3331 (-641 (-1259 *5))))) - (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) - (-5 *2 - (-641 - (-2 (|:| |particular| (-3 (-1259 *5) "failed")) - (|:| -3331 (-641 (-1259 *5)))))) - (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) - (-5 *2 - (-641 - (-2 (|:| |particular| (-3 (-1259 *5) "failed")) - (|:| -3331 (-641 (-1259 *5)))))) - (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3331 (-641 *4)))) - (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) - (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4407)))) - (-5 *2 - (-641 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3331 (-641 *7))))) - (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) - (-4 *3 (-683 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) + (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) + (-4 *8 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) + (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) + (-4 *8 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1045)) (-4 *1 (-1242 *4 *3)) + (-4 *3 (-1219 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-757)))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) + (-5 *1 (-190))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) - (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) - (-4 *7 (-13 (-29 *6) (-1194) (-956))) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1259 *7)) (|:| -3331 (-641 (-1259 *7))))) - (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7)))) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) + ((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) (-4 *1 (-865 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *4 (-846))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-846))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) ((*1 *1) (-4 *1 (-545))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-641 (-225))) + (-5 *1 (-468))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-821))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) + (-14 *4 (-1170)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -2322 ($ *4))))) + (-4 *4 (-844)) + (-4 *5 + (-13 (-1237 *2 *4) (-363) (-1194) + (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $))))) + (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) - (-4 *6 (-13 (-29 *5) (-1194) (-956))) - (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) - (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1259 *7)) (|:| -3331 (-641 (-1259 *7))))) - (-5 *1 (-799 *6 *7)))) + (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-637 *4))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) - (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1259 *7)) (|:| -3331 (-641 (-1259 *7))))) - (-5 *1 (-799 *6 *7)))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 *5) (-637 *5))) (-5 *5 (-564)) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) - (-4 *7 (-13 (-29 *6) (-1194) (-956))) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) + (-4 *7 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-564)) (-4 *4 (-1045)) (-4 *1 (-1221 *4 *3)) + (-4 *3 (-1250 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-753))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3331 (-641 *7))) *7 "failed")) - (-5 *1 (-799 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1170)) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-839 (-225)))))) + (-5 *1 (-267))))) +(((*1 *1 *2) + (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) + (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) + (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) + (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3331 (-641 *3))) *3 "failed")) - (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) - (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2)) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) - (-4 *2 (-13 (-29 *6) (-1194) (-956))) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-799 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) - (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) - (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) - (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3331 (-641 *6))) "failed") - *7 *6)) - (-4 *6 (-363)) (-4 *7 (-652 *6)) - (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -3331 (-685 *6)))) - (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) - (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) - (-5 *2 (-1032)) (-5 *1 (-894)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) - (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) - (-5 *1 (-894)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379))) - (-5 *1 (-1020)) (-5 *4 (-379)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) - (-5 *4 (-379)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) - (-5 *3 (-316 *4)))) + (-2 (|:| -3823 (-767)) (|:| |curves| (-767)) + (|:| |polygons| (-767)) (|:| |constructs| (-767))))))) +(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) + ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) - (-5 *3 (-294 (-316 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) - (-5 *3 (-294 (-316 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) - (-5 *3 (-316 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-1170))) - (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) - (-5 *3 (-641 (-294 (-316 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) - (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) - (-5 *1 (-1178 *5)))) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)) - (-5 *3 (-641 (-294 (-407 (-949 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556)) - (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) - (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4))))))) + (-12 (-5 *4 (-767)) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-4 *5 (-556)) - (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) - (-5 *3 (-407 (-949 *5))))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-4 *5 (-556)) - (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) - (-5 *3 (-294 (-407 (-949 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) - (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4))))) + (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-767))) + (-4 *7 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-767))) + (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-846)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) + (-5 *3 (-641 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-961))) (-5 *1 (-109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) + (-5 *1 (-583 *4 *2)) + (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))))) ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) - (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4))))))) + (-12 (-5 *3 (-585 (-407 (-948 *4)))) + (-4 *4 (-13 (-452) (-1034 (-564)) (-846) (-637 (-564)))) + (-5 *2 (-316 *4)) (-5 *1 (-588 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) + (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-685 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) + (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) + (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) + (-4 *5 (-1235 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) - (-4 *7 (-790)) - (-5 *2 - (-641 - (-2 (|:| -3531 (-768)) - (|:| |eqns| - (-641 - (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) - (|:| |cols| (-641 (-564)))))) - (|:| |fgb| (-641 *8))))) - (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-954 *3)) (-5 *1 (-1157 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032)) - (-5 *1 (-747))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1194) (-29 *6))) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-224 *6 *4))))) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) + (-5 *1 (-1154 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-1170)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) - (-5 *2 (-2 (|:| -1586 (-621 *4 *5)) (|:| -3293 (-407 *5)))) - (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))) + (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) + (-4 *4 (-1094)) (-4 *5 (-1094))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-741))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) - (-14 *3 (-918)) (-4 *4 (-1046)))) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) + (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) + ((*1 *1 *1 *1) (-4 *1 (-789)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1045)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-945 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-452)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1235 *3))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-752)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) - (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) - (-5 *3 (-641 (-564)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1045)) + (-4 *7 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) + (-4 *6 (-1235 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) + (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) + (-4 *6 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) + (-5 *2 (-112)) (-5 *1 (-663 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) (-5 *2 (-112)) + (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) + (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) + (-4 *3 (-342 *5 *2 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2) + (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) + (-14 *3 (-917)) (-14 *4 (-917))))) +(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-5 *2 (-641 *3)) (-5 *1 (-920 *4 *5 *6 *3)) + (-4 *3 (-945 *4 *6 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170)) - (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300))))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-564) + *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) + (-5 *1 (-926))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-815 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-876))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) + (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1170)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-641 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1370 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1194) (-27) (-430 *8))) + (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-637 *3))) + (-5 *3 (-564)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1009 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2244 *4)))) + (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 - (-641 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-564))))) - (-4 *2 (-556)) (-5 *1 (-418 *2)))) + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) + (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-564)) - (|:| -3840 (-641 (-2 (|:| |irr| *4) (|:| -1874 (-564))))))) - (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) - (-5 *2 (-112)))) + (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-641 *5)) + (-5 *1 (-321 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-387)))) ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) - (-4 *4 (-1235 *3)))) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-641 (-1170))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) - (-4 *4 (-723)))) + (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) ((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) - (-5 *1 (-901 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) + (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-641 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *5)) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-4 *5 (-846)) (-5 *2 (-641 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) + (-5 *1 (-1039 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-967))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) + (-5 *1 (-296))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *3 *5)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) + (-4 *5 (-652 (-407 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *5 *3)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-652 *2)) + (-4 *3 (-652 (-407 *2)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))) +(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-641 (-641 (-939 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-641 (-641 (-939 (-225)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) (((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) + (-12 (-5 *2 (-2 (|:| -2839 (-641 *3)) (|:| -1935 (-641 *3)))) + (-5 *1 (-1210 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *2 (-556)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-556))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) + (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-767))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) + (-5 *1 (-965 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) + (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4406) (-6 -4407)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) + (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4406) (-6 -4407))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) (((*1 *2 *3) - (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) - (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112)) - (-5 *1 (-908 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) - (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) - (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-909 *4 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-758)))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545))) - ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *1 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *2 (-452)))) ((*1 *1 *1) - (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) - (-4 *3 (-13 (-1094) (-34)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) - (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4406)) - (-4 *1 (-151 *2)) (-4 *2 (-1209)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) - (-4 *2 (-1209)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) - (-4 *2 (-1209)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1046)) - (-5 *2 (-2 (|:| -3194 (-1166 *4)) (|:| |deg| (-918)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) - (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847)))) + (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) + (-4 *4 (-1235 (-407 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-452)))) ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) - (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) - (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) - (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) - ((*1 *1 *1) (-5 *1 (-495))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) - (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046)) - (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) - (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) + (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) + (-4 *2 (-1235 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) + (-4 *2 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) + (-12 (-5 *2 (-1166 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *3 (-846)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) - (-4 *3 (-172)) (-4 *1 (-721 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) - (-4 *2 (-1209)) (-5 *1 (-954 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) - (-14 *6 (-641 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046)) - (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) - (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790)) - (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) - (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843))))) -(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) - ((*1 *1 *1 *1) (-4 *1 (-790)))) -(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3)) - (-4 *3 (-946 *4 *6 *5))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) + (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) + (-4 *5 (-789)) (-4 *3 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-789)) (-4 *4 (-846)) + (-4 *6 (-1045)) + (-4 *2 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))) + (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-1166 (-407 (-948 *5))))) (-5 *4 (-1170)) + (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-556))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) + (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) + (-5 *2 (-685 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) + (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) + (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-641 + (-2 (|:| -3482 (-641 *9)) (|:| -2244 *10) (|:| |ineq| (-641 *9))))) + (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-641 + (-2 (|:| -3482 (-641 *9)) (|:| -2244 *10) (|:| |ineq| (-641 *9))))) + (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4195 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-559))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) + (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) + (-4 *6 (-238 (-2059 *4) (-767))) + (-14 *7 + (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *6)) + (-2 (|:| -1998 *5) (|:| -3866 *6)))) + (-14 *4 (-641 (-1170))) (-4 *2 (-172)) + (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) + (-4 *4 (-1235 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) + (-4 *2 (-846)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6)) + (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *2 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-969 *4 *5 *6)) + (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) + (-4 *2 (-846))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-4 *5 (-846)) (-5 *2 (-112))))) (((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-641 (-263))) + (-5 *1 (-261)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) + (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) + (-5 *1 (-629 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) + (-5 *2 (-641 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) + (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-307)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4095 *1))) + (-4 *1 (-307))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-950))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) + (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3235 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) (((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) -(((*1 *1 *2 *3) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) - (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) - ((*1 *2 *1) - (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) - (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847)) - (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10)) - (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5)) - (-5 *3 (-1166 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) - (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549)))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) + (-4 *3 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) + (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939))))) -(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) + (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) + (-4 *4 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) + (-4 *4 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))) (((*1 *2 *3) - (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))) + (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) + (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) + (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *2 (-1264)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1170)) + (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *2 (-1264)) + (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))))) - (-5 *2 (-1032)) (-5 *1 (-305)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2620 (-379)) (|:| -1316 (-1152)) - (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) - (-5 *2 (-1032)) (-5 *1 (-305))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) - (-4 *3 (-1209)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4407)) (-4 *1 (-119 *3)) - (-4 *3 (-1209)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) - (-4 *2 (-1209)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4407)) (-4 *1 (-647 *2)) - (-4 *2 (-1209)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4407)) (-4 *1 (-1007 *2)) - (-4 *2 (-1209)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) - (-4 *2 (-1209)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) - (-4 *3 (-1209)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4407)) (-4 *1 (-1247 *2)) - (-4 *2 (-1209))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) + (-4 *4 (-905)) (-5 *1 (-659 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1209)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-670 *4))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) + (-4 *2 (-1235 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-641 *3)) (-5 *5 (-917)) (-4 *3 (-1235 *4)) + (-4 *4 (-307)) (-5 *1 (-460 *4 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1170)) + (-5 *5 (-839 *7)) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-839 *6)) + (-4 *6 (-13 (-1194) (-29 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-224 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-349)) + (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3840 (-641 (-2 (|:| |irr| *3) (|:| -1874 (-564))))))) - (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) + (-3 (-839 *3) + (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) + (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) + "failed")) + (-5 *1 (-634 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-839 *3)) (-5 *1 (-634 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) + (-5 *2 + (-3 (-839 (-407 (-948 *5))) + (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) + "failed")) + (-5 *1 (-635 *5)) (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-452)) + (-5 *2 + (-3 (-839 *3) + (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) + (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) + "failed")) + (-5 *1 (-635 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1152)) + (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) + (-5 *1 (-635 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) + (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| -1370 (-407 *5)) (|:| |coeff| (-407 *5)))) + (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) + (-15 -4201 ((-1119 *3 (-610 $)) $)) + (-15 -2322 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-888 *4)) + (-4 *4 (-1094))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-918)) - (-5 *2 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032)) - (-5 *1 (-743))))) + (-12 (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-2 (|:| -3639 (-1150 *4)) (|:| -3650 (-1150 *4)))) + (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) - (-4 *4 (-1209)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) - (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -1565 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4))))) + (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) + (-4 *3 (-1235 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *1) (-5 *1 (-1260)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-131))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1209)) (-5 *2 (-1264))))) -(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) - (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) - (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-2 (|:| -3521 *3) (|:| |coeff| *3))) - (-5 *1 (-557 *7 *3))))) -(((*1 *1) (-5 *1 (-820)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175))))) + (-12 (-5 *2 (-858)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) + (-4 *3 (-1209))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 *4)))) + (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) + (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-799))))) +(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5))) + (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) - (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564)))))) + (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-294 (-407 (-948 (-169 (-564))))))) + (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-169 (-564))))) + (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-948 (-169 (-564)))))) + (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) + (-4 *4 (-846)) (-5 *1 (-573 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152)))) - ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1170)) - (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) - (-5 *2 - (-2 (|:| -3521 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5))))) - (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) - (-4 *5 (-363)) (-5 *1 (-920 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) - (-5 *1 (-920 *4 *5)) (-14 *4 (-1170)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363)) - (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) - (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) - (-5 *1 (-1252 *4 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6)))) - (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6))))) - (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6)))))) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) + (-5 *1 (-810 *4 *5)) (-4 *5 (-652 *4)))) ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) - (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4)))) - (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) - (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5))))))) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-363)) + (-5 *2 (-685 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-652 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) + ((*1 *1 *1) (-5 *1 (-1260)))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) + ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) - (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) - (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) - (-5 *2 (-2 (|:| -2155 (-768)) (|:| -2609 *8))) - (-5 *1 (-908 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-938))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) + (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-14 *6 (-1170)) (-14 *7 *3)))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) - (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) - (-4 *6 (-342 (-407 (-564)) *4 *5)) - (-5 *2 (-2 (|:| -2155 (-768)) (|:| -2609 *6))) - (-5 *1 (-909 *4 *5 *6))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-564))))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391))))) +(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-1094))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1170)) - (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) (-5 *1 (-1173))))) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) + (-4 *2 (-846)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4407)) + (-4 *1 (-373 *3)) (-4 *3 (-1209))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2595 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-844)) (-4 *5 (-363)) + (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1235 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) - (-5 *1 (-745))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589))))) -(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) - (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(((*1 *1) - (-12 (-4 *1 (-404)) (-4338 (|has| *1 (-6 -4397))) - (-4338 (|has| *1 (-6 -4389))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847)))) - ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847)))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) - (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-685 (-407 (-949 (-564))))) - (-5 *2 - (-641 - (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) - (|:| |radvect| (-641 (-685 (-316 (-564)))))))) - (-5 *1 (-1028))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-307)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) - (-5 *1 (-386 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4347 (-768)) (|:| -1678 (-768)))) - (-5 *1 (-768)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3190 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) + (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))) +(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1060)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -2394 (-685 (-407 (-949 *4)))) - (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -3531 (-768)) - (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) - (-4 *6 (-790)) + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-767))) (-5 *6 (-767)) (-5 *2 - (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) - (|:| -3331 (-641 (-1259 (-407 (-949 *4))))))) - (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5))))) + (-2 (|:| |contp| (-564)) + (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1209)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) + (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-945 *6 *4 *5)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-5 *1 (-321 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-847) (-556)))))) + (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) + (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-961)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) + ((*1 *1 *1) (-5 *1 (-1170)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1250 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) + (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1250 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) + (-5 *1 (-1146 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) - (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260))))) +(((*1 *1) (-5 *1 (-1079)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-316 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-685 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1244 *4 *5 *6)) - (|:| |%expon| (-319 *4 *5 *6)) - (|:| |%expTerms| - (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) - (|:| |%type| (-1152)))) - (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) - (-14 *5 (-1170)) (-14 *6 *4)))) + (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))) (((*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1170)) - (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-575 *4 *2)) - (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4)))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3331 (-641 *1)))) - (-4 *1 (-367 *3)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) + (-4 *2 (-13 (-846) (-21)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-846))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) + (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1231 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-820)) (-5 *3 (-641 (-1170))) (-5 *1 (-821))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-556)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-718))) + ((*1 *1) (-4 *1 (-722))) + ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) + ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-316 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1034 (-564))) (-4 *3 (-13 (-846) (-556))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) + ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) + ((*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) + (-4 *2 (-1235 *3))))) +(((*1 *2 *3) (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |particular| (-453 *3 *4 *5 *6)) - (|:| -3331 (-641 (-453 *3 *4 *5 *6))))) - (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4195 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-559))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *2 (-1031)) (-5 *1 (-305)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) + (-5 *2 (-1031)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) - (-4 *3 (-556)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3)) - (-4 *3 (-1066 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305))))) (((*1 *2 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) - (-5 *1 (-1154 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) - (-14 *4 (-1170)) (-14 *5 *3)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) - (-4 *1 (-1066 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1133)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) + (-5 *2 (-767))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-536))) + ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) + (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045)) + (-5 *3 (-564))))) (((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) - (-14 *4 (-918))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1194) (-430 *4))))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) + ((*1 *1 *1) (-4 *1 (-998))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1008)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1008)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) + ((*1 *1 *1) (-4 *1 (-1008)))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) + ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3342 (-641 *6))) + *7 *6)) + (-4 *6 (-363)) (-4 *7 (-652 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1259 *6) "failed")) + (|:| -3342 (-641 (-1259 *6))))) + (-5 *1 (-809 *6 *7)) (-5 *4 (-1259 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) + (-4 *5 (-1034 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-430 *5)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *5 (-610 $)) $)) + (-15 -4201 ((-1119 *5 (-610 $)) $)) + (-15 -2322 ($ (-1119 *5 (-610 $)))))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-846)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-846)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-564))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) + (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1094)) + (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-612 (-888 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -1904)) (-5 *2 (-112)) (-5 *1 (-615)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3314)) (-5 *2 (-112)) (-5 *1 (-615)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3246)) (-5 *2 (-112)) (-5 *1 (-615)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3259)) (-5 *2 (-112)) (-5 *1 (-687 *4)) + (-4 *4 (-611 (-858))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-858))) (-5 *2 (-112)) + (-5 *1 (-687 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1235 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) + (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) + (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) + (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1235 (-169 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) - (-4 *7 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) - (-4 *3 (-13 (-27) (-1194) (-430 *7))) - (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) - (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) - (-4 *8 (-13 (-27) (-1194) (-430 *7))) - (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) - (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) - (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) - (-4 *3 (-1046)) (-5 *1 (-594 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) - (-4 *3 (-1046)) (-4 *1 (-1219 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-768)) - (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) - (-4 *4 (-1046)) (-4 *1 (-1240 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3)))) - (-4 *3 (-1046)) (-4 *1 (-1250 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2) - (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) - (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) - (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918)) - (-5 *2 (-1264)) (-5 *1 (-468)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918)) - (-5 *2 (-1264)) (-5 *1 (-468))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2) - (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) - (-4 *4 (-1235 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)) - (-5 *1 (-1171 *4)))) + (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) + (-5 *3 (-169 (-564))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-4 *5 (-789)) (-4 *7 (-556)) (-5 *2 (-418 *3)) + (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) + (-4 *3 (-945 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) + (-5 *3 (-1166 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) - (-4 *3 (-1046))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) - ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466))))) -(((*1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) - (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) - (-5 *1 (-397)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) - (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) - (-5 *1 (-397)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) - (-5 *2 (-1098)) (-5 *1 (-397))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) + (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) + (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) + (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) + (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) + (-4 *3 (-945 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) + (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) + (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) + (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) + (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) - (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) - (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) - (-4 *2 (-683 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) - ((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) - (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) - (-4 *2 (-1235 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) - (-4 *3 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) + (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-668 *4))) + (-5 *1 (-668 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) + (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) + (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *5 + (-13 (-846) + (-10 -8 (-15 -3172 ((-1170) $)) + (-15 -3256 ((-3 $ "failed") (-1170)))))) + (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) + (-4 *3 (-945 (-948 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *5 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $))))) (-4 *6 (-556)) + (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) + (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) + (-4 *3 (-945 (-407 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) + (-4 *3 (-945 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) + (-4 *3 (-1235 (-407 (-564)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) + (-4 *3 (-1235 (-407 (-948 (-564))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1235 (-407 (-564)))) + (-4 *5 (-13 (-363) (-147) (-720 (-407 (-564)) *4))) + (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044))))) + (-12 (-4 *4 (-1235 (-407 (-948 (-564))))) + (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-564))) *4))) + (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) + (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) + (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -3482 *3)))) + (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6)) + (-4 *7 (-652 (-407 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *6 (-1235 *5)) + (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -3482 (-650 *6 (-407 *6)))))) + (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-349)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -4322 (-641 (-2 (|:| |irr| *3) (|:| -3871 (-564))))))) + (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) + (-4 *4 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) - (-5 *1 (-1267 *4)) (-4 *4 (-363))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) - (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-974 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264)) - (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) (-4 *1 (-757)))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175))))) +(((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-753))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-4 *1 (-963)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) - (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) - ((*1 *1 *1) (-4 *1 (-845))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) - ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *1 *1) (-4 *1 (-173))) + (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2)))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-783)) (-5 *2 (-1031)) + (-5 *3 + (-2 (|:| |fn| (-316 (-225))) + (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-783)) (-5 *2 (-1031)) + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) + (-5 *4 (-641 (-917))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) + (-5 *4 (-641 (-917))) (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) + ((*1 *1 *1) (-5 *1 (-468)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) + ((*1 *1) (-5 *1 (-858))) + ((*1 *1) + (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) + (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1079))) + ((*1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1174)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) + (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) + (-5 *1 (-419 *4)))) + ((*1 *1 *1) (-5 *1 (-922))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) + ((*1 *1 *1) (-5 *1 (-923))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) + (-5 *4 (-407 (-564))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) + (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))))) ((*1 *1 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) + (-4 *3 (-13 (-404) (-1194))))) + ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) + (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))))) +(((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-865 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-4 *1 (-963)))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) + (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) + (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1045)) + (-5 *2 (-1232 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-1166 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1166 *1)) + (-4 *1 (-945 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) + (-5 *1 (-946 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1166 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $))))) + (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) + (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-556)) + (-5 *2 (-407 (-1166 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) + (-5 *3 (-407 (-948 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1194) (-956)))))) + (|partial| -12 (-5 *3 (-917)) + (-5 *2 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) + (-5 *1 (-346 *4)) (-4 *4 (-349))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -1565 *5)))) - (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) - (-5 *1 (-216 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-2 (|:| -3070 *5) (|:| -1619 (-564))))) - (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) - (-5 *1 (-692 *5))))) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) (((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-641 (-2 (|:| -1558 (-768)) (|:| -2513 *4) (|:| |num| *4)))) + (-5 *2 (-641 (-2 (|:| -3866 (-767)) (|:| -2965 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) - (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) + (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094)) + (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1094)) (-14 *4 - (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *3)) - (-2 (|:| -1468 *2) (|:| -1558 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835)))) + (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *3)) + (-2 (|:| -1998 *2) (|:| -3866 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-834)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) + (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-2 (|:| -2568 (-1170)) (|:| -1389 *4)))) - (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)))) + (-12 (-5 *2 (-641 (-2 (|:| -3076 (-1170)) (|:| -2511 *4)))) + (-4 *4 (-1094)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -2956 *5)))) + (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -2244 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2956 *4))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2244 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) ((*1 *1 *2 *3) @@ -14402,138 +11900,126 @@ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-767)) (|:| -3429 *3)))) + (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) + (-5 *2 (-1166 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-55)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4)) - (-4 *4 (-13 (-430 *3) (-999))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) - ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4)) - (-4 *4 (-13 (-430 *3) (-999) (-1194))))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) - (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) - (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) -(((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-4 *1 (-963))) ((*1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) + ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-846))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) + (-5 *1 (-742))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1166 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302))))) (((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768)) - (-5 *2 (-685 (-225))) (-5 *1 (-267))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) + (-12 + (-5 *2 (-2 (|:| -1935 (-641 (-1170))) (|:| -2839 (-641 (-1170))))) + (-5 *1 (-1211))))) (((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))))) ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'JINT 'X 'ELAM) (-1842) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'JINT 'X 'ELAM) (-2335) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 'XC) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 'XC) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-1842 'X) (-1842) (-695))) (-5 *1 (-64 *3)) + (-12 (-5 *2 (-339 (-2335 'X) (-2335) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-1842) (-1842 'XC) (-695))) (-5 *1 (-66 *3)) + (-12 (-5 *2 (-339 (-2335) (-2335 'XC) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'X) (-1842 '-4290) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'X) (-2335 '-2266) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 'X) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 'X) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'X 'EPS) (-1842 '-4290) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'X 'EPS) (-2335 '-2266) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'EPS) (-1842 'YA 'YB) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'EPS) (-2335 'YA 'YB) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-1842) (-1842 'X) (-695))) (-5 *1 (-77 *3)) + (-12 (-5 *2 (-339 (-2335) (-2335 'X) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-1842) (-1842 'X) (-695))) (-5 *1 (-78 *3)) + (-12 (-5 *2 (-339 (-2335) (-2335 'X) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 'XC) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 'XC) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842) (-1842 'X) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335) (-2335 'X) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'X '-4290) (-1842) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'X '-2266) (-2335) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-685 (-339 (-1842 'X '-4290) (-1842) (-695)))) + (-12 (-5 *2 (-685 (-339 (-2335 'X '-2266) (-2335) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-685 (-339 (-1842 'X) (-1842) (-695)))) (-5 *1 (-84 *3)) + (-12 (-5 *2 (-685 (-339 (-2335 'X) (-2335) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'X) (-1842) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'X) (-2335) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-339 (-1842 'X) (-1842 '-4290) (-695)))) + (-12 (-5 *2 (-1259 (-339 (-2335 'X) (-2335 '-2266) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-685 (-339 (-1842 'XL 'XR 'ELAM) (-1842) (-695)))) + (-12 (-5 *2 (-685 (-339 (-2335 'XL 'XR 'ELAM) (-2335) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-1842 'X) (-1842 '-4290) (-695))) (-5 *1 (-89 *3)) + (-12 (-5 *2 (-339 (-2335 'X) (-2335 '-2266) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) + (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-564)) (-14 *4 (-768)))) + (-14 *3 (-564)) (-14 *4 (-767)))) ((*1 *1 *2) - (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) + (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) ((*1 *1 *2) - (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) + (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) ((*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) - (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4)))) + (-5 *2 (-1259 (-685 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) - (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) + (-4 *4 (-13 (-846) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) + ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) ((*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) @@ -14543,7 +12029,7 @@ ((*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) - (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) + (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) @@ -14555,111 +12041,111 @@ (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) + ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-384)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) - (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) - (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3495 "void"))) + (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3734 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21))) + (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) ((*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) - (-4 *3 (-13 (-847) (-21))))) + (-4 *3 (-13 (-846) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847)) + (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847)) + (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847)) + (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847)) + (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) @@ -14668,62 +12154,62 @@ ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-440)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) ((*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2570 (-641 (-330))))) + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3080 (-641 (-330))))) (-4 *1 (-441)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172)) + (-12 (-5 *2 (-1259 (-407 (-948 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) + (-14 *4 (-917)) (-14 *5 (-641 (-1170))))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) ((*1 *1 *2) - (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) + (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) + (-4 *3 (-1045)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3)))) + (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-740 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046)))) + ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1045)))) ((*1 *2 *1) - (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) ((*1 *2 *1) - (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-740 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) ((*1 *2 *1) - (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3)) + (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) ((*1 *1 *2) - (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094)) + (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) ((*1 *1 *2) - (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) + (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) @@ -14734,47 +12220,47 @@ ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) ((*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697)))) - ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-2 (|:| -2860 *3) (|:| -1383 *4)))) - (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760)))) + (-12 (-5 *2 (-641 (-2 (|:| -3139 *3) (|:| -1955 *4)))) + (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-759)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) - (|:| -4133 (-641 (-1088 (-840 (-225))))) + (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-766)))) + (-5 *1 (-765)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) - (|:| -4133 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) + (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-766)))) + (-5 *1 (-765)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-766)))) - ((*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209)))) + (-5 *1 (-765)))) + ((*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1209)))) ((*1 *1 *2) (-12 (-5 *2 @@ -14782,42 +12268,42 @@ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-805)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821)))) + (-5 *1 (-804)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-820)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) + (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) - (|:| -2884 (-641 (-225))))))) - (-5 *1 (-838)))) + (|:| -3346 (-641 (-225))))))) + (-5 *1 (-837)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -2884 (-641 (-225))))) - (-5 *1 (-838)))) + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) + (-5 *1 (-837)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-316 (-225))) (|:| -2884 (-641 (-225))) - (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) - (|:| |ub| (-641 (-840 (-225)))))) - (-5 *1 (-838)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564))) - (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-839 (-225)))))) + (-5 *1 (-837)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-854)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-871)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-564))) + (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) ((*1 *1 *2) (-12 (-5 *2 @@ -14825,50 +12311,50 @@ (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-768)) (|:| |boundaryType| (-564)) + (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) - (-5 *1 (-895)))) + (-5 *1 (-894)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) + (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) + (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) + (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) ((*1 *2 *3) - (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4)) - (-4 *4 (-13 (-847) (-556))))) - ((*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209)))) - ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209)))) + (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) + (-4 *4 (-13 (-846) (-556))))) + ((*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1029 *3)) (-4 *3 (-1209)))) + ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-641 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556)))) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-556)))) ((*1 *1 *2) - (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) - (-4 *2 (-946 *3 (-531 *4) *4)))) + (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2)) + (-4 *2 (-945 *3 (-531 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) - (-4 *4 (-946 *3 (-531 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859)))) + (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1120 *3 *2 *4)) + (-4 *4 (-945 *3 (-531 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) ((*1 *2 *3) - (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) ((*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) + (-4 *3 (-1045)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) + (-4 *3 (-1045)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) + (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) ((*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) @@ -14876,614 +12362,2018 @@ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) - ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094)))) ((*1 *1 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046)))) + (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1203 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1045)))) ((*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) + (-4 *3 (-1045)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) - (-4 *3 (-1046)) (-14 *5 *3))) + (-4 *3 (-1045)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) + (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1260)))) ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) ((*1 *1 *2) - (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) + (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) ((*1 *2 *1) - (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) + (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4))))) -(((*1 *1) (-4 *1 (-349))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) - (-4 *4 (-13 (-556) (-847) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) - (|:| |prim| (-1166 *5)))) - (-5 *1 (-432 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-147))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) - (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) - (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) - (|:| |prim| (-1166 *5)))) - (-5 *1 (-957 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) - (-4 *5 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) - (|:| |prim| (-1166 *5)))) - (-5 *1 (-957 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) - (-4 *6 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| -2860 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) - (|:| |prim| (-1166 *6)))) - (-5 *1 (-957 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *3 (-847)) (-5 *2 (-768))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1194))) - (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) +(((*1 *2 *1) + (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) + (-5 *2 (-1259 (-685 (-948 *4)))) (-5 *1 (-189 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-996 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) + (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) - (-4 *6 (-363)) - (-5 *2 - (-641 - (-2 (|:| |outval| *7) (|:| |outmult| (-564)) - (|:| |outvect| (-641 (-685 *7)))))) - (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845)))))) + (-5 *1 (-568 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) + (-4 *4 (-1209)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) + (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) + (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045)))) + ((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) + (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4408 "*"))) (-4 *2 (-1045))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) + ((*1 *1 *1 *1) (-4 *1 (-545))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-767))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *2 (-896 *5)) (-5 *1 (-688 *5 *2 *3 *4)) + (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) - (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) - ((*1 *1 *1 *1) - (-4078 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) - ((*1 *1 *1 *1) (-4 *1 (-363))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-847)) - (-4 *1 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-473))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-723) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-723) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-714 *4)) - (-4 *3 (|SubsetCategory| (-723) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)) - (-4 *2 (|SubsetCategory| (-723) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-863 *2 *3 *4 *5)) (-4 *2 (-363)) - (-4 *2 (-1046)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-768))) - (-14 *5 (-768)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-847)) - (-4 *4 (-790)) (-14 *6 (-641 *3)) - (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) - (-14 *7 (-641 (-768))) (-14 *8 (-768)))) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) + (-4 *6 (-13 (-27) (-430 *5))) + (-4 *5 (-13 (-846) (-556) (-1034 (-564)))) (-4 *8 (-1235 (-407 *7))) + (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) + (-4 *3 (-342 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1094)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-612 (-379))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) + (-4 *3 (-612 (-379))))) + ((*1 *2 *3) + (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) + (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -2747 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) + (-5 *2 + (-2 (|:| |dpolys| (-641 (-247 *5 *6))) + (|:| |coords| (-641 (-564))))) + (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-1045)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) + (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) + (-4 *2 (-452)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) + (-5 *1 (-486 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046)) - (-4 *3 (-843))))) -(((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564))))) -(((*1 *1 *1) - (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) - (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190))))) -(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) - ((*1 *1 *1) (-4 *1 (-1055)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-452))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-827))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-846)) + (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-641 (-2 (|:| -2375 (-1166 *9)) (|:| -3866 (-564))))))) + (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-373 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) + (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556)) + (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-1228 *3 *4 *2)) + (-4 *2 (-1235 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4)) - (-4 *4 (-1235 (-564)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) - ((*1 *1 *1 *1) (-4 *1 (-545))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) + (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-839 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-641 (-316 (-225)))) + (|:| -3346 (-641 (-225))))))) + (-5 *2 (-641 (-1152))) (-5 *1 (-267))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1170)) (-5 *3 (-948 *6)) + (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) + (-5 *1 (-1135 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546)))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-900 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *1) (-5 *1 (-1261)))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4039 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + ((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) + (-5 *2 (-112)) (-5 *1 (-1135 *5 *6))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5))))) +(((*1 *1) (-5 *1 (-1260)))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) + (-5 *1 (-1284 *4)) (-4 *4 (-1209)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) + (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) - (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3342 (-641 *1)))) + (-4 *1 (-367 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-453 *3 *4 *5 *6)) + (|:| -3342 (-641 (-453 *3 *4 *5 *6))))) + (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) - (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918)) - (-5 *1 (-528 *4))))) + (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1235 (-407 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) (((*1 *2 *3) - (-12 (-4 *1 (-892)) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 - (-2 (|:| |pde| (-641 (-316 (-225)))) - (|:| |constraints| - (-641 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-768)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) - (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) - (|:| |tol| (-225)))) - (-5 *2 (-1032))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) + (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-131))))) (((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) ((*1 *2 *2) - (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) + (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) + (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) ((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) ((*1 *2 *1) - (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) - (-4 *2 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) - (-15 -3595 ((-1264) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1357 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032))))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) + (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-720 *5 *7)) + (-5 *2 (-2 (|:| -4379 (-685 *6)) (|:| |vec| (-1259 *5)))) + (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *1) (-4 *1 (-302))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *1) (-5 *1 (-819)))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) + (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-967))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1209)) (-5 *2 (-1264))))) +(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302))))) +(((*1 *2) + (-12 (-4 *1 (-349)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 - (-641 - (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) - (|:| |geneigvec| (-641 (-685 (-407 (-949 *4)))))))) - (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4407)) (-4 *1 (-1007 *3)) - (-4 *3 (-1209))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-849 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) - (-5 *2 (-2 (|:| -4347 *3) (|:| -1678 *3))) (-5 *1 (-850 *5 *3)) - (-4 *3 (-849 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) - (-4 *2 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) - (-15 -3595 ((-1264) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) - (-4 *2 (-1235 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25))))) + (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564))) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) + (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) + (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-984 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-1101 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) + (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) + (-4 *6 (-789)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330))))) +(((*1 *2) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1357 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) + (-5 *1 (-190))))) +(((*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) -(((*1 *2 *1) + (-12 (-5 *3 (-923)) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564))) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3) (-12 (-5 *2 - (-641 - (-2 - (|:| -2568 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -1389 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1150 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-559)))) - ((*1 *2 *1) - (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) - (-5 *2 (-641 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4407)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) -(((*1 *2) + (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)) (-5 *3 (-641 (-939 (-225)))))) + ((*1 *2 *3) (-12 (-5 *2 - (-1259 (-641 (-2 (|:| -1522 (-907 *3)) (|:| -1468 (-1114)))))) - (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) - ((*1 *2) - (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114)))))) - (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1522 *3) (|:| -1468 (-1114)))))) - (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-847) (-556)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) - (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) + (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) (((*1 *2 *2) - (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) - (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046))))) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) - (-4 *3 (-1235 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112))))) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) + (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) + (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) + (-5 *1 (-557 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *1 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6))))) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) -(((*1 *1 *1) (-4 *1 (-545)))) + (-12 (-4 *4 (-13 (-556) (-846))) + (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194))) + (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1194)))))) +(((*1 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) - (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) - ((*1 *1) (-4 *1 (-723))) ((*1 *1) (-5 *1 (-1170))) - ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918)))) - ((*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) - ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215))) - ((*1 *1) (-5 *1 (-1216))) ((*1 *1) (-5 *1 (-1217)))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) - (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667)))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) - (-14 *4 (-918))))) -(((*1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) - (-4 *3 (-1094))))) + (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1094))))) (((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-818))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) + (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) - (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859))))) -(((*1 *2 *3 *2) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) + (-4 *3 (-1235 (-407 (-564)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) + (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) + (-5 *1 (-699 *3)) (-4 *3 (-612 (-536)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) + (-4 *2 (-1250 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) + (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-556)))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4195 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1031)) (-5 *1 (-305))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) + (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-564)) (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3482 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1011 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) + (-4 *4 (-846)) (-5 *1 (-1180 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) + (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) + (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-316 *5))) + (-5 *1 (-1123 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) + (-5 *1 (-1123 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1045)) + (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045)) + (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045)) + (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-825))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) + (-5 *2 (-641 (-939 *4))) (-5 *1 (-1205)) (-5 *3 (-939 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767)))) + ((*1 *1 *1) (-4 *1 (-402)))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) + (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1259 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1170)) + (-4 *5 (-13 (-556) (-1034 (-564)) (-147))) + (-5 *2 + (-2 (|:| -1370 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) + (-5 *1 (-570 *5)) (-5 *3 (-407 (-948 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564)))))) + (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) + (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844)))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) + (-4 *5 (-363)) (-5 *1 (-919 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) + (-5 *1 (-919 *4 *5)) (-14 *4 (-1170)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-767)) (-4 *6 (-363)) + (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2244 *7)))) + (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2244 *7)))) + (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1101 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) + (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) + (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) + ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215))) + ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) +(((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) ((*1 *1 *2) - (-12 + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) + (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) + (-5 *1 (-1252 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *6 (-112)) + (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-4 *3 (-13 (-1194) (-955) (-29 *7))) (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-263)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-846)) + (-5 *1 (-113 *2))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) + (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) + (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) - ((*1 *2 *1 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) + ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215))) + ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-641 (-1170))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *4)) (|:| -3864 (-641 (-948 *4)))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) + (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) + (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *5)) (|:| -3864 (-641 (-948 *5)))))) + (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-641 (-2 (|:| -2171 (-1166 *4)) (|:| -3864 (-641 (-948 *4)))))) + (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-948 *4))) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) + (-4 *4 (-1235 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1264)) (-5 *1 (-1261)))) - ((*1 *2 *1) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) + (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1159 (-1170) (-948 *6)))) + (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *6))))) + (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-948 *6)))))) + ((*1 *2 *3 *4) (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5)))) + (|:| |eigmult| (-767)) (|:| |eigvec| (-641 *4)))) + (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5))))) + (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-373 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) + (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *4)) (-4 *4 (-988 *2)) (-4 *2 (-556)) + (-5 *1 (-689 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-767))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) + (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-574 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) + (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-776 *4 (-860 *5)))) (-4 *4 (-452)) + (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-961))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379)))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) + (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-846) (-556) (-1034 (-564)))) + (-5 *2 (-2 (|:| -3717 (-767)) (|:| -3078 *8))) + (-5 *1 (-907 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) + (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) + (-4 *6 (-342 (-407 (-564)) *4 *5)) + (-5 *2 (-2 (|:| -3717 (-767)) (|:| -3078 *6))) + (-5 *1 (-908 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-556)) + (-4 *7 (-945 *3 *5 *6)) + (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *8) (|:| |radicand| *8))) + (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) + (-4 *8 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) (-15 -4201 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-767))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-720 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 (-407 (-948 *5)))) (-5 *4 (-1170)) + (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-5 *2 (-948 *4)) + (-5 *1 (-292 *4)) (-4 *4 (-452)))) + ((*1 *2 *1) + (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) + (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) + (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *5)) + (-4 *5 (-13 (-363) (-844))))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-948 (-407 (-564)))) + (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) + (-5 *2 (-948 (-407 (-564)))) (-5 *1 (-775 *5)) + (-4 *5 (-13 (-363) (-844)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) + (-5 *1 (-1154 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *2) + (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3982 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1261)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) + (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1235 (-564))) + (-5 *2 + (-2 (|:| -3342 (-685 (-564))) (|:| |basisDen| (-564)) + (|:| |basisInv| (-685 (-564))))) + (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-564) *3)))) + ((*1 *2) + (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) + (-5 *2 + (-2 (|:| -3342 (-685 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-685 *4)))) + (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) + (-5 *2 + (-2 (|:| -3342 (-685 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-685 *4)))) + (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) + (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) + (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) + (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1120 *4 *3 *5)) + (-4 *5 (-945 *4 (-531 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) + (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) + (|:| -2525 *6))) + (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) + (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -4039 *4))) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-770)) (-5 *1 (-114)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-770)) (-5 *1 (-114))))) +(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846)) + (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1219 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) + (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-924))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) + (-4 *2 (-652 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-612 (-888 *3))) (-4 *3 (-882 *3)) + (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-612 (-888 *3))) (-4 *2 (-882 *3)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) + (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-802 *5 *6 *7 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-556)))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-641 (-1170))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) - (-4 *4 (-1094)) (-14 *5 *2))) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-846)) + (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) + (-5 *2 (-641 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) + (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) - (|:| |c2| (-407 *5)) (|:| |deg| (-768)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) - (-5 *1 (-468))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) + (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 (-846)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *2 (-788)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3)) + (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-767))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) - (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) - (-4 *3 (-342 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) - (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) + (-12 (-5 *3 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564))))) + (-5 *2 (-407 (-564))) (-5 *1 (-1016 *4)) (-4 *4 (-1235 (-564)))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-768)))) + (-12 (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) + (-4 *1 (-382 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768))))) + (-12 (-5 *2 (-641 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-945 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) + (-5 *1 (-914 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3190 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) + (-5 *1 (-1104))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) + (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) + (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) + (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4406)) (-4 *1 (-34)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-842))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -2286 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) - (-4 *2 (-13 (-1094) (-34)))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302)))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-854)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-961)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-641 (-225))) (-5 *1 (-204))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-817))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| -2375 (-1166 *6)) (|:| -3866 (-564))))) + (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564)) + (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) (((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) - (-5 *2 (-1032)) (-5 *1 (-745))))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) + ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3)) - (-4 *3 (-13 (-845) (-363) (-1019))))) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) + (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5)) + (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-307))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209))))) +(((*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1020 *3)) + (-4 *3 (-13 (-844) (-363) (-1018))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) + (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1235 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-693))))) +(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) + (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1166 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) + (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) + (-4 *3 (-363))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) + (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) + (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) + (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-573 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) + (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) + (-4 *3 (-342 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) + (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) + ((*1 *2 *1) + (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) + (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) + (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) + (-14 *6 (-1259 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))) + (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) + (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1235 *4)) + (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *1) + (-12 (-4 *2 (-1094)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1094))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) + (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) + (-4 *7 (-1235 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170)))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52))))) (((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-564))) + (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) + (-15 -4201 ((-1119 *3 (-610 $)) $)) + (-15 -2322 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) + (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-856)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) + (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452)) + (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-767))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045)) + (-5 *1 (-710 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) + (-5 *1 (-745))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1357 *3) (|:| |coef2| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-171)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349)))) + ((*1 *2 *1) + (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1094)) + (-14 *4 + (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *3)) + (-2 (|:| -1998 *2) (|:| -3866 *3))))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-768)))) + (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-846)) + (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1209)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768))))) + (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-767)) (-5 *1 (-561))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) + (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846)))) + ((*1 *2 *3) + (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2595 *3) (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) + (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) + (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-846)) (-5 *2 (-610 *5)) + (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-818))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) + (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-305)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-612 (-888 *4)))) + (-5 *1 (-1070 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1094)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) + (-5 *1 (-1070 *3 *4 *2)) + (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) + (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) + (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) + (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) + (-5 *2 + (-2 (|:| -4086 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3781 (-407 *6)) + (|:| |special| (-407 *6)))) + (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-892 *3 *4)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -4237 *3) (|:| -4250 *3))) (-5 *1 (-892 *3 *5)) + (-4 *3 (-1235 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (|has| *1 (-6 -4407)) (-4 *1 (-1247 *3)) + (-4 *3 (-1209))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) + (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) + (-5 *2 + (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) + (|:| |Lfact| + (-641 (-2 (|:| -2375 (-1166 *8)) (|:| -3866 (-564))))) + (|:| |ctpol| *8))) + (-5 *1 (-738 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) + (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) + (|:| |args| (-641 (-858))))) + (-5 *1 (-1170)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-1170))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379)))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) + (-5 *2 (-767)))) + ((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *2) + (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) + (-4 *3 (-425 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-767)) + (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) + (-4 *3 (-1045)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1276 *4 *3)) + (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *5) (|:| -3866 *2)) + (-2 (|:| -1998 *5) (|:| -3866 *2)))) + (-4 *2 (-238 (-2059 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) - (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) + (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-590 *5 *6 *7 *8 *3))))) +(((*1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *5 (-238 (-2059 *3) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *2) (|:| -3866 *5)) + (-2 (|:| -1998 *2) (|:| -3866 *5)))) + (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-945 *4 *5 (-860 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1045)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) + (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) + (-4 *2 (-644 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-753))))) +(((*1 *2 *1) + (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) + (-5 *2 (-641 (-2 (|:| -2511 *3) (|:| -3852 (-767)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-948 *5)))) + (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-948 *5)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3))))) +(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-1152))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241))))) (((*1 *2 *3) - (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) + (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305))))) +(((*1 *1 *1) + (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) + (-4 *4 (-266 *3)) (-4 *5 (-789))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) + (-5 *2 (-112)) (-5 *1 (-1134 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) + (-4 *2 (-846))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) + (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1235 (-169 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) + (-5 *2 (-917))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) + (-5 *1 (-1150 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-556))))) (((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1057))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) + (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-948 *5))) + (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) + (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) + (-5 *2 (-641 (-948 *4)))))) +(((*1 *1) (-5 *1 (-1057)))) +(((*1 *1 *1 *1) (-4 *1 (-963)))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-5 *2 + (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) + (|:| |singularities| (-1150 (-225))))) + (-5 *1 (-105))))) (((*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) + (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) + (-4 *3 (-13 (-363) (-147) (-1034 (-564)))) (-5 *1 (-568 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) + (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1235 *2))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3)) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) + (-15 -4201 (*7 $)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) + (-4 *2 (-1094)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-846)) + (-5 *1 (-1210 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) + (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-556)))) + ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556))))) +(((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1094)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 (-888 *3)))) + (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) + (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) + (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-641 *8)) + (|:| |towers| (-641 (-1023 *5 *6 *7 *8))))) + (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-641 *8)) + (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) + (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) + (-5 *5 (-1 (-418 *7) *7)) + (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) + (-5 *5 (-1 (-418 *7) *7)) + (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) + (-4 *6 (-1235 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) + (-4 *6 (-1235 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 @@ -15492,144 +14382,2076 @@ (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-750))))) +(((*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-833))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-985)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) + (-5 *1 (-1086 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-671 *2)) (-4 *2 (-1045)) (-4 *2 (-1094))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2563 *1) (|:| -4393 *1) (|:| |associate| *1))) + (-4 *1 (-556))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5)))) + (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5))))) + (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5))))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-749))))) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) + (-4 *5 (-1045)) (-5 *2 (-685 *5)) (-5 *1 (-1025 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) + (-4 *4 (-238 (-2059 *5) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -1998 *3) (|:| -3866 *4)) + (-2 (|:| -1998 *3) (|:| -3866 *4)))) + (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) + (-4 *7 (-945 *2 *4 (-860 *5)))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1235 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) + (-4 *10 (-945 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-641 (-1166 *10))) + (|:| |dterm| + (-641 (-641 (-2 (|:| -3408 (-767)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) + (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) + (-5 *5 (-641 *10))))) +(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-846))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-839 (-379)))) + (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) + (-5 *1 (-836)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) + (-5 *5 (-641 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) + (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) + (-5 *2 (-1031)) (-5 *1 (-836))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1170)) - (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) - (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5)) - (-5 *3 (-407 (-949 *5)))))) + (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-147))) + (-5 *2 (-585 (-407 (-948 *5)))) (-5 *1 (-570 *5)) + (-5 *3 (-407 (-948 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-556)) + (-5 *2 (-2 (|:| -4379 (-685 *5)) (|:| |vec| (-1259 (-641 (-917)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) + (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) + (-5 *1 (-750))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) + (-5 *2 (-112)) (-5 *1 (-455 *3 *5))))) +(((*1 *1) (-5 *1 (-144))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *10)) + (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) + (-4 *10 (-1103 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) + (-5 *1 (-626 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) + (-5 *2 + (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) + (-5 *1 (-626 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) + (-5 *1 (-1042 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1202 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) + (-5 *1 (-786 *3)) (-4 *3 (-970)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-112)) + (-5 *1 (-1204 *2)) (-4 *2 (-970))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) (((*1 *1 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1045)) (-4 *1 (-1235 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) + (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) + (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) + (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) + (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) + (-4 *4 (-945 *8 *6 *5))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) + (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) + (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) + (-4 *6 (-342 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) + (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) + (-4 *1 (-335 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-5 *2 (-641 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2244 *4)))))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) + ((*1 *2) + (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-751))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305))))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) + (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-846)) + (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-5 *1 (-695)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-363)) (-5 *1 (-974 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) + (-5 *1 (-267))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-948 (-564))))) + (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2244 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-564))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-556)) (-4 *8 (-945 *7 *5 *6)) + (-5 *2 (-2 (|:| -3866 (-767)) (|:| -3139 *9) (|:| |radicand| *9))) + (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) + (-4 *9 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *8)) (-15 -4189 (*8 $)) (-15 -4201 (*8 $)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-948 *4))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-641 (-1042 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-901 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) + (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1024 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-901 (-564)))) (-5 *4 (-564)) + (-5 *2 (-641 (-685 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) + (-5 *1 (-1024 *4)) (-4 *4 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) + (-15 -4201 ((-1119 *3 (-610 $)) $)) + (-15 -2322 ($ (-1119 *3 (-610 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *3 (-610 $)) $)) + (-15 -4201 ((-1119 *3 (-610 $)) $)) + (-15 -2322 ($ (-1119 *3 (-610 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *4 (-610 $)) $)) + (-15 -4201 ((-1119 *4 (-610 $)) $)) + (-15 -2322 ($ (-1119 *4 (-610 $))))))) + (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-610 *2))) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -4189 ((-1119 *4 (-610 $)) $)) + (-15 -4201 ((-1119 *4 (-610 $)) $)) + (-15 -2322 ($ (-1119 *4 (-610 $))))))) + (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-556)) (-4 *2 (-945 *3 *5 *4)) + (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) + (-4 *4 (-13 (-846) (-10 -8 (-15 -3172 ((-1170) $)))))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) + (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) + (-5 *4 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) + (-5 *4 (-316 (-564))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) + (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) + (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) + (-5 *4 (-316 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) + (-5 *4 (-316 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) + (-5 *4 (-316 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1) + (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) + (-4 *4 (-266 *3)) (-4 *5 (-789))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-746))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) +(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-767))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) + (-4 *1 (-329 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) + (-4 *2 (-1235 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) + (-5 *1 (-528 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) + (-5 *2 (-641 (-2 (|:| -2255 *5) (|:| -3482 *3)))) + (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6)) + (-4 *7 (-652 (-407 *6)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -2375 *3) (|:| -2073 *4)))) + (-5 *1 (-692 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) + (-4 *2 (-846))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-858))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) + (-14 *4 (-641 *2)) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| |mdnia| + (-2 (|:| |fn| (-316 (-225))) + (|:| -4195 (-641 (-1088 (-839 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-5 *1 (-765)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *1 (-804)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) + (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-839 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-641 (-316 (-225)))) + (|:| -3346 (-641 (-225))))))) + (-5 *1 (-837)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *1 (-894)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) + (-2789 + (-12 (-5 *2 (-948 *3)) + (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) + (-2329 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2329 (-4 *3 (-545))) (-2329 (-4 *3 (-38 (-407 (-564))))) + (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2329 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564)))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))))) + ((*1 *1 *2) + (-2789 + (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-2329 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) + (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-564)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) + (-5 *1 (-449 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174))))) +(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-939 (-225)))) (-5 *1 (-1260))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549))))) + (-12 (-4 *1 (-856)) (-5 *2 (-687 (-549))) (-5 *3 (-549))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1045)) (-5 *1 (-1281 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *1 (-1283 *3 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-966)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1067)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045)) + (-5 *3 (-564))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) + (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4406)) (-4 *1 (-489 *4)) + (-4 *4 (-1209)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-917)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -2897 (-641 (-858))) (|:| -2568 (-641 (-858))) + (|:| |presup| (-641 (-858))) (|:| -2468 (-641 (-858))) + (|:| |args| (-641 (-858))))) + (-5 *1 (-1170))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-641 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) + (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *6 (-342 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-846)) + (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) + ((*1 *1 *1) (-4 *1 (-545))) + ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1206 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998)) + (-4 *2 (-1045))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-641 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6) + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847)) + (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *4 *3 *5 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) + (-4 *5 (-373 *4)) (-4 *3 (-373 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) + ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-767))))) (((*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) + (-5 *2 (-1031)) (-5 *1 (-836))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2595 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) (((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| -3139 *4) (|:| -2666 *3) (|:| -2598 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-1059 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -3139 *3) (|:| -2666 *1) (|:| -2598 *1))) + (-4 *1 (-1235 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) + (-4 *2 (-1235 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) + (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-564)) + (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) + (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1235 *4)) + (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) + (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-998)))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-817))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452)) + (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) + (-5 *4 (-1022 (-839 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) + (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-594 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) + (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *1 (-660 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) + (-4 *3 (-846)) (-4 *4 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) + (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1022 (-839 (-564)))) + (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1045)) + (-5 *1 (-594 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-752))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3155 (-641 *7)))) - (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-556)))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-755))))) +(((*1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1045)) + (-5 *1 (-1025 *4))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) + (-5 *1 (-752))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -1846 (-641 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) + (-5 *1 (-885 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-846) (-556)))))) +(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) + (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-556)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-578)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-917)) + (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4408 "*"))))) + (-5 *1 (-898 *4 *2))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-556)) (-4 *2 (-1045)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *1)))) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) + (-4 *2 (-683 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) + (-5 *1 (-1173))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-917)) (-4 *5 (-556)) (-5 *2 (-685 *5)) + (-5 *1 (-952 *5 *3)) (-4 *3 (-652 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-112)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1194)))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) + (-5 *1 (-1024 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) + (-5 *1 (-1024 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452)) - (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))) + (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-4 *4 (-452)) + (-5 *2 (-641 (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4))))) (-5 *1 (-292 *4))))) +(((*1 *2 *3) + (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) + (-5 *2 + (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) + (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1094))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) + (-5 *3 (-641 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) + (-5 *3 (-641 (-564)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1065 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) (((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) + (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) + (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))) + ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) + (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) + (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194)))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) + (-5 *2 (-641 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) + (-14 *7 (-917))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2053 *4) (|:| -1998 (-1114)))))) + (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-557 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *1) (-5 *1 (-141)))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) + (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *3) + (-12 (-5 *3 (-765)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) + (-5 *1 (-565)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-765)) (-5 *4 (-1057)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) + (-5 *1 (-565)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-783)) (-5 *3 (-1057)) + (-5 *4 + (-2 (|:| |fn| (-316 (-225))) + (|:| -4195 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) + (|:| |extra| (-1031)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-783)) (-5 *3 (-1057)) + (-5 *4 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)) + (|:| |extra| (-1031)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-796)) (-5 *3 (-1057)) + (-5 *4 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-804)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-804)) (-5 *4 (-1057)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-835)) (-5 *3 (-1057)) + (-5 *4 + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3346 (-641 (-225))))) + (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-835)) (-5 *3 (-1057)) + (-5 *4 + (-2 (|:| |fn| (-316 (-225))) (|:| -3346 (-641 (-225))) + (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-839 (-225)))))) + (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-837)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-837)) (-5 *4 (-1057)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-891)) (-5 *3 (-1057)) + (-5 *4 + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -1632 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-894)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-893)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1057)) + (-5 *2 + (-2 (|:| -1632 (-379)) (|:| -2420 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-893))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2322 ($ *7))))) + (-4 *7 (-844)) + (-4 *8 + (-13 (-1237 *3 *7) (-363) (-1194) + (-10 -8 (-15 -1343 ($ $)) (-15 -3719 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) + (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8)) + (-14 *10 (-1170))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-948 (-564))))) + (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-294 (-407 (-948 (-564)))))) + (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 (-294 (-948 *4)))) + (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-948 (-564))))) + (-5 *2 (-641 (-294 (-948 *4)))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1170)) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-4 *4 (-13 (-29 *6) (-1194) (-955))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3342 (-641 *4)))) + (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) + (-4 *2 (-13 (-29 *6) (-1194) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -3342 (-641 (-1259 *5))))) + (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -3342 (-641 (-1259 *5))))) + (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) + (-5 *2 + (-641 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -3342 (-641 (-1259 *5)))))) + (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) + (-5 *2 + (-641 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -3342 (-641 (-1259 *5)))))) + (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4407)))) + (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4407)))) + (-5 *2 + (-641 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3342 (-641 *7))))) + (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) + (-4 *3 (-683 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) + (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-955))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) + (-4 *7 (-13 (-29 *6) (-1194) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1259 *7)) (|:| -3342 (-641 (-1259 *7))))) + (-5 *1 (-798 *6 *7)) (-5 *4 (-1259 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) + (-4 *6 (-13 (-29 *5) (-1194) (-955))) + (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-1259 *6))) (-5 *1 (-798 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) + (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1259 *7)) (|:| -3342 (-641 (-1259 *7))))) + (-5 *1 (-798 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) + (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1259 *7)) (|:| -3342 (-641 (-1259 *7))))) + (-5 *1 (-798 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) + (-4 *7 (-13 (-29 *6) (-1194) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -3342 (-641 *7))) *7 "failed")) + (-5 *1 (-798 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-1170)) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3342 (-641 *3))) *3 "failed")) + (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-955))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) + (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-5 *1 (-798 *6 *2)) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) + (-4 *2 (-13 (-29 *6) (-1194) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-798 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) + (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) + (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) + (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3342 (-641 *6))) "failed") + *7 *6)) + (-4 *6 (-363)) (-4 *7 (-652 *6)) + (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -3342 (-685 *6)))) + (-5 *1 (-809 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) + (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) + (-5 *2 (-1031)) (-5 *1 (-893)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) + (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) + (-5 *1 (-893)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 (-379))) + (-5 *1 (-1019)) (-5 *4 (-379)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1019)) + (-5 *4 (-379)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) + (-5 *3 (-316 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) + (-5 *3 (-294 (-316 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) + (-5 *3 (-294 (-316 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) + (-5 *3 (-316 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-846) (-307) (-1034 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) + (-5 *3 (-641 (-294 (-316 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) + (-5 *1 (-1178 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-1178 *5)) + (-5 *3 (-641 (-294 (-407 (-948 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-1178 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) + (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-948 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-556)) + (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5)) + (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-556)) + (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5)) + (-5 *3 (-294 (-407 (-948 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4))))) + (-5 *1 (-1178 *4)) (-5 *3 (-407 (-948 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4))))) + (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-948 *4))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1045)) (-4 *2 (-1235 *4)) + (-5 *1 (-444 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) + (-5 *4 (-564)) (-4 *5 (-13 (-556) (-846))) (-5 *1 (-1124 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-556))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-5 *4 (-858)) + (-4 *1 (-1008)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) + (-4 *1 (-1062 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-564))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -4353 ((-1152) $ (-1170))) (-15 -1624 (*2 $)) + (-15 -3948 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-706)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189))))) (((*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *1 *1) (|partial| -4 *1 (-1145)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) + (-4 *7 (-789)) + (-5 *2 + (-641 + (-2 (|:| -3105 (-767)) + (|:| |eqns| + (-641 + (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (|:| |fgb| (-641 *8))))) + (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1002))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-556))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) + (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-307))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) + (-5 *1 (-1286 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -3498 (-767)) (|:| |period| (-767)))) + (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-767))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-888 *4)) + (-4 *4 (-1094))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)) + (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) + (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) + (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -3429 *4))) (-5 *5 (-767)) + (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-449 *6 *7 *8 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)) (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) + (-4 *3 (-172))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-917)) (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-504 (-407 (-564)) (-240 *4 (-767)) (-860 *3) + (-247 *3 (-407 (-564))))) + (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) - (-5 *2 (-1032)) (-5 *1 (-751))))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-564))))) + (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1056)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1056))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-846)) + (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) + (|:| -3342 (-641 (-1259 (-407 *8)))))) + (-5 *1 (-665 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-5 *2 (-685 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) + (-14 *4 + (-3 (-1166 *3) + (-1259 (-641 (-2 (|:| -2053 *3) (|:| -1998 (-1114))))))))) + ((*1 *2) + (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-917))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) + (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) + (-5 *1 (-746))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1045)) (-4 *4 (-846)) + (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3866 (-564)))) + (-4 *1 (-430 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) + (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3866 (-564)))) + (-4 *1 (-430 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3866 (-564)))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3866 (-767)))) + (-5 *1 (-888 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -3866 (-767)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3866 (-564)))) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -2322 ($ *7)) (-15 -4189 (*7 $)) + (-15 -4201 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) + (|:| |wcond| (-641 (-948 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *4)))))))))) + (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) + (-5 *1 (-888 *3)) (-4 *3 (-1094))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -2491 (-768)))) - (-5 *1 (-779 *3)) (-4 *3 (-1046)))) + (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -2880 (-767)))) + (-5 *1 (-778 *3)) (-4 *3 (-1045)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2491 (-768)))) - (-4 *1 (-1060 *3 *4 *5))))) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2880 (-767)))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-612 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) + (-4 *3 (-612 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2)) + (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) + (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) + (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))) +(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) + (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) + (-5 *1 (-885 *4 *5)) (-4 *5 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) + (-5 *1 (-886 *5 *3)) (-4 *3 (-1209)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) + (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1194) (-29 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-224 *6 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) + (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-846))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) + (-5 *1 (-573 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-641 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| -2959 (-621 *4 *5)) (|:| -3060 (-407 *5)))) + (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-917)) (-4 *4 (-1045)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209))))) + (-12 (-4 *3 (-452)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1235 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) + ((*1 *2 *2) + (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) + (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) + (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) + (-5 *1 (-864 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) + (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) + (-5 *1 (-864 *5 *6 *7))))) (((*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-770)) (-5 *1 (-52))))) +(((*1 *2) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-757)))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) + (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-846) (-1034 (-564)) (-637 (-564)) (-452))) + (-5 *2 (-839 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) + (-14 *6 *4)))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-751)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280))))) + (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) + (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 (-316 (-225)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) + (-5 *1 (-205))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) + (-5 *3 (-641 (-564)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) + (-4 *5 (-846)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) + (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-612 *2))) + (-5 *2 (-888 *3)) (-5 *1 (-1070 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-882 *3) (-612 *2)))))) +(((*1 *2) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) (((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-610 *3)) + (-4 *3 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-2 (|:| -1370 *3) (|:| |coeff| *3))) + (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *4 (-1170)) + (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -3342 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-4 *3 (-13 (-307) (-10 -8 (-15 -2657 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4)) - (-14 *3 (-768))))) + (-12 (-5 *2 (-685 *4)) (-4 *4 (-1045)) (-5 *1 (-1136 *3 *4)) + (-14 *3 (-767))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1) (|partial| -4 *1 (-718)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1034 *5))) + (-4 *5 (-882 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-927 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) (((*1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-452))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) + (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -2666 *1) (|:| -2598 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -2666 *3) (|:| -2598 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))) ((*1 *2 *3 *4 *5) @@ -15642,2725 +16464,1904 @@ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209)) - (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1209)) + (-4 *5 (-1209)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3))))) +(((*1 *1) + (-12 (-4 *1 (-404)) (-2329 (|has| *1 (-6 -4397))) + (-2329 (|has| *1 (-6 -4389))))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))) + ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846)))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-641 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-564))))) + (-4 *2 (-556)) (-5 *1 (-418 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-564)) + (|:| -4322 (-641 (-2 (|:| |irr| *4) (|:| -3871 (-564))))))) + (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-817))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-948 *8)))) + (-5 *5 (-767)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) + (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-612 (-1170)))) + (-4 *10 (-789)) + (-5 *2 + (-2 + (|:| |rgl| + (-641 + (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) + (|:| |wcond| (-641 (-948 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-948 *8)))) + (|:| -3342 (-641 (-1259 (-407 (-948 *8)))))))))) + (|:| |rgsz| (-564)))) + (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-564))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) + (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-753))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3))))) (((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) - (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564))))) + ((*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046)) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767))) + (-5 *1 (-900 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194))))) +(((*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) (((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) + (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -2525 *6))) + (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1194)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) + (-5 *2 + (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) + (-5 *1 (-626 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-564))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) + (-4 *7 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) + (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) + (-4 *8 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) + (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) + (-4 *8 (-13 (-556) (-846) (-1034 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) + (-4 *3 (-1045)) (-5 *1 (-594 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-595 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) + (-4 *3 (-1045)) (-4 *1 (-1219 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-767)) + (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) + (-4 *4 (-1045)) (-4 *1 (-1240 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-4 *1 (-1250 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-767)) (|:| |c| *3)))) + (-4 *3 (-1045)) (-4 *1 (-1250 *3))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) + (-4 *2 (-1209))))) +(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-741))))) (((*1 *2 *1) (-12 (-5 *2 (-641 (-641 - (-3 (|:| -1316 (-1170)) - (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))) + (-3 (|:| -2420 (-1170)) + (|:| -4118 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))))) (-5 *1 (-1174))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) - (-5 *1 (-321 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) - (-247 *4 (-407 (-564))))) - (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1170)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))) -(((*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) - (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790)) - (-4 *6 (-847)) (-5 *1 (-903 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) - (-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) + (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-846)) + (-5 *1 (-1180 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *2) - (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) - (-14 *3 (-918)) (-14 *4 (-918))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3264 (-641 *3)) (|:| -3103 (-641 *3)))) - (-5 *1 (-1210 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) - (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *9 (-1060 *6 *7 *8)) - (-5 *2 - (-641 - (-2 (|:| -4252 (-641 *9)) (|:| -2956 *10) (|:| |ineq| (-641 *9))))) - (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) - (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *9 (-1060 *6 *7 *8)) - (-5 *2 - (-641 - (-2 (|:| -4252 (-641 *9)) (|:| -2956 *10) (|:| |ineq| (-641 *9))))) - (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) - (-4 *4 (-1094)))) - ((*1 *1 *2) - (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -3678 ((-1119 *3 (-610 $)) $)) - (-15 -3693 ((-1119 *3 (-610 $)) $)) - (-15 -1831 ($ (-1119 *3 (-610 $)))))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) - (-4 *4 (-847)) (-5 *1 (-573 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391))))) -(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4)) - (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998)) + (-4 *2 (-1045))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) + (-4 *3 (-1209))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) + (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) + (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *1 (-442 *2)) + (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767)) + (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767)) + (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094)) - (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5)))))) -(((*1 *1 *1 *1) (-4 *1 (-758)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) - (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4)) - (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) + (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) + (-5 *1 (-444 *5 *2)) (-4 *5 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-373 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4)) - (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) - (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2)) - (-4 *2 (-1235 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2362 *4))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) - (-4 *3 (-1235 (-407 *4)))))) -(((*1 *1 *1) (-4 *1 (-657)))) -(((*1 *1) (-5 *1 (-820)))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3))))) + (-12 (-5 *3 (-564)) (|has| *1 (-6 -4397)) (-4 *1 (-404)) + (-5 *2 (-917))))) (((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) - (-4 *4 (-13 (-1094) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564))))) + (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) + (-4 *3 (-1094)) (-4 *5 (-662 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-924)) - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) - (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) - (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) - (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) - (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) - (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) - (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) -(((*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262))))) + (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1166 *6)) + (-5 *1 (-321 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225)))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-752))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) - (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5))))) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) - (-4 *4 (-847)) (-5 *1 (-1180 *4))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046)) - (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) - (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) - (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) - (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) - (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046))))) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112)) - (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170))))) + (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-564))) + (-4 *4 (-13 (-846) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452)) - (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) -(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094))))) -(((*1 *2 *3) + (-12 (-5 *3 (-610 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) + (-5 *2 (-1166 *1))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2053 *4) (|:| -2532 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-564))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031)) + (-5 *1 (-750))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4397)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) + ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225)))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) + (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-767))) + (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) + (-4 *10 (-789)) (-5 *2 (-641 (-1166 *12))) + (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1166 *12))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-881 *4 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) - (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) - (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) - (-4 *2 (-652 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) - ((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) - (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-275)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-847)) - (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-790)) (-4 *7 (-1046)) - (-5 *2 (-641 (-768))) (-5 *1 (-321 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) - (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1264)) + (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) - (-4 *4 (-1235 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-939 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)) (-5 *3 (-225))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) + (-4 *5 (-846)) (-5 *2 (-948 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) + (-4 *5 (-846)) (-5 *2 (-948 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045)) + (-5 *2 (-948 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *3 (-847)) (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-970 *3 *2 *4)) (-4 *3 (-1046)) (-4 *4 (-847)) - (-4 *2 (-789)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-768)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)) - (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-768))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) - (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) - (-5 *7 (-641 (-641 (-2 (|:| -3192 (-768)) (|:| |pcoef| *13))))) - (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10)))) - (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) - (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) - (-4 *3 (-1235 *4)) (-5 *2 (-112))))) + (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045)) + (-5 *2 (-948 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-922))) + (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) + (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) + (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) + (-5 *2 (-1204 (-922))) (-5 *1 (-318))))) +(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) - (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-768)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859)) - (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019)))))) + (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) - (-5 *1 (-332))))) -(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) - ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) - (-5 *1 (-756)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) - (-5 *1 (-756))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) - (-5 *2 (-1032)) (-5 *1 (-753))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) - (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) - (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) - (-4 *3 (-1235 *4)) (-5 *2 (-564)))) - ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) - (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))) - (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) - (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) - (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) - (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) - (-4 *3 (-13 (-27) (-1194) (-430 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564)) - (-5 *1 (-1111 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6)))) - (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564)) - (-5 *1 (-1111 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170)) - (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6)) - (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) - (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4406))))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *2) - (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-974 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) - (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-5 *1 (-974 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826))))) -(((*1 *2 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4)) - (-4 *4 (-1046))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4408 "*"))) - (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) - (|has| *4 (-6 (-4408 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4))))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) - (-14 *4 (-641 (-1170))) (-4 *5 (-387))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) - (-5 *1 (-804 *5 *2 *3 *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *3 (-652 *2)) (-4 *6 (-652 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) - (-5 *1 (-804 *5 *2 *3 *6)) - (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) - (-4 *6 (-652 (-407 *2)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) - (-4 *3 (-13 (-363) (-147)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1) (-5 *1 (-630)))) -(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) - (-4 *2 (-683 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2)) - (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) - ((*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-748))))) -(((*1 *1 *2) - (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046)) - (-4 *4 (-1209)))) - ((*1 *1 *2) - (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) - (-4 *5 (-238 (-2828 *3) (-768))) - (-14 *6 - (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *5)) - (-2 (|:| -1468 *2) (|:| -1558 *5)))) - (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847)) - (-4 *7 (-946 *4 *5 (-861 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) - (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) - (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *1) - (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) - (-4 *3 (-1235 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) - (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))) - (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) - (-4 *3 (-1094))))) + (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) + (-4 *7 (-945 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) + (-5 *1 (-1210 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) - (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847)) - (-14 *4 - (-1 (-112) (-2 (|:| -1468 *3) (|:| -1558 *2)) - (-2 (|:| -1468 *3) (|:| -1558 *2))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847)) - (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307)) - (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564)))) - (-5 *1 (-1028))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1133)))) -(((*1 *2 *3) - (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968)) - (-5 *3 (-641 (-564)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847)) - (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4))))) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) + (-5 *1 (-1210 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) + (-5 *3 (-407 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564))))) + (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533))) - (-5 *1 (-533)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) - (-4 *1 (-764 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-1259 (-685 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) - (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5)) - (-5 *4 (-685 (-407 (-949 *5)))))) + (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) + (-5 *1 (-262 *2)) (-4 *2 (-1209)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) - (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5)) - (-5 *4 (-685 (-949 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) - (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847)))) + (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) + (-5 *1 (-263))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) ((*1 *2 *1) - (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847))))) -(((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) - (-5 *2 (-1259 (-641 (-2 (|:| -1522 *4) (|:| -1468 (-1114)))))) - (-5 *1 (-346 *4))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-744))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582))))) -(((*1 *1 *1) (-4 *1 (-556)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009))))) -(((*1 *2) - (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) - ((*1 *2 *2) - (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-641 (-2 (|:| -3766 (-407 (-564))) (|:| -3777 (-407 (-564)))))) - (-5 *2 (-641 (-225))) (-5 *1 (-305))))) -(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1235 (-407 (-564)))) - (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) - (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) - (-4 *3 (-1235 (-407 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) - (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) - (-5 *1 (-1252 *5 *2))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4408 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) - (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) - (-4 *4 (-683 *2 *5 *6))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) - (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-842))))) +(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-790)) - (-4 *3 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $))))) (-4 *5 (-556)) - (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) + (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1034 (-564))) + (-4 *4 (-13 (-846) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-134))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1046)) (-4 *5 (-790)) - (-4 *3 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) + (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) + (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *6)) - (-4 *6 - (-13 (-847) - (-10 -8 (-15 -2511 ((-1170) $)) - (-15 -3871 ((-3 $ "failed") (-1170)))))) - (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) - (-4 *2 (-946 (-949 *4) *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157))))) + (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) + (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) + (-4 *6 (-979 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-284))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-5 *1 (-379))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1106)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1094)) + (-5 *1 (-678 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) + (-5 *1 (-686 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) + (-4 *4 (-644 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1045)) + (-5 *1 (-710 *4 *5)) (-4 *5 (-644 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-564))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) + (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-767))))) (((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) - (-5 *2 (-816 *3)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) + (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -3571 *4)))))) ((*1 *2 *1) - (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4326 *4)))) - (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) + (-12 (-5 *2 (-641 (-2 (|:| -3139 *3) (|:| -1955 *4)))) + (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) - (-4 *3 (-13 (-1094) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) -(((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-641 (-2 (|:| -3070 (-564)) (|:| -1558 (-564)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) - (-4 *3 (-1060 *6 *7 *8)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2956 *9)))) - (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) - (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) - (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2956 *9)))) - (-5 *1 (-1102 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) + (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3))))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) - (-4 *5 (-883 (-564))) - (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) - (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *2 *1) + (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) + (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) + (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-112)) + (-5 *1 (-920 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| -3946 (-641 (-859))) (|:| -1986 (-641 (-859))) - (|:| |presup| (-641 (-859))) (|:| -3377 (-641 (-859))) - (|:| |args| (-641 (-859))))) - (-5 *1 (-1170))))) + (-5 *3 + (-641 (-2 (|:| -4237 (-407 (-564))) (|:| -4250 (-407 (-564)))))) + (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1016 *4)) + (-4 *4 (-1235 (-564)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2956 *4)))) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) - (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) - ((*1 *1 *1) (-5 *1 (-1114)))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-4 *4 (-1235 *3)) - (-5 *2 - (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-685 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) - (-5 *2 - (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-685 *3)))) - (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) - (-5 *2 - (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-685 *3)))) - (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) - (-5 *2 - (-2 (|:| -3331 (-685 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-685 *3)))) - (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) - (-5 *1 (-901 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) - (-14 *4 (-641 (-1170)))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) + (-4 *6 (-13 (-27) (-430 *5))) + (-4 *5 (-13 (-846) (-556) (-1034 (-564)))) (-4 *8 (-1235 (-407 *7))) + (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) + (-4 *3 (-342 *6 *7 *8))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) + (-4 *5 (-373 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) + (-14 *4 (-917)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046))))) + (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) + (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) + (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) + (-14 *6 (-1259 (-685 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) + (-14 *6 (-1259 (-685 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-917)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) + ((*1 *1) + (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) + (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2)))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) + (-4 *4 (-172))))) (((*1 *2 *3) - (-12 (-4 *4 (-1046)) - (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) - ((*1 *1 *1) (-4 *1 (-545))) - ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209)))) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) + (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) + ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-641 (-767))))) ((*1 *2 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) - (-4 *2 (-1046))))) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 (-767)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) - (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) + (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) + (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751))))) (((*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) - ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2595 *3) (|:| |coef1| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1012 *4 *5)) + (-5 *3 (-407 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) + (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) - (|:| |overan| (-1166 (-48))) (|:| -2105 (-112)))) + (|:| |overan| (-1166 (-48))) (|:| -3208 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) + (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-905)) + (-5 *2 (-1259 *1))))) +(((*1 *1) (-5 *1 (-1076)))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-407 (-948 (-564))))) (-5 *4 (-641 (-1170))) + (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) + (-4 *5 (-13 (-844) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-1259 *3)) + (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4406))))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-564) + *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) + (-2 (|:| -1370 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) + ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) + (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) - (-4 *1 (-1063 *4 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) - (-4 *5 (-883 (-564))) - (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) - (-4 *3 (-13 (-27) (-1194) (-430 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133)) - (-4 *2 (-13 (-27) (-1194) (-430 *5))) - (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) - (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) - (-5 *1 (-567 *5 *2))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2956 *4)))) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7)) - (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) - (-14 *7 *3))) + (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) - (-14 *8 (-641 *5)) (-5 *2 (-1264)) - (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) - (-14 *9 (-641 *3)) (-14 *10 *3)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) - (-5 *2 (-641 (-1259 *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) - ((*1 *1 *1 *1) (-5 *1 (-1114)))) -(((*1 *2 *3) - (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) + (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) + (-4 *1 (-1062 *4 *3))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790)) - (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) - (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1170)) - (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) - (-4 *4 (-13 (-29 *6) (-1194) (-956))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3331 (-641 *4)))) - (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) -(((*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3))))) + (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-917)) + (-5 *1 (-528 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) + (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1194))) + (-4 *5 (-13 (-556) (-846))) (-5 *1 (-598 *5 *6 *2)) + (-4 *6 (-13 (-430 *5) (-998) (-1194)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-564)) (-14 *4 (-767))))) (((*1 *1) (-5 *1 (-578))) - ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860)))) - ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-859)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) + (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-859)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046))))) -(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) - (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-1272 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4))) - (-5 *1 (-1267 *4)) (-4 *4 (-363))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) - (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) + (-12 (-4 *1 (-891)) + (-5 *3 + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *2 (-1031))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2286)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) (((*1 *2 *3) - (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) -(((*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349)))) - ((*1 *2 *1) - (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094)) - (-14 *4 - (-1 (-112) (-2 (|:| -1468 *2) (|:| -1558 *3)) - (-2 (|:| -1468 *2) (|:| -1558 *3))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) - (|:| |genIdeal| (-504 *3 *4 *5 *6)))) - (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-999)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -1522 *4) (|:| -2044 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-786)) (-5 *5 (-564))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-916))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556)) - (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) - (-4 *5 (-790)) - (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)))))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) - (-5 *1 (-386 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1 *1) - (-12 + (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564)))) + (-4 *5 (-882 (-564))) + (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-839 *2)) (-4 *2 (-1133)) + (-4 *2 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) + (-4 *5 (-13 (-846) (-1034 (-564)) (-452) (-637 (-564)))) + (-5 *1 (-567 *5 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) + (-4 *4 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1034 (-564)) (-846) (-147) (-637 (-564)))) (-5 *2 - (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3)))) - (-5 *1 (-816 *3)) (-4 *3 (-847))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3342 (-641 *4)))) + (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556)) - (-4 *3 (-1046))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819))))) -(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) - (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) - (-5 *5 (-1150 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-434)) - (-5 *2 - (-641 - (-3 (|:| -1316 (-1170)) - (|:| -2073 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) - (-5 *1 (-1174))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1194) (-999)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6))) - (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4)) - (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3)))) - (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046)) - (-4338 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5)) - (-4 *4 (-612 (-889 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4)) - (-4338 (-4 *3 (-1035 (-1170)))) (-4338 (-4 *3 (-1046))) - (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) - (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749))))) -(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3629)))) - (-5 *2 (-1032)) (-5 *1 (-743))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556))) - (-5 *1 (-276 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) - (-4 *4 (-266 *3)) (-4 *5 (-790))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4406)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) - (-5 *2 (-641 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-407 (-564))) - (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) - (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4)))) - (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) - (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) - ((*1 *2 *1) - (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1170)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-641 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3521 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1194) (-27) (-430 *8))) - (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) - (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) - (-14 *4 (-641 (-1170))))) - ((*1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) - (-14 *4 (-641 (-1170))))) - ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1166 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) - (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) - (-4 *2 (-342 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) - (-4 *2 (-652 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) - (-5 *2 (-2 (|:| -2860 (-407 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) - (-247 *4 (-407 (-564))))) - (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) - ((*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) - (-5 *1 (-880))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1166 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2595 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564)))) - (-4 *2 (-172))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3)))) - (-5 *1 (-816 *3)) (-4 *3 (-847)))) - ((*1 *1 *1 *1) (-5 *1 (-859)))) -(((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) - (-5 *1 (-305))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) - (-4 *3 (-13 (-1094) (-34)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1194)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-749))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) + (-4 *2 (-13 (-846) (-21)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2244 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) + (-4 *4 (-1045)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) - (-4 *2 (-556)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-556))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846)))) + ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) - (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-768))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) - (-5 *1 (-966 *3 *4)))) + (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) + (-4 *3 (-1235 *2)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) - (-5 *2 (-1166 (-949 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) - (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) - (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) - (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-782 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) - (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) - (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) - (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3155 (-641 *9)))) - (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7)) - (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3155 (-641 *8)))) - (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) - (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768)))))) -(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) -(((*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) - (-4 *3 (-1094))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1150 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-559))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) - (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -3399 ((-418 $) $))))) - (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1046))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) - (-14 *4 (-641 (-1170))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) - (-4 *3 (-1046)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3)) - (-4 *3 (-1046))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3) - (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-847) (-556)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) - (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918)) - (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *2 *1) - (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) - (|:| -4133 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-192))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) - (-4 *3 (-363))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5)) - (-4 *4 (-349)) (-4 *5 (-721 *2 *3))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1235 (-407 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-585 *2)) + (-5 *3 (-1170)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4)) + (-4 *4 (-1094)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3)))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) - (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) + (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) + (-14 *3 (-641 (-1170)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-556)) (-5 *2 (-641 (-641 (-948 *5)))) (-5 *1 (-1178 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 (-316 (-225)))) - (-5 *2 - (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) - (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) - (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -4195 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -1513 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) - (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) - (-4 *6 (-946 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) - (-4 *4 (-13 (-1094) (-34)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *2 (-847)) (-4 *3 (-172)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) - (-4 *4 (-847)) (-4 *2 (-556)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549)))))) + (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-564)) (-637 (-564)))) + (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-955) (-29 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) - ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *3 (-1060 *5 *6 *7)) - (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2956 *4)))) - (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))) -(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) - (-4 *5 (-373 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 (-564)) (-14 *5 (-768)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-768)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-768)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-768)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-768)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) - (-14 *4 (-768)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ *3)) (-15 -3712 ((-1264) $)) - (-15 -3595 ((-1264) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-986)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-847) - (-10 -8 (-15 -1350 ((-1152) $ (-1170))) (-15 -3712 ((-1264) $)) - (-15 -3595 ((-1264) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-847)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) - (-4 *4 (-1235 (-407 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-641 (-889 *4))) (-5 *1 (-889 *4)) - (-4 *4 (-1094)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-768)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) - (-4 *4 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-918)) (-4 *2 (-363)) - (-5 *1 (-990 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *2 (-1046)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-918)) (-4 *4 (-1094)) - (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) - (-5 *1 (-1070 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-918)) (-4 *4 (-1094)) - (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) - (-5 *1 (-1071 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) - (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) - (-4 *7 (-1094)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) - (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) - ((*1 *1 *1 *1) (-4 *1 (-1138))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1046)) - (-4 *2 (-363)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) - (-4 *3 (-556)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-721 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170)) - (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4)) - (-5 *1 (-292 *4)) (-4 *4 (-452)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-685 (-169 (-407 (-564))))) - (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4)) - (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) - (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5)) - (-4 *5 (-13 (-363) (-845))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) ((*1 *2 *3) - (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564)))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) - (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5)) - (-4 *5 (-13 (-363) (-845)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) - (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5)) - (-4 *5 (-946 *4 (-531 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) - (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046))))) + (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| -3866 (-767)))) (-5 *1 (-586 *3)) + (-4 *3 (-545))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1194)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) - (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3)) - (-4 *5 (-652 (-407 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 *5)) - (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) - (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046)) - (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-1060 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) - (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-556)) - (-5 *2 (-2 (|:| -2394 (-685 *5)) (|:| |vec| (-1259 (-641 (-918)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) - (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) - (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) - (-4 *6 (-342 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) - (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) - (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) - (-4 *1 (-335 *3 *4 *5 *6))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-363)) (-5 *1 (-975 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) - (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790)) - (-4 *4 (-13 (-847) (-10 -8 (-15 -2511 ((-1170) $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) - (-4 *4 (-1046))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) - (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *6 (-342 *3 *4 *5))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| -2860 *4) (|:| -4347 *3) (|:| -1678 *3))) - (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) - (-5 *2 (-2 (|:| -4347 *1) (|:| -1678 *1))) (-4 *1 (-1060 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1046)) - (-5 *2 (-2 (|:| -2860 *3) (|:| -4347 *1) (|:| -1678 *1))) - (-4 *1 (-1235 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061)))) - ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) - (-5 *1 (-886 *4 *2))))) + (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) + (-4 *3 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) + (-4 *4 (-172))))) (((*1 *2 *3) - (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918)) - (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4408 "*"))))) - (-5 *1 (-899 *4 *2))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) - (-5 *1 (-749))))) + (-12 (-4 *4 (-452)) + (-5 *2 + (-641 + (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))) + (|:| |geneigvec| (-641 (-685 (-407 (-948 *4)))))))) + (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4))))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) + ((*1 *1 *1) (-5 *1 (-1261)))) (((*1 *2 *3) - (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) + (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) + (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3))))) +(((*1 *1) (-5 *1 (-506)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) - (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5)))))) + (-2 (|:| -3235 (-778 *3)) (|:| |coef1| (-778 *3)) + (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3235 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1034 *3)) + (-4 *2 (-363)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-628 *4 *2)) + (-4 *2 (-13 (-430 *4) (-998) (-1194))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1194))) + (-4 *4 (-13 (-846) (-556))) (-5 *1 (-628 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1170)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-955))))) (((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) - (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))) - ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112)) - (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) - (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))) + (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-862 *4 *5 *6 *7)) + (-4 *4 (-1045)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) + (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) - (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) - (-5 *1 (-752))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) - (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) - (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5)) - (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) - (-4 *4 (-946 *8 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6)) - (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847)) - (-4 *7 (-307))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-962)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) - ((*1 *1 *1) (-5 *1 (-1170)))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057)))) - ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5)) - (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) - (-5 *1 (-321 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847))))) -(((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094))))) -(((*1 *1 *1) (-5 *1 (-859))) - ((*1 *2 *1) - (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) - (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) - (-14 *4 (-768)) (-4 *5 (-172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) - (-4 *5 (-847)) (-5 *2 (-768))))) + (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) + (-14 *8 (-641 *5)) (-5 *2 (-1264)) + (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) + (-14 *9 (-641 *3)) (-14 *10 *3)))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-641 + (-2 + (|:| -3076 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) + (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) + (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2511 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379))))))) + (-5 *1 (-799))))) +(((*1 *2 *2) + (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-641 (-2 (|:| -3070 (-1166 *6)) (|:| -1558 (-564))))) - (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) - (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536))))) -(((*1 *2 *1) - (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) - (-5 *2 (-1032)) (-5 *1 (-748))))) -(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-719))) - ((*1 *1) (-4 *1 (-723))) - ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) - ((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819))))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302))))) +(((*1 *1 *2) + (-12 (-5 *2 (-685 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) + (-14 *3 (-767)) (-14 *4 (-767))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) - (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) - (-5 *2 - (-2 (|:| -1680 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3345 (-407 *6)) - (|:| |special| (-407 *6)))) - (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4)) - (-4 *3 (-1235 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3766 *3) (|:| -3777 *3))) (-5 *1 (-893 *3 *5)) - (-4 *3 (-1235 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) - (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) - (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) - (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) - (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-536))) - ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) - (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-590 *5 *6 *7 *8 *3))))) -((-1292 . 735355) (-1293 . 735184) (-1294 . 735111) (-1295 . 733534) - (-1296 . 733482) (-1297 . 733330) (-1298 . 733236) (-1299 . 733169) - (-1300 . 732922) (-1301 . 732794) (-1302 . 732547) (-1303 . 732467) - (-1304 . 732264) (-1305 . 732151) (-1306 . 732035) (-1307 . 731765) - (-1308 . 731497) (-1309 . 731465) (-1310 . 731378) (-1311 . 731214) - (-1312 . 731141) (-1313 . 731090) (-1314 . 730985) (-1315 . 730643) - (-1316 . 729926) (-1317 . 729764) (-1318 . 729711) (-1319 . 729310) - (-1320 . 729240) (-1321 . 729124) (-1322 . 728220) (-1323 . 728022) - (-1324 . 727909) (-1325 . 727772) (-1326 . 727658) (-1327 . 727595) - (-1328 . 727003) (-1329 . 726950) (-1330 . 726523) (-1331 . 726439) - (-1332 . 726380) (-1333 . 726220) (-1334 . 726149) (-1335 . 726080) - (-1336 . 725984) (-1337 . 725791) (-1338 . 725672) (-1339 . 725478) - (-1340 . 724720) (-1341 . 724550) (-1342 . 724497) (-1343 . 724390) - (-1344 . 724176) (-1345 . 724049) (-1346 . 723977) (-1347 . 723624) - (-1348 . 723309) (-1349 . 722224) (-1350 . 717111) (-1351 . 717042) - (-1352 . 716589) (-1353 . 716462) (-1354 . 716237) (-1355 . 716100) - (-1356 . 716041) (-1357 . 715654) (-1358 . 715379) (-1359 . 715319) - (-1360 . 715106) (-1361 . 715054) (-1362 . 715002) (-1363 . 714556) - (-1364 . 714464) (-1365 . 714411) (-1366 . 714296) (-1367 . 714246) - (-1368 . 714086) (-1369 . 714013) (-1370 . 713885) (-1371 . 713772) - (-1372 . 713675) (-1373 . 713465) (-1374 . 713386) (-1375 . 713282) - (-1376 . 713152) (-1377 . 713099) (-1378 . 712983) (-1379 . 712930) - (-1380 . 712818) (-1381 . 712762) (-1382 . 712622) (-1383 . 712346) - (-1384 . 711842) (-1385 . 711564) (-1386 . 711494) (-1387 . 711336) - (-1388 . 711205) (-1389 . 710003) (-1390 . 709904) (-1391 . 709852) - (-1392 . 709769) (-1393 . 709613) (-1394 . 709468) (-1395 . 708950) - (-1396 . 708802) (-1397 . 708378) (-1398 . 708283) (-1399 . 708174) - (-1400 . 706318) (-1401 . 706245) (-1402 . 705863) (-1403 . 705002) - (-1404 . 704874) (-1405 . 704808) (-1406 . 704699) (-1407 . 704630) - (-1408 . 704522) (-1409 . 704420) (-1410 . 704326) (-1411 . 704270) - (-1412 . 704107) (-1413 . 704001) (-1414 . 703849) (-1415 . 703768) - (-1416 . 703672) (-1417 . 703531) (-1418 . 703434) (-1419 . 703348) - (-1420 . 702959) (-1421 . 702793) (-1422 . 702705) (-1423 . 702527) - (-1424 . 702430) (-1425 . 702364) (-1426 . 701753) (-1427 . 701231) - (-1428 . 701163) (-1429 . 701110) (-1430 . 700726) (-1431 . 700555) - (-1432 . 700485) (-1433 . 700266) (-1434 . 700148) (-1435 . 699957) - (-1436 . 699797) (-1437 . 699738) (-1438 . 699554) (-1439 . 699402) - (-1440 . 699349) (-1441 . 698639) (-1442 . 698525) (-1443 . 698474) - (-1444 . 698293) (-1445 . 698135) (-1446 . 697965) (-1447 . 697928) - (-1448 . 697775) (-1449 . 697678) (-1450 . 697604) (-1451 . 697531) - (-1452 . 697433) (-1453 . 697254) (-1454 . 697173) (-1455 . 697069) - (-1456 . 696778) (-1457 . 696567) (-1458 . 696484) (-1459 . 696398) - (-1460 . 696270) (-1461 . 696051) (-1462 . 695944) (-1463 . 695737) - (-1464 . 695631) (-1465 . 695554) (-1466 . 695318) (-1467 . 695245) - (-1468 . 694918) (-1469 . 694834) (-1470 . 694706) (-1471 . 694588) - (-1472 . 694530) (-1473 . 694386) (-1474 . 694010) (-1475 . 693936) - (-1476 . 693741) (-1477 . 693491) (-1478 . 693133) (-1479 . 693060) - (-1480 . 693004) (-1481 . 692745) (-1482 . 692518) (-1483 . 692308) - (-1484 . 692096) (-1485 . 692012) (-1486 . 691920) (-1487 . 691838) - (-1488 . 691638) (-1489 . 691258) (-1490 . 691159) (-1491 . 691066) - (-1492 . 690870) (-1493 . 690652) (-1494 . 690052) (-1495 . 689891) - (-1496 . 689302) (-1497 . 689062) (-1498 . 688970) (-1499 . 688841) - (-1500 . 688761) (-1501 . 688640) (-1502 . 687966) (-1503 . 687877) - (-1504 . 687797) (-1505 . 687581) (-1506 . 687426) (-1507 . 687322) - (-1508 . 687258) (-1509 . 686379) (-1510 . 686293) (-1511 . 686159) - (-1512 . 685912) (-1513 . 685518) (-1514 . 685251) (-1515 . 684933) - (-1516 . 684827) (-1517 . 684717) (-1518 . 684187) (-1519 . 684135) - (-1520 . 684038) (-1521 . 683985) (-1522 . 683673) (-1523 . 683530) - (-1524 . 683393) (-1525 . 683220) (-1526 . 683171) (-1527 . 682514) - (-1528 . 682373) (-1529 . 682187) (-1530 . 682041) (-1531 . 681767) - (-1532 . 681658) (-1533 . 681601) (-1534 . 681458) (-1535 . 681303) - (-1536 . 681236) (-1537 . 681205) (-1538 . 681136) (-1539 . 681032) - (-1540 . 680887) (-1541 . 680769) (-1542 . 680735) (-1543 . 680514) - (-1544 . 680405) (-1545 . 680352) (-1546 . 679651) (-1547 . 679555) - (-1548 . 679363) (-1549 . 679251) (-1550 . 679158) (-1551 . 678915) - (-1552 . 678769) (-1553 . 678661) (-1554 . 678573) (-1555 . 678501) - (-1556 . 678295) (-1557 . 678169) (-1558 . 677688) (-1559 . 677529) - (-1560 . 677425) (-1561 . 677353) (-1562 . 677300) (-1563 . 677234) - (-1564 . 677127) (-1565 . 677030) (-1566 . 676956) (-1567 . 676477) - (-1568 . 676290) (-1569 . 676042) (-1570 . 675958) (-1571 . 675836) - (-1572 . 675693) (-1573 . 675607) (-1574 . 675348) (-1575 . 674910) - (-1576 . 674800) (-1577 . 674685) (-1578 . 674532) (-1579 . 674409) - (-1580 . 674262) (-1581 . 674211) (-1582 . 674126) (-1583 . 674038) - (-1584 . 674001) (-1585 . 673882) (-1586 . 673787) (-1587 . 673384) - (-1588 . 673131) (-1589 . 673021) (-1590 . 672971) (-1591 . 672714) - (-1592 . 672612) (-1593 . 672545) (-1594 . 672209) (-1595 . 672123) - (-1596 . 672049) (-1597 . 671854) (-1598 . 670478) (-1599 . 670372) - (-1600 . 670319) (-1601 . 670189) (-1602 . 670042) (-1603 . 669923) - (-1604 . 669765) (-1605 . 669686) (-1606 . 669426) (-1607 . 669236) - (-1608 . 669177) (-1609 . 669079) (-1610 . 668933) (-1611 . 668861) - (-1612 . 668680) (-1613 . 668551) (-1614 . 668448) (-1615 . 668100) - (-1616 . 667999) (-1617 . 667578) (-1618 . 667469) (-1619 . 665355) - (-1620 . 665299) (-1621 . 665121) (-1622 . 665055) (-1623 . 664920) - (-1624 . 664836) (-1625 . 664693) (-1626 . 664586) (-1627 . 664529) - (-1628 . 664267) (-1629 . 664208) (-1630 . 664026) (-1631 . 663954) - (-1632 . 663920) (-1633 . 663867) (-1634 . 663406) (-1635 . 663285) - (-1636 . 663161) (-1637 . 663046) (-1638 . 662130) (-1639 . 662058) - (-1640 . 661951) (-1641 . 661793) (-1642 . 661639) (-1643 . 661611) - (-1644 . 661580) (-1645 . 661465) (-1646 . 661300) (-1647 . 661244) - (-1648 . 660804) (-1649 . 660631) (-1650 . 660537) (-1651 . 660384) - (-1652 . 660173) (-1653 . 660102) (-1654 . 659947) (-1655 . 659837) - (-1656 . 659803) (-1657 . 659148) (-1658 . 659095) (-1659 . 658914) - (-1660 . 658861) (-1661 . 658806) (-1662 . 658756) (-1663 . 658631) - (-1664 . 658403) (-1665 . 658280) (-1666 . 658228) (-1667 . 658145) - (-1668 . 658000) (-1669 . 657826) (-1670 . 657193) (-1671 . 657077) - (-1672 . 656975) (-1673 . 656867) (-1674 . 656678) (-1675 . 656540) - (-1676 . 656295) (-1677 . 655964) (-1678 . 655756) (-1679 . 655728) - (-1680 . 655672) (-1681 . 655599) (-1682 . 655502) (-1683 . 655449) - (-1684 . 654854) (-1685 . 654802) (-1686 . 654604) (-1687 . 654439) - (-1688 . 654262) (-1689 . 654225) (-1690 . 654102) (-1691 . 653389) - (-1692 . 653230) (-1693 . 653123) (-1694 . 651942) (-1695 . 651829) - (-1696 . 651730) (-1697 . 651670) (-1698 . 651612) (-1699 . 651560) - (-1700 . 651472) (-1701 . 651339) (-1702 . 651067) (-1703 . 650971) - (-1704 . 650655) (-1705 . 650507) (-1706 . 650367) (-1707 . 650245) - (-1708 . 650159) (-1709 . 650032) (-1710 . 649963) (-1711 . 649805) - (-1712 . 649524) (-1713 . 649263) (-1714 . 649030) (-1715 . 648931) - (-1716 . 648865) (-1717 . 648729) (-1718 . 648601) (-1719 . 648362) - (-1720 . 648123) (-1721 . 648044) (-1722 . 647822) (-1723 . 647591) - (-1724 . 647519) (-1725 . 647429) (-1726 . 647306) (-1727 . 647254) - (-1728 . 647150) (-1729 . 647043) (-1730 . 646965) (-1731 . 646614) - (-1732 . 646510) (-1733 . 646264) (-1734 . 646039) (-1735 . 645956) - (-1736 . 645856) (-1737 . 645769) (-1738 . 645686) (-1739 . 645504) - (-1740 . 645389) (-1741 . 645273) (-1742 . 644827) (-1743 . 644739) - (-1744 . 644630) (-1745 . 644384) (-1746 . 644253) (-1747 . 644172) - (-1748 . 644098) (-1749 . 643939) (-1750 . 643873) (-1751 . 643566) - (-1752 . 643400) (-1753 . 643292) (-1754 . 643219) (-1755 . 643112) - (-1756 . 642965) (-1757 . 642719) (-1758 . 642624) (-1759 . 642237) - (-1760 . 642112) (-1761 . 642059) (-1762 . 641972) (-1763 . 641869) - (-1764 . 641636) (-1765 . 641144) (-1766 . 641091) (-1767 . 640731) - (-1768 . 639391) (-1769 . 639339) (-1770 . 639244) (-1771 . 639187) - (-1772 . 638807) (-1773 . 638687) (-1774 . 638595) (-1775 . 638434) - (-1776 . 638298) (-1777 . 638132) (-1778 . 637598) (-1779 . 637527) - (-1780 . 637446) (-1781 . 637415) (-1782 . 637118) (-1783 . 636977) - (-1784 . 636768) (-1785 . 636632) (-1786 . 636459) (-1787 . 636407) - (-1788 . 636297) (-1789 . 636242) (-1790 . 636085) (-1791 . 635973) - (-1792 . 635533) (-1793 . 635450) (-1794 . 633908) (-1795 . 633769) - (-1796 . 633619) (-1797 . 632433) (-1798 . 632147) (-1799 . 631994) - (-1800 . 631878) (-1801 . 631773) (-1802 . 631708) (-1803 . 631631) - (-1804 . 631389) (-1805 . 631245) (-1806 . 631192) (-1807 . 631062) - (-1808 . 629880) (-1809 . 629464) (-1810 . 629035) (-1811 . 628891) - (-1812 . 628677) (-1813 . 628591) (-1814 . 628344) (-1815 . 628095) - (-1816 . 627915) (-1817 . 627828) (-1818 . 627728) (-1819 . 627658) - (-1820 . 627543) (-1821 . 627420) (-1822 . 627365) (-1823 . 625159) - (-1824 . 624869) (-1825 . 624496) (-1826 . 624033) (-1827 . 623758) - (-1828 . 623624) (-1829 . 623479) (-1830 . 622314) (-1831 . 603723) - (-1832 . 603616) (-1833 . 603530) (-1834 . 603419) (-1835 . 603285) - (-1836 . 603211) (-1837 . 603128) (-1838 . 603055) (-1839 . 602857) - (-1840 . 602756) (-1841 . 601600) (-1842 . 598779) (-1843 . 598467) - (-1844 . 598276) (-1845 . 598101) (-1846 . 597995) (-1847 . 597943) - (-1848 . 597893) (-1849 . 597392) (-1850 . 596754) (-1851 . 596445) - (-1852 . 596320) (-1853 . 596014) (-1854 . 595952) (-1855 . 595797) - (-1856 . 595719) (-1857 . 595612) (-1858 . 595439) (-1859 . 595336) - (-1860 . 595147) (-1861 . 594181) (-1862 . 593578) (-1863 . 593488) - (-1864 . 593333) (-1865 . 593245) (-1866 . 593193) (-1867 . 593119) - (-1868 . 593067) (-1869 . 592935) (-1870 . 592793) (-1871 . 592710) - (-1872 . 592611) (-1873 . 592415) (-1874 . 592307) (-1875 . 592200) - (-1876 . 591873) (-1877 . 591766) (-1878 . 591456) (-1879 . 591347) - (-1880 . 591280) (-1881 . 588353) (-1882 . 588250) (-1883 . 588172) - (-1884 . 588098) (-1885 . 588010) (-1886 . 587951) (-1887 . 587823) - (-1888 . 587592) (-1889 . 587443) (-1890 . 587225) (-1891 . 587159) - (-1892 . 587022) (-1893 . 586728) (-1894 . 586645) (-1895 . 586548) - (-1896 . 586387) (-1897 . 586334) (-1898 . 586274) (-1899 . 586132) - (-1900 . 585861) (-1901 . 585795) (-1902 . 585688) (-1903 . 585608) - (-1904 . 585393) (-1905 . 585365) (-1906 . 585280) (-1907 . 584872) - (-1908 . 584667) (-1909 . 584596) (-1910 . 584120) (-1911 . 583861) - (-1912 . 583779) (-1913 . 583652) (-1914 . 583540) (-1915 . 583426) - (-1916 . 583353) (-1917 . 583181) (-1918 . 582733) (-1919 . 582659) - (-1920 . 582576) (-1921 . 582449) (-1922 . 582014) (-1923 . 581801) - (-1924 . 581587) (-1925 . 581309) (-1926 . 581227) (-1927 . 581156) - (-1928 . 581064) (-1929 . 580929) (-1930 . 580833) (-1931 . 580724) - (-1932 . 580672) (-1933 . 580598) (-1934 . 580228) (-1935 . 580173) - (-1936 . 580002) (-1937 . 579940) (-1938 . 579510) (-1939 . 579397) - (-1940 . 579298) (-1941 . 579212) (-1942 . 579148) (-1943 . 578594) - (-1944 . 578109) (-1945 . 577956) (-1946 . 577849) (-1947 . 577459) - (-1948 . 577219) (-1949 . 577151) (-1950 . 576965) (-1951 . 576640) - (-1952 . 576512) (-1953 . 576484) (-1954 . 576190) (-1955 . 576116) - (-1956 . 575992) (-1957 . 575891) (-1958 . 575862) (-1959 . 575752) - (-1960 . 575675) (-1961 . 575596) (-1962 . 575457) (-1963 . 575333) - (-1964 . 575153) (-1965 . 574996) (-1966 . 574944) (-1967 . 574687) - (-1968 . 574488) (-1969 . 574408) (-1970 . 573104) (-1971 . 572768) - (-1972 . 572586) (-1973 . 572495) (-1974 . 572428) (-1975 . 572351) - (-1976 . 572282) (-1977 . 571433) (-1978 . 571306) (-1979 . 571210) - (-1980 . 570608) (-1981 . 570501) (-1982 . 570352) (-1983 . 570240) - (-1984 . 570062) (-1985 . 569991) (-1986 . 569890) (-1987 . 569738) - (-1988 . 566117) (-1989 . 566062) (-1990 . 565938) (-1991 . 565611) - (-1992 . 565546) (-1993 . 565112) (-1994 . 565053) (-1995 . 564934) - (-1996 . 564884) (-1997 . 564789) (-1998 . 564731) (-1999 . 564697) - (-2000 . 564590) (-2001 . 564511) (-2002 . 564407) (-2003 . 563872) - (-2004 . 563501) (-2005 . 563429) (-2006 . 563346) (-2007 . 563223) - (-2008 . 563078) (-2009 . 562981) (-2010 . 562443) (-2011 . 562020) - (-2012 . 561796) (-2013 . 561550) (-2014 . 561407) (-2015 . 561161) - (-2016 . 560747) (-2017 . 551185) (-2018 . 551044) (-2019 . 550983) - (-2020 . 550622) (-2021 . 550095) (-2022 . 550012) (-2023 . 549905) - (-2024 . 549853) (-2025 . 549521) (-2026 . 549343) (-2027 . 549293) - (-2028 . 549237) (-2029 . 549137) (-2030 . 549081) (-2031 . 548878) - (-2032 . 548765) (-2033 . 548599) (-2034 . 548542) (-2035 . 546812) - (-2036 . 546694) (-2037 . 546593) (-2038 . 546516) (-2039 . 546312) - (-2040 . 546171) (-2041 . 545576) (-2042 . 545474) (-2043 . 545385) - (-2044 . 545076) (-2045 . 544904) (-2046 . 544826) (-2047 . 544680) - (-2048 . 544627) (-2049 . 544465) (-2050 . 544294) (-2051 . 544185) - (-2052 . 544099) (-2053 . 544026) (-2054 . 543930) (-2055 . 543845) - (-2056 . 543725) (-2057 . 543624) (-2058 . 543373) (-2059 . 543321) - (-2060 . 543272) (-2061 . 543119) (-2062 . 542001) (-2063 . 541888) - (-2064 . 541833) (-2065 . 541747) (-2066 . 541546) (-2067 . 541310) - (-2068 . 540859) (-2069 . 540419) (-2070 . 540216) (-2071 . 540121) - (-2072 . 539988) (-2073 . 539927) (-2074 . 539655) (-2075 . 539603) - (-2076 . 539571) (-2077 . 539434) (-2078 . 538617) (-2079 . 538491) - (-2080 . 538368) (-2081 . 538238) (-2082 . 538078) (-2083 . 538050) - (-2084 . 537884) (-2085 . 537753) (-2086 . 537583) (-2087 . 537427) - (-2088 . 536983) (-2089 . 536897) (-2090 . 536760) (-2091 . 536705) - (-2092 . 536581) (-2093 . 536436) (-2094 . 536380) (-2095 . 536327) - (-2096 . 536275) (-2097 . 536152) (-2098 . 536074) (-2099 . 535968) - (-2100 . 535808) (-2101 . 535686) (-2102 . 535557) (-2103 . 535399) - (-2104 . 535280) (-2105 . 535112) (-2106 . 535044) (-2107 . 534943) - (-2108 . 534593) (-2109 . 534525) (-2110 . 534412) (-2111 . 534020) - (-2112 . 533925) (-2113 . 533368) (-2114 . 533295) (-2115 . 533209) - (-2116 . 532445) (-2117 . 532352) (-2118 . 532250) (-2119 . 532008) - (-2120 . 531649) (-2121 . 531512) (-2122 . 531388) (-2123 . 531304) - (-2124 . 531036) (-2125 . 530981) (-2126 . 530825) (-2127 . 530742) - (-2128 . 530365) (-2129 . 530212) (-2130 . 530054) (-2131 . 527791) - (-2132 . 527664) (-2133 . 527321) (-2134 . 527214) (-2135 . 526962) - (-2136 . 526285) (-2137 . 525402) (-2138 . 525280) (-2139 . 525118) - (-2140 . 525039) (-2141 . 524862) (-2142 . 524758) (-2143 . 524626) - (-2144 . 524324) (-2145 . 524145) (-2146 . 524046) (-2147 . 523927) - (-2148 . 523847) (-2149 . 523684) (-2150 . 523554) (-2151 . 523488) - (-2152 . 523333) (-2153 . 523189) (-2154 . 523076) (-2155 . 520807) - (-2156 . 520757) (-2157 . 520614) (-2158 . 520537) (-2159 . 520144) - (-2160 . 520015) (-2161 . 519929) (-2162 . 519788) (-2163 . 519603) - (-2164 . 519274) (-2165 . 519057) (-2166 . 519002) (-2167 . 518395) - (-2168 . 518289) (-2169 . 517811) (-2170 . 517713) (-2171 . 517559) - (-2172 . 517482) (-2173 . 517296) (-2174 . 516543) (-2175 . 516474) - (-2176 . 516264) (-2177 . 516179) (-2178 . 516086) (-2179 . 516000) - (-2180 . 515700) (-2181 . 515605) (-2182 . 515386) (-2183 . 515175) - (-2184 . 515034) (-2185 . 514655) (-2186 . 514598) (-2187 . 514491) - (-2188 . 514382) (-2189 . 514202) (-2190 . 513770) (-2191 . 513717) - (-2192 . 513649) (-2193 . 513564) (-2194 . 513431) (-2195 . 513136) - (-2196 . 513037) (-2197 . 512884) (-2198 . 512801) (-2199 . 512656) - (-2200 . 512544) (-2201 . 512443) (-2202 . 512306) (-2203 . 511436) - (-2204 . 511384) (-2205 . 511231) (-2206 . 511128) (-2207 . 511040) - (-2208 . 510874) (-2209 . 510845) (-2210 . 510728) (-2211 . 510642) - (-2212 . 510460) (-2213 . 510342) (-2214 . 510289) (-2215 . 510101) - (-2216 . 509789) (-2217 . 509760) (-2218 . 509600) (-2219 . 508739) - (-2220 . 508711) (-2221 . 508638) (-2222 . 508245) (-2223 . 508072) - (-2224 . 508003) (-2225 . 507885) (-2226 . 507686) (-2227 . 507652) - (-2228 . 507481) (-2229 . 507365) (-2230 . 507279) (-2231 . 507134) - (-2232 . 506752) (-2233 . 506586) (-2234 . 506484) (-2235 . 506293) - (-2236 . 506170) (-2237 . 500832) (-2238 . 500772) (-2239 . 500669) - (-2240 . 500528) (-2241 . 500370) (-2242 . 500067) (-2243 . 499701) - (-2244 . 499272) (-2245 . 499084) (-2246 . 498862) (-2247 . 498702) - (-2248 . 498604) (-2249 . 498260) (-2250 . 498033) (-2251 . 497934) - (-2252 . 497881) (-2253 . 497810) (-2254 . 497716) (-2255 . 497635) - (-2256 . 497455) (-2257 . 497426) (-2258 . 497027) (-2259 . 496955) - (-2260 . 496852) (-2261 . 496620) (-2262 . 496501) (-2263 . 496398) - (-2264 . 495328) (-2265 . 495257) (-2266 . 495183) (-2267 . 494842) - (-2268 . 494735) (-2269 . 494655) (-2270 . 494604) (-2271 . 494030) - (-2272 . 493380) (-2273 . 492999) (-2274 . 492946) (-2275 . 492848) - (-2276 . 492733) (-2277 . 492515) (-2278 . 492251) (-2279 . 492107) - (-2280 . 492054) (-2281 . 491956) (-2282 . 491704) (-2283 . 491609) - (-2284 . 491299) (-2285 . 491213) (-2286 . 491006) (-2287 . 490957) - (-2288 . 490621) (-2289 . 490450) (-2290 . 490394) (-2291 . 490151) - (-2292 . 490008) (-2293 . 489746) (-2294 . 489675) (-2295 . 485515) - (-2296 . 485427) (-2297 . 484788) (-2298 . 484620) (-2299 . 484495) - (-2300 . 484443) (-2301 . 484373) (-2302 . 484294) (-2303 . 484048) - (-2304 . 483954) (-2305 . 483835) (-2306 . 483630) (-2307 . 483563) - (-2308 . 483443) (-2309 . 483312) (-2310 . 483149) (-2311 . 483083) - (-2312 . 482974) (-2313 . 482821) (-2314 . 482770) (-2315 . 482196) - (-2316 . 481995) (-2317 . 481837) (-2318 . 481784) (-2319 . 481674) - (-2320 . 481538) (-2321 . 481464) (-2322 . 481403) (-2323 . 481293) - (-2324 . 481131) (-2325 . 480876) (-2326 . 480794) (-2327 . 480739) - (-2328 . 480686) (-2329 . 479722) (-2330 . 479265) (-2331 . 479134) - (-2332 . 478903) (-2333 . 478494) (-2334 . 478304) (-2335 . 478233) - (-2336 . 478031) (-2337 . 477643) (-2338 . 477479) (-2339 . 477408) - (-2340 . 477320) (-2341 . 477236) (-2342 . 477153) (-2343 . 477100) - (-2344 . 477045) (-2345 . 476828) (-2346 . 476742) (-2347 . 472200) - (-2348 . 472148) (-2349 . 472002) (-2350 . 471946) (-2351 . 471684) - (-2352 . 471511) (-2353 . 471456) (-2354 . 471393) (-2355 . 471285) - (-2356 . 471058) (-2357 . 470970) (-2358 . 469732) (-2359 . 468734) - (-2360 . 468209) (-2361 . 468054) (-2362 . 467954) (-2363 . 467789) - (-2364 . 467657) (-2365 . 467518) (-2366 . 467465) (-2367 . 467367) - (-2368 . 467243) (-2369 . 467169) (-2370 . 466898) (-2371 . 466733) - (-2372 . 466645) (-2373 . 466561) (-2374 . 466014) (-2375 . 465943) - (-2376 . 465740) (-2377 . 465668) (-2378 . 465475) (-2379 . 465394) - (-2380 . 465279) (-2381 . 465033) (-2382 . 464918) (-2383 . 464746) - (-2384 . 464694) (-2385 . 464447) (-2386 . 464256) (-2387 . 464112) - (-2388 . 464005) (-2389 . 463779) (-2390 . 463658) (-2391 . 463529) - (-2392 . 463237) (-2393 . 463139) (-2394 . 463035) (-2395 . 462863) - (-2396 . 462803) (-2397 . 462722) (-2398 . 462644) (-2399 . 462549) - (-2400 . 462412) (-2401 . 462356) (-2402 . 462154) (-2403 . 462017) - (-2404 . 461876) (-2405 . 461589) (-2406 . 461503) (-2407 . 461444) - (-2408 . 461163) (-2409 . 460991) (-2410 . 460767) (-2411 . 460696) - (-2412 . 459880) (-2413 . 459778) (-2414 . 459556) (-2415 . 459412) - (-2416 . 459293) (-2417 . 459169) (-2418 . 459066) (-2419 . 458994) - (-2420 . 458942) (-2421 . 458799) (-2422 . 458484) (-2423 . 458363) - (-2424 . 458191) (-2425 . 458041) (-2426 . 457934) (-2427 . 457487) - (-2428 . 457392) (-2429 . 457174) (-2430 . 456695) (-2431 . 456441) - (-2432 . 456252) (-2433 . 456002) (-2434 . 455864) (-2435 . 455758) - (-2436 . 455635) (-2437 . 455558) (-2438 . 455492) (-2439 . 455422) - (-2440 . 455349) (-2441 . 455321) (-2442 . 455227) (-2443 . 455071) - (-2444 . 454983) (-2445 . 454692) (-2446 . 454621) (-2447 . 454465) - (-2448 . 454352) (-2449 . 440238) (-2450 . 440168) (-2451 . 440113) - (-2452 . 439979) (-2453 . 439731) (-2454 . 438891) (-2455 . 438839) - (-2456 . 438477) (-2457 . 438389) (-2458 . 438280) (-2459 . 438171) - (-2460 . 437810) (-2461 . 437549) (-2462 . 437219) (-2463 . 437082) - (-2464 . 436994) (-2465 . 436926) (-2466 . 436539) (-2467 . 435347) - (-2468 . 435222) (-2469 . 434796) (-2470 . 434402) (-2471 . 434349) - (-2472 . 433806) (-2473 . 433514) (-2474 . 433184) (-2475 . 433133) - (-2476 . 433034) (-2477 . 432957) (-2478 . 432454) (-2479 . 432324) - (-2480 . 432003) (-2481 . 431890) (-2482 . 431817) (-2483 . 431587) - (-2484 . 431416) (-2485 . 431258) (-2486 . 431184) (-2487 . 431150) - (-2488 . 431122) (-2489 . 430973) (-2490 . 430831) (-2491 . 430732) - (-2492 . 430126) (-2493 . 429319) (-2494 . 429125) (-2495 . 428964) - (-2496 . 428613) (-2497 . 428543) (-2498 . 428323) (-2499 . 428198) - (-2500 . 428018) (-2501 . 427952) (-2502 . 427924) (-2503 . 427639) - (-2504 . 427587) (-2505 . 427402) (-2506 . 427302) (-2507 . 426970) - (-2508 . 426294) (-2509 . 426242) (-2510 . 425983) (-2511 . 422317) - (-2512 . 421710) (-2513 . 421379) (-2514 . 421012) (-2515 . 420838) - (-2516 . 420522) (-2517 . 420494) (-2518 . 420265) (-2519 . 420050) - (-2520 . 419744) (-2521 . 419360) (-2522 . 419302) (-2523 . 418836) - (-2524 . 418657) (-2525 . 418571) (-2526 . 418437) (-2527 . 418349) - (-2528 . 418170) (-2529 . 418033) (-2530 . 417981) (-2531 . 417848) - (-2532 . 417791) (-2533 . 417712) (-2534 . 417599) (-2535 . 417351) - (-2536 . 417193) (-2537 . 417111) (-2538 . 416969) (-2539 . 416896) - (-2540 . 416716) (-2541 . 416553) (-2542 . 416412) (-2543 . 416310) - (-2544 . 415736) (-2545 . 415539) (-2546 . 415438) (-2547 . 415298) - (-2548 . 415194) (-2549 . 414920) (-2550 . 414649) (-2551 . 414553) - (-2552 . 414467) (-2553 . 414414) (-2554 . 414316) (-2555 . 414232) - (-2556 . 414130) (-2557 . 413983) (-2558 . 413673) (-2559 . 413470) - (-2560 . 413387) (-2561 . 413359) (-2562 . 413164) (-2563 . 413096) - (-2564 . 412711) (-2565 . 412659) (-2566 . 412506) (-2567 . 412406) - (-2568 . 412252) (-2569 . 412186) (-2570 . 411005) (-2571 . 410976) - (-2572 . 410891) (-2573 . 410683) (-2574 . 410573) (-2575 . 410459) - (-2576 . 409860) (-2577 . 409400) (-2578 . 409350) (-2579 . 409146) - (-2580 . 408795) (-2581 . 408503) (-2582 . 408429) (-2583 . 408286) - (-2584 . 408178) (-2585 . 408059) (-2586 . 408007) (-2587 . 407802) - (-2588 . 407284) (-2589 . 407232) (-2590 . 407173) (-2591 . 406786) - (-2592 . 406754) (-2593 . 406639) (-2594 . 406359) (-2595 . 406201) - (-2596 . 406148) (-2597 . 405956) (-2598 . 405582) (-2599 . 405523) - (-2600 . 405370) (-2601 . 404882) (-2602 . 404719) (-2603 . 404311) - (-2604 . 404173) (-2605 . 404072) (-2606 . 403978) (-2607 . 403730) - (-2608 . 402298) (-2609 . 401852) (-2610 . 401757) (-2611 . 401720) - (-2612 . 401607) (-2613 . 401520) (-2614 . 401441) (-2615 . 401295) - (-2616 . 400936) (-2617 . 400883) (-2618 . 400818) (-2619 . 400776) - (-2620 . 397477) (-2621 . 396904) (-2622 . 396537) (-2623 . 396407) - (-2624 . 395954) (-2625 . 395777) (-2626 . 395650) (-2627 . 395596) - (-2628 . 395438) (-2629 . 395220) (-2630 . 395136) (-2631 . 395050) - (-2632 . 394973) (-2633 . 390975) (-2634 . 390757) (-2635 . 390663) - (-2636 . 390581) (-2637 . 390438) (-2638 . 390359) (-2639 . 390307) - (-2640 . 390077) (-2641 . 389909) (-2642 . 389800) (-2643 . 389729) - (-2644 . 389606) (-2645 . 389493) (-2646 . 389421) (-2647 . 389268) - (-2648 . 388347) (-2649 . 388264) (-2650 . 388182) (-2651 . 388101) - (-2652 . 388073) (-2653 . 387729) (-2654 . 387434) (-2655 . 387215) - (-9 . 387187) (-2657 . 387014) (-2658 . 386796) (-2659 . 386698) - (-2660 . 386518) (-2661 . 386465) (-2662 . 386364) (-2663 . 386248) - (-2664 . 386147) (-2665 . 385991) (-2666 . 385790) (-2667 . 385663) - (-2668 . 385544) (-2669 . 385470) (-2670 . 385374) (-2671 . 385322) - (-8 . 385294) (-2673 . 385193) (-2674 . 384636) (-2675 . 384418) - (-2676 . 384366) (-2677 . 384133) (-2678 . 384073) (-2679 . 383995) - (-2680 . 383812) (-7 . 383784) (-2682 . 383671) (-2683 . 383542) - (-2684 . 383468) (-2685 . 382172) (-2686 . 382102) (-2687 . 381366) - (-2688 . 381199) (-2689 . 381064) (-2690 . 380984) (-2691 . 380891) - (-2692 . 380790) (-2693 . 380537) (-2694 . 380387) (-2695 . 379968) - (-2696 . 379695) (-2697 . 379557) (-2698 . 379504) (-2699 . 379076) - (-2700 . 379008) (-2701 . 378910) (-2702 . 378777) (-2703 . 378727) - (-2704 . 378633) (-2705 . 378395) (-2706 . 378206) (-2707 . 378128) - (-2708 . 378061) (-2709 . 377854) (-2710 . 377736) (-2711 . 377637) - (-2712 . 377505) (-2713 . 377079) (-2714 . 377000) (-2715 . 376920) - (-2716 . 376801) (-2717 . 376717) (-2718 . 376610) (-2719 . 376472) - (-2720 . 376180) (-2721 . 376120) (-2722 . 375984) (-2723 . 375930) - (-2724 . 375785) (-2725 . 375454) (-2726 . 375347) (-2727 . 375232) - (-2728 . 375148) (-2729 . 374835) (-2730 . 374776) (-2731 . 374639) - (-2732 . 374485) (-2733 . 374429) (-2734 . 374339) (-2735 . 374201) - (-2736 . 374127) (-2737 . 374074) (-2738 . 373781) (-2739 . 373699) - (-2740 . 373612) (-2741 . 373413) (-2742 . 371825) (-2743 . 371620) - (-2744 . 371375) (-2745 . 371233) (-2746 . 371146) (-2747 . 370842) - (-2748 . 370693) (-2749 . 370422) (-2750 . 370292) (-2751 . 370214) - (-2752 . 370098) (-2753 . 370000) (-2754 . 369928) (-2755 . 369894) - (-2756 . 369806) (-2757 . 369749) (-2758 . 369622) (-2759 . 369458) - (-2760 . 369387) (-2761 . 369220) (-2762 . 369161) (-2763 . 369133) - (-2764 . 369101) (-2765 . 369042) (-2766 . 368889) (-2767 . 368768) - (-2768 . 368652) (-2769 . 368398) (-2770 . 368239) (-2771 . 368110) - (-2772 . 367883) (-2773 . 367640) (-2774 . 367588) (-2775 . 367099) - (-2776 . 367002) (-2777 . 365900) (-2778 . 365834) (-2779 . 365741) - (-2780 . 365622) (-2781 . 365550) (-2782 . 365487) (-2783 . 363072) - (-2784 . 363016) (-2785 . 362933) (-2786 . 362745) (-2787 . 362659) - (-2788 . 362606) (-2789 . 362347) (-2790 . 362119) (-2791 . 361880) - (-2792 . 361781) (-2793 . 361696) (-2794 . 361608) (-2795 . 361389) - (-2796 . 361323) (-2797 . 361270) (-2798 . 361192) (-2799 . 361072) - (-2800 . 360993) (-2801 . 360937) (-2802 . 360840) (-2803 . 359976) - (-2804 . 359842) (-2805 . 359814) (-2806 . 359588) (-2807 . 359551) - (-2808 . 359200) (-2809 . 359027) (-2810 . 358702) (-2811 . 358599) - (-2812 . 358446) (-2813 . 358384) (-2814 . 358315) (-2815 . 358139) - (-2816 . 358087) (-2817 . 357427) (-2818 . 357328) (-2819 . 357168) - (-2820 . 357002) (-2821 . 356756) (-2822 . 356647) (-2823 . 356495) - (-2824 . 356277) (-2825 . 356222) (-2826 . 355637) (-2827 . 355373) - (-2828 . 355056) (-2829 . 354754) (-2830 . 354653) (-2831 . 354594) - (-2832 . 354478) (-2833 . 354426) (-2834 . 354270) (-2835 . 353819) - (-2836 . 353731) (-2837 . 353649) (-2838 . 353444) (-2839 . 353336) - (-2840 . 350991) (-2841 . 350939) (-2842 . 350872) (-2843 . 350818) - (-2844 . 350346) (-2845 . 350096) (-2846 . 349800) (-2847 . 349701) - (-2848 . 349447) (-2849 . 349111) (-2850 . 349037) (-2851 . 348978) - (-2852 . 348310) (-2853 . 348253) (-2854 . 348225) (-2855 . 348112) - (-2856 . 348060) (-2857 . 347959) (-2858 . 347887) (-2859 . 347732) - (-2860 . 347374) (-2861 . 346943) (-2862 . 346825) (-2863 . 346769) - (-2864 . 346714) (-2865 . 346626) (-2866 . 345561) (-2867 . 345327) - (-2868 . 345293) (-2869 . 345196) (-2870 . 345105) (-2871 . 344857) - (-2872 . 344805) (-2873 . 344750) (-2874 . 344677) (-2875 . 344427) - (-2876 . 343903) (-2877 . 343793) (-2878 . 343699) (-2879 . 343409) - (-2880 . 343280) (-2881 . 343113) (-2882 . 342509) (-2883 . 342122) - (-2884 . 341997) (-2885 . 341818) (-2886 . 341732) (-2887 . 341679) - (-2888 . 341624) (-2889 . 341574) (-2890 . 341421) (-2891 . 341287) - (-2892 . 341166) (-2893 . 341049) (-2894 . 340704) (-2895 . 340609) - (-2896 . 340267) (-2897 . 340189) (-2898 . 339874) (-2899 . 339642) - (-2900 . 338992) (-2901 . 338773) (-2902 . 338693) (-2903 . 338332) - (-2904 . 338086) (-2905 . 338052) (-2906 . 337561) (-2907 . 336115) - (-2908 . 336041) (-2909 . 335973) (-2910 . 335675) (-2911 . 335609) - (-2912 . 335536) (-2913 . 335280) (-2914 . 335209) (-2915 . 334979) - (-2916 . 334789) (-2917 . 334668) (-2918 . 334603) (-2919 . 334532) - (-2920 . 334156) (-2921 . 333998) (-2922 . 333846) (-2923 . 333762) - (-2924 . 333618) (-2925 . 333191) (-2926 . 333006) (-2927 . 332882) - (-2928 . 332827) (-2929 . 332049) (-2930 . 331798) (-2931 . 331719) - (-2932 . 331573) (-2933 . 331501) (-2934 . 331371) (-2935 . 331269) - (-2936 . 331219) (-2937 . 331120) (-2938 . 330880) (-2939 . 330796) - (-2940 . 330703) (-2941 . 330644) (-2942 . 330473) (-2943 . 330407) - (-2944 . 330275) (-2945 . 329680) (-2946 . 329562) (-2947 . 329088) - (-2948 . 328981) (-2949 . 328694) (-2950 . 328553) (-2951 . 326585) - (-2952 . 326292) (-2953 . 326212) (-2954 . 325702) (-2955 . 325093) - (-2956 . 325031) (-2957 . 324997) (-2958 . 324890) (-2959 . 324839) - (-2960 . 324719) (-2961 . 324649) (-2962 . 324365) (-2963 . 323999) - (-2964 . 323938) (-2965 . 323574) (-2966 . 323399) (-2967 . 323198) - (-2968 . 323079) (-2969 . 322905) (-2970 . 322735) (-2971 . 322682) - (-2972 . 322654) (-2973 . 322435) (-2974 . 322383) (-2975 . 322286) - (-2976 . 322234) (-2977 . 322172) (-2978 . 321954) (-2979 . 321638) - (-2980 . 321216) (-2981 . 321112) (-2982 . 321004) (-2983 . 320888) - (-2984 . 320745) (-2985 . 320643) (-2986 . 320577) (-2987 . 320429) - (-2988 . 320154) (-2989 . 320066) (-2990 . 319986) (-2991 . 319748) - (-2992 . 319406) (-2993 . 319338) (-2994 . 319124) (-2995 . 318973) - (-2996 . 318902) (-2997 . 318510) (-2998 . 318398) (-2999 . 317600) - (-3000 . 317461) (-3001 . 317303) (-3002 . 317235) (-3003 . 316994) - (-3004 . 316963) (-3005 . 316859) (-3006 . 314727) (-3007 . 314674) - (-3008 . 314292) (-3009 . 314219) (-3010 . 313910) (-3011 . 313688) - (-3012 . 313184) (-3013 . 313132) (-3014 . 312725) (-3015 . 312693) - (-3016 . 312480) (-3017 . 312414) (-3018 . 312240) (-3019 . 311743) - (-3020 . 311624) (-3021 . 311485) (-3022 . 311335) (-3023 . 311282) - (-3024 . 311189) (-3025 . 309877) (-3026 . 309815) (-3027 . 309680) - (-3028 . 309609) (-3029 . 309479) (-3030 . 309298) (-3031 . 308703) - (-3032 . 308387) (-3033 . 308359) (-3034 . 308079) (-3035 . 307745) - (-3036 . 307032) (-3037 . 306955) (-3038 . 306860) (-3039 . 306756) - (-3040 . 305348) (-3041 . 305254) (-3042 . 305089) (-3043 . 304459) - (-3044 . 304042) (-3045 . 304010) (-3046 . 303915) (-3047 . 303636) - (-3048 . 303559) (-3049 . 303452) (-3050 . 303397) (-3051 . 303075) - (-3052 . 303006) (-3053 . 302922) (-3054 . 302865) (-3055 . 302706) - (-3056 . 302626) (-3057 . 302564) (-3058 . 302466) (-3059 . 302416) - (-3060 . 302144) (-3061 . 302001) (-3062 . 301548) (-3063 . 301441) - (-3064 . 301066) (-3065 . 300814) (-3066 . 300524) (-3067 . 300443) - (-3068 . 300370) (-3069 . 299819) (-3070 . 294305) (-3071 . 294238) - (-3072 . 294144) (-3073 . 294047) (-3074 . 293903) (-3075 . 293750) - (-3076 . 293719) (-3077 . 293661) (-3078 . 293549) (-3079 . 293496) - (-3080 . 293209) (-3081 . 293088) (-3082 . 293005) (-3083 . 292613) - (-3084 . 292579) (-3085 . 292505) (-3086 . 292258) (-3087 . 292204) - (-3088 . 292034) (-3089 . 291984) (-3090 . 291868) (-3091 . 291753) - (-3092 . 291298) (-3093 . 291164) (-3094 . 291079) (-3095 . 290787) - (-3096 . 290715) (-3097 . 290373) (-3098 . 290299) (-3099 . 289947) - (-3100 . 289852) (-3101 . 289692) (-3102 . 289343) (-3103 . 289286) - (-3104 . 289071) (-3105 . 288937) (-3106 . 288873) (-3107 . 288749) - (-3108 . 288679) (-3109 . 288421) (-3110 . 288344) (-3111 . 288216) - (-3112 . 288136) (-3113 . 288102) (-3114 . 288001) (-3115 . 287814) - (-3116 . 287696) (-3117 . 287645) (-3118 . 287513) (-3119 . 287261) - (-3120 . 287047) (-3121 . 286948) (-3122 . 286860) (-3123 . 286717) - (-3124 . 286529) (-3125 . 286203) (-3126 . 286090) (-3127 . 285891) - (-3128 . 285814) (-3129 . 285728) (-3130 . 285620) (-3131 . 285405) - (-3132 . 285374) (-3133 . 285023) (-3134 . 284832) (-3135 . 284723) - (-3136 . 284649) (-3137 . 284517) (-3138 . 284318) (-3139 . 284258) - (-3140 . 284121) (-3141 . 283841) (-3142 . 283697) (-3143 . 283408) - (-3144 . 283315) (-3145 . 283262) (-3146 . 283059) (-3147 . 282985) - (-3148 . 282933) (-3149 . 282876) (-3150 . 282768) (-3151 . 282669) - (-3152 . 282641) (-3153 . 282007) (-3154 . 281892) (-3155 . 281835) - (-3156 . 281459) (-3157 . 280857) (-3158 . 280616) (-3159 . 280498) - (-3160 . 280394) (-3161 . 280296) (-3162 . 280133) (-3163 . 280032) - (-3164 . 279921) (-3165 . 279389) (-3166 . 279191) (-3167 . 279092) - (-3168 . 278989) (-3169 . 278720) (-3170 . 278632) (-3171 . 278573) - (-3172 . 278457) (-3173 . 278313) (-3174 . 278138) (-3175 . 278012) - (-3176 . 277897) (-3177 . 277748) (-3178 . 277697) (-3179 . 277631) - (-3180 . 277466) (-3181 . 277320) (-3182 . 277238) (-3183 . 276487) - (-3184 . 276264) (-3185 . 276124) (-3186 . 274495) (-3187 . 273754) - (-3188 . 273616) (-3189 . 273507) (-3190 . 272804) (-3191 . 272454) - (-3192 . 272343) (-3193 . 271992) (-3194 . 271894) (-3195 . 271727) - (-3196 . 271430) (-3197 . 271134) (-3198 . 270268) (-3199 . 269527) - (-3200 . 269389) (-3201 . 269124) (-3202 . 269058) (-3203 . 268967) - (-3204 . 268854) (-3205 . 268690) (-3206 . 268589) (-3207 . 268508) - (-3208 . 268395) (-3209 . 267100) (-3210 . 266412) (-3211 . 266335) - (-3212 . 266238) (-3213 . 265425) (-3214 . 265302) (-3215 . 265216) - (-3216 . 265139) (-3217 . 265016) (-3218 . 264939) (-3219 . 264842) - (-3220 . 264651) (-3221 . 264075) (-3222 . 263998) (-3223 . 263883) - (-3224 . 263755) (-3225 . 263546) (-3226 . 263358) (-3227 . 262847) - (-3228 . 262560) (-3229 . 262304) (-3230 . 262197) (-3231 . 261904) - (-3232 . 261807) (-3233 . 261231) (-3234 . 261154) (-3235 . 261047) - (-3236 . 260964) (-3237 . 260859) (-3238 . 260548) (-3239 . 260468) - (-3240 . 260094) (-3241 . 259992) (-3242 . 259861) (-3243 . 259768) - (-3244 . 259734) (-3245 . 259158) (-3246 . 258767) (-3247 . 258694) - (-3248 . 258491) (-3249 . 258417) (-3250 . 258211) (-3251 . 258088) - (-3252 . 257985) (-3253 . 257458) (-3254 . 256772) (-3255 . 256704) - (-3256 . 256651) (-3257 . 256569) (-3258 . 256474) (-3259 . 256422) - (-3260 . 256170) (-3261 . 256012) (-3262 . 255918) (-3263 . 255809) - (-3264 . 255752) (-3265 . 255066) (-3266 . 253228) (-3267 . 252224) - (-3268 . 252192) (-3269 . 251865) (-3270 . 251813) (-3271 . 251674) - (-3272 . 251550) (-3273 . 251221) (-3274 . 250635) (-3275 . 250552) - (-3276 . 249803) (-3277 . 248293) (-3278 . 248188) (-3279 . 248028) - (-3280 . 247837) (-3281 . 247627) (-3282 . 247433) (-3283 . 247354) - (-3284 . 247274) (-3285 . 246929) (-3286 . 246818) (-3287 . 246244) - (-3288 . 244696) (-3289 . 244561) (-3290 . 244284) (-3291 . 244210) - (-3292 . 244129) (-3293 . 243962) (-3294 . 243791) (-3295 . 243725) - (-3296 . 243570) (-3297 . 243542) (-3298 . 243462) (-3299 . 243393) - (-3300 . 243283) (-3301 . 243179) (-3302 . 242605) (-3303 . 241992) - (-3304 . 241893) (-3305 . 241790) (-3306 . 241710) (-3307 . 241640) - (-3308 . 241495) (-3309 . 239638) (-3310 . 239534) (-3311 . 239469) - (-3312 . 239124) (-3313 . 239022) (-3314 . 238595) (-3315 . 237859) - (-3316 . 237285) (-3317 . 237176) (-3318 . 237089) (-3319 . 237006) - (-3320 . 236953) (-3321 . 236879) (-3322 . 236552) (-3323 . 236503) - (-3324 . 236451) (-3325 . 236389) (-3326 . 236227) (-3327 . 236142) - (-3328 . 235923) (-3329 . 235800) (-3330 . 235113) (-3331 . 234247) - (-3332 . 234185) (-3333 . 234082) (-3334 . 234011) (-3335 . 233853) - (-3336 . 233731) (-3337 . 233632) (-3338 . 233580) (-3339 . 233265) - (-3340 . 233181) (-3341 . 233054) (-3342 . 232947) (-3343 . 232074) - (-3344 . 231387) (-3345 . 231309) (-3346 . 231277) (-3347 . 231174) - (-3348 . 231007) (** . 227918) (-3350 . 227862) (-3351 . 227684) - (-3352 . 227514) (-3353 . 227106) (-3354 . 226946) (-3355 . 226628) - (-3356 . 225984) (-3357 . 225297) (-3358 . 225198) (-3359 . 225124) - (-3360 . 224603) (-3361 . 224500) (-3362 . 224296) (-3363 . 224063) - (-3364 . 223883) (-3365 . 223774) (-3366 . 223719) (-3367 . 223519) - (-3368 . 223411) (-3369 . 223297) (-3370 . 222125) (-3371 . 221550) - (-3372 . 221264) (-3373 . 221190) (-3374 . 221141) (-3375 . 220863) - (-3376 . 220211) (-3377 . 220177) (-3378 . 219983) (-3379 . 219931) - (-3380 . 219718) (-3381 . 219665) (-3382 . 219493) (-3383 . 219378) - (-3384 . 218803) (-3385 . 218748) (-3386 . 218639) (-3387 . 218561) - (-3388 . 218477) (-3389 . 218373) (-3390 . 218040) (-3391 . 218012) - (-3392 . 217893) (-3393 . 217797) (-3394 . 217699) (-3395 . 217124) - (-3396 . 215987) (-3397 . 215899) (-3398 . 215846) (-3399 . 214573) - (-3400 . 214503) (-3401 . 214359) (-3402 . 214234) (-3403 . 214043) - (-3404 . 214009) (-3405 . 213891) (-3406 . 213317) (-3407 . 212947) - (-3408 . 212365) (-3409 . 211822) (-3410 . 211681) (-3411 . 211625) - (-3412 . 211552) (-3413 . 211481) (-3414 . 211306) (-3415 . 210770) - (-3416 . 210196) (-3417 . 210113) (-3418 . 210028) (-3419 . 209830) - (-3420 . 209729) (-3421 . 209660) (-3422 . 209608) (-3423 . 209381) - (-3424 . 209353) (-3425 . 208393) (-3426 . 208310) (-3427 . 207736) - (-3428 . 207575) (-3429 . 207517) (-3430 . 207409) (-3431 . 207343) - (-3432 . 207229) (-3433 . 207092) (-3434 . 207021) (-3435 . 206189) - (-3436 . 206066) (-3437 . 206011) (-3438 . 205843) (-3439 . 205269) - (-3440 . 205174) (-3441 . 205037) (-3442 . 204936) (-3443 . 204862) - (-3444 . 204795) (-3445 . 204729) (-3446 . 204655) (-3447 . 204462) - (-3448 . 202684) (-3449 . 202544) (-3450 . 201970) (-3451 . 201793) - (-3452 . 201679) (-3453 . 201627) (-3454 . 201550) (-3455 . 201454) - (-3456 . 201402) (-3457 . 201115) (-3458 . 200963) (-3459 . 200861) - (-3460 . 200784) (-3461 . 200712) (-3462 . 200530) (-3463 . 200228) - (-3464 . 200127) (-3465 . 200070) (-3466 . 200015) (-3467 . 199953) - (-3468 . 199885) (-3469 . 199592) (-3470 . 199526) (-3471 . 199381) - (-3472 . 199327) (-3473 . 199275) (-3474 . 199211) (-3475 . 199158) - (-3476 . 199103) (-3477 . 199044) (-3478 . 198966) (-3479 . 198885) - (-3480 . 198667) (-3481 . 198589) (-3482 . 198229) (-3483 . 198155) - (-3484 . 198077) (-3485 . 197893) (-3486 . 197792) (-3487 . 197519) - (-3488 . 197413) (-3489 . 197248) (-3490 . 197178) (-3491 . 197035) - (-3492 . 196907) (-3493 . 196729) (-3494 . 196548) (-3495 . 196519) - (-3496 . 196336) (-3497 . 196268) (-3498 . 196167) (-3499 . 196083) - (-3500 . 195978) (-3501 . 195798) (-3502 . 195526) (-3503 . 195473) - (-3504 . 195400) (-3505 . 195228) (-3506 . 195176) (-3507 . 195063) - (-3508 . 194666) (-3509 . 194429) (-3510 . 194284) (-3511 . 194183) - (-3512 . 193933) (-3513 . 193803) (-3514 . 193743) (-3515 . 193715) - (-3516 . 193663) (-3517 . 193473) (-3518 . 193290) (-3519 . 192973) - (-3520 . 192781) (-3521 . 192726) (-3522 . 192697) (-3523 . 192518) - (-3524 . 192240) (-3525 . 192045) (-3526 . 191797) (-3527 . 191364) - (-3528 . 190610) (-3529 . 190496) (-3530 . 190374) (-3531 . 189124) - (-3532 . 189021) (-3533 . 188963) (-3534 . 186801) (-3535 . 186702) - (-3536 . 186583) (-3537 . 186439) (-3538 . 186330) (-3539 . 186206) - (-3540 . 185319) (-3541 . 185023) (-3542 . 184793) (-3543 . 183975) - (-3544 . 183768) (-3545 . 183641) (-3546 . 183567) (-3547 . 183493) - (-3548 . 182758) (-3549 . 182678) (-3550 . 182490) (-3551 . 182437) - (-3552 . 182355) (-3553 . 182285) (-3554 . 182230) (-3555 . 182171) - (-3556 . 182087) (-3557 . 181873) (-3558 . 181812) (-3559 . 181729) - (-3560 . 181677) (-3561 . 181541) (-3562 . 181410) (-3563 . 181269) - (-3564 . 180089) (-3565 . 180035) (-3566 . 179975) (-3567 . 179801) - (-3568 . 179699) (-3569 . 179600) (-3570 . 179526) (-3571 . 179447) - (-3572 . 179221) (-3573 . 178978) (-3574 . 178699) (-3575 . 178527) - (-3576 . 178443) (-3577 . 178342) (-3578 . 178310) (-3579 . 178278) - (-3580 . 178135) (-3581 . 178056) (-3582 . 177898) (-3583 . 177842) - (-3584 . 177761) (-3585 . 177374) (-3586 . 177284) (-3587 . 177228) - (-3588 . 176632) (-3589 . 175370) (-3590 . 175293) (-3591 . 174934) - (-3592 . 174827) (-3593 . 174641) (-3594 . 174535) (-3595 . 174113) - (-3596 . 173973) (-3597 . 173864) (-3598 . 173706) (-3599 . 173594) - (-3600 . 173476) (-3601 . 173338) (-3602 . 173180) (-3603 . 173097) - (-3604 . 172816) (-3605 . 172626) (-3606 . 172524) (-3607 . 172402) - (-3608 . 172350) (-3609 . 172206) (-3610 . 172023) (-3611 . 171868) - (-3612 . 171729) (-3613 . 171559) (-3614 . 171165) (-3615 . 170137) - (-3616 . 170025) (-3617 . 169786) (-3618 . 169703) (-3619 . 169631) - (-3620 . 169432) (-3621 . 169302) (-3622 . 169274) (-3623 . 169170) - (-3624 . 168573) (-3625 . 167685) (-3626 . 167554) (-3627 . 167421) - (-3628 . 167354) (-3629 . 167276) (-3630 . 167084) (-3631 . 167012) - (-3632 . 166910) (-3633 . 166840) (-3634 . 166787) (-3635 . 166164) - (-3636 . 166023) (-3637 . 165812) (-3638 . 165659) (-3639 . 165457) - (-3640 . 165282) (-3641 . 165223) (-3642 . 165146) (-3643 . 164851) - (-3644 . 164108) (-3645 . 163699) (-3646 . 163647) (-3647 . 163619) - (-3648 . 163549) (-3649 . 163425) (-3650 . 163064) (-3651 . 162978) - (-3652 . 162822) (-3653 . 162660) (-3654 . 161890) (-3655 . 161644) - (-3656 . 161613) (-3657 . 161468) (-3658 . 161417) (-3659 . 161221) - (-3660 . 160883) (-3661 . 160775) (-3662 . 160580) (-3663 . 160551) - (-3664 . 160467) (-3665 . 160334) (-3666 . 160225) (-3667 . 160151) - (-3668 . 160074) (-3669 . 159697) (-3670 . 159665) (-3671 . 159503) - (-3672 . 159451) (-3673 . 159381) (-3674 . 159329) (-3675 . 159267) - (-3676 . 159204) (-3677 . 159122) (-3678 . 158421) (-3679 . 158298) - (-3680 . 158227) (-3681 . 158144) (-3682 . 157937) (-3683 . 157554) - (-3684 . 157439) (-3685 . 157296) (-3686 . 157119) (-3687 . 157060) - (-3688 . 156745) (-3689 . 156586) (-3690 . 156373) (-3691 . 156295) - (-3692 . 156181) (-3693 . 155503) (-3694 . 155469) (-3695 . 155300) - (-3696 . 155206) (-3697 . 155062) (-3698 . 154899) (-3699 . 154756) - (-3700 . 154237) (-3701 . 154171) (-3702 . 153855) (-3703 . 153781) - (-3704 . 153547) (-3705 . 153513) (-3706 . 153436) (-3707 . 153348) - (-3708 . 153289) (-3709 . 153134) (-3710 . 153018) (-3711 . 152645) - (-3712 . 151891) (-3713 . 151728) (-3714 . 151463) (-3715 . 151287) - (-3716 . 151238) (-3717 . 151020) (-3718 . 150906) (-3719 . 150827) - (-3720 . 150714) (-3721 . 150626) (-3722 . 150431) (-3723 . 149421) - (-3724 . 148264) (-3725 . 148045) (-3726 . 147938) (-3727 . 147872) - (-3728 . 147747) (-3729 . 147610) (-3730 . 147464) (-3731 . 147186) - (-3732 . 146930) (-3733 . 145714) (-3734 . 145626) (-3735 . 145459) - (-3736 . 145234) (-3737 . 145149) (-3738 . 145026) (-3739 . 144496) - (-3740 . 144338) (-3741 . 143846) (-3742 . 143775) (-3743 . 143553) - (-3744 . 143386) (-3745 . 143220) (-3746 . 143067) (-3747 . 142973) - (-3748 . 142770) (-3749 . 142636) (-3750 . 142358) (-3751 . 142106) - (-3752 . 141619) (-3753 . 141517) (-3754 . 141443) (-3755 . 141136) - (-3756 . 140644) (-3757 . 140479) (-3758 . 140361) (-3759 . 140081) - (-3760 . 139595) (-3761 . 139437) (-3762 . 139333) (-3763 . 139152) - (-3764 . 139004) (-3765 . 138794) (-3766 . 138456) (-3767 . 134393) - (-3768 . 134313) (-3769 . 134261) (-3770 . 133870) (-3771 . 133741) - (-3772 . 133555) (-3773 . 133299) (-3774 . 132924) (-3775 . 132872) - (-3776 . 132709) (-3777 . 132371) (-3778 . 132033) (-3779 . 131977) - (-3780 . 131870) (-3781 . 131780) (-3782 . 131593) (-3783 . 131523) - (-3784 . 131417) (-3785 . 130903) (-3786 . 130832) (-3787 . 130761) - (-3788 . 130577) (-3789 . 130437) (-3790 . 130143) (-3791 . 130083) - (-3792 . 130002) (-3793 . 129793) (-3794 . 129692) (-3795 . 129611) - (-3796 . 129530) (-3797 . 127747) (-3798 . 127250) (-3799 . 127145) - (-3800 . 126903) (-3801 . 126809) (-3802 . 126493) (-3803 . 126424) - (-3804 . 126358) (-3805 . 126275) (-3806 . 126099) (-3807 . 125439) - (-3808 . 125412) (-3809 . 125282) (-3810 . 125153) (-3811 . 123851) - (-3812 . 123721) (-3813 . 123591) (-3814 . 123427) (-3815 . 123036) - (-3816 . 122953) (-3817 . 122773) (-3818 . 122658) (-3819 . 122532) - (-3820 . 122425) (-3821 . 122356) (-3822 . 122273) (-3823 . 122245) - (-3824 . 122104) (-3825 . 121913) (-3826 . 121861) (-3827 . 121440) - (-3828 . 121357) (-3829 . 121305) (-3830 . 121147) (-3831 . 121094) - (-3832 . 120956) (-3833 . 120864) (-3834 . 120378) (-3835 . 120047) - (-3836 . 119973) (-3837 . 118503) (-3838 . 117394) (-3839 . 117218) - (-3840 . 116766) (-3841 . 116672) (-3842 . 116607) (-3843 . 116464) - (-3844 . 116306) (-3845 . 116151) (-3846 . 115703) (-3847 . 115556) - (-3848 . 115203) (-3849 . 115130) (-3850 . 115021) (-3851 . 114870) - (-3852 . 114842) (-3853 . 114676) (-3854 . 114452) (-3855 . 114307) - (-3856 . 114205) (-3857 . 114078) (-3858 . 113082) (-3859 . 112775) - (-3860 . 112687) (-3861 . 112635) (-3862 . 112492) (-3863 . 112440) - (-3864 . 112326) (-3865 . 112248) (-3866 . 112110) (-3867 . 112010) - (-3868 . 111931) (-3869 . 111311) (-3870 . 111243) (-3871 . 110823) - (-3872 . 110646) (-3873 . 110587) (-3874 . 110466) (-3875 . 110262) - (-3876 . 109838) (-3877 . 109528) (-3878 . 109255) (-3879 . 109112) - (-3880 . 108993) (-3881 . 108909) (-3882 . 108621) (-3883 . 108523) - (-3884 . 108045) (-3885 . 107944) (-3886 . 107847) (-3887 . 107751) - (-3888 . 107541) (-3889 . 107492) (-3890 . 107344) (-3891 . 107285) - (-3892 . 107146) (-3893 . 107058) (-3894 . 106987) (-3895 . 106919) - (-3896 . 106734) (-3897 . 106681) (-3898 . 106580) (-3899 . 106528) - (-3900 . 106497) (-3901 . 106277) (-3902 . 106214) (-3903 . 106107) - (-3904 . 106034) (-3905 . 105881) (-3906 . 105765) (-3907 . 98766) - (-3908 . 98087) (-3909 . 97430) (-3910 . 97373) (-3911 . 97321) - (-3912 . 97247) (-3913 . 97153) (-3914 . 96935) (-3915 . 96389) - (-3916 . 96159) (-3917 . 96001) (-3918 . 95928) (-3919 . 95703) - (-3920 . 95651) (-3921 . 95563) (-3922 . 95404) (-3923 . 95347) - (-3924 . 95238) (-3925 . 95120) (-3926 . 94693) (-3927 . 94506) - (-3928 . 94402) (-3929 . 94179) (-3930 . 94021) (-3931 . 93878) - (-3932 . 93497) (-3933 . 93203) (-3934 . 93096) (-3935 . 92944) - (-3936 . 92824) (-3937 . 92264) (-3938 . 92208) (-3939 . 92153) - (-3940 . 92015) (-3941 . 91955) (-3942 . 91889) (-3943 . 91802) - (-3944 . 91724) (-3945 . 91672) (-3946 . 91638) (-3947 . 91358) - (-3948 . 91140) (-3949 . 90918) (-3950 . 90884) (-3951 . 89686) - (-3952 . 89194) (-3953 . 88888) (-3954 . 88832) (-3955 . 88779) - (-3956 . 88241) (-3957 . 88158) (-3958 . 87817) (-3959 . 87734) - (-3960 . 87561) (-3961 . 87403) (-3962 . 87101) (-3963 . 87042) - (-3964 . 86912) (-3965 . 86610) (-3966 . 86478) (-3967 . 86394) - (-3968 . 86339) (-3969 . 86242) (-3970 . 85956) (-3971 . 85879) - (-3972 . 85654) (-3973 . 85407) (-3974 . 85228) (-3975 . 85140) - (-3976 . 85068) (-3977 . 85016) (-3978 . 84874) (-3979 . 84556) - (-3980 . 84427) (-3981 . 84179) (-3982 . 83900) (-3983 . 83762) - (-3984 . 83120) (-3985 . 83047) (-3986 . 82931) (-3987 . 82585) - (-3988 . 82478) (-3989 . 82339) (-3990 . 82150) (-3991 . 81815) - (-3992 . 81493) (-3993 . 81397) (-3994 . 81244) (-3995 . 81144) - (-3996 . 81089) (-3997 . 80998) (-3998 . 80781) (-3999 . 80665) - (-4000 . 80606) (-4001 . 80554) (-4002 . 80211) (-4003 . 79813) - (-4004 . 79601) (-4005 . 79542) (-4006 . 79374) (-4007 . 79287) - (-4008 . 79112) (-4009 . 78864) (-4010 . 78795) (-4011 . 78495) - (-4012 . 78119) (-4013 . 78068) (-4014 . 77980) (-4015 . 77828) - (-4016 . 77762) (-4017 . 77653) (-4018 . 77524) (-4019 . 77458) - (-4020 . 77307) (-4021 . 76978) (-4022 . 76904) (-4023 . 76689) - (-4024 . 76592) (-4025 . 75788) (-4026 . 75728) (-4027 . 75569) - (-4028 . 75513) (-4029 . 75340) (-4030 . 75177) (-4031 . 75100) - (-4032 . 74877) (-4033 . 74789) (-4034 . 74710) (-4035 . 74605) - (-4036 . 74502) (-4037 . 74184) (-4038 . 74043) (-4039 . 73919) - (-4040 . 73866) (-4041 . 73748) (-4042 . 73696) (-4043 . 73612) - (-4044 . 73482) (-4045 . 73275) (-4046 . 73153) (-4047 . 72948) - (-4048 . 72877) (-4049 . 72267) (-4050 . 72010) (-4051 . 70725) - (-4052 . 70498) (-4053 . 70031) (-4054 . 69949) (-4055 . 69769) - (-4056 . 69659) (-4057 . 69075) (-4058 . 68273) (-4059 . 67198) - (-4060 . 66989) (-4061 . 66912) (-4062 . 66764) (-4063 . 66510) - (-4064 . 66161) (-4065 . 65972) (-4066 . 65555) (-4067 . 65356) - (-4068 . 65303) (-4069 . 65143) (-4070 . 65053) (-4071 . 65004) - (-4072 . 64931) (-4073 . 64868) (-4074 . 64738) (-4075 . 64639) - (-4076 . 64517) (-4077 . 64393) (-4078 . 64221) (-4079 . 64154) - (-4080 . 63900) (-4081 . 61119) (-4082 . 61009) (-4083 . 60365) - (-4084 . 60207) (-4085 . 59876) (-4086 . 59765) (-4087 . 59623) - (-4088 . 59579) (-12 . 59407) (-4090 . 59314) (-4091 . 59228) - (-4092 . 59199) (-4093 . 59089) (-4094 . 58995) (-4095 . 58936) - (-4096 . 58821) (-4097 . 58726) (-4098 . 58619) (-4099 . 58302) - (-4100 . 58230) (-4101 . 58096) (-4102 . 57972) (-4103 . 57854) - (-4104 . 57625) (-4105 . 57350) (-4106 . 56939) (-4107 . 56808) - (-4108 . 56759) (-4109 . 56648) (-4110 . 56571) (-4111 . 56408) - (-4112 . 56327) (-4113 . 55935) (-4114 . 55842) (-4115 . 55784) - (-4116 . 55732) (-4117 . 55676) (-4118 . 55548) (-4119 . 55471) - (-4120 . 55411) (-4121 . 55360) (-4122 . 55218) (-4123 . 55166) - (-4124 . 55106) (-4125 . 54997) (-4126 . 54944) (-4127 . 54800) - (-4128 . 54521) (-4129 . 54083) (-4130 . 54012) (-4131 . 53944) - (-4132 . 53625) (-4133 . 53486) (-4134 . 53452) (-4135 . 53343) - (-4136 . 53215) (-4137 . 53037) (-4138 . 52593) (-4139 . 52376) - (-4140 . 52232) (-4141 . 52089) (-4142 . 51930) (-4143 . 51715) - (-4144 . 51374) (-4145 . 51183) (-4146 . 51089) (-4147 . 50837) - (-4148 . 50668) (-4149 . 50574) (-4150 . 50474) (-4151 . 50414) - (-4152 . 49868) (-4153 . 49812) (-4154 . 49722) (-4155 . 49547) - (-4156 . 49101) (-4157 . 48977) (-4158 . 48852) (-4159 . 48783) - (-4160 . 48592) (-4161 . 48461) (-4162 . 48343) (-4163 . 47962) - (-4164 . 47780) (-4165 . 47587) (-4166 . 47534) (-4167 . 47337) - (-4168 . 47091) (-4169 . 46997) (-4170 . 46893) (-4171 . 46827) - (-4172 . 46741) (-4173 . 46606) (-4174 . 46535) (-4175 . 46152) - (-4176 . 45741) (-4177 . 45519) (-4178 . 45352) (* . 40806) - (-4180 . 40699) (-4181 . 40426) (-4182 . 40349) (-4183 . 40239) - (-4184 . 40041) (-4185 . 39836) (-4186 . 39614) (-4187 . 39555) - (-4188 . 39433) (-4189 . 39381) (-4190 . 39304) (-4191 . 39218) - (-4192 . 39074) (-4193 . 38984) (-4194 . 38930) (-4195 . 38817) - (-4196 . 38729) (-4197 . 38429) (-4198 . 38332) (-4199 . 38093) - (-4200 . 38013) (-4201 . 37942) (-4202 . 37690) (-4203 . 37637) - (-4204 . 37356) (-4205 . 37168) (-4206 . 36948) (-4207 . 36832) - (-4208 . 36718) (-4209 . 36644) (-4210 . 36302) (-4211 . 36250) - (-4212 . 35846) (-4213 . 35797) (-4214 . 35691) (-4215 . 35392) - (-4216 . 35262) (-4217 . 34913) (-4218 . 34842) (-4219 . 34686) - (-4220 . 34598) (-4221 . 34490) (-4222 . 34283) (-4223 . 34116) - (-4224 . 33967) (-4225 . 33580) (-4226 . 33341) (-4227 . 33243) - (-4228 . 33050) (-4229 . 32953) (-4230 . 32897) (-4231 . 32701) - (-4232 . 32576) (-4233 . 32420) (-4234 . 32371) (-4235 . 32148) - (-4236 . 31963) (-4237 . 31860) (-4238 . 31739) (-4239 . 31686) - (-4240 . 31502) (-4241 . 31416) (-4242 . 29565) (-4243 . 29537) - (-4244 . 29277) (-4245 . 29206) (-4246 . 29021) (-4247 . 28965) - (-4248 . 28937) (-4249 . 28844) (-4250 . 28472) (-4251 . 28355) - (-4252 . 28199) (-4253 . 27991) (-4254 . 27670) (-4255 . 27578) - (-4256 . 27492) (-4257 . 26909) (-4258 . 26804) (-4259 . 26736) - (-4260 . 26642) (-4261 . 26438) (-4262 . 26337) (-4263 . 26264) - (-4264 . 26152) (-4265 . 25995) (-4266 . 25909) (-4267 . 25881) - (-4268 . 25790) (-4269 . 25723) (-4270 . 25515) (-4271 . 25408) - (-4272 . 25075) (-4273 . 24865) (-4274 . 24697) (-4275 . 24582) - (-4276 . 24515) (-4277 . 24432) (-4278 . 24369) (-4279 . 24126) - (-4280 . 24033) (-4281 . 23506) (-4282 . 23362) (-4283 . 23258) - (-4284 . 22953) (-4285 . 22879) (-4286 . 22315) (-4287 . 22187) - (-4288 . 21956) (-4289 . 21810) (-4290 . 21541) (-4291 . 21434) - (-4292 . 21216) (-4293 . 21131) (-4294 . 20896) (-4295 . 20824) - (-4296 . 20581) (-4297 . 20457) (-4298 . 20274) (-4299 . 20178) - (-4300 . 20049) (-4301 . 19853) (-4302 . 19747) (-4303 . 19601) - (-4304 . 19499) (-4305 . 19377) (-4306 . 19026) (-4307 . 18974) - (-4308 . 18855) (-4309 . 18422) (-4310 . 18270) (-4311 . 18111) - (-4312 . 17754) (-4313 . 17617) (-4314 . 17540) (-4315 . 17466) - (-4316 . 17372) (-4317 . 17229) (-4318 . 17113) (-4319 . 17085) - (-4320 . 16838) (-4321 . 16680) (-4322 . 16591) (-4323 . 16429) - (-4324 . 16137) (-4325 . 15912) (-4326 . 14700) (-4327 . 14450) - (-4328 . 14346) (-4329 . 14222) (-4330 . 14151) (-4331 . 13497) - (-4332 . 13447) (-4333 . 13215) (-4334 . 12919) (-4335 . 12398) - (-4336 . 12300) (-4337 . 12228) (-4338 . 12111) (-4339 . 11893) - (-4340 . 11807) (-4341 . 11681) (-4342 . 11581) (-4343 . 11495) - (-4344 . 10950) (-4345 . 10922) (-4346 . 10867) (-4347 . 10617) - (-4348 . 10520) (-4349 . 10235) (-4350 . 10176) (-4351 . 9997) - (-4352 . 9738) (-4353 . 9629) (-4354 . 9398) (-4355 . 8889) - (-4356 . 8815) (-4357 . 8693) (-4358 . 8596) (-4359 . 8510) - (-4360 . 8482) (-4361 . 8426) (-4362 . 7911) (-4363 . 7732) - (-4364 . 7651) (-4365 . 7599) (-4366 . 7501) (-4367 . 7417) - (-4368 . 7274) (-4369 . 7113) (-4370 . 7011) (-4371 . 6955) - (-4372 . 6389) (-4373 . 6149) (-4374 . 6096) (-4375 . 5983) - (-4376 . 5887) (-4377 . 5813) (-4378 . 2478) (-4379 . 2150) - (-4380 . 2080) (-4381 . 1861) (-4382 . 1740) (-4383 . 1174) - (-4384 . 950) (-4385 . 133) (-4386 . 30))
\ No newline at end of file + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| -3139 (-564)) (|:| |var| (-610 *1)))) + (-4 *1 (-430 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) + (-4 *2 (-1235 *3))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) + (-5 *2 (-641 (-1259 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-564)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) + (-4 *9 (-945 *8 *6 *7)) + (-5 *2 (-2 (|:| -3429 (-1166 *9)) (|:| |polval| (-1166 *8)))) + (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4407)) (-4 *1 (-1006 *3)) + (-4 *3 (-1209))))) +((-1292 . 735514) (-1293 . 735264) (-1294 . 735204) (-1295 . 735144) + (-1296 . 734944) (-1297 . 734838) (-1298 . 734737) (-1299 . 734590) + (-1300 . 734472) (-1301 . 734407) (-1302 . 734326) (-1303 . 734196) + (-1304 . 733650) (-1305 . 733270) (-1306 . 732738) (-1307 . 732578) + (-1308 . 732225) (-1309 . 732126) (-1310 . 732049) (-1311 . 732021) + (-1312 . 731943) (-1313 . 731887) (-1314 . 731788) (-1315 . 731666) + (-1316 . 731468) (-1317 . 731395) (-1318 . 731263) (-1319 . 731021) + (-1320 . 730926) (-1321 . 730874) (-1322 . 730784) (-1323 . 730691) + (-1324 . 730588) (-1325 . 730459) (-1326 . 730380) (-1327 . 730271) + (-1328 . 730127) (-1329 . 729937) (-1330 . 729800) (-1331 . 729625) + (-1332 . 729548) (-1333 . 729352) (-1334 . 729083) (-1335 . 728925) + (-1336 . 728845) (-1337 . 728694) (-1338 . 728641) (-1339 . 728607) + (-1340 . 728551) (-1341 . 728368) (-1342 . 727922) (-1343 . 725760) + (-1344 . 725542) (-1345 . 725423) (-1346 . 725335) (-1347 . 725307) + (-1348 . 725188) (-1349 . 725058) (-1350 . 724856) (-1351 . 724539) + (-1352 . 724415) (-1353 . 723815) (-1354 . 723756) (-1355 . 723688) + (-1356 . 723604) (-1357 . 723438) (-1358 . 723009) (-1359 . 722872) + (-1360 . 722680) (-1361 . 722555) (-1362 . 722394) (-1363 . 722036) + (-1364 . 721920) (-1365 . 721819) (-1366 . 721712) (-1367 . 721488) + (-1368 . 721344) (-1369 . 721203) (-1370 . 721148) (-1371 . 721079) + (-1372 . 720490) (-1373 . 720140) (-1374 . 719965) (-1375 . 719827) + (-1376 . 719682) (-1377 . 719395) (-1378 . 719181) (-1379 . 719131) + (-1380 . 719102) (-1381 . 718911) (-1382 . 718671) (-1383 . 718545) + (-1384 . 718477) (-1385 . 718375) (-1386 . 718083) (-1387 . 717997) + (-1388 . 717911) (-1389 . 717799) (-1390 . 717639) (-1391 . 717460) + (-1392 . 717329) (-1393 . 717200) (-1394 . 717051) (-1395 . 716938) + (-1396 . 716811) (-1397 . 716751) (-1398 . 716504) (-1399 . 716223) + (-1400 . 716028) (-1401 . 715910) (-1402 . 715815) (-1403 . 715663) + (-1404 . 715527) (-1405 . 715476) (-1406 . 714480) (-1407 . 714048) + (-1408 . 713800) (-1409 . 713620) (-1410 . 713329) (-1411 . 713105) + (-1412 . 712724) (-1413 . 712583) (-1414 . 712482) (-1415 . 712416) + (** . 709327) (-1417 . 708770) (-1418 . 708716) (-1419 . 708409) + (-1420 . 708186) (-1421 . 708086) (-1422 . 707653) (-1423 . 707582) + (-1424 . 707389) (-1425 . 707224) (-1426 . 707151) (-1427 . 707063) + (-1428 . 706945) (-1429 . 706800) (-1430 . 706730) (-1431 . 706628) + (-1432 . 705874) (-1433 . 705448) (-1434 . 705395) (-1435 . 705339) + (-1436 . 705253) (-1437 . 704615) (-1438 . 704472) (-1439 . 704326) + (-1440 . 703995) (-1441 . 703877) (-1442 . 703659) (-1443 . 703545) + (-1444 . 703323) (-1445 . 703077) (-1446 . 702995) (-1447 . 702231) + (-1448 . 702124) (-1449 . 702064) (-1450 . 702012) (-1451 . 701847) + (-1452 . 701703) (-1453 . 701581) (-1454 . 701487) (-1455 . 700736) + (-1456 . 700509) (-1457 . 700416) (-1458 . 700302) (-1459 . 700218) + (-1460 . 700041) (-1461 . 699922) (-1462 . 699819) (-1463 . 699715) + (-1464 . 699637) (-1465 . 699535) (-1466 . 699303) (-1467 . 696376) + (-1468 . 696153) (-1469 . 696009) (-1470 . 695899) (-1471 . 695586) + (-1472 . 695549) (-1473 . 695425) (-1474 . 695367) (-1475 . 695301) + (-1476 . 695191) (-1477 . 695132) (-1478 . 695032) (-1479 . 694909) + (-1480 . 694810) (-1481 . 694707) (-1482 . 694621) (-1483 . 694552) + (-1484 . 694448) (-1485 . 694369) (-1486 . 694232) (-1487 . 693519) + (-1488 . 693375) (-1489 . 693303) (-1490 . 693168) (-1491 . 693084) + (-1492 . 692549) (-1493 . 692395) (-1494 . 691775) (-1495 . 691616) + (-1496 . 691564) (-1497 . 691455) (-1498 . 691384) (-1499 . 691327) + (-1500 . 690956) (-1501 . 690678) (-1502 . 690601) (-1503 . 690533) + (-1504 . 690477) (-1505 . 690375) (-1506 . 690268) (-1507 . 689885) + (-1508 . 689726) (-1509 . 689654) (-1510 . 689477) (-1511 . 688903) + (-1512 . 688813) (-1513 . 688734) (-1514 . 687553) (-1515 . 687412) + (-1516 . 687342) (-1517 . 686931) (-1518 . 686851) (-1519 . 686768) + (-1520 . 686709) (-1521 . 686571) (-1522 . 686458) (-1523 . 686379) + (-1524 . 686323) (-1525 . 686156) (-1526 . 686058) (-1527 . 685935) + (-1528 . 685861) (-1529 . 685740) (-1530 . 685641) (-1531 . 685395) + (-1532 . 685322) (-1533 . 685215) (-1534 . 685070) (-1535 . 684939) + (-1536 . 684667) (-1537 . 684609) (-1538 . 684538) (-1539 . 684481) + (-1540 . 684387) (-1541 . 684205) (-1542 . 683932) (-1543 . 683789) + (-1544 . 683692) (-1545 . 683539) (-1546 . 683444) (-1547 . 683356) + (-1548 . 683237) (-1549 . 683062) (-1550 . 682985) (-1551 . 682447) + (-1552 . 681994) (-1553 . 681957) (-1554 . 681863) (-1555 . 681793) + (-1556 . 681660) (-1557 . 681124) (-1558 . 680919) (-1559 . 680809) + (-1560 . 680702) (-1561 . 680279) (-1562 . 680192) (-1563 . 679989) + (-1564 . 679916) (-1565 . 679555) (-1566 . 679459) (-1567 . 679392) + (-1568 . 679309) (-1569 . 679085) (-1570 . 678710) (-1571 . 678564) + (-1572 . 678430) (-1573 . 678379) (-1574 . 677458) (-1575 . 677142) + (-1576 . 677022) (-1577 . 676937) (-1578 . 676884) (-1579 . 676457) + (-1580 . 675382) (-1581 . 675136) (-1582 . 674884) (-1583 . 674525) + (-1584 . 674247) (-1585 . 674142) (-1586 . 674082) (-1587 . 673884) + (-1588 . 673736) (-1589 . 673556) (-1590 . 673425) (-1591 . 673240) + (-1592 . 673031) (-1593 . 672741) (-1594 . 672688) (-1595 . 672545) + (-1596 . 672493) (-1597 . 672241) (-1598 . 671899) (-1599 . 671759) + (-1600 . 671600) (-1601 . 671499) (-1602 . 671336) (-1603 . 671212) + (-1604 . 671135) (-1605 . 671104) (-1606 . 671023) (-1607 . 670777) + (-1608 . 670712) (-1609 . 670610) (-1610 . 670448) (-1611 . 670326) + (-1612 . 670118) (-1613 . 670052) (-1614 . 669983) (-1615 . 669928) + (-1616 . 669780) (-1617 . 669707) (-1618 . 669293) (-1619 . 669219) + (-1620 . 669177) (-1621 . 669064) (-1622 . 669011) (-1623 . 668925) + (-1624 . 668171) (-1625 . 667944) (-1626 . 667835) (-1627 . 667057) + (-1628 . 666803) (-1629 . 666736) (-1630 . 657174) (-1631 . 656682) + (-1632 . 653383) (-1633 . 653267) (-1634 . 653171) (-1635 . 653044) + (-1636 . 653016) (-1637 . 652863) (-1638 . 652612) (-1639 . 652263) + (-1640 . 651690) (-1641 . 651549) (-1642 . 651455) (-1643 . 651290) + (-1644 . 651173) (-1645 . 651099) (-1646 . 650195) (-1647 . 650126) + (-1648 . 649166) (-1649 . 649115) (-1650 . 649036) (-1651 . 648847) + (-1652 . 648786) (-1653 . 648689) (-1654 . 648571) (-1655 . 648204) + (-1656 . 647876) (-1657 . 647678) (-1658 . 647520) (-1659 . 647437) + (-1660 . 647236) (-1661 . 647090) (-1662 . 646673) (-1663 . 646529) + (-1664 . 646168) (-1665 . 646038) (-1666 . 645758) (-1667 . 645688) + (-1668 . 645575) (-1669 . 645294) (-1670 . 645133) (-1671 . 644975) + (-1672 . 644922) (-1673 . 644850) (-1674 . 644697) (-1675 . 644170) + (-1676 . 644012) (-1677 . 643559) (-1678 . 643340) (-1679 . 643203) + (-1680 . 643145) (-1681 . 642884) (-1682 . 642703) (-1683 . 642650) + (-1684 . 642520) (-1685 . 642360) (-1686 . 642277) (-1687 . 642219) + (-1688 . 642115) (-1689 . 641938) (-1690 . 641817) (-1691 . 641703) + (-1692 . 641651) (-1693 . 641418) (-1694 . 641308) (-1695 . 641200) + (-1696 . 641110) (-1697 . 641060) (-1698 . 640948) (-1699 . 640841) + (-1700 . 640693) (-1701 . 640566) (-1702 . 640342) (-1703 . 640279) + (-1704 . 640180) (-1705 . 640114) (-1706 . 639978) (-1707 . 639929) + (-1708 . 639830) (-1709 . 639778) (-1710 . 639568) (-1711 . 639515) + (-1712 . 639396) (-1713 . 639342) (-1714 . 638525) (-1715 . 638472) + (-1716 . 638406) (-1717 . 638332) (-1718 . 638218) (-1719 . 638155) + (-1720 . 637915) (-1721 . 637583) (-1722 . 637462) (-1723 . 637304) + (-1724 . 637224) (-1725 . 637121) (-1726 . 636694) (-1727 . 636558) + (-1728 . 636421) (-1729 . 636360) (-1730 . 636276) (-1731 . 636146) + (-1732 . 636063) (-1733 . 635885) (-1734 . 635833) (-1735 . 635749) + (-1736 . 635665) (-1737 . 635537) (-1738 . 635466) (-1739 . 635356) + (-1740 . 635227) (-1741 . 635128) (-1742 . 635035) (-1743 . 635001) + (-1744 . 634951) (-1745 . 634865) (-1746 . 634474) (-1747 . 634415) + (-1748 . 634292) (-1749 . 634053) (-1750 . 633379) (-1751 . 633217) + (-1752 . 633158) (-1753 . 633036) (-1754 . 632980) (-1755 . 632906) + (-1756 . 632777) (-1757 . 632700) (-1758 . 632540) (-1759 . 632485) + (-1760 . 632246) (-1761 . 631979) (-1762 . 631724) (-1763 . 631600) + (-1764 . 631429) (-1765 . 631182) (-1766 . 631082) (-1767 . 630823) + (-1768 . 630605) (-1769 . 630419) (-1770 . 630348) (-1771 . 630268) + (-1772 . 630189) (-1773 . 630107) (-1774 . 629939) (-1775 . 629873) + (-1776 . 629806) (-1777 . 629712) (-1778 . 629656) (-1779 . 629602) + (-1780 . 629346) (-1781 . 624008) (-1782 . 623939) (-1783 . 623717) + (-1784 . 623662) (-1785 . 623567) (-1786 . 623435) (-1787 . 623181) + (-1788 . 623011) (-1789 . 622808) (-1790 . 622433) (-1791 . 622351) + (-1792 . 622255) (-1793 . 622183) (-1794 . 622130) (-1795 . 621993) + (-1796 . 621875) (-1797 . 619094) (-1798 . 619044) (-1799 . 618931) + (-1800 . 618768) (-1801 . 618625) (-1802 . 618432) (-1803 . 618309) + (-1804 . 617345) (-1805 . 617244) (-1806 . 616770) (-1807 . 616126) + (-1808 . 615960) (-1809 . 615844) (-1810 . 615765) (-1811 . 615427) + (-1812 . 615308) (-1813 . 615204) (-1814 . 615130) (-1815 . 614673) + (-1816 . 614515) (-1817 . 614408) (-1818 . 614293) (-1819 . 614236) + (-1820 . 614184) (-1821 . 614077) (-1822 . 613961) (-1823 . 613767) + (-1824 . 613648) (-1825 . 613541) (-1826 . 613474) (-1827 . 613343) + (-1828 . 613056) (-1829 . 612725) (-1830 . 612694) (-1831 . 612560) + (-1832 . 610830) (-1833 . 610740) (-1834 . 610510) (-1835 . 609752) + (-1836 . 609351) (-1837 . 609273) (-1838 . 609207) (-1839 . 608976) + (-1840 . 608865) (-1841 . 606897) (-1842 . 606729) (-1843 . 606611) + (-1844 . 606526) (-1845 . 606339) (-1846 . 606282) (-1847 . 606112) + (-1848 . 605761) (-1849 . 605082) (-1850 . 605008) (-1851 . 604599) + (-1852 . 604306) (-1853 . 604164) (-1854 . 603872) (-1855 . 603771) + (-1856 . 603701) (-1857 . 603592) (-1858 . 603539) (-1859 . 603435) + (-1860 . 603242) (-1861 . 603052) (-1862 . 603008) (-1863 . 602928) + (-1864 . 602822) (-1865 . 602554) (-1866 . 602327) (-1867 . 602250) + (-1868 . 602178) (-1869 . 602107) (-1870 . 601992) (-1871 . 601885) + (-1872 . 601639) (-1873 . 599861) (-1874 . 599790) (-1875 . 599711) + (-1876 . 599201) (-1877 . 599108) (-1878 . 598594) (-1879 . 598390) + (-1880 . 598048) (-1881 . 597925) (-1882 . 597787) (-1883 . 597573) + (-1884 . 597348) (-1885 . 597208) (-1886 . 597006) (-1887 . 596920) + (-1888 . 596311) (-1889 . 596198) (-1890 . 596124) (-1891 . 595983) + (-1892 . 595912) (-1893 . 595774) (-1894 . 595691) (-1895 . 595514) + (-1896 . 595126) (-1897 . 595092) (-1898 . 595063) (-1899 . 594711) + (-1900 . 594634) (-1901 . 594039) (-1902 . 593968) (-1903 . 593896) + (-1904 . 593843) (-1905 . 593700) (-1906 . 593600) (-1907 . 593436) + (-1908 . 593322) (-1909 . 593215) (-1910 . 593121) (-1911 . 593019) + (-1912 . 592892) (-1913 . 592797) (-1914 . 592720) (-1915 . 592567) + (-1916 . 592383) (-1917 . 592265) (-1918 . 592182) (-1919 . 592111) + (-1920 . 592015) (-1921 . 591956) (-1922 . 591905) (-1923 . 591822) + (-1924 . 591733) (-1925 . 591573) (-1926 . 591496) (-1927 . 591356) + (-1928 . 591174) (-1929 . 591122) (-1930 . 591034) (-1931 . 590919) + (-1932 . 590799) (-1933 . 590717) (-1934 . 590545) (-1935 . 590488) + (-1936 . 590194) (-1937 . 589803) (-1938 . 589708) (-1939 . 589592) + (-1940 . 589508) (-1941 . 589221) (-1942 . 589011) (-1943 . 588941) + (-1944 . 588863) (-1945 . 588648) (-1946 . 588588) (-1947 . 588507) + (-1948 . 588424) (-1949 . 587978) (-1950 . 587871) (-1951 . 587719) + (-1952 . 587646) (-1953 . 587362) (-1954 . 587334) (-1955 . 587058) + (-1956 . 586924) (-1957 . 586778) (-1958 . 586697) (-1959 . 585693) + (-1960 . 585640) (-1961 . 585552) (-1962 . 585274) (-1963 . 584908) + (-1964 . 584806) (-1965 . 583229) (-1966 . 582912) (-1967 . 582520) + (-1968 . 582467) (-1969 . 582403) (-1970 . 582059) (-1971 . 581850) + (-1972 . 581797) (-1973 . 581742) (-1974 . 581633) (-1975 . 581556) + (-1976 . 581504) (-1977 . 581432) (-1978 . 581371) (-1979 . 581247) + (-1980 . 581085) (-1981 . 580790) (-1982 . 580689) (-1983 . 580555) + (-1984 . 580483) (-1985 . 580352) (-1986 . 580135) (-1987 . 579983) + (-1988 . 579867) (-1989 . 579503) (-1990 . 579422) (-1991 . 579251) + (-1992 . 579181) (-1993 . 578962) (-1994 . 578881) (-1995 . 578268) + (-1996 . 578112) (-1997 . 578026) (-1998 . 577699) (-1999 . 577638) + (-2000 . 577557) (-2001 . 577356) (-2002 . 577174) (-2003 . 577080) + (-2004 . 576956) (-2005 . 576698) (-2006 . 576589) (-2007 . 576508) + (-2008 . 576081) (-2009 . 575908) (-2010 . 575606) (-2011 . 575532) + (-2012 . 575465) (-2013 . 575413) (-2014 . 575294) (-2015 . 575065) + (-2016 . 574979) (-2017 . 574917) (-2018 . 574840) (-2019 . 573057) + (-2020 . 572839) (-2021 . 572564) (-2022 . 572498) (-2023 . 572352) + (-2024 . 572251) (-2025 . 572123) (-2026 . 571949) (-2027 . 571850) + (-2028 . 571777) (-2029 . 571649) (-2030 . 571551) (-2031 . 571054) + (-2032 . 570998) (-2033 . 570828) (-2034 . 570521) (-2035 . 570464) + (-2036 . 570384) (-2037 . 570137) (-2038 . 569726) (-2039 . 569692) + (-2040 . 569596) (-2041 . 569491) (-2042 . 569390) (-2043 . 569128) + (-2044 . 568962) (-2045 . 568831) (-2046 . 568776) (-2047 . 568573) + (-2048 . 568520) (-2049 . 568404) (-2050 . 568319) (-2051 . 568218) + (-2052 . 567976) (-2053 . 567664) (-2054 . 567602) (-2055 . 567429) + (-2056 . 567257) (-2057 . 567229) (-2058 . 567180) (-2059 . 566863) + (-2060 . 566676) (-2061 . 566556) (-2062 . 566462) (-2063 . 566361) + (-2064 . 566252) (-2065 . 566197) (-2066 . 566129) (-2067 . 565910) + (-2068 . 565799) (-2069 . 565681) (-2070 . 565580) (-2071 . 565264) + (-2072 . 565108) (-2073 . 562994) (-2074 . 562882) (-2075 . 562819) + (-2076 . 562526) (-2077 . 562474) (-2078 . 562397) (-2079 . 562345) + (-2080 . 562213) (-2081 . 562012) (-2082 . 561943) (-2083 . 561765) + (-2084 . 561709) (-2085 . 561601) (-2086 . 561535) (-2087 . 561372) + (-2088 . 561275) (-2089 . 561148) (-2090 . 561082) (-2091 . 561016) + (-2092 . 560871) (-2093 . 560644) (-2094 . 560592) (-2095 . 560511) + (-2096 . 560412) (-2097 . 560264) (-2098 . 560181) (-2099 . 560062) + (-2100 . 559927) (-2101 . 559839) (-2102 . 559785) (-2103 . 559723) + (-2104 . 559331) (-2105 . 559245) (-2106 . 558970) (-2107 . 558655) + (-2108 . 558581) (-2109 . 558405) (-2110 . 558321) (-2111 . 558269) + (-2112 . 557271) (-2113 . 557053) (-2114 . 556960) (-2115 . 556896) + (-2116 . 556808) (-2117 . 555723) (-2118 . 555063) (-2119 . 554967) + (-2120 . 554824) (-2121 . 554711) (-2122 . 554395) (-2123 . 554337) + (-2124 . 553783) (-2125 . 553703) (-2126 . 553676) (-2127 . 553624) + (-2128 . 553427) (-2129 . 553304) (-2130 . 553042) (-2131 . 552739) + (-2132 . 552668) (-2133 . 552616) (-2134 . 552584) (-2135 . 552162) + (-2136 . 551677) (-2137 . 551439) (-2138 . 551386) (-2139 . 551285) + (-2140 . 549983) (-2141 . 549761) (-2142 . 549702) (-2143 . 549457) + (-2144 . 549091) (-2145 . 548933) (-2146 . 548829) (-2147 . 548773) + (-2148 . 548431) (-2149 . 548278) (-2150 . 548148) (-2151 . 547930) + (-2152 . 547373) (-2153 . 547151) (-2154 . 546969) (-2155 . 546847) + (-2156 . 546418) (-2157 . 546290) (-2158 . 546182) (-2159 . 546075) + (-2160 . 546007) (-2161 . 545935) (-2162 . 545883) (-2163 . 545695) + (-2164 . 545579) (-2165 . 545519) (-2166 . 545305) (-2167 . 544915) + (-2168 . 544814) (-2169 . 544762) (-2170 . 544728) (-2171 . 544413) + (-2172 . 544191) (-2173 . 544048) (-2174 . 543997) (-2175 . 543757) + (-2176 . 543606) (-2177 . 543536) (-2178 . 543396) (-2179 . 543343) + (-2180 . 543259) (-2181 . 543099) (-2182 . 542972) (-2183 . 542906) + (-2184 . 542764) (-2185 . 542696) (-2186 . 542625) (-2187 . 542573) + (-2188 . 542469) (-2189 . 542008) (-2190 . 541901) (-2191 . 541803) + (-2192 . 541578) (-2193 . 541186) (-2194 . 540861) (-2195 . 540779) + (-2196 . 540505) (-2197 . 540384) (-2198 . 540040) (-2199 . 540008) + (-2200 . 538943) (-2201 . 538827) (-2202 . 538715) (-2203 . 538587) + (-2204 . 538464) (-2205 . 538193) (-2206 . 538069) (-2207 . 537966) + (-2208 . 537867) (-2209 . 537808) (-2210 . 537574) (-2211 . 537546) + (-2212 . 536748) (-2213 . 536677) (-2214 . 536581) (-2215 . 536528) + (-2216 . 536408) (-2217 . 536309) (-2218 . 536194) (-2219 . 536027) + (-2220 . 535950) (-2221 . 535916) (-2222 . 535864) (-2223 . 535570) + (-2224 . 535431) (-2225 . 535348) (-2226 . 535262) (-2227 . 535172) + (-2228 . 534256) (-2229 . 534200) (-2230 . 534129) (-2231 . 534032) + (-2232 . 533689) (-2233 . 533578) (-2234 . 533504) (-2235 . 533346) + (-2236 . 533139) (-2237 . 533041) (-2238 . 532690) (-2239 . 532536) + (-2240 . 532442) (-2241 . 532264) (-2242 . 531866) (-2243 . 531775) + (-2244 . 531713) (-2245 . 531645) (-2246 . 531521) (-2247 . 531138) + (-2248 . 531054) (-2249 . 531002) (-2250 . 530754) (-2251 . 530726) + (-2252 . 530556) (-2253 . 530475) (-2254 . 530263) (-2255 . 529847) + (-2256 . 529746) (-2257 . 529505) (-2258 . 529403) (-2259 . 529260) + (-2260 . 529108) (-2261 . 528993) (-2262 . 528585) (-2263 . 528405) + (-2264 . 528353) (-2265 . 528294) (-2266 . 528025) (-2267 . 527921) + (-2268 . 527869) (-2269 . 527840) (-2270 . 527693) (-2271 . 527516) + (-2272 . 527357) (-2273 . 527192) (-2274 . 527032) (-2275 . 527003) + (-2276 . 526948) (-2277 . 526780) (-2278 . 526727) (-2279 . 526617) + (-2280 . 526558) (-2281 . 526248) (-2282 . 525891) (-2283 . 525492) + (-2284 . 525052) (-2285 . 524734) (-2286 . 524656) (-2287 . 524583) + (-2288 . 524496) (-2289 . 524417) (-2290 . 524035) (-2291 . 523957) + (-2292 . 523754) (-2293 . 523617) (-2294 . 523523) (-2295 . 523424) + (-2296 . 523352) (-2297 . 523102) (-2298 . 522927) (-2299 . 522788) + (-2300 . 522715) (-2301 . 520583) (-2302 . 520469) (-2303 . 520386) + (-2304 . 520309) (-2305 . 520061) (-2306 . 519958) (-2307 . 519805) + (-2308 . 519556) (-2309 . 519482) (-2310 . 519395) (-2311 . 518871) + (-2312 . 518843) (-2313 . 518719) (-2314 . 518410) (-2315 . 518339) + (-2316 . 518170) (-2317 . 518096) (-2318 . 518027) (-2319 . 517816) + (-2320 . 517697) (-2321 . 517594) (-2322 . 499003) (-2323 . 498893) + (-2324 . 498831) (-2325 . 498737) (-2326 . 498557) (-2327 . 498335) + (-2328 . 498140) (-2329 . 498023) (-2330 . 497929) (-2331 . 497835) + (-2332 . 497764) (-2333 . 497560) (-2334 . 497457) (-2335 . 494636) + (-2336 . 494336) (-2337 . 494179) (-2338 . 494127) (-2339 . 493983) + (-2340 . 492575) (-2341 . 492507) (-2342 . 492410) (-2343 . 492267) + (-2344 . 492112) (-2345 . 491879) (-2346 . 490809) (-2347 . 490519) + (-2348 . 490143) (-2349 . 490091) (-2350 . 489706) (-2351 . 489299) + (-2352 . 489136) (-2353 . 489039) (-2354 . 488923) (-2355 . 488813) + (-2356 . 488742) (-2357 . 488562) (-2358 . 488511) (-2359 . 488382) + (-2360 . 488330) (-2361 . 488073) (-2362 . 488041) (-2363 . 487898) + (-2364 . 487800) (-2365 . 487772) (-2366 . 487738) (-2367 . 487664) + (-2368 . 487555) (-2369 . 487388) (-2370 . 487300) (-2371 . 487101) + (-2372 . 487048) (-2373 . 486529) (-2374 . 486463) (-2375 . 480949) + (-2376 . 480796) (-2377 . 477461) (-2378 . 477214) (-2379 . 476559) + (-2380 . 476218) (-2381 . 476163) (-2382 . 475559) (-2383 . 475493) + (-2384 . 475413) (-2385 . 475347) (-2386 . 475173) (-2387 . 474781) + (-2388 . 474681) (-2389 . 474510) (-2390 . 474352) (-2391 . 474299) + (-2392 . 474192) (-2393 . 473992) (-2394 . 473605) (-2395 . 473496) + (-2396 . 473445) (-2397 . 473109) (-2398 . 472793) (-2399 . 471497) + (-2400 . 471000) (-2401 . 470545) (-2402 . 470479) (-2403 . 470232) + (-2404 . 470143) (-2405 . 470091) (-2406 . 469910) (-2407 . 469830) + (-2408 . 469722) (-2409 . 469593) (-2410 . 469414) (-2411 . 469327) + (-2412 . 469208) (-2413 . 469137) (-2414 . 468955) (-2415 . 468606) + (-2416 . 468532) (-2417 . 468503) (-2418 . 468341) (-2419 . 467895) + (-2420 . 467178) (-2421 . 467125) (-2422 . 467074) (-2423 . 466960) + (-2424 . 466874) (-2425 . 466808) (-2426 . 466644) (-2427 . 466564) + (-2428 . 466425) (-2429 . 466334) (-2430 . 466100) (-2431 . 466015) + (-2432 . 465723) (-2433 . 465131) (-2434 . 465076) (-2435 . 464502) + (-2436 . 464216) (-2437 . 464163) (-2438 . 464012) (-2439 . 463945) + (-2440 . 463795) (-2441 . 463587) (-2442 . 463510) (-2443 . 463285) + (-2444 . 463235) (-2445 . 463186) (-2446 . 462536) (-2447 . 462481) + (-2448 . 462152) (-2449 . 462099) (-2450 . 462022) (-2451 . 461807) + (-2452 . 461748) (-2453 . 461638) (-2454 . 461388) (-2455 . 461263) + (-2456 . 460611) (-2457 . 460230) (-2458 . 460156) (-2459 . 460106) + (-2460 . 460037) (-2461 . 459748) (-2462 . 459655) (-2463 . 459541) + (-2464 . 459386) (-2465 . 459282) (-2466 . 459054) (-2467 . 459001) + (-2468 . 458967) (-2469 . 458752) (-2470 . 458618) (-2471 . 458491) + (-2472 . 457179) (-2473 . 456719) (-2474 . 456603) (-2475 . 456479) + (-2476 . 456427) (-2477 . 456329) (-2478 . 456135) (-2479 . 456038) + (-2480 . 455917) (-2481 . 455780) (-2482 . 455709) (-2483 . 455613) + (-2484 . 455563) (-2485 . 455190) (-2486 . 454536) (-2487 . 454453) + (-2488 . 454401) (-2489 . 454286) (-2490 . 453482) (-2491 . 453365) + (-2492 . 453306) (-2493 . 453081) (-2494 . 452479) (-2495 . 452349) + (-2496 . 452186) (-2497 . 451982) (-2498 . 451932) (-2499 . 451879) + (-2500 . 451734) (-2501 . 451521) (-2502 . 451303) (-2503 . 451243) + (-2504 . 450898) (-2505 . 450791) (-2506 . 450610) (-2507 . 448981) + (-2508 . 448805) (-2509 . 448454) (-2510 . 448222) (-2511 . 447020) + (-2512 . 446387) (-2513 . 446334) (-2514 . 446070) (-2515 . 445975) + (-2516 . 445816) (-2517 . 445764) (-2518 . 445615) (-2519 . 444749) + (-2520 . 444154) (-2521 . 443862) (-2522 . 443813) (-2523 . 443534) + (-2524 . 443238) (-2525 . 443165) (-2526 . 442304) (-2527 . 442188) + (-2528 . 442133) (-2529 . 441989) (-2530 . 441933) (-2531 . 441591) + (-2532 . 441282) (-2533 . 441170) (-2534 . 439875) (-2535 . 439559) + (-2536 . 439485) (-2537 . 439267) (-2538 . 438746) (-2539 . 438644) + (-2540 . 438481) (-2541 . 438428) (-2542 . 438319) (-2543 . 438241) + (-2544 . 438068) (-2545 . 437817) (-2546 . 437537) (-2547 . 437359) + (-2548 . 437245) (-2549 . 437102) (-2550 . 437004) (-2551 . 436895) + (-2552 . 436798) (-2553 . 436690) (-2554 . 436592) (-2555 . 436514) + (-2556 . 436351) (-2557 . 436036) (-2558 . 435702) (-2559 . 435631) + (-2560 . 435552) (-2561 . 435444) (-2562 . 435372) (-2563 . 435183) + (-2564 . 435099) (-2565 . 434847) (-2566 . 434759) (-2567 . 434527) + (-2568 . 434426) (-2569 . 433713) (-2570 . 433594) (-2571 . 433481) + (-2572 . 433263) (-2573 . 433125) (-2574 . 433028) (-2575 . 432933) + (-2576 . 432829) (-2577 . 432750) (-2578 . 432531) (-2579 . 432449) + (-2580 . 432372) (-2581 . 432220) (-2582 . 432132) (-2583 . 432080) + (-2584 . 431994) (-2585 . 431663) (-2586 . 431330) (-2587 . 431020) + (-2588 . 430940) (-2589 . 430835) (-2590 . 430740) (-2591 . 430535) + (-2592 . 430480) (-2593 . 428642) (-2594 . 428447) (-2595 . 428060) + (-2596 . 427934) (-2597 . 427759) (-2598 . 427551) (-2599 . 427523) + (-2600 . 427437) (-2601 . 427334) (-2602 . 426973) (-2603 . 426754) + (-2604 . 426630) (-2605 . 426526) (-2606 . 425016) (-2607 . 424498) + (-2608 . 424438) (-2609 . 424338) (-2610 . 424092) (-2611 . 424064) + (-2612 . 423968) (-2613 . 423761) (-2614 . 423443) (-2615 . 423197) + (-2616 . 423103) (-2617 . 423038) (-2618 . 421490) (-2619 . 421438) + (-2620 . 421372) (-2621 . 421286) (-2622 . 421008) (-2623 . 420935) + (-2624 . 420837) (-2625 . 420788) (-2626 . 420647) (-2627 . 420613) + (-2628 . 420448) (-2629 . 420014) (-2630 . 419627) (-2631 . 419502) + (-2632 . 418957) (-2633 . 418860) (-2634 . 418772) (-2635 . 418436) + (-2636 . 417945) (-2637 . 417821) (-2638 . 417762) (-2639 . 417026) + (-2640 . 416609) (-2641 . 416472) (-2642 . 416440) (-2643 . 416412) + (-2644 . 416359) (-2645 . 416188) (-2646 . 416135) (-2647 . 414689) + (-2648 . 414636) (-2649 . 414474) (-2650 . 414442) (-2651 . 414323) + (-2652 . 414177) (-2653 . 414062) (-2654 . 414007) (-2655 . 413412) + (-2656 . 413356) (-2657 . 412083) (-2658 . 412009) (-2659 . 411891) + (-2660 . 411317) (-2661 . 411222) (-2662 . 411095) (-2663 . 411045) + (-2664 . 410765) (-2665 . 410487) (-2666 . 410237) (-2667 . 410185) + (-2668 . 410115) (-2669 . 409872) (-2670 . 409820) (-2671 . 409752) + (-2672 . 409178) (-2673 . 409083) (-2674 . 408439) (-2675 . 408160) + (-2676 . 408002) (-2677 . 407746) (-2678 . 407461) (-2679 . 407263) + (-2680 . 407120) (-2681 . 406976) (-2682 . 406678) (-2683 . 406594) + (-2684 . 406020) (-2685 . 405962) (-2686 . 404790) (-2687 . 404713) + (-2688 . 404660) (-2689 . 403444) (-2690 . 403385) (-2691 . 403314) + (-2692 . 403189) (-2693 . 403123) (-2694 . 402993) (-2695 . 402419) + (-2696 . 402385) (-2697 . 402270) (-2698 . 402163) (-2699 . 401971) + (-2700 . 401883) (-2701 . 401704) (-2702 . 401632) (-2703 . 401441) + (-2704 . 397281) (-2705 . 397159) (-2706 . 397086) (-2707 . 396979) + (-2708 . 396924) (-2709 . 396847) (-2710 . 395710) (-2711 . 395651) + (-2712 . 395426) (-2713 . 395317) (-2714 . 395264) (-2715 . 395176) + (-2716 . 395142) (-2717 . 394937) (-2718 . 394681) (-2719 . 394528) + (-2720 . 394449) (-2721 . 394127) (-2722 . 393974) (-2723 . 393889) + (-2724 . 393658) (-2725 . 393592) (-2726 . 393447) (-2727 . 393329) + (-2728 . 392690) (-2729 . 392619) (-2730 . 392548) (-2731 . 392139) + (-2732 . 391651) (-2733 . 391528) (-2734 . 391472) (-2735 . 390963) + (-2736 . 390856) (-2737 . 390688) (-2738 . 390318) (-2739 . 390088) + (-2740 . 389478) (-2741 . 389375) (-2742 . 389308) (-2743 . 388793) + (-2744 . 388630) (-2745 . 388100) (-2746 . 388026) (-2747 . 387929) + (-2748 . 387347) (-2749 . 387222) (-2750 . 386965) (-2751 . 386775) + (-2752 . 386672) (-2753 . 386514) (-2754 . 386106) (-2755 . 385984) + (-2756 . 385877) (-2757 . 385803) (-2758 . 385751) (-2759 . 385208) + (-2760 . 385087) (-2761 . 383802) (-2762 . 383589) (-2763 . 383511) + (-2764 . 383410) (-2765 . 382918) (-2766 . 382832) (-2767 . 382725) + (-2768 . 382246) (-2769 . 382019) (-2770 . 381954) (-2771 . 381880) + (-2772 . 381809) (-2773 . 381715) (-2774 . 381687) (-2775 . 381500) + (-2776 . 381405) (-2777 . 381312) (-2778 . 381113) (-2779 . 381042) + (-2780 . 380575) (-2781 . 380487) (-2782 . 380265) (-2783 . 380017) + (-2784 . 379913) (-2785 . 379857) (-2786 . 379609) (-2787 . 379523) + (-2788 . 379471) (-2789 . 379299) (-2790 . 379217) (-2791 . 378841) + (-2792 . 377684) (-2793 . 377422) (-2794 . 377363) (-2795 . 377197) + (-2796 . 375765) (-2797 . 375586) (-2798 . 375456) (-2799 . 375372) + (-2800 . 375120) (-2801 . 374820) (-12 . 374648) (-2803 . 374490) + (-2804 . 374310) (-2805 . 374182) (-2806 . 374101) (-2807 . 373979) + (-2808 . 373884) (-2809 . 373726) (-2810 . 373574) (-2811 . 373464) + (-2812 . 373293) (-2813 . 373062) (-2814 . 372943) (-2815 . 372785) + (-2816 . 372733) (-2817 . 372681) (-2818 . 372538) (-2819 . 372319) + (-2820 . 372225) (-2821 . 371641) (-2822 . 371557) (-2823 . 371399) + (-2824 . 371250) (-2825 . 371176) (-2826 . 371093) (-2827 . 371009) + (-2828 . 370923) (-2829 . 370712) (-2830 . 370603) (-2831 . 370459) + (-2832 . 369657) (-2833 . 369439) (-2834 . 369365) (-2835 . 369084) + (-2836 . 368923) (-2837 . 368664) (-2838 . 368523) (-2839 . 368466) + (-2840 . 368400) (-2841 . 368210) (-2842 . 368176) (-2843 . 367581) + (-2844 . 367479) (-2845 . 367041) (-2846 . 367009) (-2847 . 366630) + (-2848 . 366570) (-2849 . 365706) (-2850 . 365569) (-2851 . 365541) + (-2852 . 365439) (-2853 . 365383) (-2854 . 365273) (-2855 . 364946) + (-2856 . 364889) (-2857 . 364755) (-2858 . 364689) (-2859 . 364395) + (-2860 . 364343) (-2861 . 364194) (-2862 . 364141) (-2863 . 364026) + (-2864 . 363974) (-2865 . 363867) (-2866 . 363839) (-2867 . 363752) + (-2868 . 363580) (-2869 . 363497) (-2870 . 363353) (-2871 . 363211) + (-2872 . 363058) (-2873 . 362919) (-2874 . 362810) (-2875 . 362732) + (-2876 . 362506) (-2877 . 362334) (-2878 . 362237) (-2879 . 362054) + (-2880 . 361955) (-2881 . 360104) (-2882 . 359980) (-2883 . 359857) + (-2884 . 359677) (-2885 . 359640) (-2886 . 359588) (* . 355042) + (-2888 . 354870) (-2889 . 354264) (-2890 . 354103) (-2891 . 353948) + (-2892 . 353633) (-2893 . 353605) (-2894 . 353458) (-2895 . 353405) + (-2896 . 353076) (-2897 . 353042) (-2898 . 352691) (-2899 . 352519) + (-2900 . 352466) (-2901 . 352327) (-2902 . 351520) (-2903 . 351260) + (-2904 . 351209) (-2905 . 350623) (-2906 . 350555) (-2907 . 350382) + (-2908 . 350102) (-2909 . 350014) (-2910 . 349820) (-2911 . 349678) + (-2912 . 349508) (-2913 . 349335) (-2914 . 349264) (-2915 . 349236) + (-2916 . 349151) (-2917 . 349068) (-2918 . 348983) (-2919 . 348765) + (-2920 . 348440) (-2921 . 348168) (-2922 . 347140) (-2923 . 346869) + (-2924 . 346708) (-2925 . 345698) (-2926 . 345513) (-2927 . 345425) + (-2928 . 345292) (-2929 . 345187) (-2930 . 344965) (-2931 . 344862) + (-2932 . 344750) (-2933 . 344684) (-2934 . 344333) (-2935 . 344166) + (-2936 . 344110) (-2937 . 344073) (-2938 . 343913) (-2939 . 343618) + (-2940 . 343465) (-2941 . 342267) (-2942 . 342036) (-2943 . 341929) + (-2944 . 341709) (-2945 . 341470) (-2946 . 341303) (-2947 . 341275) + (-2948 . 341156) (-2949 . 341057) (-2950 . 340866) (-2951 . 340374) + (-2952 . 340312) (-2953 . 340225) (-2954 . 340145) (-2955 . 340062) + (-2956 . 339937) (-2957 . 339450) (-2958 . 339357) (-2959 . 339262) + (-2960 . 339052) (-2961 . 338899) (-2962 . 338723) (-2963 . 338417) + (-2964 . 338258) (-2965 . 337927) (-2966 . 337111) (-2967 . 336896) + (-2968 . 336716) (-2969 . 336644) (-2970 . 336592) (-2971 . 336220) + (-2972 . 335817) (-2973 . 335734) (-2974 . 335540) (-2975 . 335484) + (-2976 . 335432) (-2977 . 335345) (-2978 . 335317) (-2979 . 335118) + (-2980 . 335052) (-2981 . 334844) (-2982 . 334761) (-2983 . 334508) + (-2984 . 334233) (-2985 . 334154) (-2986 . 334009) (-2987 . 333349) + (-2988 . 332811) (-2989 . 332783) (-2990 . 332698) (-2991 . 332568) + (-2992 . 332338) (-2993 . 332182) (-2994 . 331861) (-2995 . 331751) + (-2996 . 331639) (-2997 . 331294) (-2998 . 331211) (-2999 . 331112) + (-3000 . 331008) (-3001 . 330600) (-3002 . 330485) (-3003 . 330200) + (-3004 . 330055) (-3005 . 329963) (-3006 . 329913) (-3007 . 329776) + (-3008 . 329665) (-3009 . 329505) (-3010 . 329164) (-3011 . 327978) + (-3012 . 327773) (-3013 . 327176) (-3014 . 327124) (-3015 . 327038) + (-3016 . 326781) (-3017 . 326646) (-3018 . 325776) (-3019 . 325693) + (-3020 . 325447) (-3021 . 324265) (-3022 . 324080) (-3023 . 323950) + (-3024 . 323474) (-3025 . 322586) (-3026 . 322202) (-3027 . 321619) + (-3028 . 321342) (-3029 . 321240) (-3030 . 321067) (-3031 . 321015) + (-3032 . 316473) (-3033 . 316364) (-3034 . 314158) (-3035 . 313899) + (-3036 . 313768) (-3037 . 313668) (-3038 . 313563) (-3039 . 313496) + (-3040 . 313422) (-3041 . 313269) (-3042 . 313111) (-3043 . 312959) + (-3044 . 312877) (-3045 . 312744) (-3046 . 312412) (-3047 . 312344) + (-3048 . 312158) (-3049 . 311822) (-3050 . 311719) (-3051 . 311638) + (-3052 . 311420) (-3053 . 311118) (-3054 . 310991) (-3055 . 310924) + (-3056 . 310872) (-3057 . 310778) (-3058 . 310692) (-3059 . 310385) + (-3060 . 310218) (-3061 . 310130) (-3062 . 310071) (-3063 . 310016) + (-3064 . 309904) (-3065 . 309645) (-3066 . 309453) (-3067 . 309383) + (-3068 . 309270) (-3069 . 309066) (-3070 . 305003) (-3071 . 304832) + (-3072 . 304637) (-3073 . 304471) (-3074 . 303886) (-3075 . 303756) + (-3076 . 303602) (-3077 . 303488) (-3078 . 303042) (-3079 . 302973) + (-3080 . 301792) (-3081 . 301185) (-3082 . 301027) (-3083 . 300955) + (-3084 . 300882) (-3085 . 299506) (-3086 . 299440) (-3087 . 299411) + (-3088 . 299109) (-3089 . 298845) (-3090 . 298772) (-3091 . 298670) + (-3092 . 298303) (-3093 . 298146) (-3094 . 298029) (-3095 . 297923) + (-3096 . 297791) (-3097 . 297636) (-3098 . 297577) (-3099 . 297275) + (-3100 . 293277) (-3101 . 293105) (-3102 . 293035) (-3103 . 292861) + (-3104 . 292775) (-3105 . 291525) (-3106 . 291472) (-3107 . 291444) + (-3108 . 291358) (-3109 . 291274) (-3110 . 291173) (-3111 . 290969) + (-3112 . 290521) (-3113 . 290468) (-3114 . 290152) (-3115 . 289915) + (-3116 . 289887) (-3117 . 289828) (-3118 . 287483) (-3119 . 287353) + (-3120 . 287171) (-3121 . 287061) (-3122 . 287006) (-3123 . 272892) + (-3124 . 272818) (-3125 . 272790) (-3126 . 272167) (-3127 . 272076) + (-3128 . 271929) (-3129 . 271876) (-3130 . 271772) (-3131 . 271656) + (-3132 . 271559) (-3133 . 271531) (-3134 . 271448) (-3135 . 271219) + (-3136 . 271078) (-3137 . 271011) (-3138 . 270892) (-3139 . 270534) + (-3140 . 270346) (-3141 . 270247) (-3142 . 269961) (-3143 . 269909) + (-3144 . 269782) (-3145 . 269567) (-3146 . 269356) (-3147 . 269249) + (-3148 . 269091) (-3149 . 268779) (-3150 . 268676) (-3151 . 268599) + (-3152 . 268443) (-3153 . 268008) (-3154 . 267702) (-3155 . 267625) + (-3156 . 267292) (-3157 . 267213) (-3158 . 267133) (-3159 . 267104) + (-3160 . 266653) (-3161 . 266428) (-3162 . 266001) (-3163 . 265788) + (-3164 . 265322) (-3165 . 265027) (-3166 . 264817) (-3167 . 264570) + (-3168 . 264310) (-3169 . 264240) (-3170 . 264080) (-3171 . 263992) + (-3172 . 260326) (-3173 . 260112) (-3174 . 259933) (-3175 . 259190) + (-3176 . 259022) (-3177 . 258900) (-3178 . 258710) (-3179 . 257849) + (-3180 . 257704) (-3181 . 257525) (-3182 . 257443) (-3183 . 257361) + (-3184 . 257309) (-3185 . 257223) (-3186 . 257108) (-3187 . 257049) + (-3188 . 257021) (-3189 . 256917) (-3190 . 256712) (-3191 . 256624) + (-3192 . 256596) (-3193 . 256525) (-3194 . 256391) (-3195 . 256118) + (-3196 . 256051) (-3197 . 255953) (-3198 . 255888) (-3199 . 255815) + (-3200 . 255707) (-3201 . 255635) (-3202 . 255548) (-3203 . 255456) + (-3204 . 255386) (-3205 . 255298) (-3206 . 255215) (-3207 . 255163) + (-3208 . 254995) (-3209 . 254849) (-3210 . 254504) (-3211 . 254111) + (-3212 . 254059) (-3213 . 253921) (-3214 . 253786) (-3215 . 253607) + (-3216 . 253483) (-3217 . 253420) (-3218 . 253348) (-3219 . 253246) + (-3220 . 253073) (-3221 . 253006) (-3222 . 252864) (-3223 . 252749) + (-3224 . 252690) (-3225 . 252604) (-3226 . 252508) (-3227 . 252371) + (-3228 . 251522) (-3229 . 251279) (-3230 . 251098) (-3231 . 251029) + (-3232 . 250920) (-3233 . 250602) (-3234 . 250548) (-3235 . 249446) + (-3236 . 249337) (-3237 . 249285) (-3238 . 249123) (-3239 . 245502) + (-3240 . 245409) (-3241 . 245280) (-3242 . 245081) (-3243 . 244994) + (-3244 . 244865) (-3245 . 244393) (-3246 . 244340) (-3247 . 244288) + (-3248 . 244143) (-3249 . 244010) (-3250 . 243483) (-3251 . 243235) + (-3252 . 243132) (-3253 . 243098) (-3254 . 243015) (-3255 . 242765) + (-3256 . 242345) (-3257 . 242294) (-3258 . 242220) (-3259 . 242161) + (-3260 . 242104) (-3261 . 241960) (-3262 . 241883) (-3263 . 241830) + (-3264 . 241482) (-3265 . 241363) (-3266 . 241192) (-3267 . 240896) + (-3268 . 240617) (-3269 . 240247) (-3270 . 240168) (-3271 . 239972) + (-3272 . 239868) (-3273 . 239767) (-3274 . 239651) (-3275 . 239577) + (-3276 . 239439) (-3277 . 239340) (-3278 . 239267) (-3279 . 239212) + (-3280 . 238874) (-3281 . 238761) (-3282 . 238456) (-3283 . 238035) + (-3284 . 237828) (-3285 . 237742) (-3286 . 237415) (-3287 . 237161) + (-3288 . 236519) (-3289 . 236348) (-3290 . 236100) (-3291 . 235992) + (-3292 . 235918) (-3293 . 235869) (-3294 . 235487) (-3295 . 235414) + (-3296 . 235078) (-3297 . 235016) (-3298 . 234803) (-3299 . 234608) + (-3300 . 234450) (-3301 . 233886) (-3302 . 233806) (-3303 . 233754) + (-3304 . 233588) (-3305 . 233514) (-3306 . 233398) (-3307 . 233324) + (-3308 . 232894) (-3309 . 232812) (-3310 . 232783) (-3311 . 232655) + (-3312 . 232534) (-3313 . 232188) (-3314 . 232160) (-3315 . 232098) + (-3316 . 231996) (-3317 . 231937) (-3318 . 231771) (-3319 . 231658) + (-3320 . 231574) (-3321 . 231432) (-3322 . 231201) (-3323 . 231138) + (-3324 . 231049) (-3325 . 230964) (-3326 . 230773) (-3327 . 230666) + (-3328 . 229998) (-3329 . 229925) (-3330 . 229792) (-3331 . 229685) + (-3332 . 229469) (-3333 . 229346) (-3334 . 229127) (-3335 . 228988) + (-3336 . 228931) (-3337 . 228816) (-3338 . 228636) (-3339 . 228527) + (-3340 . 228442) (-3341 . 228287) (-3342 . 227421) (-3343 . 227280) + (-3344 . 227167) (-3345 . 226978) (-3346 . 226853) (-3347 . 226730) + (-3348 . 226678) (-3349 . 226604) (-3350 . 226441) (-3351 . 226206) + (-3352 . 226102) (-3353 . 225944) (-3354 . 225841) (-3355 . 225789) + (-3356 . 225454) (-3357 . 225385) (-3358 . 225330) (-3359 . 225189) + (-3360 . 225112) (-3361 . 225040) (-3362 . 224976) (-3363 . 224654) + (-3364 . 224553) (-3365 . 224100) (-3366 . 223810) (-3367 . 223433) + (-3368 . 223331) (-3369 . 223088) (-3370 . 222209) (-3371 . 221967) + (-3372 . 221827) (-3373 . 221755) (-3374 . 221659) (-3375 . 221286) + (-3376 . 220712) (-3377 . 220680) (-3378 . 220337) (-3379 . 220213) + (-3380 . 220079) (-3381 . 219720) (-3382 . 219611) (-3383 . 219458) + (-3384 . 219303) (-3385 . 219150) (-3386 . 218687) (-3387 . 218490) + (-3388 . 218328) (-3389 . 218145) (-3390 . 217898) (-3391 . 217761) + (-3392 . 217058) (-3393 . 216958) (-3394 . 216840) (-3395 . 216565) + (-3396 . 216469) (-3397 . 216075) (-3398 . 215951) (-3399 . 215601) + (-3400 . 215545) (-3401 . 215490) (-3402 . 215356) (-3403 . 215232) + (-3404 . 215089) (-3405 . 214960) (-3406 . 214642) (-3407 . 214374) + (-3408 . 214263) (-3409 . 214172) (-3410 . 214117) (-3411 . 214064) + (-3412 . 213919) (-3413 . 213604) (-3414 . 212717) (-3415 . 212521) + (-3416 . 212415) (-3417 . 212360) (-3418 . 212009) (-3419 . 211894) + (-3420 . 211806) (-3421 . 211589) (-3422 . 210424) (-3423 . 210128) + (-3424 . 210007) (-3425 . 209901) (-3426 . 209818) (-3427 . 209708) + (-3428 . 209573) (-3429 . 209475) (-3430 . 209368) (-3431 . 209218) + (-3432 . 208988) (-3433 . 208842) (-3434 . 208312) (-3435 . 207935) + (-3436 . 207768) (-3437 . 207715) (-3438 . 207291) (-3439 . 206053) + (-3440 . 205967) (-3441 . 205860) (-3442 . 205042) (-3443 . 204940) + (-3444 . 204888) (-3445 . 204591) (-3446 . 204438) (-3447 . 204165) + (-3448 . 203872) (-3449 . 203757) (-3450 . 203726) (-3451 . 203615) + (-3452 . 203408) (-3453 . 202961) (-3454 . 202786) (-3455 . 202664) + (-3456 . 202567) (-3457 . 202409) (-3458 . 202113) (-3459 . 201914) + (-3460 . 201771) (-3461 . 201637) (-3462 . 201542) (-3463 . 201415) + (-3464 . 201362) (-3465 . 201097) (-3466 . 198834) (-3467 . 197246) + (-3468 . 197162) (-3469 . 197088) (-3470 . 197014) (-3471 . 196796) + (-3472 . 196598) (-3473 . 196455) (-3474 . 196328) (-3475 . 196262) + (-3476 . 195974) (-3477 . 195769) (-3478 . 195686) (-3479 . 195207) + (-3480 . 194472) (-3481 . 194267) (-3482 . 194057) (-3483 . 193950) + (-3484 . 193813) (-3485 . 193779) (-3486 . 193688) (-3487 . 193590) + (-3488 . 193345) (-3489 . 193272) (-3490 . 193192) (-3491 . 192938) + (-3492 . 192879) (-3493 . 192627) (-3494 . 192526) (-3495 . 192362) + (-3496 . 192189) (-3497 . 192155) (-3498 . 192093) (-3499 . 191615) + (-3500 . 191473) (-3501 . 191275) (-3502 . 190771) (-3503 . 190582) + (-3504 . 190394) (-3505 . 190272) (-3506 . 190223) (-3507 . 190122) + (-3508 . 189445) (-3509 . 189358) (-3510 . 189257) (-3511 . 189156) + (-3512 . 189103) (-3513 . 188853) (-3514 . 188801) (-3515 . 188770) + (-3516 . 188113) (-3517 . 188032) (-3518 . 187149) (-3519 . 187052) + (-3520 . 186748) (-3521 . 186262) (-3522 . 186124) (-3523 . 184968) + (-3524 . 184896) (-3525 . 184814) (-3526 . 184737) (-3527 . 184615) + (-3528 . 184466) (-3529 . 184325) (-3530 . 184272) (-3531 . 184159) + (-3532 . 184063) (-3533 . 183433) (-3534 . 183214) (-3535 . 183108) + (-3536 . 182796) (-3537 . 182694) (-3538 . 182341) (-3539 . 182271) + (-3540 . 182185) (-3541 . 181999) (-3542 . 181902) (-3543 . 181740) + (-3544 . 181592) (-3545 . 181321) (-3546 . 181130) (-3547 . 181075) + (-3548 . 180952) (-3549 . 180808) (-3550 . 180662) (-3551 . 180583) + (-3552 . 179770) (-3553 . 179711) (-3554 . 179581) (-3555 . 179406) + (-3556 . 179329) (-3557 . 179270) (-3558 . 179180) (-3559 . 179102) + (-3560 . 178828) (-3561 . 178651) (-3562 . 178528) (-3563 . 178389) + (-3564 . 177713) (-3565 . 177651) (-3566 . 177545) (-3567 . 177479) + (-3568 . 177395) (-3569 . 177341) (-3570 . 177283) (-3571 . 176071) + (-3572 . 175967) (-3573 . 175858) (-3574 . 175808) (-3575 . 175722) + (-3576 . 175634) (-3577 . 175518) (-3578 . 175466) (-3579 . 175396) + (-3580 . 175182) (-3581 . 175069) (-3582 . 175012) (-3583 . 174880) + (-3584 . 174803) (-3585 . 174732) (-3586 . 174634) (-3587 . 174584) + (-3588 . 174501) (-3589 . 174428) (-3590 . 174340) (-3591 . 174197) + (-3592 . 173895) (-3593 . 173772) (-3594 . 173704) (-3595 . 173632) + (-3596 . 173441) (-3597 . 173297) (-3598 . 172796) (-3599 . 172744) + (-3600 . 172650) (-3601 . 172350) (-3602 . 172195) (-3603 . 172118) + (-3604 . 171939) (-3605 . 171851) (-3606 . 171666) (-3607 . 171357) + (-3608 . 171221) (-3609 . 171065) (-3610 . 170968) (-3611 . 170869) + (-3612 . 170802) (-3613 . 170703) (-3614 . 170606) (-3615 . 170553) + (-3616 . 170496) (-3617 . 170423) (-3618 . 170298) (-3619 . 170167) + (-3620 . 170079) (-3621 . 169840) (-3622 . 169809) (-3623 . 169690) + (-3624 . 169499) (-3625 . 169372) (-3626 . 169271) (-3627 . 169143) + (-3628 . 168544) (-3629 . 168400) (-3630 . 168094) (-3631 . 167953) + (-3632 . 167882) (-3633 . 167802) (-3634 . 167733) (-3635 . 167618) + (-3636 . 167538) (-3637 . 167486) (-3638 . 167322) (-3639 . 166581) + (-3640 . 166519) (-3641 . 166363) (-3642 . 165183) (-3643 . 165112) + (-3644 . 165008) (-3645 . 164880) (-3646 . 164717) (-3647 . 164497) + (-3648 . 164426) (-3649 . 164052) (-3650 . 163311) (-3651 . 163156) + (-3652 . 163102) (-3653 . 162989) (-3654 . 162737) (-3655 . 162592) + (-3656 . 162383) (-3657 . 162253) (-3658 . 162086) (-3659 . 162023) + (-3660 . 161885) (-3661 . 161197) (-3662 . 161119) (-3663 . 161049) + (-3664 . 160989) (-3665 . 160708) (-3666 . 160590) (-3667 . 160458) + (-3668 . 160392) (-3669 . 160204) (-3670 . 160097) (-3671 . 160069) + (-3672 . 159493) (-3673 . 159386) (-3674 . 159331) (-3675 . 159157) + (-3676 . 158969) (-3677 . 158935) (-3678 . 158878) (-3679 . 158723) + (-3680 . 158212) (-3681 . 158139) (-3682 . 158107) (-3683 . 157994) + (-3684 . 157418) (-3685 . 157131) (-3686 . 156958) (-3687 . 156859) + (-3688 . 156725) (-3689 . 156505) (-3690 . 156292) (-3691 . 156071) + (-3692 . 155784) (-3693 . 155640) (-3694 . 155487) (-3695 . 155334) + (-3696 . 155237) (-3697 . 154661) (-3698 . 154558) (-3699 . 154310) + (-3700 . 154236) (-3701 . 154120) (-3702 . 154068) (-3703 . 153959) + (-3704 . 153846) (-3705 . 153590) (-3706 . 153469) (-3707 . 153353) + (-3708 . 152667) (-3709 . 152478) (-3710 . 151638) (-3711 . 151559) + (-3712 . 151445) (-3713 . 150879) (-9 . 150851) (-3715 . 150798) + (-3716 . 150691) (-3717 . 148422) (-3718 . 148306) (-3719 . 141307) + (-3720 . 140621) (-3721 . 139655) (-3722 . 139603) (-3723 . 139377) + (-3724 . 139303) (-3725 . 138737) (-8 . 138709) (-3727 . 138008) + (-3728 . 137958) (-3729 . 137665) (-3730 . 137008) (-3731 . 136754) + (-3732 . 136005) (-3733 . 135402) (-3734 . 135373) (-3735 . 135011) + (-3736 . 134768) (-3737 . 134426) (-7 . 134398) (-3739 . 134302) + (-3740 . 134205) (-3741 . 134062) (-3742 . 133903) (-3743 . 133846) + (-3744 . 133674) (-3745 . 133605) (-3746 . 133031) (-3747 . 132938) + (-3748 . 132848) (-3749 . 132760) (-3750 . 131456) (-3751 . 131404) + (-3752 . 131212) (-3753 . 131105) (-3754 . 131028) (-3755 . 130899) + (-3756 . 130847) (-3757 . 130273) (-3758 . 130118) (-3759 . 130009) + (-3760 . 129925) (-3761 . 129521) (-3762 . 129409) (-3763 . 129016) + (-3764 . 128933) (-3765 . 128859) (-3766 . 128616) (-3767 . 128528) + (-3768 . 127954) (-3769 . 127853) (-3770 . 127427) (-3771 . 127318) + (-3772 . 126991) (-3773 . 126942) (-3774 . 126849) (-3775 . 126720) + (-3776 . 126615) (-3777 . 126563) (-3778 . 126469) (-3779 . 125782) + (-3780 . 125730) (-3781 . 125652) (-3782 . 125620) (-3783 . 125259) + (-3784 . 125153) (-3785 . 124935) (-3786 . 124692) (-3787 . 124381) + (-3788 . 124295) (-3789 . 123806) (-3790 . 123714) (-3791 . 123654) + (-3792 . 122967) (-3793 . 122893) (-3794 . 122632) (-3795 . 122600) + (-3796 . 122301) (-3797 . 122155) (-3798 . 122014) (-3799 . 121934) + (-3800 . 121837) (-3801 . 121291) (-3802 . 120604) (-3803 . 120274) + (-3804 . 120222) (-3805 . 120079) (-3806 . 118222) (-3807 . 118092) + (-3808 . 117907) (-3809 . 117799) (-3810 . 117425) (-3811 . 116994) + (-3812 . 116928) (-3813 . 116698) (-3814 . 116123) (-3815 . 115991) + (-3816 . 115833) (-3817 . 115696) (-3818 . 115347) (-3819 . 115259) + (-3820 . 114930) (-3821 . 114828) (-3822 . 114670) (-3823 . 114577) + (-3824 . 114464) (-3825 . 113889) (-3826 . 113747) (-3827 . 113659) + (-3828 . 113603) (-3829 . 113532) (-3830 . 113460) (-3831 . 113329) + (-3832 . 113112) (-3833 . 113039) (-3834 . 112967) (-3835 . 112721) + (-3836 . 112146) (-3837 . 112065) (-3838 . 111982) (-3839 . 111914) + (-3840 . 111795) (-3841 . 111639) (-3842 . 111546) (-3843 . 111340) + (-3844 . 111288) (-3845 . 111233) (-3846 . 111170) (-3847 . 110649) + (-3848 . 110403) (-3849 . 109829) (-3850 . 109442) (-3851 . 109343) + (-3852 . 109104) (-3853 . 108717) (-3854 . 108629) (-3855 . 108595) + (-3856 . 108507) (-3857 . 108381) (-3858 . 108307) (-3859 . 107700) + (-3860 . 107050) (-3861 . 104635) (-3862 . 104439) (-3863 . 104349) + (-3864 . 103157) (-3865 . 103049) (-3866 . 102568) (-3867 . 102462) + (-3868 . 102389) (-3869 . 102333) (-3870 . 102174) (-3871 . 102066) + (-3872 . 102010) (-3873 . 101885) (-3874 . 101678) (-3875 . 101619) + (-3876 . 101460) (-3877 . 101257) (-3878 . 100779) (-3879 . 100696) + (-3880 . 100639) (-3881 . 100532) (-3882 . 100138) (-3883 . 100064) + (-3884 . 99468) (-3885 . 99366) (-3886 . 99199) (-3887 . 99095) + (-3888 . 98997) (-3889 . 98923) (-3890 . 98814) (-3891 . 98626) + (-3892 . 98299) (-3893 . 97756) (-3894 . 96494) (-3895 . 96345) + (-3896 . 96292) (-3897 . 96138) (-3898 . 95932) (-3899 . 95814) + (-3900 . 95728) (-3901 . 95621) (-3902 . 95564) (-3903 . 95272) + (-3904 . 95216) (-3905 . 95164) (-3906 . 95087) (-3907 . 94700) + (-3908 . 94540) (-3909 . 94417) (-3910 . 94340) (-3911 . 94081) + (-3912 . 93894) (-3913 . 93822) (-3914 . 93492) (-3915 . 93182) + (-3916 . 92823) (-3917 . 91991) (-3918 . 91752) (-3919 . 91693) + (-3920 . 91590) (-3921 . 91404) (-3922 . 91300) (-3923 . 91072) + (-3924 . 90862) (-3925 . 90806) (-3926 . 90697) (-3927 . 90646) + (-3928 . 90539) (-3929 . 90441) (-3930 . 90257) (-3931 . 89504) + (-3932 . 88977) (-3933 . 88754) (-3934 . 88655) (-3935 . 88576) + (-3936 . 88390) (-3937 . 88291) (-3938 . 88173) (-3939 . 87980) + (-3940 . 87828) (-3941 . 87760) (-3942 . 87675) (-3943 . 87606) + (-3944 . 87448) (-3945 . 87368) (-3946 . 87260) (-3947 . 87183) + (-3948 . 86761) (-3949 . 86664) (-3950 . 85954) (-3951 . 85874) + (-3952 . 85664) (-3953 . 85611) (-3954 . 85523) (-3955 . 85380) + (-3956 . 85307) (-3957 . 84804) (-3958 . 84664) (-3959 . 84608) + (-3960 . 84494) (-3961 . 84409) (-3962 . 84327) (-3963 . 84108) + (-3964 . 83727) (-3965 . 83620) (-3966 . 83490) (-3967 . 83332) + (-3968 . 83298) (-3969 . 83102) (-3970 . 83051) (-3971 . 82757) + (-3972 . 82691) (-3973 . 82568) (-3974 . 82421) (-3975 . 82100) + (-3976 . 81988) (-3977 . 81863) (-3978 . 81682) (-3979 . 81430) + (-3980 . 81381) (-3981 . 81328) (-3982 . 81221) (-3983 . 80348) + (-3984 . 80253) (-3985 . 80140) (-3986 . 80022) (-3987 . 79866) + (-3988 . 79652) (-3989 . 79494) (-3990 . 79341) (-3991 . 79134) + (-3992 . 78982) (-3993 . 78904) (-3994 . 78746) (-3995 . 78359) + (-3996 . 78286) (-3997 . 78148) (-3998 . 77630) (-3999 . 77581) + (-4000 . 77411) (-4001 . 77312) (-4002 . 76194) (-4003 . 76074) + (-4004 . 75954) (-4005 . 75829) (-4006 . 75681) (-4007 . 75458) + (-4008 . 75345) (-4009 . 75308) (-4010 . 75220) (-4011 . 75128) + (-4012 . 75049) (-4013 . 74489) (-4014 . 74436) (-4015 . 74330) + (-4016 . 74266) (-4017 . 73741) (-4018 . 73317) (-4019 . 73132) + (-4020 . 72979) (-4021 . 72924) (-4022 . 72781) (-4023 . 72689) + (-4024 . 72634) (-4025 . 72578) (-4026 . 72475) (-4027 . 72420) + (-4028 . 72265) (-4029 . 72170) (-4030 . 72067) (-4031 . 71981) + (-4032 . 71907) (-4033 . 71719) (-4034 . 71633) (-4035 . 71536) + (-4036 . 71398) (-4037 . 71165) (-4038 . 70771) (-4039 . 70671) + (-4040 . 70612) (-4041 . 70503) (-4042 . 70382) (-4043 . 70309) + (-4044 . 69983) (-4045 . 69782) (-4046 . 69754) (-4047 . 69262) + (-4048 . 69097) (-4049 . 69019) (-4050 . 67163) (-4051 . 67110) + (-4052 . 67012) (-4053 . 66776) (-4054 . 66663) (-4055 . 66533) + (-4056 . 66315) (-4057 . 66262) (-4058 . 66181) (-4059 . 66049) + (-4060 . 65667) (-4061 . 65483) (-4062 . 65304) (-4063 . 64853) + (-4064 . 64654) (-4065 . 64602) (-4066 . 64438) (-4067 . 64078) + (-4068 . 63939) (-4069 . 63721) (-4070 . 63593) (-4071 . 63507) + (-4072 . 63426) (-4073 . 62986) (-4074 . 62909) (-4075 . 62518) + (-4076 . 62285) (-4077 . 60945) (-4078 . 60892) (-4079 . 60814) + (-4080 . 60748) (-4081 . 60665) (-4082 . 60561) (-4083 . 60358) + (-4084 . 60272) (-4085 . 60212) (-4086 . 60156) (-4087 . 60061) + (-4088 . 59963) (-4089 . 59603) (-4090 . 59551) (-4091 . 59442) + (-4092 . 59347) (-4093 . 59056) (-4094 . 58948) (-4095 . 58337) + (-4096 . 58259) (-4097 . 58079) (-4098 . 57699) (-4099 . 57575) + (-4100 . 57497) (-4101 . 57428) (-4102 . 57368) (-4103 . 57253) + (-4104 . 57042) (-4105 . 57011) (-4106 . 56878) (-4107 . 56695) + (-4108 . 56493) (-4109 . 56440) (-4110 . 56348) (-4111 . 56164) + (-4112 . 56090) (-4113 . 55981) (-4114 . 55873) (-4115 . 55760) + (-4116 . 55604) (-4117 . 55521) (-4118 . 55460) (-4119 . 55109) + (-4120 . 54983) (-4121 . 54213) (-4122 . 54182) (-4123 . 54021) + (-4124 . 53750) (-4125 . 53649) (-4126 . 53547) (-4127 . 53494) + (-4128 . 53408) (-4129 . 53217) (-4130 . 52945) (-4131 . 52838) + (-4132 . 52709) (-4133 . 52569) (-4134 . 52433) (-4135 . 52160) + (-4136 . 51995) (-4137 . 51716) (-4138 . 51622) (-4139 . 51570) + (-4140 . 51442) (-4141 . 51333) (-4142 . 51093) (-4143 . 51024) + (-4144 . 50950) (-4145 . 50512) (-4146 . 50346) (-4147 . 50240) + (-4148 . 50152) (-4149 . 50096) (-4150 . 49950) (-4151 . 49731) + (-4152 . 49657) (-4153 . 49625) (-4154 . 49555) (-4155 . 49472) + (-4156 . 48968) (-4157 . 48434) (-4158 . 48269) (-4159 . 48185) + (-4160 . 48079) (-4161 . 48008) (-4162 . 47901) (-4163 . 47764) + (-4164 . 47565) (-4165 . 47537) (-4166 . 46801) (-4167 . 46523) + (-4168 . 46452) (-4169 . 46382) (-4170 . 45835) (-4171 . 45767) + (-4172 . 45615) (-4173 . 45584) (-4174 . 45478) (-4175 . 44661) + (-4176 . 44601) (-4177 . 44331) (-4178 . 44164) (-4179 . 44023) + (-4180 . 43942) (-4181 . 43799) (-4182 . 43728) (-4183 . 43409) + (-4184 . 43313) (-4185 . 43187) (-4186 . 42951) (-4187 . 42518) + (-4188 . 42381) (-4189 . 41680) (-4190 . 41628) (-4191 . 41493) + (-4192 . 41196) (-4193 . 40993) (-4194 . 40865) (-4195 . 40726) + (-4196 . 40585) (-4197 . 40411) (-4198 . 40288) (-4199 . 40215) + (-4200 . 39935) (-4201 . 39257) (-4202 . 39177) (-4203 . 38756) + (-4204 . 38615) (-4205 . 38437) (-4206 . 38365) (-4207 . 38268) + (-4208 . 38234) (-4209 . 38150) (-4210 . 38057) (-4211 . 37927) + (-4212 . 37844) (-4213 . 37743) (-4214 . 37534) (-4215 . 37341) + (-4216 . 37160) (-4217 . 37074) (-4218 . 36965) (-4219 . 36912) + (-4220 . 36784) (-4221 . 36624) (-4222 . 36554) (-4223 . 36289) + (-4224 . 36036) (-4225 . 35984) (-4226 . 35848) (-4227 . 35767) + (-4228 . 35584) (-4229 . 35195) (-4230 . 35067) (-4231 . 35039) + (-4232 . 34881) (-4233 . 34763) (-4234 . 34560) (-4235 . 34453) + (-4236 . 34303) (-4237 . 33965) (-4238 . 33905) (-4239 . 33732) + (-4240 . 33617) (-4241 . 33549) (-4242 . 33383) (-4243 . 33205) + (-4244 . 33146) (-4245 . 33088) (-4246 . 32922) (-4247 . 32869) + (-4248 . 32795) (-4249 . 32376) (-4250 . 32038) (-4251 . 31986) + (-4252 . 31885) (-4253 . 31639) (-4254 . 31195) (-4255 . 31107) + (-4256 . 30963) (-4257 . 30911) (-4258 . 30780) (-4259 . 30642) + (-4260 . 30550) (-4261 . 30440) (-4262 . 30325) (-4263 . 30241) + (-4264 . 30024) (-4265 . 29846) (-4266 . 29470) (-4267 . 29300) + (-4268 . 29192) (-4269 . 28706) (-4270 . 28653) (-4271 . 28598) + (-4272 . 28546) (-4273 . 28441) (-4274 . 28297) (-4275 . 28231) + (-4276 . 28157) (-4277 . 28001) (-4278 . 27902) (-4279 . 27474) + (-4280 . 27143) (-4281 . 25673) (-4282 . 25516) (-4283 . 25269) + (-4284 . 25089) (-4285 . 24946) (-4286 . 24424) (-4287 . 24229) + (-4288 . 24201) (-4289 . 23757) (-4290 . 23683) (-4291 . 23615) + (-4292 . 23503) (-4293 . 23435) (-4294 . 23244) (-4295 . 22972) + (-4296 . 22923) (-4297 . 22764) (-4298 . 22514) (-4299 . 22428) + (-4300 . 21794) (-4301 . 21696) (-4302 . 20587) (-4303 . 20147) + (-4304 . 20003) (-4305 . 19950) (-4306 . 19735) (-4307 . 19682) + (-4308 . 19131) (-4309 . 19058) (-4310 . 18943) (-4311 . 18806) + (-4312 . 18630) (-4313 . 18497) (-4314 . 18414) (-4315 . 18307) + (-4316 . 18234) (-4317 . 17893) (-4318 . 17509) (-4319 . 17453) + (-4320 . 17398) (-4321 . 17022) (-4322 . 16570) (-4323 . 16520) + (-4324 . 14978) (-4325 . 14752) (-4326 . 14580) (-4327 . 14409) + (-4328 . 14218) (-4329 . 13959) (-4330 . 13875) (-4331 . 13273) + (-4332 . 13149) (-4333 . 13055) (-4334 . 12961) (-4335 . 12822) + (-4336 . 12701) (-4337 . 12649) (-4338 . 12579) (-4339 . 12485) + (-4340 . 12258) (-4341 . 12113) (-4342 . 11872) (-4343 . 11807) + (-4344 . 11569) (-4345 . 11517) (-4346 . 11367) (-4347 . 11238) + (-4348 . 11125) (-4349 . 10934) (-4350 . 10682) (-4351 . 10472) + (-4352 . 10283) (-4353 . 5170) (-4354 . 5114) (-4355 . 4996) + (-4356 . 4853) (-4357 . 4715) (-4358 . 4429) (-4359 . 4137) + (-4360 . 3740) (-4361 . 3571) (-4362 . 3493) (-4363 . 3281) + (-4364 . 3228) (-4365 . 3124) (-4366 . 2814) (-4367 . 2656) + (-4368 . 2503) (-4369 . 2405) (-4370 . 2260) (-4371 . 2166) + (-4372 . 2082) (-4373 . 2015) (-4374 . 1892) (-4375 . 1794) + (-4376 . 1639) (-4377 . 1429) (-4378 . 1313) (-4379 . 1209) + (-4380 . 1108) (-4381 . 1008) (-4382 . 926) (-4383 . 848) + (-4384 . 685) (-4385 . 478) (-4386 . 30))
\ No newline at end of file |